Sample records for cell expressed p53

  1. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelalim, Essam Mohamed, E-mail: emohamed@qf.org.qa; Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21more » and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.« less

  2. [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells

    PubMed Central

    Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo

    2006-01-01

    [6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513

  3. Rigor of cell fate decision by variable p53 pulses and roles of cooperative gene expression by p53

    PubMed Central

    Murakami, Yohei; Takada, Shoji

    2012-01-01

    Upon DNA damage, the cell fate decision between survival and apoptosis is largely regulated by p53-related networks. Recent experiments found a series of discrete p53 pulses in individual cells, which led to the hypothesis that the cell fate decision upon DNA damage is controlled by counting the number of p53 pulses. Under this hypothesis, Sun et al. (2009) modeled the Bax activation switch in the apoptosis signal transduction pathway that can rigorously “count” the number of uniform p53 pulses. Based on experimental evidence, here we use variable p53 pulses with Sun et al.’s model to investigate how the variability in p53 pulses affects the rigor of the cell fate decision by the pulse number. Our calculations showed that the experimentally anticipated variability in the pulse sizes reduces the rigor of the cell fate decision. In addition, we tested the roles of the cooperativity in PUMA expression by p53, finding that lower cooperativity is plausible for more rigorous cell fate decision. This is because the variability in the p53 pulse height is more amplified in PUMA expressions with more cooperative cases. PMID:27857606

  4. Mutant p53 expression in fallopian tube epithelium drives cell migration.

    PubMed

    Quartuccio, Suzanne M; Karthikeyan, Subbulakshmi; Eddie, Sharon L; Lantvit, Daniel D; Ó hAinmhire, Eoghainín; Modi, Dimple A; Wei, Jian-Jun; Burdette, Joanna E

    2015-10-01

    Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the "p53 signature," or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53(R273H) MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53(R273H) with KRAS(G12V) activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53(R273H) in the fallopian tube will improve understanding of changes at the earliest stage of transformation. This information can help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the "p53 signature" thereby, improving survival rates. © 2015 UICC.

  5. Mutant p53-Expressing Cells Undergo Necroptosis via Cell Competition with the Neighboring Normal Epithelial Cells.

    PubMed

    Watanabe, Hirotaka; Ishibashi, Kojiro; Mano, Hiroki; Kitamoto, Sho; Sato, Nanami; Hoshiba, Kazuya; Kato, Mugihiko; Matsuzawa, Fumihiko; Takeuchi, Yasuto; Shirai, Takanobu; Ishikawa, Susumu; Morioka, Yuka; Imagawa, Toshiaki; Sakaguchi, Kazuyasu; Yonezawa, Suguru; Kon, Shunsuke; Fujita, Yasuyuki

    2018-06-26

    p53 is a tumor suppressor protein, and its missense mutations are frequently found in human cancers. During the multi-step progression of cancer, p53 mutations generally accumulate at the mid or late stage, but not in the early stage, and the underlying mechanism is still unclear. In this study, using mammalian cell culture and mouse ex vivo systems, we demonstrate that when p53R273H- or p53R175H-expressing cells are surrounded by normal epithelial cells, mutant p53 cells undergo necroptosis and are basally extruded from the epithelial monolayer. When mutant p53 cells alone are present, cell death does not occur, indicating that necroptosis results from cell competition with the surrounding normal cells. Furthermore, when p53R273H mutation occurs within RasV12-transformed epithelia, cell death is strongly suppressed and most of the p53R273H-expressing cells remain intact. These results suggest that the order of oncogenic mutations in cancer development could be dictated by cell competition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential

    PubMed Central

    Arsic, Nikola; Gadea, Gilles; Lagerqvist, E. Louise; Busson, Muriel; Cahuzac, Nathalie; Brock, Carsten; Hollande, Frederic; Gire, Veronique; Pannequin, Julie; Roux, Pierre

    2015-01-01

    Summary Cancer stem cells (CSC) are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform. PMID:25754205

  7. Basal p53 expression is indispensable for mesenchymal stem cell integrity.

    PubMed

    Boregowda, Siddaraju V; Krishnappa, Veena; Strivelli, Jacqueline; Haga, Christopher L; Booker, Cori N; Phinney, Donald G

    2018-03-01

    Marrow-resident mesenchymal stem cells (MSCs) serve as a functional component of the perivascular niche that regulates hematopoiesis. They also represent the main source of bone formed in adult bone marrow, and their bifurcation to osteoblast and adipocyte lineages plays a key role in skeletal homeostasis and aging. Although the tumor suppressor p53 also functions in bone organogenesis, homeostasis, and neoplasia, its role in MSCs remains poorly described. Herein, we examined the normal physiological role of p53 in primary MSCs cultured under physiologic oxygen levels. Using knockout mice and gene silencing we show that p53 inactivation downregulates expression of TWIST2, which normally restrains cellular differentiation to maintain wild-type MSCs in a multipotent state, depletes mitochondrial reactive oxygen species (ROS) levels, and suppresses ROS generation and PPARG gene and protein induction in response to adipogenic stimuli. Mechanistically, this loss of adipogenic potential skews MSCs toward an osteogenic fate, which is further potentiated by TWIST2 downregulation, resulting in highly augmented osteogenic differentiation. We also show that p53 - /- MSCs are defective in supporting hematopoiesis as measured in standard colony assays because of decreased secretion of various cytokines including CXCL12 and CSF1. Lastly, we show that transient exposure of wild-type MSCs to 21% oxygen upregulates p53 protein expression, resulting in increased mitochondrial ROS production and enhanced adipogenic differentiation at the expense of osteogenesis, and that treatment of cells with FGF2 mitigates these effects by inducing TWIST2. Together, these findings indicate that basal p53 levels are necessary to maintain MSC bi-potency, and oxygen-induced increases in p53 expression modulate cell fate and survival decisions. Because of the critical function of basal p53 in MSCs, our findings question the use of p53 null cell lines as MSC surrogates, and also implicate dysfunctional

  8. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatinmore » immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.« less

  9. Cell proliferation and p53 expression in pseudoepitheliomatous hyperplasia of oral paracoccidioidomycosis.

    PubMed

    Kaminagakura, E; Bonan, P R F; Lopes, M A; Almeida, O P

    2006-09-01

    Paracoccidioidomycosis (PCMycosis) is a systemic mycosis frequently found in many regions of Latin America. Microscopically, it is characterised by granulomatous inflammation and pseudoepitheliomatous hyperplasia (PEH). This work describes the proliferation index and p53 expression by immunohistochemistry in PEH of PCMycosis, normal oral mucosa (NOM) and mild oral epithelial dysplasia (ED). Ki67 positive cells were present in the basal and parabasal layers in NOM and PEH, while in ED it was also observed in the spinous layer. Percentage of ki67 positive cells was 7.7, 28.2 and 46.0 in NOM, PEH and ED respectively. p53 was negative in NOM and in PEH it was expressed by few cells in the basal layer of only three cases. However, it was expressed in all cases of ED, in basal and parabasal layers. Although histologically PEH mimics well-differentiated squamous cell carcinoma, its proliferative pattern and p53 expression are more similar to NOM than to dysplasia. These findings, confirm PEH as a reactive process probably associated with the underlying chronic inflammation.

  10. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    PubMed

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  11. [Expression of Ki-67 and P53 protein in oral squamous cell carcinoma and its clinical significance].

    PubMed

    He, Wei; Xiao, Yan; Chen, Wei-min

    2015-04-01

    To investigate the clinical and pathological features and its relationship with the expression of Ki-67 and p53 protein in oral squamous cell carcinoma. Immunohistochemical SP staining method was used to quantify the protein expression levels of Ki-67 and p53 protein in 10 cases of normal oral mucosa, 16 cases of oral leukoplakia (OLK) tissue, and 48 cases of oral squamous cell carcinoma. The relationship of the expression of Ki-67 and p53 protein to clinical and pathological data was analyzed, and SPSS17.0 software package was used for statistical analysis. The positive expression rate of Ki-67 protein in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma was 30%, 56.3% and 79.2%, respectively; The positive expression rate of p53 was 0%, 43.8%, and 70.8%, respectively; Ki-67 and p53 expression had significant difference among normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma (P<0.05); The expression of Ki-67 protein was significantly elevated with tumor stage, differentiation and cervical lymph node metastasis (P<0.05); The expression of p53 protein was significantly related to the degree of tumor differentiation (P<0.05); The expression of Ki-67 and p53 was positively correlated in oral squamous cell carcinoma (P<0.05). The high expression of Ki-67 and p53 protein in oral squamous cell carcinoma tissues may play an important role in the development of oral squamous cell carcinoma.

  12. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response

    PubMed Central

    Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C

    2014-01-01

    In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9β/9γ. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and α variant, supporting our experimental data. Using siRNA specifically targeting exons 9β/9γ, we demonstrate that cell growth can be driven by modulating p53β and p53γ expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53β and p53γ promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53β enhanced p53α transcriptional activity on the p21 and Bax promoters, while p53γ increased p53α transcriptional activity on the Bax promoter only. Moreover, p53β and p53γ co-immunoprecipitate with p53α only in the presence of p53-responsive promoter. Interestingly, although p53β and p53γ promote apoptosis in MCF7 cells, p53β and p53γ maintain cell growth in response to TG003 in a p53α-dependent manner. The dual activities of p53β and p53γ isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53β and p53γ regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616

  13. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    PubMed Central

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  14. Regulation of p53 expression and apoptosis by vault RNA2-1-5p in cervical cancer cells.

    PubMed

    Kong, Lu; Hao, Qi; Wang, Ying; Zhou, Ping; Zou, Binbin; Zhang, Yu-xiang

    2015-09-29

    nc886 or VRNA2-1 has recently been identified as a noncoding RNA instead of a vault RNA or a pre-microRNA. Several studies have reported that pre-miR-886 plays a tumor-suppressive role in a wide range of cancer cells through its activity as a cellular protein kinase RNA-activated (PKR) ligand and repressor. However, by sequencing stem-PCR products, we found that a microRNA originating from this precursor, vault RNA2-1-5p (VTRNA2-1-5p), occurs in cervical cancer cells. The expression levels of the predicted targets of VTRNA2-1-5p are negatively correlated with VTRNA2-1-5p levels by quantitative reversion transcription PCR (qRT-PCR). Previous results have shown that VTRNA2-1-5p is overexpressed in human cervical squamous cell carcinomas (CSCCs) compared with adjacent healthy tissues. Inhibition of VTRNA2-1-5p increases Bax protein expression and apoptotic cell death in cervical cancer cells. Our findings suggest that VTRNA2-1-5p has oncogenic activity related to the progression of cervical cancer. Here, we report that VTRNA2-1-5p directly targeted p53 expression and functioned as an oncomir in cervical cancer. VTRNA2-1-5p inhibition decreased cervical cancer cell invasion, proliferation, and tumorigenicity while increasing apoptosis and p53 expression. Interestingly, VTRNA2-1-5p inhibition also increased cisplatin-induced apoptosis of HeLa and SiHa cells. In human clinical cervical cancer specimens, low p53 expression and high VTRNA2-1-5p expression were positively associated.In addition, VTRNA2-1-5p was found to directly target the 5' and 3' untranslated regions (UTRs) of p53. We propose that VTRNA2-1-5p is a direct regulator of p53 and suggest that it plays an essential role in the apoptosis and proliferation of cervical cancer cells.

  15. p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells.

    PubMed

    Cereseto, A; Diella, F; Mulloy, J C; Cara, A; Michieli, P; Grassmann, R; Franchini, G; Klotman, M E

    1996-09-01

    Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.

  16. p53 elevation in human cells halt SV40 infection by inhibiting T-ag expression

    PubMed Central

    Drayman, Nir; Ben-nun-Shaul, Orly; Butin-Israeli, Veronika; Srivastava, Rohit; Rubinstein, Ariel M.; Mock, Caroline S.; Elyada, Ela; Ben-Neriah, Yinon; Lahav, Galit; Oppenheim, Ariella

    2016-01-01

    SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection. Using live cell imaging and single cell analyses we found that p53 dynamics are variable among individual cells, with only a subset of cells activating p53 immediately after SV40 infection. This cell-to-cell variabilty had clear consequences on the outcome of the infection. None of the cells with elevated p53 at the beginning of the infection proceeded to express T-ag, suggesting a p53-dependent decision between abortive and productive infection. In addition, we show that artificial elevation of p53 levels prior to the infection reduces infection efficiency, supporting a role for p53 in defending against SV40. We further found that the p53-mediated host defense mechanism against SV40 is not facilitated by apoptosis nor via interferon-stimulated genes. Instead p53 binds to the viral DNA at the T-ag promoter region, prevents its transcriptional activation by Sp1, and halts the progress of the infection. These findings shed new light on the long studied struggle between SV40 T-ag and p53, as developed during virus-host coevolution. Our studies indicate that the fate of SV40 infection is determined as soon as the viral DNA enters the nucleus, before the onset of viral gene expression. PMID:27462916

  17. Rapamycin regulates the proliferation of Huh7, a hepatocellular carcinoma cell line, by up-regulating p53 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Sora; Jeon, Ji-Sook; Ahn, Curie

    Rapamycin, a specific inhibitor of mTOR used extensively as an immunosuppressant, has been expanded recently to cancer therapy, because the mTOR signal is known to be up-regulated in various cancer cells including hepatocellular carcinoma (HCC) cells. In spite of extensive efforts to employ mTOR inhibitors as anti-HCC therapy, they have not yet been approved by the FDA. Because of the heterogeneity and complexity of molecular signaling in HCC, suitable biomarkers should be identified or discovered to improve clinical efficacy of mTOR-specific inhibitors to HCC cells. In this study, the effect of rapamycin was investigated on two different HCC cell lines,more » Huh7 cells and HepG2 cells. Rapamycin was found to inhibit the proliferation of Huh7 cells but not of HepG2 cells. Moreover, it was found that rapamycin can up-regulate p53 at the protein level, but not affect its transcript. To understand the critical role of p53 in the rapamycin effect, knock-down experiments were performed using small-interfering RNAs (siRNAs). The anti-proliferative effect of rapamycin on Huh7 cells clearly disappeared after blocking p53 production with siRNA, which indicates that p53 is a critical factor in the anti-proliferative effect of rapamycin in HCC cells. The over-expression system of p53 was also employed to mimic the effect of rapamycin and found that cell proliferation was clearly down-regulated by p53 over-expression. Finally, we found that the extracellular signal-regulated kinase 1/2 (ERK1/2) signal was regulated by p53 whose expression was induced by rapamycin. Overall, this study demonstrates that rapamycin inhibited the proliferation of Huh7 cells by up-regulating the expression of p53 and down-regulating the ERK1/2 signal, indicating that p53 is a useful biomarker for anti-cancer therapy using the specific inhibitor of mTOR signal, rapamycin, against hepatocellular carcinoma cells. - Highlights: • Rapamycin inhibits the proliferation of hepatocellular carcinoma

  18. Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction.

    PubMed

    Broaddus, W C; Liu, Y; Steele, L L; Gillies, G T; Lin, P S; Loudon, W G; Valerie, K; Schmidt-Ullrich, R K; Fillmore, H L

    1999-12-01

    The goal of this study was to determine whether adenoviral vector-mediated expression of human wildtype p53 can enhance the radiosensitivity of malignant glioma cells that express native wild-type p53. The p53 gene is thought to function abnormally in the majority of malignant gliomas, although it has been demonstrated to be mutated in only approximately 30%. This has led to studies in which adenoviral transduction with wild-type human p53 has been investigated in an attempt to slow tumor cell growth. Recent studies suggest that reconstitution of wild-type p53 can render cells more susceptible to radiation-mediated death, primarily by p53-mediated apoptosis. Rat RT2 glioma cells were analyzed for native p53 status by reverse transcriptase-polymerase chain reaction and sequence analysis and for p53 expression by Western blot analysis. Clonogenic survival and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were used to characterize RT2 cell radiosensitivity and apoptosis, respectively, with and without prior transduction with p53-containing and control adenoviral vectors. Animal survival length was monitored after intracerebral implantation with transduced and nontransduced RT2 cells, with and without cranial radiation. The RT2 cells were demonstrated to express native rat wild-type p53 and to markedly overexpress human p53 following adenoviral p53 transduction. The combination of p53 transduction followed by radiation resulted in marked decreases in RT2 cell survival and increases in apoptosis at radiation doses from 2 to 6 Gy. Animals receiving cranial radiation after intracerebral implantation with RT2 cells previously transduced with p53 survived significantly longer than control animals (p<0.01). The ability to enhance the radiosensitivity of malignant glioma cells that express wild-type p53 by using adenoviral transduction to induce overexpression of p53 offers hope for this approach as a therapeutic strategy

  19. p53 AND MDM2 PROTEIN EXPRESSION IN ACTINIC CHEILITIS

    PubMed Central

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia. PMID:19082401

  20. p53 and MDM2 protein expression in actinic cheilitis.

    PubMed

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia.

  1. Expression of C-terminal deleted p53 isoforms in neuroblastoma

    PubMed Central

    Goldschneider, David; Horvilleur, Emilie; Plassa, Louis-François; Guillaud-Bataille, Marine; Million, Karine; Wittmer-Dupret, Evelyne; Danglot, Gisèle; de Thé, Hughes; Bénard, Jean; May, Evelyne; Douc-Rasy, Sétha

    2006-01-01

    The tumor suppressor gene, p53, is rarely mutated in neuroblastomas (NB) at the time of diagnosis, but its dysfunction could result from a nonfunctional conformation or cytoplasmic sequestration of the wild-type p53 protein. However, p53 mutation, when it occurs, is found in NB tumors with drug resistance acquired over the course of chemotherapy. As yet, no study has been devoted to the function of the specific p53 mutants identified in NB cells. This study includes characterization and functional analysis of p53 expressed in eight cell lines: three wild-type cell lines and five cell lines harboring mutations. We identified two transcription-inactive p53 variants truncated in the C-terminus, one of which corresponded to the p53β isoform recently identified in normal tissue by Bourdon et al. [J. C. Bourdon, K. Fernandes, F. Murray-Zmijewski, G. Liu, A. Diot, D. P. Xirodimas, M. K. Saville and D. P. Lane (2005) Genes Dev., 19, 2122–2137]. Our results show, for the first time, that the p53β isoform is the only p53 species to be endogenously expressed in the human NB cell line SK-N-AS, suggesting that the C-terminus truncated p53 isoforms may play an important role in NB tumor development. PMID:17028100

  2. The maternal genes Ci-p53/p73-a and Ci-p53/p73-b regulate zygotic ZicL expression and notochord differentiation in Ciona intestinalis embryos.

    PubMed

    Noda, Takeshi

    2011-12-01

    I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. RITA can induce cell death in p53-defective cells independently of p53 function via activation of JNK/SAPK and p38

    PubMed Central

    Weilbacher, A; Gutekunst, M; Oren, M; Aulitzky, W E; van der Kuip, H

    2014-01-01

    Significant advances have been made in the development of small molecules blocking the p53/MDM2 interaction. The Mdm2 inhibitor Nutlin-3 is restricted to tumors carrying wtp53. In contrast, RITA, a compound that binds p53, has recently been shown also to restore transcriptional functions of mtp53. As more than 50% of solid tumors carry p53 mutations, RITA promises to be a more effective therapeutic strategy than Nutlin-3. We investigated effects of RITA on apoptosis, cell cycle and induction of 45 p53 target genes in a panel of 14 cell lines from different tumor entities with different p53 status as well as primary lymphocytes and fibroblasts. Nine cell strains expressed wtp53, four harbored mtp53, and three were characterized by the loss of p53 protein. A significant induction of cell death upon RITA was observed in 7 of 16 cell lines. The nonmalignant cells in our panel were substantially less sensitive. We found that in contrast to Nultin-3, RITA is capable to induce cell death not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells. Importantly, whereas p53 has a central role for RITA-mediated effects in wtp53 cells, neither p53 nor p63 or p73 were essential for the RITA response in mtp53 or p53-null cells in our panel demonstrating that besides the known p53-dependent action of RITA in wtp53 cells, RITA can induce cell death also independently of p53 in cells harboring defective p53. We identified an important role of both p38 and JNK/SAPK for sensitivity to RITA in these cells leading to a typical caspase- and BAX/BAK-dependent mitochondrial apoptosis. In conclusion, our data demonstrate that RITA can induce apoptosis through p38 and JNK/SAPK not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells, making RITA an interesting tumor-selective drug. PMID:25010984

  4. RITA can induce cell death in p53-defective cells independently of p53 function via activation of JNK/SAPK and p38.

    PubMed

    Weilbacher, A; Gutekunst, M; Oren, M; Aulitzky, W E; van der Kuip, H

    2014-07-10

    Significant advances have been made in the development of small molecules blocking the p53/MDM2 interaction. The Mdm2 inhibitor Nutlin-3 is restricted to tumors carrying wtp53. In contrast, RITA, a compound that binds p53, has recently been shown also to restore transcriptional functions of mtp53. As more than 50% of solid tumors carry p53 mutations, RITA promises to be a more effective therapeutic strategy than Nutlin-3. We investigated effects of RITA on apoptosis, cell cycle and induction of 45 p53 target genes in a panel of 14 cell lines from different tumor entities with different p53 status as well as primary lymphocytes and fibroblasts. Nine cell strains expressed wtp53, four harbored mtp53, and three were characterized by the loss of p53 protein. A significant induction of cell death upon RITA was observed in 7 of 16 cell lines. The nonmalignant cells in our panel were substantially less sensitive. We found that in contrast to Nultin-3, RITA is capable to induce cell death not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells. Importantly, whereas p53 has a central role for RITA-mediated effects in wtp53 cells, neither p53 nor p63 or p73 were essential for the RITA response in mtp53 or p53-null cells in our panel demonstrating that besides the known p53-dependent action of RITA in wtp53 cells, RITA can induce cell death also independently of p53 in cells harboring defective p53. We identified an important role of both p38 and JNK/SAPK for sensitivity to RITA in these cells leading to a typical caspase- and BAX/BAK-dependent mitochondrial apoptosis. In conclusion, our data demonstrate that RITA can induce apoptosis through p38 and JNK/SAPK not only in tumor cells harboring wtp53 and mtp53 but also in p53-null cells, making RITA an interesting tumor-selective drug.

  5. Synergistic effect of p53 on TSA-induced stanniocalcin 1 expression in human nasopharyngeal carcinoma cells, CNE2.

    PubMed

    Ching, L Y; Yeung, Bonnie H Y; Wong, Chris K C

    2012-06-01

    Human stanniocalcin 1 (STC1) has recently been identified as a putative protein factor involved in cellular apoptosis. The use of histone deacetylase inhibitor (i.e. trichostatin A (TSA)) and doxorubicin (Dox) is one of the common treatment methods to induce apoptosis in human cancer cells. A study on TSA and Dox-mediated apoptosis may shed light on the regulation and function of STC1 in cancer treatment. In this study, TSA and Dox cotreatment in human nasopharyngeal carcinoma cells (CNE2) elicited synergistic effects on STC1 gene expression and cellular apoptosis. An activation of p53 (TP53) transcriptional activity in Dox- or Dox+TSA-treated cells was revealed by the increased expression levels of p53 mRNA/protein as well as p53-driven luciferase activities. To elucidate the possible involvement of p53 in STC1 gene transcription, a vector expressing wild-type or dominant negative (DN) p53 was transiently transfected into the cells. Both STC1 promoter luciferase constructs and chromatin immunoprecipitation assays did not support the direct role of p53 in STC1 gene transactivation. However, the synergistic effects of p53 on the induction of NF-κB phosphorylation and the recruitment of acetylated histone H3 in STC1 promoter were observed in TSA-cotreated cells. The overexpression of exogenous STC1 sensitized apoptosis in Dox-treated cells. Taken together, this study provides data to show the cross talk of NF-κB, p53, and histone protein in the regulation of STC1 expression and function.

  6. Concordant p53 and mdm-2 protein expression in vulvar squamous cell carcinoma and adjacent lichen sclerosus.

    PubMed

    Carlson, J A; Amin, S; Malfetano, J; Tien, A T; Selkin, B; Hou, J; Goncharuk, V; Wilson, V L; Rohwedder, A; Ambros, R; Ross, J S

    2001-06-01

    To determine if carcinogenic events in vulvar skin precede the onset of morphologic atypia, the authors investigated for derangements in DNA content, cell proliferation, and cell death in vulvar carcinomas and surrounding skin in 140 samples of tumor and surrounding skin collected from 35 consecutive vulvectomy specimen for squamous cell carcinoma (SCC) or vulvar intraepithelial neoplasia (VIN) 3. Vulvar non-cancer excisions were used as controls. Investigations consisted of histologic classification and measurement of 9 variables--epidermal thickness (acanthosis and rete ridge length), immunolabeling index (LI) for 3 proteins (p53 protein, Ki-67, and mdm-2), pattern of p53 expression (dispersed vs. compact), DNA content index, and presence of aneuploidy by image analysis and apoptotic rate by Apotag labeling. Significant positive correlations were found for all nine variables studied versus increasing histologic severity in two proposed histologic stepwise models of vulvar carcinogenesis (lichen sclerosus (LS) and VIN 3 undifferentiated associated SCC groups). High p53 LI (>25) and the compact pattern of p53 expression (suspected oncoprotein) significantly correlated with LS and its associated vulvar samples compared with samples not associated with LS (P < or = 0.001). Furthermore, p53 LI, mdm-2 LI, and pattern of p53 expression were concordant between patient matched samples of LS and SCC. In addition, mdm-2 LI significantly correlated with dispersed pattern p53 LI suggesting a response to wild-type p53 protein accumulation. These findings support the hypothesis that neoplastic transformation occurs in sequential steps and compromises proteins involved in the cell cycle control. Concordance of p53 and mdm-2 protein expression in LS and adjacent SCC provides evidence that LS can act as a precursor lesion in the absence of morphologic atypia. Overexpression of mdm-2 with stabilization and inactivation of p53 protein may provide an alternate pathway for vulvar

  7. Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization.

    PubMed

    Alexandrova, A; Ivanov, A; Chumakov, P; Kopnin, B; Vasiliev, J

    2000-11-23

    Effects of p53 expression on cell morphology and motility were studied using the derivatives of p53-null 10(1) mouse fibroblasts with tetracycline-regulated expression of exogenous human p53. Induction of p53 expression was accompanied by significant decrease in extracellular matrix (fibronectin) and reduction of matrix fibrils, diminution of the number and size of focal contacts, decrease of cell areas, establishment of more elongated cell shape and alterations of actin cytoskeleton (actin bundles became thinner, their number and size decreased). Expression of His175 and Gln22/ Ser23 p53 mutants caused no such effects. To study the influence of p53 expression on cell motility we used wound technique and videomicroscopy observation of single living cells. It was found that induction of p53 expression led to increase of lamellar activity of cell edge. However, in spite of enhanced lamellar activity p53-expressing cells migrated to shorter distance and filled the narrow wound in longer time as compared with their p53-null counterparts. Possible mechanisms of the influence of p53 expression on cell morphology and motility are discussed.

  8. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents

    PubMed Central

    Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Wilhelm Doerr, H; Rödel, F; Speidel, D; Cinatl, J

    2012-01-01

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3rRITA10 μM to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells. PMID:22476102

  9. Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents.

    PubMed

    Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Doerr, H Wilhelm; Rödel, F; Speidel, D; Cinatl, J

    2012-04-05

    Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3(r)RITA(10 μM) to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells.

  10. RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway.

    PubMed

    Surget, Sylvanie; Descamps, Géraldine; Brosseau, Carole; Normant, Vincent; Maïga, Sophie; Gomez-Bougie, Patricia; Gouy-Colin, Nadège; Godon, Catherine; Béné, Marie C; Moreau, Philippe; Le Gouill, Steven; Amiot, Martine; Pellat-Deceunynck, Catherine

    2014-06-14

    The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥ 1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤ 19%). These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a

  11. RITA (Reactivating p53 and Inducing Tumor Apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. Methods A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Results Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53mutated cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤19%). Conclusion These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be

  12. Development of an adenoviral vector with robust expression driven by p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajgelman, Marcio C.; Biotechnology Program, Biomedical Sciences Institute, University of Sao Paulo; Millennium Institute-Gene Therapy Network, Ministry of Science and Technology

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG servedmore » as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.« less

  13. Combined radiation and p53 gene therapy of malignant glioma cells.

    PubMed

    Badie, B; Goh, C S; Klaver, J; Herweijer, H; Boothman, D A

    1999-01-01

    More than half of malignant gliomas reportedly have alterations in the p53 tumor suppressor gene. Because p53 plays a key role in the cellular response to DNA-damaging agents, we investigated the role of p53 gene therapy before ionizing radiation in cultured human glioma cells containing normal or mutated p53. Three established human glioma cell lines expressing the wild-type (U87 MG, p53wt) or mutant (A172 and U373 MG, p53mut) p53 gene were transduced by recombinant adenoviral vectors bearing human p53 (Adp53) and Escherichia coli beta-galactosidase genes (AdLacZ, control virus) before radiation (0-20 Gy). Changes in p53, p21, and Bax expression were studied by Western immunoblotting, whereas cell cycle alterations and apoptosis were investigated by flow cytometry and nuclear staining. Survival was assessed by clonogenic assays. Within 48 hours of Adp53 exposure, all three cell lines demonstrated p53 expression at a viral multiplicity of infection of 100. p21, which is a p53-inducible downstream effector gene, was overexpressed, and cells were arrested in the G1 phase. Bax expression, which is thought to play a role in p53-induced apoptosis, did not change with either radiation or Adp53. Apoptosis and survival after p53 gene therapy varied. U87 MG (p53wt) cells showed minimal apoptosis after Adp53, irradiation, or combined treatments. U373 MG (p53mut) cells underwent massive apoptosis and died within 48 hours of Adp53 treatment, independent of irradiation. Surprisingly, A172 (p53mut) cells demonstrated minimal apoptosis after Adp53 exposure; however, unlike U373 MG cells, apoptosis increased with radiation dose. Survival of all three cell lines was reduced dramatically after >10 Gy. Although Adp53 transduction significantly reduced the survival of U373 MG cells and inhibited A172 growth, it had no effect on the U87 MG cell line. Transduction with AdLacZ did not affect apoptosis or cell cycle progression and only minimally affected survival in all cell lines. We

  14. P16/p53 expression and telomerase activity in immortalized human dental pulp cells

    PubMed Central

    Egbuniwe, Obi; Idowu, Bernadine D; Funes, Juan M; Grant, Andrew D; Renton, Tara

    2011-01-01

    Introduction Residing within human dental pulp are cells of an ectomesenchymal origin that have the potential to differentiate into odontoblast-like cells. These cells have a limited growth potential owing to the effects of cell senescence. This study examines the effects of immortalizing odontoblast-like cells on cell proliferation and mineralization by comparing transformed dental pulp stem cells (tDPSCs) and non-transformed dental pulp stem cells (nDPSCs). Results With the exogenous expression of hTERT, tDPSCs maintained a continued expression of odontogenic markers for cell proliferation and mineralization (ALP, COL-1, DMP-1, DSPP, OCN and OPN), as did nDPSCs. Oncoprotein expression was seen in both groups except for a noted absence of p16 in the tDPSCs. nDPSCs also showed lower levels of total ALP and DNA activity in comparison to tDPSCs when assayed, as well as low telomerase activity readings. Methods Using a retroviral vector, exogenous human telomerase reverse transcriptase (hTERT) was expressed in tDPSCs. Both cell groups were cultured, and their telomerase activities were determined using a telomerase quantification assay. Also examined, were the expression of genes involved in proliferation and mineralization, such as human alkaline phosphatase (ALP), β-actin, collagen I (col-1), core binding factor (cbfa)-1, dentin matrix protein (DMP-1), dentin sialophosphoprotein (DSPP), GAPDH, hTERT, osteocalcin (OCN), osteopontin (OPN) as well as oncoproteins involved in senescence (p16, p21 and p53) using RT-PCR. DNA and alkaline phosphate activity was also assayed in both cell groups. Conclusion These results indicate maintenance of odontoblast-like differentiation characteristics after retroviral transformation with hTERT and suggest a possible link with a reduced p16 expression. PMID:22067611

  15. Bcl-2 protein expression associated with resistance to apoptosis in clear cell adenocarcinomas of the vagina and cervix expressing wild-type p53.

    PubMed

    Waggoner, S E; Baunoch, D A; Anderson, S A; Leigh, F; Zagaja, V G

    1998-09-01

    Clear cell adenocarcinomas (CCAs) of the vagina and cervix are rare tumors that often overexpress wild-type p53. In vitro, expression of protooncogene bcl-2 can block p53-mediated apoptosis. The objective of this study was to determine if bcl-2 is expressed in CCAs and whether this expression is associated with inhibition of apoptosis. Twenty-one paraffin-embedded clear cell adenocarcinomas were immunohistochemically stained for bcl-2 (antibody M 887, Dako, Carpinteria, CA) and DNA fragmentation (ApopTag, Oncor, Gaithersburg, MD), a marker for apoptosis. Fifteen tumors were associated with in utero exposure to diethylstilbestrol (DES). Prior p53 gene analysis had indicated the presence of wild-type p53 in each tumor. Human lymphoid tissue containing bcl-2-expressing lymphocytes and DNase I-exposed CCA tissue sections were used as positive controls for the bcl-2 and apoptosis assays, respectively. Expression of bcl-2 and DNA fragmentation was classified (0 to 3+) according to percentage of positive cells and intensity of staining. Expression of bcl-2 was identified in each CCA examined, and was strongly positive (2+ to 3+) in 18 of 21 samples. Despite the presence of wild-type p53, only 4 of 21 tumors showed evidence of apoptosis as assessed through DNA fragmentation. DNA damage leads to increased intracellular p53 levels. Overexpression of p53 induces apoptosis as a means of protecting organisms from the development of malignancy. CCAs of the vagina and cervix, which contain wild-type p53 genes and often overexpress p53 protein, presumably have evolved mechanisms to avoid p53-induced apoptosis. Our observations are consistent with the hypothesis that overexpression of bcl-2 can inhibit p53-mediated apoptosis and suggest a mechanism by which these rare tumors can arise without mutation of the p53 gene.

  16. Expression of P53 protein after exposure to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Salazar, A. M.; Salvador, C.; Ruiz-Trejo, C.; Ostrosky, P.; Brandan, M. E.

    2001-10-01

    One of the most important tumor suppressor genes is p53 gene, which is involved in apoptotic cell death, cell differentiation and cell cycle arrest. The expression of p53 gene can be evaluated by determining the presence of P53 protein in cells using Western Blot assay with a chemiluminescent method. This technique has shown variabilities that are due to biological factors. Film developing process can influence the quality of the p53 bands obtained. We irradiated tumor cell lines and human peripheral lymphocytes with 137Cs and 60Co gamma rays to standardize irradiation conditions, to compare ionizing radiation with actinomycin D and to reduce the observed variability of P53 protein induction levels. We found that increasing radiation doses increase P53 protein induction while it decreases viability. We also conclude that ionizing radiation could serve as a positive control for Western Blot analysis of protein P53. In addition, our results show that the developing process may play an important role in the quality of P53 protein bands and data interpretation.

  17. Transcriptional specificity in various p53-mutant cells.

    PubMed

    Okaichi, Kumio; Izumi, Nanaka; Takamura, Yuma; Fukui, Shoichi; Kudo, Takashi

    2013-03-01

    Mutation of the tumor suppressor gene p53 is the most common genetic alteration observed in human tumors. However, the relationship between the mutation point of p53 and the transcriptional specificity is not so obvious. We prepared Saos-2 cells with various mutations of p53 that are found in human tumors, and examined the resulting transcriptional alterations in the cells. Loss of function and gain of function were observed in all p53 mutants. Hot-spot mutations of p53 are frequently found in tumor cells. We compared hot-spot mutations and other mutations of p53 and found that a more than 2-fold transcription of CADPS2, PIWIL4 and TRIM9 was induced by hot spot mutations, but not by other mutations. As PIWIL4 suppresses the p16(INK4A) and ARF pathway, restraining cell growth and genomic instability, induction of PIWIL4 expression may be one reason why hot-spot mutations are frequently found in tumor cells.

  18. Stress Hormone Cortisol Enhances Bcl2 Like-12 Expression to Inhibit p53 in Hepatocellular Carcinoma Cells.

    PubMed

    Wu, Weizhong; Liu, Sanguang; Liang, Yunfei; Zhou, Zegao; Bian, Wei; Liu, Xueqing

    2017-12-01

    The pathogenesis of hepatocellular carcinoma (HC) is unclear. It is suggested that psychological stress associates with the pathogenesis of liver cancer. Bcl2-like protein 12 (Bcl2L12) suppresses p53 protein. This study tests a hypothesis that the major stress hormone, cortisol, inhibits the expression of p53 in HC cells (HCC) via up regulating the expression of Bcl2L12. Peripheral blood samples were collected from patients with HC to be analyzed for the levels of cortisol. HCC were cultured to assess the role of cortisol in the regulation of the expression of Bcl2L12 and p53 in HCC. We observed that the serum cortisol levels were higher in HC patients. Expression of Bcl2L12 in HCC was correlated with serum cortisol. Cortisol enhanced the Bcl2L12 expression in HCC. Bcl2L12 binding to the TP53 promoter was correlated with p53 expression in HCC. Cortisol increased the Bcl2L12 expression in HCC to inhibit p53 expression. Stress hormone cortisol suppresses p53 in HCC via enhancing Bcl2L12 expression in HCC. The results suggest that cortisol may be a therapeutic target for the treatment of HC.

  19. Mutant p53 expression in kidney tubules adjacent to renal cell carcinoma: evidence of a precursor lesion.

    PubMed

    Lai, R; el Dabbagh, L; Mourad, W A

    1996-06-01

    Neoplastic transformation can be associated with mutations of the p53 gene. This leads to stabilization of its protein product and to its accumulation, which allows immunohistochemical detection. Mutant p53 expression has been seen in many neoplasms, including renal cell carcinoma (RCC). We recently described putative precursor lesions of RCC. The lesions were defined as intratubular epithelial dysplasia (IED) of kidney tubules adjacent to RCC. They were seen in one-third of the cases studied. The findings were based only on light microscopic analysis. We hypothesized that neoplastic transformation would be manifested by mutant p53 expression in the kidney tubules adjacent to RCC and not in nonneoplastic kidneys. Immunohistochemical staining for p53 in 24 cases of RCC with adjacent kidneys was performed. We used the DO-7 monoclonal antibody reactive for the N-terminal of the p53 protein on formalin-fixed paraffin-embedded tissue. Sections from 14 kidneys resected for nonneoplastic conditions were used as controls. Twenty-one (87%) of the 24 cases of RCC had nuclear p53 expression in the tumor cells. This included 14 cases (58%) with intense reactivity and 7 cases (29%) with weaker p53 immunoreactivity. Of the 24 cases of RCC, IED was identified in 13 cases (54%). Immunoreactivity for p53 was focally seen in tubules of all the lesions, as well as in the nonlesional areas. Six of the lesions exhibited intense nuclear staining. The kidneys adjacent to the RCC, with no evidence of IED, showed focally intense positive p53 nuclear staining in four cases. None of the control specimens showed p53 expression. Our findings provide supportive evidence that previously described IED in kidneys adjacent to RCC are most likely precursor lesions of the neoplasm. Aberrant expression of p53 in areas without evidence of IED may suggest that neoplastic transformation manifested by p53 mutation in kidney tubules may be seen before the development of the morphologic features of

  20. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    PubMed

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  1. Inability of p53-reactivating compounds Nutlin-3 and RITA to overcome p53 resistance in tumor cells deficient in p53Ser46 phosphorylation.

    PubMed

    Ma, Teng; Yamada, Shumpei; Ichwan, Solachuddin J A; Iseki, Sachiko; Ohtani, Kiyoshi; Otsu, Megumi; Ikeda, Masa-Aki

    2012-01-20

    The p53 tumor suppressor protein plays key roles in protecting cells from tumorigenesis. Phosphorylation of p53 at Ser46 (p53Ser46) is considered to be a crucial modification regulating p53-mediated apoptosis. Because the activity of p53 is impaired in most human cancers, restoration of wild-type p53 (wt-p53) function by its gene transfer or by p53-reactivating small molecules has been extensively investigated. The p53-reactivating compounds Nutlin-3 and RITA activate p53 in the absence of genotoxic stress by antagonizing the action of its negative regulator Mdm2. Although controversial, Nutlin-3 was shown to induce p53-mediated apoptosis in a manner independent of p53 phosphorylation. Recently, RITA was shown to induce apoptosis by promoting p53Ser46 phosphorylation. Here we examined whether Nutlin-3 or RITA can overcome resistance to p53-mediated apoptosis in p53-resistant tumor cell lines lacking the ability to phosphorylate p53Ser46. We show that Nutlin-3 did not rescue the apoptotic defect of a Ser46 phosphorylation-defective p53 mutant in p53-sensitive tumor cells, and that RITA neither restored p53Ser46 phosphorylation nor induced apoptosis in p53Ser46 phosphorylation-deficient cells retaining wt-p53. Furthermore, treatment with Nutlin-3 or RITA together with adenoviral p53 gene transfer also failed to induce apoptosis in p53Ser46 phosphorylation-deficient cells either expressing or lacking wt-p53. These results indicate that neither Nutlin-3 nor RITA in able to induce p53-mediated apoptosis in the absence of p53Ser46 phosphorylation. Thus, the dysregulation of this phosphorylation in tumor cells may be a critical factor that limits the efficacy of these p53-based cancer therapies. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Expression of p53 protein in advanced head and neck squamous cell carcinoma before and after chemotherapy.

    PubMed

    Dunphy, C H; Dunphy, F R; Boyd, J H; Varvares, M A; Kim, H J; Lowe, V; Dunleavy, T L; Rodriguez, J; McDonough, E M; Minster, J

    1997-11-01

    The expression of p53 protein has been reported to be in the range of 35% to 67% in head and neck squamous cell carcinoma (HNSCC). Mutations of the gene for p53 protein have been associated with rapidly proliferating tumors, and p53 protein expression has been shown to be a significant predictor of worse survival in surgically resected HNSCC. To determine whether p53 protein expression in advanced (stages III and IV) HNSCC has any impact on tumor response to 2 to 3 courses of paclitaxel (Taxol) and carboplatin, we prospectively studied prechemotherapy specimens from patients with previously untreated, advanced-stage HNSCC. We also attempted to study residual tumors after chemotherapy to determine if the p53 status of the tumor changed. The expression of p53 protein was evaluated by immunohistochemical analysis (clone BP53-12-1; Bio-Genex, San Ramon, Calif). Tertiary university medical center. Two to 3 courses of chemotherapy with paclitaxel and carboplatin. Pathologic complete remission or residual tumor. The results of p53 immunostaining were positive in 24 (67%) of 36 HNSCC specimens before chemotherapy. After chemotherapy, 8 patients achieved pathologic complete remission. Before chemotherapy, the tumor was p53 negative in 2 patients and positive in 6 patients. No correlation of p53 protein expression with response to chemotherapy was noted. The expression of p53 protein converted from positive to negative in 5 (42%) of 12 specimens from patients with residual tumor after chemotherapy, with no impact on clinical outcome.

  3. [Interaction between p53 and MDM2 in human lung cancer cells].

    PubMed

    Rybárová, S; Hodorová, I; Vecanová, J; Muri, J; Mihalik, J

    2014-01-01

    The oncoprotein p53 protein induces cell growth arrest (apoptosis) in response to endo  or exogenous stimuli. Mutation of TP53 (gene encoding the p53 protein) is common in human malignancies and alters the conformation of p53. The result is a more stable protein which accumulates in nuclei of tumor cells with loss of function. Mutant p53 is stabilized, and it is possible to detect this form very clearly by immunohistochemistry (IHC). Expression of the MDM2 protein is used as a potential marker of p53 function. P53 levels in normal cells are highly determined by the MDM2 protein (murine double minute 2) -  mediated degradation of p53. MDM2 overexpression represents at least one mechanism by which p53 function can be abrogated during tumorigenesis. Lung carcinoma samples were obtained from patients, who underwent radical resection (lobectomy or pulmonectomy and lymphadectomy). Pathological dia-gnosis was based on the WHO criteria. In our study, we investigated the expression of p53 and MDM2 protein that might improve IHC as a marker for p53 status. Proteins were IHC detected in 136 samples of primary lung carcinoma. Immunostaining results of p53 positive samples were compared to IHC expression of MDM2 positive and MDM2 negative samples. Strong brown nuclear staining was visible in p53 and MDM2 positive cells. The most p53 positive cases were samples of squamocellular carcinoma (55%), then samples of large cell carcinoma (53%) and 26% adenocarcinoma samples showed the p53 immunoreactivity. No one sample of different types was p53 positive. When we compared the p53 expression and grade of tumor, we found that the p53 expression increased with the grade of tumor. For statistical evaluation, the chi square test was used. The relationship between p53 expression and type of tumor, also the p53 expression and grade of tumor was statistically significant (p = 0.000425; p = 0.00157). Regarding p53 and MDM2 expression, only nine samples (7%) were simultaneously p53 and

  4. Immunohistochemical study of p53 and proliferating cell nuclear antigen expression in odontogenic keratocyst and periapical cyst.

    PubMed

    Sajeevan, Thara Purath; Saraswathi, Tillai Rajasekaran; Ranganathan, Kannan; Joshua, Elizabeth; Rao, Uma Devi K

    2014-07-01

    p53 protein is a product of p53 gene, which is now classified as a tumor suppressor gene. The gene is a frequent target for mutation, being seen as a common step in the pathogenesis of many human cancers. Proliferating cell nuclear antigen (PCNA) is an auxiliary protein of DNA polymerase delta and plays a critical role in initiation of cell proliferation. The aim of this study is to assess and compare the expression of p53 and PCNA in lining epithelium of odontogenic keratocyst (OKC) and periapical cyst (PA). A total of 20 cases comprising 10 OKC and 10 PA were included in retrospective study. Three paraffin section of 4 μm were cut, one was used for routine hematoxylin and eosin stain, while the other two were used for immunohistochemistry. Statistical analysis was performed using Chi-square test. The level of staining and intensity were assessed in all these cases. OKC showed PCNA expression in all cases (100%), whereas in perapical cyst only 60% of cases exhibited PCNA staining. (1) OKC showed p53 expression in 6 cases (60%) whereas in PA only 10% of the cases exhibited p53 staining. Chi-square test showed PCNA staining intensity was more significant than p53 in OKC. (2) The staining intensity of PA using p53, PCNA revealed that PCNA stating intensity was more significant than p53. OKC shows significant proliferative activity than PA using PCNA and p53. PCNA staining was more intense when compared with p53 in both OKC and PA.

  5. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway

    PubMed Central

    Kravchenko, J. E.; Ilyinskaya, G. V.; Komarov, P. G.; Agapova, L. S.; Kochetkov, D. V.; Strom, E.; Frolova, E. I.; Kovriga, I.; Gudkov, A. V.; Feinstein, E.; Chumakov, P. M.

    2008-01-01

    Identification of unique features of cancer cells is important for defining specific and efficient therapeutic targets. Mutant p53 is present in nearly half of all cancer cases, forming a promising target for pharmacological reactivation. In addition to being defective for the tumor-suppressor function, mutant p53 contributes to malignancy by blocking a p53 family member p73. Here, we describe a small-molecule RETRA that activates a set of p53-regulated genes and specifically suppresses mutant p53-bearing tumor cells in vitro and in mouse xenografts. Although the effect is strictly limited to the cells expressing mutant p53, it is abrogated by inhibition with RNAi to p73. Treatment of mutant p53-expressing cancer cells with RETRA results in a substantial increase in the expression level of p73, and a release of p73 from the blocking complex with mutant p53, which produces tumor-suppressor effects similar to the functional reactivation of p53. RETRA is active against tumor cells expressing a variety of p53 mutants and does not affect normal cells. The results validate the mutant p53p73 complex as a promising and highly specific potential target for cancer therapy. PMID:18424558

  6. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  7. Simultaneous Analysis of P53 Protein Expression and Cell Proliferation in Irradiated Human Lymphocytes by Flow Cytometry

    PubMed Central

    de Freitas e Silva, Rafael; Gonçalves dos Santos, Neyliane Frassinetti; Pereira, Valéria Rěgo Alves; Amaral, Ademir

    2014-01-01

    P53 protein has an intrinsic role in modulating the cellular response against DNA radioinduced damages and has been pointed out as an indirect indicator of individual radiosensitivity. The rate of cell proliferation is also a parameter that has been related to tissue sensitivity to radiation. However, this feature is yet understudied. In this context, the aim of this work was to employ Flow Cytometry (FC) for simultaneously assessing of p53 protein expression levels together with cellular proliferation rate of irradiated human lymphocytes. From in vitro irradiated human blood samples, mononuclear cells were isolated and labeled with Carboxylfluorescein Diacetate Succinimidyl Ester (CFSE) prior to phytohaemagglutinin (PHA) stimulation in culture for 96 hours. Cells were also labeled with anti-p53 monoclonal antibody PE-conjugated in order to analyze either proliferation rate or p53 expression levels by FC. It was verified a reduction in the proliferation rate of irradiated lymphocytes and, in parallel, a rise in the p53 expression levels, similar for quiescent and proliferating lymphocytes. The results emphasize the importance of the use of CFSE-stained lymphocytes in assays associated to proliferation rate and the use of this methodology in several studies, such as for evaluating individual radiosensitivity. PMID:24659936

  8. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    PubMed

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  9. PRL-3 promotes breast cancer progression by downregulating p14ARF-mediated p53 expression.

    PubMed

    Xie, Hua; Wang, Hao

    2018-03-01

    Prior studies have demonstrated that phosphatase of regenerating liver-3 (PRL-3) serves avital function in cell proliferation and metastasis in breast cancer. However, the molecular mechanisms underlying the function of PRL-3 in breast cancer remain unknown. PRL-3 expression was analyzed in 24 pairs of breast cancer and normal tissues using the reverse transcription-quantitative polymerase chain reaction assay. The results of the present study identified that the expression of PLR-3 in breast cancer tissues was increased 4.2-fold, compared with normal tissues. Notably, overexpression of PRL-3 significantly promoted the proliferation of cancer cells and inhibited endogenous p53 expression by downregulating the expression level of p14 alternate reading frame (p14 ARF ). In addition, decreased expression levels of PRL-3 resulted in decreased breast cancer cell proliferation and increased expression level of p14 ARF . These results suggested that PRL-3 enhances cell proliferation by downregulating p14 ARF expression, which results in decreased levels ofp53. The results of the present study demonstrated that PRL-3 promotes tumor proliferation by affecting the p14 ARF -p53 axis, and that it may serve as a prognostic marker for patients with breast cancer.

  10. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    PubMed

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P < 0.05). Cell proliferation was significantly greater (P < 0.05) only in the early undifferentiated cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  11. Silibinin induces hepatic stellate cell cycle arrest via enhancing p53/p27 and inhibiting Akt downstream signaling protein expression.

    PubMed

    Ezhilarasan, Devaraj; Evraerts, Jonathan; Sid, Brice; Calderon, Pedro Buc; Karthikeyan, Sivanesan; Sokal, Etienne; Najimi, Mustapha

    2017-02-01

    Proliferation of hepatic stellate cells (HSCs) plays a pivotal role in the progression of liver fibrosis consequent to chronic liver injury. Silibinin, a flavonoid compound, has been shown to possess anti-fibrogenic effects in animal models of liver fibrosis. This was attributed to an inhibition of cell proliferation of activated HSCs. The present study was to gain insight into the molecular pathways involved in silibinin anti-fibrogenic effect. The study was conducted on LX-2 human stellate cells treated with three concentrations of silibinin (10, 50 and 100 μmol/L) for 24 and 96 hours. At the end of the treatment cell viability and proliferation were evaluated. Protein expression of p27, p21, p53, Akt and phosphorylated-Akt was evaluated by Western blotting analysis and Ki-67 protein expression was by immunocytochemistry. Sirtuin activity was evaluated by chemiluminescence based assay. Silibinin inhibits LX-2 cell proliferation in dose- and time-dependent manner; we showed that silibinin upregulated the protein expressions of p27 and p53. Such regulation was correlated to an inhibition of both downstream Akt and phosphorylated-Akt protein signaling and Ki-67 protein expression. Sirtuin activity also was correlated to silibinin-inhibited proliferation of LX-2 cells. The anti-proliferative effect of silibinin on LX-2 human stellate cells is via the inhibition of the expressions of various cell cycle targets including p27, Akt and sirtuin signaling.

  12. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage.

    PubMed

    Gong, Lu; Gong, Hongjian; Pan, Xiao; Chang, Changqing; Ou, Zhao; Ye, Shengfan; Yin, Le; Yang, Lina; Tao, Ting; Zhang, Zhenhai; Liu, Cong; Lane, David P; Peng, Jinrong; Chen, Jun

    2015-03-01

    The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.

  13. Notch1 Signaling Sensitizes Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis in Human Hepatocellular Carcinoma Cells by Inhibiting Akt/Hdm2-mediated p53 Degradation and Up-regulating p53-dependent DR5 Expression*

    PubMed Central

    Wang, Chunmei; Qi, Runzi; Li, Nan; Wang, Zhengxin; An, Huazhang; Zhang, Qinghua; Yu, Yizhi; Cao, Xuetao

    2009-01-01

    Notch signaling plays a critical role in regulating cell proliferation, differentiation, and apoptosis. Our previous study showed that overexpression of Notch1 could inhibit human hepatocellular carcinoma (HCC) cell growth by arresting the cell cycle and inducing apoptosis. HCC cells are resistant to apoptotic induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), so new therapeutic approaches have been explored to sensitize HCC cells to TRAIL-induced apoptosis. We are wondering whether and how Notch1 signaling can enhance the sensitivity of HCC cells to TRAIL-induced apoptosis. In this study, we found that overexpression of ICN, the constitutive activated form of Notch1, up-regulated p53 protein expression in HCC cells by inhibiting proteasome degradation. p53 up-regulation was further observed in human primary hepatocellular carcinoma cells after activation of Notch signaling. Inhibition of the Akt/Hdm2 pathway by Notch1 signaling was responsible for the suppression of p53 proteasomal degradation, thus contributing to the Notch1 signaling-mediated up-regulation of p53 expression. Accordingly, Notch1 signaling could make HCC cells more sensitive to TRAIL-induced apoptosis, whereas Notch1 signaling lost the synergistic promotion of TRAIL-induced apoptosis in p53-silenced HepG2 HCC cells and p53-defective Hep3B HCC cells. The data suggest that enhancement of TRAIL-induced apoptosis by Notch1 signaling is dependent upon p53 up-regulation. Furthermore, Notch1 signaling could enhance DR5 expression in a p53-dependent manner. Taken together, Notch1 signaling sensitizes TRAIL-induced apoptosis in HCC cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. Thus, our results suggest that activation of Notch1 signaling may be a promising approach to improve the therapeutic efficacy of TRAIL-resistant HCC. PMID:19376776

  14. Analysis of TP53 gene expression and p53 level of human hypopharyngeal FaDu (HTB-43) head and neck cancer cell line after microRNA-181a inhibition.

    PubMed

    Cheah, Y K; Cheng, R W; Yeap, S K; Khoo, C H; See, H S

    2014-03-17

    The identification of new biomarkers for early detection of highly recurrent head and neck cancer is urgently needed. MicroRNAs (miRNAs) are small and non-coding RNAs that regulate cancer-related gene expression, such as tumor protein 53 (TP53) gene expression. This study was carried out to analyze TP53 gene expression using real-time PCR and to determine changes in intracellular p53 level by flow cytometry after downregulation of miRNA-181a miRNA inhibitor in the FaDu cell line. TP53 gene expression showed a 3-fold increment and the p53 protein level was also increased in the miRNA-181a-treated cells. In conclusion, miRNA-181a binds to the TP53 gene and inhibits its expression, decreasing the synthesis of p53.

  15. P53 protein in proliferation, repair and apoptosis of cells.

    PubMed

    Wawryk-Gawda, Ewelina; Chylińska-Wrzos, Patrycja; Lis-Sochocka, Marta; Chłapek, Katarzyna; Bulak, Kamila; Jędrych, Marian; Jodłowska-Jędrych, Barbara

    2014-05-01

    The p53 protein is an important factor of many intra- and extracellular processes. This protein regulates the repair of cellular DNA and induces apoptosis. It is also responsible for the regulation of the senescence and the cell entering the subsequent stages of the cellular cycle. The protein p53 is also involved in inhibiting angiogenesis and the induction of oxidative shock. In our study, we examined the activity of p53 protein in the uterine epithelial cells in rats treated with cladribine. Its action is mainly based on apoptosis induction. We compared the activity of p53 protein in cells with a high apoptosis index and in cells with active repair mechanisms and high proliferation index. We observed stronger p53 protein expression in the epithelial cells of the materials taken 24 h after the last dose of 2-CdA associated with the active process of apoptosis and inhibition of proliferation. After 4 weeks from the last dose of cladribine, the stronger expression of p53 protein was associated with both the existing changes in the cell's genome, the effects of the ongoing repair mechanisms, as well as the high proliferation activity.

  16. Expressions of p53 and p21 in primary gastric lymphomas.

    PubMed Central

    Go, J. H.; Yang, W. I.

    2001-01-01

    The p21 overexpression is thought to be a consequence of the p53 induced activation of the p21 gene. The immunohistochemical evaluation of p53 and p21 can be a valuable means of assessing the functional status of the p53 gene product. We examined the overexpression of p21 and p53 proteins in primary gastric lymphomas and the correlation with prognosis. A total of 32 cases of gastric lymphomas was classified into low-grade lymphomas of mucosa-associated lymphoid tissue type (n=16) and high-grade B-cell lymphomas (n=16). In low-grade lymphomas, only one case showed p53 positivity and all cases were p21-negative. In high-grade lymphomas, seven cases were p53+/p21- (44%), one case was p53+/p21+ (6%), and eight cases were p53-/p21- (50%). The p53+/p21- cases had a much lower percentage of patients sustaining a continuous complete remission state (3/7, 43%) compared with other cases (6/7, 86%). From these results, we concluded that p21 expression is rare in primary gastric lymphomas. Therefore, p53-positive lymphomas can be assumed as having p53 mutation. And combined studies of p53 and p21 may be used as a prognostic indicator in primary gastric high-grade lymphomas. PMID:11748353

  17. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents.

    PubMed

    Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2012-08-01

    Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.

  18. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Han Na; Oh, Sang Cheul; Kim, Jun Suk

    2012-03-10

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)-Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh-Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3-p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expressionmore » of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2-p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.« less

  19. p53-dependent cell death/apoptosis is required for a productive adenovirus infection.

    PubMed

    Hall, A R; Dix, B R; O'Carroll, S J; Braithwaite, A W

    1998-09-01

    The p53 tumor suppressor protein binds to both cellular and viral proteins, which influence its biological activity. One such protein is the large E1b tumor antigen (E1b58kDa) from adenoviruses (Ads), which abrogates the ability of p53 to transactivate various promoters. This inactivation of p53 function is believed to be the mechanism by which E1b58kDa contributes to the cell transformation process. Although the p53-E1b58kDa complex occurs during infection and is conserved among different serotypes, there are limited data demonstrating that it has a role in virus replication. However, loss of p53 expression occurs after adenovirus infection of human cells and an E1b58kDa deletion mutant (Onyx-015, also called dl 1520) selectively replicates in p53-defective cells. These (and other) data indicate a plausible hypothesis is that loss of p53 function may be conducive to efficient adenovirus replication. However, wild-type (wt) Ad5 grows more efficiently in cells expressing a wt p53 protein. These studies indicate that the hypothesis may be an oversimplification. Here, we show that cells expressing wt p53, as well as p53-defective cells, allow adenovirus replication, but only cells expressing wt p53 show evidence of virus-induced cytopathic effect. This correlates with the ability of adenovirus to induce cell death. Our data indicate that p53 plays a necessary part in mediating cellular destruction to allow a productive adenovirus infection. In contrast, p53-deficient cells are less sensitive to the cytolytic effects of adenovirus and as such raise questions about the use of E1b58kDa-deficient adenoviruses in tumor therapy.

  20. Human T-Cell Leukemia Virus I Tax Protein Sensitizes p53-Mutant Cells to DNA Damage

    PubMed Central

    Mihaylova, Valia T.; Green, Allison M.; Khurgel, Moshe; Semmes, Oliver J.; Kupfer, Gary M.

    2018-01-01

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53–containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective. PMID:18559532

  1. Evidence that expression of a mutated p53 gene attenuates apoptotic cell death in human gastric intestinal-type carcinomas in vivo.

    PubMed

    Ishida, M; Gomyo, Y; Ohfuji, S; Ikeda, M; Kawasaki, H; Ito, H

    1997-05-01

    To examine in vivo the validity of the results of experiments in vitro, we analyzed the relationship between p53 gene status and apoptotic cell death of human gastric intestinal-type adenocarcinomas. Surgical specimens were classified into two categories: 18 gastric cancers with nuclear p53 protein (A), and 17 gastric cancers without nuclear p53 protein (B). Polymerase chain reaction-single strand conformation polymorphism disclosed a shifted band that corresponded to a mutation in the p53 gene in 13 cases (72%) in category A and 3 cases (18%) in category B, the frequency being significantly higher in the former (P < 0.05). Apoptotic cells were identified from routinely stained sections and by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). The TUNEL index [TI; (the number of TUNEL-positive apoptotic cells/the total number of tumor cells) x 100] was 3.8 +/- 1.4% in category A and 4.9 +/- 1.2% in category B, the value being significantly lower in the former (P < 0.05). The proliferating cell nuclear antigen index, defined similarly to the TI, was 56.4 +/- 16.3% in category A, and it was significantly higher than that in category B (P < 0.05). The immunohistochemically detected expression of p21CIP1/WAP1 did not differ between the two categories, while Bax-positive tumor cells were more frequently detected in category A. These results indicate that (1) expression of a mutated p53 gene attenuates apoptotic cell death of gastric cancer, in accordance with the previous in vitro finding that p53 gene mutation provides a possible selective advantage for tumor cell proliferation, and (2) apoptosis is related not only to expression of p53 and the stage of the cell cycle, but also to p53-independent and cell cycle-independent events.

  2. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents

    PubMed Central

    Song, Shanshan; Xing, Guichun; Yuan, Lin; Wang, Jian; Wang, Shan; Yin, Yuxin; Tian, Chunyan; He, Fuchu; Zhang, Lingqiang

    2012-01-01

    Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy. PMID:22801474

  3. p53 expression and mutation analysis of odontogenic cysts with and without dysplasia.

    PubMed

    Cox, Darren P

    2012-01-01

    Overexpression of p53 protein is well described in odontogenic cystic lesions (OCLs), including those with epithelial dysplasia; however, most p53 antibodies stain both wild-type and mutated p53 protein and may not reflect genotype. Direct sequencing of the p53 gene has not identified mutations in OCLs with dysplasia. The purpose of this study was to determine the molecular basis of p53 expression in several types of OCLs with and without dysplasia. The study material comprised 13 OCLs: odontogenic keratocyst (n = 5), orthokeratinized odontogenic cyst (n = 5), dentigerous cyst (n = 2), lateral periodontal cyst (n = 1), and unspecified developmental odontogenic cyst (UDOC) (n = 1). Five of these had features of mild or moderate epithelial dysplasia. One intraosseous squamous cell carcinoma (SCC) that was believed to have arisen from an antecedent dysplastic orthokeratinized OC was also included. Immunohistochemistry was performed using the DO7 monoclonal antibody that recognizes wild-type and mutated p53. DNA was extracted from microdissected tissue for all samples and exons 4 to 8 of the p53 gene direct sequenced. In 4 of 5 OCLs with dysplasia there was strong nuclear staining of basal and suprabasal cells. In all cases without dysplasia, nuclear expression in basal cells was either negative or weak and was absent in suprabasal cell nuclei. A mutation in exon 6 of the p53 gene (E224D) was identified in both the dysplastic orthokeratinized OC and the subsequent intraosseous SCC. OCLs with features of dysplasia show increased expression of p53 protein that does not reflect p53 mutational status. One dysplastic OC shared the same p53 mutation with a subsequent intraosseous SCC, indicating that p53 mutation may be associated with malignant transformation in this case. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Zn(II)-curc targets p53 in thyroid cancer cells.

    PubMed

    Garufi, Alessia; D'Orazi, Valerio; Crispini, Alessandra; D'Orazi, Gabriella

    2015-10-01

    TP53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers.

  5. Expression of cell cycle regulators, 14-3-3σ and p53 proteins, and vimentin in canine transitional cell carcinoma of the urinary bladder.

    PubMed

    Suárez-Bonnet, Alejandro; Herráez, Pedro; Aguirre, Maria; Suárez-Bonnet, Elena; Andrada, Marisa; Rodríguez, Francisco; Espinosa de Los Monteros, Antonio

    2015-07-01

    The study of the expression of 14-3-3σ, p53, and vimentin proteins in canine transitional cell carcinoma (TCC) evaluating differences with normal bladder tissues, and the association with clinicopathological variables. We analyze by immunohistochemistry in 19 canine TCCs the expression of 14-3-3σ, p53, and vimentin using monoclonal antibodys. A semiquantitative scoring method was employed and statistical analysis was performed to display relationships between variables. In contrast to normal urinary bladder epithelium, which showed high levels of 14-3-3σ, its expression was decreased in 53% of the studied tumors (P = 0.0344). The 14-3-3σ protein was expressed by neoplastic emboli and by highly infiltrative neoplastic cells. The p53 protein was expressed in 26% of TCCs, but no significant association between 14-3-3σ and p53 was detected. Neoplastic epithelial cells displayed vimentin immunoreactivity in 21% of TCCs, and a positive correlation with mitotic index was observed (P = 0.042). Coexpression of vimentin and 14-3-3σ by highly infiltrative neoplastic cells was also observed. 14-3-3σ is deregulated in canine TCCs and its expression by highly infiltrative tumor cells may be related to the acquisition of aggressive behavior. Furthermore, this article reinforce the role of canine TCC as relevant model of human urothelial carcinoma and we suggest 14-3-3σ as a potential therapeutic target. Further studies are necessary to clarify the role of 14-3-3σ in canine TCC. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity.

    PubMed

    Tomasini, Richard; Seux, Mylène; Nowak, Jonathan; Bontemps, Caroline; Carrier, Alice; Dagorn, Jean-Charles; Pébusque, Marie-Josèphe; Iovanna, Juan L; Dusetti, Nelson J

    2005-12-08

    TP53INP1 is an alternatively spliced gene encoding two nuclear protein isoforms (TP53INP1alpha and TP53INP1beta), whose transcription is activated by p53. When overexpressed, both isoforms induce cell cycle arrest in G1 and enhance p53-mediated apoptosis. TP53INP1s also interact with the p53 gene and regulate p53 transcriptional activity. We report here that TP53INP1 expression is induced during experimental acute pancreatitis in p53-/- mice and in cisplatin-treated p53-/- mouse embryo fibroblasts (MEFs). We demonstrate that ectopic expression of p73, a p53 homologue, leads to TP53INP1 induction in p53-deficient cells. In turn, TP53INP1s alters the transactivation capacity of p73 on several p53-target genes, including TP53INP1 itself, demonstrating a functional association between p73 and TP53INP1s. Also, when overexpressed in p53-deficient cells, TP53INP1s inhibit cell growth and promote cell death as assessed by cell cycle analysis and colony formation assays. Finally, we show that TP53INP1s potentiate the capacity of p73 to inhibit cell growth, that effect being prevented when the p53 mutant R175H is expressed or when p73 expression is blocked by a siRNA. These results suggest that TP53INP1s are functionally associated with p73 to regulate cell cycle progression and apoptosis, independently from p53.

  7. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    PubMed Central

    Liang, Yayun; Mafuvadze, Benford; Besch-Williford, Cynthia; Hyder, Salman M

    2018-01-01

    Background Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53) lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood vessels, which serve as the major route for tumor metastasis, in tumor xenografts compared with either agent alone. Conclusion Based on our findings, we contend that breast tumor growth might effectively be controlled by simultaneous

  8. Immunohistochemical expression of p53 and its clinicopathological correlation with modified Anneroth's histological grading system.

    PubMed

    Dave, Kajal V; Chalishazar, Monali; Dave, Vishal R; Panja, Pritam; Singh, Manisha; Modi, Tapan G

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is an epithelial neoplasm generally beginning as focal overgrowth of altered stem cells near the basement membrane, moving upward and laterally, replacing the normal epithelium. Histopathological grading has been used for many decades in an attempt to predict the clinical behavior of oral squamous cell carcinoma. In the present study, Forty biopsies were studied for histological grading and p53 expression. The p53 expression was studied in relation to clinical parameters such as age, sex of patient and site of tumors. Relation between histological grade of malignancy and p53 protein expression was analysed. All cases were classified according to Anneroth's histological malignancy grading system (1987). 40 cases of OSCC were assessed for clinical parameters, Anneroth's histological grading and immunohistochemically stained with p53 protien. The results obtained were analyzed using Spearman's Co-relation. The positive expression of p53 was found in 62% of carcinomas studied. Positivity of p53 showed correlation with histological grade of malignancy and with individual parameters like degree of keratinization, nuclear polymorphism, number of mitoses and lymphoplasmacytic infiltration while showed a negative correlation with pattern of invasion. Our study showed a significant correlation between parameters of tumor cell population, lymphoplasmacytic infiltration and p53 expression. A significant association between high grade of malignancy and p53 overexpression and insignificant correlation of p53 with age, sex of the patient and site of the tumor was found.

  9. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells.

    PubMed

    Oh, Eun-Taex; Park, Moon-Taek; Choi, Bo-Hwa; Ro, Seonggu; Choi, Eun-Kyung; Jeong, Seong-Yun; Park, Heon Joo

    2012-04-01

    Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.

  10. Loss of p21{sup Sdi1} expression in senescent cells after DNA damage accompanied with increase of miR-93 expression and reduced p53 interaction with p21{sup Sdi1} gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ok Ran; Lim, In Kyoung, E-mail: iklim@ajou.ac.kr

    2011-04-08

    Highlights: {yields} Reduced p21 expression in senescent cells treated with DNA damaging agents. {yields} Increase of [{sup 3}H]thymidine and BrdU incorporations in DNA damaged-senescent cells. {yields} Upregulation of miR-93 expression in senescent cells in response to DSB. {yields} Failure of p53 binding to p21 promoter in senescent cells in response to DSB. {yields} Molecular mechanism of increased cancer development in aged than young individuals. -- Abstract: To answer what is a critical event for higher incidence of tumor development in old than young individuals, primary culture of human diploid fibroblasts were employed and DNA damage was induced by doxorubicin ormore » X-ray irradiation. Response to the damage was different between young and old cells; loss of p21{sup sdi1} expression in spite of p53{sup S15} activation in old cells along with [{sup 3}H]thymidine and BrdU incorporation, but not in young cells. The phenomenon was confirmed by other tissue fibroblasts obtained from different donor ages. Induction of miR-93 expression and reduced p53 binding to p21 gene promoter account for loss of p21{sup sdi1} expression in senescent cells after DNA damage, suggesting a mechanism of in vivo carcinogenesis in aged tissue without repair arrest.« less

  11. Actual Proliferating Index and p53 protein expression as prognostic marker in odontogenic cysts.

    PubMed

    Gadbail, A R; Chaudhary, M; Patil, S; Gawande, M

    2009-10-01

    The purpose of this study was to evaluate the biological aggressiveness of odontogenic keratocyst/keratocystic odontogenic tumour (KCOT), radicular cyst (RC) and dentigerous cyst (DC) by observing the actual proliferative activity of epithelium, and p53 protein expression. The actual proliferative activity was measured by Ki-67 Labelling Index and argyrophilic nucleolar organizing regions (AgNOR) count per nucleus. The p53 protein expression was also evaluated. Ki-67 positive cells were observed higher in suprabasal cell layers of KCOT with uniform distribution, a few of them were predominantly observed in basal cell layer in RC and DC. The AgNOR count was significantly higher in suprabasal cell layers of KCOT. The actual proliferative activity was noted to be higher in suprabasal cell layers of KCOT. The p53 immunolabelling was dense and scattered in basal and suprabasal cell layers in KCOT. The weakly stained p53 positive cells were observed diffusely distributed in KCOT, whereas they were mainly seen in basal cell layer of RC and DC. The quantitative and qualitative differences of the proliferative activity and the p53 protein expression in sporadic KCOT may be associated with intrinsic growth potential that could play a role in its development and explain locally aggressive biological behaviour. AgNOR count and p53 protein detection in odontogenic lesions can be of great consequence to predict the biological behaviour and prognosis.

  12. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.

    PubMed

    Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi

    2018-05-18

    The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.

  13. Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1.

    PubMed

    Wang, Qianli; Lingel, Amy; Geiser, Vicki; Kwapnoski, Zachary; Zhang, Luwen

    2017-10-15

    Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers. IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and

  14. p53 mutation and expression in lymphoma.

    PubMed Central

    Adamson, D. J.; Thompson, W. D.; Dawson, A. A.; Bennett, B.; Haites, N. E.

    1995-01-01

    Mutation and abnormal expression of p53 was studied in 38 lymphomas [five Hodgkin's disease and 33 non-Hodgkin's lymphoma (NHL)]. CM1 polyclonal antibody was used to detect overexpression of p53. Three missense mutations were characterised in three cases of NHL after screening exons 5-8 of p53 of all the tumours with single-strand conformation polymorphism (SSCP) analysis. Only two out of three tumours with a missense mutation showed abnormal expression of p53 as measured by CM1. Conversely, seven out of nine tumours with positive CM1 staining had no point mutation demonstrated. Overexpression of p53 in the cases of NHL occurred in three out of twenty four low-grade tumours and five out of nine high-grade tumours (Kiel classification). The results suggest that abnormalities of p53 are commoner in high-grade than low-grade NHL, and that positive immunocytochemistry cannot be used to determine which tumours have mutations of p53. Images Figure 1 Figure 2 PMID:7599045

  15. Expression of apoptosis-regulatory genes in lung tumour cell lines: relationship to p53 expression and relevance to acquired drug resistance.

    PubMed Central

    Reeve, J. G.; Xiong, J.; Morgan, J.; Bleehen, N. M.

    1996-01-01

    As a first step towards elucidating the potential role(s) of bcl-2 and bcl-2-related genes in lung tumorigenesis and therapeutic responsiveness, the expression of these genes has been examined in a panel of lung cancer cell lines derived from untreated and treated patients, and in cell lines selected in vitro for multidrug resistance. Bcl-2 was hyperexpressed in 15 of 16 small-cell lung cancer (SCLC) cell lines and two of five non-small-cell lung cancer (NSCLC) lines compared with normal lung and brain, and hyperexpression was not chemotherapy related. Bcl-x was hyperexpressed in the majority of SCLC and NSCLC cell lines as compared with normal tissues, and all lung tumour lines preferentially expressed bcl-x1-mRNA, the splice variant form that inhibits apoptosis. Bax gene transcripts were hyperexpressed in most SCLC and NSCLC cell lines examined compared with normal adult tissues. Mutant p53 gene expression was detected in the majority of the cell lines and no relationship between p53 gene expression and the expression of either bcl-2, bcl-x or bax was observed. No changes in bcl-2, bcl-x and bax gene expression were observed in multidrug-resistant cell lines compared with their drug-sensitive counterparts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8630278

  16. Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines.

    PubMed

    Macé, K; Aguilar, F; Wang, J S; Vautravers, P; Gómez-Lechón, M; Gonzalez, F J; Groopman, J; Harris, C C; Pfeifer, A M

    1997-07-01

    Epidemiological evidence has been supporting a relationship between dietary aflatoxin B1 (AFB1) exposure, development of human primary hepatocellular carcinoma (HCC) and mutations in the p53 tumor suppressor gene. However, the correlation between the observed p53 mutations, the AFB1 DNA adducts and their activation pathways has not been elucidated. Development of relevant cellular in vitro models, taking into account species and tissue specificity, could significantly contribute to the knowledge of cytotoxicity and genotoxicity mechanisms of chemical procarcinogens, such as AFB1, in humans. For this purpose a non-tumorigenic SV40-immortalized human liver epithelial cell line (THLE cells) which retained most of the phase II enzymes, but had markedly reduced phase I activities was used for stable expression of the human CYP1A2, CYP2A6, CYP2B6 and CYP3A4 cDNA. The four genetically engineered cell lines (T5-1A2, T5-2A6, T5-2B6 and T5-3A4) produced high levels of the specific CYP450 proteins and showed comparable or higher catalytic activities related to the CYP450 expression when compared to human hepatocytes. The T5-1A2, T5-2A6, T5-2B6 and T5-3A4 cell lines exhibited a very high sensitivity to the cytotoxic effects of AFB1 and were approximately 125-, 2-, 2- and 15-fold, respectively, more sensitive than the control T5-neo cells, transfected with an expressing vector which does not contain CYP450 cDNA. In the CYP450-expressing cells, nanomolar doses of AFB1-induced DNA adduct formation including AFB1-N7-guanine, -pyrimidyl and -diol adducts. In addition, the T5-1A2 cells showed AFM1-DNA adducts. At similar levels of total DNA adducts, both the T5-1A2 and T5-3A4 cells showed, at codon 249 of the p53 gene, AGG to AGT transversions at a relative frequency of 15x10(-6). In contrast, only the T5-3A4 cells showed CCC to ACC transversion at codon 250 at a high frequency, whereas the second most frequent mutations found in the T5-1A2 cells were C to T transitions at the first

  17. The absence of p53 during Human Cytomegalovirus infection leads to decreased UL53 expression, disrupting UL50 localization to the inner nuclear membrane, and thereby inhibiting capsid nuclear egress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, Man I; O’Dowd, John M.; Fortunato, Elizabeth

    Our electron microscopy study (Kuan et al., 2016) found HCMV nuclear capsid egress was significantly reduced in p53 knockout cells (p53KOs), correlating with inhibited formation of infoldings of the inner nuclear membrane (IINMs). Molecular examination of these phenomena has found p53KOs expressed UL97 and phosphorylated lamins, however the lamina failed to remodel. The nuclear egress complex (NEC) protein UL50 was expressed in almost all cells. UL50 re-localized to the inner nuclear membrane (INM) in ~90% of wt cells, but only ~35% of p53KOs. UL53 expression was significantly reduced in p53KOs, and cells lacking UL50 nuclear staining, expressed no UL53. Re-introductionmore » of p53 into p53KOs largely recovered UL53 positivity and UL50 nuclear re-localization. Nuclear rim located UL50/53 puncta, which co-localized with the major capsid protein, were largely absent in p53KOs. We believe these puncta were IINMs. In the absence of p53, UL53 expression was inhibited, disrupting formation of the NEC/IINMs, and reducing functional virion secretion. -- Highlights: •Phosphorylated nuclear lamins were inefficiently remodeled in p53KO cells. •p53KO cells expressed UL50, but it was not efficiently targeted to the nuclear rim. •UL53 was not expressed in the large majority of p53KO cells. •Cells failing to express UL53 did not localize UL50 to the nucleus. •NEC puncta/infoldings of the inner nuclear membrane were scarce in p53KO cells.« less

  18. Modeling the Etiology of p53-mutated Cancer Cells*

    PubMed Central

    Perez, Ricardo E.; Shen, Hong; Duan, Lei; Kim, Reuben H.; Kim, Terresa; Park, No-Hee; Maki, Carl G.

    2016-01-01

    p53 gene mutations are among the most common alterations in cancer. In most cases, missense mutations in one TP53 allele are followed by loss-of-heterozygosity (LOH), so tumors express only mutant p53. TP53 mutations and LOH have been linked, in many cases, with poor therapy response and worse outcome. Despite this, remarkably little is known about how TP53 point mutations are acquired, how LOH occurs, or the cells involved. Nutlin-3a occupies the p53-binding site in MDM2 and blocks p53-MDM2 interaction, resulting in the stabilization and activation of p53 and subsequent growth arrest or apoptosis. We leveraged the powerful growth inhibitory activity of Nutlin-3a to select p53-mutated cells and examined how TP53 mutations arise and how the remaining wild-type allele is lost or inactivated. Mismatch repair (MMR)-deficient colorectal cancer cells formed heterozygote (p53 wild-type/mutant) colonies when cultured in low doses of Nutlin-3a, whereas MMR-corrected counterparts did not. Placing these heterozygotes in higher Nutlin-3a doses selected clones in which the remaining wild-type TP53 was silenced. Our data suggest silencing occurred through a novel mechanism that does not involve DNA methylation, histone methylation, or histone deacetylation. These data indicate MMR deficiency in colorectal cancer can give rise to initiating TP53 mutations and that TP53 silencing occurs via a copy-neutral mechanism. Moreover, the data highlight the use of MDM2 antagonists as tools to study mechanisms of TP53 mutation acquisition and wild-type allele loss or silencing in cells with defined genetic backgrounds. PMID:27022024

  19. Space experiment "Rad Gene"-report 1; p53-Dependent gene expression in human cultured cells exposed to space environment

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihisa; Ohnishi, Takeo; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki

    The space environment contains two major biologically significant influences: space radiations and microgravity. A p53 tumor suppressor protein plays a role as a guardian of the genome through the activity of p53-centered signal transduction pathways. The aim of this study was to clarify the biological effects of space radiations, microgravity and a space environment on the gene and protein expression of p53-dependent regulated genes. Space experiments were performed with two human cultured lymphoblastoid cell lines: one cells line (TSCE5) bears a wild-type p53 gene status, and another cells line (WTK1) bears a mutated p53 gene status. Un-der one gravity or microgravity condition, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station (ISS) for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples also were cultured for 8 days in the CBEF on the ground during the same periods as space flight. Gene and protein expression was analyzed by using DNA chip (a 44k whole human genome microarray, Agilent Technologies Inc.) and protein chip (PanoramaTM Ab MicroArray, Sigma-Aldrich Co.), respectively. In addition, we analyzed the gene expression in cultured cells after space flight during 133 days with frozen condition. We report the results and discussion from the viewpoint of the functions of the up-regulated and down-regulated genes after an exposure to space radiations and/or microgravity. The initial goal of this space experiment was completely achieved. It is expected that data from this type of work will be helpful in designing physical protection from the deleterious effects of space radiations during long term stays in space.

  20. The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells.

    PubMed

    Kim, H; You, S; Foster, L K; Farris, J; Foster, D N

    2001-08-23

    The steady-state levels of p53 mRNA were dramatically lower in immortal chicken embryo fibroblast (CEF) cell lines compared to primary CEF cells. In the presence of cycloheximide (CHX), the steady-state levels of p53 mRNA markedly increased in immortal CEF cell lines, similar to levels found in primary cells. The de novo synthetic rates of p53 mRNA were relatively similar in primary and immortal cells grown in the presence or absence of CHX. Destabilization of p53 mRNA was observed in the nuclei of immortal, but not primary, CEF cells. The half-life of p53 mRNA in primary cells was found to be a relatively long 23 h compared to only 3 h in immortal cells. The expression of transfected p53 cDNA was inhibited in immortal cells, but restored upon CHX treatment. The 5'-region of the p53 mRNA was shown to be involved in the rapid p53 mRNA destabilization in immortal cells by expression analysis of 5'- and 3'-deleted p53 cDNAs as well as fusion mRNA constructs of N-terminal p53 and N-terminal deleted LacZ genes. Together, it is suggestive that the downregulation of p53 mRNA in immortal CEF cells occurs through a post-transcriptional destabilizing mechanism.

  1. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  2. Enhanced radiosensitization of p53 mutant cells by oleamide.

    PubMed

    Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil

    2006-04-01

    Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.

  3. Regulation of p53 Target Gene Expression by Peptidylarginine Deiminase 4 ▿ †

    PubMed Central

    Li, Pingxin; Yao, Hongjie; Zhang, Zhiqiang; Li, Ming; Luo, Yuan; Thompson, Paul R.; Gilmour, David S.; Wang, Yanming

    2008-01-01

    Histone Arg methylation has been correlated with transcriptional activation of p53 target genes. However, whether this modification is reversed to repress the expression of p53 target genes is unclear. Here, we report that peptidylarginine deiminase 4, a histone citrullination enzyme, is involved in the repression of p53 target genes. Inhibition or depletion of PAD4 elevated the expression of a subset of p53 target genes, including p21/CIP1/WAF1, leading to cell cycle arrest and apoptosis. Moreover, the induction of p21, cell cycle arrest, and apoptosis by PAD4 depletion is p53 dependent. Protein-protein interaction studies showed an interaction between p53 and PAD4. Chromatin immunoprecipitation assays showed that PAD4 is recruited to the p21 promoter in a p53-dependent manner. RNA polymerase II (Pol II) activities and the association of PAD4 are dynamically regulated at the p21 promoter during UV irradiation. Paused RNA Pol II and high levels of PAD4 were detected before UV treatment. At early time points after UV treatment, an increase of histone Arg methylation and a decrease of citrullination were correlated with a transient activation of p21. At later times after UV irradiation, a loss of RNA Pol II and an increase of PAD4 were detected at the p21 promoter. The dynamics of RNA Pol II activities after UV treatment were further corroborated by permanganate footprinting. Together, these results suggest a role of PAD4 in the regulation of p53 target gene expression. PMID:18505818

  4. Expression of the p53 target CDIP correlates with sensitivity to TNFα-induced apoptosis in cancer cells.

    PubMed

    Brown-Endres, Lauren; Schoenfeld, David; Tian, Fang; Kim, Hyung-Gu; Namba, Takushi; Muñoz-Fontela, César; Mandinova, Anna; Aaronson, Stuart A; Lee, Sam W

    2012-05-01

    TNFα is a pleiotropic cytokine that signals for both survival and apoptotic cell fates. It is still unclear that the dual role of TNFα can be regulated in cancer cells. We previously described an apoptotic pathway involving p53→CDIP→TNFα that was activated in response to genotoxic stress. This pathway operated in the presence of JNK activation; therefore, we postulated that CDIP itself could sensitize cells to a TNFα apoptotic cell fate, survival, or death. We show that CDIP mediates sensitivity to TNFα-induced apoptosis and that cancer cells with endogenous CDIP expression are inherently sensitive to the growth-suppressive effects of TNFα in vitro and in vivo. Thus, CDIP expression correlates with sensitivity of cancer cells with TNFα, and CDIP seems to be a regulator of the p53-mediated death versus survival response of cells to TNFα. This CDIP-mediated sensitivity to TNFα-induced apoptosis favors pro- over antiapoptotic program in cancer cells, and CDIP may serve as a predictive biomarker for such sensitivity. ©2012 AACR

  5. p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.

    PubMed

    Hattori, Hiroyoshi; Janky, Rekin's; Nietfeld, Wilfried; Aerts, Stein; Madan Babu, M; Venkitaraman, Ashok R

    2014-01-01

    The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4-24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients.

  6. Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells.

    PubMed

    Watson, Jane L; Hill, Richard; Yaffe, Paul B; Greenshields, Anna; Walsh, Mark; Lee, Patrick W; Giacomantonio, Carman A; Hoskin, David W

    2010-11-01

    Curcumin from the rhizome of theCurcuma longa plant has chemopreventative activity and inhibits the growth of neoplastic cells. Since p53 has been suggested to be important for anticancer activity by curcumin, we investigated curcumin-induced cytotoxicity in cultures of p53(+/+) and p53(-/-) HCT-116 colon cancer cells, as well as mutant p53 HT-29 colon cancer cells. Curcumin killed wild-type p53 HCT-116 cells and mutant p53 HT-29 cells in a dose- and time-dependent manner. In addition, curcumin-treated p53(+/+) HCT-116 cells and mutant p53 HT-29 cells showed upregulation of total and activated p53, as well as increased expression of p53-regulated p21, PUMA (p53 upregulated modulator of apoptosis), and Bax; however, an equivalent cytotoxic effect by curcumin was observed in p53(+/+) and p53(-/-) HCT-116 cells, demonstrating that curcumin-induced cytotoxicity was independent of p53 status. Similar results were obtained when the cytotoxic effect of curcumin was assessed in wild-type p53 HCT-116 cells after siRNA-mediated p53 knockdown. Chromatin condensation, poly (ADP-ribose) polymerase-1 cleavage and reduced pro-caspase-3 levels in curcumin-treated p53(+/+) and p53(-/-) HCT-116 cells suggested that curcumin caused apoptosis. In addition, exposure to curcumin resulted in superoxide anion production and phosphorylation of oxidative stress proteins in p53(+/+) and p53(-/-) HCT-116 cells. Collectively, our results indicate that, despite p53 upregulation and activation, curcumin-induced apoptosis in colon cancer cells was independent of p53 status and involved oxidative stress. Curcumin may therefore have therapeutic potential in the management of colon cancer, especially in tumorsthatare resistant to conventional chemotherapydue todefects inp53 expression or function. 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Expression of p53, p21 and cyclin D1 in penile cancer: p53 predicts poor prognosis.

    PubMed

    Gunia, Sven; Kakies, Christoph; Erbersdobler, Andreas; Hakenberg, Oliver W; Koch, Stefan; May, Matthias

    2012-03-01

    To evaluate the role of p53, p21 and cyclin D1 expression in patients with penile cancer (PC). Paraffin-embedded tissues from PC specimens from six pathology departments were subjected to a central histopathological review performed by one pathologist. The tissue microarray technique was used for immunostaining which was evaluated by two independent pathologists and correlated with cancer-specific survival (CSS). κ-statistics were used to assess interobserver variability. Uni- and multivariable Cox proportional hazards analysis was applied to assess the independent effects of several prognostic factors on CSS over a median of 32 months (IQR 6-66 months). Specimens and clinical data from 110 men treated surgically for primary PC were collected. p53 staining was positive in 30 and negative in 62 specimens. κ-statistics showed substantial interobserver reproducibility of p53 staining evaluation (κ=0.73; p<0.001). The 5-year CSS rate for the entire study cohort was 74%. Five-year CSS was 84% in p53-negative and 51% in p53-positive PC patients (p=0.003). Multivariable analysis showed p53 (HR=3.20; p=0.041) and pT-stage (HR=4.29; p<0.001) as independent significant prognostic factors for CSS. Cyclin D1 and p21 expression were not correlated with survival. However, incorporating p21 into a multivariable Cox model did contribute to improved model quality for predicting CSS. In patients with PC, the expression of p53 in the primary tumour specimen can be reproducibly assessed and is negatively associated with cancer specific survival.

  8. p53 and PCNA expression in advanced colorectal cancer: response to chemotherapy and long-term prognosis.

    PubMed

    Paradiso, A; Rabinovich, M; Vallejo, C; Machiavelli, M; Romero, A; Perez, J; Lacava, J; Cuevas, M A; Rodriquez, R; Leone, B; Sapia, M G; Simone, G; De Lena, M

    1996-12-20

    In a series of 71 patients with advanced colorectal cancer treated with biochemically modulated 5-fluorouracil (5-FU) and methotrexate (MTX), we investigated the relationship between the proliferating-cell nuclear antigen (PCNA) (PC10) and p53 (Pab1801) primary-tumor immunohistochemical expression with respect to clinical response and long-term prognosis. Nuclear p53 expression was demonstrated in 44% of samples (any number of positive tumor cells) while all tumors showed a certain degree of PCNA immunostaining. PCNA immunostaining was correlated with histopathologic grade and p53 expression, while p53 was not correlated with any of the parameters considered. The probability of clinical response to biochemically modulated 5-FU was independent of p53 and PCNA expression. p53 expression (all cut-off values) was not associated with short- or long-term clinical prognosis, whereas patients with higher PCNA primary-tumor expression showed longer survival from treatment and survival from diagnosis, according to univariate and multivariate analysis, particularly in the sub-set of colon-cancer patients. We conclude that the clinical response of advanced-colorectal-cancer patients to biochemically modulated 5-FU and MTX cannot be predicted by PCNA and p53 primary-tumor expression, but high PCNA expression appears to be independently related to long-term prognosis.

  9. Alterations of mitochondrial biogenesis in chronic lymphocytic leukemia cells with loss of p53

    PubMed Central

    Ogasawara, Marcia A.; Liu, Jinyun; Pelicano, Helene; Hammoudi, Naima; Croce, Carlo M.; Keating, Michael J.; Huang, Peng

    2016-01-01

    Deletion of chromosome 17p with a loss of p53 is an unfavorable cytogenetic change in chronic lymphocytic leukemia (CLL) with poor clinical outcome. Since p53 affects mitochondrial function and integrity, we examined possible mitochondrial changes in CLL mice with TCL1-Tg/p53−/− and TCL1-Tg/p53+/+ genotypes and in primary leukemia cells from CLL patients with or without 17p-deletion. Although the expression of mitochondrial COX1, ND2, and ND6 decreased in p53−/−CLL cells, there was an increase in mitochondrial biogenesis as evidenced by higher mitochondrial mass and mtDNA copy number associated with an elevated expression of TFAM and PGC-1α. Surprisingly, the overall mitochondrial respiratory activity and maximum reserved capacity increased in p53−/− CLL cells. Our study suggests that leukemia cells lacking p53 seem able to maintain respiratory function by compensatory increase in mitochondrial biogenesis. PMID:27650502

  10. Preliminary report on the effect of brachytherapy on expression of p53, bc1-2 and apoptosis in squamous cell carcinoma of the oesophagus.

    PubMed

    Sur, Monalisa; Sur, Ranjan K; Cooper, Kum; Bizos, Damon

    2003-02-01

    Pre-brachytherapy biopsies and post-brachytherapy oesophagectomy specimens of 10 patients with early squamous cell carcinoma of the middle third of the oesophagus were examined for the expression of p53, bcl-2 and apoptosis using immunohistochemical markers. There was no expression of p53 in one patient in both pre- and post-brachytherapy specimens. In 8 patients, p53 staining was strongly positive (3+) with approximately 50% or more cells, and with diffuse and no specific pattern in the pre-brachytherapy biopsies. The tumour areas of the post-brachytherapy specimens of this group showed strong 3+ positivity with p53 (10-50% positive cell count), with the pattern being focal and peripheral in the tumour islands. The centre of the tumour islands showed necrosis and/or keratinisation. In one patient, the pre-brachytherapy biopsy showed expression of p53 while the post-brachytherapy specimen was negative. bcl-2 expression in both pre- and post-brachytherapy was equivocal and inconclusive in both the pre- and post-brachytherapy specimens. Apoptosis was negative in all the pre- and post-brachytherapy tissue sections in the presence of positive controls. Brachytherapy does not cause cell death by apoptosis but by necrosis and maturation of the cells into better differentiated cells, which is caused by OH free radical, and induction of the keratin gene respectively. It is possible that brachytherapy may cause destruction of cells containing wild-type p53, while mutant p53 in cells located at the tumour periphery escape the effect of brachytherapy. This may be responsible for the high incidence of local recurrence and distant metastasis in oesophageal cancer treated with radiotherapy. There is no effect of brachytherapy on bcl-2 expression in oesophageal cancer.

  11. The presence of p53 influences the expression of multiple human cytomegalovirus genes at early times postinfection.

    PubMed

    Hannemann, Holger; Rosenke, Kyle; O'Dowd, John M; Fortunato, Elizabeth A

    2009-05-01

    Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.

  12. The roles of p53R2 in cancer progression based on the new function of mutant p53 and cytoplasmic p21.

    PubMed

    Yousefi, Bahman; Rahmati, Mohammad; Ahmadi, Yasin

    2014-03-18

    Although the deregulated expression of p53R2, a p53-inducible protein and homologue of the R2 subunit of ribonucleotide reductase, has been detected in several human cancers, p53R2 roles in cancer progression and malignancy still remains controversial. In this article, we present a viable hypothesis about the roles of p53R2 in cancer progression and therapy resistance based on the roles of cytoplasmic p21 and mutant p53. Since p53R2 can up-regulate p21 and p21, it in turn has a dual role in cell cycle. Hence, p53R2 can play a dual role in cell cycle progression. In addition, because p53 is the main regulator of p53R2, the mutant p53 may induce the expression of p53R2 in some cancer cells based on the "keep of function" phenomenon. Therefore, depending on the locations of p21 and the new abilities of mutant p53, p53R2 has dual role in cell cycle progression. Since the DNA damaging therapies induce p53R2 expression through the induction of p53, p53R2 can be the main therapy resistance mediator in cancers with cytoplasmic p21. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H.; Lin, J.; Su, Z.-Z.

    The melanoma differentiation associated gene, mda-6, which is identical to the P53-inducible gene WAF1/CIP1, encodes an M(r) 21,000 protein (p21) that can directly inhibit cell growth by repressing cyclin dependent kinases. mda-6 was identified using subtraction hybridization by virtue of its enhanced expression in human melanoma cells induced to terminally differentiate by treatment with human fibroblast interferon and the anti-leukemic compound mezerein (Jiang and Fisher, 1993). In the present study, we demonstrate that mda-6 (WAF1/CIP1) is an immediate early response gene induced during differentiation of the promyelocytic HL-60 leukemia cell line along the granulocytic or macrophage/monocyte pathway. mda-6 gene expressionmore » in HL-60 cells is induced within 1 to 3 h during differentiation along the macrophage/monocyte pathway evoked by 12-0-tetradecanoyl phorbol-13-acetate (TPA) or 1,25-dihydroxyvitamin D3 (Vit D3) or the granulocytic pathway produced by retinoic acid (RA) or dimethylsulfoxide (DMSO). Immunoprecipitation analyses using an anti-p21 antibody indicate a temporal induction of p21 protein following treatment with TPA, DMSO or RA. A relationship between rapid induction of mda-6 gene expression and differentiation is indicated by a delay in this expression in an HL-60 cell variant resistant to TPA-induced growth arrest and differentiation. A similar delay in mda-6 gene expression is not observed in Vit D3 treated TPA-resistant variant cells that are also sensitive to induction of monocytic differentiation. Since HL-60 cells have a null-p53 phenotype, these results demonstrate that p21 induction occurs during initiation of terminal differentiation in a p53-independent manner. In this context, p21 may play a more global role in growth control and differentiation than originally envisioned.« less

  14. Functional repair of p53 mutation in colorectal cancer cells using trans-splicing.

    PubMed

    He, Xingxing; Liao, Jiazhi; Liu, Fang; Yan, Junwei; Yan, Jingjun; Shang, Haitao; Dou, Qian; Chang, Ying; Lin, Jusheng; Song, Yuhu

    2015-02-10

    Mutation in the p53 gene is arguably the most frequent type of gene-specific alterations in human cancers. Current p53-based gene therapy contains the administration of wt-p53 or the suppression of mutant p53 expression in p53-defective cancer cells. . We hypothesized that trans-splicing could be exploited as a tool for the correction of mutant p53 transcripts in p53-mutated human colorectal cancer (CRC) cells. In this study, the plasmids encoding p53 pre-trans-splicing molecules (PTM) were transfected into human CRC cells carrying p53 mutation. The plasmids carrying p53-PTM repaired mutant p53 transcripts in p53-mutated CRC cells, which resulted in a reduction in mutant p53 transcripts and an induction of wt-p53 simultaneously. Intratumoral administration of adenovirus vectors carrying p53 trans-splicing cassettes suppressed the growth of tumor xenografts. Repair of mutant p53 transcripts by trans-splicing induced cell-cycle arrest and apoptosis in p53-defective colorectal cancer cells in vitro and in vivo. In conclusion, the present study demonstrated for the first time that trans-splicing was exploited as a strategy for the repair of mutant p53 transcripts, which revealed that trans-splicing would be developed as a new therapeutic approach for human colorectal cancers carrying p53 mutation.

  15. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    PubMed Central

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  16. Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process.

    PubMed

    Warren, Timothy A; Broit, Natasa; Simmons, Jacinta L; Pierce, Carly J; Chawla, Sharad; Lambie, Duncan L J; Quagliotto, Gary; Brown, Ian S; Parsons, Peter G; Panizza, Benedict J; Boyle, Glen M

    2016-09-26

    Squamous cell carcinoma (SCC) is the second most common cancer worldwide and accounts for approximately 30% of all keratinocyte cancers. The vast majority of cutaneous SCCs of the head and neck (cSCCHN) are readily curable with surgery and/or radiotherapy unless high-risk features are present. Perineural invasion (PNI) is recognized as one of these high-risk features. The molecular changes during clinical PNI in cSCCHN have not been previously investigated. In this study, we assessed the global gene expression differences between cSCCHN with or without incidental or clinical PNI. The results of the analysis showed signatures of gene expression representative of activation of p53 in tumors with PNI compared to tumors without, amongst other alterations. Immunohistochemical staining of p53 showed cSCCHN with clinical PNI to be more likely to exhibit a diffuse over-expression pattern, with no tumors showing normal p53 staining. DNA sequencing of cSCCHN samples with clinical PNI showed no difference in mutation number or position with samples without PNI, however a significant difference was observed in regulators of p53 degradation, stability and activity. Our results therefore suggest that cSCCHN with clinical PNI may be more likely to contain alterations in the p53 pathway, compared to cSCCHN without PNI.

  17. Differential programming of p53-deficient embryonic cells during rotenone block

    EPA Science Inventory

    Mitochondrial dysfunction has been implicated in chemical toxicities. The present study used an in vitro model to investigate the differential expression of metabolic pathways during cellular stress in p53- efficient embryonic fibroblasts compared to p53-deficient cells. These c...

  18. Heterogeneous distribution of P53 immunoreactivity in human lung adenocarcinoma correlates with MDM2 protein expression, rather than with P53 gene mutation.

    PubMed

    Koga, T; Hashimoto, S; Sugio, K; Yoshino, I; Nakagawa, K; Yonemitsu, Y; Sugimachi, K; Sueishi, K

    2001-07-20

    Although the tumor suppressor p53 protein (P53) immunoreactivity and its gene (p53) mutation were reported to be significant prognostic indicators for human lung adenocarcinomas, little is known regarding the relationship between the heterogeneous distribution of P53 and its genetic status in each tumor focus and the clinicopathological significance. To determine how P53 is heterogeneously stabilized in patients, we compared P53 expression to both the p53 allelic mutation in exon 2 approximately 9 by polymerase chain reaction-single strand conformation polymorphism using microdissected DNA fractions, and the immunohistochemical MDM2 expression. Of the 48 positive to P53 in 118 lung adenocarcinomas examined, 10 with heterogeneous P53 expression were closely examined. The higher P53 expression foci in 7 of 10 cases were less differentiated, histologically in respective cases, and were frequently associated with fibrous stroma. Two had genetic mutations in exon 7 of the p53 gene in both the high and low P53 expression foci of cancer tissue indicating no apparent correlation between heterogeneous P53 expression and the occurrence of gene mutation. Immunohistochemical expression of MDM2 was significantly lower in high P53 expression areas (p < 0.05, the mean labeling indices of high and low P53 expression areas being 4.2 +/- 5.4% and 13.6 +/- 12.2%, respectively). In addition, among all the 118 cases examined, MDM2 expression was significantly suppressed in cases of p53 gene mutation, simultaneously with P53 overexpression, as compared with cases without both the p53 mutation and expression (p < 0.001). These findings suggest that the heterogeneous stabilization of P53 in human lung adenocarcinomas could be partly due to suppressed MDM2 expression. The overexpression of non-mutated P53 may afford a protective mechanism in human lung adenocarcinomas. Copyright 2001 Wiley-Liss, Inc.

  19. Increased fibroblast density in actinic cheilitis: association with tryptase-positive mast cells, actinic elastosis and epithelial p53 and COX-2 expression.

    PubMed

    Rojas, Isolde G; Boza, Yadira V; Spencer, Maria Loreto; Flores, Maritza; Martínez, Alejandra

    2012-01-01

    Actinic cheilitis (AC) is characterized by epithelial and connective tissue alterations caused by ultraviolet sunlight overexposure known as photodamage. Fibroblasts have been linked to photodamage and tumor progression during skin carcinogenesis; however, their role in early lip carcinogenesis remains unknown. The aim of this study was to assess the density of fibroblasts in AC and normal lip (NL) samples and determine their association with markers of lip photodamage. Fibroblasts, mast cells, p53, COX-2, and elastin were detected in NL (n = 20) and AC (n = 28) biopsies using immunohistochemistry/histochemistry. Mast cell and fibroblast density and epithelial p53 and COX-2 expression scores were then obtained. Elastosis was scored 1-4 according to elastin fiber density and tortuosity. Fibroblasts, mast cells, p53, COX-2, and elastosis were increased in AC as compared to NL (P < 0.001). Multivariate analysis showed an association between fibroblast and mast cell density at the papillary and reticular areas of AC and NL (P < 0.05). Papillary fibroblast density was also associated with epithelial p53 and COX-2 expression (P < 0.05). Increased fibroblast density, both papillary and reticular, was found in the high elastosis group (scores 3-4) as compared to the low elastosis group (scores 1-2) (P < 0.01). Increased reticular mast cell density was detected only in the high elastosis group (P < 0.01). Fibroblasts are increased in AC, and they are associated with mast cell density, epithelial p53 and COX-2 expression, and actinic elastosis. Therefore, fibroblasts may contribute to lip photodamage and could be considered useful markers of early lip carcinogenesis. © 2011 John Wiley & Sons A/S.

  20. Wt-p53 action in human leukaemia cell lines corresponding to different stages of differentiation.

    PubMed

    Rizzo, M G; Zepparoni, A; Cristofanelli, B; Scardigli, R; Crescenzi, M; Blandino, G; Giuliacci, S; Ferrari, S; Soddu, S; Sacchi, A

    1998-05-01

    Recent studies support the potential application of the wt-p53 gene in cancer therapy. Expression of exogenous wt-p53 suppresses a variety of leukaemia phenotypes by acting on cell survival, proliferation and/or differentiation. As for tumour gene therapy, the final fate of the neoplastic cells is one of the most relevant points. We examined the effects of exogenous wt-p53 gene expression in several leukaemia cell lines to identify p53-responsive leukaemia. The temperature-sensitive p53Val135 mutant or the human wt-p53 cDNA was transduced in leukaemia cell lines representative of different acute leukaemia FAB subtypes, including M1 (KG1), M2 (HL-60), M3 (NB4), M5 (U937) and M6 (HEL 92.1.7), as well as blast crisis of chronic myelogenous leukaemia (BC-CML: K562, BV173) showing diverse differentiation features. By morphological, molecular and biochemical analyses, we have shown that exogenous wt-p53 gene expression induces apoptosis only in cells corresponding to M1, M2 and M3 of the FAB classification and in BC-CML showing morphological and cytochemical features of undifferentiated blast cells. In contrast, it promotes differentiation in the others. Interestingly, cell responsiveness was independent of the vector used and the status of the endogenous p53 gene.

  1. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity

    PubMed Central

    Warenius, H M; Jones, M; Gorman, T; McLeish, R; Seabra, L; Barraclough, R; Rudland, P

    2000-01-01

    The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by γ-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. © 2000 Cancer Research Campaign PMID:10993658

  2. Accumulation of p53 in infectious mononucleosis tissues.

    PubMed

    Ehsan, A; Fan, H; Eagan, P A; Siddiqui, H A; Gulley, M L

    2000-11-01

    Epstein-Barr virus (EBV) infects lymphocytes, where it persists indefinitely for the life of the host; whether the virus interacts with p53 to maintain itself in these cells is unknown. Lymphoid biopsy samples from 10 patients with infectious mononucleosis (IM) were examined for expression of p53 by immunohistochemistry. Accumulation of p53 was detected in all 10 cases, primarily in large lymphocytes of the expanded paracortex. The presence of EBV was confirmed in all 10 cases by EBER1 (EBV-encoded RNA) in situ hybridization, whereas 11 non-IM control samples lacked significant EBER1 and did not express p53 in paracortical lymphocytes. Interestingly, EBV infection alone does not cause accumulation of intracellular p53, because many more cells expressed EBER1 than p53 in the IM tissues. To determine whether p53 was confined to the subset of infected cells in which viral replication was occurring, BZLF1 immunostains were performed. Viral BZLF1 was detected in 8 of 10 IM tissues; however, the paucity and small size of the BZLF1-expressing lymphocytes suggests that they are not the same cells overexpressing p53. To further examine the relationship between p53 and EBV gene expression, the tissues were studied for latent membrane protein 1 (LMP1) expression by immunohistochemistry. Viral LMP1 was observed in the large paracortical lymphocytes of all 10 cases of IM, indicating co-localization of p53 and LMP1 in these cells. Our findings confirm that p53 overexpression is not specific for nodal malignancy and that p53 accumulation is characteristic of IM. Because p53 was not coexpressed in the same cells as BZLF1, it appears that BZLF1 is not directly responsible for p53 accumulation. Nevertheless, co-localization of p53 and LMP1 in activated-appearing lymphocytes suggests that EBV infection is responsible for p53 accumulation. HUM PATHOL 31:1397-1403. Copyright 2000 by W.B. Saunders Company

  3. Expression of the p53 target CDIP correlates with sensitivity to TNF-alpha induced apoptosis in cancer cells

    PubMed Central

    Brown-Endres, Lauren; Schoenfeld, David; Tian, Fang; Kim, Hyung-Gu; Namba, Takushi; Muñoz-Fontela, César; Mandinova, Anna; Aaronson, Stuart A.; Lee, Sam W.

    2012-01-01

    TNFα is a pleiotropic cytokine that signals for both survival and apoptotic cell fates. It is still unclear that the dual role of TNFα can be regulated in cancer cells. We previously described an apoptotic pathway involving p53→CDIP→TNFα that was activated in response to genotoxic stress. This pathway operated in the presence of JNK activation; therefore, we postulated that CDIP itself could sensitize cells to a TNFα apoptotic cell fate, survival or death. We show that CDIP mediates sensitivity to TNFα-induced apoptosis, and that cancer cells with endogenous CDIP expression are inherently sensitive to the growth suppressive effects of TNFα in vitro and in vivo. Thus, CDIP expression correlates with sensitivity of cancer cells with TNFα, and CDIP appears to be a regulator of the p53-mediated death versus survival response of cells to TNFα. This CDIP-mediated sensitivity to TNFα-induced apoptosis favors pro-over anti-apoptotic program in cancer cells and CDIP may serve as a predictive biomarker for such sensitivity. PMID:22549949

  4. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    PubMed Central

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  5. Chaperone-mediated autophagy degrades mutant p53

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Kim, Minsu; Xia, Hong-guang; Iwanicki, Marcin P.; Ofengeim, Dimitry; Coloff, Jonathan L.; Pan, Lifeng; Ince, Tan A.; Kroemer, Guido; Brugge, Joan S.; Yuan, Junying

    2013-01-01

    Missense mutations in the gene TP53, which encodes p53, one of the most important tumor suppressors, are common in human cancers. Accumulated mutant p53 proteins are known to actively contribute to tumor development and metastasis. Thus, promoting the removal of mutant p53 proteins in cancer cells may have therapeutic significance. Here we investigated the mechanisms that govern the turnover of mutant p53 in nonproliferating tumor cells using a combination of pharmacological and genetic approaches. We show that suppression of macroautophagy by multiple means promotes the degradation of mutant p53 through chaperone-mediated autophagy in a lysosome-dependent fashion. In addition, depletion of mutant p53 expression due to macroautophagy inhibition sensitizes the death of dormant cancer cells under nonproliferating conditions. Taken together, our results delineate a novel strategy for killing tumor cells that depend on mutant p53 expression by the activation of chaperone-mediated autophagy and potential pharmacological means to reduce the levels of accumulated mutant p53 without the restriction of mutant p53 conformation in quiescent tumor cells. PMID:23913924

  6. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors.

    PubMed

    Boidot, Romain; Végran, Frédérique; Meulle, Aline; Le Breton, Aude; Dessy, Chantal; Sonveaux, Pierre; Lizard-Nacol, Sarab; Feron, Olivier

    2012-02-15

    The monocarboxylate transporter (MCT) family member MCT1 can transport lactate into and out of tumor cells. Whereas most oxidative cancer cells import lactate through MCT1 to fuel mitochondrial respiration, the role of MCT1 in glycolysis-derived lactate efflux remains less clear. In this study, we identified a direct link between p53 function and MCT1 expression. Under hypoxic conditions, p53 loss promoted MCT1 expression and lactate export produced by elevated glycolytic flux, both in vitro and in vivo. p53 interacted directly with the MCT1 gene promoter and altered MCT1 mRNA stabilization. In hypoxic p53(-/-) tumor cells, NF-κB further supported expression of MCT1 to elevate its levels. Following glucose deprivation, upregulated MCT1 in p53(-/-) cells promoted lactate import and favored cell proliferation by fuelling mitochondrial respiration. We also found that MCT1 expression was increased in human breast tumors harboring p53 mutations and coincident features of hypoxia, with higher MCT1 levels associated with poorer clinical outcomes. Together, our findings identify MCT1 as a target for p53 repression and they suggest that MCT1 elevation in p53-deficient tumors allows them to adapt to metabolic needs by facilitating lactate export or import depending on the glucose availability.

  7. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.

    PubMed

    Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K

    2005-01-20

    Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.

  8. Alpha-santalol, a chemopreventive agent against skin cancer, causes G2/M cell cycle arrest in both p53-mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells

    PubMed Central

    2010-01-01

    Background α-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of α-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of α-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action. Methods MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells. Results α-Santalol at 50-100 μM decreased cell viability from 24 h treatment and α-santalol at 50 μM-75 μM induced G2/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. α-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G2/M transition. α-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, α-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by α-santalol. Furthermore, α-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells. Conclusions This study for the first time identifies effects of α-santalol in G2/M phase arrest and describes detailed mechanisms of G2/M phase arrest by this agent, which might be

  9. Nutlin-3 induces HO-1 expression by activating JNK in a transcription-independent manner of p53.

    PubMed

    Choe, Yun-Jeong; Lee, Sun-Young; Ko, Kyung Won; Shin, Seok Joon; Kim, Ho-Shik

    2014-03-01

    A recent study reported that p53 can induce HO-1 by directly binding to the putative p53 responsive element in the HO-1 promoter. In this study, we report that nutlin-3, a small molecule antagonist of HDM2, induces the transcription of HO-1 in a transcription-independent manner of p53. Nutlin-3 induced HO-1 expression at the level of transcription in human cancer cells such as U2OS and RKO cells. This induction of HO-1 did not occur in SAOS cells in which p53 was mutated and was prevented by knocking down the p53 protein using p53 siRNA transfection, but not by PFT-α, an inhibitor of the transcriptional activity of p53. Accompanying HO-1 expression, nutlin-3 stimulated the accumulation of ROS and the phosphorylation of MAPKs such as JNK, p38 MAPK and ERK1/2. Nutlin-3-induced HO-1 expression was suppressed by TEMPO, a ROS scavenger, and chemical inhibitors of JNK and p38 MAPK but not ERK1/2. In addition, nutlin‑3-induced phosphorylation of JNK but not p38 MAPK was inhibited by TEMPO. Notably, the levels of nutlin-3-induced ROS were correlated with the mitochondrial translocation of p53 and this induction was prevented by PFT-μ, an inhibitor of the mitochondrial translocation of p53. Consistent with the effect of the ROS scavenger and MAPK inhibitors, PFT-μ reduced HO-1 expression and the phosphorylation of JNK induced by nutlin-3. In the experiments of analyzing cell death, the knockdown of HO-1 augmented nutlin-3-induced apoptosis. Collectively, these results suggest that nutlin-3 induces HO-1 expression via the activation of both JNK which is dependent on ROS generated by p53 translocated to the mitochondria and p38 MAPK which appears to be stimulated by a ROS-independent mechanism, and this HO-1 induction may inhibit nutlin-3-induced apoptosis, constituting a negative feedback loop of p53-induced apoptosis.

  10. Involvement of p53 and Bcl-2 in sensory cell degeneration in aging rat cochleae.

    PubMed

    Xu, Yang; Yang, Wei Ping; Hu, Bo Hua; Yang, Shiming; Henderson, Donald

    2017-06-01

    p53 and Bcl-2 (B-cell lymphoma 2) are involved in the process of sensory cell degeneration in aging cochleae. To determine molecular players in age-related hair cell degeneration, this study examined the changes in p53 and Bcl-2 expression at different stages of apoptotic and necrotic death of hair cells in aging rat cochleae. Young (3-4 months) and aging (23-24 months) Fisher 344/NHsd rats were used. The thresholds of the auditory brainstem response (ABR) were measured to determine the auditory function. Immunolabeling was performed to determine the expression of p53 and Bcl-2 proteins in the sensory epithelium. Propidium iodide staining was performed to determine the morphologic changes in hair cell nuclei. Aging rats exhibited a significant elevation in ABR thresholds at all tested frequencies (p < 0.001). The p53 and Bcl-2 immunoreactivity was increased in aging hair cells showing the early signs of apoptotic changes in their nuclei. The Bcl-2 expression increase was also observed in hair cells displaying early signs of necrosis. As the hair cell degenerative process advanced, p53 and Bcl-2 immunoreactivity became reduced or absent. In the areas where no detectable nuclear staining was present, p53 and Bcl-2 immunoreactivity was absent.

  11. Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway

    PubMed Central

    JEDINAK, ANDREJ; SLIVA, DANIEL

    2009-01-01

    In spite of the global consumption of mushrooms, only two epidemiological studies demonstrated an inverse correlation between mushroom intake and the risk of cancer. Therefore, in the present study we evaluated whether extracts from edible mushrooms Agaricus bisporus (portabella), Flammulina velutipes (enoki), Lentinula edodes (shiitake) and Pleurotus ostreatus (oyster) affect the growth of breast and colon cancer cells. Here, we identified as the most potent, P. ostreatus (oyster mushroom) which suppressed proliferation of breast cancer (MCF-7, MDA-MB-231) and colon cancer (HT-29, HCT-116) cells, without affecting proliferation of epithelial mammary MCF-10A and normal colon FHC cells. Flow cytometry revealed that the inhibition of cell proliferation by P. ostreatus was associated with the cell cycle arrest at G0/G1 phase in MCF-7 and HT-29 cells. Moreover, P. ostreatus induced the expression of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21(CIP1/WAF1), whereas inhibited the phosphorylation of retinoblastoma Rb protein in MCF-7 cells. In addition, P. ostreatus also up-regulated expression of p21 and inhibited Rb phosphorylation in HT-29 cells, suggesting that that P. ostreatus suppresses the proliferation of breast and colon cancer cells via p53-dependent as well as p53-independent pathway. In conclusion, our results indicated that the edible oyster mushroom has potential therapeutic/preventive effects on breast and colon cancer. PMID:19020765

  12. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation

    PubMed Central

    Apostolidis, Pani A.; Lindsey, Stephan; Miller, William M.

    2012-01-01

    During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects. PMID:22548738

  13. Effects of p53 on aldosterone-induced mesangial cell apoptosis in vivo and in vitro.

    PubMed

    Shi, Huimin; Zhang, Aiqing; He, Yanfang; Yang, Min; Gan, Weihua

    2016-06-01

    Aldosterone (ALD) is a well‑known hormone, which may initiate renal injury by inducing mesangial cell (MC) injury in chronic kidney disease (CKD); however, the molecular mechanism remains unknown. The aim of the present study was to investigate the effects of p53 on ALD‑induced MC apoptosis and elucidate the underlying molecular mechanism. For the in vivo studies, rats were randomly assigned to receive normal saline or ALD for 4 weeks. The ratio of MC apoptosis was analysed by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. In addition, the expression level and localisation of p53, a well-known cell apoptosis-associated key protein, were detected by immunofluorescence. For the in vitro studies, rat MCs were incubated in medium containing either buffer (control) or ALD (10‑6 M) for 24 h. The cell apoptosis ratio was assessed by flow cytometry, and the expression level of p53 was assessed by reverse transcription quantitative polymerase chain reaction and western blotting. In order to confirm the role of p53 in ALD‑regulated cell apoptosis, a rescue experiment was performed using targeted small interfering (si)RNA to downregulate the expression of p53. The ALD‑treated rats exhibited greater numbers of TUNEL‑positive MCs and higher expression levels of p53 when compared with the control group. Furthermore, the ratio of MC apoptosis and the p53 expression level were significantly increased following ALD exposure, compared with the control group. Additionally, in the rescue experiment, the effects of ALD on MC were blocked by downregulating the expression level of p53 in MCs. The present study hypothesized that ALD may directly contribute to the occurrence of MC apoptosis via p53, which may participate in ALD-induced renal injury.

  14. p21WAF1 immunohistochemical expression in breast carcinoma: correlations with clinicopathological data, oestrogen receptor status, MIB1 expression, p53 gene and protein alterations and relapse-free survival.

    PubMed Central

    Barbareschi, M.; Caffo, O.; Doglioni, C.; Fina, P.; Marchetti, A.; Buttitta, F.; Leek, R.; Morelli, L.; Leonardi, E.; Bevilacqua, G.; Dalla Palma, P.; Harris, A. L.

    1996-01-01

    p21 protein (p21) inhibitor of cyclin-dependent kinases is a critical downstream effector in the p53-specific pathway of growth control. p21 can also be induced by p53-independent pathways in relation to terminal differentiation. We investigated p21 immunoreactivity in normal breast and in 91 breast carcinomas [three in situ ductal carcinomas (DCIS) with microinfiltration and 88 infiltrating carcinomas, 17 of which with an associated DCIS; 57 node negative and 34 node positive] with long-term follow-up (median = 58 months). Seven additional breast carcinomas with known p53 gene mutations were investigated. In normal breast p21 expression was seen in the nuclei of rare luminal cells of acinar structures, and in occasional myoepithelial cells. Poorly differentiated DCIS showed high p21 expression, whereas well-differentiated DCIS tumours showed few p21-reactive cells. p21 was seen in 82 (90%) infiltrating tumours; staining was heterogeneous; the percentage of reactive nuclei ranged from 1% to 35%. High p21 expression (more than 10% of reactive cells) was seen in 24 (26%) cases, and was associated with high tumour grade (P = 0.032); no associations were seen with tumour size, metastases, oestrogen receptor status, MIB1 expression and p53 expression. p21 expression in cases with p53 gene mutations was low in six cases and high in one. High p21 expression was associated with short relapse-free survival (P = 0.003). Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8688323

  15. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    PubMed

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  16. Immunohistochemical expression of protein p53 in neoplasms of the mammary gland in bitches.

    PubMed

    Rodo, A; Malicka, E

    2008-01-01

    The aim of the study was to investigate the presence of protein p53 in correlation with other tumor traits: histological type, tumor grade and proliferative activity. Material for the investigation comprised mammary gland tumours collected from dogs, the patients of veterinary clinics, during surgical procedures, and archival samples. Alltogether 21 adenomas, 31 complex carcinomas, 35 simple carcinomas and 12 solid carcinomas were qualified for further investigation. No protein p53 expression was found in adenomas. Cancers show positive reaction in 32.5%. The highest percent of p53 positive neoplasms was observed in solid carcinomas and neoplasms with the highest degree of histological malignancy. The smallest number showing this expression was observed in adenomas and the highest was characteristic for solid carcinomas. Considering the tumour grading, it was found that an increase in neoplasm malignancy was positively correlated with the number of the cells showing the expression of protein p53. The differences were statistically significant. Statistically significant positive correlations were observed between the proliferative activity and protein p53 expression. Higher accumulation of protein p53 in more malignant neoplasms suggests that mutations of protein p53 can be responsible for higher proliferation in neoplasms with advanced progression of malignancy.

  17. In vitro cytotoxic potential of friedelin in human MCF-7 breast cancer cell: Regulate early expression of Cdkn2a and pRb1, neutralize mdm2-p53 amalgamation and functional stabilization of p53.

    PubMed

    Subash-Babu, Pandurangan; Li, David K; Alshatwi, Ali A

    2017-10-02

    We aimed to explore the cytotoxic and apoptotic effect of friedelin on breast cancer MCF-7 cells. Cytotoxic effect of friedelin on MCF-7 cells was analyzed using MTT, cell and nuclear morphology. The apoptosis mechanism of friedelin on MCF-7 cells was analyzed using real-time PCR. Friedelin potentially inhibit 78% of MCF-7 cell's growth, the IC 50 value was 1.8μM in 24h and 1.2μM in 48h. Friedelin increased ROS significantly and DNA damage was confirmed by tunel assay. We found characteristically 52% apoptotic cells and 6% necrotic cells in PI, AO/ErBr staining after 48h treatment with 1.2μM of friedelin. Apoptosis was confirmed by significantly (p≤0.001) increased tumor suppressor gene Cdkn1a, pRb2, p53, Nrf2, caspase-3 and decreased Bcl-2, mdm2 & PCNA expression after 48h. In conclusion, friedelin effectively inhibit breast cancer MCF-7 cell growth, it was associated with early expression of Cdkn1a, pRb2 and activation of p53 and caspases. Copyright © 2017. Published by Elsevier GmbH.

  18. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.

    PubMed

    Loging, W T; Reisman, D

    1999-11-01

    The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.

  19. p53-regulated autophagy is controlled by glycolysis and determines cell fate

    PubMed Central

    Duan, Lei; Perez, Ricardo E.; Davaadelger, Batzaya; Dedkova, Elena N.; Blatter, Lothar A.; Maki, Carl G.

    2015-01-01

    The tumor suppressor p53 regulates downstream targets that determine cell fate. Canonical p53 functions include inducing apoptosis, growth arrest, and senescence. Non-canonical p53 functions include its ability to promote or inhibit autophagy and its ability to regulate metabolism. The extent to which autophagy and/or metabolic regulation determines cell fate by p53 is unclear. To address this, we compared cells resistant or sensitive to apoptosis by the p53 activator Nutlin-3a. In resistant cells, glycolysis was maintained upon Nutlin-3a treatment, and activated p53 promoted prosurvival autophagy. In contrast, in apoptosis sensitive cells activated p53 increased superoxide levels and inhibited glycolysis through repression of glycolytic pathway genes. Glycolysis inhibition and increased superoxide inhibited autophagy by repressing ATG genes essential for autophagic vesicle maturation. Inhibiting glycolysis increased superoxide and blocked autophagy in apoptosis-resistant cells, causing p62-dependent caspase-8 activation. Finally, treatment with 2-DG or the autophagy inhibitors chloroquine or bafilomycin A1 sensitized resistant cells to Nutlin-3a-induced apoptosis. Together, these findings reveal novel links between glycolysis and autophagy that determine apoptosis-sensitivity in response to p53. Specifically, the findings indicate 1) that glycolysis plays an essential role in autophagy by limiting superoxide levels and maintaining expression of ATG genes required for autophagic vesicle maturation, 2) that p53 can promote or inhibit autophagy depending on the status of glycolysis, and 3) that inhibiting protective autophagy can expand the breadth of cells susceptible to Nutlin-3a induced apoptosis. PMID:26337205

  20. Depletion of Securin Induces Senescence After Irradiation and Enhances Radiosensitivity in Human Cancer Cells Regardless of Functional p53 Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Wenshu; Yu Yichu; Lee Yijang

    2010-06-01

    Purpose: Radiotherapy is one of the best choices for cancer treatment. However, various tumor cells exhibit resistance to irradiation-induced apoptosis. The development of new strategies to trigger cancer cell death besides apoptosis is necessary. This study investigated the role of securin in radiation-induced apoptosis and senescence in human cancer cells. Methods and Materials: Cell survival was determined using clonogenic assays. Western blot analysis was used to analyze levels of securin, caspase-3, PARP, p53, p21, Rb, gamma-H2AX, and phospho-Chk2. Senescent cells were analyzed using a beta-galactosidase staining assay. A securin-expressed vector (pcDNA-securin) was stably transfected into securin-null HCT116 cells. Securin genemore » knockdown was performed by small interfering RNA and small hairpin RNA in HCT116 and MDA-MB-231 cells, respectively. Results: Radiation was found to induce apoptosis in securin wild type HCT116 cells but induced senescence in securin-null cells. Restoration of securin reduced senescence and increased cell survival in securin-null HCT116 cells after irradiation. Radiation-induced gamma-H2AX and Chk2 phosphorylation were induced transiently in securin-wild-type cells but exhibited sustained activation in securin-null cells. Securin gene knockdown switches irradiation-induced apoptosis to senescence in both HCT116 p53-null and MDA-MB-231 cells. Conclusions: Our results demonstrated that the level of securin expression plays a determining role in the radiosensitivity and fate of cells. Depletion of securin impairs DNA repair after irradiation, increasing DNA damage and promoting senescence in the residual surviving cells regardless of functional p53 expression. The knockdown of securin may contribute to a novel radiotherapy protocol for the treatment of human cancer cells that are resistant to irradiation.« less

  1. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    PubMed Central

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  2. Modulation of p53 cellular function and cell death by African swine fever virus.

    PubMed

    Granja, Aitor G; Nogal, María L; Hurtado, Carolina; Salas, José; Salas, María L; Carrascosa, Angel L; Revilla, Yolanda

    2004-07-01

    Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells.

  3. Modulation of p53 Cellular Function and Cell Death by African Swine Fever Virus

    PubMed Central

    Granja, Aitor G.; Nogal, María L.; Hurtado, Carolina; Salas, José; Salas, María L.; Carrascosa, Angel L.; Revilla, Yolanda

    2004-01-01

    Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells. PMID:15194793

  4. p53-independent p21 induction by MELK inhibition.

    PubMed

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-08-29

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated.

  5. p53-independent p21 induction by MELK inhibition

    PubMed Central

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-01-01

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated. PMID:28938528

  6. Interplay between PTB and miR-1285 at the p53 3'UTR modulates the levels of p53 and its isoform Δ40p53α.

    PubMed

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit; Das, Saumitra

    2017-09-29

    p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3'UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3'UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3'UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3'UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3'UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3'UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3'UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. p73 Protein Expression Correlates With Radiation-Induced Apoptosis in the Lack of p53 Response to Radiation Therapy for Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakatsuki, Masaru; Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba; Ohno, Tatsuya

    2008-03-15

    Purpose: p73 belongs to the p53 tumor suppressor family of genes and can inhibit cell growth in a p53-like manner by inducing apoptosis or cell cycle arrest. Here, we investigated whether p73 could compensate for impaired p53 function in apoptosis induced by radiation therapy (RT) for cervical cancer. Methods and Materials: Sixty-eight patients with squamous cell carcinoma of the cervix who received definitive RT combined with (n = 37) or without (n = 31) cisplatin were investigated. Biopsy specimens were excised from the cervical tumor before RT and after 9 Gy. Results: Mean apoptosis index (AI) was 0.93% before RTmore » and 1.97% after 9 Gy with a significant increase (p < 0.001). For all patients, there was a significant correlation between p73 expression positivity after 9 Gy and AI ratio (AI after 9 Gy/AI before RT) (p = 0.021). Forty-one patients were regarded as the p53-responding group according to the expression of p53 after 9 Gy, whereas the remaining 27 patients were regarded as the p53-nonresponding group. A significant correlation between p73 expression after 9 Gy and AI ratio was observed in the p53-non-responding group (p < 0.001) but not in the p53-responding group (p = 0.940). Conclusion: Our results suggest that p73 plays an important role in compensating for the lack of p53 function in radiation-induced apoptosis of cervical cancer.« less

  8. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    PubMed

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  9. Increased expression of p53 and p21 (Waf1/Cip1) in the lesional skin of bleomycin-induced scleroderma.

    PubMed

    Yamamoto, Toshiyuki; Nishioka, Kiyoshi

    2005-05-01

    Systemic sclerosis (SSc) is a connective tissue disorder characterized by excessive deposition of extracellular matrix in the affected skin as well as various internal organs, vascular injury and immune abnormality; however, the etiology of SSc remains still unknown. We previously established an experimental mouse model for scleroderma by repeated local injections of bleomycin, a DNA damaging agent. In this study, we examined the induction of apoptosis and the expression of p53, p21 (Waf1/Cip1), and proliferating cell nuclear antigen (PCNA) in the lesional skin following bleomycin exposure in this model. Dermal sclerosis was induced by alternate day's injections of bleomycin for 4 weeks. TUNEL assay showed that apoptotic cells began to appear at 1 week after bleomycin exposure, and were prominently detected at 3-4 weeks. Immunohistochemical examination showed increased expression of p53 and p21 mainly in the infiltrating mononuclear cells at 2 weeks after bleomycin treatment. Bleomycin treatment markedly enhanced PCNA expression at 1-2 weeks, mainly in mesenchyme, as compared with control phosphate buffered saline treatment. Reverse transcriptase-polymerase chain reaction analysis showed that the expression of p53 and p21 mRNA was concurrently upregulated at 1-2 weeks after bleomycin treatment. Taken together, coordinate increased levels of p53 and p21 preceded the maximal induction of apoptosis and dermal sclerosis. Our findings suggest that apoptotic processes are involved in the pathophysiology of bleomycin-induced scleroderma, which may be mediated, in part, by the upregulation of p53 and p21.

  10. Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC.

    PubMed

    Kim, Chong-Kook; Choi, Eun-Jeong; Choi, Sung-Hee; Park, Jeong-Sook; Haider, Khawaja Hasnain; Ahn, Woong Shick

    2003-08-01

    Previously we have formulated a new cationic liposome, DDC, composed of dioleoyltrimethylamino propane (DOTAP), 1,2-dioeoyl-3-phosphophatidylethanolamine (DOPE), and cholesterol (Chol), and it efficiently delivered plasmid DNA into ovarian cancer cells. Mutations in the p53 tumor suppressor gene are the most common molecular genetic abnormalities to be described in ovarian cancer. However, there has been so far no report of nonviral vector-mediated p53 gene deliveries in ovarian cancer. In this study, wild-type p53 DNA was transfected into the ovarian cancer cells, using the DDC as a nonviral vector and the expression and activity of p53 gene were evaluated both in vitro and in vivo. DDC liposomes were prepared by mixing DOTAP:DOPE:Chol in a 1:0.7:0.3 molar ratio using the extrusion method. Plasmid DNA (pp53-EGFP) and DDC complexes were transfected into ovarian carcinoma cells (OVCAR-3 cells) and gene expression was determined by reverse transcription-polymerase chain reaction and Western blot analysis. The cellular growth inhibition and apoptosis of DDC-mediated p53 transfection were assessed by trypan blue exclusion assay and annexin-V staining, respectively. The OVCAR-3 cells treated with DDC/pp53-EGFP complexes were inoculated into female balb/c nude mice and tumor growth was observed. The transfection of liposome-complexed p53 gene resulted in a high level of wild-type p53 mRNA and protein expressions in OVCAR-3 cells. In vitro cell growth assay showed growth inhibition of cancer cells transfected with DDC/pp53-EGFP complexes compared with the control cells. The reestablishment of wild-type p53 function in ovarian cancer cells restored the apoptotic pathway. Following the inoculation of DDC/pp53-EGFP complexes, the volumes of tumors in nude mice were significantly reduced more than 60% compared to the control group. The DDC-mediated p53 DNA delivery may have the potential for clinical application as nonviral vector-mediated ovarian cancer therapy due to its

  11. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.

    PubMed

    Li, Yuwen; Liu, Jiao; Li, Wencheng; Brown, Aaron; Baddoo, Melody; Li, Marilyn; Carroll, Thomas; Oxburgh, Leif; Feng, Yumei; Saifudeen, Zubaida

    2015-04-01

    Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors. © 2015. Published by The Company of Biologists Ltd.

  12. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation.

    PubMed

    De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2017-05-01

    Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great

  13. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.

    PubMed

    Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D

    2017-08-01

    Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.

  14. Interplay between PTB and miR-1285 at the p53 3′UTR modulates the levels of p53 and its isoform Δ40p53α

    PubMed Central

    Katoch, Aanchal; George, Biju; Iyyappan, Amrutha; Khan, Debjit

    2017-01-01

    Abstract p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3′UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3′UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3′UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3′UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3′UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3′UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3′UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. PMID:28973454

  15. The Prognostic Impact of p53 Expression on Sporadic Colorectal Cancer Is Dependent on p21 Status.

    PubMed

    Kruschewski, Martin; Mueller, Kathrin; Lipka, Sybille; Budczies, Jan; Noske, Aurelia; Buhr, Heinz Johannes; Elezkurtaj, Sefer

    2011-03-11

    The prognostic value of p53 and p21 expression in colorectal cancer is still under debate. We hypothesize that the prognostic impact of p53 expression is dependent on p21 status. The expression of p53 and p21 was immunohistochemically investigated in a prospective cohort of 116 patients with UICC stage II and III sporadic colorectal cancer. The results were correlated with overall and recurrence-free survival. The mean observation period was 51.8 ± 2.5 months. Expression of p53 was observed in 72 tumors (63%). Overall survival was significantly better in patients with p53-positive carcinomas than in those without p53 expression (p = 0.048). No differences were found in recurrence-free survival (p = 0.161). The p53+/p21- combination was seen in 68% (n = 49), the p53+/p21+ combination in 32% (n = 23). Patients with p53+/p21- carcinomas had significantly better overall and recurrence-free survival than those with p53+/p21+ (p < 0.0001 resp. p = 0.003). Our data suggest that the prognostic impact of p53 expression on sporadic colorectal cancer is dependent on p21 status.

  16. Gene mutations and increased levels of p53 protein in human squamous cell carcinomas and their cell lines.

    PubMed Central

    Burns, J. E.; Baird, M. C.; Clark, L. J.; Burns, P. A.; Edington, K.; Chapman, C.; Mitchell, R.; Robertson, G.; Soutar, D.; Parkinson, E. K.

    1993-01-01

    Using immunocytochemical and Western blotting techniques we have demonstrated the presence of abnormally high levels of p53 protein in 8/24 (33%) of human squamous cell carcinomas (SCC) and 9/18 (50%) of SCC cell lines. There was a correlation between the immunocytochemical results obtained with eight SCC samples and their corresponding cell lines. Direct sequencing of PCR-amplified, reverse transcribed, p53 mRNA confirmed the expression of point mutations in six of the positive cell lines and detected in-frame deletions in two others. We also detected two stop mutations and three out-of-frame deletions in five lines which did not express elevated levels of p53 protein. Several of the mutations found in SCC of the tongue (3/7) were in a region (codons 144-166) previously identified as being a p53 mutational hot spot in non-small cell lung tumours (Mitsudomi et al., 1992). In 11/13 cases only the mutant alleles were expressed suggesting loss or reduced expression of the wild type alleles in these cases. Six of the mutations were also detected in the SCCs from which the lines were derived, strongly suggesting that the mutations occurred, and were selected, in vivo. The 12th mutation GTG-->GGG (valine-->glycine) at codon 216 was expressed in line SCC-12 clone B along with an apparently normal p53 allele and is to our knowledge a novel mutation. Line BICR-19 also expressed a normal p53 allele in addition to one where exon 10 was deleted. Additionally 15 of the SCC lines (including all of those which did not show elevated p53 protein levels) were screened for the presence of human papillomavirus types 16 and 18 and were found to be negative. These results are discussed in relation to the pathogenesis of SCC and the immortalisation of human keratinocytes in vitro. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8390283

  17. hCLCA2 is a p53-inducible inhibitor of breast cancer cell proliferation

    PubMed Central

    Walia, Vijay; Ding, Ming; Kumar, Sumit; Nie, Daotai; Premkumar, Louis; Elble, Randolph C.

    2009-01-01

    hCLCA2 is frequently downregulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines. Further, we find that p53 binds to consensus elements in the hCLCA2 promoter and mutation of these sites abolishes p53-responsiveness and induction by DNA damage. Adenoviral transduction of hCLCA2 into immortalized cells induces p53, CDK inhibitors p21 and p27, and cell cycle arrest by 24 hours, and caspase induction and apoptosis by 40 hours post-infection. Transduction of the malignant tumor cell line BT549 on the other hand does not induce p53, p21, or p27 but instead induces apoptosis directly and more rapidly. Knockout and knockdown studies indicate that growth inhibition and apoptosis are signaled via multiple pathways. Conversely, suppression of hCLCA2 by RNA interference enhances proliferation of MCF10A and reduces sensitivity to doxorubicin. Gene expression profiles indicate that hCLCA2 levels are strongly predictive of tumor cell sensitivity to doxorubicin and other chemotherapeutics. Because certain Cl- channels are proposed to promote apoptosis by reducing intracellular pH, we tested whether, and established that, hCLCA2 enhances Cl- current in breast cancer cells and reduces pH to ∼6.7. These results reveal hCLCA2 as a novel p53-inducible growth inhibitor, explain how its downregulation confers a survival advantage to tumor cells, and suggest both prognostic and therapeutic applications. PMID:19654313

  18. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage

    PubMed Central

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-01-01

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments. PMID:23235459

  19. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage.

    PubMed

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-12-13

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments.

  20. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia.

    PubMed

    Lin, Ke; Sherrington, Paul D; Dennis, Michael; Matrai, Zoltan; Cawley, John C; Pettitt, Andrew R

    2002-08-15

    Established adverse prognostic factors in chronic lymphocytic leukemia (CLL) include CD38 expression, relative lack of IgV(H) mutation, and defects of the TP53 gene. However, disruption of the p53 pathway can occur through mechanisms other than TP53 mutation, and we have recently developed a simple screening test that detects p53 dysfunction due to mutation of the genes encoding either p53 or ATM, a kinase that regulates p53. The present study was conducted to examine the predictive value of this test and to establish the relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation. CLL cells from 71 patients were examined for IgV(H) mutation, CD38 expression, and p53 dysfunction (detected as an impaired p53/p21 response to ionizing radiation). Survival data obtained from 69 patients were analyzed according to each of these parameters. Relative lack of IgV(H) mutation (less than 5%; n = 45), CD38 positivity (antigen expressed on more than 20% of malignant cells; n = 19), and p53 dysfunction (n = 19) were independently confirmed as adverse prognostic factors. Intriguingly, all p53-dysfunctional patients and all but one of the CD38(+) patients had less [corrected] than 5% IgV(H) mutation. Moreover, patients with p53 dysfunction and/or CD38 positivity (n = 31) accounted for the short survival of the less mutated group. These findings indicate that the poor outcome associated with having less than 5% IgV(H) mutation may be due to the overrepresentation of high-risk patients with p53 dysfunction and/or CD38 positivity within this group, and that CD38(-) patients with functionally intact p53 may have a prolonged survival regardless of the extent of IgV(H) mutation.

  1. Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells.

    PubMed

    Zhou, Zhihui; Yin, Yanlin; Chang, Qun; Sun, Guanqun; Lin, Jiahui; Dai, Yalei

    2017-04-01

    To reveal whether B-myb is involved in preventing senescence of vascular endothelial cells, and if so, to identify possible mechanisms for it. C57/BL6 male mice and primary human aortic endothelial cells (HAECs) were used. Bleomycin was applied to induce stress-related premature senescence. B-myb knockdown was achieved using an siRNA technique and cell senescence was assessed using the senescence-associated β-galactosidase (SA-β-gal) assay. Intracellular reactive oxygen species (ROS) production was analysed using an ROS assay kit and cell proliferation was evaluated using KFluor488 EdU kit. Capillary tube network formation was determined by Matrigel assay. Expressions of mRNA and protein levels were detected by real-time PCR and western blotting. B-myb expression significantly decreased, while p53 and p21 expressions increased in the aortas of aged mice. This expression pattern was also found in replicative senescent HAECs and senescent HAECs induced by bleomycin. B-myb knockdown resulted in upregulation of p22 phox , ROS accumulation and cell senescence of HAECs. Downregulation of B-myb significantly inhibited cell proliferation and capillary tube network formation and activated the p53/p21 signalling pathway. Blocking ROS production or inhibiting p53 activation remarkably attenuated SA-β-gal activity and delayed cell senescence induced by B-myb-silencing. Downregulation of B-myb induced senescence by upregulation of p22 phox and activation of the ROS/p53/p21 pathway, in our vascular endothelial cells, suggesting that B-myb may be a novel candidate for regulating cell senescence to protect against endothelial senescence-related cardiovascular diseases. © 2016 John Wiley & Sons Ltd.

  2. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappadone, C., E-mail: concettina.cappadone@unibo.it; Stefanelli, C.; Malucelli, E.

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of themore » cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.« less

  3. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    PubMed

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. p53 Specifically Binds Triplex DNA In Vitro and in Cells

    PubMed Central

    Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, Aneta; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, Martin L.; Subramaniam, Vinod; Bábková, Zuzana; Martínek, Tomáš; Lexa, Matej; Adámik, Matej

    2016-01-01

    Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed. PMID:27907175

  5. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Huang, Yong

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressedmore » cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.« less

  6. Differential association of S100A9, an inflammatory marker, and p53, a cell cycle marker, expression with epicardial adipocyte size in patients with cardiovascular disease.

    PubMed

    Agra, Rosa María; Fernández-Trasancos, Ángel; Sierra, Juan; González-Juanatey, José Ramón; Eiras, Sonia

    2014-10-01

    S100A9 (calgranulin B) has inflammatory and oxidative stress properties and was found to be associated with atherosclerosis and obesity. One of the proteins that can regulate S100A9 transcription is p53, which is involved in cell cycle, apoptosis and adipogenesis. Thus, it triggers adipocyte enlargement and finally obesity. Because epicardial adipose tissue (EAT) volume and thickness is related to coronary artery disease (CAD), we studied the gene expression of this pathway in patients with cardiovascular disease and its association with obesity. Adipocytes and stromal cells from EAT and subcutaneous adipose tissue (SAT) from 48 patients who underwent coronary artery bypass graft and/or valve replacement were obtained after collagenase digestion and differential centrifugation. The expression levels of the involved genes on adipogenesis and cell cycle like fatty acid-binding protein (FABP) 4, retinol-binding protein (RBP)4, p53 and S100A9 were determined by real-time polymerase chain reaction (PCR). Adipocyte diameter was measured by optical microscopy. We found that epicardial adipocytes expressed significantly lower levels of adipogenic genes (FABP4 and RBP4) and cell cycle-related genes (S100A9 and p53) than subcutaneous adipocytes. However, in obese patients, upregulation of adipogenic and cell cycle-related genes in subcutaneous and epicardial adipocytes, respectively, was observed. The enlargement of adipocyte size was related to FABP4, S100A9 and p53 expression levels in stromal cells. But only the p53 association was maintained in epicardial stromal cells from obese patients (p=0.003). The expression of p53, but not S100A9, in epicardial stromal cells is related to adipocyte enlargement in obese patients with cardiovascular disease. These findings suggest new mechanisms for understanding the relationship between epicardial fat thickness, obesity and cardiovascular disease.

  7. Down-regulation of Wild-type p53-induced Phosphatase 1 (Wip1) Plays a Critical Role in Regulating Several p53-dependent Functions in Premature Senescent Tumor Cells*

    PubMed Central

    Crescenzi, Elvira; Raia, Zelinda; Pacifico, Francesco; Mellone, Stefano; Moscato, Fortunato; Palumbo, Giuseppe; Leonardi, Antonio

    2013-01-01

    Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype. PMID:23612976

  8. Okadaic acid mediates p53 hyperphosphorylation and growth arrest in cells with wild-type p53 but increases aberrant mitoses in cells with non-functional p53.

    PubMed

    Milczarek, G J; Chen, W; Gupta, A; Martinez, J D; Bowden, G T

    1999-06-01

    The protein phosphatase inhibitor and tumor promoting agent okadaic acid (OA), has been shown previously to induce hyperphosphorylation of p53 protein, which in turn correlated with increased transactivation or apoptotic function. However, how the tumor promotion effects of OA relate to p53 tumor supressor function (or dysfunction) remain unclear. Rat embryonic fibroblasts harboring a temperature-sensitive mouse p53 transgene were treated with 50 nM doses of OA. At the wild-type permissive temperature this treatment resulted in: (i) the hyperphosphorylation of sites within tryptic peptides of the transactivation domain of p53; (ii) an increase in p53 affinity for a p21(waf1) promotor oligonucleotide; (iii) an increase in cellular steady state levels of p21(waf1) message; (iv) a G2/M cell cycle blockage in addition to the G1/S arrest previously associated with p53; and (v) no increased incidence of apoptosis. On the other hand, OA treatment at the mutated p53 permissive temperature resulted in a relatively high incidence of aberrant mitosis with no upregulation of p21(waf1) message. These results suggest that while wild-type p53 blocks the proliferative effects of OA through p21(waf1)-mediated growth arrest, cells with non-functional p53 cannot arrest and suffer relatively high levels of OA-mediated aberrant mitoses.

  9. p53-dependent p21-mediated growth arrest pre-empts and protects HCT116 cells from PUMA-mediated apoptosis induced by EGCG

    PubMed Central

    Thakur, Vijay S; Amin, A.R.M. Ruhul; Paul, Rajib K; Gupta, Kalpana; Hastak, Kedar; Agarwal, Mukesh K; Jackson, Mark W; Wald, David N; Mukhtar, Hasan; Agarwal, Munna L

    2010-01-01

    The tumor suppressor protein p53 plays a key role in regulation of negative cellular growth in response to EGCG. To further explore the role of p53 signaling and elucidate the molecular mechanism, we employed colon cancer HCT116 cell line and its derivatives in which a specific transcriptional target of p53 is knocked down by homologous recombination. Cells expressing p53 and p21 accumulate in G1 upon treatment with EGCG. In contrast, same cells lacking p21 traverse through the cell cycle and eventually undergo apoptosis as revealed by TUNEL staining. Treatment with EGCG leads to induction of p53, p21 and PUMA in p21 wild-type, and p53 and PUMA in p21−/− cells. Ablation of p53 by RNAi protects p21−/− cells, thus indicating a p53-dependent apoptosis by EGCG. Furthermore, analysis of cells lacking PUMA or Bax with or without p21 but with p53 reveals that all the cells expressing p53 and p21 survived after EGCG treatment. More interestingly, cells lacking both PUMA and p21 survived ECGC treatment whereas those lacking p21 and Bax did not. Taken together, our results present a novel concept wherein p21-dependent growth arrest pre-empts and protects cells from otherwise, in its absence, apoptosis which is mediated by activation of pro-apoptotic protein PUMA. Furthermore, we find that p53-dependent activation of PUMA in response to EGCG directly leads to apoptosis with out requiring Bax as is the case in response to agents that induce DNA damage. p21, thus can be used as a molecular switch for therapeutic intervention of colon cancer. PMID:20444544

  10. A study on the effect of Helicobacter pylori infection on p53 expression in gastric cancer and gastritis tissues.

    PubMed

    Salih, Barik A; Gucin, Zuhal; Bayyurt, Nizamettin

    2013-09-16

    Helicobacter pylori cause damage to gastric epithelial cells and alterations in the p53 gene that lead to cancer development. This study aimed to determine the correlation of p53 expression with H. pylori using immunohistochemistry, RFLP-PCR, and histopathology. Gastric biopsy samples from gastric cancer (GC) (n = 54) and gastritis (n = 31) patients were examined for histopathological changes and expression of p53 protein by immunohistochemistry. Immunohistochemical analysis of p53 protein expression in H. pylori-positive GC sections showed an average of 44.3% positive cells in tumors and 6.9% in normal tissues, as compared to 16.4% and 4.4% in H. pylori-negative sections. P53 expression showed significant association with H. pylori (P = 0.005), invasion depth (P = 0.029) and inflammation reaction (P = 0.008). In gastritis sections, no difference in the average p53 staining in H. pylori-positive or -negative sections was seen. PCR-RFLP results also showed no difference in genotype frequencies of p53 in H. pylori-positive or -negative gastritis sections. Histopathology study of H. pylori-positive GC sections showed that 97.2% were the intestinal type and 2.8% the diffuse type, while in H. pylori-negative sections 35.2% were the intestinal type and 64.8% the diffuse type. Biopsy sections from H. pylori-positive gastritis patients revealed more severe inflammation than those of H. pylori-negative patients. Our results show that H. pylori infection affects p53 expression in GC. The average p53 expression was significantly higher in tumor than in normal tissues. In gastritis sections p53 expression was significantly associated with H. pylori.

  11. p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Astrid; Schiffmann, Susanne; Birod, Kerstin

    2008-01-25

    S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53{sup wt}) or being p(HCT-116 p53{sup -/-}), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53{sup -/-} xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53{sup wt}more » cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53{sup wt} cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75{sup NTR}, p53 and Bax.« less

  12. Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis

    PubMed Central

    Kovács, Dávid; Igaz, Nóra; Keskeny, Csilla; Bélteky, Péter; Tóth, Tímea; Gáspár, Renáta; Madarász, Dániel; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M.; Kiricsi, Mónika

    2016-01-01

    Loss of function of the tumour suppressor p53 observed frequently in human cancers challenges the drug-induced apoptotic elimination of cancer cells from the body. This phenomenon is a major concern and provides much of the impetus for current attempts to develop a new generation of anticancer drugs capable of provoking apoptosis in a p53-independent manner. Since silver nanoparticles (AgNPs) possess unique cytotoxic features, we examined, whether their activity could be exploited to kill tumour suppressor-deficient cancer cells. Therefore, we investigated the effects of AgNPs on osteosarcoma cells of different p53 genetic backgrounds. As particle diameters might influence the molecular mechanisms leading to AgNP-induced cell death we applied 5 nm and 35 nm sized citrate-coated AgNPs. We found that both sized AgNPs targeted mitochondria and induced apoptosis in wild-type p53-containing U2Os and p53-deficient Saos-2 cells. According to our findings AgNPs are able to kill osteosarcoma cells independently from their actual p53 status and induce p53-independent cancer cell apoptosis. This feature renders AgNPs attractive candidates for novel chemotherapeutic approaches. PMID:27291325

  13. A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis

    PubMed Central

    Subramanian, M; Francis, P; Bilke, S; Li, XL; Hara, T; Lu, X; Jones, MF; Walker, RL; Zhu, Y; Pineda, M; Lee, C; Varanasi, L; Yang, Y; Martinez, LA; Luo, J; Ambs, S; Sharma, S; Wakefield, LM; Meltzer, PS; Lal, A

    2015-01-01

    Most p53 mutations in human cancers are missense mutations resulting in a full-length mutant p53 protein. Besides losing tumor suppressor activity, some hotspot p53 mutants gain oncogenic functions. This effect is mediated in part, through gene expression changes due to inhibition of p63 and p73 by mutant p53 at their target gene promoters. Here, we report that the tumor suppressor microRNA let-7i is downregulated by mutant p53 in multiple cell lines expressing endogenous mutant p53. In breast cancer patients, significantly decreased let-7i levels were associated with missense mutations in p53. Chromatin immunoprecipitation and promoter luciferase assays established let-7i as a transcriptional target of mutant p53 through p63. Introduction of let-7i to mutant p53 cells significantly inhibited migration, invasion and metastasis by repressing a network of oncogenes including E2F5, LIN28B, MYC and NRAS. Our findings demonstrate that repression of let-7i expression by mutant p53 has a key role in enhancing migration, invasion and metastasis. PMID:24662829

  14. CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo.

    PubMed

    He, Xingxing; Kong, Xinjuan; Yan, Junwei; Yan, Jingjun; Zhang, Yunan; Wu, Qian; Chang, Ying; Shang, Haitao; Dou, Qian; Song, Yuhu; Liu, Fang

    2015-03-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.

  15. Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells.

    PubMed

    Morita, Ken; Noura, Mina; Tokushige, Chieko; Maeda, Shintaro; Kiyose, Hiroki; Kashiwazaki, Gengo; Taniguchi, Junichi; Bando, Toshikazu; Yoshida, Kenichi; Ozaki, Toshifumi; Matsuo, Hidemasa; Ogawa, Seishi; Liu, Pu Paul; Nakahata, Tatsutoshi; Sugiyama, Hiroshi; Adachi, Souichi; Kamikubo, Yasuhiko

    2017-11-30

    Although runt-related transcription factor 1 (RUNX1) and its associating core binding factor-β (CBFB) play pivotal roles in leukemogenesis, and inhibition of RUNX1 has now been widely recognized as a novel strategy for anti-leukemic therapies, it has been elusive how leukemic cells could acquire the serious resistance against RUNX1-inhibition therapies and also whether CBFB could participate in this process. Here, we show evidence that p53 (TP53) and CBFB are sequentially up-regulated in response to RUNX1 depletion, and their mutual interaction causes the physiological resistance against chemotherapy for acute myeloid leukemia (AML) cells. Mechanistically, p53 induced by RUNX1 gene silencing directly binds to CBFB promoter and stimulates its transcription as well as its translation, which in turn acts as a platform for the stabilization of RUNX1, thereby creating a compensative RUNX1-p53-CBFB feedback loop. Indeed, AML cells derived from relapsed cases exhibited higher CBFB expression levels compared to those from primary AML cells at diagnosis, and these CBFB expressions were positively correlated to those of p53. Our present results underscore the importance of RUNX1-p53-CBFB regulatory loop in the development and/or maintenance of AML cells, which could be targeted at any sides of this triangle in strategizing anti-leukemia therapies.

  16. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition.

    PubMed

    Cordani, Marco; Oppici, Elisa; Dando, Ilaria; Butturini, Elena; Dalla Pozza, Elisa; Nadal-Serrano, Mercedes; Oliver, Jordi; Roca, Pilar; Mariotto, Sofia; Cellini, Barbara; Blandino, Giovanni; Palmieri, Marta; Di Agostino, Silvia; Donadelli, Massimo

    2016-08-01

    Mutations in TP53 gene play a pivotal role in tumorigenesis and cancer development. Here, we report that gain-of-function mutant p53 proteins inhibit the autophagic pathway favoring antiapoptotic effects as well as proliferation of pancreas and breast cancer cells. We found that mutant p53 significantly counteracts the formation of autophagic vesicles and their fusion with lysosomes throughout the repression of some key autophagy-related proteins and enzymes as BECN1 (and P-BECN1), DRAM1, ATG12, SESN1/2 and P-AMPK with the concomitant stimulation of mTOR signaling. As a paradigm of this mechanism, we show that atg12 gene repression was mediated by the recruitment of the p50 NF-κB/mutant p53 protein complex onto the atg12 promoter. Either mutant p53 or p50 NF-κB depletion downregulates atg12 gene expression. We further correlated the low expression levels of autophagic genes (atg12, becn1, sesn1, and dram1) with a reduced relapse free survival (RFS) and distant metastasis free survival (DMFS) of breast cancer patients carrying TP53 gene mutations conferring a prognostic value to this mutant p53-and autophagy-related signature. Interestingly, the mutant p53-driven mTOR stimulation sensitized cancer cells to the treatment with the mTOR inhibitor everolimus. All these results reveal a novel mechanism through which mutant p53 proteins promote cancer cell proliferation with the concomitant inhibition of autophagy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Canine gastric carcinoma: immunohistochemical expression of cell cycle proteins (p53, p21, and p16) and heat shock proteins (Hsp27 and Hsp70).

    PubMed

    Carrasco, V; Canfrán, S; Rodríguez-Franco, F; Benito, A; Sáinz, A; Rodríguez-Bertos, A

    2011-01-01

    Immunohistochemical staining for cell cycle proteins and heat shock proteins was performed on 17 canine gastric carcinomas. The immunoexpression of p53, p21, p16, Hsp27, and Hsp70 was investigated. A study was conducted to determine the histological type and parameters related to tumor malignancy. Possible associations and trends were assessed between the immunoexpression of each protein and tumor type as well as specific parameters of malignancy. High intratumor frequency of cellular p53 immunostaining was observed (61.96% average), but lower frequencies of p21 and p16 expression were present (34.65% and 10.41%, respectively). The p53 overexpression was associated with tumor infiltration (P = .0258). Expression of p21 was lower in undifferentiated carcinomas, and the loss of expression was associated with histopathological parameters characteristic of a poor prognosis such as lymphatic vessel invasion (P = .0258). The lack of p16 immunoreactivity was related to histopathological characteristics of malignancy such as the presence of evident and multiple nucleoli (P = .0475). In contrast, deep tumor infiltration was observed in those carcinomas with a high p16 index (P = .0475). Hsp70 appeared to be overexpressed in all gastric neoplasms included in this study. This is in contrast to Hsp27, because a group of tumors showed complete lack of Hsp27 immunoexpression, whereas the others displayed extensive Hsp27 immunostaining. The differences in Hsp27 did not correlate with any of the histopathological parameters, but Hsp27 immunoexpression was higher in the undifferentiated carcinoma. No significant differences in the expression of the proteins were found in canine gastric carcinomas according to their histological type. These findings may be useful for establishing a prognosis for canine gastric carcinoma.

  18. Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1, a novel anticancer small-molecule

    PubMed Central

    Soares, Joana; Raimundo, Liliana; Pereira, Nuno A.L.; Monteiro, Ângelo; Gomes, Sara; Bessa, Cláudia; Pereira, Clara; Queiroz, Glória; Bisio, Alessandra; Fernandes, João; Gomes, Célia; Reis, Flávio; Gonçalves, Jorge; Inga, Alberto; Santos, Maria M.M.; Saraiva, Lucília

    2016-01-01

    Restoration of the p53 pathway, namely by reactivation of mutant (mut) p53, represents a valuable anticancer strategy. Herein, we report the identification of the enantiopure tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a novel reactivator of wild-type (wt) and mut p53, using a yeast-based screening strategy. SLMP53-1 has a p53-dependent anti-proliferative activity in human wt and mut p53R280K-expressing tumor cells. Additionally, SLMP53-1 enhances p53 transcriptional activity and restores wt-like DNA binding ability to mut p53R280K. In wt/mut p53-expressing tumor cells, SLMP53-1 triggers p53 transcription-dependent and mitochondrial apoptotic pathways involving BAX, and wt/mut p53 mitochondrial translocation. SLMP53-1 inhibits the migration of wt/mut p53-expressing tumor cells, and it shows promising p53-dependent synergistic effects with conventional chemotherapeutics. In xenograft mice models, SLMP53-1 inhibits the growth of wt/mut p53-expressing tumors, but not of p53-null tumors, without apparent toxicity. Collectively, besides the potential use of SLMP53-1 as anticancer drug, the tryptophanol-derived oxazoloisoindolinone scaffold represents a promissing starting point for the development of effective p53-reactivating drugs. PMID:26735173

  19. Pure versus combined Merkel cell carcinomas: immunohistochemical evaluation of cellular proteins (p53, Bcl-2, and c-kit) reveals significant overexpression of p53 in combined tumors.

    PubMed

    Lai, Jonathan H; Fleming, Kirsten E; Ly, Thai Yen; Pasternak, Sylvia; Godlewski, Marek; Doucette, Steve; Walsh, Noreen M

    2015-09-01

    Merkel cell polyomavirus is of oncogenic significance in approximately 80% of Merkel cell carcinomas. Morphological subcategories of the tumor differ in regard to viral status, the rare combined type being uniformly virus negative and the predominant pure type being mainly virus positive. Indications that different biological subsets of the tumor exist led us to explore this diversity. In an Eastern Canadian cohort of cases (75 patients; mean age, 76 years [range, 43-91]; male/female ratio, 43:32; 51 [68%] pure and 24 [34%] combined tumors), we semiquantitatively compared the immunohistochemical expression of 3 cellular proteins (p53, Bcl-2, and c-kit) in pure versus combined groups. Viral status was known in a subset of cases. The significant overexpression of p53 in the combined group (mean [SD], 153.8 [117.8] versus 121.6 [77.9]; P = .01) and the increased epidermal expression of this protein (p53 patches) in the same group lend credence to a primary etiologic role for sun damage in these cases. Expression of Bcl-2 and c-kit did not differ significantly between the 2 morphological groups. A relative increase in c-kit expression was significantly associated with a virus-negative status (median [interquartile range], 100 [60-115] versus 70 [0-100]; P = .03). Emerging data reveal divergent biological pathways in Merkel cell carcinoma, each with a characteristic immunohistochemical profile. Virus-positive tumors (all pure) exhibit high retinoblastoma protein and low p53 expression, whereas virus-negative cases (few pure and all combined) show high p53 and relatively high c-kit expression. The potential biological implications of this dichotomy call for consistent stratification of these tumors in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The p53 inhibitor, pifithrin-{alpha}, suppresses self-renewal of embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelalim, Essam Mohamed, E-mail: essam_abdelalim@yahoo.com; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522; Tooyama, Ikuo

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We determine the role of p53 in ES cells under unstressful conditions. Black-Right-Pointing-Pointer PFT-{alpha} suppresses ES cell proliferation. Black-Right-Pointing-Pointer PFT-{alpha} induces ES cell cycle arrest. Black-Right-Pointing-Pointer PFT-{alpha} downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-{alpha}, an inhibitor ofmore » p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-{alpha} resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-{alpha} caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.« less

  1. TRIM65 negatively regulates p53 through ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Ma, Chengyuan; Zhou, Tong

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediatedmore » degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.« less

  2. p53-competent cells and p53-deficient cells display different susceptibility to oxygen functionalized graphene cytotoxicity and genotoxicity.

    PubMed

    Petibone, Dayton M; Mustafa, Thikra; Bourdo, Shawn E; Lafont, Andersen; Ding, Wei; Karmakar, Alokita; Nima, Zeid A; Watanabe, Fumiya; Casciano, Daniel; Morris, Suzanne M; Dobrovolsky, Vasily N; Biris, Alexandru S

    2017-11-01

    Due to the distinctive physical, electrical, and chemical properties of graphene nanomaterials, numerous efforts pursuing graphene-based biomedical and industrial applications are underway. Oxidation of pristine graphene surfaces mitigates its otherwise hydrophobic characteristic thereby improving its biocompatibility and functionality. Yet, the potential widespread use of oxidized graphene derivatives raises concern about adverse impacts on human health. The p53 tumor suppressor protein maintains cellular and genetic stability after toxic exposures. Here, we show that p53 functional status correlates with oxygen functionalized graphene (f-G) cytotoxicity and genotoxicity in vitro. The f-G exposed p53-competent cells, but not p53-deficient cells, initiated G 0 /G 1 phase cell cycle arrest, suppressed reactive oxygen species, and entered apoptosis. There was p53-dependent f-G genotoxicity evident as increased structural chromosome damage, but not increased gene mutation or chromatin loss. In conclusion, the cytotoxic and genotoxic potential for f-G in exposed cells was dependent on the p53 functional status. These findings have broad implications for the safe and effective implementation of oxidized graphene derivatives into biomedical and industrial applications. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  3. Immunohistochemical analysis of P53 protein in odontogenic cysts

    PubMed Central

    Gaballah, Essam Taher M.A.; Tawfik, Mohamed A.

    2010-01-01

    The p53 is a well-known tumor suppressor gene, the mutations of which are closely related to the decreased differentiation of cells. Findings of studies on immunohistochemical P53 expression in odontogenic cysts are controversial. The present study was carried-out to investigate the immunohistochemical expression of P53 protein in odontogenic cysts. Thirty paraffin blocks of diagnosed odontogenic cysts were processed to determine the immunohistochemical expression of P53 protein. Nine of the 11 odontogenic keratocysts (81.8%) expressed P53, one of three dentigerous cyst cases expressed P53, while none of the 16 radicular cysts expressed P53 protein. The findings of the present work supported the reclassification of OKC as keratocystic odontogenic tumor. PMID:23960493

  4. The prognostic implication of the expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in primary locally advanced oral squamous cell carcinoma cases: a tissue microarray study.

    PubMed

    Solomon, Monica Charlotte; Vidyasagar, M S; Fernandes, Donald; Guddattu, Vasudev; Mathew, Mary; Shergill, Ankur Kaur; Carnelio, Sunitha; Chandrashekar, Chetana

    2016-12-01

    Oral squamous cell carcinomas comprise a heterogeneous tumor cell population with varied molecular characteristics, which makes prognostication of these tumors a complex and challenging issue. Thus, molecular profiling of these tumors is advantageous for an accurate prognostication and treatment planning. This is a retrospective study on a cohort of primary locally advanced oral squamous cell carcinomas (n = 178) of an Indian rural population. The expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in a cohort of primary locally advanced oral squamous cell carcinomas was evaluated. A potential biomarker that can predict the tumor response to treatment was identified. Formalin-fixed paraffin-embedded tumor blocks of (n = 178) of histopathologically diagnosed cases of locally advanced oral squamous cell carcinomas were selected. Tissue microarray blocks were constructed with 2 cores of 2 mm diameter from each tumor block. Four-micron-thick sections were cut from these tissue microarray blocks. These tissue microarray sections were immunohistochemically stained for EGFR, p53, Bcl-2, cyclin D1 and p16. In this cohort, EGFR was the most frequently expressed 150/178 (84%) biomarker of the cases. Kaplan-Meier analysis showed a significant association (p = 0.038) between expression of p53 and a poor prognosis. A Poisson regression analysis showed that tumors that expressed p53 had a two times greater chance of recurrence (unadjusted IRR-95% CI 2.08 (1.03, 4.5), adjusted IRR-2.29 (1.08, 4.8) compared with the tumors that did not express this biomarker. Molecular profiling of oral squamous cell carcinomas will enable us to categorize our patients into more realistic risk groups. With biologically guided tumor characterization, personalized treatment protocols can be designed for individual patients, which will improve the quality of life of these patients.

  5. Epigallocatechin-3-Gallate Prevents Autoimmune-Associated Down-Regulation of p21 in Salivary Gland Cells Through a p53-Independent Pathway

    PubMed Central

    Dickinson, Douglas; Yu, Hongfang; Ohno, Seiji; Thomas, Cristina; DeRossi, Scott; Ma, Yat-Ho; Yates, Nicole; Hahn, Emily; Bisch, Frederick; Yamamoto, Tetsuya; Hsu, Stephen

    2015-01-01

    The submandibular salivary glands of non-obese diabetic (NOD) mice, a model for Sjogren’s syndrome and type-1 diabetes, show an elevated level of proliferating cell nuclear antigen (PCNA), a protein involved in cell proliferation and repair of DNA damage. We reported previously that epigallocatechin-3-gallate (EGCG), the most abundant green tea catechin, normalizes the PCNA level. PCNA’s activity can be regulated by the cyclin-dependent kinase inhibitor p21, which is also important for epithelial cell differentiation. In turn, expression of p21 and PCNA are partially regulated by Rb phosphorylation levels. EGCG was found to modulate p21 expression in epithelial cells, suggesting that EGCG-induced p21 could be associated with down-regulation of PCNA in vivo. The current study examined the protein levels of p21 and p53 (which can up-regulate p21) in NOD mice fed with either water or EGCG, and the effect of EGCG on p21 and p53 in cell line models with either normal or defective Rb. In NOD mice, the p21 level was low, and EGCG normalized it. In contrast to HSG cells with functional Rb, negligible expression of p21 in NS-SV-AC cells that lack Rb was not altered by EGCG treatment. Inhibition of p53 by siRNA demonstrated that p21 and p53 were induced independently in HSG cells by a physiological concentration range of EGCG, suggesting p53 could be an important but not conditional factor associated with p21 expression. In conclusion, PCNA and p21 levels are altered inversely in the NOD model for SS and in HSG cells, and warrant further study as candidate new markers for salivary dysfunction associated with xerostomia. Induction of p21 by EGCG could provide clinically useful normalization of salivary glands by promoting differentiation and reducing PCNA levels. PMID:24329914

  6. Quercetin Enhances the Antitumor Activity of Trichostatin A through Upregulation of p53 Protein Expression In Vitro and In Vivo

    PubMed Central

    Chan, Shu-Ting; Yang, Nae-Cherng; Huang, Chin-Shiu; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2013-01-01

    This study investigated the effects of quercetin on the anti-tumor effect of trichostatin A (TSA), a novel anticancer drug, in vitro and in vivo and the possible mechanisms of these effects in human lung cancer cells. We first showed that quercetin (5 µM) significantly increased the growth arrest and apoptosis in A549 cells (expressing wild-type p53) induced by 25 ng/mL of (82.5 nM) TSA at 48 h by about 25% and 101%, respectively. However, such enhancing effects of quercetin (5 µM) were not significant in TSA-exposed H1299 cells (a p53 null mutant) or were much lower than in A549 cells. In addition, quercetin significantly increased TSA-induced p53 expression in A549 cells. Transfection of p53 siRNA into A549 cells significantly but not completely diminished the enhancing effects of quercetin on TSA-induced apoptosis. Furthermore, we demonstrated that quercetin enhanced TSA-induced apoptosis through the mitochondrial pathway. Transfection of p53 siRNA abolished such enhancing effects of quercetin. However, quercetin increased the acetylation of histones H3 and H4 induced by TSA in A549 cells, even with p53 siRNA transfection as well as in H1299 cells. In a xenograft mouse model of lung cancer, quercetin enhanced the antitumor effect of TSA. Tumors from mice treated with TSA in combination with quercetin had higher p53 and apoptosis levels than did those from control and TSA-treated mice. These data indicate that regulation of the expression of p53 by quercetin plays an important role in enhancing TSA-induced apoptosis in A549 cells. However, p53-independent mechanisms may also contribute to the enhancing effect of quercetin. PMID:23342112

  7. Transcriptional Inhibition of the Human Papilloma Virus Reactivates Tumor Suppressor p53 in Cervical Carcinoma Cells

    PubMed Central

    Kochetkov, D. V.; Ilyinskaya, G. V.; Komarov, P. G.; Strom, E.; Agapova, L. S.; Ivanov, A. V.; Budanov, A. V.; Frolova, E. I.; Chumakov, P. M.

    2009-01-01

    Inactivation of tumor suppressor p53 accompanies the majority of human malignancies. Restoration of p53 function causes death of tumor cells and is potentially suitable for gene therapy of cancer. In cervical carcinoma, human papilloma virus (HPV) E6 facilitates proteasomal degradation of p53. Hence, a possible approach to p53 reactivation is the use of small molecules suppressing the function of viral proteins. HeLa cervical carcinoma cells (HPV-18) with a reporter construct containing the b-galactosidase gene under the control of a p53-responsive promoter were used as a test system to screen a library of small molecules for restoration of the transcriptional activity of p53. The effect of the two most active compounds was studied with cell lines differing in the state of p53-dependent signaling pathways. The compounds each specifically activated p53 in cells expressing HPV-18 and, to a lesser extent, HPV-16 and exerted no effect on control p53-negative cells or cells with the intact p53-dependent pathways. Activation of p53 in cervical carcinoma cells was accompanied by induction of p53-dependent CDKN1 (p21), inhibition of cell proliferation, and induction of apoptosis. In addition, the two compounds dramatically decreased transcription of the HPV genome, which was assumed to cause p53 reactivation. The compounds were low-toxic for normal cells and can be considered as prototypes of new anticancer drugs. PMID:17685229

  8. Inactivation of p53 by Human T-Cell Lymphotropic Virus Type 1 Tax Requires Activation of the NF-κB Pathway and Is Dependent on p53 Phosphorylation

    PubMed Central

    Pise-Masison, Cynthia A.; Mahieux, Renaud; Jiang, Hua; Ashcroft, Margaret; Radonovich, Michael; Duvall, Janet; Guillerm, Claire; Brady, John N.

    2000-01-01

    p53 plays a key role in guarding cells against DNA damage and transformation. We previously demonstrated that the human T-cell lymphotropic virus type 1 (HTLV-1) Tax can inactivate p53 transactivation function in lymphocytes. The present study demonstrates that in T cells, Tax-induced p53 inactivation is dependent upon NF-κB activation. Analysis of Tax mutants demonstrated that Tax inactivation of p53 function correlates with the ability of Tax to induce NF-κB but not p300 binding or CREB transactivation. The Tax-induced p53 inactivation can be overcome by overexpression of a dominant IκB mutant. Tax-NF-κB-induced p53 inactivation is not due to p300 squelching, since overexpression of p300 does not recover p53 activity in the presence of Tax. Further, using wild-type and p65 knockout mouse embryo fibroblasts (MEFs), we demonstrate that the p65 subunit of NF-κB is critical for Tax-induced p53 inactivation. While Tax can inactivate endogenous p53 function in wild-type MEFs, it fails to inactivate p53 function in p65 knockout MEFs. Importantly, Tax-induced p53 inactivation can be restored by expression of p65 in the knockout MEFs. Finally, we present evidence that phosphorylation of serines 15 and 392 correlates with inactivation of p53 by Tax in T cells. This study provides evidence that the divergent NF-κB proliferative and p53 cell cycle arrest pathways may be cross-regulated at several levels, including posttranslational modification of p53. PMID:10779327

  9. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  10. The Role of JMY in p53 Regulation.

    PubMed

    Adighibe, Omanma; Pezzella, Francesco

    2018-05-31

    Following the event of DNA damage, the level of tumour suppressor protein p53 increases inducing either cell cycle arrest or apoptosis. Junctional Mediating and Regulating Y protein (JMY) is a transcription co-factor involved in p53 regulation. In event of DNA damage, JMY levels also upregulate in the nucleus where JMY forms a co-activator complex with p300/CREB-binding protein (p300/CBP), Apoptosis-stimulating protein of p53 (ASPP) and Stress responsive activator of p53 (Strap). This co-activator complex then binds to and increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle arrest. This then suggests that the increase of JMY levels due to DNA damage putatively "directs" p53 activity toward triggering apoptosis. JMY expression is also linked to increased cell motility as it: (1) downregulates the expression of adhesion molecules of the Cadherin family and (2) induces actin nucleation, making cells less adhesive and more mobile, favouring metastasis. All these characteristics taken together imply that JMY possesses both tumour suppressive and tumour metastasis promoting capabilities.

  11. miR-338-3p confers 5-fluorouracil resistance in p53 mutant colon cancer cells by targeting the mammalian target of rapamycin.

    PubMed

    Han, Jia; Li, Jie; Tang, Kaijie; Zhang, Huahua; Guo, Bo; Hou, Ni; Huang, Chen

    2017-11-15

    Evidence demonstrate that p53 mutations and microRNAs (miRs) are important components of 5-FU resistance in colorectal cancer (CRC). miR-338-3p has been reported associated with cancer prognosis. However whether or not it influences chemotherapy sensitivity and the underlying mechanisms have not been elucidated. Here, three types of human colon cancer cell lines, HT29 (mutant p53), HCT116 (wild-type p53), and HCT116 p53 -/- (deficient p53), were treated with 5-FU. We showed that expression of miR-338-3p was correlated with apoptosis and 5-FU resistance in colon cancer cells. Ectopic expression of miR-338-3p conferred resistance to 5-FU in HCT116 cells. Further experiments indicated that miR-338-3p mediated 5-FU resistance through down-regulation of mTOR expression. Moreover, inhibition of miR-338-3p in HT29 and HCT116 p53 -/- cells increased their sensitivity to 5-FU treatment. Furthermore, we detected autophagy changes in our experiment because mTOR was known prominently regulating autophagy and the competition between autophagy and apoptosis in response to 5-FU was a mechanism influencing 5-FU sensitivity. Our results reveal a critical and novel role of miR-338-3p in the correlation of 5-FU resistance with p53 status. Moreover, the miR-338-3p inhibitor has the potential to overcome 5-FU resistance in p53 mutant colon cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Adenovirally mediated p53 overexpression diversely influence the cell cycle of HEp-2 and CAL 27 cell lines upon cisplatin and methotrexate treatment.

    PubMed

    Kraljević Pavelić, Sandra; Marjanović, Marko; Poznić, Miroslav; Kralj, Marijeta

    2009-12-01

    p53 gene plays a crucial role in the response to therapy. Since it is inactivated in the majority of human cancers, it is strongly believed that the p53 mutations confer resistance to therapeutics. In this paper we analyzed the influence of two mechanistically diverse antitumor agents--cisplatin and methotrexate on the proliferation and cell cycle of two head and neck squamous cancer cell lines HEp-2 (wild type p53 gene, but HPV 18/E6-inactivated protein) and CAL 27 (mutated p53 gene), along with the influence of adenovirally mediated p53 overexpression in modulation of cisplatin and methoterexate effects, whereby subtoxic vector/compound concentrations were employed. p53 gene was introduced into tumor cells using adenoviral vector (AdCMV-p53). The cell cycle perturbations were measured by two parameter flow cytometry. The expression of p53, p21(WAF1/CIP1) and cyclin B1 proteins was examined using immunocytochemistry and western blot methods. In CAL 27 cells overexpression of p53 completely abrogated high S phase content observed in methotrexate-treated cells into a G1 and slight G2 arrest, while it sustained G2 arrest of the cells treated with cisplatin, along with the reduction of DNA synthesis and cyclin B1 expression. On the other hand, in HEp-2 cell line p53 overexpression slightly slowed down the progression through S phase in cells treated with methotrexate, decreased the cyclin B1 expression only after 24 h, and failed to sustain the G2 arrest after treatment with cisplatin alone. Instead, it increased the population of S phase cells that were not actively synthesizing DNA, sustained cyclin B1 expression and allowed the G2 cells to progress through mitosis. This study demonstrates that adenovirally mediated p53 overexpression at sub-cytotoxic levels enhanced the activity of low doses of cisplatin and methotrexate in HEp-2 and CAL 27 cells through changes in the cell cycle. However, the mechanisms of these effects differ depending on the genetic context and

  13. p53 Mediates Vast Gene Expression Changes That Contribute to Poor Chemotherapeutic Response in a Mouse Model of Breast Cancer.

    PubMed

    Tonnessen-Murray, Crystal; Ungerleider, Nathan A; Rao, Sonia G; Wasylishen, Amanda R; Frey, Wesley D; Jackson, James G

    2018-05-28

    p53 is a transcription factor that regulates expression of genes involved in cell cycle arrest, senescence, and apoptosis. TP53 harbors mutations that inactivate its transcriptional activity in roughly 30% of breast cancers, and these tumors are much more likely to undergo a pathological complete response to chemotherapy. Thus, the gene expression program activated by wild-type p53 contributes to a poor response. We used an in vivo genetic model system to comprehensively define the p53- and p21-dependent genes and pathways modulated in tumors following doxorubicin treatment. We identified genes differentially expressed in spontaneous mammary tumors harvested from treated MMTV-Wnt1 mice that respond poorly (Trp53+/+) or favorably (Trp53-null) and those that lack the critical senescence/arrest p53 target gene Cdkn1a. Trp53 wild-type tumors differentially expressed nearly 10-fold more genes than Trp53-null tumors after treatment. Pathway analyses showed that genes involved in cell cycle, senescence, and inflammation were enriched in treated Trp53 wild-type tumors; however, no genes/pathways were identified that adequately explain the superior cell death/tumor regression observed in Trp53-null tumors. Cdkn1a-null tumors that retained arrest capacity (responded poorly) and those that proliferated (responded well) after treatment had remarkably different gene regulation. For instance, Cdkn1a-null tumors that arrested upregulated Cdkn2a (p16), suggesting an alternative, p21-independent route to arrest. Live animal imaging of longitudinal gene expression of a senescence/inflammation gene reporter in Trp53+/+ tumors showed induction during and after chemotherapy treatment, while tumors were arrested, but expression rapidly diminished immediately upon relapse. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.

    PubMed

    Pearson, Bret J; Sánchez Alvarado, Alejandro

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal.

  15. Suppression of HPV E6 and E7 expression by BAF53 depletion in cervical cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kiwon; Lee, Ah-Young; Kwon, Yunhee Kim

    Highlights: {yields} Integration of HPV into host genome critical for activation of E6 and E7 oncogenes. {yields} BAF53 is essential for higher-order chromatin structure. {yields} BAF53 knockdown suppresses E6 and E7 from HPV integrants, but not from episomal HPVs. {yields} BAF53 knockdown decreases H3K9Ac and H4K12Ac on P105 promoter of integrated HPV 18. {yields} BAF53 knockdown restores the p53-dependent signaling pathway in HeLa and SiHa cells. -- Abstract: Deregulation of the expression of human papillomavirus (HPV) oncogenes E6 and E7 plays a pivotal role in cervical carcinogenesis because the E6 and E7 proteins neutralize p53 and Rb tumor suppressor pathways,more » respectively. In approximately 90% of all cervical carcinomas, HPVs are found to be integrated into the host genome. Following integration, the core-enhancer element and P105 promoter that control expression of E6 and E7 adopt a chromatin structure that is different from that of episomal HPV, and this has been proposed to contribute to activation of E6 and E7 expression. However, the molecular basis underlying this chromatin structural change remains unknown. Previously, BAF53 has been shown to be essential for the integrity of higher-order chromatin structure and interchromosomal interactions. Here, we examined whether BAF53 is required for activated expression of E6 and E7 genes. We found that BAF53 knockdown led to suppression of expression of E6 and E7 genes from HPV integrants in cervical carcinoma cell lines HeLa and SiHa. Conversely, expression of transiently transfected HPV18-LCR-Luciferase was not suppressed by BAF53 knockdown. The level of the active histone marks H3K9Ac and H4K12Ac on the P105 promoter of integrated HPV 18 was decreased in BAF53 knockdown cells. BAF53 knockdown restored the p53-dependent signaling pathway in HeLa and SiHa cells. These results suggest that activated expression of the E6 and E7 genes of integrated HPV is dependent on BAF53-dependent higher

  16. AAVPG: A vigilant vector where transgene expression is induced by p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 foldmore » increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.« less

  17. Mechanisms involved in p53 downregulation by leptin in trophoblastic cells.

    PubMed

    Toro, Ayelén Rayen; Pérez-Pérez, Antonio; Corrales Gutiérrez, Isabel; Sánchez-Margalet, Víctor; Varone, Cecilia Laura

    2015-11-01

    Leptin, a 16-kDa polypeptide hormone, is produced by the adipocyte and can also be synthesized by placenta. We previously demonstrated that leptin promotes proliferation and survival in placenta, in part mediated by the p53 pathway. In this work, we investigated the mechanisms involved in leptin down-regulation of p53 level. The human first trimester cytotrophoblastic Swan-71 cell line and human placental explants at term were used. In order to study the late phase of apoptosis, triggered by serum deprivation, experiments of DNA fragmentation were carried out. Exogenous leptin added to human placental explants, showed a decrease on DNA ladder formation and MAPK pathway is involved in this leptin effect. We also found that under serum deprivation condition, leptin decreases p53 levels and the inhibitory leptin effect is lost when cells were pretreated with 50 μM PD98059 or 10 μM LY29004; or were transfected with dominant negative mutants of intermediates of these pathways, suggesting that MAPK and PI3K signaling pathways are necessaries for leptin action. Additionally, leptin diminished Ser-46 p53 phosphorylation and this effect in placental explants was mediated by the activation of MAPK and PI3K pathways. Finally, in order to assess leptin effect on p53 half-life experiments with cycloheximide were performed and MDM-2 expression was analyzed. Leptin diminished p53 half-life and up-regulated MDM-2 expression. In summary, we provided evidence suggesting that leptin anti-apoptotic effect is mediated by MAPK and PI3K pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. PAF53 is essential in mammalian cells: CRISPR/Cas9 fails to eliminate PAF53 expression.

    PubMed

    Rothblum, Lawrence I; Rothblum, Katrina; Chang, Eugenie

    2017-05-15

    When mammalian cells are nutrient and/or growth factor deprived, exposed to inhibitors of protein synthesis, stressed by heat shock or grown to confluence, rDNA transcription is essentially shut off. Various mechanisms are available to accomplish this downshift in ribosome biogenesis. Muramatsu's laboratory (Hanada et al., 1996) first demonstrated that mammalian PAF53 was essential for specific rDNA transcription and that PAF53 levels were regulated in response to growth factors. While S. cerevisae A49, the homologue of vertebrate PAF53, is not essential for viability (Liljelund et al., 1992), deletion of yA49 results in colonies that grow at 6% of the wild type rate at 25°C. Experiments described by Wang et al. (2015) identified PAF53 as a gene "essential for optimal proliferation". However, they did not discriminate genes essential for viability. Hence, in order to resolve this question, we designed a series of experiments to determine if PAF53 was essential for cell survival. We set out to delete the gene product from mammalian cells using CRISPR/CAS9 technology. Human 293 cells were transfected with lentiCRISPR v2 carrying genes for various sgRNA that targeted PAF53. In some experiments, the cells were cotransfected in parallel with plasmids encoding FLAG-tagged mouse PAF53. After treating the transfected cells with puromycin (to select for the lentiCRISPR backbone), cells were cloned and analyzed by western blots for PAF53 expression. Genomic DNA was amplified across the "CRISPRd" exon, cloned and sequenced to identify mutated PAF53 genes. We obtained cell lines in which the endogenous PAF53 gene was "knocked out" only when we rescued with FLAG-PAF53. DNA sequencing demonstrated that in the absence of ectopic PAF53 expression, cells demonstrated unique means of surviving; including recombination or the utilization of alternative reading frames. We never observed a clone in which one PAF53 gene is expressed, unless there was also ectopic expression In the

  19. Histone deacetylase inhibitors prevent p53-dependent and p53-independent Bax-mediated neuronal apoptosis through two distinct mechanisms.

    PubMed

    Uo, Takuma; Veenstra, Timothy D; Morrison, Richard S

    2009-03-04

    Pharmacological manipulation of protein acetylation levels by histone deacetylase (HDAC) inhibitors represents a novel therapeutic strategy to treat neurodegeneration as well as cancer. However, the molecular mechanisms that determine how HDAC inhibition exerts a protective effect in neurons as opposed to a cytotoxic action in tumor cells has not been elucidated. We addressed this issue in cultured postnatal mouse cortical neurons whose p53-dependent and p53-independent intrinsic apoptotic programs require the proapoptotic multidomain protein, Bax. Despite promoting nuclear p53 accumulation, Class I/II HDAC inhibitors (HDACIs) protected neurons from p53-dependent cell death induced by camptothecin, etoposide, heterologous p53 expression or the MDM2 inhibitor, nutlin-3a. HDACIs suppressed p53-dependent PUMA expression, a critical signaling intermediate linking p53 to Bax activation, thus preventing postmitochondrial events including cleavage of caspase-9 and caspase-3. In human SH-SY5Y neuroblastoma cells, however, HDACIs were not able to prevent p53-dependent cell death. Moreover, HDACIs also prevented caspase-3 cleavage in postnatal cortical neurons treated with staurosporine, 3-nitropropionic acid and a Bcl-2 inhibitor, all of which require the presence of Bax but not p53 to promote apoptosis. Although these three toxic agents displayed a requirement for Bax, they did not promote PUMA induction. These results demonstrate that HDACIs block Bax-dependent cell death by two distinct mechanisms to prevent neuronal apoptosis, thus identifying for the first time a defined molecular target for their neuroprotective actions.

  20. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de; Fiedler, Vanessa; Memmel, Simon

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut),more » U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.« less

  1. Transcriptional repression of epithelial cell adhesion molecule (EpCAM) contributes to p53 control of breast cancer invasion

    PubMed Central

    Sankpal, NV; Willman, MW; Fleming, TP; Mayfield, J; Gillanders, WE

    2014-01-01

    p53 is a tumor suppressor gene with well-characterized roles in cell cycle regulation, apoptosis and the maintenance of genome stability. Recent evidence suggests that p53 may also contribute to the regulation of migration and invasion. Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that is overexpressed in the majority of human epithelial carcinomas, including breast and colorectal carcinomas. We demonstrate by chromatin immunoprecipitation assays that p53 interacts with a candidate p53 binding site within the EpCAM gene. p53-mediated transcriptional repression of EpCAM was confirmed in gain-of-function, and loss-of-function experimental systems. Induction of wildtype p53 was associated with a significant dose-dependent decrease in EpCAM expression; conversely, specific ablation of p53 was associated with a significant increase in EpCAM expression. At the functional level, specific ablation of p53 expression is associated with increased breast cancer invasion, and this effect is abrogated by concomitant specific ablation of EpCAM expression. Taken together, these biochemical and functional data are the first demonstration that (1) wildtype p53 protein binds to a response element within the EpCAM gene and negatively regulates EpCAM expression, and (2) transcriptional repression of EpCAM contributes to p53 control of breast cancer invasion. PMID:19141643

  2. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected].

    PubMed

    Polato, Federica; Rusconi, Paolo; Zangrossi, Stefano; Morelli, Federica; Boeri, Mattia; Musi, Alberto; Marchini, Sergio; Castiglioni, Vittoria; Scanziani, Eugenio; Torri, Valter; Broggini, Massimo

    2014-04-01

    p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.

  3. p53 downregulates the Fanconi anaemia DNA repair pathway.

    PubMed

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-04-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.

  4. Aciculatin Induces p53-Dependent Apoptosis via MDM2 Depletion in Human Cancer Cells In Vitro and In Vivo

    PubMed Central

    Lai, Chin-Yu; Tsai, An-Chi; Chen, Mei-Chuan; Chang, Li-Hsun; Sun, Hui-Lung; Chang, Ya-Ling; Chen, Chien-Chih

    2012-01-01

    Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (−/−) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity. PMID:22912688

  5. p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming.

    PubMed

    Gong, Lu; Pan, Xiao; Chen, Haide; Rao, Lingjun; Zeng, Yelin; Hang, Honghui; Peng, Jinrong; Xiao, Lei; Chen, Jun

    2016-11-22

    Human induced pluripotent stem (iPS) cells have great potential in regenerative medicine, but this depends on the integrity of their genomes. iPS cells have been found to contain a large number of de novo genetic alterations due to DNA damage response during reprogramming. Thus, to maintain the genetic stability of iPS cells is an important goal in iPS cell technology. DNA damage response can trigger tumor suppressor p53 activation, which ensures genome integrity of reprogramming cells by inducing apoptosis and senescence. p53 isoform Δ133p53 is a p53 target gene and functions to not only antagonize p53 mediated apoptosis, but also promote DNA double-strand break (DSB) repair. Here we report that Δ133p53 is induced in reprogramming. Knockdown of Δ133p53 results 2-fold decrease in reprogramming efficiency, 4-fold increase in chromosomal aberrations, whereas overexpression of Δ133p53 with 4 Yamanaka factors showes 4-fold increase in reprogamming efficiency and 2-fold decrease in chromosomal aberrations, compared to those in iPS cells induced only with 4 Yamanaka factors. Overexpression of Δ133p53 can inhibit cell apoptosis and promote DNA DSB repair foci formation during reprogramming. Our finding demonstrates that the overexpression of Δ133p53 not only enhances reprogramming efficiency, but also results better genetic quality in iPS cells.

  6. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    PubMed

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC.

  7. p53 adenoviral vector (Ad-CMV-p53) induced prostatic growth inhibition of primary cultures of human prostate and an experimental rat model.

    PubMed

    Shirakawa, T; Gotoh, A; Gardner, T A; Kao, C; Zhang, Z J; Matsubara, S; Wada, Y; Hinata, N; Fujisawa, M; Hanioka, K; Matsuo, M; Kamidono, S

    2000-01-01

    Benign prostatic hyperplasia (BPH) is the most common proliferative disease affecting men. Numerous minimally invasive technologies are being developed or are currently in use to obviate the need for transurethral surgery. The goal of the present study was to develop a novel molecular based approach for the treatment of BPH using recombinant p53 adenoviral vector. The over-expression of wt-p53 can cause cell apoptosis or cell growth arrest, thus preventing the uncontrolled cell proliferation underlying BPH pathophysiology. Ad-CMV-p53, a replication-deficient recombinant adenovirus containing cytomegalovirus promoter driving p53 gene, was used. Human prostate stromal (PS) cells were evaluated for apoptosis (TUNEL assay), mRNA levels of key cell cycle regulators influencing apoptosis (p-53, Bax and Bcl-2) using quantitative RT-PCR and cytotoxicity after Ad-CMV-p53. Ad-CMV-p53 was unilaterally injected into rat ventral prostates and growth inhibition was measured by prostate weight 3 weeks after injection. In vitro exposure to Ad-CMV-p53 significantly inhibited the proliferation of PS cells, induced mRNA over-expression of both wt-p53 and Bax, and increased the proportion of apoptotic cells. A 30% decrease in average prostate weight was demonstrated in rodents after Ad-CMV-p53 injection. The results suggest that further investigation of molecular gene therapy with recombinant wt-p53 adenovirus for the treatment of BPH is warranted.

  8. Deregulated expression of p16INK4a and p53 pathway members in benign and malignant myoepithelial tumours of the salivary glands.

    PubMed

    Vékony, H; Röser, K; Löning, T; Raaphorst, F M; Leemans, C R; Van der Waal, I; Bloemena, E

    2008-12-01

    Myoepithelial salivary gland tumours are uncommon and follow an unpredictable biological course. The aim was to examine their molecular background to acquire a better understanding of their clinical behaviour. Expression of protein (E2F1, p16(INK4a), p53, cyclin D1, Ki67 and Polycomb group proteins BMI-1, MEL-18 and EZH2) was investigated in 49 benign and 30 primary malignant myoepithelial tumours and five histologically benign recurrences by immunohistochemistry and the findings correlated with histopathological characteristics. Benign tumours showed a higher percentage of cells with expression of p16(INK4a) pathway members [p16(INK4a) and E2F1 (both P < 0.001), and cyclin D1, P = 0.002] compared with normal salivary gland. Furthermore, malignant tumours expressed p53 (P = 0.003) and EZH2 (P = 0.09) in a higher percentage. Recurrences displayed more p53 + tumour cells (P = 0.02) than benign primaries. Amongst the benign tumours, the clear cell type had the highest proliferation fraction (P = 0.05) and a higher percentage of EZH2 was detected in the plasmacytoid cell type (P = 0.002). This study is the first to demonstrate that deregulation of the p16(INK4a) senescence pathway is involved in the development of myoepithelial tumours. We propose that additional inactivation of p53 in malignant primaries and benign recurrences contributes to myoepithelial neoplastic transformation and aggressive tumour growth.

  9. DRAGO (KIAA0247), a New DNA Damage–Responsive, p53-Inducible Gene That Cooperates With p53 as Oncosupprossor

    PubMed Central

    Polato, Federica; Rusconi, Paolo

    2014-01-01

    Background p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. Methods DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53−/− and 107 p53+/− mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan–Meier curves and the Mantel–Haenszel test. All statistical tests were two-sided. Results We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO−/− mice are viable without macroscopic alterations. However, in p53−/− or p53+/− mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53−/− or p53+/− mice bearing wild-type DRAGO alleles (p53−/−, DRAGO−/− mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53+/−, DRAGO−/− mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO+/+ counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional—through p53 (and p73) and methylation-dependent control—and post-transcriptional levels by miRNAs. Conclusions DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions. PMID:24652652

  10. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    PubMed Central

    Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin

    2015-01-01

    Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737

  11. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  12. Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death.

    PubMed

    Garner, Elizabeth; Raj, Kenneth

    2008-02-01

    There have been innumerate demonstrations of p53's activity as a tumour suppressor protein with the ability to stimulate cell signalling that can lead to cell cycle arrest and cell death in the event of DNA damage. Despite the solid body of evidence to support these properties of p53, reports have emerged that suggest a role for p53 in protecting cells from cell death. Our recent report highlighted a mechanism by which p53 activity can promote cell survival in the event of DNA damage. Here we present the various mechanisms that are activated by p53 signalling that can confer protection to cells with damaged DNA and emphasise the practical and clinical implications of a more balanced and context-dependent understanding of p53's pro-apoptotic and pro-survival activities.

  13. Curcumin Induces Apoptosis in Human Colorectal Carcinoma (HCT-15) Cells by Regulating Expression of Prp4 and p53

    PubMed Central

    Shehzad, Adeeb; Lee, Jaetae; Huh, Tae-Lin; Lee, Young Sup

    2013-01-01

    Curcumin (diferuloylmethane), the yellow pigment of turmeric, is one of the most commonly used and extensively studied phytochemicals due to its pleiotropic effects in several human cancers. In the current study, the therapeutic efficacy of curcumin was investigated in human colorectal carcinoma HCT-15 cells. Curcumin inhibited HCT-15 cells proliferation and induced apoptosis in a dose- and time-dependent manner. Hoechst 33342 and DCFHDA staining revealed morphological and biochemical features of apoptosis as well as ROS generation in HCT-15 cells treated with 30 and 50 μM curcumin. Over-expression of pre-mRNA processing factor 4B (Prp4B) and p53 mutations have been reported as hallmarks of cancer cells. Western blot analysis revealed that curcumin treatment activated caspase-3 and decreased expression of p53 and Prp4B in a time-dependent manner. Transfection of HCT-15 cells with Prp4B clone perturbed the growth inhibition induced by 30 μM curcumin. Fractionation of cells revealed increased accumulation of Prp4B in the nucleus, following its translocation from the cytoplasm. To further evaluate the underlying mechanism and survival effect of Prp4B, we generated siRNA-Prp4B HCT15 clones. Knockdown of Prp4B with siRNA diminished the protective effects of Prp4B against curcumin-induced apoptosis. These results suggest a possible underlying molecular mechanism in which Prp4B over-expression and activity are closely associated with the survival and regulation of apoptotic events in human colon cancer HCT-15 cells. PMID:23686430

  14. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestl, Erin E., E-mail: egestl@wcupa.edu; Anne Boettger, S., E-mail: aboettger@wcupa.edu

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated withmore » p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed

  15. Negative feedback regulation of wild-type p53 biosynthesis.

    PubMed Central

    Mosner, J; Mummenbrauer, T; Bauer, C; Sczakiel, G; Grosse, F; Deppert, W

    1995-01-01

    When growth-arrested mouse fibroblasts re-entered the cell-cycle, the rise in tumour suppressor p53 mRNA level markedly preceded the rise in expression of the p53 protein. Furthermore, gamma-irradiation of such cells led to a rapid increase in p53 protein biosynthesis even in the presence of the transcription inhibitor actinomycin D. Both findings strongly suggest that p53 biosynthesis in these cells is regulated at the translational level. We present evidence for an autoregulatory control of p53 expression by a negative feed-back loop: p53 mRNA has a predicted tendency to form a stable stem-loop structure that involves the 5'-untranslated region (5'-UTR) plus some 280 nucleotides of the coding sequence. p53 binds tightly to the 5'-UTR region and inhibits the translation of its own mRNA, most likely mediated by the p53-intrinsic RNA re-annealing activity. The inhibition of p53 biosynthesis requires wild-type p53, as it is not observed with MethA mutant p53, p53-catalysed translational inhibition is selective; it might be restricted to p53 mRNA and a few other mRNAs that are able to form extensive stem-loop structures. Release from negative feed-back regulation of p53 biosynthesis, e.g. after damage-induced nuclear transport of p53, might provide a means for rapidly increasing p53 protein levels when p53 is required to act as a cell-cycle checkpoint determinant after DNA damage. Images PMID:7556087

  16. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15

    PubMed Central

    Normatova, Makhliyo; Babaei-Jadidi, Roya; Tomlinson, Ian; Nateri, Abdolrahman S.

    2015-01-01

    FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter. PMID:25860929

  17. A Synthetic Interaction Screen Identifies Factors Selectively Required for Proliferation and TERT Transcription in p53-Deficient Human Cancer Cells

    PubMed Central

    Park, Sung Mi; Zhu, Lihua J.; Debily, Marie-anne; Kittler, Ellen L. W.; Zapp, Maria L.; Lapointe, David; Gobeil, Stephane; Virbasius, Ching-Man; Green, Michael R.

    2012-01-01

    Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi)–based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53−) human cancer cells. We find that compared to p53-competent (p53+) human cancer cell lines, diverse p53− human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR. In p53cells, RNAi–mediated knockdown of ETV1 or ATR results in decreased expression of the telomerase catalytic subunit TERT leading to growth arrest, which can be reversed by ectopic TERT expression. Chromatin immunoprecipitation analysis reveals that ETV1 binds to a region downstream of the TERT transcriptional start-site in p53− but not p53+ cells. We find that the role of ATR is to phosphorylate and thereby stabilize ETV1. Our collective results identify a regulatory pathway involving ETV1, ATR, and TERT that is preferentially important for proliferation of diverse p53− cancer cells. PMID:23284306

  18. Alveolar epithelial cells in idiopathic pulmonary fibrosis display upregulation of TRAIL, DR4 and DR5 expression with simultaneous preferential over-expression of pro-apoptotic marker p53.

    PubMed

    Akram, Khondoker M; Lomas, Nicola J; Forsyth, Nicholas R; Spiteri, Monica A

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating, and fatal lung disease of unknown aetiology with no current cure. The pathogenesis of IPF remains unclear but repeated alveolar epithelial cell (AEC) injuries and subsequent apoptosis are believed to be among the initiating/ongoing triggers. However, the precise mechanism of apoptotic induction is hitherto elusive. In this study, we investigated expression of a panel of pro-apoptotic and cell cycle regulatory proteins in 21 IPF and 19 control lung tissue samples. We reveal significant upregulation of the apoptosis-inducing ligand TRAIL and its cognate receptors DR4 and DR5 in AEC within active lesions of IPF lungs. This upregulation was accompanied by pro-apoptotic protein p53 overexpression. In contrast, myofibroblasts within the fibroblastic foci of IPF lungs exhibited high TRAIL, DR4 and DR5 expression but negligible p53 expression. Similarly, p53 expression was absent or negligible in IPF and control alveolar macrophages and lymphocytes. No significant differences in TRAIL expression were noted in these cell types between IPF and control lungs. However, DR4 and DR5 upregulation was detected in IPF alveolar macrophages and lymphocytes. The marker of cellular senescence p21(WAF1) was upregulated within affected AEC in IPF lungs. Cell cycle regulatory proteins Cyclin D1 and SOCS3 were significantly enhanced in AEC within the remodelled fibrotic areas of IPF lungs but expression was negligible in myofibroblasts. Taken together these findings suggest that, within the remodelled fibrotic areas of IPF, AEC can display markers associated with proliferation, senescence, and apoptotosis, where TRAIL could drive the apoptotic response. Clear understanding of disease processes and identification of therapeutic targets will direct us to develop effective therapies for IPF.

  19. Protective role of p53 in skin cancer: Carcinogenesis studies in mice lacking epidermal p53.

    PubMed

    Page, Angustias; Navarro, Manuel; Suarez-Cabrera, Cristian; Alameda, Josefa P; Casanova, M Llanos; Paramio, Jesús M; Bravo, Ana; Ramirez, Angel

    2016-04-12

    p53 is a protein that causes cell cycle arrest, apoptosis or senescence, being crucial in the process of tumor suppression in several cell types. Different in vitro and animal models have been designed for the study of p53 role in skin cancer. These models have revealed opposing results, as in some experimental settings it appears that p53 protects against skin cancer, but in others, the opposite conclusion emerges. We have generated cohorts of mice with efficient p53 deletion restricted to stratified epithelia and control littermates expressing wild type p53 and studied their sensitivity to both chemically-induced and spontaneous tumoral transformation, as well as the tumor types originated in each experimental group. Our results indicate that the absence of p53 in stratified epithelia leads to the appearance, in two-stage skin carcinogenesis experiments, of a higher number of tumors that grow faster and become malignant more frequently than tumors arisen in mice with wild type p53 genotype. In addition, the histological diversity of the tumor type is greater in mice with epidermal p53 loss, indicating the tumor suppressive role of p53 in different epidermal cell types. Aging mice with p53 inactivation in stratified epithelia developed spontaneous carcinomas in skin and other epithelia. Overall, these results highlight the truly protective nature of p53 functions in the development of cancer in skin and in other stratified epithelia.

  20. Selective sensitization to DNA-damaging agents in a human rhabdomyosarcoma cell line with inducible wild-type p53 overexpression.

    PubMed

    Gibson, A A; Harwood, F G; Tillman, D M; Houghton, J A

    1998-01-01

    Drug-induced cytotoxicity or apoptosis may be influenced by the expression of the p53 tumor suppressor gene and by the specific oncogene expressed, which may dictate the threshold at which a cytotoxic response may by induced. The objective of the study was to elucidate how DNA-damaging agents with different mechanisms of action were sensitized in the context of expression of the Pax3/FKHR fusion protein, a transformation event unique to alveolar rhabdomyosarcomas (ARMSs), and wild-type p53 (wtp53). A wtp53 cDNA was subcloned into the pGRE5-2/EBV vector with dexamethasone-inducible overexpression and transfected into Rh30 ARMS cells that express Pax3/FKHR and a mutant p53 phenotype. Following dexamethasone induction of wtp53 overexpression in a derived clone (Cl.#27), growth was slowed, and cells accumulated in G1. Functional wtp53 activity was demonstrated by selective transactivation of p50-2, a wtp53 chloramphenicol acetyltransferase reporter construct, and by up-regulated expression of endogenous p21Waf1. Data demonstrated p53-dependent sensitization (> or = 4-fold) to bleomycin, actinomycin D, and 5-fluorouracil and considerably less p53-dependence (< or = 2-fold) for doxorubicin, topotecan, etoposide, and cisplatin in Cl.#27 compared to an equivalent clone containing the pGRE5-EBV vector alone (VC#3). Data demonstrate that ARMS cells show a selective sensitization to DNA-damaging agents when wtp53 is overexpressed. The cytotoxic activity of agents that are not potentiated substantially must, therefore, depend upon p53-independent factors that relate to the mechanism of drug action.

  1. Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma.

    PubMed

    Dumble, Melissa L; Croager, Emma J; Yeoh, George C T; Quail, Elizabeth A

    2002-03-01

    Oval cells are bipotential liver stem cells able to differentiate into hepatocytes and bile duct epithelia. In normal adult liver oval cells are quiescent, existing in low numbers around the periportal region, and proliferate following severe, prolonged liver trauma. There is evidence implicating oval cells in the development of hepatocellular carcinoma, and hence the availability of an immortalized oval cell line would be invaluable for the study of liver cell lineage differentiation and carcinogenesis. A novel approach in the generation of cell lines is the use of the p53 knockout mouse. Absence of p53 allows a cell to cycle past the normal Hayflick limit, rendering it immortalized, although subsequent genetic alterations are thought necessary for transformation. p53 knockout mice were fed a choline-deficient, ethionine-supplemented diet, previously shown to increase oval cell numbers in wild-type mice. The oval cells were isolated by centrifugal elutriation and maintained in culture. Colonies of hepatic cells were isolated and characterized with respect to phenotype, growth characteristics and tumorigenicity. Analysis of gene expression by Northern blotting and immunocytochemistry suggests they are oval-like cells by virtue of albumin and transferrin expression, as well as the oval cell markers alpha fetoprotein, M(2)-pyruvate kinase and A6. Injection into athymic nude mice shows the cell lines are capable of forming tumors which phenotypically resemble hepatocellular carcinoma. Thus, the use of p53 null hepatic cells successfully generated immortalized and tumorigenic hepatic stem cell lines. The results presented support the idea that deleting p53 allows immortalization and contributes to the transformation of the oval-like cell lines. Further, the tumorigenic status of the cell lines is direct evidence for the participation of oval cells in the formation of hepatocellular carcinoma.

  2. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation.

    PubMed

    Yao, Pei-Li; Chen, Liping; Dobrzański, Tomasz P; Zhu, Bokai; Kang, Boo-Hyon; Müller, Rolf; Gonzalez, Frank J; Peters, Jeffrey M

    2017-05-01

    Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients. Published [2016]. This article is a U.S. Government work and is in the public domain in the USA.

  3. p53 downregulates the Fanconi anaemia DNA repair pathway

    PubMed Central

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-01-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104

  4. [Bendamustine-rituximab therapy is effective for transformed follicular lymphoma with significant expression of p53].

    PubMed

    Kuroda, Hiroyuki; Jomen, Wataru; Miura, Shogo; Arihara, Yohei; Yamada, Michiko; Hirako, Tasuku; Abe, Tomoyuki; Sakurai, Tamaki; Fujii, Shigeyuki; Maeda, Masahiro; Fujita, Miri; Nagashima, Kazuo; Okagawa, Yutaka; Hoki, Toshifumi; Kato, Junji

    2013-08-01

    We describe a patient with transformed follicular lymphoma(FL), expressing p53 but remaining in complete remission(CR) due to bendamustine-rituximab(BR)therapy. She was a 64-year-old female diagnosed with stage IV FL(grade 3A)in July 2007 when she was admitted with right lower abdominal pain and body weight loss. Colonoscopy revealed Bauhin' valve lymphoma of the terminal ileum, and computed tomography(CT)scan showed lymphadenopathy, involving the cervical, mediastinal para-aortic lymph nodes and right tonsil. She received chemotherapy with eight courses of CHOP therapy with rituximab and achieved CR. Two and a half years later, mediastinal lymph node swelling relapsed, and ibritumomab tiuxetan therapy induced the second CR. After ten months, however, a third relapse occurred as a submucosal tumor(SMT)of the stomach. Gastric SMT biopsy showed diffuse large B cell lymphoma(DLBCL)transformation with immunohistochemical expression of p53. Although gastric SMT disappeared after radiotherapy, which achieved the third CR, lymph node swelling was detected again in the para-aortic and-iliac artery lymph nodes in September 2011. Subsequently, she was treated with five courses of BR therapy, because bendamustine had been reported to be effective for p53 gene-deficient B cell neoplasms. The therapy was successful and achieved the fourth CR, demonstrating that BR therapy was effective for p53-expressing DLBCL.

  5. IκB kinase b Mediating the Downregulation of p53 and p21 by Lipopolysaccharide in Human Papillomavirus 16+ Cervical Cancer Cells.

    PubMed

    Tan, Zhi-Hui; Zhang, Yu; Tian, Yan; Tan, Wei; Li, Ying-Hua

    2016-11-20

    Cervical cancer is the second most common cancer of woman in the world, and human papillomavirus (HPV) infection plays an important role in the development of most of the cases. IκB kinase β (IKKβ) is a kinase-mediating nuclear factor kappa B (NF-κB) activation by phosphorylating the inhibitor of NF-κB (IκB) and is related by some diseases caused by virus infection. However, there is little known about the correlation between IKKβ and HPV infection in cervical cancer. This study aimed to investigate the expression of IKKβ protein in cervical cancer tissues and effects of inflammation on HPV positive or negative cervical cancer cells through detecting the expression of IKKβ, IκBα, p53, and p21 proteins after treated with lipopolysaccharide (LPS) to mimic bacterial infection. We also examined the effects of LPS on cervical cancer cells after blocking IKKβ with pharmacological inhibitor. Thirty-six matched specimens of cervical cancer and adjacent normal tissues were collected and analyzed in the study. The expression of IKKβ in the tissue specimens was determined by immunohistochemical staining. In addition, Western blot was used to detect the expression level changes of IKKβ, IκBα, p53, and p21 after LPS stimulated in the HPV16+ (SiHa) and HPV16- (C33A) cervical cancer cell lines. Furthermore, the effects of IKKβ inhibitor SC-514 on LPS-induced expression change of these proteins were investigated. The expression of IKKβ was higher in cervical cancer than adjacent normal tissues, and there was no significant difference between tumor differentiation, size, and invasive depth with IKKβ expression. The LPS, which increased the expression level of IKKβ protein but decreased in the IκBα, p53 and p21 proteins, was illustrated in HPV16+ (SiHa) but not in HPV16- (C33A) cells. Moreover, IKKβ inhibitor SC-514 totally reversed the upregulation of IKKβ and downregulation of p53 and p21 by LPS in SiHa cells. IKKβ may mediate the downregulation of p53 and

  6. Stabilisation of p53 enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation.

    PubMed

    Pan, D; Pan, L-Z; Hill, R; Marcato, P; Shmulevitz, M; Vassilev, L T; Lee, P W K

    2011-09-27

    Naturally oncolytic reovirus preferentially kills cancer cells, making it a promising cancer therapeutic. Mutations in tumour suppressor p53 are prevalent in cancers, yet the role of p53 in reovirus oncolysis is relatively unexplored. Human cancer cell lines were exposed to Nutlin-3a, reovirus or a combination of the two and cells were processed for reovirus titration, western blot, real-time PCR and apoptosis assay using Annexin V and 7-AAD staining. Confocal microscopy was used to determine translocation of the NF-κB p65 subunit. We show that despite similar reovirus replication in p53(+/+) and p53(-/-) cells, stabilisation of p53 by Nutlin-3a significantly enhanced reovirus-induced apoptosis and hence virus release and dissemination while having no direct effect on virus replication. Enhanced apoptosis by Nutlin-3a was not observed in p53(-/-) or p53 knockdown cells; however, increased expression of Bax and p21 are required. Moreover, elevated NF-κB activation in reovirus-infected cells following Nutlin-3a treatment was necessary for enhanced reovirus-induced apoptosis, as synergistic cytotoxicity was overcome by specific NF-κB inhibitors. Nutlin-3a treatment enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation, and combination of reovirus and Nutlin-3a might represent an improved therapy against cancers harbouring wild-type p53.

  7. The Isoforms of the p53 Protein

    PubMed Central

    Khoury, Marie P.; Bourdon, Jean-Christophe

    2010-01-01

    p53 is a transcription factor with a key role in the maintenance of genetic stability and therefore preventing cancer formation. It belongs to a family of genes composed of p53, p63, and p73. The p63 and p73 genes have a dual gene structure with an internal promoter in intron-3 and together with alternative splicing, can express 6 and 29 mRNA variants, respectively. Such a complex expression pattern had not been previously described for the p53 gene, which was not consistent with our understanding of the evolution of the p53 gene family. Consequently, we revisited the human p53 gene structure and established that it encodes nine different p53 protein isoforms because of alternative splicing, alternative promoter usage, and alternative initiation sites of translation. Therefore, the human p53 gene family (p53, p63, and p73) has a dual gene structure. We determined that the dual gene structure is conserved in Drosophila and in zebrafish p53 genes. The conservation through evolution of the dual gene structure suggests that the p53 isoforms play an important role in p53 tumor-suppressor activity. We and others have established that the p53 isoforms can regulate cell-fate outcome in response to stress, by modulating p53 transcriptional activity in a promoter and stress-dependent manner. We have also shown that the p53 isoforms are abnormally expressed in several types of human cancers, suggesting that they play an important role in cancer formation. The determination of p53 isoforms' expression may help to link clinical outcome to p53 status and to improve cancer patient treatment. PMID:20300206

  8. p53 and metabolism: from mechanism to therapeutics

    PubMed Central

    Simabuco, Fernando M.; Morale, Mirian G.; Pavan, Isadora C.B.; Morelli, Ana P.; Silva, Fernando R.; Tamura, Rodrigo E.

    2018-01-01

    The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics. PMID:29805774

  9. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53

    PubMed Central

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  10. p53 Restoration in Induction and Maintenance of Senescence: Differential Effects in Premalignant and Malignant Tumor Cells

    PubMed Central

    Harajly, Mohamad; Zalzali, Hasan; Nawaz, Zafar; Ghayad, Sandra E.; Ghamloush, Farah; Basma, Hussein; Zainedin, Samiha; Rabeh, Wissam; Jabbour, Mark; Tawil, Ayman; Badro, Danielle A.; Evan, Gerard I.

    2015-01-01

    The restoration of p53 has been suggested as a therapeutic approach in tumors. However, the timing of p53 restoration in relation to its efficacy during tumor progression still is unclear. We now show that the restoration of p53 in murine premalignant proliferating pineal lesions resulted in cellular senescence, while p53 restoration in invasive pineal tumors did not. The effectiveness of p53 restoration was not dependent on p19Arf expression but showed an inverse correlation with Mdm2 expression. In tumor cells, p53 restoration became effective when paired with either DNA-damaging therapy or with nutlin, an inhibitor of p53-Mdm2 interaction. Interestingly, the inactivation of p53 after senescence resulted in reentry into the cell cycle and rapid tumor progression. The evaluation of a panel of human supratentorial primitive neuroectodermal tumors (sPNET) showed low activity of the p53 pathway. Together, these data suggest that the restoration of the p53 pathway has different effects in premalignant versus invasive pineal tumors, and that p53 activation needs to be continually sustained, as reversion from senescence occurs rapidly with aggressive tumor growth when p53 is lost again. Finally, p53 restoration approaches may be worth exploring in sPNET, where the p53 gene is intact but the pathway is inactive in the majority of examined tumors. PMID:26598601

  11. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armesilla-Diaz, Alejandro, E-mail: aarmesilla@cib.csic.es; Elvira, Gema; Silva, Augusto

    2009-12-10

    Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC, from both human and murine origin, has been reported in many studies. MSC transformation depends on the culture conditions, the origin of the cells and the time on culture; however, the precise biological characteristics involved in this process have not been fully defined yet. In this study, we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate, amore » shorter doubling time and also morphologic and phenotypic changes, as compared to MSC derived from wild-type animals. Furthermore, the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition, not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover, genomic instability, changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition, the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.« less

  12. Involvements of Estrogen Receptor, Proliferating Cell Nuclear Antigen and p53 in Endometrial Adenocarcinoma Development in Donryu Rats

    PubMed Central

    Yoshida, Midori; Katsuda, Shin-ichi; Maekawa, Akihiko

    2012-01-01

    Involvements of estrogen receptor (ER)α, proliferating cell nuclear antigen (PCNA) and p53 in the uterine carcinogenesis process in Donryu rats, a high yield strain of the uterine cancer were investigated immunohistochemically. ERα was expressed in atypical endometrial hyperplasia, accepted as a precancerous lesion of the uterine tumors, as well as well- and in moderately-differentiated endometrial adenocarcinomas, and the intensities of expression were similar to those in the luminal epithelial cells of the atrophic uterus at 15 months of age. The expression, however, was negative in the tumor cells of poorly differentiated type. Good growth of implanted grafts of the poorly-differentiated adenocarcinomas in both sexes with or without gonadectomy supported the estrogen independency of tumor progression to malignancy. PCNA labeling indices were increased with tumor development from atypical hyperplasia to adenocarcinoma. The tumor cells in poorly-differentiated adenocarcinomas were positive for p53 positive but negative for p21 expression, suggesting accumulation of mutated p53. These results indicate that the consistent ERα expression is involved in initiation and promotion steps of uterine carcinogenesis, but not progression. In addition, PCNA is related to tumor development and the expression of mutated p53 might be a late event during endometrial carcinogenesis. PMID:23345926

  13. [Effect of tagalsin on p53 and Bcl-2 expression in hepatoma H(22) tumor-bearing mice].

    PubMed

    Song, Xiu-qi; Guo, Yun-liang; Wang, Bing-gao; Sun, Shao-jie; Yao, Ru-yong

    2011-07-01

    To explore the effect and mechanism of tagalsin on hepatoma cells. The animal models were established by transplanting H(22) mouse hepatoma cells to mouse liver, and ten days later the mice were randomly divided into five groups: blank group, carmofur positive group and tagalsin groups, including low-dose, middle-dose and high-dose groups. Then medicine or oil was given to the mice by gastric gavage in consecutive 5 days with a 2-days interval as a course of treatment, two courses in all. All mice were killed at 24 hours after medication, and the survival period, ascites conditions, aggressive conditions intra- or extra-liver, weight changes, tumor volume and spleen index of the tumor-bearing mice were observed. Pathological changes of the tumors were examined. Apoptotic factors p53 and Bcl-2 protien and mRNA were detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). tagalsin inhibited the hepatoma growth effectively without influencing spleen index to some extent. The tumor inhibition rate of tagalsin low, middle and high dose groups were 17.9%, 63.1% and 71.8%, respectively. Immunohistochemical results showed that the p53 and Bcl-2 protein positive cell counts of the positive control and experimental groups were significantly lower than those of the blank group (P < 0.01). RT-PCR results showed that the p53 mRNA expression was significantly enhanced and Bcl-2 mRNA expression was decreased in the positive control groups and tagalsin treatment groups, especially in the high dose group, compared with those of the blank group (P < 0.05). tagalsin can inhibit the growth of mouse hepatoma cells significantly. The mechanism of its anti-tumor effect may work via up-regulating the wild type p53 gene expression and down-regulating Bcl-2 gene expression and thus regulating tumor cell apoptosis.

  14. [Application of PLA Method for Detection of p53/p63/p73 Complexes in Situ in Tumour Cells and Tumour Tissue].

    PubMed

    Hrabal, V; Nekulová, M; Nenutil, R; Holčaková, J; Coates, P J; Vojtěšek, B

    2017-01-01

    PLA (proximity ligation assay) can be used for detection of protein-protein interactions in situ directly in cells and tissues. Due to its high sensitivity and specificity it is useful for detection, localization and quantification of protein complexes with single molecule resolution. One of the mechanisms of mutated p53 gain of function is formation of proten-protein complexes with other members of p53 family - p63 and p73. These interactions influences chemosensitivity and invasivity of cancer cells and this is why these complexes are potential targets of anti-cancer therapy. The aim of this work is to detect p53/p63/p73 interactions in situ in tumour cells and tumour tissue using PLA method. Unique in-house antibodies for specific detection of p63 and p73 isoforms were developed and characterized. Potein complexes were detected using PLA in established cell lines SVK14, HCC1806 and FaDu and in paraffin sections of colorectal carcinoma tissue. Cell lines were also processed to paraffin blocks. p53/T-antigen and ΔNp63/T-antigen protein complexes were detected in SVK14 cells using PLA. Interactions of ΔNp63 and TAp73 isoforms were found in HCC1806 cell line with endogenous expression of these proteins. In FaDu cell line mut-p53/TAp73 complex was localized but not mut-p53/ΔNp63 complex. p53 tetramer was detected directly in colorectal cancer tissue. During development of PLA method for detection of protein complexes between p53 family members we detected interactions of p53 and p63 with T-antigen and mut-p53 and ΔNp63 with TAp73 tumour suppressor in tumour cell lines and p53 tetramers in paraffin sections of colorectal cancer tissue. PLA will be further used for detection of p53/p63, p53/p73 and p63/p73 interactions in tumour tissues and it could be also used for screening of compounds that can block formation of p53/p63/p73 protein complexes.Key words: p53 protein family - protein interaction mapping - immunofluorescence This work was supported by MEYS - NPS I

  15. Modulation of p53 and met expression by Krüppel-like factor 8 regulates zebrafish cerebellar development.

    PubMed

    Tsai, Ming-Yuan; Lu, Yu-Fen; Liu, Yu-Hsiu; Lien, Huang-Wei; Huang, Chang-Jen; Wu, Jen-Leih; Hwang, Sheng-Ping L

    2015-09-01

    Krüppel-like factor 8 (Klf8) is a zinc-finger transcription factor implicated in cell proliferation, and cancer cell survival and invasion; however, little is known about its role in normal embryonic development. Here, we show that Klf8 is required for normal cerebellar development in zebrafish embryos. Morpholino knockdown of klf8 resulted in abnormal cerebellar primordium morphology and the induction of p53 in the brain region at 24 hours post-fertilization (hpf). Both p53-dependent reduction of cell proliferation and augmentation of apoptosis were observed in the cerebellar anlage of 24 hpf-klf8 morphants. In klf8 morphants, expression of ptf1a in the ventricular zone was decreased from 48 to 72 hpf; on the other hand, expression of atohla in the upper rhombic lip was unaffected. Consistent with this finding, Purkinje cell development was perturbed and granule cell number was reduced in 72 hpf-klf8 morphants; co-injection of p53 MO(sp) or klf8 mRNA substantially rescued development of cerebellar Purkinje cells in klf8 morphants. Hepatocyte growth factor/Met signaling is known to regulate cerebellar development in zebrafish and mouse. We observed decreased met expression in the tectum and rhombomere 1 of 24 hpf-klf8 morphants, which was largely rescued by co-injection with klf8 mRNA. Moreover, co-injection of met mRNA substantially rescued formation of Purkinje cells in klf8 morphants at 72 hpf. Together, these results demonstrate that Klf8 modulates expression of p53 and met to maintain ptf1a-expressing neuronal progenitors, which are required for the appropriate development of cerebellar Purkinje and granule cells in zebrafish embryos. © 2014 Wiley Periodicals, Inc.

  16. Transcriptional inhibition of p21{sup WAF1/CIP1} gene (CDKN1) expression by survivin is at least partially p53-dependent: Evidence for survivin acting as a transcription factor or co-factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lei; Pre-Doctoral Chinese Fellowship Student, Second West China Hospital, Sichuan University, Sichuan; Ling, Xiang

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Survivin inhibits the expression of p21 protein, mRNA and promoter activity. Black-Right-Pointing-Pointer Survivin neutralizes p53-induced p21 expression and promoter activity. Black-Right-Pointing-Pointer Survivin physically interacts with p53 in cancer cells. Black-Right-Pointing-Pointer Genetic silencing of endogenous survivin upregulates p21 in p53 wild type cancer cells. Black-Right-Pointing-Pointer Both p53 and survivin interacts on the two p53-binding sites in the p21 promoter. -- Abstract: Growing evidence suggests a role for the antiapoptotic protein survivin in promotion of cancer cell G1/S transition and proliferation. However, the underlying mechanism is unclear. Further, although upregulation of p21{sup WAF1/CIP1} by p53 plays an important role inmore » p53-mediated cell G1 arrests in response to various distresses, it is unknown whether survivin plays a role in the regulation of p21{sup WAF1/CIP1} expression. Here, we report that exogenous expression of survivin in p53-wild type MCF-7 breast cancer cells inhibits the expression of p21{sup WAF1/CIP1} protein, mRNA and promoter activity, while the survivin C84A mutant and antisense failed to do so. Cotransfection experiments in the p53 mutant H1650 lung cancer cell line showed that survivin neutralizes p53-induced p21{sup WAF1/CIP1} expression and promoter activity. Importantly, genetically silencing of endogenous survivin using lentiviral survivin shRNA also enhances endogenous p21 in p53 wild type cancer cells, suggesting the physiological relevance of the fining. We further demonstrated that both p53 and survivin interacts on the two p53-binding sites in the p21{sup WAF1/CIP1} promoter (-2313 to -2212; -1452 to -1310), and survivin physically interacts with p53 in cancer cells. Together, we propose that survivin may act as a transcription factor or cofactor to interact with p53 on the p21{sup WAF1/CIP1} promoter leading to the inhibition of p21{sup WAF1/CIP1

  17. Therapeutic targeting of the p53 pathway in cancer stem cells

    PubMed Central

    Prabhu, Varun V.; Allen, Joshua E.; Hong, Bo; Zhang, Shengliang; Cheng, Hairong; El-Deiry, Wafik S.

    2013-01-01

    Introduction Cancer stem cells are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance, and therapeutic resistance. Restoring wild-type p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target cancer stem cells. Areas covered Therapeutic approaches to restore the function of wild-type p53, cancer and normal stem cell biology in relation to p53, and the downstream effects of p53 on cancer stem cells. Expert opinion The restoration of wild-type p53 function by targeting p53 directly, its interacting proteins, or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and cancer stem cells based on the current evidence linking p53 signaling with these populations. PMID:22998602

  18. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either permore » se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.« less

  19. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Duanmin; Su, Cunjin; Jiang, Min

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs,more » siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.« less

  20. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation

    PubMed Central

    Terzian, Tamara; Torchia, Enrique C.; Dai, Daisy; Robinson, Steven E.; Murao, Kazutoshi; Stiegmann, Regan A.; Gonzalez, Victoria; Boyle, Glen M.; Powell, Marianne B.; Pollock, Pamela M.; Lozano, Guillermina; Robinson, William A.; Roop, Dennis R.; Box, Neil F.

    2011-01-01

    p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the ‘high-p53’ Mdm4+/− mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/− background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/− mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53. PMID:20849464

  1. Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.

    PubMed

    Yan, Ping; Gong, Hui; Zhai, Xiaoyan; Feng, Yi; Wu, Jun; He, Sheng; Guo, Jian; Wang, Xiaoxia; Guo, Rui; Xie, Jun; Li, Ren-Ke

    2016-04-01

    Neovascularization drives tumor development, and angiogenic factors are important neovascularization initiators. We recently identified the secreted angiogenic factor CNPY2, but its involvement in cancer has not been explored. Herein, we investigate CNPY2's role in human colorectal cancer (CRC) development. Tumor samples were obtained from CRC patients undergoing surgery. Canopy 2 (CNPY2) expression was analyzed in tumor and adjacent normal tissue. Stable lines of human HCT116 cells expressing CNPY2 shRNA or control shRNA were established. To determine CNPY2's effects on tumor xenografts in vivo, human CNPY2 shRNA HCT116 cells and controls were injected into nude mice, separately. Cellular apoptosis, growth, and angiogenesis in the xenografts were evaluated. CNPY2 expression was significantly higher in CRC tissues. CNPY2 knockdown in HCT116 cells inhibited growth and migration and promoted apoptosis. In xenografts, CNPY2 knockdown prevented tumor growth and angiogenesis and promoted apoptosis. Knockdown of CNPY2 in the HCT116 CRC cell line reversibly increased p53 activity. The p53 activation increased cyclin-dependent kinase inhibitor p21 and decreased cyclin-dependent kinase 2, thereby inhibiting tumor cell growth, inducing cell apoptosis, and reducing angiogenesis both in vitro and in vivo. CNPY2 may play a critical role in CRC development by enhancing cell proliferation, migration, and angiogenesis and by inhibiting apoptosis through negative regulation of the p53 pathway. Therefore, CNPY2 may represent a novel CRC therapeutic target and prognostic indicator. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    PubMed

    Chuang, Hui-Ching; Yang, Liang Peng; Fitzgerald, Alison L; Osman, Abdullah; Woo, Sang Hyeok; Myers, Jeffrey N; Skinner, Heath D

    2014-01-01

    TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  3. A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls.

    PubMed Central

    Jessen-Eller, Kathryn; Kreiling, Jill A; Begley, Gail S; Steele, Marjorie E; Walker, Charles W; Stephens, Raymond E; Reinisch, Carol L

    2002-01-01

    The cell-cycle checkpoint protein p53 both directs terminal differentiation and protects embryos from DNA damage. To study invertebrate p53 during early development, we identified three differentially expressed p53 family members (p53, p97, p120) in the surf clam, Spisula solidissima. In these mollusks, p53 and p97 occur in both embryonic and adult tissue, whereas p120 is exclusively embryonic. We sequenced, cloned, and characterized p120 cDNA. The predicted protein, p120, resembles p53 across all evolutionarily conserved regions and contains a C-terminal extension with a sterile alpha motif (SAM) as in p63 and p73. These vertebrate forms of p53 are required for normal inflammatory, epithelial, and neuronal development. Unlike clam p53 and p97, p120 mRNA and protein levels are temporally expressed in embryos, with mRNA levels decreasing with increasing p120 protein (R(2) = 0.97). Highest surf clam p120 mRNA levels coincide with the onset of neuronal growth. In earlier work we have shown that neuronal development is altered by exposure to polychlorinated biphenyls (PCBs), a neurotoxic environmental contaminant. In this study we show that PCBs differentially affect expression of the three surf clam p53 family members. p120 mRNA and protein are reduced the most and earliest in development, p97 protein shows a smaller and later reduction, and p53 protein levels do not change. For the first time we report that unlike p53 and p97, p120 is specifically embryonic and expressed in a time-dependent manner. Furthermore, p120 responds to PCBs by 48 hr when PCB-induced suppression of the serotonergic nervous system occurs. PMID:11940455

  4. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhendong, E-mail: zdyu@hotmail.com; Wang, Hao; Zhang, Libin

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrugmore » system.« less

  5. Human papillomavirus oncogenic E6 protein regulates human β-defensin 3 (hBD3) expression via the tumor suppressor protein p53

    PubMed Central

    Yue, Hong; Wang, Liming; Jin, Jessica; Ghosh, Santosh K.; Kawsar, Hameem I.; Zender, Chad; Androphy, Elliot J.; Weinberg, Aaron; McCormick, Thomas S.; Jin, Ge

    2016-01-01

    Human β-defensin-3 (hBD3) is an epithelial cell-derived innate immune regulatory molecule overexpressed in oral dysplastic lesions and fosters a tumor-promoting microenvironment. Expression of hBD3 is induced by the epidermal growth factor receptor signaling pathway. Here we describe a novel pathway through which the high-risk human papillomavirus type-16 (HPV-16) oncoprotein E6 induces hBD3 expression in mucosal keratinocytes. Ablation of E6 by siRNA induces the tumor suppressor p53 and diminishes hBD3 in HPV-16 positive CaSki cervical cancer cells and UM-SCC-104 head and neck cancer cells. Malignant cells in HPV-16-associated oropharyngeal cancer overexpress hBD3. HPV-16 E6 induces hBD3 mRNA expression, peptide production and gene promoter activity in mucosal keratinocytes. Reduction of cellular levels of p53 stimulates hBD3 expression, while activation of p53 by doxorubicin inhibits its expression in primary oral keratinocytes and CaSki cells, suggesting that p53 represses hBD3 expression. A p53 binding site in the hBD3 gene promoter has been identified by using electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP). In addition, the p63 protein isoform ΔNp63α, but not TAp63, stimulated transactivation of the hBD3 gene and was co-expressed with hBD3 in head and neck cancer specimens. Therefore, high-risk HPV E6 oncoproteins may stimulate hBD3 expression in tumor cells to facilitate tumorigenesis of HPV-associated head and neck cancer. PMID:27034006

  6. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity

    PubMed Central

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ. PMID:21911363

  7. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity.

    PubMed

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.

  8. Co-expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions.

    PubMed

    Ihling, C; Haendeler, J; Menzel, G; Hess, R D; Fraedrich, G; Schaefer, H E; Zeiher, A M

    1998-07-01

    . Thus, the fate of cells with p53 accumulation may depend on the interaction and the stoichiometry of the p53 and MDM2 proteins. Cells were indeed found with strong p53 accumulation and nuclear morphology typical for apoptosis and there were a few MIB1/Ki-67-positive cells with co-expression of MDM2, indicating a possible role for MDM2 in reversing the negative regulatory effects of p53 for cell cycle progression. The nuclear co-localization of p53 IR with MDM2 IR and the co-immunoprecipitation assay indicate the presence of p53-MDM2 complex formation in vivo in human atherosclerotic tissue. The destiny of individual p53 and MDM2-co-expressing cells either to undergo p53-dependent apoptosis or to re-enter the cycle of cell proliferation may depend on the relative ratios of the two proteins. p53 and MDM2 may therefore play an important role in regulating cellularity and inflammatory activity in human atherosclerotic plaques.

  9. Fusaric Acid Induces DNA Damage and Post-Translational Modifications of p53 in Human Hepatocellular Carcinoma (HepG2 ) Cells.

    PubMed

    Ghazi, Terisha; Nagiah, Savania; Tiloke, Charlette; Sheik Abdul, Naeem; Chuturgoon, Anil A

    2017-11-01

    Fusaric acid (FA), a common fungal contaminant of maize, is known to mediate toxicity in plants and animals; however, its mechanism of action is unclear. p53 is a tumor suppressor protein that is activated in response to cellular stress. The function of p53 is regulated by post-translational modifications-ubiquitination, phosphorylation, and acetylation. This study investigated a possible mechanism of FA induced toxicity in the human hepatocellular carcinoma (HepG 2 ) cell line. The effect of FA on DNA integrity and post-translational modifications of p53 were investigated. Methods included: (a) culture and treatment of HepG 2 cells with FA (IC 50 : 580.32 μM, 24 h); (b) comet assay (DNA damage); (c) Western blots (protein expression of p53, MDM2, p-Ser-15-p53, a-K382-p53, a-CBP (K1535)/p300 (K1499), HDAC1 and p-Ser-47-Sirt1); and (d) Hoechst 33342 assay (apoptosis analysis). FA caused DNA damage in HepG 2 cells relative to the control (P < 0.0001). FA decreased the protein expression of p53 (0.24-fold, P = 0.0004) and increased the expression of p-Ser-15-p53 (12.74-fold, P = 0.0126) and a-K382-p53 (2.24-fold, P = 0.0096). This occurred despite the significant decrease in the histone acetyltransferase, a-CBP (K1535)/p300 (K1499) (0.42-fold, P = 0.0023) and increase in the histone deacetylase, p-Ser-47-Sirt1 (1.22-fold, P = 0.0020). The expression of MDM2, a negative regulator of p53, was elevated in the FA treatment compared to the control (1.83-fold, P < 0.0001). FA also inhibited cell proliferation and induced apoptosis in HepG 2 cells as evidenced by the Hoechst assay. Together, these results indicate that FA is genotoxic and post-translationally modified p53 leading to HepG 2 cell death. J. Cell. Biochem. 118: 3866-3874, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Diagnostic value of progesterone receptor, p16, p53 and pHH3 expression in uterine atypical leiomyoma.

    PubMed

    Liang, Yun; Zhang, Xiaofei; Chen, Xiaoduan; Lü, Weiguo

    2015-01-01

    The differential diagnosis between atypical leiomyoma and leiomyosarcoma may be hard based on morphological criterion at times. It would be helpful to find out biomarkers that can be used to distinguish them. The aim of the study was to investigate the diagnostic value of progesterone receptor (PR), p16, p53 and pHH3 expression in a series of uterine smooth muscle tumors. Immunohistochemical expression of PR, p16, p53 and pHH3 was investigated on 32 atypical leiomyomas, 15 leiomyosarcomas and 15 usual leomyomas. The difference in expression was compared between atypical leiomyoma and other groups. The expression of PR, p16, and pHH3 was found significantly different between atypical leiomyomas and leiomyosarcomas, but lack of significant difference between atypical leiomyomas and usual leiomyomas. There was no significant difference with regard to p53 distribution among these uterine smooth muscle tumors. High p16, pHH3 expression and low PR expression preferred the diagnosis of leiomyosarcoma. The panel of antibodies used in this study is a useful complementary analysis in the assessment of problematic uterine smooth muscle tumors.

  11. Diagnostic value of progesterone receptor, p16, p53 and pHH3 expression in uterine atypical leiomyoma

    PubMed Central

    Liang, Yun; Zhang, Xiaofei; Chen, Xiaoduan; Lü, Weiguo

    2015-01-01

    The differential diagnosis between atypical leiomyoma and leiomyosarcoma may be hard based on morphological criterion at times. It would be helpful to find out biomarkers that can be used to distinguish them. The aim of the study was to investigate the diagnostic value of progesterone receptor (PR), p16, p53 and pHH3 expression in a series of uterine smooth muscle tumors. Immunohistochemical expression of PR, p16, p53 and pHH3 was investigated on 32 atypical leiomyomas, 15 leiomyosarcomas and 15 usual leomyomas. The difference in expression was compared between atypical leiomyoma and other groups. The expression of PR, p16, and pHH3 was found significantly different between atypical leiomyomas and leiomyosarcomas, but lack of significant difference between atypical leiomyomas and usual leiomyomas. There was no significant difference with regard to p53 distribution among these uterine smooth muscle tumors. High p16, pHH3 expression and low PR expression preferred the diagnosis of leiomyosarcoma. The panel of antibodies used in this study is a useful complementary analysis in the assessment of problematic uterine smooth muscle tumors. PMID:26261614

  12. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells

    PubMed Central

    Guha, Gunjan; Liang, Xiaobo; Kulesz-Martin, Molly F.; Mahmud, Taifo; Indra, Arup Kumar; Ganguli-Indra, Gitali

    2015-01-01

    Pactamycin, although putatively touted as a potent antitumor agent, has never been used as an anticancer drug due to its high cytotoxicity. In this study, we characterized the effects of two novel biosynthetically engineered analogs of pactamycin, de-6MSA-7-demethyl-7-deoxypactamycin (TM-025) and 7-demethyl-7-deoxypactamycin (TM-026), in head and neck squamous cell carcinoma (HNSCC) cell lines SCC25 and SCC104. Both TM-025 and TM-026 exert growth inhibitory effects on HNSCC cells by inhibiting cell proliferation. Interestingly, unlike their parent compound pactamycin, the analogs do not inhibit synthesis of nascent protein in a cell-based assay. Furthermore, they do not induce apoptosis or autophagy in a dose- or a time-dependent manner, but induce mild senescence in the tested cell lines. Cell cycle analysis demonstrated that both analogs significantly induce cell cycle arrest of the HNSCC cells at S-phase resulting in reduced accumulation of G2/M-phase cells. The pactamycin analogs induce expression of cell cycle regulatory proteins including master regulator p53, its downstream target p21Cip1/WAF1, p27kip21, p19, cyclin E, total and phospho Cdc2 (Tyr15) and Cdc25C. Besides, the analogs mildly reduce cyclin D1 expression without affecting expression of cyclin B, Cdk2 and Cdk4. Specific inhibition of p53 by pifithrin-α reduces the percentage of cells accumulated in S-phase, suggesting contribution of p53 to S-phase increase. Altogether, our results demonstrate that Pactamycin analogs TM-025 and TM-026 induce senescence and inhibit proliferation of HNSCC cells via accumulation in S-phase through possible contribution of p53. The two PCT analogs can be widely used as research tools for cell cycle inhibition studies in proliferating cancer cells with specific mechanisms of action. PMID:25938491

  13. Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status

    PubMed Central

    Mirjolet, J-F; Barberi-Heyob, M; Didelot, C; Peyrat, J-P; Abecassis, J; Millon, R; Merlin, J-L

    2000-01-01

    p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r= 0.880,P= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign PMID:11044365

  14. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6

    PubMed Central

    2010-01-01

    Background Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated

  15. p53 and PCNA Expression in Keratocystic Odontogenic Tumors Compared with Selected Odontogenic Cysts

    PubMed Central

    Seyedmajidi, Maryam; Nafarzadeh, Shima; Siadati, Sepideh; Shafaee, Shahryar; Bijani, Ali; Keshmiri, Nazanin

    2013-01-01

    p53 and PCNA expression in keratocystic odontogenic tumors compared with selected odontogenic cysts Summary: The aim of this study was to evaluate p53 and PCNA expression in different odontogenic lesions regarding their different clinical behaviors. Slices prepared from 94 paraffin-embedded tissue blocks (25 radicular cysts (RC), 23 dentigerous cysts (DC), 23 keratocystic odontogenic tumors (KCOT) and 23 calcifying cystic odontogenic tumors (CCOT)) were stained with p53 and PCNA antibodies using immunohistochemistry procedure. The highest level of p53 expression was in the basal layer of RC, and the highest level of PCNA expression was in the suprabasal layer of KCOT. The differences of p53 expression in basal and suprabasal layers as well as PCNA expression in the suprabasal layer were significant but there was no significant difference in PCNA expression in the basal layer of these lesions. The expression of p53 in the basal layer of RC was higher than in other cysts. This may be due to intensive inflammatory infiltration. Also, the high level of PCNA expression in the suprabasal layer of KCOT may justify its neoplastic nature and tendency to recurrence. KCOT and calcifying cystic odontogenic tumors did not show similar expression of studied biomarkers. PMID:24551811

  16. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication

    PubMed Central

    Singh, Shilpa; Vaughan, Catherine A.; Frum, Rebecca A.; Grossman, Steven R.; Deb, Sumitra

    2017-01-01

    Gain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency. We have shown that GOF p53 increases DNA replication origin firing, stabilizes replication forks, and promotes micronuclei formation, thus facilitating the proliferation of cells with genomic abnormalities. In contrast, absence or depletion of GOF p53 leads to decreased origin firing and a higher frequency of fork collapse in isogenic cells, explaining their poorer proliferation rate. Following genome-wide analyses utilizing ChIP-Seq and RNA-Seq, GOF p53–induced origin firing, micronuclei formation, and fork protection were traced to the ability of GOF p53 to transactivate cyclin A and CHK1. Highlighting the therapeutic potential of CHK1’s role in GOF p53 dependency, experiments in cell culture and mouse xenografts demonstrated that inhibition of CHK1 selectively blocked proliferation of cells and tumors expressing GOF p53. Our data suggest the possibility that checkpoint inhibitors could efficiently and selectively target cancers expressing GOF p53 alleles. PMID:28394262

  17. Positive expression of p53, c-erbB2 and MRP proteins is correlated with survival rates of NSCLC patients.

    PubMed

    Xu, Yujin; Wang, Liancong; Zheng, Xiao; Liu, Guan; Wang, Yuezhen; Lai, Xiaojing; Li, Jianqiang

    2013-05-01

    The incidence of lung cancer is one of the leading causes of mortality. This study aimed to investigate the prognostic and predictive importance of p53, c-erbB2 and multidrug resistance proteins (MRP) expression and its correlation with clinicopathological characteristics of patients with non-small cell lung cancer (NSCLC). Expression of p53, c-erbB2 and MRP proteins in 152 tumor samples from resected primary NSCLCs was detected by immunohistochemical staining. The correlation of proteins, survival and clinicopathological characteristics was investigated in 152 patients undergoing potentially curative surgery. The positive rates of p53, c-erbB2 and MRP expression were 53.9 (82/152), 44.1 (67/152) and 43.4% (66/152), respectively. Overall survival rates of patients were markedly correlated with the overexpression of p53, c-erbB2 and MRP proteins. One, 2- and 3-year survival rates of patients exhibiting a positive expression of these proteins were 72.6, 54.8 and 32.2%, respectively. These rates were lower compared with those of patients with a negative expression of these proteins (92.1, 78.5 and 63.4%) (P=0.02, 0.01 or 0.00, respectively). Results of Cox's regression analysis showed that c-erbB2 expression and cell differentiation were independent prognostic factors in patients with NSCLC. These findings suggest that the positive expression of p53, c-erbB2 and MRP proteins is correlated with the survival rates of NSCLC patients. Detection of positive p53, c-erbB2 and MRP expression may be a useful predictive indicator of prognosis. Positive c-erbB2 expression is an independent prognostic factor, with a potential to be used as a predictive indicator of chemotherapy efficacy in NSCLC patients.

  18. Phosphorylated Hsp27 activates ATM-dependent p53 signaling and mediates the resistance of MCF-7 cells to doxorubicin-induced apoptosis.

    PubMed

    Xu, Yimiao; Diao, Ying; Qi, Shimei; Pan, Xiaolong; Wang, Qi; Xin, Yinqiang; Cao, Xiang; Ruan, Jie; Zhao, Zhihui; Luo, Lan; Liu, Chang; Yin, Zhimin

    2013-05-01

    DNA damage activates p53 and its downstream target genes, which further leads to apoptosis or survival either by the cell cycle arrest or by DNA repair. In many tumors, the heat shock protein 27 (Hsp27) is expressed at high levels to provide protection against anticancer drugs. However, the roles of Hsp27 in p53-mediated cellular responses to DNA damage are controversial. Here, we investigated the interplay between the phosphorylation status of Hsp27 and p53 in kidney 293A (HEK293A) cells and found that over-expressing phosphorylated Hsp27 mimics (Hsp27-3D) activated p53/p21 in an ATM-dependent manner. In addition, incubation with doxorubicin (Dox), an anticancer drug, induced Hsp27 phosphorylation in human adenocarcinoma cells (MCF-7). In contrast, inhibition of Hsp27 phosphorylation retarded both p53 induction and p21 accumulation, and led to cell apoptosis. Furthermore, phosphorylated Hsp27 increased p53 nuclear importing and its downstream target gene expression such as p21 and MDM2, while de-phosphorylated Hsp27 impeded this procession. Taken together, our data suggest that Hsp27, in its phosphorylated or de-phosphorylated status, plays different roles in regulating p53 pathway and cell survival. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Effects of the Kava Chalcone Flavokawain A Differ in Bladder Cancer Cells with Wild-type versus Mutant p53

    PubMed Central

    Tang, Yaxiong; Simoneau, Anne R.; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin

    2010-01-01

    Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G1 arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2 and then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G2-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation and then led to a G2-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G2-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G2-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer. PMID:19138991

  20. Negative Regulation of Tumor Suppressor p53 Transcription in Breast Cancer Cells

    DTIC Science & Technology

    2003-07-01

    liu@icon.palo-alto.med.va.gov. myristate 13-acetate; LDL , low-density lipoprotein. 678 Suppression of p53 Gene Expression by OM $ OM, ng/mL: 0 0.1 1...different periods of times, and total RNA was isolated. Fig. 5 cells to 42.3% of control. Comparing the treated cells with shows that the level of...at the end of the treatment with the RNA isolation solution. Total RNA was isolated and 15 ug per sample was analyzed forp53 mRNA by Northern blot

  1. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wazer, D.E.; Chu, Qiuming; Liu, Xiao Long

    1994-04-01

    The causative factors leading to breast cancer are largely unknown. Increased incidence of breast cancer following diagnostic or therapeutic radiation suggests that radiation may contribute to mammary oncogenesis. This report describes the in vitro neoplastic transformation of a normal human mammary epithelial cell strain, 76N, by fractionated [gamma]-irradiation at a clinically used dose (30 Gy). The transformed cells (76R-30) were immortal, had reduced growth factor requirements, and produced tumors in nude mice. Remarkably, the 76R-30 cells completely lacked the p53 tumor suppressor protein. Loss of p53 was due to deletion of the gene on one allele and a 26-bp deletionmore » within the third intron on the second allele which resulted in abnormal splicing out of either the third or fourth exon from the mRNA. PCR with a mutation-specific primer showed that intron 3 mutation was present in irradiated cells before selection for immortal phenotype. 76R-30 cells did not exhibit G[sub 1] arrest in response to radiation, indicating a loss of p53-mediated function. Expression of the wild-type p53 gene in 76R-30 cells led to their growth inhibition. Thus, loss of p53 protein appears to have contributed to neoplastic transformation of these cells. This unique model should facilitate analyses of molecular mechanisms of radiation-induced breast cancer and allow identification of p53-regulated cellular genes in breast cells. 44 refs., 8 figs., 1 tab.« less

  2. INGN 201: Ad-p53, Ad5CMV-p53, adenoviral p53, p53 gene therapy--introgen, RPR/INGN 201.

    PubMed

    2007-01-01

    former trial) followed by a combination of chemo- and radiotherapy. In September 2003, INGN 201 was granted designation as a Fast Track Drug Product development programme by the FDA for prolonging survival and delaying time to disease progression in patients with recurrent, unresectable squamous cell carcinoma of the head and neck. Previously, in February 2003, INGN 201 received orphan drug designation from the FDA for head and neck cancer. Phase I trials in the US for the treatment of non-small-cell lung cancer have been completed. Sanofi-aventis (formerly Rhône-Poulenc Rorer Gencell) initiated phase II trials in the US, Europe and Canada for non-small-cell lung cancer. Intratumoral injection of RPR/INGN 201 in patients with recurrent glioblastomas was safe and resulted in expression of the p53 protein. Direct administration of RPR/INGN 201 to the lower airways of patients with bronchioalveolar cell lung carcinoma resulted in symptomatic improvement and improved lung function in some patients. In November 2003, according to a Clinical Trials Agreement between the Division of Cancer Treatment and Diagnosis (DCTD) of the National Cancer Institute (NCI) and Introgen, a 6-month phase I/II study with p53 gene therapy administered in the form of an oral rinse or mouthwash for patients with oral premalignancies has been initiated. This is the first trial to investigate the effect of this treatment on oral lesions that are at high risk for developing into full blown cancers. In September 2006, the EMEA granted orphan drug status to INGN 201 for the treatment of LFS, following Gendux's application for the designation. The company intends to provide the therapy on a compassionate use basis to qualifying patients in Europe.INGN 201 has been successfully used in the treatment of a LFS patient on a compassionate use basis under a protocol authorised by the FDA. Based on these interim findings, Introgen has decided to continue making the therapy available through a compassionate use

  3. The sirtuin 1/2 inhibitor tenovin-1 induces a nonlinear apoptosis-inducing factor-dependent cell death in a p53 null Ewing's sarcoma cell line.

    PubMed

    Marx, Christian; Marx-Blümel, Lisa; Lindig, Nora; Thierbach, René; Hoelzer, Doerte; Becker, Sabine; Wittig, Susan; Lehmann, Roland; Slevogt, Hortense; Heinzel, Thorsten; Wang, Zhao-Qi; Beck, James F; Sonnemann, Jürgen

    2018-06-01

    The sirtuin 1/2 inhibitor tenovin-1 activates p53 and may have potential in the management of cancer. Here, we investigated the responsiveness of Ewing's sarcoma cells to tenovin-1. We examined its effects in two Ewing's sarcoma cell lines with different p53 status, i.e. in p53 wild-type and p53 null cells. Effects were assessed by flow cytometric analyses of cell death, mitochondrial membrane depolarization and reactive oxygen species (ROS) generation, by caspase 3/7 activity measurement, by mRNA expression profiling and by immunoblotting. Tenovin-1 elicited caspase-mediated cell death in p53 wild-type cells, but caspase-independent cell death in p53 null cells. Remarkably, it induced a nonlinear concentration response in the latter: low concentrations of tenovin-1 were much more effective than were higher concentrations. Tenovin-1's effects in p53 null cells involved gene expression changes of Bcl-2 family members, mitochondrial membrane depolarization, nuclear translocation of apoptosis-inducing factor, ROS formation and DNA damage; all these effects followed a bell-shaped pattern. In conclusion, our results provide new insights into tenovin-1's mode of action by demonstrating that it can induce different pathways of cell death.

  4. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer

    PubMed Central

    Brighenti, E; Calabrese, C; Liguori, G; Giannone, F A; Trerè, D; Montanaro, L; Derenzini, M

    2014-01-01

    Chronic inflammation is an established risk factor for the onset of cancer, and the inflammatory cytokine IL-6 has a role in tumorigenesis by enhancing proliferation and hindering apoptosis. As factors stimulating proliferation also downregulate p53 expression by enhancing ribosome biogenesis, we hypothesized that IL-6 may cause similar changes in inflamed tissues, thus activating a mechanism that favors neoplastic transformation. Here, we showed that IL-6 downregulated the expression and activity of p53 in transformed and untransformed human cell lines. This was the consequence of IL-6-dependent stimulation of c-MYC mRNA translation, which was responsible for the upregulation of rRNA transcription. The enhanced rRNA transcription stimulated the MDM2-mediated proteasomal degradation of p53, by reducing the availability of ribosome proteins for MDM2 binding. The p53 downregulation induced the acquisition of cellular phenotypic changes characteristic of epithelial–mesenchymal transition, such as a reduced level of E-cadherin expression, increased cell invasiveness and a decreased response to cytotoxic stresses. We found that these changes also occurred in colon epithelial cells of patients with ulcerative colitis, a very representative example of chronic inflammation at high risk for tumor development. Histochemical and immunohistochemical analysis of colon biopsy samples showed an upregulation of ribosome biogenesis, a reduced expression of p53, together with a focal reduction or absence of E-cadherin expression in chronic colitis in comparison with normal mucosa samples. These changes disappeared after treatment with anti-inflammatory drugs. Taken together, the present results highlight a new mechanism that may link chronic inflammation to cancer, based on p53 downregulation, which is activated by the enhancement of rRNA transcription upon IL-6 exposure. PMID:24531714

  5. p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation.

    PubMed

    Huang, Y; Yu, P; Li, W; Ren, G; Roberts, A I; Cao, W; Zhang, X; Su, J; Chen, X; Chen, Q; Shou, P; Xu, C; Du, L; Lin, L; Xie, N; Zhang, L; Wang, Y; Shi, Y

    2014-07-17

    p53 is one of the most studied genes in cancer biology, and mutations in this gene may be predictive for the development of many types of cancer in humans and in animals. However, whether p53 mutations in non-tumor stromal cells can affect tumor development has received very little attention. In this study, we show that B16F0 melanoma cells form much larger tumors in p53-deficient mice than in wild-type mice, indicating a potential role of p53 deficiency in non-tumor cells of the microenvironment. As mesenchymal stem cells (MSCs) are attracted to tumors and form a major component of the tumor microenvironment, we examined the potential role of p53 status in MSCs in tumor development. We found that larger tumors resulted when B16F0 melanoma cells were co-injected with bone marrow MSCs derived from p53-deficient mice rather than MSCs from wild-type mice. Interestingly, this tumor-promoting effect by p53-deficient MSCs was not observed in non-obese diabetic/severe combined immunodeficiency mice, indicating the immune response has a critical role. Indeed, in the presence of inflammatory cytokines, p53-deficient MSCs expressed more inducible nitric oxide synthase (iNOS) and exhibited greater immunosuppressive capacity. Importantly, tumor promotion by p53-deficient MSCs was abolished by administration of S-methylisothiourea, an iNOS inhibitor. Therefore, our data demonstrate that p53 status in tumor stromal cells has a key role in tumor development by modulating immune responses.

  6. [The Expression of Pokemon in Endometrial Carcinoma Tissue and the Correlation with Mutant p53].

    PubMed

    Yi, Tian-jin; Wang, Ping

    2016-05-01

    To detect the expression of Pokemon in endometrial carcinoma (EC), to provide preliminary theoretical basis for clarifying pathogenesis and searching for effective targets. Ninety-eight cases of endometrial tissue paraffin specimens form July 2012 to July 2014 in West China Second University Hospital, Sichuan University, were collected, including: EC group, consisting of adenocarcinoma 23 cases, adenosquamous 12 cases, serous 3 cases, mucinous 11 cases and clear cell 9 cases, and control group, consisting of atypical hyperplasia endometrium 20 cases and normal endometrium 20 cases (secretory 10 cases, hyperplasia 10 cases). Immunohistochemistry was used to detect the expression of Pokemonin each section, analyzing the correlation of Pokemon expression with clinicopathologic characteristics and p53 expression. The positive rate of Pokemon in normal endometrium was 25% (5/20), significantly lower than that in atypical hyperplasia endometrium (60.0%, 12/20) and EC (93.1%, 54/58) (P < 0.05); the rate in type II was 97. 12% (34/35), significantly higher than that in type I (86.96%, 20/23) (P = 0.018). The positive rate of Pokemon in III-IV stage, type II and Ki-67 ≥ 50 EC tissue was much higher (P = 0.012, 0.023, 0.029). In type II EC tissue, the correlation index between Pokemon and p53 is 0.669 (P = 0.000). The over expression of Pokemon upregulates the expression of mutant p53, which may be one of the carcinogenesis modes in type II EC.

  7. The p53-Reactivating Small Molecule RITA Induces Senescence in Head and Neck Cancer Cells

    PubMed Central

    Chuang, Hui-Ching; Yang, Liang Peng; Fitzgerald, Alison L.; Osman, Abdullah; Woo, Sang Hyeok; Myers, Jeffrey N.; Skinner, Heath D.

    2014-01-01

    TP53 is the most commonly mutated gene in head and neck cancer (HNSCC), with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis), a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1) inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC. PMID:25119136

  8. RITA enhances chemosensivity of pre-B ALL cells to doxorubicin by inducing p53-dependent apoptosis.

    PubMed

    Kazemi, Ahmad; Safa, Majid; Shahbazi, Atefeh

    2011-07-01

    The use of low-molecular-weight, non-peptidic molecules that disrupt the interaction between the p53 tumor suppressor and its negative regulator MDM2 has provided a promising alternative for the treatment of different types of cancer. Here, we used small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) to sensitize leukemic NALM-6 cells to doxorubicin by upregulating p53 protein. RITA alone effectively inhibited NALM-6 cells viability in dose-dependent manner as measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay and induced apoptosis as evaluated by flow cytometry, whereas RITA in combination with doxorubicin enhanced NALM-6 cells to doxorubicin-sensitivity and promoted doxorubicin induced apoptosis. Levels of p53 protein and its proapoptotic target genes, quantified by western blot and real-time PCR respectively, showed that expression of p53 was significantly increased after RITA treatment. Using p53 inhibitors PFT-alpha and PFT-mu it was shown that p53-mediated apoptosis induced by RITA can be regulated by both p53-transcription-dependent and -independent pathways. Moreover, RITA-induced apoptosis was accompanied by the activation of caspase-3 and PARP cleavage. Therefore, exploiting synergistic effects between RITA and chemotherapeutics might be an effective clinical strategy for leukemia chemotherapy.

  9. Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1

    PubMed Central

    Hoang, Kimson; Ankney, John A.; Nguyen, Stephanie T.; Rushing, Amanda W.; Polakowski, Nicholas; Miotto, Benoit; Lemasson, Isabelle

    2016-01-01

    Adult T-cell leukemia (ATL) is an often fatal malignancy caused by infection with the complex retrovirus, human T-cell Leukemia Virus, type 1 (HTLV-1). In ATL patient samples, the tumor suppressor, p53, is infrequently mutated; however, it has been shown to be inactivated by the viral protein, Tax. Here, we show that another HTLV-1 protein, HBZ, represses p53 activity. In HCT116 p53+/+ cells treated with the DNA-damaging agent, etoposide, HBZ reduced p53-mediated activation of p21/CDKN1A and GADD45A expression, which was associated with a delay in G2 phase-arrest. These effects were attributed to direct inhibition of the histone acetyltransferase (HAT) activity of p300/CBP by HBZ, causing a reduction in p53 acetylation, which has be linked to decreased p53 activity. In addition, HBZ bound to, and inhibited the HAT activity of HBO1. Although HBO1 did not acetylate p53, it acted as a coactivator for p53 at the p21/CDKN1A promoter. Therefore, through interactions with two separate HAT proteins, HBZ impairs the ability of p53 to activate transcription. This mechanism may explain how p53 activity is restricted in ATL cells that do not express Tax due to modifications of the HTLV-1 provirus, which accounts for a majority of patient samples. PMID:26625199

  10. MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.

    PubMed

    Lagunas-Martínez, Alfredo; García-Villa, Enrique; Arellano-Gaytán, Magaly; Contreras-Ochoa, Carla O; Dimas-González, Jisela; López-Arellano, María E; Madrid-Marina, Vicente; Gariglio, Patricio

    2017-01-01

    The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

  11. DNA damage, p53, Ki-67 and COX-2 expression in rat tongue cells exposed to nandrolone decanoate.

    PubMed

    Pozzi, Renan; Fernandes, Kelly Rosseti; Foot Gomes de Moura, Carolina; Ferrari, Raquel Agnelli Mesquita; Fernandes, Kristianne Porta Santos; Chaves, Marcelo Donizeti; Renno, Ana Claudia Muniz; Ribeiro, Daniel Araki

    2013-05-01

    The objective of this article was to evaluate the impact potential of nandrolone decanoate on DNA damage, cellular regulatory proteins and cyclooxygenase (COX)-2 in oral mucosa cells of Wistar rats. A total of 40 rats were distributed into four groups. Two experimental groups were treated with nandrolone decanoate, at 5 mg/kg doses, subcutaneously, three times a week in two periods: 15 and 30 days. The remaining groups received only 0.9% saline subcutaneously, three times a week. To evaluate genetic damage, nandrolone decanoate at 15 mg/kg dose was exposed to 24 h. In the histopathological analysis, no remarkable morphological changes were observed in tongue tissue in all groups. Significant increase in immunoexpression of Ki-67, p53, COX-2 proteins was detected in the groups treated with nandrolone decanoate during 15 and 30 days, when compared to their respective controls. A positive correlation between immunoexpression of p53 and COX-2 protein was detected following nandrolone decanoate exposure. DNA damage was induced by nandrolone decanoate in oral mucosa cells at 15 mg/kg dose. Our results suggest that nandrolone decanoate was able to alter the expression of cell cycle-related proteins, as well as to induce genetic damage and COX-2 immunoexpression in tongue cells of Wistar rats.

  12. Influence of P53 on the radiotherapy response of hepatocellular carcinoma

    PubMed Central

    Gomes, Ana R.; Abrantes, Ana M.; Brito, Ana F.; Laranjo, Mafalda; Casalta-Lopes, João E.; Gonçalves, Ana C.; Sarmento-Ribeiro, Ana B.; Tralhão, José G.

    2015-01-01

    Background/Aims Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it has a poor prognosis and few therapeutic options. Radiotherapy is one of the most effective forms of cancer treatment, and P53 protein is one of the key molecules determining how a cell responds to radiotherapy. The aim of this study was to determine the therapeutic efficacy of iodine-131 in three human HCC cell lines. Methods Western blotting was used to measure P53 expression. The effects of radiotherapy with iodine-131 were assessed by using the clonogenic assay to evaluate cell survival. Flow cytometry was carried out to examine the effects of iodine-131 on cell death, oxidative stress, reduced intracellular glutathione expression, the mitochondrial membrane potential, and the cell cycle. Results The P53 protein was not expressed in Hep3B2.1-7 cells, was expressed at normal levels in HepG2 cells, and was overexpressed in HuH7 cells. P53 expression in the HuH7 and HepG2 cell lines increased after internal and external irradiation with iodine-131. Irradiation induced a decrease in cell survival and led to a decrease in cell viability in all of the cell lines studied, accompanied by cell death via late apoptosis/necrosis and necrosis. Irradiation with 131-iodine induced mostly cell-cycle arrest in the G0/G1 phase. Conclusions These results suggest that P53 plays a key role in the radiotherapy response of HCC. PMID:26527121

  13. Expression of AID, P53, and Mlh1 proteins in endoscopically resected differentiated-type early gastric cancer

    PubMed Central

    Takeda, Yohei; Yashima, Kazuo; Hayashi, Akihiro; Sasaki, Shuji; Kawaguchi, Koichiro; Harada, Kenichi; Murawaki, Yoshikazu; Ito, Hisao

    2012-01-01

    AIM: To analyze the expression of the tumor-related proteins in differentiated-type early gastric carcinoma (DEGC) samples. METHODS: Tumor specimens were obtained from 102 patients (75 males and 27 females) who had received an endoscopic tumor resection at Tottori University Hospital between 2007 and 2009. Ninety-one cancer samples corresponded to noninvasive or intramucosal carcinoma according to the Vienna classification system, and 11 samples were submucosal invasive carcinomas. All of the EGCs were histologically differentiated carcinomas. All patients were classified as having Helicobacter pylori (H. pylori) infections by endoscopic atrophic changes or by testing seropositive for H. pylori IgG. All of the samples were histopathologically classified as either tubular or papillary adenocarcinoma according to their structure. The immunohistochemical staining was performed in a blinded manner with respect to the clinical information. Two independent observers evaluated protein expression. All data were statistically analyzed then. RESULTS: The rates of aberrant activation-induced cytidine deaminase (AID) expression and P53 overexpression were both 34.3% in DEGCs. The expression of Mlh1 was lost in 18.6% of DEGCs. Aberrant AID expression was not significantly associated with P53 overexpression in DEGCs. However, AID expression was associated with the severity of mononuclear cell activity in the non-cancerous mucosa adjacent to the tumor (P = 0.064). The rate of P53 expression was significantly greater in flat or depressed tumors than in elevated tumors. The frequency of Mlh1 loss was significantly increased in distal tumors, elevated gross-type tumors, papillary histological-type tumors, and tumors with a severe degree of endoscopic atrophic gastritis (P < 0.05). CONCLUSION: Aberrant AID expression, P53 overexpression, and the loss of Mlh1 were all associated with clinicopathological features and gastric mucosal alterations in DEGCs. The aberrant expression of AID

  14. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling.

    PubMed

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek; Lee, Jong Eun

    2016-02-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia.

  15. TRIM25 enhances cell growth and cell survival by modulating p53 signals via interaction with G3BP2 in prostate cancer.

    PubMed

    Takayama, Ken-Ichi; Suzuki, Takashi; Tanaka, Tomoaki; Fujimura, Tetsuya; Takahashi, Satoru; Urano, Tomohiko; Ikeda, Kazuhiro; Inoue, Satoshi

    2018-04-01

    Prostate cancer growth is promoted by the gene regulatory action of androgen receptor (AR) and its downstream signals. The aberrant dysfunction of tumor suppressor p53 has an important role in the prognosis of cancer. We previously found that androgen treatments translocate p53 to the cytoplasm. The mechanism of this translocation depends on sumoylation of p53 by complex of SUMO E3 ligase RanBP2 with androgen-induced GTPase-activating protein-binding protein 2 (G3BP2). Here, we identified tripartite motif-containing protein 25 (TRIM25)/estrogen-responsive finger protein (Efp) as a novel interacting partner of G3BP2 protein complex. Then, we demonstrated that TRIM25 knockdown resulted in p53 downstream activation for cell cycle inhibition and apoptosis induction in LNCaP and 22Rv1 cells. In contrast, overexpression of TRIM25 promoted prostate cancer cell proliferation and inhibited apoptosis by docetaxel treatment in LNCaP cells. We observed that p53 activity was reduced by mechanism of G3BP2-mediated nuclear export in TRIM25-overexpressing prostate cancer cells. We also found TRIM25 is important for G3BP2/RanBP2-mediated p53 modification. Clinically, we newly demonstrated that TRIM25 is a prognostic factor for prostate cancer patients. Expression of TRIM25 is significantly associated with cytoplasmic p53 expression and G3BP2. Moreover, TRIM25 knockdown results in reduced tumor growth and increased p53 activity in the mouse xenograft model of prostate cancer. Thus, our findings show that overexpression of TRIM25 promoted prostate cancer cell proliferation and cell survival by modulating p53 nuclear export mechanism with G3BP2 interaction.

  16. Mechanical cell competition kills cells via induction of lethal p53 levels

    PubMed Central

    Wagstaff, Laura; Goschorska, Maja; Kozyrska, Kasia; Duclos, Guillaume; Kucinski, Iwo; Chessel, Anatole; Hampton-O'Neil, Lea; Bradshaw, Charles R.; Allen, George E.; Rawlins, Emma L.; Silberzan, Pascal; Carazo Salas, Rafael E.; Piddini, Eugenia

    2016-01-01

    Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete is poorly understood, but it is generally accepted that molecular exchange between cells signals elimination of unfit cells. Here we report an orthogonal mechanism of cell competition, whereby cells compete through mechanical insults. We show that MDCK cells silenced for the polarity gene scribble (scribKD) are hypersensitive to compaction, that interaction with wild-type cells causes their compaction and that crowding is sufficient for scribKD cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is necessary and sufficient for crowding hypersensitivity. Compaction, via activation of Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation, causing cell death. Thus, in addition to molecules, cells use mechanical means to compete. Given the involvement of p53, compaction hypersensitivity may be widespread among damaged cells and offers an additional route to eliminate unfit cells. PMID:27109213

  17. p53-dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent gamma-secretase complex.

    PubMed

    Pardossi-Piquard, Raphaëlle; Dunys, Julie; Giaime, Emilie; Guillot-Sestier, Marie-Victoire; St George-Hyslop, Peter; Checler, Frédéric; Alves da Costa, Cristine

    2009-04-01

    Nicastrin (NCT) is a component of the presenilin (PS)-dependent gamma-secretase complexes that liberate amyloid beta-peptides from the beta-Amyloid Precursor Protein. Several lines of evidence indicate that the members of these complexes could also contribute to the control of cell death. Here we show that over-expression of NCT increases the viability of human embryonic kidney (HEK293) cells and decreases staurosporine (STS)- and thapsigargin (TPS)-induced caspase-3 activation in various cell lines from human and neuronal origins by Akt-dependent pathway. NCT lowers p53 expression, transcriptional activity and promoter transactivation and reduces p53 phosphorylation. NCT-associated protection against STS-stimulated cell death was completely abolished by p53 deficiency. Conversely, the depletion of NCT drastically enhances STS-induced caspase-3 activation and p53 pathway and favored p53 nuclear translocation. We examined whether NCT protective function depends on PS-dependent gamma-secretase activity. First, a 29-amino acid deletion known to reduce NCT-dependent amyloid beta-peptide production did not affect NCT-associated protective phenotype. Second, NCT still reduces STS-induced caspase-3 activation in fibroblasts lacking PS1 and PS2. Third, the gamma-secretase inhibitor DFK167 did not affect NCT-mediated reduction of p53 activity. Altogether, our study indicates that NCT controls cell death via phosphoinositide 3-kinase/Akt and p53-dependent pathways and that this function remains independent of the activity and molecular integrity of the gamma-secretase complexes.

  18. Andrographolide induces degradation of mutant p53 via activation of Hsp70.

    PubMed

    Sato, Hirofumi; Hiraki, Masatsugu; Namba, Takushi; Egawa, Noriyuki; Baba, Koichi; Tanaka, Tomokazu; Noshiro, Hirokazu

    2018-05-22

    The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.

  19. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF).

    PubMed

    Tan, B S; Tiong, K H; Choo, H L; Chung, F Fei-Lei; Hii, L-W; Tan, S H; Yap, I K S; Pani, S; Khor, N T W; Wong, S F; Rosli, R; Cheong, S-K; Leong, C-O

    2015-07-16

    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.

  20. Interferon-α (IFN-α) suppresses HTLV-1 gene expression and cell cycling, while IFN-α combined with zidovudin induces p53 signaling and apoptosis in HTLV-1-infected cells

    PubMed Central

    2013-01-01

    Background Human T-cell leukemia virus type-1 (HTLV-1) is the causative retrovirus of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 gene expression is maintained at low levels in vivo by unknown mechanisms. A combination therapy of interferon-α (IFN-α) and zidovudin (AZT) shows therapeutic effects in ATL patients, although its mechanism is also obscure. We previously found that viral gene expression in IL-2-dependent HTLV-1-infected T-cells (ILTs) derived from ATL patients was markedly suppressed by stromal cells through a type I IFN response. Here, we investigated the effects of IFN-α with or without AZT on viral gene expression and cell growth in ILTs. Results ILTs expressed variable but lower amounts of HTLV-1 Tax protein than HTLV-1-transformed HUT102 cells. Following the addition of IFN-α, the amounts of HTLV-1 p19 in the supernatants of these cells decreased in three days, while HTLV-1 gene expression decreased only in ILTs but not HUT102 cells. IFN-α also suppressed the spontaneous HTLV-1 induction in primary ATL cells cultured for 24 h. A time course study using ILTs revealed that the levels of intracellular Tax proteins decreased in the first 24 h after addition of IFN-α, before the reduction in HTLV-1 mRNA levels. The initial decreases of Tax protein following IFN-α treatment were observed in 6 of 7 ILT lines tested, although the reduction rates varied among ILT lines. An RNA-dependent protein kinase (PKR)-inhibitor reversed IFN-mediated suppression of Tax in ILTs. IFN-α also induced cell cycle arrest at the G0/G1 phase and suppressed NF-κB activities in these cells. AZT alone did not affect HTLV-1 gene expression, cell viability or NF-κB activities. AZT combined with IFN-α markedly induced cell apoptosis associated with phosphorylation of p53 and induction of p53-responsive genes in ILTs. Conclusions IFN-α suppressed HTLV-1 gene expression at least through a PKR

  1. NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription.

    PubMed

    Benatti, Paolo; Basile, Valentina; Dolfini, Diletta; Belluti, Silvia; Tomei, Margherita; Imbriano, Carol

    2016-07-19

    The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.

  2. miR-300 regulates cellular radiosensitivity through targeting p53 and apaf1 in human lung cancer cells.

    PubMed

    He, Jinpeng; Feng, Xiu; Hua, Junrui; Wei, Li; Lu, Zhiwei; Wei, Wenjun; Cai, Hui; Wang, Bing; Shi, Wengui; Ding, Nan; Li, He; Zhang, Yanan; Wang, Jufang

    2017-10-18

    microRNAs (miRNAs) play a crucial role in mediation of the cellular sensitivity to ionizing radiation (IR). Previous studies revealed that miR-300 was involved in the cellular response to IR or chemotherapy drug. However, whether miR-300 could regulate the DNA damage responses induced by extrinsic genotoxic stress in human lung cancer and the underlying mechanism remain unknown. In this study, the expression of miR-300 was examined in lung cancer cells treated with IR, and the effects of miR-300 on DNA damage repair, cell cycle arrest, apoptosis and senescence induced by IR were investigated. It was found that IR induced upregulation of endogenous miR-300, and ectopic expression of miR-300 by transfected with miR-300 mimics not only greatly enhanced the cellular DNA damage repair ability but also substantially abrogated the G2 cell cycle arrest and apoptosis induced by IR. Bioinformatic analysis predicted that p53 and apaf1 were potential targets of miR-300, and the luciferase reporter assay showed that miR-300 significantly suppressed the luciferase activity through binding to the 3'-UTR of p53 or apaf1 mRNA. In addition, overexpression of miR-300 significantly reduced p53/apaf1 and/or IR-induced p53/apaf1 protein expression levels. Flow cytomertry analysis and colony formation assay showed that miR-300 desensitized lung cancer cells to IR by suppressing p53-dependent G2 cell cycle arrest, apoptosis and senescence. These data demonstrate that miR-300 regulates the cellular sensitivity to IR through targeting p53 and apaf1 in lung cancer cells.

  3. Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine.

    PubMed

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.

  4. Tyrosinase Overexpression Promotes ATM-Dependent p53 Phosphorylation by Quercetin and Sensitizes Melanoma Cells to Dacarbazine

    PubMed Central

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; H. Limesand, Kirsten; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 μM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 μM). Both pcDNA3 and Tyr DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase. PMID:18791269

  5. Abrogation of p53 by its antisense in MCF-7 breast carcinoma cells increases cyclin D1 via activation of Akt and promotion of cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Rishi Raj; Kumari, Ratna; Upadhyay, Ankur Kumar

    2007-11-15

    The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expressionmore » levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.« less

  6. 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways

    PubMed Central

    Liu, Man; Huang, Guoren; Wang, Thomas T.Y.; Sun, Xiangjun; Yu, Liangli (Lucy)

    2016-01-01

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing induced food contaminants with nephrotoxicity but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD esters using 3-MCPD 1-palmitate (MPE) as a probe compound in Sprague Dawley rats. Microarray analysis of the kidney from the Sprague Dawley rats treated with MPE, using Gene Ontology categories and KEGG pathways, revealed that MPE altered mRNA expressions of the genes involved in the mitogen-activated protein kinase (JNK and ERK), p53, and apoptotic signal transduction pathways. The changes in the mRNA expressions were confirmed by qRT-PCR and Western blot analyses and were consistent with the induction of tubular cell apoptosis as determined by histopathological, TUNEL, and immunohistochemistry analyses in the kidneys of the Sprague Dawley rats. Additionally, p53 knockout attenuated the apoptosis, and the apoptosis-related protein bax expression and cleaved caspase-3 activation induced by MPE in the p53 knockout C57BL/6 mice, whereas JNK inhibitor SP600125 but not ERK inhibitor U0126 inhibited MPE-induced apoptosis, supporting the conclusion that JNK/p53 might play a critical role in the tubular cell apoptosis induced by MPE and other 3-MCPD fatty acid esters. PMID:27008853

  7. Increased Arf/p53 activity in stem cells, aging and cancer.

    PubMed

    Carrasco-Garcia, Estefania; Moreno, Manuel; Moreno-Cugnon, Leire; Matheu, Ander

    2017-04-01

    Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti-aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age-associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. The silence of p66(Shc) in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway.

    PubMed

    Zhang, Ling; Zhu, Shengtao; Shi, Xuesen; Sha, Weihong

    2015-01-01

    Colon cancer is the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. The previous studies demonstrated that p66(Shc) protein, a member of Shc family, is highly expressed in colon cancer cells, but the role of p66(Shc) in the progress of colon cancer still unknown. In this study, we found that p66(Shc) highly expressed in colon cancer tissue and colon cancer cell line SW620 cells, HCT8 cells, HCT116 cells and CaCO2 cells. The silence of p66(Shc) in HCT8 cells reduced the proliferation and accelerated the apoptosis, in addition, the expression of pro-apoptotic proteins caspase-3, caspase-9, Bax was enhanced and the expression of anti-apoptotic protein Bcl-2 was declined. Moreover, the cell cycle arrest in G0/G1 phase after HCT8 cells treated with p66(Shc) siRNA. Furthermore, after HCT8 cells treated with p66(Shc) siRNA, the phosphorylation of PI3K and AKT was significantly suppressed, and the expression of Mdm-2, a downstream of AKT, was obviously prohibited, while the expression of p53 was enhanced. These results indicate that the silence of p66(Shc) in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway, it may provide a promising approach to prevent the progress of colon cancer cell.

  9. p53 regulates the mevalonate pathway in human glioblastoma multiforme

    PubMed Central

    Laezza, C; D'Alessandro, A; Di Croce, L; Picardi, P; Ciaglia, E; Pisanti, S; Malfitano, A M; Comegna, M; Faraonio, R; Gazzerro, P; Bifulco, M

    2015-01-01

    The mevalonate (MVA) pathway is an important metabolic pathway implicated in multiple aspects of tumorigenesis. In this study, we provided evidence that p53 induces the expression of a group of enzymes of the MVA pathway including 3′-hydroxy-3′-methylglutaryl-coenzyme A reductase, MVA kinase, farnesyl diphosphate synthase and farnesyl diphosphate farnesyl transferase 1, in the human glioblastoma multiforme cell line, U343 cells, and in normal human astrocytes, NHAs. Genetic and pharmacologic perturbation of p53 directly influences the expression of these genes. Furthermore, p53 is recruited to the gene promoters in designated p53-responsive elements, thereby increasing their transcription. Such effect was abolished by site-directed mutagenesis in the p53-responsive element of promoter of the genes. These findings highlight another aspect of p53 functions unrelated to tumor suppression and suggest p53 as a novel regulator of the MVA pathway providing insight into the role of this pathway in cancer progression. PMID:26469958

  10. The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53.

    PubMed

    Madan, Esha; Parker, Taylor M; Bauer, Matthias R; Dhiman, Alisha; Pelham, Christopher J; Nagane, Masaki; Kuppusamy, M Lakshmi; Holmes, Matti; Holmes, Thomas R; Shaik, Kranti; Shee, Kevin; Kiparoidze, Salome; Smith, Sean D; Park, Yu-Soon A; Gomm, Jennifer J; Jones, Louise J; Tomás, Ana R; Cunha, Ana C; Selvendiran, Karuppaiyah; Hansen, Laura A; Fersht, Alan R; Hideg, Kálmán; Gogna, Rajan; Kuppusamy, Periannan

    2018-03-23

    p53 is an important tumor-suppressor protein that is mutated in more than 50% of cancers. Strategies for restoring normal p53 function are complicated by the oncogenic properties of mutant p53 and have not met with clinical success. To counteract mutant p53 activity, a variety of drugs with the potential to reconvert mutant p53 to an active wildtype form have been developed. However, these drugs are associated with various negative effects such as cellular toxicity, nonspecific binding to other proteins, and inability to induce a wildtype p53 response in cancer tissue. Here, we report on the effects of a curcumin analog, HO-3867, on p53 activity in cancer cells from different origins. We found that HO-3867 covalently binds to mutant p53, initiates a wildtype p53-like anticancer genetic response, is exclusively cytotoxic toward cancer cells, and exhibits high anticancer efficacy in tumor models. In conclusion, HO-3867 is a p53 mutant-reactivating drug with high clinical anticancer potential. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Inactivation of p53 in pterygium influence miR-200a expression resulting in ZEB1/ZEB2 up-regulation and EMT processing.

    PubMed

    Wu, Chueh-Wei; Peng, Mei-Ling; Yeh, Ken-Tu; Tsai, Yi-Yu; Chiang, Chun-Chi; Cheng, Ya-Wen

    2016-05-01

    Loss of p53 function has been linked to progression of pterygium. MiR-200a is known to be controlled by p53. Here, we hypothesize that expression of miR-200a and downstream ZEB1/ZEB2 genes are regulated epithelial-mesenchymal transition (EMT) involved in the pathogenesis and recurrence of pterygium. For this study, 120 primary pterygial samples were collected. Immunohistochemistry and real-time RT-PCR were performed to determine the expression of p53, p53 down-stream EMT associated protein and miR-200a. The molecular correlation of p53, miR-200a and downstream genes were confirmed using primary pterygium cells (PECs). Expression of miR-200a in pterygium tissues was significantly lower than in conjunctiva controls (p = 0.015). Up-regulated miR-200a levels were positively correlated with and p53 protein expression (p < 0.001). The miR-200a downstream ZEB1/ZEB1 protein expression were negative correlated with miR-200a expression. Cell model studies demonstrated that miR-200a controlled the EMT of PECs through up-regulated ZEB1, ZEB2 and Snail gene expression. Our study demonstrated that inactivation of p53 in pterygium may influence miR-200a, resulting in ZEB1/ZEB2 up-regulation and EMT processing of pterygium. Therefore, we suggest that expression of miR-200a play an important role in EMT processing and recurrence of pterygium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hydroquinone induces TK6 cell growth arrest and apoptosis through PARP-1/p53 regulatory pathway.

    PubMed

    Luo, Hao; Liang, Hairong; Chen, Jiajia; Xu, Yongchun; Chen, Yuting; Xu, Longmei; Yun, Lin; Liu, Jiaxian; Yang, Hui; Liu, Linhua; Peng, Jianming; Liu, Zhidong; Tang, Lin; Chen, Wen; Tang, Huanwen

    2017-09-01

    Hydroquinone (HQ), one of the most important metabolites derived from benzene, induces cell cycle arrest and apoptosis. Poly(ADP-ribose) polymerase-1 (PARP-1) participates in various biological processes, including DNA repair and cell cycle regulation. To explore whether PARP-1 regulatory pathway mediated HQ-induced cell cycle arrest and apoptosis, we assessed the effect of PARP-1 suppression on induction of apoptosis analyzed by FACSCalibur flow cytometer in PARP-1 deficientTK6 cells (TK6-shPARP-1). We observed an increase in the fraction of cells in G1 phase by 7.6% and increased apoptosis by 4.5% in PARP-1-deficient TK6 cells (TK6-shPARP-1) compared to those negative control cells (TK6-shNC cells) in response to HQ treatment. Furthermore, HQ might activate the extrinsic pathways of apoptosis via up-regulation of Fas expression, followed by caspase-3 activation, apoptotic body, and sub G1 accumulation. Enhanced p53 expression was observed in TK6-shPARP-1 cells than in TK6-shNC cells after HQ treatment. In contrast, Fas expression was lower in TK6-shPARP-1 cells than in TK6-shNC cells. Therefore, we conclude that HQ may activate apoptotic signals via Fas up-regulation and p53-mediated apoptosis in TK6-shNC cells. The reduction of PARP-1 expression further intensified up-regulation of p53 in TK6-shPARP-1 cells, resulting in an increased G1→S phase cell arrest and apoptosis in TK6-shPARP-1 cells compared to TK6-shNC cells. © 2017 Wiley Periodicals, Inc.

  13. C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells.

    PubMed

    Fahrer, Jörg; Schweitzer, Brigitte; Fiedler, Katja; Langer, Torben; Gierschik, Peter; Barth, Holger

    2013-04-17

    We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.

  14. Cell cycle regulation and apoptosis mediated by p53 in response to hypoxia in hepatopancreas of the white shrimp Litopenaeus vannamei.

    PubMed

    Nuñez-Hernandez, Dahlia M; Felix-Portillo, Monserrath; Peregrino-Uriarte, Alma B; Yepiz-Plascencia, Gloria

    2018-01-01

    Although hypoxic aquatic environments cause negative effects on shrimp, these animals can withstand somewhat hypoxia, but the cellular mechanisms underlying this capacity are still poorly understood. In humans, mild hypoxia causes the induction of many proteins to allow cell survival. In contrast, apoptosis is induced during severe hypoxia leading to cell death. p53 is a key transcription factor that determines cells fate towards cell cycle arrest or induction of apoptosis in humans. The aim of this work was to study the role of p53 in cell cycle regulation and apoptosis in response to hypoxia in hepatopancreas of the white shrimp Litopenaeus vannamei. p53 was silenced by RNAi and afterwards the shrimp were exposed to hypoxia. Cdk-2 was used as indicator of cell cycle progression while caspase-3 expression and caspase activity were analyzed as indicators of apoptosis. p53 levels in hepatopancreas were significantly higher at 48 h after hypoxic treatment. Increased expression levels of Cdk-2 were found in p53-silenced shrimp after 24 and 48 h in the normoxic treatments as well as 48 h after hypoxia, indicating a possible role of p53 in cell cycle regulation. In response to hypoxia, unsilenced shrimp showed an increase in caspase-3 expression levels, however an increase was also observed in caspase activity at 24 h of normoxic conditions in p53-silenced shrimps. Taken together these results indicate the involvement of p53 in regulation of cell cycle and apoptosis in the white shrimp in response to hypoxia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A protein folding molecular imaging biosensor monitors the effects of drugs that restore mutant p53 structure and its downstream function in glioblastoma cells

    PubMed Central

    Paulmurugan, Ramasamy; Afjei, Rayhaneh; Sekar, Thillai V.; Babikir, Husam A.; Massoud, Tarik F.

    2018-01-01

    Misfolding mutations in the DNA-binding domain of p53 alter its conformation, affecting the efficiency with which it binds to chromatin to regulate target gene expression and cell cycle checkpoint functions in many cancers, including glioblastoma. Small molecule drugs that recover misfolded p53 structure and function may improve chemotherapy by activating p53-mediated senescence. We constructed and optimized a split Renilla luciferase (RLUC) complementation molecular biosensor (NRLUC-p53-CRLUC) to determine small molecule-meditated folding changes in p53 protein. After initial evaluation of the biosensor in three different cells lines, we engineered endogenously p53P98L mutant (i.e. not affecting the DNA-binding domain) Ln229 glioblastoma cells, to express the biosensor containing one of four different p53 proteins: p53wt, p53Y220C, p53G245S and p53R282W. We evaluated the consequent phenotypic changes in these four variant cells as well as the parental cells after exposure to PhiKan083 and SCH529074, drugs previously reported to activate mutant p53 folding. Specifically, we measured induced RLUC complementation and consequent therapeutic response. Upon stable transduction with the p53 biosensors, we demonstrated that these originally p53P98L Ln229 cells had acquired p53 cellular phenotypes representative of each p53 protein expressed within the biosensor fusion protein. In these engineered variants we found a differential drug response when treated with doxorubicin and temozolomide, either independently or in combination with PhiKan083 or SCH529074. We thus developed a molecular imaging complementation biosensor that mimics endogenous p53 function for use in future applications to screen novel or repurposed drugs that counter the effects of misfolding mutations responsible for oncogenic structural changes in p53. PMID:29765555

  16. p53 targets chromatin structure alteration to repress alpha-fetoprotein gene expression.

    PubMed

    Ogden, S K; Lee, K C; Wernke-Dollries, K; Stratton, S A; Aronow, B; Barton, M C

    2001-11-09

    Many of the functions ascribed to p53 tumor suppressor protein are mediated through transcription regulation. We have shown that p53 represses hepatic-specific alpha-fetoprotein (AFP) gene expression by direct interaction with a composite HNF-3/p53 DNA binding element. Using solid-phase, chromatin-assembled AFP DNA templates and analysis of chromatin structure and transcription in vitro, we find that p53 binds DNA and alters chromatin structure at the AFP core promoter to regulate transcription. Chromatin assembled in the presence of hepatoma extracts is activated for AFP transcription with an open, accessible core promoter structure. Distal (-850) binding of p53 during chromatin assembly, but not post-assembly, reverses transcription activation concomitant with promoter inaccessibility to restriction enzyme digestion. Inhibition of histone deacetylase activity by trichostatin-A (TSA) addition, prior to and during chromatin assembly, activated chromatin transcription in parallel with increased core promoter accessibility. Chromatin immunoprecipitation analyses showed increased H3 and H4 acetylated histones at the core promoter in the presence of TSA, while histone acetylation remained unchanged at the site of distal p53 binding. Our data reveal that p53 targets chromatin structure alteration at the core promoter, independently of effects on histone acetylation, to establish repressed AFP gene expression.

  17. Inhibition of SIRT1 Catalytic Activity Increases p53 Acetylation but Does Not Alter Cell Survival following DNA Damage

    PubMed Central

    Solomon, Jonathan M.; Pasupuleti, Rao; Xu, Lei; McDonagh, Thomas; Curtis, Rory; DiStefano, Peter S.; Huber, L. Julie

    2006-01-01

    Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines. Significantly, inhibition of SIRT1 catalytic activity by EX-527 had no effect on cell growth, viability, or p53-controlled gene expression in cells treated with etoposide. Acetyl-p53 was also increased by the histone deacetylase (HDAC) class I/II inhibitor trichostatin A (TSA). EX-527 and TSA acted synergistically to increase acetyl-p53 levels, confirming that p53 acetylation is regulated by both SIRT1 and HDACs. While TSA alone reduced cell survival after DNA damage, the combination of EX-527 and TSA had no further effect on cell viability and growth. These results show that, although SIRT1 deacetylates p53, this does not play a role in cell survival following DNA damage in certain cell lines and primary human mammary epithelial cells. PMID:16354677

  18. Histological spectrum of ependymomas and correlation of p53 and Ki-67 expression with ependymoma grade and subtype.

    PubMed

    Suri, Vaishali S; Tatke, Medha; Singh, Daljit; Sharma, Ajay

    2004-01-01

    Clinical and histological criteria for ependymoma prognosis are well recognized. Recently few studies have been done based on Immunohistochemistry for prognostication of these tumours. In this study we have correlated the histological spectrum with immmunoexpression of p53 and Ki67 in these tumors. To know the incidence of ependymomas; study their morphological spectrum and to evaluate expression of P53 and Ki 67 in different morphological subtypes. A retrospective study was preformed on 70 ependymomas received in a period between 1994 and 2001. Entire tissue received was processed for routine paraffin embedded H&E stained sections. Immunocytochemistry was performed using antibodies to GFAP, EMA, Pancytokeratin and synaptophysin, to differentiate papillary ependymoma from choroid plexus papilloma; clear cell ependymoma from oligodendroglioma and central neurocytoma; ependymoblastoma from other embryonal tumours. p53 and Ki-67 immunohistochemistry was performed to correlate their expression with various tumour grades and subtypes. There were 3 cases (4.2%) of Grade I ependymoma (2 cases of myxopapillary ependymoma and 1 case of subependymoma); 57 cases (81.5%) of ependymoma grade II (43 of these were of classical variety, 11 of clear cell ependymoma, 2 of papillary and 1 case of cellular ependymoma). There were 9 cases (12.8%) of anaplastic ependymoma (one of these was a clear cell ependymoma and 1 case (1.5%) of ependymoblastoma p53 and Ki67 indices can be used in routine diagnostic laboratories to supplement the tumor grade on histology and more studies with follow up should be performed to analyse the prognosis of different subtypes. The expression of Ki 67 and p53 was significantly higher in anaplastic ependymomas. 4 out of 11 cases of clear cell ependymomas showed higher Ki 67 indices as compared to classical grade II ependymomas, thus further highlighting the importance of differentiating the various subtypes.

  19. Epithelial PIK3R1 (p85) and TP53 Regulate Survivin Expression during Adaptation to Ileocecal Resection.

    PubMed

    Cohran, Valeria; Managlia, Elizabeth; Bradford, Emily M; Goretsky, Tatiana; Li, Ting; Katzman, Rebecca B; Cheresh, Paul; Brown, Jeffrey B; Hawkins, Jennifer; Liu, Shirley X L; De Plaen, Isabelle G; Weitkamp, Jörn-Hendrik; Helmrath, Michael; Zhang, Zheng; Barrett, Terrence A

    2016-07-01

    Intestinal adaptation to small-bowel resection (SBR) after necrotizing enterocolitis expands absorptive surface areas and promotes enteral autonomy. Survivin increases proliferation and blunts apoptosis. The current study examines survivin in intestinal epithelial cells after ileocecal resection. Wild-type and epithelial Pik3r1 (p85α)-deficient mice underwent sham surgery or 30% resection. RNA and protein were isolated from small bowel to determine levels of β-catenin target gene expression, activated caspase-3, survivin, p85α, and Trp53. Healthy and post-resection human infant small-bowel sections were analyzed for survivin, Ki-67, and TP53 by immunohistochemistry. Five days after ileocecal resection, epithelial levels of survivin increased relative to sham-operated on mice, which correlated with reduced cleaved caspase-3, p85α, and Trp53. At baseline, p85α-deficient intestinal epithelial cells had less Trp53 and more survivin, and relative responses to resection were blunted compared with wild-type. In infant small bowel, survivin in transit amplifying cells increased 71% after SBR. Resection increased proliferation and decreased numbers of TP53-positive epithelial cells. Data suggest that ileocecal resection reduces p85α, which lowers TP53 activation and releases survivin promoter repression. The subsequent increase in survivin among transit amplifying cells promotes epithelial cell proliferation and lengthens crypts. These findings suggest that SBR reduces p85α and TP53, which increases survivin and intestinal epithelial cell expansion during therapeutic adaptation in patients with short bowel syndrome. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Dynamic expression of the p53 family members p63 and p73 in the mouse and human telencephalon during development and in adulthood.

    PubMed

    Hernández-Acosta, N Carolina; Cabrera-Socorro, Alfredo; Morlans, Mercedes Pueyo; Delgado, Francisco J González; Suárez-Solá, M Luisa; Sottocornola, Roberta; Lu, Xin; González-Gómez, Miriam; Meyer, Gundela

    2011-02-04

    p63 and p73, family members of the tumor suppressor p53, are critically involved in the life and death of mammalian cells. They display high homology and may act in concert. The p73 gene is relevant for brain development, and p73-deficient mice display important malformations of the telencephalon. In turn, p63 is essential for the development of stratified epithelia and may also play a part in neuronal survival and aging. We show here that p63 and p73 are dynamically expressed in the embryonic and adult mouse and human telencephalon. During embryonic stages, Cajal-Retzius cells derived from the cortical hem co-express p73 and p63. Comparison of the brain phenotypes of p63- and p73- deficient mice shows that only the loss of p73 function leads to the loss of Cajal-Retzius cells, whereas p63 is apparently not essential for brain development and Cajal-Retzius cell formation. In postnatal mice, p53, p63, and p73 are present in cells of the subventricular zone (SVZ) of the lateral ventricle, a site of continued neurogenesis. The neurogenetic niche is reduced in size in p73-deficient mice, and the numbers of young neurons near the ventricular wall, marked with doublecortin, Tbr1 and calretinin, are dramatically decreased, suggesting that p73 is important for SVZ proliferation. In contrast to their restricted expression during brain development, p73 and p63 are widely detected in pyramidal neurons of the adult human cortex and hippocampus at protein and mRNA levels, pointing to a role of both genes in neuronal maintenance in adulthood. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. EBNA3C regulates p53 through induction of Aurora kinase B

    PubMed Central

    Jha, Hem C.; Yang, Karren; El-Naccache, Darine W.; Sun, Zhiguo; Robertson, Erle S.

    2015-01-01

    In multicellular organisms p53 maintains genomic integrity through activation of DNA repair, and apoptosis. EBNA3C can down regulate p53 transcriptional activity. Aurora kinase (AK) B phosphorylates p53, which leads to degradation of p53. Aberrant expression of AK-B is a hallmark of numerous human cancers. Therefore changes in the activities of p53 due to AK-B and EBNA3C expression is important for understanding EBV-mediated cell transformation. Here we show that the activities of p53 and its homolog p73 are dysregulated in EBV infected primary cells which can contribute to increased cell transformation. Further, we showed that the ETS-1 binding site is crucial for EBNA3C-mediated up-regulation of AK-B transcription. Further, we determined the Ser 215 residue of p53 is critical for functional regulation by AK-B and EBNA3C and that the kinase domain of AK-B which includes amino acid residues 106, 111 and 205 was important for p53 regulation. AK-B with a mutation at residue 207 was functionally similar to wild type AK-B in terms of its kinase activities and knockdown of AK-B led to enhanced p73 expression independent of p53. This study explores an additional mechanism by which p53 is regulated by AK-B and EBNA3C contributing to EBV-induced B-cell transformation. PMID:25691063

  2. Detection of p53 mutations in proliferating vascular cells in glioblastoma multiforme.

    PubMed

    Kawasoe, Takuma; Takeshima, Hideo; Yamashita, Shinji; Mizuguchi, Sohei; Fukushima, Tsuyoshi; Yokogami, Kiyotaka; Yamasaki, Kouji

    2015-02-01

    Glioblastoma multiforme (GBM), one of the most aggressive tumors in humans, is highly angiogenic. However, treatment with the angiogenesis inhibitor bevacizumab has not significantly prolonged overall patient survival times. GBM resistance to angiogenesis inhibitors is attributed to multiple interacting mechanisms. Although mesenchymal transition via glioma stem-like cells has attracted attention, it is considered a poor biomarker. There is no simple method for differentiating tumor-derived and reactive vascular cells from normal cells. The authors attempted to detect the mesenchymal transition of tumor cells by means of p53 and isocitrate dehydrogenase 1 (IDH1) immunohistochemistry. Using antibody against p53 and IDH1 R132H, the authors immunohistochemically analyzed GBM tissue from patients who had undergone surgery at the University of Miyazaki Hospital during August 2005-December 2011. They focused on microvascular proliferation with a p53-positive ratio exceeding 50%. They compared TP53 mutations in original tumor tissues and in p53-positive and p53-negative microvascular proliferation cells collected by laser microdissection. Among 61 enrolled GBM patients, the first screening step (immunostaining) identified 46 GBMs as p53 positive, 3 of which manifested areas of prominent p53-positive microvascular proliferation (>50%). Histologically, areas of p53-positive microvascular proliferation tended to be clustered, and they coexisted with areas of p53-negative microvascular proliferation. Both types of microvascular proliferation cells were clearly separated from original tumor cells by glial fibrillary acidic protein, epidermal growth factor receptor, and low-/high-molecular-weight cytokeratin. DNA sequencing analysis disclosed that p53-positive microvascular proliferation cells exhibited TP53 mutations identical to those observed in the original tumor; p53-negative microvascular proliferation cells contained a normal allele. Although immunostaining indicated

  3. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells.

    PubMed

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, M L B; Mishra, Durga Prasad

    2015-12-22

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer.

  4. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells

    PubMed Central

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, Madan L.B.; Mishra, Durga Prasad

    2015-01-01

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  5. Integrative Analysis Reveals an Outcome-associated and Targetable Pattern of p53 and Cell Cycle Deregulation in Diffuse Large B-cell Lymphoma

    PubMed Central

    Monti, Stefano; Chapuy, Bjoern; Takeyama, Kunihiko; Rodig, Scott J; Hao, Yangsheng; Yeda, Kelly T.; Inguilizian, Haig; Mermel, Craig; Curie, Treeve; Dogan, Ahmed; Kutok, Jeffery L; Beroukim, Rameen; Neuberg, Donna; Habermann, Thomas; Getz, Gad; Kung, Andrew L; Golub, Todd R; Shipp, Margaret A

    2013-01-01

    Summary Diffuse large B-cell lymphoma (DLBCL) is a clinically and biologically heterogeneous disease with a high proliferation rate. By integrating copy number data with transcriptional profiles and performing pathway analysis in primary DLBCLs, we identified a comprehensive set of copy number alterations (CNAs) that decreased p53 activity and perturbed cell cycle regulation. Primary tumors either had multiple complementary alterations of p53 and cell cycle components or largely lacked these lesions. DLBCLs with p53 and cell cycle pathway CNAs had decreased abundance of p53 target transcripts and increased expression of E2F target genes and the Ki67 proliferation marker. CNAs of the CDKN2A-TP53-RB-E2F axis provide a structural basis for increased proliferation in DLBCL, predict outcome with current therapy and suggest targeted treatment approaches. PMID:22975378

  6. p53 functions as a cell cycle control protein in osteosarcomas.

    PubMed

    Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B

    1990-11-01

    Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae.

  7. p53 functions as a cell cycle control protein in osteosarcomas.

    PubMed Central

    Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B

    1990-01-01

    Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae. Images PMID:2233717

  8. 40 Years of Research Put p53 in Translation

    PubMed Central

    Marcel, Virginie; Nguyen Van Long, Flora; Diaz, Jean-Jacques

    2018-01-01

    Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.

  9. The homeoprotein DLX3 and tumor suppressor p53 co-regulate cell cycle progression and squamous tumor growth

    PubMed Central

    Palazzo, Elisabetta; Kellett, Meghan; Cataisson, Christophe; Gormley, Anna; Bible, Paul W.; Pietroni, Valentina; Radoja, Nadezda; Hwang, Joonsung; Blumenberg, Miroslav; Yuspa, Stuart H.; Morasso, Maria

    2015-01-01

    Epidermal homeostasis depends on the coordinated control of keratinocyte cell cycle. Differentiation and the alteration of this balance can result in neoplastic development. Here we report on a novel DLX3-dependent network that constrains epidermal hyperplasia and squamous tumorigenesis. By integrating genetic and transcriptomic approaches, we demonstrate that DLX3 operates through a p53-regulated network. DLX3 and p53 physically interact on the p21 promoter to enhance p21 expression. Elevating DLX3 in keratinocytes produces a G1-S blockade associated with p53 signature transcriptional profiles. In contrast, DLX3 loss promotes a mitogenic phenotype associated with constitutive activation of ERK. DLX3 expression is lost in human skin cancers and is extinquished during progression of experimentally induced mouse squamous cell carcinoma (SCC). Reinstatement of DLX3 function is sufficient to attenuate the migration of SCC cells, leading to decreased wound closure. Our data establish the DLX3-p53 interplay as a major regulatory axis in epidermal differentiation and suggest that DLX3 is a modulator of skin carcinogenesis. PMID:26522723

  10. The homeoprotein DLX3 and tumor suppressor p53 co-regulate cell cycle progression and squamous tumor growth.

    PubMed

    Palazzo, E; Kellett, M; Cataisson, C; Gormley, A; Bible, P W; Pietroni, V; Radoja, N; Hwang, J; Blumenberg, M; Yuspa, S H; Morasso, M I

    2016-06-16

    Epidermal homeostasis depends on the coordinated control of keratinocyte cell cycle. Differentiation and the alteration of this balance can result in neoplastic development. Here we report on a novel DLX3-dependent network that constrains epidermal hyperplasia and squamous tumorigenesis. By integrating genetic and transcriptomic approaches, we demonstrate that DLX3 operates through a p53-regulated network. DLX3 and p53 physically interact on the p21 promoter to enhance p21 expression. Elevating DLX3 in keratinocytes produces a G1-S blockade associated with p53 signature transcriptional profiles. In contrast, DLX3 loss promotes a mitogenic phenotype associated with constitutive activation of ERK. DLX3 expression is lost in human skin cancers and is extinguished during progression of experimentally induced mouse squamous cell carcinoma (SCC). Reinstatement of DLX3 function is sufficient to attenuate the migration of SCC cells, leading to decreased wound closure. Our data establish the DLX3-p53 interplay as a major regulatory axis in epidermal differentiation and suggest that DLX3 is a modulator of skin carcinogenesis.

  11. The retinoblastoma protein/p16 INK4A pathway but not p53 is disrupted by human papillomavirus in penile squamous cell carcinoma.

    PubMed

    Stankiewicz, Elzbieta; Prowse, David M; Ktori, Elena; Cuzick, Jack; Ambroisine, Laurence; Zhang, Xiaoxi; Kudahetti, Sakunthala; Watkin, Nicholas; Corbishley, Catherine; Berney, Daniel M

    2011-02-01

    The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood. Human papillomavirus (HPV) may be involved in carcinogenesis, but few studies have compared cell-cycle protein expression in HPV positive and negative cancers. The aim was to determine the extent of HPV infection in different histological subtypes of PSCC and its impact on the expression of key cell-cycle proteins: p53, p21, p16(INK4A) and retinoblastoma (RB) protein. One hundred and forty-eight PSCC samples were examined immunohistochemically for RB, p16(INK4A) , p53 and p21 protein expression. One hundred and two cases were typed for HPV by PCR. HPV DNA was detected in 56% of tumours, with HPV16 present in 81%. Basaloid tumours were related strongly to HPV infection (10 of 13), while verrucous were not (three of 13). Fifty-nine per cent (38 of 64) of usual type SCCs had HPV infection. RB protein correlated negatively (P<0.0001) and p16(INK4A) (P<0.0001) and p21 (P=0.0002) correlated positively with HPV infection. p53 did not correlate with HPV infection. HPV infection is present in more than half of penile cancers and it is responsible for RB pathway disruption. However, no link between HPV and p53 immunodetection was found. Only basaloid and half of usual-type PSSCs correlate with HPV infection, confirming possible separate aetiologies for those tumours. © 2011 Blackwell Publishing Limited.

  12. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  13. p53 Is a Host Cell Regulator during Herpes Simplex Encephalitis.

    PubMed

    Maruzuru, Yuhei; Koyanagi, Naoto; Takemura, Naoki; Uematsu, Satoshi; Matsubara, Daisuke; Suzuki, Yutaka; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi

    2016-08-01

    p53 is a critical host cell factor in the cellular response to a broad range of stress factors. We recently reported that p53 is required for efficient herpes simplex virus 1 (HSV-1) replication in cell culture. However, a defined role for p53 in HSV-1 replication and pathogenesis in vivo remains elusive. In this study, we examined the effects of p53 on HSV-1 infection in vivo using p53-deficient mice. Following intracranial inoculation, p53 knockout reduced viral replication in the brains of mice and led to significantly reduced rates of mortality due to herpes simplex encephalitis. These results suggest that p53 is an important host cell regulator of HSV-1 replication and pathogenesis in the central nervous system (CNS). HSV-1 causes sporadic cases of encephalitis, which, even with antiviral therapy, can result in severe neurological defects and even death. Many host cell factors involved in the regulation of CNS HSV-1 infection have been investigated using genetically modified mice. However, most of these factors are immunological regulators and act via immunological pathways in order to restrict CNS HSV-1 infection. They therefore provide limited information on intrinsic host cell regulators that may be involved in the facilitation of CNS HSV-1 infection. Here we demonstrate that a host cell protein, p53, which has generally been considered a host cell restriction factor for various viral infections, is required for efficient HSV-1 replication and pathogenesis in the CNS of mice. This is the first report showing that p53 positively regulates viral replication and pathogenesis in vivo and provides insights into its molecular mechanism, which may suggest novel clinical treatment options for herpes simplex encephalitis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Integrated High Throughput Analysis Identifies GSK3 as a Crucial Determinant of p53-Mediated Apoptosis in Lung Cancer Cells.

    PubMed

    Zhang, Yu; Zhu, Chenyang; Sun, Bangyao; Lv, Jiawei; Liu, Zhonghua; Liu, Shengwang; Li, Hai

    2017-01-01

    p53 dysfunction is frequently observed in lung cancer. Although restoring the tumour suppressor function of p53 is recently approved as a putative strategy for combating cancers, the lack of understanding of the molecular mechanism underlying p53-mediated lung cancer suppression has limited the application of p53-based therapies in lung cancer. Using RNA sequencing, we determined the transcriptional profile of human non-small cell lung carcinoma A549 cells after treatment with two p53-activating chemical compounds, nutlin and RITA, which could induce A549 cell cycle arrest and apoptosis, respectively. Bioinformatics analysis of genome-wide gene expression data showed that distinct transcription profiles were induced by nutlin and RITA and 66 pathways were differentially regulated by these two compounds. However, only two of these pathways, 'Adherens junction' and 'Axon guidance', were found to be synthetic lethal with p53 re-activation, as determined via integrated analysis of genome-wide gene expression profile and short hairpin RNA (shRNA) screening. Further functional protein association analysis of significantly regulated genes associated with these two synthetic lethal pathways indicated that GSK3 played a key role in p53-mediated A549 cell apoptosis, and then gene function study was performed, which revealed that GSK3 inhibition promoted p53-mediated A549 cell apoptosis in a p53 post-translational activity-dependent manner. Our findings provide us with new insights regarding the mechanism by which p53 mediates A549 apoptosis and may cast light on the development of more efficient p53-based strategies for treating lung cancer. © 201 The Author(s). Published by S. Karger AG, Basel.

  15. Proton induces apoptosis of hypoxic tumor cells by the p53-dependent and p38/JNK MAPK signaling pathways.

    PubMed

    Lee, Kheun Byeol; Kim, Kye-Ryung; Huh, Tae-Lin; Lee, You Mie

    2008-12-01

    Tumor hypoxia is a main obstacle for radiation therapy. To investigate whether exposure to a proton beam can overcome radioresistance in hypoxic tumor cells, three kinds of cancer cells, Lewis lung carcinoma (LLC) cells, hepatoma HepG2 and Molt-4 leukemia cells, were treated with a proton beam (35 MeV, 1, 2, 5, 10 Gy) in the presence or absence of hypoxia. Cell death rates were determined 72 h after irradiation. Hypoxic cells exposed to the proton beam underwent a typical apoptotic program, showing condensed nuclei, fragmented DNA ladders, and poly-ADP-ribose polymerase (PARP) cleavage. Fluorescence-activated cell sorter analysis revealed a significant increase in Annexin-V-positive cells. Cells treated with the proton beam and hypoxia displayed increased expression of p53, p21 and Bax, but decreased levels of phospho-Rb, Bcl-2 and XIAP, as well as activated caspase-9 and -3. The proton beam with hypoxia induced cell death in wild-type HCT116 cells, but not in a p53 knockout cell line, demonstrating a requirement for p53. As reactive oxygen species (ROS) were also significantly increased, apoptosis could also be abolished by treatment with the anti-oxidant N-acetyl cysteine (NAC). P38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) were activated by the treatment, and their respective DN mutants restored the cell death induced by either proton therapy alone or with hypoxia. In conclusion, proton beam treatment did not differently regulate cancer cell apoptosis either in normoxic or hypoxic conditions via a p53-dependent mechanism and by the activation of p38/JNK MAPK pathways through ROS.

  16. The silence of p66Shc in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway

    PubMed Central

    Zhang, Ling; Zhu, Shengtao; Shi, Xuesen; Sha, Weihong

    2015-01-01

    Colon cancer is the second most common cause of cancer-related death, indicating that some of its cancer cells are not eradicated by current therapies. The previous studies demonstrated that p66Shc protein, a member of Shc family, is highly expressed in colon cancer cells, but the role of p66Shc in the progress of colon cancer still unknown. In this study, we found that p66Shc highly expressed in colon cancer tissue and colon cancer cell line SW620 cells, HCT8 cells, HCT116 cells and CaCO2 cells. The silence of p66Shc in HCT8 cells reduced the proliferation and accelerated the apoptosis, in addition, the expression of pro-apoptotic proteins caspase-3, caspase-9, Bax was enhanced and the expression of anti-apoptotic protein Bcl-2 was declined. Moreover, the cell cycle arrest in G0/G1 phase after HCT8 cells treated with p66Shc siRNA. Furthermore, after HCT8 cells treated with p66Shc siRNA, the phosphorylation of PI3K and AKT was significantly suppressed, and the expression of Mdm-2, a downstream of AKT, was obviously prohibited, while the expression of p53 was enhanced. These results indicate that the silence of p66Shc in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway, it may provide a promising approach to prevent the progress of colon cancer cell. PMID:26464652

  17. Lung cancer incidence and survival in chromium exposed individuals with respect to expression of anti-apoptotic protein survivin and tumor suppressor P53 protein

    PubMed Central

    2010-01-01

    Objective Workers chronically exposed to hexavalent chromium have elevated risk of lung cancer. Our study investigates the incidence of lung cancer types, age at onset of the disease, and survival time among chromium exposed workers with respect to the expression of anti-apoptotic p53 and pro-apoptotic survivin proteins. Materials and methods 67 chromium exposed workers and 104 male controls diagnosed with lung cancer were analyzed. The mean exposure time among workers was 16.7 ± 10.0(SD) years (range 1- 41 years). To investigate the possible regulation of survivin by p53 we examined the expression of both proteins using immohistochemical visualization. Results Chromium exposure significantly decreases the age of onset of the disease by 3.5 years (62.2 ± 9.1 in the exposed group vs. 65.7 ± 10.5 years in controls; P = 0.018). Small cell lung carcinoma (SCLC) amounted for 25.4% of all cases in chromium exposed workers and for 16.3% in non-exposed individuals. The mean survival time in the exposed group was 9.0 ± 12.7 vs. 12.1 ± 21.9 months in controls, but this difference was not significant. Survivin was predominantly expressed in both cell nucleus and cytoplasm, whereas p53 was expressed in the nucleus. There was a negative correlation between survivin and p53 expression. A decreased intensity of expression and fewer cells positive for survivin was detected in SCLC compared with other types of lung cancer. P53 was expressed in 94.1% and survivin in 79.6% of the samples analyzed. Conclusion The study calls attention to decreased expression of survivin, as opposed to p53, in small cell lung carcinoma. PMID:21147621

  18. Over-expression of C/EBP-{alpha} induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xueqing; Huang Guangcun; Mei Shuang

    2009-03-06

    Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-{alpha} (C/EBP-{alpha}) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-{alpha} gene (Ad-C/EBP-{alpha}) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-{alpha} resulted in the up-regulation of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) andmore » P53, while P53 expression was regulated by PPAR-{gamma}. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-{gamma} and p53 in the process of apoptosis triggered by C/EBP-{alpha} in HSCs.« less

  19. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway

    PubMed Central

    Drosten, Matthias; Sum, Eleanor Y. M.; Lechuga, Carmen G.; Simón-Carrasco, Lucía; Jacob, Harrys K. C.; García-Medina, Raquel; Huang, Sidong; Beijersbergen, Roderick L.; Bernards, Rene; Barbacid, Mariano

    2014-01-01

    The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21Cip1, or Rb restores proliferative properties in cells arrested by ablation of the three Ras loci, H-, N- and K-Ras. Ras signaling selectively inactivates p53-mediated induction of p21Cip1 expression by inhibiting acetylation of specific lysine residues in the p53 DNA binding domain. Proliferation of cells lacking both Ras proteins and p53 can be prevented by reexpression of the human p53 ortholog, provided that it retains an active DNA binding domain and an intact lysine residue at position 164. These results unveil a previously unidentified role for p53 in preventing cell proliferation under unfavorable mitogenic conditions. Moreover, we provide evidence that cells lacking Ras and p53 proteins owe their proliferative properties to the unexpected retroactivation of the Raf/Mek/Erk cascade by a Ras-independent mechanism. PMID:25288756

  20. P53 oncosuppressor influences selection of genomic imbalances in response to ionizing radiations in human osteosarcoma cell line SAOS-2.

    PubMed

    Zuffa, Elisa; Mancini, Manuela; Brusa, Gianluca; Pagnotta, Eleonora; Hattinger, Claudia Maria; Serra, Massimo; Remondini, Daniel; Castellani, Gastone; Corrado, Patrizia; Barbieri, Enza; Santucci, Maria Alessandra

    2008-07-01

    To investigate the impact of TP53 (tumor protein 53, p53) on genomic stability of osteosarcoma (OS). In first instance, we expressed in OS cell line SAOS-2 (lacking p53) a wild type (wt) p53 construct, whose protein undergoes nuclear import and activation in response to ionizing radiations (IR). Thereafter, we investigated genomic imbalances (amplifications and deletions at genes or DNA regions most frequently altered in human cancers) associated with radio-resistance relative to p53 expression by mean of an array-based comparative genomic hybridization (aCGH) strategy. Finally we investigated a putative marker of radio-induced oxidative stress, a 4,977 bp deletion at mitochondrial (mt) DNA usually referred to as 'common' deletion, by mean of a polimerase chain reaction (PCR) strategy. In radio-resistant subclones generated from wt p53-transfected SAOS-2 cells DNA deletions were remarkably reduced and the accumulation of 'common' deletion at mtDNA (that may let the persistence of oxidative damage by precluding detoxification from reactive oxygen species [ROS]) completely abrogated. The results of our study confirm that wt p53 has a role in protection of OS cell DNA integrity. Multiple mechanisms involved in p53 safeguard of genomic integrity and prevention of deletion outcome are discussed.

  1. Prognostic impact of c-Rel nuclear expression and REL amplification and crosstalk between c-Rel and the p53 pathway in diffuse large B-cell lymphoma

    PubMed Central

    Ok, Chi Young; Tzankov, Alexandar; Manyam, Ganiraju C.; Sun, Ruifan; Visco, Carlo; Zhang, Mingzhi; Montes-Moreno, Santiago; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W.L.; van Krieken, J. Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J.M.; Møller, Michael B.; Wang, Jinfeng; Parsons, Ben M.; Winter, Jane N.; Piris, Miguel A.; Pham, Lan V.; Medeiros, L. Jeffrey; Young, Ken H.

    2015-01-01

    Dysregulated NF-κB signaling is critical for lymphomagenesis. The regulation, function, and clinical relevance of c-Rel/NF-κB activation in diffuse large B-cell lymphoma (DLBCL) have not been well studied. In this study we analyzed the prognostic significance and gene-expression signature of c-Rel nuclear expression as surrogate of c-Rel activation in 460 patients with de novo DLBCL. Nuclear c-Rel expression, observed in 137 (26.3%) DLBCL patients frequently associated with extranoal origin, did not show significantly prognostic impact in the overall- or germinal center B-like-DLBCL cohort, likely due to decreased pAKT and Myc levels, up-regulation of FOXP3, FOXO3, MEG3 and other tumor suppressors coincided with c-Rel nuclear expression, as well as the complicated relationships between NF-κB members and their overlapping function. However, c-Rel nuclear expression correlated with significantly poorer survival in p63+ and BCL-2− activated B-cell-like-DLBCL, and in DLBCL patients with TP53 mutations. Multivariate analysis indicated that after adjusting clinical parameters, c-Rel positivity was a significantly adverse prognostic factor in DLBCL patients with wild type TP53. Gene expression profiling suggested dysregulations of cell cycle, metabolism, adhesion, and migration associated with c-Rel activation. In contrast, REL amplification did not correlate with c-Rel nuclear expression and patient survival, likely due to co-amplification of genes that negatively regulate NF-κB activation. These insights into the expression, prognostic impact, regulation and function of c-Rel as well as its crosstalk with the p53 pathway underscore the importance of c-Rel and have significant therapeutic implications. PMID:26324762

  2. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy

    PubMed Central

    Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.

    2006-01-01

    The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686

  3. Glucocorticoid regulation of a novel HPV-E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells.

    PubMed

    Shi, Ming; Du, Libin; Liu, Dan; Qian, Lu; Hu, Meiru; Yu, Ming; Yang, Zhengyan; Zhao, Mingzhen; Chen, Changguo; Guo, Liang; Wang, Lina; Song, Lun; Ma, Yuanfang; Guo, Ning

    2012-10-01

    Glucocorticoids are stress-responsive neuroendocrine mediators and play an important role in malignant progression, especially in solid tumours. We demonstrate a novel mechanism by which glucocorticoids modulate p53-dependent miR-145 expression in HPV-positive cervical cancer cells through induction of E6 proteins. We found that expression of miR-145 was reduced in cervical cancer tissues. Cortisol induced HPV-E6 expression and suppressed p53 and miR-145 in cervical cancer cells. MiR-145 expression in cervical cancer cells was wild-type p53-dependent, and cortisol-induced down-regulation of miR-145 expression prevented chemotherapy-induced apoptosis, whereas over-expression of miR-145 enhanced sensitivity to mitomycin and reversed the chemoresistance induced by glucocorticoids. We also show that miR-145 augments the effects of p53 by suppressing the inhibitors of p53 in cervical cancer cells, suggesting that miR-145 plays a role in p53 tumour suppression. Finally, we demonstrate that miR-145 inhibits both the motility and invasion of cervical cancer cells. Our findings identify a novel pathway through which the neuroendocrine macroenvironment affects cervical tumour growth, invasion and therapy resistance and show that miR-145 may serve as a target for cervical cancer therapy. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.

    2000-01-01

    Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.

  5. Ginsenoside Rg3 Inhibits Melanoma Cell Proliferation through Down-Regulation of Histone Deacetylase 3 (HDAC3) and Increase of p53 Acetylation

    PubMed Central

    Shan, Xiu; Fu, Yuan-Shan; Aziz, Faisal; Wang, Xiao-Qi; Yan, Qiu; Liu, Ji-Wei

    2014-01-01

    Malignant melanoma is an aggressive and deadly form of skin cancer, and despite recent advances in available therapies, is still lacking in completely effective treatments. Rg3, a monomer extracted from ginseng roots, has been attempted for the treatment of many cancers. It is reported that the expressions of histone deacetylase 3 (HDAC3) and p53 acetylation correlate with tumor cell growth. However, the antitumor effect of Rg3 on melanoma and the mechanism by which it regulates HDAC3 expression and p53 acetylation remain unknown. We found high expression of HDAC3 in human melanoma tissues to be significantly correlated to lymph node metastasis and clinical stage of disease (p<0.05). In melanoma cells, Rg3 inhibited cell proliferation and induced G0/G1 cell cycle arrest. Rg3 also decreased the expression of HDAC3 and increased the acetylation of p53 on lysine (k373/k382). Moreover, suppression of HDAC3 by either siRNA or a potent HDAC3 inhibitor (MS-275) inhibited cell proliferation, increased p53 acetylation and transcription activity. In A375 melanoma xenograft studies, we demonstrated that Rg3 and HDAC3 short hairpin RNA (shHDAC3) inhibited the growth of xenograft tumors with down-regulation of HDAC3 expression and up-regulation of p53 acetylation. In conclusion, Rg3 has antiproliferative activity against melanoma by decreasing HDAC3 and increasing acetylation of p53 both in vitro and in vivo. Thus, Rg3 serves as a potential therapeutic agent for the treatment of melanoma. PMID:25521755

  6. Overexpression of microRNA‑125a‑3p effectively inhibits the cell growth and invasion of lung cancer cells by regulating the mouse double minute 2 homolog/p53 signaling pathway.

    PubMed

    Li, Shenglei; Li, Xin; Zhao, Huasi; Gao, Ming; Wang, Feng; Li, Wencai

    2015-10-01

    MicroRNAs (miRs) are a family of small non-coding RNAs that are 21‑24 nucleotides in length. Decreased expression of hsa‑miR‑125a‑3p is observed in a number of patients with non‑small cell lung cancer; however, it is not clear how this miRNA regulates the growth and invasion of lung tumor cells. The aim of the present study was to identify the function of hsa‑miR‑125a‑3p in the growth and invasion of lung cancer cells. The expression of hsa‑miR‑125a‑3p in the A549, NCI‑H460 and SPCA‑1 lung cancer cell lines was analyzed by reverse transcription‑quantitative polymerase chain reaction and the human bronchiolar epithelium cell line (HBE) was used as a control. The results demonstrated that the expression of hsa‑miR‑125a‑3p was significantly lower in NCI‑H460, A549 and SPCA‑1 cells, compared with that in HBE cells. Overexpression of sense miR‑125a‑3p in the A549 lung cancer cell line inhibited cell proliferation for 5‑7 days (P<0.01), and transfection of antisense miR‑125a‑3p did not suppress the cell growth of the lung cancer cells. In addition, overexpression of miR‑125a‑3p in the NCI‑H460 lung cancer cell line markedly induced cell apoptosis, which was detected by fluorescence‑activated cell sorting with annexin V‑fluorescein isothiocyanate/propidium iodide staining. The results of the Transwell migration assay also revealed that transfection of miR‑125a‑3p resulted in decreased migration of lung cancer tumor cells. The pro‑apoptotic gene p53 expression was detected by western blot analysis. The results revealed that the expression of mouse double minute (MDM)‑2 homolog, the principal cellular antagonist of p53, was decreased and p53 expression was upregulated in sense has‑miR‑125a‑3p transfected A549 cells. This was consistent with that observed in NCI‑H460 cells, suggesting that hsa‑miR‑125a‑3p may be involved in the regulation of the MDM2/p53 signaling pathway in lung cancer cells. In

  7. Induction of Mitotic Cell Death by Overriding G2/M Checkpoint in Endometrial Cancer Cells with Non-functional p53

    PubMed Central

    Meng, Xiangbing; Laidler, Laura L.; Kosmacek, Elizabeth A.; Yang, Shujie; Xiong, Zhi; Zhu, Danlin; Wang, Xinjun; Dai, Donghai; Zhang, Yuping; Wang, Xiaofang; Brachova, Pavla; Albitar, Lina; Liu, Dawei; Ianzini, Fiorenza; Mackey, Michael A.; Leslie, Kimberly K.

    2012-01-01

    Objective Endometrial tumors with non-functional p53, such as serous uterine endometrial carcinomas, are aggressive malignancies with a poor outcome, yet they have an Achilles’ heel: due to loss of p53 function, these tumors may be sensitive to treatments which abrogate the G2/M checkpoint. Our objective was to exploit this weakness to induce mitotic cell death using two strategies: (1) EGFR inhibitor gefitinib combined with paclitaxel to arrest cells at mitosis, or (2) BI2536, an inhibitor of polo-like kinase 1 (PLK1), to block PLK1 activity. Methods We examined the impact of combining gefitinib and paclitaxel or PLK1 inhibitor on expression of G2/M checkpoint controllers, cell viability, and cell cycle progression in endometrial cancer cells with mutant p53. Results In cells lacking normal p53 activity, each treatment activated CDC25C and inactivated Wee1, which in turn activated cdc2 and sent cells rapidly through the G2/M checkpoint and into mitosis. Live cell imaging demonstrated irreversible mitotic arrest and eventual cell death. Combinatorial therapy with paclitaxel and gefitinib was highly synergistic and resulted in a 10-fold reduction in the IC50 for paclitaxel, from 14 nM as a single agent to 1.3 nM in the presence of gefitinib. However, BI2536 alone at low concentrations (5 nM) was the most effective treatment and resulted in massive mitotic cell death. In a xenograft mouse model with p53-deficient cells, low dose BI2536 significantly inhibited tumor growth. Conclusions These findings reveal induction of mitotic cell death as a therapeutic strategy for endometrial tumors lacking functional p53. PMID:23146687

  8. Synthesis of cytochrome C oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death.

    PubMed

    Wanka, C; Brucker, D P; Bähr, O; Ronellenfitsch, M; Weller, M; Steinbach, J P; Rieger, J

    2012-08-16

    P53 has an important role in the processing of starvation signals. P53-dependent molecular mediators of the Warburg effect reduce glucose consumption and promote mitochondrial function. We therefore hypothesized that the retention of wild-type p53 characteristic of primary glioblastomas limits metabolic demands induced by deregulated signal transduction in the presence of hypoxia and nutrient depletion. Here we report that short hairpin RNA-mediated gene suppression of wild-type p53 or ectopic expression of mutant temperature-sensitive dominant-negative p53(V135A) increased glucose consumption and lactate production, decreased oxygen consumption and enhanced hypoxia-induced cell death in p53 wild-type human glioblastoma cells. Similarly, genetic knockout of p53 in HCT116 colon carcinoma cells resulted in reduced respiration and hypersensitivity towards hypoxia-induced cell death. Further, wild-type p53 gene silencing reduced the expression of synthesis of cytochrome c oxidase 2 (SCO2), an effector necessary for respiratory chain function. An SCO2 transgene reverted the metabolic phenotype and restored resistance towards hypoxia in p53-depleted and p53 mutant glioma cells in a rotenone-sensitive manner, demonstrating that this effect was dependent on intact oxidative phosphorylation. Supplementation with methyl-pyruvate, a mitochondrial substrate, rescued p53 wild-type but not p53 mutant cells from hypoxic cell death, demonstrating a p53-mediated selective aptitude to metabolize mitochondrial substrates. Further, SCO2 gene silencing in p53 wild-type glioma cells sensitized these cells towards hypoxia. Finally, lentiviral gene suppression of SCO2 significantly enhanced tumor necrosis in a subcutaneous HCT116 xenograft tumor model, compatible with impaired energy metabolism in these cells. These findings demonstrate that glioma and colon cancer cells with p53 wild-type status can skew the Warburg effect and thereby reduce their vulnerability towards tumor hypoxia in

  9. UBR2 Enriched in p53 Deficient Mouse Bone Marrow Mesenchymal Stem Cell-Exosome Promoted Gastric Cancer Progression via Wnt/β-Catenin Pathway.

    PubMed

    Mao, Jiahui; Liang, Zhaofeng; Zhang, Bin; Yang, Huan; Li, Xia; Fu, Hailong; Zhang, Xu; Yan, Yongmin; Xu, Wenrong; Qian, Hui

    2017-11-01

    The deficiency or mutation of p53 has been linked to several types of cancers. The mesenchymal stem cell (MSC) is an important component in the tumor microenvironment, and exosomes secreted by MSCs can transfer bioactive molecules, including proteins and nucleic acid, to other cells in the tumor microenvironment to influence the progress of a tumor. However, whether the state of p53 in MSCs can impact the bioactive molecule secretion of exosomes to promote cancer progression and the regulatory mechanism remains elusive. Our study aimed to investigate the regulation of ubiquitin protein ligase E3 component n-recognin 2 (UBR2) enriched in exosomes secreted by p53 deficient mouse bone marrow MSC (p53 -/- mBMMSC) in gastric cancer progression in vivo and in vitro. We found that the concentration of exosome was significantly higher in p53 -/- mBMMSC than that in p53 wild-type mBMMSC (p53 +/+ mBMMSC). In particular, UBR2 was highly expressed in p53 -/- mBMMSC cells and exosomes. P53 -/- mBMMSC exosomes enriched UBR2 could be internalized into p53 +/+ mBMMSC and murine foregastric carcinoma (MFC) cells and induce the overexpression of UBR2 in these cells which elevated cell proliferation, migration, and the expression of stemness-related genes. Mechanistically, the downregulation of UBR2 in p53 -/- mBMMSC exosomes could reverse these actions. Moreover, a majority of Wnt family members, β-catenin, and its downstream genes (CD44, CyclinD1, CyclinD3, and C-myc) were significantly decreased in MFC knockdown UBR2 and β-catenin depletion, an additional depletion of UBR2 had no significant difference in the expression of Nanog, OCT4, Vimentin, and E-cadherin. Taken together, our findings indicated that p53 -/- mBMMSC exosomes could deliver UBR2 to target cells and promote gastric cancer growth and metastasis by regulating Wnt/β-catenin pathway. Stem Cells 2017;35:2267-2279. © 2017 AlphaMed Press.

  10. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  11. Expression of p53, Bcl-2, VEGF, Ki67 and PCNA and prognostic significance in hepatocellular carcinoma.

    PubMed

    Stroescu, Cezar; Dragnea, Adrian; Ivanov, Bogdan; Pechianu, Catalin; Herlea, Vlad; Sgarbura, Olivia; Popescu, Andra; Popescu, Irinel

    2008-12-01

    Hepatocellular carcinoma is one of the most common malignant tumors that carry a poor prognosis. To improve the long-term outlook for HCC, an accurate prognosis is important. To study the immunohistochemical expressions of p53, Ki67, Bcl-2, VEGF and PCNA and their potential role as prognostic factors in patients with radical resection of hepatocellular carcinoma. Forty-seven formalin-fixed paraffin-embedded tumor samples from patients with HCC receiving liver resection were investigated immunohistochemically for the expression of cellular proliferation markers PCNA, Ki67, p53, Bcl-2 and VEGF and their correlation with tumor characteristics and survival time after resection. p53 was expressed in a higher percentage (85.7 vs. 42.1%) in undifferentiated histological tumor grades (Edmondson Steiner G3/G4 vs. G1/G2). Patients with p53 accumulating tumors showed a worse survival than patients with p53 non-accumulating tumors (median 9.5 vs. 16.5 months). Over-expression of VEGF was found in 38.3% of all HCCs. VEGF expression was significantly correlated with p53 expression and recurrence rates. The results showed that the labeling index of PCNA and expression of p53 are correlated. The high labeling index of PCNA or over-expression of p53 resulted in high risk of tumor recurrence, more aggressive growth and poor survival. High labeling index of PCNA, p53 nuclear accumulation and VEGF high expression are associated with poor survival in patients with HCC.

  12. An adaptive molecular timer in p53-meidated cell fate decision

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Peng; Wang, Ping; Liu, Feng; Wang, Wei

    The tumor suppressor p53 decides cellular outcomes in the DNA damage response. It is intriguing to explore the link between p53 dynamics and cell fates. We developed a theoretical model of p53 signaling network to clarify the mechanism of cell fate decision mediated by its dynamics. We found that the interplay between p53-Mdm2 negative feedback loop and p53-PTEN-Mdm2 positive feedback loop shapes p53 dynamics. Depending on the intensity of DNA damage, p53 shows three modes of dynamics: persistent pulses, two-phase dynamics with pulses followed by sustained high levels and straightforward high levels. Especially, p53 shows two-phase dynamics upon moderated damage and the required number of p53 pulses before apoptosis induction decreases with increasing DNA damage. Our results suggested there exists an adaptive molecular timer that determines whether and when the apoptosis switch should be triggered. We clarified the mechanism behind the switching of p53 dynamical modes by bifurcation analysis. Moreover, we reproduced the experimental results that drug additions alter p53 pulses to sustained p53 activation and leads to senescence. Our work may advance the understanding the significance of p53 dynamics in tumor suppression. This work was supported by National Natural Science Foundation of China (Nos. 11175084, 11204126 and 31361163003).

  13. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less

  14. APELA promotes tumour growth and cell migration in ovarian cancer in a p53-dependent manner.

    PubMed

    Yi, Yuyin; Tsai, Shu-Huei; Cheng, Jung-Chien; Wang, Evan Y; Anglesio, Michael S; Cochrane, Dawn R; Fuller, Megan; Gibb, Ewan A; Wei, Wei; Huntsman, David G; Karsan, Aly; Hoodless, Pamela A

    2017-12-01

    APELA is a small, secreted peptide that can function as a ligand for the G-protein coupled receptor, Apelin Receptor (APLNR, APJ). APELA plays an essential role in endoderm differentiation and cardiac development during embryogenesis. We investigated whether APELA exerts any functions in cancer progression. The Cancer Genome Atlas (TCGA) RNA sequencing datasets, microarray from an OCCC mouse model, and RNA isolated from fresh frozen and FFPE patient tissue were used to assess APELA expression. APELA knockout ovarian clear cell carcinoma (OCCC) cell lines were generated using CRISPR/Cas9. APELA was expressed in various ovarian cancer histotypes and was especially elevated in OCCC. Disruption of APELA expression in OCCC cell lines suppressed cell growth and migration, and altered cell-cycle progression. Moreover, addition of human recombinant APELA peptide to the OCCC cell line OVISE promoted cell growth and migration. Interestingly, OVISE cells do not express APLNR, suggesting that APELA can function through an APLNR-independent pathway. Furthermore, APELA affected cell growth and cell cycle progression in a p53-dependent manner. In addition, APELA knockdown induced p53 expression in cancer cell lines. Our findings uncover a potential oncogenic role for APELA in promoting ovarian tumour progression and provide a possible therapeutic strategy in ovarian cancer by targeting APELA. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. RITA enhances irradiation-induced apoptosis in p53-defective cervical cancer cells via upregulation of IRE1α/XBP1 signaling.

    PubMed

    Zhu, Hong; Abulimiti, Muyasha; Liu, Huan; Su, Xiang-Jiang; Liu, Cai-Hong; Pei, Hai-Ping

    2015-09-01

    Radiation therapy is the most widely used treatment for patients with cervical cancer. Recent studies have shown that endoplasmic reticulum (ER) stress induces apoptosis and sensitizes tumor cells to radiotherapy, which reportedly induces ER stress in cells. Classical key tumor suppressor p53 is involved in the response to a variety of cellular stresses, including those incurred by ionizing irradiation. A recent study demonstrated that small-molecule RITA (reactivation of p53 and induction of tumor cell apoptosis) increased the radiosensitivity of tumor cells expressing mutant p53 (mtp53). In the present study, we explored the effects and the underlying mechanisms of RITA in regards to the radiosensitivity and ER stress in mtp53-expressing human cervix cancer cells. Treatment with 1 µM of RITA for 24 h before irradiation markedly decreased survival and increased apoptosis in C-33A and HT-3 cells; the effects were not significantly altered by knockdown of p53. In the irradiated C-33A and HT-3 cells, RITA significantly increased the expression of IRE1α, the spliced XBP1 mRNA level, as well as apoptosis; the effects were abolished by knockdown of IRE1α. Transcriptional pulse-chase assays revealed that RITA significantly increased the stability of IRE1α mRNA in the irradiated C-33A and HT-3 cells. In contrast, the same RITA treatment did not show any significant effect on sham-irradiated cells. In conclusion, the present study provides initial evidence that RITA upregulates the expression level of IRE1α by increasing the stability of IRE1α mRNA in irradiated mtp53-expressing cervical cancer cells; the effect leads to enhanced IRE1α/XBP1 ER stress signaling and increased apoptosis in the cells. The present study offers novel insight into the pharmacological potential of RITA in the radiotherapy for cervical cancer.

  16. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Katharine J.; Cook, Anthony L., E-mail: Anthony.Cook@utas.edu.au; Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au

    2014-06-15

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutatedmore » (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.« less

  17. The Chinese Herb Isolate Yuanhuacine (YHL-14) Induces G2/M Arrest in Human Cancer Cells by Up-regulating p21 Protein Expression through an p53 Protein-independent Cascade*

    PubMed Central

    Zhang, Ruowen; Wang, Yulei; Li, Jingxia; Jin, Honglei; Song, Shaojiang; Huang, Chuanshu

    2014-01-01

    Yuanhuacine (YHL-14), the major component of daphnane diterpene ester isolated from the flower buds of Daphne genkwa, has been reported to have activity against cell proliferation in various cancer cell lines. Nevertheless, the potential mechanism has not been explored yet. Here we demonstrate that YHL-14 inhibits bladder and colon cancer cell growth through up-regulation of p21 expression in an Sp1-dependent manner. We found that YHL-14 treatment resulted in up-regulation of p21 expression and a significant G2/M phase arrest in T24T and HCT116 cells without affecting p53 protein expression and activation. Further studies indicate that p21 induction by YHL-14 occurs at the transcriptional level via up-regulation of Sp1 protein expression. Moreover, our results show that p38 is essential for YHL-14-mediated Sp1 protein stabilization, G2/M growth arrest induction, and anchorage-independent growth inhibition of cancer cells. Taken together, our studies demonstrate a novel mechanism of YHL-14 against cancer cell growth in bladder and colon cancer cell lines, which provides valuable information for the design and synthesis of other new conformation-constrained derivatives on the basis of the structure of YHL-14 for cancer therapy. PMID:24451377

  18. Intermediate progenitors are increased by lengthening of the cell cycle through calcium signaling and p53 expression in human neural progenitors

    PubMed Central

    García-García, Elisa; Pino-Barrio, María José; López-Medina, Laura; Martínez-Serrano, Alberto

    2012-01-01

    During development, neurons can be generated directly from a multipotent progenitor or indirectly through an intermediate progenitor (IP). This last mode of division amplifies the progeny of neurons. The mechanisms governing the generation and behavior of IPs are not well understood. In this work, we demonstrate that the lengthening of the cell cycle enhances the generation of neurons in a human neural progenitor cell system in vitro and also the generation and expansion of IPs. These IPs are insulinoma-associated 1 (Insm1)+/BTG family member 2 (Btg2)−, which suggests an increase in a self-amplifying IP population. Later the cultures express neurogenin 2 (Ngn2) and become neurogenic. The signaling responsible for this cell cycle modulation is investigated. It is found that the release of calcium from the endoplasmic reticulum to the cytosol in response to B cell lymphoma-extra large overexpression or ATP addition lengths the cell cycle and increases the number of IPs and, in turn, the final neuron outcome. Moreover, data suggest that the p53p21 pathway is responsible for the changes in cell cycle. In agreement with this, increased p53 levels are necessary for a calcium-induced increase in neurons. Our findings contribute to understand how calcium signaling can modulate cell cycle length during neurogenesis. PMID:22323293

  19. Chorionic gonadotropin regulates the transcript level of VHL, p53, and HIF-2alpha in human granulosa lutein cells.

    PubMed

    Herr, D; Keck, C; Tempfer, C; Pietrowski, Detlef

    2004-12-01

    The ovarian corpus luteum plays a critical role in reproduction being the primary source of circulating progesterone. After ovulation the corpus luteum is build by avascular granulosa lutein cells through rapid vascularization regulated by gonadotropic hormones. The present study was performed to investigate whether this process might be influenced by the human chorionic gonadotropin (hCG)-dependent expression of different tumor suppressor genes and hypoxia dependent transcription factors. RNA was isolated from cultured granulosa lutein cells, transcribed into cDNA, and the transcript level of following genes were determined: RB-1, VHL, NF-1, NF-2, Wt-1, p53, APC, and hypoxia inducible factor-1 (HIF-1), -2, and -3alpha. Additionally, the influence of hCG on the expression of VHL, p53, and HIf2alpha were investigated. We demonstrate that in human granulosa lutein cells the tumor suppressor genes RB-1, VHL, NF-1, NF-2, Wt-1, p53, and APC and the hypoxia dependent transcription factors HIF-1alpha, -2alpha, and -3alpha are expressed. In addition, we showed that hCG regulates the expression of p53, VHL, and HIF-2alpha. Our results indicate that hCG may determine the growth and development of the corpus luteum by mediating hypoxic and apoptotic pathways in human granulosa lutein cells. Copyright 2004 Wiley-Liss, Inc.

  20. p73 coordinates with Δ133p53 to promote DNA double-strand break repair.

    PubMed

    Gong, Hongjian; Zhang, Yuxi; Jiang, Kunpeng; Ye, Shengfan; Chen, Shuming; Zhang, Qinghe; Peng, Jinrong; Chen, Jun

    2018-03-06

    Tumour repressor p53 isoform Δ133p53 is a target gene of p53 and an antagonist of p53-mediated apoptotic activity. We recently demonstrated that Δ133p53 promotes DNA double-strand break (DSB) repair by upregulating transcription of the repair genes RAD51, LIG4 and RAD52 in a p53-independent manner. However, Δ133p53 lacks the transactivation domain of full-length p53, and the mechanism by which it exerts transcriptional activity independently of full-length p53 remains unclear. In this report, we describe the accumulation of high levels of both Δ133p53 and p73 (a p53 family member) at 24 h post γ-irradiation (hpi). Δ133p53 can form a complex with p73 upon γ-irradiation. The co-expression of Δ133p53 and p73, but not either protein alone, can significantly promote DNA DSB repair mechanisms, including homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). p73 and Δ133p53 act synergistically to promote the expression of RAD51, LIG4 and RAD52 by joining together to bind to region containing a Δ133p53-responsive element (RE) and a p73-RE in the promoters of all three repair genes. In addition to its accumulation at 24 hpi, p73 protein expression also peaks at 4 hpi. The depletion of p73 not only reduces early-stage apoptotic frequency (4-6 hpi), but also significantly increases later-stage DNA DSB accumulation (48 hpi), leading to cell cycle arrest in the G2 phase and, ultimately, cell senescence. In summary, the apoptotic regulator p73 also coordinates with Δ133p53 to promote DNA DSB repair, and the loss of function of p73 in DNA DSB repair may underlie spontaneous and carcinogen-induced tumorigenesis in p73 knockout mice.

  1. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    PubMed

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  2. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 andmore » p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.« less

  3. Low-level overexpression of p53 promotes warfarin-induced calcification of porcine aortic valve interstitial cells by activating Slug gene transcription.

    PubMed

    Gao, Li; Ji, Yue; Lu, Yan; Qiu, Ming; Shen, Yejiao; Wang, Yaqing; Kong, Xiangqing; Shao, Yongfeng; Sheng, Yanhui; Sun, Wei

    2018-03-09

    The most frequently used oral anti-coagulant warfarin has been implicated in inducing calcification of aortic valve interstitial cells (AVICs), whereas the mechanism is not fully understood. The low-level activation of p53 is found to be involved in osteogenic transdifferentiation and calcification of AVICs. Whether p53 participates in warfarin-induced AVIC calcification remains unknown. In this study, we investigated the role of low-level p53 overexpression in warfarin-induced porcine AVIC (pAVIC) calcification. Immunostaining, quantitative PCR, and Western blotting revealed that p53 was expressed in human and pAVICs and that p53 expression was slightly increased in calcific human aortic valves compared with non-calcific valves. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining indicated that apoptosis slightly increased in calcific aortic valves than in non-calcific valves. Warfarin treatment led to a low-level increase of p53 mRNA and protein in both pAVICs and mouse aortic valves. Low-level overexpression of p53 in pAVICs via an adenovirus vector did not affect pAVIC apoptosis but promoted warfarin-induced calcium deposition and expression of osteogenic markers. shRNA-mediated p53 knockdown attenuated the pAVIC calcium deposition and osteogenic marker expression. Moreover, ChIP and luciferase assays showed that p53 was recruited to the slug promoter and activated slug expression in calcific pAVICs. Of note, overexpression of Slug increased osteogenic marker Runx2 expression, but not pAVIC calcium deposition, and Slug knockdown attenuated pAVIC calcification and p53-mediated pAVIC calcium deposition and expression of osteogenic markers. In conclusion, we found that p53 plays an important role in warfarin induced pAVIC calcification, and increased slug transcription by p53 is required for p53-mediated pAVIC calcification. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Surgical resection and radiofrequency ablation initiate cancer in cytokeratin-19+- liver cells deficient for p53 and Rb.

    PubMed

    Matondo, Ramadhan B; Toussaint, Mathilda Jm; Govaert, Klaas M; van Vuuren, Luciel D; Nantasanti, Sathidpak; Nijkamp, Maarten W; Pandit, Shusil K; Tooten, Peter Cj; Koster, Mirjam H; Holleman, Kaylee; Schot, Arend; Gu, Guoqiang; Spee, Bart; Roskams, Tania; Rinkes, Inne Borel; Schotanus, Baukje; Kranenburg, Onno; de Bruin, Alain

    2016-08-23

    The long term prognosis of liver cancer patients remains unsatisfactory because of cancer recurrence after surgical interventions, particularly in patients with viral infections. Since hepatitis B and C viral proteins lead to inactivation of the tumor suppressors p53 and Retinoblastoma (Rb), we hypothesize that surgery in the context of p53/Rb inactivation initiate de novo tumorigenesis.We, therefore, generated transgenic mice with hepatocyte and cholangiocyte/liver progenitor cell (LPC)-specific deletion of p53 and Rb, by interbreeding conditional p53/Rb knockout mice with either Albumin-cre or Cytokeratin-19-cre transgenic mice.We show that liver cancer develops at the necrotic injury site after surgical resection or radiofrequency ablation in p53/Rb deficient livers. Cancer initiation occurs as a result of specific migration, expansion and transformation of cytokeratin-19+-liver (CK-19+) cells. At the injury site migrating CK-19+ cells formed small bile ducts and adjacent cells strongly expressed the transforming growth factor β (TGFβ). Isolated cytokeratin-19+ cells deficient for p53/Rb were resistant against hypoxia and TGFβ-mediated growth inhibition. CK-19+ specific deletion of p53/Rb verified that carcinomas at the injury site originates from cholangiocytes or liver progenitor cells.These findings suggest that human liver patients with hepatitis B and C viral infection or with mutations for p53 and Rb are at high risk to develop tumors at the surgical intervention site.

  5. Surgical resection and radiofrequency ablation initiate cancer in cytokeratin-19+- liver cells deficient for p53 and Rb

    PubMed Central

    Govaert, Klaas M; van Vuuren, Luciel D; Nantasanti, Sathidpak; Nijkamp, Maarten W; Pandit, Shusil K; Tooten, Peter CJ; Koster, Mirjam H; Holleman, Kaylee; Schot, Arend; Gu, Guoqiang; Spee, Bart; Roskams, Tania; Rinkes, Inne Borel; Schotanus, Baukje; Kranenburg, Onno; de Bruin, Alain

    2016-01-01

    The long term prognosis of liver cancer patients remains unsatisfactory because of cancer recurrence after surgical interventions, particularly in patients with viral infections. Since hepatitis B and C viral proteins lead to inactivation of the tumor suppressors p53 and Retinoblastoma (Rb), we hypothesize that surgery in the context of p53/Rb inactivation initiate de novo tumorigenesis. We, therefore, generated transgenic mice with hepatocyte and cholangiocyte/liver progenitor cell (LPC)-specific deletion of p53 and Rb, by interbreeding conditional p53/Rb knockout mice with either Albumin-cre or Cytokeratin-19-cre transgenic mice. We show that liver cancer develops at the necrotic injury site after surgical resection or radiofrequency ablation in p53/Rb deficient livers. Cancer initiation occurs as a result of specific migration, expansion and transformation of cytokeratin-19+-liver (CK-19+) cells. At the injury site migrating CK-19+ cells formed small bile ducts and adjacent cells strongly expressed the transforming growth factor β (TGFβ). Isolated cytokeratin-19+ cells deficient for p53/Rb were resistant against hypoxia and TGFβ-mediated growth inhibition. CK-19+ specific deletion of p53/Rb verified that carcinomas at the injury site originates from cholangiocytes or liver progenitor cells. These findings suggest that human liver patients with hepatitis B and C viral infection or with mutations for p53 and Rb are at high risk to develop tumors at the surgical intervention site. PMID:27323406

  6. Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats

    DOE PAGES

    Botcheva, Krassimira; McCorkle, Sean R.

    2014-11-21

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We reportmore » distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). In conclusion, our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.« less

  7. The putative oncotarget CSN5 controls a transcription-uncorrelated p53-mediated autophagy implicated in cancer cell survival under curcumin treatment

    PubMed Central

    Sheng, Ji-Po; Yu, Fang; Tan, Ren-Xiang; Pan, Ying; Huang, Jun-Jian; Kong, Ling-Dong

    2016-01-01

    Curcumin has shown promise as a safe and specific anticancer agent. The COP9 signalosome (CSN) component CSN5, a known specific target for curcumin, can control p53 stability by increasing its degradation through ubiquitin system. But the correlation of CSN5-controlled p53 to anticancer therapeutic effect of curcumin is currently unknown. Here we showed that CSN5-controlled p53 was transcriptional inactive and responsible for autophagy in human normal BJ cells and cancer HepG2 cells under curcumin treatment. Of note, CSN5-initiated cellular autophagy by curcumin treatment was abolished in p53-null HCT116p53−/− cancer cells, which could be rescued by reconstitution with wild-type p53 or transcription inactive p53 mutant p53R273H. Furthermore, CSN5-controlled p53 conferred a pro-survival autophagy in diverse cancer cells response to curcumin. Genetic p53 deletion, as well as autophagy pharmacological inhibition by chloroquine, significantly enhanced the therapeutic effect of curcumin on cancer cells in vitro and in vivo, but not normal cells. This study identifies a novel CSN5-controlled p53 in autophagy of human cells. The p53 expression state is a useful biomarker for predicting the anticancer therapeutic effect of curcumin. Therefore, the pharmacologic autophagy manipulation may benefit the ongoing anticancer clinical trials of curcumin. PMID:27626169

  8. The putative oncotarget CSN5 controls a transcription-uncorrelated p53-mediated autophagy implicated in cancer cell survival under curcumin treatment.

    PubMed

    Zhang, Qing-Yu; Jin, Rui; Zhang, Xian; Sheng, Ji-Po; Yu, Fang; Tan, Ren-Xiang; Pan, Ying; Huang, Jun-Jian; Kong, Ling-Dong

    2016-10-25

    Curcumin has shown promise as a safe and specific anticancer agent. The COP9 signalosome (CSN) component CSN5, a known specific target for curcumin, can control p53 stability by increasing its degradation through ubiquitin system. But the correlation of CSN5-controlled p53 to anticancer therapeutic effect of curcumin is currently unknown. Here we showed that CSN5-controlled p53 was transcriptional inactive and responsible for autophagy in human normal BJ cells and cancer HepG2 cells under curcumin treatment. Of note, CSN5-initiated cellular autophagy by curcumin treatment was abolished in p53-null HCT116p53-/- cancer cells, which could be rescued by reconstitution with wild-type p53 or transcription inactive p53 mutant p53R273H. Furthermore, CSN5-controlled p53 conferred a pro-survival autophagy in diverse cancer cells response to curcumin. Genetic p53 deletion, as well as autophagy pharmacological inhibition by chloroquine, significantly enhanced the therapeutic effect of curcumin on cancer cells in vitro and in vivo, but not normal cells. This study identifies a novel CSN5-controlled p53 in autophagy of human cells. The p53 expression state is a useful biomarker for predicting the anticancer therapeutic effect of curcumin. Therefore, the pharmacologic autophagy manipulation may benefit the ongoing anticancer clinical trials of curcumin.

  9. Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seung Hee; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cellmore » proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.« less

  10. p53 expression in patients with ulcerative colitis - associated with dysplasia and carcinoma: a systematic meta-analysis.

    PubMed

    Lu, Xiaohong; Yu, Yuanjie; Tan, Shiyun

    2017-10-25

    Tumor suppressor gene p53 expression has been reported in patients with ulcerative colitis (UC). However, the correlation between p53 expression and UC remains controversial. The aim of this meta-analysis was to investigate the association between p53 expression and different pathological types of UC. Publications were searched in the PubMed, Embase, EBSCO, Wangfang, and CNKI databases. The overall odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs) were summarized in this study. Final 19 papers were identified in this meta-analysis, including 1068 patients with UC and 130 normal tissue samples. Immunohistochemical p53 expression was significantly higher in UC without dysplasia and carcinoma (UC group) compared to normal tissue samples (OR = 3.14, P = 0.001), higher in UC with dysplasia than in UC group (OR = 10.76, P < 0.001), and higher in UC with colorectal cancer (CRC) than in UC with dysplasia (OR = 1.69, P = 0.035). Subgroup analysis of ethnicity (UC group vs. normal tissues) showed that p53 expression was correlated with UC in Asians, but not in Caucasians. When UC with dysplasia was compared to UC group, p53 expression was linked to UC with dysplasia among both Asians and Caucasians. When UC-CRC was compared to UC with dysplasia, p53 expression was not associated with UC-CRC in both Caucasians and Asians. p53 expression was closely associated with UC-CRC development. p53 expression showed different ethnic characteristics among different pathological types of UC.

  11. Loss of p53-inducible long non-coding RNA LINC01021 increases chemosensitivity

    PubMed Central

    Kaller, Markus; Götz, Ursula; Hermeking, Heiko

    2017-01-01

    We have previously identified the long non-coding RNA LINC01021 as a direct p53 target (Hünten et al. Mol Cell Proteomics. 2015; 14:2609-2629). Here, we show that LINC01021 is up-regulated in colorectal cancer (CRC) cell lines upon various p53-activating treatments. The LINC01021 promoter and the p53 binding site lie within a MER61C LTR, which originated from insertion of endogenous retrovirus 1 (ERV1) sequences. Deletion of this MER61C element by a CRISPR/Cas9 approach, as well as siRNA-mediated knockdown of LINC01021 RNA significantly enhanced the sensitivity of the CRC cell line HCT116 towards the chemotherapeutic drugs doxorubicin and 5-FU, suggesting that LINC01021 is an integral part of the p53-mediated response to DNA damage. Inactivation of LINC01021 and also its ectopic expression did not affect p53 protein expression and transcriptional activity, implying that LINC01021 does not feedback to p53. Furthermore, in CRC patient samples LINC01021 expression positively correlated with a wild-type p53-associated gene expression signature. LINC01021 expression was increased in primary colorectal tumors and displayed a bimodal distribution that was particularly pronounced in the mesenchymal CMS4 consensus molecular subtype of CRCs. CMS4 tumors with low LINC01021 expression were associated with poor patient survival. Our results suggest that the genomic redistribution of ERV1-derived p53 response elements and generation of novel p53-inducible lncRNA-encoding genes was selected for during primate evolution as integral part of the cellular response to various forms of genotoxic stress. PMID:29262524

  12. P53 Protein Expression in Dental Follicle, Dentigerous Cyst, Odontogenic Keratocyst, and Inflammatory Subtypes of Cysts: An Immunohistochemical Study

    PubMed Central

    Fatemeh, Mashhadiabbas; Sepideh, Arab; Sara, Bagheri Seyedeh; Nazanin, Mahdavi

    2017-01-01

    Objectives An odontogenic keratocyst (OKC) is a developmental odontogenic cyst with aggressive clinical behavior. This cyst shows a different growth mechanism from the more common dentigerous cyst and now has been renamed as a keratocystic odontogenic tumor (KCOT). Inflammation can assist tumor growth via different mechanisms including dysregulation of the p53 gene. This study aims to assess and compare the expression of tumor suppressor gene p53 in inflamed and non-inflamed types of OKC and dentigerous cyst. Methods Immunohistochemical expression of p53 was assessed in 14 cases of dental follicle, 34 cases of OKC (including 18 inflamed OKCs), and 31 cases of dentigerous cyst (including 16 inflamed cysts). Results The mean percentage of p53 positive cells was 0.7% in dental follicles, 5.4% in non-inflamed OKCs, 17.3% in inflamed OKCs, 1.2% in non-inflamed dentigerous cysts, and 2.2% in inflamed dentigerous cysts. The differences between the groups were statistically significant (p < 0.050) except for the difference between inflamed and non-inflamed dentigerous cysts, and between dental follicle and non-inflamed dentigerous cyst. Conclusions The difference in p53 expression in OKC and dentigerous cyst can explain their different growth mechanism and clinical behavior. Inflammation is responsible for the change in behavior of neoplastic epithelium of OKC via p53 overexpression. PMID:28584604

  13. P53 Protein Expression in Dental Follicle, Dentigerous Cyst, Odontogenic Keratocyst, and Inflammatory Subtypes of Cysts: An Immunohistochemical Study.

    PubMed

    Fatemeh, Mashhadiabbas; Sepideh, Arab; Sara, Bagheri Seyedeh; Nazanin, Mahdavi

    2017-05-01

    An odontogenic keratocyst (OKC) is a developmental odontogenic cyst with aggressive clinical behavior. This cyst shows a different growth mechanism from the more common dentigerous cyst and now has been renamed as a keratocystic odontogenic tumor (KCOT). Inflammation can assist tumor growth via different mechanisms including dysregulation of the p53 gene. This study aims to assess and compare the expression of tumor suppressor gene p53 in inflamed and non-inflamed types of OKC and dentigerous cyst. Immunohistochemical expression of p53 was assessed in 14 cases of dental follicle, 34 cases of OKC (including 18 inflamed OKCs), and 31 cases of dentigerous cyst (including 16 inflamed cysts). The mean percentage of p53 positive cells was 0.7% in dental follicles, 5.4% in non-inflamed OKCs, 17.3% in inflamed OKCs, 1.2% in non-inflamed dentigerous cysts, and 2.2% in inflamed dentigerous cysts. The differences between the groups were statistically significant ( p < 0.050) except for the difference between inflamed and non-inflamed dentigerous cysts, and between dental follicle and non-inflamed dentigerous cyst. The difference in p53 expression in OKC and dentigerous cyst can explain their different growth mechanism and clinical behavior. Inflammation is responsible for the change in behavior of neoplastic epithelium of OKC via p53 overexpression.

  14. TUMOR SUPPRESSER GENE P53 EXPRESSION IN PREMALIGNANT LESIONS AND GASTRIC CARCINOMA - PROGNOSTIC VALUE

    PubMed Central

    Vukobrat-Bijedić, Zora; Radović, Svjetlana; Husić-Selimović, Azra; Gornjaković, Srđan

    2007-01-01

    The aim of the study was to verify the presence of mutated tumor suppresser gene p53 in intestinal mucosa with histologically confirmed premalignant lesions and gastric carcinoma, and assess its prognostic value. The paper presents prospective study that included 50 patients with gastric adeno-carcinoma of intestinal type that were treated at Gastroenterohepa-tology Clinic, and 50 patients with histologically confirmed chronic atrophic H. pylori positive gastritis. In the mucosa biopsy samples, we analyzed presence, frequency and severity of inflammatory-regenerative, metaplastic and dysplastic changes. We typed intestinal metaplasia immunohistochemically and confirmed the presence of p53 onco-protein in antigen positive gastric carcinoma cells, and evaluated its prognostic value. Our results suggest that H. pylori acts as an initiator of inflammatory processes in gastric mucosa, which are followed by emergence of precancerous lesions. p53 is expressed late in carcinogenesis (14%) and as such, may be considered as an indicator of transformation of premalignant into malignant lesion. PMID:17489760

  15. Derivation of Thymic Lymphoma T-cell Lines from Atm-/- and p53-/- Mice

    PubMed Central

    Jinadasa, Rasika; Balmus, Gabriel; Gerwitz, Lee; Roden, Jamie; Weiss, Robert; Duhamel, Gerald

    2011-01-01

    Established cell lines are a critical research tool that can reduce the use of laboratory animals in research. Certain strains of genetically modified mice, such as Atm-/- and p53-/- consistently develop thymic lymphoma early in life 1,2, and thus, can serve as a reliable source for derivation of murine T-cell lines. Here we present a detailed protocol for the development of established murine thymic lymphoma T-cell lines without the need to add interleukins as described in previous protocols 1,3. Tumors were harvested from mice aged three to six months, at the earliest indication of visible tumors based on the observation of hunched posture, labored breathing, poor grooming and wasting in a susceptible strain 1,4. We have successfully established several T-cell lines using this protocol and inbred strains ofAtm-/- [FVB/N-Atmtm1Led/J] 2 and p53-/- [129/S6-Trp53tm1Tyj/J] 5 mice. We further demonstrate that more than 90% of the established T-cell population expresses CD3, CD4 and CD8. Consistent with stably established cell lines, the T-cells generated by using the present protocol have been passaged for over a year. PMID:21490582

  16. Prognostic significance of p53 immunohistochemical expression in adenoid cystic carcinoma of the salivary glands: a meta-analysis

    PubMed Central

    Zheng, Chuanming; Wang, Jiafeng; Ge, Minghua

    2017-01-01

    Adenoid cystic carcinoma of salivary glands is a rare adenocarcinoma and has been placed in “high-risk” category as poor long-term prognosis. The purpose of this study was to investigate p53 protein expression in adenoid cystic carcinoma of salivary glands and its correlation with clinicopathological parameters and prognosis. Literatures were searched from PubMed, Embase, Cochrane Library and Web of Science, which investigated the relationships between p53 expression and pathological type, clinical stage, local recurrence, metastasis, nerve infiltration and overall survival. A total of 1,608 patients from 36 studies were included in the analysis. The results showed that p53-postive expression rate was 49% in adenoid cystic carcinoma of salivary glands (OR=10.34, 95%CI: 4.93-21.71, P < 0.0001). The p53-postive expression was closely related to tumor types (OR=0.30, 95%CI: 0.14-0.65, P < 0.0001). The tumor with solid histological subtype had a strong positive correlation with p53 expression. The combined analysis revealed that the p53-positive expression rate among patients in T1and T2 stage was 41.4%, compared to 53.2% among those in T3 and T4 stage. However, there was no significant correlation between tumor stage and p53 expression (OR=0.47, 95% CI: 0.17-1.29, P = 0.14). Besides, compared to patients with p53-negative expression, those with p53-positive expression had a greater chance of developing metastasis, local recurrence and nerve infiltration as well as poorer 5-year overall survival (P < 0.01). In conclusion, the p53 expression is related to the survival of adenoid cystic carcinoma of salivary glands. It can be considered as the auxiliary detection index in treatment and prognosis of adenoid cystic carcinoma of salivary glands. PMID:28206977

  17. Prognostic significance of p53 immunohistochemical expression in adenoid cystic carcinoma of the salivary glands: a meta-analysis.

    PubMed

    Li, Qinglin; Huang, Ping; Zheng, Chuanming; Wang, Jiafeng; Ge, Minghua

    2017-04-25

    Adenoid cystic carcinoma of salivary glands is a rare adenocarcinoma and has been placed in "high-risk" category as poor long-term prognosis. The purpose of this study was to investigate p53 protein expression in adenoid cystic carcinoma of salivary glands and its correlation with clinicopathological parameters and prognosis. Literatures were searched from PubMed, Embase, Cochrane Library and Web of Science, which investigated the relationships between p53 expression and pathological type, clinical stage, local recurrence, metastasis, nerve infiltration and overall survival. A total of 1,608 patients from 36 studies were included in the analysis. The results showed that p53-postive expression rate was 49% in adenoid cystic carcinoma of salivary glands (OR=10.34, 95%CI: 4.93-21.71, P < 0.0001). The p53-postive expression was closely related to tumor types (OR=0.30, 95%CI: 0.14-0.65, P < 0.0001). The tumor with solid histological subtype had a strong positive correlation with p53 expression. The combined analysis revealed that the p53-positive expression rate among patients in T1and T2 stage was 41.4%, compared to 53.2% among those in T3 and T4 stage. However, there was no significant correlation between tumor stage and p53 expression (OR=0.47, 95% CI: 0.17-1.29, P = 0.14). Besides, compared to patients with p53-negative expression, those with p53-positive expression had a greater chance of developing metastasis, local recurrence and nerve infiltration as well as poorer 5-year overall survival (P < 0.01).In conclusion, the p53 expression is related to the survival of adenoid cystic carcinoma of salivary glands. It can be considered as the auxiliary detection index in treatment and prognosis of adenoid cystic carcinoma of salivary glands.

  18. Flavonoids in Ginkgo biloba fallen leaves induce apoptosis through modulation of p53 activation in melanoma cells.

    PubMed

    Park, Hye-Jung; Kim, Moon-Moo

    2015-01-01

    The aim of the present study was to examine the apoptotic effect of flavonoids in methanol extracts of Ginkgo biloba fallen leaves (MEGFL) on melanoma cells. Ginkgo biloba is a deciduous castle chaplain and its leaves include various types of flavonoids such as flavonol-O-glycosides. Ginkgo biloba is known to have therapeutic properties against a number of diseases such as cerebrovascular diseases, blood circulation disease and hypertension. In the present study MEGFL exhibited a higher cytotoxic effect on melanoma cells than Ginkgo biloba leaves (MEGL). It was also found that MEGFL induced apoptotic cell death which was characterized by DNA fragmentation. During the cell death process following treatment with MEGFL, the expression of a variety of death-associated proteins including p53, caspase-3, caspase-9, cytochrome c and Bax were analyzed in the cytosol of melanoma cells. MEGFL significantly increased the expression levels of caspase-3, caspase-9 and p53 in a dose-dependent manner. Our results indicate that MEGFL induced apoptotic cell death by increasing the expression of cell death-associated proteins in melanoma cells.

  19. Stimulation of autophagy by the p53 target gene Sestrin2.

    PubMed

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  20. Epigallocatechin gallate promotes the development of mouse 2-cell embryos in vitro by regulating mitochondrial activity and expression of genes related to p53 signalling pathway.

    PubMed

    Zhang, Weiyu; Lv, Junjie; Zhang, Yanqin; Jiang, Yufei; Chu, Chenfeng; Wang, Shie

    2014-11-01

    Preliminary studies have found that the epigallocatechin gallate (EGCG) at proper concentration could promote development of pre-implantation mouse embryos in vitro. However, the underlying mechanisms have not been well understood. In this study, we collected 1-cell embryos from Kunming (KM) mice, cultured them in M16 medium or M16 medium supplemented with 10 μg/mL EGCG and investigated the effects of EGCG on mitochondrial activity and reactive oxygen species (ROS) level of 2-cell embryos. Furthermore, we explored expression differences of genes related to p53 signalling pathway in 2-cell embryos using a PCR array. The results showed that ROS level and mitochondrial membrane potential were significantly lower in embryos cultured in the EGCG group than in the M16 group (p < 0.05), while the adenosine triphosphate content was slightly lower than in the M16 group (p > 0.05). PCR array test results showed that 18 genes were differentially expressed, among which eight genes involving cell growth, cell cycle regulation and mRNA transcription were up-regulated and 10 genes involving apoptosis, cell cycle arrest and DNA repair were down-regulated in the EGCG groups. It is concluded that EGCG could promote the development of 1-cell embryos in vitro possibly due to its ability to scavenge ROS and regulate mitochondrial activity. In addition, EGCG could influence expression of genes related to p53 signalling pathway in 2-cell embryos and promote cell cycle progression. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  1. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX

    PubMed Central

    Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G

    2011-01-01

    Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 – HdmX and Wip1, leading to efficient elimination of tumour cells. PMID:21546907

  2. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX.

    PubMed

    Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G

    2011-11-01

    Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 - HdmX and Wip1, leading to efficient elimination of tumour cells.

  3. TP53 mutations, expression and interaction networks in human cancers

    PubMed Central

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-01

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers. PMID:27880943

  4. TP53 mutations, expression and interaction networks in human cancers.

    PubMed

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-03

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.

  5. Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer.

    PubMed

    Shen, Youfeng; Xu, Kaixiang; Yuan, Zaimei; Guo, Jianxiong; Zhao, Heng; Zhang, Xuezeng; Zhao, Lu; Qing, Yubo; Li, Honghui; Pan, Weirong; Jia, Baoyu; Zhao, Hong-Ye; Wei, Hong-Jiang

    2017-11-03

    . Finally, six live piglets and one stillborn piglet were collected from two recipients by caesarean section. Sequencing analyses of the target site confirmed the P53 biallelic knockout in all fetuses and piglets, consistent with the genotype of the donor cells. The qPCR analysis showed that the expression of the P53 mRNA had significant reduction in various tissues of the knockout piglets. Furthermore, confocal microscopy and western blotting analyses demonstrated that the fibroblast cells of Diannan miniature piglets with a P53 biallelic knockout were defective in mediating DNA damage when incubated with doxorubicin. TALENs combined with SCNT was successfully used to generate P53 KO Diannan miniature pigs. Although these genetically engineered Diannan miniature pigs had no tumorigenic signs, the P53 gene was dysfunctional. We believe that these pigs will provide powerful new resources for preclinical oncology and basic cancer research.

  6. Expression of autophagy-related protein LC3B, p62, and cytoplasmic p53 in human retinoblastoma tissues.

    PubMed

    Zhang, M; Zhou, Y-F; Gong, J-Y; Gao, C-B; Li, S-L

    2016-07-01

    Dysfunction of autophagy has been implicated in development and progression of diverse human cancers. However, the exact role and mechanism of autophagy have not been fully understood in human cancers, especially in retinoblastoma (Rb). We determined the autophagy activity in human Rb tissues by assessing the autophagy markers microtubule-associated protein light chain 3B (LC3) and p62 (SQSTM1) in formalin fixed and paraffin embedded human tissue by immunohistochemistry and then associated their expression with patient clinicopathological features. We further explored the correlation between the expression of LC3B and p62 and the expression of cytoplasmic p53, a newly identified autophagy suppressor, in Rb tissues. Our data revealed that the expression of LC3B and p62, was significantly associated with disease progression and tumor invasion of Rb. Furthermore, we also revealed that cytoplasmic expression of p53 was inversely associated with the behavior of tumor invasion. Finally, Spearman correlation analysis demonstrated that cytoplasmic expression of p53 was significantly and inversely correlated to the expression of both LC3B and p62. Autophagy might play an important role in human Rb progression, and LC3B and p62 may be useful predictors of disease progression in patients with Rb.

  7. Expression screening using a Medaka cDNA library identifies evolutionarily conserved regulators of the p53/Mdm2 pathway.

    PubMed

    Zhang, Ping; Kratz, Anne Sophie; Salama, Mohammed; Elabd, Seham; Heinrich, Thorsten; Wittbrodt, Joachim; Blattner, Christine; Davidson, Gary

    2015-10-08

    The p53 tumor suppressor protein is mainly regulated by alterations in the half-life of the protein, resulting in significant differences in p53 protein levels in cells. The major regulator of this process is Mdm2, which ubiquitinates p53 and targets it for proteasomal degradation. This process can be enhanced or reduced by proteins that associate with p53 or Mdm2 and several proteins have been identified with such an activity. Furthermore, additional ubiquitin ligases for p53 have been identified in recent years. Nevertheless, our understanding of how p53 abundance and Mdm2 activity are regulated remains incomplete. Here we describe a cell culture based overexpression screen to identify evolutionarily conserved regulators of the p53/Mdm2 circuit. The results from this large-scale screening method will contribute to a better understanding of the regulation of these important proteins. Expression screening was based on co-transfection of H1299 cells with pools of cDNA's from a Medaka library together with p53, Mdm2 and, as internal control, Ror2. After cell lysis, SDS-PAGE/WB analysis was used to detect alterations in these proteins. More than one hundred hits that altered the abundance of either p53, Mdm2, or both were identified in the primary screen. Subscreening of the library pools that were identified in the primary screen identified several potential novel regulators of p53 and/or Mdm2. We also tested whether the human orthologues of the Medaka genes regulate p53 and/or Mdm2 abundance. All human orthologues regulated p53 and/or Mdm2 abundance in the same manner as the proteins from Medaka, which underscores the suitability of this screening methodology for the identification of new modifiers of p53 and Mdm2. Despite enormous efforts in the last two decades, many unknown regulators for p53 and Mdm2 abundance are predicted to exist. This cross-species approach to identify evolutionarily conserved regulators demonstrates that our Medaka unigene cDNA library

  8. Pattern of Expression of p53, Its Family Members, and Regulators during Early Ocular Development and in the Post-Mitotic Retina

    PubMed Central

    Vuong, Linda; Brobst, Daniel E.; Saadi, Anisse; Ivanovic, Ivana; Al-Ubaidi, Muayyad R.

    2012-01-01

    Purpose. Because of its role in cell cycle regulation and apoptosis, p53 may be involved in maintaining the post-mitotic state of the adult eye. To shed light on the role of p53 in retinal development and maintenance, this study investigated the pattern of expression of p53, its family members, and its regulators during the development of the mouse eye. Methods. Relative quantitative real-time PCR (qRT-PCR) was used to determine the steady-state levels of target transcripts in RNA extracted from wild-type mouse whole eyes or retinas between embryonic day (E) 15 and post-natal day (P) 30. Immunoblotting was used to compare the steady-state levels of the protein to that of the transcript. Results. Transcript and protein levels for p53 in the eye were highest at E17 and E18, respectively. However, both p53 transcript and protein levels dropped precipitously thereafter, and no protein was detected on immunoblots after P3. Expression patterns of p63, p73, Mdm2, Mdm4, and Yy1 did not follow that of p53. Immunohistochemistry analysis of the developing eye showed that both p53 and Mdm2 are abundantly expressed at E18 in all layers of the retinal neuroblast. Conclusions. Downregulation of p53 in the post-mitotic retina suggests that, although p53 may be involved in ocular and retinal development, it may play a minimal role in healthy adult retinal function. PMID:22714890

  9. p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells.

    PubMed

    Wang, Hai-Yan; Yu, Hai-Zhong; Huang, Sheng-Mou; Zheng, Yu-Lan

    2016-10-01

    The present study aimed to investigate the effects of berberine hydrochloride on the proliferation and apoptosis of HeLa229 human cervical cancer cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine the cytotoxicity of berberine hydrochloride against HeLa229 cells. The effects of berberine hydrochloride on the apoptosis of HeLa229 cells was detected by immunofluorescence and flow cytometry, and the mRNA expression levels of p53, B‑cell lymphoma 2 (Bcl‑2) and cyclooxygenase‑2 (cox‑2) were analyzed by reverse transcription-quantitative polymerase chain reaction. Berberine hydrochloride inhibited the proliferation of HeLa229 cells in a dose‑dependent manner; minimum cell viability (3.61%) was detected following treatment with 215.164 µmol/l berberine hydrochloride and the half maximal inhibitory concentration value was 42.93 µmol/l following treatment for 72 h. In addition, berberine hydrochloride induced apoptosis in HeLa229 cells in a dose‑ and time‑dependent manner. Berberine hydrochloride upregulated the mRNA expression levels of p53, and downregulated mRNA expression levels of Bcl‑2 and cox‑2, in a dose‑dependent manner. In conclusion, berberine hydrochloride inhibited the proliferation and induced apoptosis of HeLa229 cells, potentially via the upregulation of p53 and the downregulation of Bcl‑2 and cox‑2 mRNA expression levels.

  10. Mechanism of p53-Dependent Apoptosis and its Role in Breast Cancer Therapy

    DTIC Science & Technology

    1999-07-01

    inducibly express p53 as previously described (Chen et a!., 1996). ( a ) Levels of p53, p21, and actin in p53-3, and p53(A62-91)-l, -5, and -6 cells...1994) was used as template, ( a ) Levels of p53, p21 and actin in p53-3 and p53(gln22-ser23/A62-91)-2 and -14 cells were assayed by Western blot...CGG TAC CCC TGT CAT CTT CTG TC; and reverse primer C393 as used for generating p53(A62-91). ( a ) Levels of p53, p21, and actin in p53-3, and p53(A74

  11. β2-AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells.

    PubMed

    Chen, Hongyu; Zhang, Wei; Cheng, Xiang; Guo, Liang; Xie, Shuai; Ma, Yuanfang; Guo, Ning; Shi, Ming

    2017-07-01

    It has been suggested that β2-adrenergic receptor (β2-AR)-mediated signaling induced by catecholamines regulates the degradation of p53. However, the underlying molecular mechanisms were not known. In the present study, we demonstrated that catecholamines upregulated the expression of silent information regulator 1 (Sirt1) through activating β2-AR-mediated signaling pathway, since selective β2-AR antagonist ICI 118, 551 and non-selective β-blocker proprenolol effectively repressed isoproterenol (ISO)-induced Sirt1 expression. Catecholamines inhibited doxorubicin (DOX)-induced p53 acetylation and transcription-activation activities by inducing the expression of Sirt1. Knockdown of the Sirt1 expression by the specific siRNA remarkably blocked the inhibitory effects of ISO on DOX-induced p53 acetylation. In addition, we demonstrated that catecholamines induced resistance of cervical cancer cells to chemotherapeutics both in vitro and in vivo and that β2-AR was overexpressed in cervical cancer tissues. Our data suggest that the p53-dependent, chemotherapeutics-induced cytotoxicity in cervical cancer cells may be compromised by catecholamines-induced upregulation of the Sirt1 expression through activating the β2-AR signaling. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined themore » impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.« less

  13. Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling.

    PubMed

    Wachter, Franziska; Grunert, Michaela; Blaj, Cristina; Weinstock, David M; Jeremias, Irmela; Ehrhardt, Harald

    2013-04-17

    The p53 protein is the best studied target in human cancer. For decades, p53 has been believed to act mainly as a tumor suppressor and by transcriptional regulation. Only recently, the complex and diverse function of p53 has attracted more attention. Using several molecular approaches, we studied the impact of different p53 variants on extrinsic and intrinsic apoptosis signaling. We reproduced the previously published results within intrinsic apoptosis induction: while wild-type p53 promoted cell death, different p53 mutations reduced apoptosis sensitivity. The prediction of the impact of the p53 status on the extrinsic cell death induction was much more complex. The presence of p53 in tumor cell lines and primary xenograft tumor cells resulted in either augmented, unchanged or reduced cell death. The substitution of wild-type p53 by mutant p53 did not affect the extrinsic apoptosis inducing capacity. In summary, we have identified a non-expected impact of p53 on extrinsic cell death induction. We suggest that the impact of the p53 status of tumor cells on extrinsic apoptosis signaling should be studied in detail especially in the context of therapeutic approaches that aim to restore p53 function to facilitate cell death via the extrinsic apoptosis pathway.

  14. The influence of SV40 immortalization of human fibroblasts on p53-dependent radiation responses

    NASA Technical Reports Server (NTRS)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The simian virus 40 large tumor antigen (SV40 Tag) has been ascribed many functions critical to viral propagation, including binding to the mammalian tumor suppressor p53. Recent studies have demonstrated that SV40-transformed murine cells have functional p53. The status of p53 in SV40-immortalized human cells, however, has not been characterized. We have found that in response to ionizing radiation, p53-dependent p21 transactivation activity is present, albeit reduced, in SV40-immortalized cells and that this activity can be further reduced with either dominant negative p53 expression or higher SV40 Tag expression. Furthermore, overexpression of p53 in SV40-immortalized ataxia-telangiectasia (A-T) cells restores p53-dependent p21 induction to typical A-T levels. All SV40-immortalized cell lines exhibited an absence of G1 arrest. Moreover, all SV40-immortalized cell lines exhibited increased apoptosis relative to primary cells in response to ionizing radiation, suggesting that SV40 immortalization results in a unique phenotype with regard to DNA damage responses. Copyright 1999 Academic Press.

  15. p53 Involvement in the Control of Murine Hair Follicle Regression

    PubMed Central

    Botchkarev, Vladimir A.; Komarova, Elena A.; Siebenhaar, Frank; Botchkareva, Natalia V.; Sharov, Andrei A.; Komarov, Pavel G.; Maurer, Marcus; Gudkov, Andrei V.; Gilchrest, Barbara A.

    2001-01-01

    p53 is a transcription factor mediating a variety of biological responses including apoptotic cell death. p53 was recently shown to control apoptosis in the hair follicle induced by ionizing radiation and chemotherapy, but its role in the apoptosis-driven physiological hair follicle regression (catagen) remains to be elucidated. Here, we show that p53 protein is strongly expressed and co-localized with apoptotic markers in the regressing hair follicle compartments during catagen. In contrast to wild-type mice, p53 knockout mice show significant retardation of catagen accompanied by significant decrease in the number of apoptotic cells in the hair matrix. Furthermore, p53 null hair follicles are characterized by alterations in the expression of markers that are encoded by p53 target genes and are implicated in the control of catagen (Bax, Bcl-2, insulin-like growth factor binding protein-3). These data suggest that p53 is involved in the control of apoptosis in the hair follicle during physiological regression and imply that p53 antagonists may be useful for the management of hair growth disorders characterized by premature entry into catagen, such as androgenetic alopecia, alopecia areata, and telogen effluvium. PMID:11395365

  16. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53.

    PubMed

    Kitagaki, J; Yang, Y; Saavedra, J E; Colburn, N H; Keefer, L K; Perantoni, A O

    2009-01-29

    Nitric oxide (NO) is a major effector molecule in cancer prevention. A number of studies have shown that NO prodrug JS-K (O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) induces apoptotic cell death in vitro and in vivo, indicating that it is a promising new therapeutic for cancer. However, the mechanism of its tumor-killing activity remains unclear. Ubiquitin plays an important role in the regulation of tumorigenesis and cell apoptosis. Our earlier report has shown that inactivation of the ubiquitin system through blocking E1 (ubiquitin-activating enzyme) activity preferentially induces apoptosis in p53-expressing transformed cells. As E1 has an active cysteine residue that could potentially interact with NO, we hypothesized that JS-K could inactivate E1 activity. E1 activity was evaluated by detecting ubiquitin-E1 conjugates through immunoblotting. JS-K strikingly inhibits the ubiquitin-E1 thioester formation in cells in a dose-dependent manner with an IC(50) of approximately 2 microM, whereas a JS-K analog that cannot release NO did not affect these levels in cells. Moreover, JS-K decreases total ubiquitylated proteins and increases p53 levels, which is mainly regulated by ubiquitin and proteasomal degradation. Furthermore, JS-K preferentially induces cell apoptosis in p53-expressing transformed cells. These findings indicate that JS-K inhibits E1 activity and kills transformed cells harboring wild-type p53.

  17. Hsp70- and p53-reponses after heat treatment and/or X-irradiation mediate the susceptibility of hematopoietic cells to undergo apoptosis.

    PubMed

    Nijhuis, E H A; Poot, A A; Feijen, J; Vermes, I

    2008-02-01

    The effect of heat treatment in combination with X-irradiation was examined with regard to expression of p53, a tumor suppressor gene product, and Hsp70, a heat-shock protein, in association with the occurrence of programmed cell death (apoptosis). Three hematopoietic cell lines (HSB2, HL60 and Kasumi-1), which differ in p53 status, were exposed to 42.5 degrees C during one hour and/or X-radiation (total dose 8 Gy). After exposure, both mRNA and protein expression levels of Hsp70 and p53 were investigated by real-time PCR (polymerase chain reaction) and Western blotting. Apoptosis was simultaneously analyzed by observation of cell morphology as well as flowcytometric determination of Annexin V binding to phosphatidylserine and propidium iodide exclusion. Both HL60 and HSB2 cell lines with a low p53 status and a quick response to heat treatment with Hsp70 over-expression are less susceptible to heat-induced apoptosis compared to Kasumi-1 cells with wild-type p53 protein and no Hsp70 response. The combination of first applying X-irradiation followed by heat treatment resulted in the most effective induction of apoptosis due to impairment of the Hsp70 response in all three cell lines. These results indicate that the Hsp70 response and p53 status mediate the susceptibility of hematopoietic cells to undergo heat-induced apoptosis. Therefore, these parameters can be used as markers to predict the effectiveness of hyperthermia in cancer treatment.

  18. Anticancer Activity of Marine Sponge Hyrtios sp. Extract in Human Colorectal Carcinoma RKO Cells with Different p53 Status

    PubMed Central

    Lim, Hyun Kyung; Bae, Woori; Lee, Hyi-Seung

    2014-01-01

    Drug development using marine bioresources is limited even though the ocean occupies about 70% of the earth and contains a large number of biological materials. From the screening test of the marine sponge extracts, we found Hyrtios sp. sponge collected from Chuuk island, Micronesia. In this study, the Hyrtios sp. extract was examined for anticancer activity against human colorectal carcinoma RKO cells that are wildtype for p53 and RKO-E6 that are p53 defective. The Hyrtios sp. extract dose-dependently inhibited viability in both cell lines. Multinucleation as an indication of mitotic catastrophe was also observed. Cytotoxicity tests gave significantly different results for RKO and RKO-E6 cells after 48 h exposure to Hyrtios sp. extract. In RKO cells treated with Hyrtios sp. extract, cell death occurred by induction of p53 and p21 proteins. In p53-defective RKO-E6 cells, Hyrtios sp. extract decreased expression of JNK protein and increased p21 protein. These results indicate that Hyrtios sp. extract induced apoptosis via different pathways depending on p53 status and could be a good natural product for developing new anticancer drugs. PMID:25243139

  19. Age-Related Susceptibility to Apoptosis in Human Retinal Pigment Epithelial Cells Is Triggered by Disruption of p53–Mdm2 Association

    PubMed Central

    Bhattacharya, Sujoy; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.

    2012-01-01

    Purpose. Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). Methods. Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. Results. We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. Conclusions. Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD. PMID:23139272

  20. Thymidilate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients.

    PubMed

    Paradiso, A; Simone, G; Petroni, S; Leone, B; Vallejo, C; Lacava, J; Romero, A; Machiavelli, M; De Lena, M; Allegra, C J; Johnston, P G

    2000-02-01

    The purpose of this work was to analyse the ability of p53 and thymidilate synthase (TS) primary tumour expression to retrospectively predict clinical response to chemotherapy and long-term prognosis in patients with advanced colorectal cancers homogeneously treated by methotrexate (MTX)-modulated-5-fluorouracil (5-FU-FA). A total of 108 advanced colorectal cancer patients entered the present retrospective study. Immunohistochemical p53 (pAb 1801 mAb) and TS (TS106 mAb) expression on formalin-fixed paraffin-embedded primary tumour specimens was related to probability of clinical response to chemotherapy, time to progression and overall survival. p53 was expressed in 53/108 (49%) tumours, while 54/108 (50%) showed TS immunostaining. No relationship was demonstrated between p53 positivity and clinical response to chemotherapy (objective response (OR): 20% vs 23%, in p53+ and p53- cases respectively) or overall survival. Percent of OR was significantly higher in TS-negative with respect to TS-positive tumours (30% vs 15% respectively; P < 0.04); simultaneous analysis of TS and p53 indicated 7% OR for p53-positive/TS-positive tumours vs 46% for p53-positive/TS-negative tumours (P < 0.03). Logistic regression analysis confirmed a significant association between TS tumour status and clinical response to chemotherapy (hazard ratio (HR): 2.91; 95% confidence interval (CI) 8.34-1.01; two-sided P < 0.05). A multivariate analysis of overall survival showed that only a small number of metastatic sites was statistically relevant (HR 1.89; 95% CI 2.85-1.26; two-sided P < 0.03). Our study suggests that immunohistochemical expression of p53 and TS could assist the clinician in predicting response of colorectal cancer patients to modulated MTX-5-FU therapy.

  1. Thymidilate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients

    PubMed Central

    Paradiso, A; Simone, G; Petroni, S; Leone, B; Vallejo, C; Lacava, J; Romero, A; Machiavelli, M; Lena, M De; Allegra, C J; Johnston, P G

    2000-01-01

    The purpose of this work was to analyse the ability of p53 and thymidilate synthase (TS) primary tumour expression to retrospectively predict clinical response to chemotherapy and long-term prognosis in patients with advanced colorectal cancers homogeneously treated by methotrexate (MTX)-modulated–5-fluorouracil (5-FU-FA). A total of 108 advanced colorectal cancer patients entered the present retrospective study. Immunohistochemical p53 (pAb 1801 mAb) and TS (TS106 mAb) expression on formalin-fixed paraffin-embedded primary tumour specimens was related to probability of clinical response to chemotherapy, time to progression and overall survival. p53 was expressed in 53/108 (49%) tumours, while 54/108 (50%) showed TS immunostaining. No relationship was demonstrated between p53 positivity and clinical response to chemotherapy (objective response (OR): 20% vs 23%, in p53+ and p53– cases respectively) or overall survival. Percent of OR was significantly higher in TS-negative with respect to TS-positive tumours (30% vs 15% respectively;P< 0.04); simultaneous analysis of TS and p53 indicated 7% OR for p53-positive/TS-positive tumours vs 46% for p53-positive/TS-negative tumours (P< 0.03). Logistic regression analysis confirmed a significant association between TS tumour status and clinical response to chemotherapy (hazard ratio (HR): 2.91; 95% confidence interval (CI) 8.34–1.01; two-sided P< 0.05). A multivariate analysis of overall survival showed that only a small number of metastatic sites was statistically relevant (HR 1.89; 95% CI 2.85–1.26; two-sided P< 0.03). Our study suggests that immunohistochemical expression of p53 and TS could assist the clinician in predicting response of colorectal cancer patients to modulated MTX-5-FU therapy. © 2000 Cancer Research Campaign PMID:10682666

  2. Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells.

    PubMed

    Lee, Sook-Jeong; Hwang, Sung-Ook; Noh, Eun Joo; Kim, Dong-Uk; Nam, Miyoung; Kim, Jong Hyeok; Nam, Joo Hyun; Hoe, Kwang-Lae

    2014-02-14

    Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.

  3. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis.

    PubMed

    Arjonen, Antti; Kaukonen, Riina; Mattila, Elina; Rouhi, Pegah; Högnäs, Gunilla; Sihto, Harri; Miller, Bryan W; Morton, Jennifer P; Bucher, Elmar; Taimen, Pekka; Virtakoivu, Reetta; Cao, Yihai; Sansom, Owen J; Joensuu, Heikki; Ivaska, Johanna

    2014-03-01

    Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.

  4. Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.

    PubMed

    Ishimura, Akihiko; Terashima, Minoru; Tange, Shoichiro; Suzuki, Takeshi

    2016-03-01

    Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.

  5. Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells.

    PubMed

    Vitale, Ilio; Senovilla, Laura; Galluzzi, Lorenzo; Criollo, Alfredo; Vivet, Sonia; Castedo, Maria; Kroemer, Guido

    2008-07-01

    We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the alpha isoform of p38 MAPK (p38alpha MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38alpha MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.

  6. p53 Is a Key Regulator for Osthole-Triggered Cancer Pathogenesis

    PubMed Central

    Huang, Ssu-Ming; Tsai, Cheng-Fang; Wang, Min-Ying

    2014-01-01

    Osthole has been reported to have antitumor activities via the induction of apoptosis and inhibition of cancer cell growth and metastasis. However, the detailed molecular mechanisms underlying the anticancer effects of osthole in human colon cancer remain unclear. In the present study, we have assessed osthole-induced cell death in two different human colon cancer cell lines, HCT116 and SW480. Our results also showed that osthole activated proapoptotic signaling pathways in human colon cancer cells. By using cell culture insert system, osthole reduced cell motility in both human colon cancer cell lines. This study also provides evidence supporting the potential of osthole in p53 activation. Expression of p53, an apoptotic protein, was remarkably upregulated in cells treated with osthole. Importantly, the levels of phosphorylation of p53 on Ser15 (p-p53) and acetylation of p53 on Lys379 (acetyl-p53) were increased under osthole treatment. Our results also demonstrated that p53 was activated followed by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). Our study provides novel insights of p53-mediated responses under osthole treatment. Taken together, we concluded that osthole induces cancer cell death and inhibits migratory activity in a controlled manner and is a promising candidate for antitumor drug development. PMID:25013761

  7. p53 is a key regulator for osthole-triggered cancer pathogenesis.

    PubMed

    Huang, Ssu-Ming; Tsai, Cheng-Fang; Chen, Dar-Ren; Wang, Min-Ying; Yeh, Wei-Lan

    2014-01-01

    Osthole has been reported to have antitumor activities via the induction of apoptosis and inhibition of cancer cell growth and metastasis. However, the detailed molecular mechanisms underlying the anticancer effects of osthole in human colon cancer remain unclear. In the present study, we have assessed osthole-induced cell death in two different human colon cancer cell lines, HCT116 and SW480. Our results also showed that osthole activated proapoptotic signaling pathways in human colon cancer cells. By using cell culture insert system, osthole reduced cell motility in both human colon cancer cell lines. This study also provides evidence supporting the potential of osthole in p53 activation. Expression of p53, an apoptotic protein, was remarkably upregulated in cells treated with osthole. Importantly, the levels of phosphorylation of p53 on Ser15 (p-p53) and acetylation of p53 on Lys379 (acetyl-p53) were increased under osthole treatment. Our results also demonstrated that p53 was activated followed by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). Our study provides novel insights of p53-mediated responses under osthole treatment. Taken together, we concluded that osthole induces cancer cell death and inhibits migratory activity in a controlled manner and is a promising candidate for antitumor drug development.

  8. Glucocorticoid receptor activation inhibits p53-induced apoptosis of MCF10Amyc cells via induction of protein kinase Cε.

    PubMed

    Aziz, Moammir H; Shen, Hong; Maki, Carl G

    2012-08-24

    Glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can promote apoptosis or survival in a cell-specific manner. Activated GR has been reported to inhibit apoptosis in mammary epithelial cells and breast cancer cells by increasing pro-survival gene expression. In this study, activated GR inhibited p53-dependent apoptosis in MCF10A cells and human mammary epithelial cells that overexpress the MYC oncogene. Specifically, GR agonists hydrocortisone or dexamethasone inhibited p53-dependent apoptosis induced by cisplatin, ionizing radiation, or the MDM2 antagonist Nutlin-3. In contrast, the GR antagonist RU486 sensitized the cells to apoptosis by these agents. Apoptosis inhibition was associated with maintenance of mitochondrial membrane potential, diminished caspase-3 and -7 activation, and increased expression at both the mRNA and protein level of the anti-apoptotic PKC family member PKCε. Knockdown of PKCε via siRNA targeting reversed the protective effect of dexamethasone and restored apoptosis sensitivity. These data provide evidence that activated GR can inhibit p53-dependent apoptosis through induction of the anti-apoptotic factor PKCε.

  9. FGF1 protects neuroblastoma SH-SY5Y cells from p53-dependent apoptosis through an intracrine pathway regulated by FGF1 phosphorylation

    PubMed Central

    Pirou, Caroline; Montazer-Torbati, Fatemeh; Jah, Nadège; Delmas, Elisabeth; Lasbleiz, Christelle; Mignotte, Bernard; Renaud, Flore

    2017-01-01

    Neuroblastoma, a sympathetic nervous system tumor, accounts for 15% of cancer deaths in children. In contrast to most human tumors, p53 is rarely mutated in human primary neuroblastoma, suggesting impaired p53 activation in neuroblastoma. Various studies have shown correlations between fgf1 expression levels and both prognosis severity and tumor chemoresistance. As we previously showed that fibroblast growth factor 1 (FGF1) inhibited p53-dependent apoptosis in neuron-like PC12 cells, we initiated the study of the interaction between the FGF1 and p53 pathways in neuroblastoma. We focused on the activity of either extracellular FGF1 by adding recombinant rFGF1 in media, or of intracellular FGF1 by overexpression in human SH-SY5Y and mouse N2a neuroblastoma cell lines. In both cell lines, the genotoxic drug etoposide induced a classical mitochondrial p53-dependent apoptosis. FGF1 was able to inhibit p53-dependent apoptosis upstream of mitochondrial events in SH-SY5Y cells by both extracellular and intracellular pathways. Both rFGF1 addition and etoposide treatment increased fgf1 expression in SH-SY5Y cells. Conversely, rFGF1 or overexpressed FGF1 had no effect on p53-dependent apoptosis and fgf1 expression in neuroblastoma N2a cells. Using different FGF1 mutants (that is, FGF1K132E, FGF1S130A and FGF1S130D), we further showed that the C-terminal domain and phosphorylation of FGF1 regulate its intracrine anti-apoptotic activity in neuroblastoma SH-SY5Y cells. This study provides the first evidence for a role of an intracrine growth factor pathway on p53-dependent apoptosis in neuroblastoma, and could lead to the identification of key regulators involved in neuroblastoma tumor progression and chemoresistance. PMID:29048426

  10. Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53

    PubMed

    AL Shabanah, Othman A; Alotaibi, Moureq rashed; Al Rejaie, Salim S; Alhoshani, Ali R; Almutairi, Mashal M; Alshammari, Musaad A; Hafez, Mohamed M

    2016-11-01

    Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway. Creative Commons Attribution License

  11. Abnormal expression and mutation of p53 in cervical cancer--a study at protein, RNA and DNA levels.

    PubMed

    Ngan, H Y; Tsao, S W; Liu, S S; Stanley, M

    1997-02-01

    The objectives of this study are to document the status of p53 expression and mutation in cervical cancer at protein, RNA and DNA levels and to relate this to the presence of HPV. Biopsy specimens from one hundred and three squamous cell carcinoma of the cervix and histologically normal ectocervix were analysed. Fresh tissues were extracted for protein, RNA and DNA and flash frozen tissue cryostat sectioned for immunohistochemical staining. HPV DNA status was determined by PCR using L1 consensus primers and typed for HPV 16 and 18 with E6 specific primers. p53 expression was determined at the protein level by Western blotting on protein extracts and at RNA level by Northern blotting. There was no p53 overexpression or mutation detectable in the protein extracts. Three of 65 (4.6%) of the carcinomas were positive for p53 by immunostaining with the polyclonal antibody CM1. Overexpression at the RNA level was detected in 2 of 32 (6.3%) carcinomas. p53 mutation was screened for by PCR/SSCP (single strand conformation polymorphism) followed by sequencing to define the site of mutation. Two of the cervical cancers (2.0%) showed mutation in p53 in exons 7 or 8. The mutation rate in HPV positive tumours was 1.2% (1/81) and in HPV negative tumours was 5.2% (1/19). p53 overexpression or mutation does not seem to play a significant role in cervical carcinomas.

  12. [Effect of microRNA-34a/SIRT1/p53 signal pathway on notoginsenoside R₁ delaying vascular endothelial cell senescence].

    PubMed

    Lai, Xiao-Hua; Lei, Yan; Yang, Jing; Xiu, Cheng-Kui

    2018-02-01

    This study aimed to investigate the effect of notoginsenoside R₁ in delaying H₂O₂-induced vascular endothelial cell senescence through microRNA-34a/SIRT1/p53 signal pathway. In this study, human umbilical vein endothelial cells(HUVECs) were selected as the study object; the aging model induced by hydrogen peroxide(H₂O₂) was established, with resveratrol as the positive drug. HUVECs were randomly divided into four groups, youth group, senescence model group, notoginsenoside R₁ group and resveratrol group. Notoginsenoside R₁ group and resveratrol group were modeled with 100 μmoL·L⁻¹ H₂O₂ for 4 h after 24 h treatment with notoginsenoside R₁(30 μmoL·L⁻¹) and resveratrol(10 μmoL·L⁻¹) respectively. At the end, each group was cultured with complete medium for 24 h. The degree of cellular senescence was detected by senescence-associated β-galactosidase(SA-β-Gal) staining kit, the cell viability was detected by cell counting kit-8, the cell cycle distribution was analyzed by flow cytometry, and the cellular SOD activity was detected by WST-1 method in each group. The expressions of SIRT1, p53p21 and p16 proteins in HUVECs were detected by Western blot. In addition, the mRNA expressions of miRNA-34a, SIRT1 and p53 in HUVECs were assayed by Real-time PCR. These results indicated that notoginsenoside R₁ significantly reduced the positive staining rate of senescent cells, enhanced the cell proliferation capacity and intracellular SOD activity, decreased the proportion of cells in G₀/G₁ phase, and increased the percentage of cells in S phase simultaneously compared with the senescence model group. Moreover, notoginsenoside R₁ decreased the mRNA expressions of miRNA-34a and p53 and the protein expression of p53p21 and p16.At the same time, notoginsenoside R₁ increased the protein and mRNA expressions of SIRT1. The differences in these results between the senescence model group and the

  13. B-cell posttransplant lymphoproliferative disorder isolated to the central nervous system is Epstein-Barr virus positive and lacks p53 and Myc expression by immunohistochemistry.

    PubMed

    Sundin, Andrew; Grzywacz, Bartosz J; Yohe, Sophia; Linden, Michael A; Courville, Elizabeth L

    2017-03-01

    In this retrospective study from one institution, we performed a clinicopathological study of a cohort of patients with posttransplant lymphoproliferative disorder (PTLD) confined to the central nervous system. We also identified a comparison cohort of patients with de novo primary diffuse large B-cell lymphoma of the central nervous system. We performed a detailed morphologic review, evaluated Epstein-Barr virus (EBV) by in situ hybridization, and interpreted a panel of immunohistochemical stains in a subset of cases including Hans classification markers (CD10, BCL6, MUM1), p53, CD30, Myc, and BCL2. All 17 of the posttransplant and none of 11 de novo cases were EBV positive (P < .005). Morphologic patterns identified in the PTLD cases were monomorphic diffuse large B-cell lymphoma pattern (10 patients) and "T-cell-rich" pattern (7 patients). The monomorphic posttransplant cases were more likely to be Myc negative (P = .015) and CD30 positive (P < .005) than the de novo cases, and showed a similarly low rate of p53 positivity by immunohistochemistry. No prognostic factors for overall survival were identified. Central nervous system PTLD is EBV positive, typically lacks p53 and Myc expression by immunohistochemistry, and can present with numerous background T lymphocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline.

    PubMed

    Fan, S; Smith, M L; Rivet, D J; Duba, D; Zhan, Q; Kohn, K W; Fornace, A J; O'Connor, P M

    1995-04-15

    The possibility that appropriately designed chemotherapy could act selectively against p53-defective tumor cells was explored in MCF-7 human breast cancer cells. These cells were chosen because they have normal p53 function but are representative of a tumor cell type that does not readily undergo p53-dependent apoptosis. Two sublines (MCF-7/E6 and MCF-7/mu-p53) were established in which p53 function was disrupted by transfection with either the human papillomavirus type-16 E6 gene or a dominant-negative mutant p53 gene. p53 function in MCF-7/E6 and MCF-7/mu-p53 cells was defective relative to control cells in that there were no increases in p53 or p21Waf1/Cip1 protein levels and no G1 arrest following exposure to ionizing radiation. Survival assays showed that p53 disruption sensitized MCF-7 cells to cisplatin (CDDP) but not to several other DNA-damaging agents. CDDP sensitization was not limited to MCF-7 cells since p53 disruption in human colon carcinoma RKO cells also enhanced sensitivity to CDDP. Contrary to the other DNA-damaging agents tested, CDDP-induced DNA lesions are repaired extensively by nucleotide excision, and in agreement with a defect in this process, MCF-7/E6 and MCF-7/mu-p53 cells exhibited a reduced ability to repair a CDDP-damaged chloramphenicol acetyltransferase-reporter plasmid transfected into the cells. Therefore, we attributed the increased CDDP sensitivity of MCF-7 cells with disrupted p53 to defects in G1 checkpoint control, nucleotide excision repair, or both. The G2 checkpoint inhibitor pentoxifylline exhibited synergism with CDDP in killing MCF-7/E6 cells but did not affect sensitivity of the control cells. Moreover, pentoxifylline inhibited G2 checkpoint function to a greater extent in MCF-7/E6 than in the parental cells. These results suggested that, in the absence of p53 function, cancer cells are more vulnerable to G2 checkpoint abrogators. Our results show that a combination of CDDP and pentoxifylline is capable of synergistic

  15. Prevalence of human papillomavirus, Epstein-Barr virus, p21, and p53 expression in sinonasal inverted papilloma, nasal polyp, and hypertrophied turbinate in Hong Kong patients.

    PubMed

    Sham, C L; To, K F; Chan, Paul K S; Lee, Dennis L Y; Tong, Michael C F; van Hasselt, C Andrew

    2012-04-01

    The purpose of this study of human papillomavirus (HPV), Epstein-Barr virus (EBV), p21, and p53 in sinonasal inverted papilloma (IP) was to help elucidate its pathogenesis. Seventy-three IPs, 48 nasal polyps, and 85 hypertrophied turbinates were subjected to HPV polymerase chain reaction (PCR) study. Seventy-three IPs, 30 nasal polyps, and 32 hypertrophied turbinates were subjected to EBV in situ hybridization (ISH), p21, and p53 immunohistochemical (IHC) studies. HPV was positive in 3 of 73 IPs (4.1%). All specimens were EBV negative. In all, 99% of IPs showed strong and diffuse p21 nuclear reactivity. Most nasal polyps and hypertrophied turbinates showed weak to moderate immunoreactivity of the basal and parabasal cells. Only focal p53 immunoreactivity of the basal and parabasal cells was found in 19% of IPs and 40% of nasal polyps. HPV prevalence of our IP is low. EBV is not present in IP. High p21 and low p53 expression in IP suggests a non-p53-dependent regulation pathway. Copyright © 2011 Wiley Periodicals, Inc.

  16. Immunohistochemical co-expression status of cytokeratin 5/6, androgen receptor, and p53 as prognostic factors of adjuvant chemotherapy for triple negative breast cancer.

    PubMed

    Maeda, Tetsuyo; Nakanishi, Yoko; Hirotani, Yukari; Fuchinoue, Fumi; Enomoto, Katsuhisa; Sakurai, Kenichi; Amano, Sadao; Nemoto, Norimichi

    2016-03-01

    Triple negative breast cancer (TNBC) is immunohistochemically characterised by the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor type 2 (HER2). TNBC is known for its poor prognosis and high recurrence probability. There is no effective targeted treatment for TNBC, but only adjuvant chemotherapies. There are two TNBC subtypes, basal-like and non-basal-like, which are defined based on positive cytokeratin (CK) 5/6 and/or epidermal growth factor receptor (EGFR) expression. In particular, CK5/6 expression is reported to correlate with TNBC recurrence. TNBC lacks ER-α expression, but some TNBCs are known to express the androgen receptor (AR). Moreover, although p53 accumulation is detected in various malignant tumors, its influence on adjuvant chemotherapy for patients with TNBC remains unclear. The aim of this study was to assess the combined immunohistochemical expression of CK 5/6, AR, and p53 as a potential prognostic marker of adjuvant chemotherapy for patients with TNBC. The expression of CK5/6, AR, and p53 in formalin-fixed and paraffin-embedded (FFPE) surgical sections from 52 patients with TNBC was analysed by immunohistochemistry (IHC) and the co-expression patterns in individual cells were investigated by immunofluorescent (IF) staining. Low AR expression was correlated with high clinical stage (P < 0.05) and low nuclear grade (P < 0.05). The expression of CK5/6 and p53 did not correlate with clinicopathological features. Patients who needed adjuvant chemotherapy presented the worst prognosis. In particular, when the IHC expression pattern was CK5/6 (-), AR (-), and p53 (+), the disease free survival (DFS) and overall survival (OS) were the worst. On the other hand, patients with AR (+) and p53 (-) TNBC presented a good prognosis. The analysis of the co-expression status of these three markers showed that no cells presented both AR and CK5/6 expression. Furthermore, TP53 m

  17. Family matters: sibling rivalry and bonding between p53 and p63 in cancer.

    PubMed

    Romano, Rose-Anne; Sinha, Satrajit

    2014-04-01

    The p53 family (p53, p63 and p73) is intimately linked with an overwhelming number of cellular processes during normal physiological as well as pathological conditions including cancer. The fact that these proteins are expressed in myriad isoforms, each with unique biochemical properties and distinct effects on tumorigenesis, complicates their study. A case in point is Squamous Cell Carcinoma (SCC) where p53 is often mutated and the ΔNp63 isoform is overexpressed. Given that p53 and p63 can hetero-dimerize, bind to quite similar DNA elements and share common co-factors, any alterations in their individual expression levels, activity and/or mutation can severely disrupt the family equilibrium. The burgeoning genomics data sets and new additions to the experimental toolbox are offering crucial insights into the complex role of the p53 family in SCC, but more mechanistic studies are needed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

    PubMed Central

    Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo

    2015-01-01

    Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407

  19. Distinct downstream targets manifest p53-dependent pathologies in mice.

    PubMed

    Pant, V; Xiong, S; Chau, G; Tsai, K; Shetty, G; Lozano, G

    2016-11-03

    Mdm2, the principal negative regulator of p53, is critical for survival, a fact clearly demonstrated by the p53-dependent death of germline or conditional mice following deletion of Mdm2. On the other hand, Mdm2 hypomorphic (Mdm2 Puro/Δ7-12 ) or heterozygous (Mdm2 +/- ) mice that express either 30 or 50% of normal Mdm2 levels, respectively, are viable but present distinct phenotypes because of increased p53 activity. Mdm2 levels are also transcriptionally regulated by p53. We evaluated the significance of this reciprocal relationship in a new hypomorphic mouse model inheriting an aberrant Mdm2 allele with insertion of the neomycin cassette and deletion of 184-bp sequence in intron 3. These mice also carry mutations in the Mdm2 P2-promoter and thus express suboptimal levels of Mdm2 entirely encoded from the P1-promoter. Resulting mice exhibit abnormalities in skin pigmentation and reproductive tissue architecture, and are subfertile. Notably, all these phenotypes are rescued on a p53-null background. Furthermore, these phenotypes depend on distinct p53 downstream activities as genetic ablation of the pro-apoptotic gene Puma reverts the reproductive abnormalities but not skin hyperpigmentation, whereas deletion of cell cycle arrest gene p21 does not rescue either phenotype. Moreover, p53-mediated upregulation of Kitl influences skin pigmentation. Altogether, these data emphasize tissue-specific p53 activities that regulate cell fate.

  20. Immunohistochemical expression of TopBP1 in feline mammary neoplasia in relation to histological grade, Ki67, ERalpha and p53.

    PubMed

    Morris, Joanna S; Nixon, Colin; Bruck, Alicia; Nasir, Lubna; Morgan, Iain M; Philbey, Adrian W

    2008-02-01

    The immunohistochemical expression of topoisomerase IIbeta binding protein 1 (TopBP1) was examined in 123 feline mammary lesions (18 non-neoplastic lesions including six fibroadenomatous hyperplasia and 12 duct ectasia, 17 adenomas and 88 carcinomas) in relation to histological grade, oestrogen receptor alpha (ERalpha) status, proliferation index (Ki67) and p53 expression. There was positive staining for TopBP1 in 122 of 123 feline mammary lesions, although nine samples had fewer than 20% positive cells. The percentage of cells positive for TopBP1 increased with histological grade. Most staining was nuclear but both nuclear and cytoplasmic staining was observed as the degree of malignancy increased. TopBP1 is expressed in feline mammary tumours and its expression is correlated with histological grade. Many neoplasms which over-express p53 or are ERalpha negative show TopBP1 immunoreactivity.

  1. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Dehua; Fan, Wufang; Liu, Guohong

    2006-04-01

    HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showedmore » that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties.« less

  2. Assessment of p21, p53 expression, and Ki-67 proliferative activities in the gastric mucosa of children with Helicobacter pylori gastritis.

    PubMed

    Saf, Coskun; Gulcan, Enver Mahir; Ozkan, Ferda; Cobanoglu Saf, Seyhan Perihan; Vitrinel, Ayca

    2015-02-01

    Helicobacter pylori that is generally acquired in childhood and infects the gastric mucosa is considered to be responsible for many pathobiological changes that are linked to the pathogenesis of gastric cancer. Although the majority of studies on the subject have been carried out in adults, there are a limited number of studies on children that reflect the early period of infection and may be of greater significance. We aimed to determine the role of H. pylori infection and/or gastritis in several histopathological changes, p53, p21, and cell proliferation-associated Ki-67 antigen expression in the gastric mucosa. We studied 60 patients with a mean age of 7.5 ± 4.5 years at referral. On the basis of endoscopic appearance and the evaluation of the gastric antral specimens, the patients were divided into three groups: patients without gastritis, patients with H. pylori-positive gastritis, and patients with H. pylori-negative gastritis. To determine the expression of p53, Ki-67, and p21 in gastric biopsy specimens, immunohistochemical stains were performed. The incidence of neutrophil activity, which was one of our histopathologic parameters, was significantly higher in the H. pylori-positive gastritis group than the other two groups. The presence of lymphoid aggregate was more frequent in H. pylori ± gastritis groups than the nongastritis group. p53 expression was found to be significantly higher in the H. pylori-positive gastritis group than the nongastritis group. Ki-67 and p21 expressions were significantly more frequent in the H. pylori-positive gastritis group than the other two groups. When we evaluated the density of H. pylori, as the density of bacteria increases, we found that the expressions of p53, p21, and Ki-67 increased significantly. Expression of the studied precancerous markers in significant amounts indicates the importance of childhood H. pylori infection in the constitution of gastric cancer in adulthood.

  3. S-Nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson’s disease

    PubMed Central

    2013-01-01

    Background Mutations in the gene encoding parkin, a neuroprotective protein with dual functions as an E3 ubiquitin ligase and transcriptional repressor of p53, are linked to familial forms of Parkinson’s disease (PD). We hypothesized that oxidative posttranslational modification of parkin by environmental toxins may contribute to sporadic PD. Results We first demonstrated that S-nitrosylation of parkin decreased its activity as a repressor of p53 gene expression, leading to upregulation of p53. Chromatin immunoprecipitation as well as gel-shift assays showed that parkin bound to the p53 promoter, and this binding was inhibited by S-nitrosylation of parkin. Additionally, nitrosative stress induced apoptosis in cells expressing parkin, and this death was, at least in part, dependent upon p53. In primary mesencephalic cultures, pesticide-induced apoptosis was prevented by inhibition of nitric oxide synthase (NOS). In a mouse model of pesticide-induced PD, both S-nitrosylated (SNO-)parkin and p53 protein levels were increased, while administration of a NOS inhibitor mitigated neuronal death in these mice. Moreover, the levels of SNO-parkin and p53 were simultaneously elevated in postmortem human PD brain compared to controls. Conclusions Taken together, our data indicate that S-nitrosylation of parkin, leading to p53-mediated neuronal cell death, contributes to the pathophysiology of sporadic PD. PMID:23985028

  4. Hydroquinone-induced malignant transformation of TK6 cells by facilitating SIRT1-mediated p53 degradation and up-regulating KRAS.

    PubMed

    Chen, Yuting; Chen, Jiajia; Yun, Lin; Xu, Longmei; Liu, Jiaxian; Xu, Yongchun; Yang, Hui; Liang, Hairong; Tang, Huanwen

    2016-09-30

    Hydroquinone (HQ), known as one of the metabolic products of benzene, causes a number of hematologic malignancies. The study evaluated the potential mechanism of Sirtuin 1 (SIRT1) in HQ-induced TK6 cell malignant transformation. The data of our study show that short term exposure of TK6 cells to HQ led to a decrease expression of SIRT1. Knockdown of SIRT1 sensitized to the HQ-induced apoptosis in vitro and increased the expression of p53, p21 and γ-H2AX. Furthermore, chronic HQ-treated (20μM once a week for 19 weeks) caused carcinogenic transformation and was confirmed by abnormal cell proliferation, matrix metalloproteinase 9(MMP9) and subcutaneous tumor formation in nude mice. SIRT1 increased KRAS expression, and decreased H3K9 and H3K18 acetylation, inhibited p53 signaling and the level of caspase-3 in HQ-induced transformation cells. Taken together, these data suggest that SIRT1 is involved in HQ-induced malignant transformation associated with suppressing p53 signaling and activation of KRAS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. SOX14 activates the p53 signaling pathway and induces apoptosis in a cervical carcinoma cell line

    PubMed Central

    Stanisavljevic, Danijela; Petrovic, Isidora; Vukovic, Vladanka; Schwirtlich, Marija; Gredic, Marija; Stevanovic, Milena

    2017-01-01

    SOX14 is a member of the SOX family of transcription factors mainly involved in the regulation of neural development. Recently, it became evident that SOX14 is one of four hypermethylated genes in cervical carcinoma, considered as a tumor suppressor candidate in this type of malignancy. In this paper we elucidated the role of SOX14 in the regulation of malignant properties of cervical carcinoma cells in vitro. Functional analysis performed in HeLa cells revealed that SOX14 overexpression decreased viability and promoted apoptosis through altering the expression of apoptosis related genes. Our results demonstrated that overexpression of SOX14 initiated accumulation of p53, demonstrating potential cross-talk between SOX14 and the p53 signaling pathway. Further analysis unambiguously showed that SOX14 triggered posttranslational modification of p53 protein, as detected by the significantly increased level of phospho-p53 (Ser-15) in SOX14-overexpressing HeLa cells. Moreover, the obtained results revealed that SOX14 activated p53 protein, which was confirmed by elevated p21Waf1/Cip1, a well known target gene of p53. This study advances our understanding about the role of SOX14 and might explain the molecular mechanism by which this transcription factor could exert tumor suppressor properties in cervical carcinoma. PMID:28926586

  6. MiR-300 regulate the malignancy of breast cancer by targeting p53.

    PubMed

    Xu, Xiao-Heng; Li, Da-Wei; Feng, Hui; Chen, Hong-Mei; Song, Yan-Qiu

    2015-01-01

    In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of breast cancer (BC) cells. MicroRNA and protein expression patterns were compared between breast cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in MCF-7 breast cancer cells. We observed that miR-300 expression was frequently and dramatically up-regulated in human breast cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote breast cancer cell proliferation and invasion by regulating p53 expression. Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in breast cancer cell proliferation during breast tumorigenesis.

  7. MiR-300 regulate the malignancy of breast cancer by targeting p53

    PubMed Central

    Xu, Xiao-Heng; Li, Da-Wei; Feng, Hui; Chen, Hong-Mei; Song, Yan-Qiu

    2015-01-01

    Objective: In this study, we investigated the role of miR-300 in regulating cell proliferation and invasion of breast cancer (BC) cells. Methods: MicroRNA and protein expression patterns were compared between breast cancer tissue and normal tissue and between two different prognostic groups. The up-regulation of miR-300 was confirmed by real-time reverse transcription polymerase chain reaction and its expression was analyzed in MCF-7 breast cancer cells. Results: We observed that miR-300 expression was frequently and dramatically up-regulated in human breast cancer tissues and cell lines compared with the matched adjacent normal tissues and cells. We further showed that transient and stable over-expression of miR-300 could promote cell proliferation and cell cycle progression. Moreover, p53, a key inhibitor of cell cycle, was verified as a direct target of miR-300, suggesting that miR-300 might promote breast cancer cell proliferation and invasion by regulating p53 expression. Conclusion: Our findings indicated that miR-300 up-regulation might exert some sort of antagonistic function by targeting p53 in breast cancer cell proliferation during breast tumorigenesis. PMID:26221232

  8. Regulatory RNA Key Player in p53-Mediated Apoptosis in Embryonic Stem Cells | Center for Cancer Research

    Cancer.gov

    Embryonic stem cells (ESCs) must maintain the integrity of their genomes or risk passing potentially deleterious mutations on to numerous tissues. Thus, ESCs have a unique genome surveillance system and easily undergo apoptosis or differentiation when DNA damage is detected. The protein p53 is known to promote differentiation in mouse ESCs (mESCs), but its role in DNA damage-induced apoptosis (DIA) is unclear. p53 may have a pro-apoptotic function since it can regulate apoptotic genes in embryonal cells. Given that ESCs have a distinct transcriptional program, Jing Huang, Ph.D., of CCR’s Laboratory of Cancer Biology and Genetics, and his colleagues wondered whether p53 might regulate DIA in ESCs by utilizing the ESC-specific expression program.

  9. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence.

    PubMed

    Jiang, Peng; Du, Wenjing; Mancuso, Anthony; Wellen, Kathryn E; Yang, Xiaolu

    2013-01-31

    Cellular senescence both protects multicellular organisms from cancer and contributes to their ageing. The pre-eminent tumour suppressor p53 has an important role in the induction and maintenance of senescence, but how it carries out this function remains poorly understood. In addition, although increasing evidence supports the idea that metabolic changes underlie many cell-fate decisions and p53-mediated tumour suppression, few connections between metabolic enzymes and senescence have been established. Here we describe a new mechanism by which p53 links these functions. We show that p53 represses the expression of the tricarboxylic-acid-cycle-associated malic enzymes ME1 and ME2 in human and mouse cells. Both malic enzymes are important for NADPH production, lipogenesis and glutamine metabolism, but ME2 has a more profound effect. Through the inhibition of malic enzymes, p53 regulates cell metabolism and proliferation. Downregulation of ME1 and ME2 reciprocally activates p53 through distinct MDM2- and AMP-activated protein kinase-mediated mechanisms in a feed-forward manner, bolstering this pathway and enhancing p53 activation. Downregulation of ME1 and ME2 also modulates the outcome of p53 activation, leading to strong induction of senescence, but not apoptosis, whereas enforced expression of either malic enzyme suppresses senescence. Our findings define physiological functions of malic enzymes, demonstrate a positive-feedback mechanism that sustains p53 activation, and reveal a connection between metabolism and senescence mediated by p53.

  10. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17

    PubMed Central

    Guinea-Viniegra, Juan; Zenz, Rainer; Scheuch, Harald; Jiménez, María; Bakiri, Latifa; Petzelbauer, Peter; Wagner, Erwin F.

    2012-01-01

    Squamous cell carcinomas (SCCs) are heterogeneous and aggressive skin tumors for which innovative, targeted therapies are needed. Here, we identify a p53/TACE pathway that is negatively regulated by FOS and show that the FOS/p53/TACE axis suppresses SCC by inducing differentiation. We found that epidermal Fos deletion in mouse tumor models or pharmacological FOS/AP-1 inhibition in human SCC cell lines induced p53 expression. Epidermal cell differentiation and skin tumor suppression were caused by a p53-dependent transcriptional activation of the metalloprotease TACE/ADAM17 (TNF-α–converting enzyme), a previously unknown p53 target gene that was required for NOTCH1 activation. Although half of cutaneous human SCCs display p53-inactivating mutations, restoring p53/TACE activity in mouse and human skin SCCs induced tumor cell differentiation independently of the p53 status. We propose FOS/AP-1 inhibition or p53/TACE reactivating strategies as differentiation-inducing therapies for SCCs. PMID:22772468

  11. Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells

    PubMed Central

    Kim, Ella L.; Wüstenberg, Robin; Rübsam, Anne; Schmitz-Salue, Christoph; Warnecke, Gabriele; Bücker, Eva-Maria; Pettkus, Nadine; Speidel, Daniel; Rohde, Veit; Schulz-Schaeffer, Walter; Deppert, Wolfgang; Giese, Alf

    2010-01-01

    Glioblastoma is the most common malignant brain tumor in adults. The currently available treatments offer only a palliative survival advantage and the need for effective treatments remains an urgent priority. Activation of the p53 growth suppression/apoptotic pathway is one of the promising strategies in targeting glioma cells. We show that the quinoline derivative chloroquine activates the p53 pathway and suppresses growth of glioma cells in vitro and in vivo in an orthotopic (U87MG) human glioblastoma mouse model. Induction of apoptosis is one of the mechanisms underlying the effects of chloroquine on suppressing glioma cell growth and viability. siRNA-mediated downregulation of p53 in wild-type but not mutant p53 glioblastoma cells substantially impaired chloroquine-induced apoptosis. In addition to its p53-activating effects, chloroquine may also inhibit glioma cell growth via p53-independent mechanisms. Our results clarify the mechanistic basis underlying the antineoplastic effect of chloroquine and reveal its therapeutic potential as an adjunct to glioma chemotherapy. PMID:20308316

  12. Sedanolide induces autophagy through the PI3K, p53 and NF-κB signaling pathways in human liver cancer cells.

    PubMed

    Hsieh, Shu-Ling; Chen, Chi-Tsai; Wang, Jyh-Jye; Kuo, Yu-Hao; Li, Chien-Chun; Hsieh, Lan-Chi; Wu, Chih-Chung

    2015-12-01

    Sedanolide (SN), a phthalide-like compound from celery seed oil, possesses antioxidant effects. However, the effect of SN on cell death in human liver cancer cells has yet to be determined. In this study, cell viability determination, monodansylcadaverine (MDC) fluorescent staining and immunoblot analysis were performed to determine autophagy induction and autophagy-induced protein expression changes via molecular examination after human liver cancer (J5) cells were treated with SN. Our studies demonstrate that SN suppressed J5 cell viability by inducing autophagy. Phosphoinositide 3-kinase (PI3K)-I, mammalian target of rapamycin (mTOR) and Akt protein levels decreased, whereas PI3K-III, LC3-II and Beclin-1 protein levels increased following SN treatment in J5 cells. In addition, SN treatment upregulated nuclear p53 and damage-regulated autophagy modulator (DRAM) and downregulated cytosolic p53 and Tp53-induced glycolysis and apoptosis regulator (TIGAR) expression in J5 cells. Furthermore, the cytosolic phosphorylation of inhibitor of kappa B (IκB) and nuclear p65 and the DNA-binding activity of NF-κB increased after SN treatment. These results suggest that SN induces J5 cell autophagy by regulating PI3K, p53 and NF-κB autophagy-associated signaling pathways in J5 cells.

  13. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells*

    PubMed Central

    de Queiroz, Rafaela Muniz; Madan, Rashna; Chien, Jeremy; Dias, Wagner Barbosa; Slawson, Chad

    2016-01-01

    O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked β-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma. PMID:27402830

  14. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    PubMed

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  15. p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase.

    PubMed

    Teodoro, Jose G; Parker, Albert E; Zhu, Xiaochun; Green, Michael R

    2006-08-18

    Recent evidence suggests that antiangiogenic therapy is sensitive to p53 status in tumors, implicating a role for p53 in the regulation of angiogenesis. Here we show that p53 transcriptionally activates the alpha(II) collagen prolyl-4-hydroxylase [alpha(II)PH] gene, resulting in the extracellular release of antiangiogenic fragments of collagen type 4 and 18. Conditioned media from cells ectopically expressing either p53 or alpha(II)PH selectively inhibited growth of primary human endothelial cells. When expressed intracellularly or exogenously delivered, alpha(II)PH significantly inhibited tumor growth in mice. Our results reveal a genetic and biochemical linkage between the p53 tumor suppressor pathway and the synthesis of antiangiogenic collagen fragments.

  16. The anticancer effect of saffron in two p53 isogenic colorectal cancer cell lines

    PubMed Central

    2012-01-01

    Background Saffron extract, a natural product, has been shown to induce apoptosis in several tumor cell lines. Nevertheless, the p53-dependency of saffron’s mechanism of action in colon cancer remains unexplored. Material and methods In order to examine saffron’s anti-proliferative and pro-apoptotic effects in colorectal cancer cells, we treated two p53 isogenic HCT116 cell lines (HCT wildtype and HCT p53−/−) with different doses of the drug and analyzed cell proliferation and apoptosis in a time-dependent manner. MTT viability and crystal violet assays were performed in order to determine the effective dose of saffron on both cell lines. The cell cycle progress was examined by Flow cytometric analysis. Apoptosis was assessed using Annexin-PI-staining and Western Blotting for caspase 3 and PARP cleavage. Autophagy was determined by Western Blotting of the light chain 3 (LC3)-II and Beclin 1 proteins. The protein content of phospho-H2AX (γH2AX), a sensor of DNA double strand breaks, was also analyzed by Western Blotting. Results Saffron extract induced a p53-dependent pattern of cell cycle distribution with a full G2/M stop in HCT116 p53 wildtype cells. However, it induced a remarkable delay in S/G2 phase transit with entry into mitosis in HCT116 p53 −/− cells. The apoptotic Pre-G1 cell fraction as well as Annexin V staining and caspase 3 cleavage showed a more pronounced apoptosis induction in HCT116 p53 wildtype cells. Obviously, the significantly higher DNA-damage, reflected by ɣH2AX protein levels in cells lacking p53, was coped by up-regulation of autophagy. The saffron-induced LC3-II protein level was a remarkable indication of the accumulation of autophagosomes, a response to the cellular stress condition of drug treatment. Conclusions This is the first study showing the effect of saffron in HCT116 colorectal cancer cells with different p53 status. Saffron induced DNA-damage and apoptosis in both cell lines. However, autophagy has delayed the

  17. Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F₁F₀-ATP synthase

    PubMed Central

    Bergeaud, Marie; Mathieu, Lise; Guillaume, Arnaud; Moll, Ute M; Mignotte, Bernard; Le Floch, Nathalie; Vayssière, Jean-Luc; Rincheval, Vincent

    2013-01-01

    We and others previously reported that endogenous p53 can be located at mitochondria in the absence of stress, suggesting that p53 has a role in the normal physiology of this organelle. The aim of this study was to characterize in unstressed cells the intramitochondrial localization of p53 and identify new partners and functions of p53 in mitochondria. We find that the intramitochondrial pool of p53 is located in the intermembrane space and the matrix. Of note, unstressed HCT116 p53+/+ cells simultaneously show increased O₂ consumption and decreased mitochondrial superoxide production compared with their p53-null counterpart. This data was confirmed by stable H1299 cell lines expressing low levels of p53 specifically targeted to the matrix. Using immunoprecipitation and mass spectrometry, we identified the oligomycin sensitivity-conferring protein (OSCP), a subunit of the F₁F₀-ATP synthase complex, as a new partner of endogenous p53, specifically interacting with p53 localized in the matrix. Interestingly, this interaction seems implicated in mitochondrial p53 localization. Moreover, p53 localized in the matrix promotes the assembly of F₁F₀-ATP synthase. Taking into account that deregulations of mitochondrial respiration and reactive oxygen species production are tightly linked to cancer development, we suggest that mitochondrial p53 may be an important regulator of normal mitochondrial and cellular physiology, potentially exerting tumor suppression activity inside mitochondria. PMID:23966169

  18. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    PubMed Central

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34+ AML cells with a large variability in basal autophagy between AMLs observed. The autophagy flux was higher in AMLs classified as poor risk, which are frequently associated with TP53 mutations (TP53mut), compared with favorable- and intermediate-risk AMLs. In addition, the higher flux was associated with a higher expression level of several autophagy genes, but was not affected by alterations in p53 expression by knocking down p53 or overexpression of wild-type p53 or p53R273H. AML CD34+ cells were more sensitive to the autophagy inhibitor hydroxychloroquine (HCQ) than normal bone marrow CD34+ cells. Similar, inhibition of autophagy by knockdown of ATG5 or ATG7 triggered apoptosis, which coincided with increased expression of p53. In contrast to wild-type p53 AML (TP53wt), HCQ treatment did not trigger a BAX and PUMA-dependent apoptotic response in AMLs harboring TP53mut. To further characterize autophagy in the leukemic stem cell-enriched cell fraction AML CD34+ cells were separated into ROSlow and ROShigh subfractions. The immature AML CD34+-enriched ROSlow cells maintained higher basal autophagy and showed reduced survival upon HCQ treatment compared with ROShigh cells. Finally, knockdown of ATG5 inhibits in vivo maintenance of AML CD34+ cells in NSG mice. These results indicate that targeting autophagy might provide new therapeutic options for treatment of AML since it affects the immature AML subfraction. PMID:28703806

  19. Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation.

    PubMed Central

    el-Mahdani, N.; Vaillant, J. C.; Guiguet, M.; Prévot, S.; Bertrand, V.; Bernard, C.; Parc, R.; Béréziat, G.; Hermelin, B.

    1997-01-01

    We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cases), there were also cases in which p53 mRNA was overexpressed in the absence of any mutation (29 cases) and those with a mutant gene in which the mRNA was not overexpressed (four cases). Moreover, the mutant p53 tumours exhibited an increase of p53 mRNA expression, which was significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. These data (1) show that p53 mRNA overexpression is a frequent event in colorectal tumours and is not predictive of the status of the gene, i.e. whether or not a mutation is present; (2) provide further evidence that p53 protein overexpression does not only result from an increase in the half-life of mutated p53 and suggest that inactivation of the p53 function in colorectal cancers involves at least two distinct mechanisms, including p53 overexpression and/or mutation; and (3) suggest that p53 mRNA overexpression is an early event, since it is not correlated with Dukes stage. PMID:9052405

  20. A stapled p53 helix overcomes HDMX-mediated suppression of p53.

    PubMed

    Bernal, Federico; Wade, Mark; Godes, Marina; Davis, Tina N; Whitehead, David G; Kung, Andrew L; Wahl, Geoffrey M; Walensky, Loren D

    2010-11-16

    Cancer cells neutralize p53 by deletion, mutation, proteasomal degradation, or sequestration to achieve a pathologic survival advantage. Targeting the E3 ubiquitin ligase HDM2 can lead to a therapeutic surge in p53 levels. However, the efficacy of HDM2 inhibition can be compromised by overexpression of HDMX, an HDM2 homolog that binds and sequesters p53. Here, we report that a stapled p53 helix preferentially targets HDMX, blocks the formation of inhibitory p53-HDMX complexes, induces p53-dependent transcriptional upregulation, and thereby overcomes HDMX-mediated cancer resistance in vitro and in vivo. Importantly, our analysis of p53 interaction dynamics provides a blueprint for reactivating the p53 pathway in cancer by matching HDM2, HDMX, or dual inhibitors to the appropriate cellular context. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection.

    PubMed

    Yan, Wenjun; Wei, Jianchao; Deng, Xufang; Shi, Zixue; Zhu, Zixiang; Shao, Donghua; Li, Beibei; Wang, Shaohui; Tong, Guangzhi; Ma, Zhiyong

    2015-08-18

    p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected

  2. p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis.

    PubMed

    Napoletano, Francesco; Gibert, Benjamin; Yacobi-Sharon, Keren; Vincent, Stéphane; Favrot, Clémentine; Mehlen, Patrick; Girard, Victor; Teil, Margaux; Chatelain, Gilles; Walter, Ludivine; Arama, Eli; Mollereau, Bertrand

    2017-09-01

    The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis.

  3. p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis

    PubMed Central

    Napoletano, Francesco; Vincent, Stéphane; Favrot, Clémentine; Mehlen, Patrick; Girard, Victor; Chatelain, Gilles; Walter, Ludivine; Arama, Eli

    2017-01-01

    The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis. PMID:28945745

  4. p53 and Bcl-2expression in response to boldenone induced liver cells injury.

    PubMed

    Tousson, Ehab; Alm-Eldeen, Abeer; El-Moghazy, Mostafa

    2011-09-01

    Boldenone is an anabolic steroid developed for veterinary use. Recently, it is used by bodybuilders in both off-season and pre-contest, where it is well known for increasing vascularity while preparing for a bodybuilding contest. So, the present study was designed to investigate the possible effect of using growth promoter boldenone undecylenate on the rabbit liver tissue. Thirty-two adult New Zealand rabbits were divided into four groups (8 animals each). Control group includes animals that injected intramuscularly with olive oil and dissected after 3 weeks. The experimental groups include animals that receive one, two and three intramuscular injections of 5 mg/kg body weight boldenone, respectively. The animals were dissected after 3, 6 and 9 weeks respectively, where the interval of each dose of boldenon was 3 weeks. Small pieces of the liver tissues were sent for the histopathological examination. Apoptotic p53 and antiapoptotic Bc1-2 proteins were localized immunohistochemically. Histological observations of the liver tissue showed that the sinusoidal congestion was the most prominent feature that extended from the centrilobular to the periportal regions. Hepatocellular vacuolation in the centrilobular region was also detected. Liver immunohistochemical observation showed a significant increase of the apoptotic protein p53 and a significant decrease in the antiapoptotic Bc1-2 proteins. The highest frequency of p53 positive cells was observed in the liver sections of three dose of boldenone injections, while the lowest in control group, also the highest frequency of Bcl-2 positive cells was observed in the liver sections of control group while the lowest in three dose of boldenone injections. The present results investigate that people should be careful if they want to use such steroids to enhance their strength and endurance.

  5. p53 as a retrovirus-induced oxidative stress modulator.

    PubMed

    Kim, Soo Jin; Wong, Paul K Y

    2015-01-01

    Infection of astrocytes by the neuropathogenic mutant of Moloney murine leukemia virus, ts1, exhibits increased levels of reactive oxygen species (ROS) and signs of oxidative stress compared with uninfected astrocytes. Previously, we have demonstrated that ts1 infection caused two separate events of ROS upregulation. The first upregulation occurs during early viral establishment in host cells and the second during the virus-mediated apoptotic process. In this study, we show that virus-mediated ROS upregulation activates the protein kinase, ataxia telangiectasia mutated, which in turn phosphorylates serine 15 on p53. This activation of p53 however, is unlikely associated with ts1-induced cell death. Rather p53 appears to be involved in suppressing intracellular ROS levels in astrocytes under oxidative stress. The activated p53 appears to delay retroviral gene expression by suppressing NADPH oxidase, a superoxide-producing enzyme. These results suggest that p53 plays a role as a retrovirus-mediated oxidative stress modulator. © 2015 The Authors.

  6. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    PubMed Central

    McCorkle, Sean R; McCombie, WR; Dunn, John J

    2011-01-01

    Here, we report genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIP-seq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells. PMID:22127205

  7. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakagawa, Yosuke; Takahashi, Akihisa; Kajihara, Atsuhisa

    Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggestedmore » that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling

  8. The UbL-UBA Ubiquilin4 protein functions as a tumor suppressor in gastric cancer by p53-dependent and p53-independent regulation of p21.

    PubMed

    Huang, Shengkai; Li, Yan; Yuan, Xinghua; Zhao, Mei; Wang, Jia; Li, You; Li, Yuan; Lin, Hong; Zhang, Qiao; Wang, Wenjie; Li, Dongdong; Dong, Xin; Li, Lanfen; Liu, Min; Huang, Weiyan; Huang, Changzhi

    2018-06-13

    Ubiquilin4 (Ubqln4), a member of the UbL-UBA protein family, serves as an adaptor in the degradation of specific substrates via the proteasomal pathway. However, the biological function of Ubqln4 remains largely unknown, especially in cancer. Here, we reported that Ubqln4 was downregulated in gastric cancer tissues and functioned as a tumor suppressor by inhibiting gastric cancer cell proliferation in vivo and in vitro. Overexpression of Ubqln4-induced cellular senescence and G1-S cell cycle arrest in gastric cancer cells and activated the p53/p21 axis. Moreover, Ubqln4 regulated p21 through both p53-dependent and p53-independent manners. Ubqln4 interacted with RNF114, an E3 ubiquitin ligase of p21, and negatively regulated its expression level, which in turn stabilized p21 by attenuating proteasomal degradation of p21. These effects of Ubqln4 were partly abrogated in gastric cancer cells upon silencing of p21. Our findings not only establish the anti-tumor potential of Ubqln4 in gastric cancer but also reveal a role for Ubqln4 in regulation of the cell cycle and cellular senescence via stabilizing p21.

  9. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice.

    PubMed

    Huang, Chun; Li, Runqin; Zhang, Yinglin; Gong, Jianping

    2017-10-01

    Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells.

  10. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice

    PubMed Central

    Li, Runqin; Zhang, Yinglin

    2016-01-01

    Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632

  11. MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus.

    PubMed

    Godfrey, Jack D; Morton, Jennifer P; Wilczynska, Ania; Sansom, Owen J; Bushell, Martin D

    2018-05-29

    Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease with poor prognostic implications. This is partly due to a large proportion of PDACs carrying mutations in TP53, which impart gain-of-function characteristics that promote metastasis. There is evidence that microRNAs (miRNAs) may play a role in both gain-of-function TP53 mutations and metastasis, but this has not been fully explored in PDAC. Here we set out to identify miRNAs which are specifically dysregulated in metastatic PDAC. To achieve this, we utilised established mouse models of PDAC to profile miRNA expression in primary tumours expressing the metastasis-inducing mutant p53 R172H and compared these to two control models carrying mutations, which promote tumour progression but do not induce metastasis. We show that a subset of miRNAs are dysregulated in mouse PDAC tumour tissues expressing mutant p53 R172H , primary cell lines derived from mice with the same mutations and in TP53 null cells with ectopic expression of the orthologous human mutation, p53 R175H . Specifically, miR-142-3p is downregulated in all of these experimental models. We found that DNA methyltransferase 1 (Dnmt1) is upregulated in tumour tissue and cell lines, which express p53 R172H . Inhibition or depletion of Dnmt1 restores miR-142-3p expression. Overexpression of miR-142-3p attenuates the invasive capacity of p53 R172H -expressing tumour cells. MiR-142-3p dysregulation is known to be associated with cancer progression, metastasis and the miRNA is downregulated in patients with PDAC. Here we link TP53 gain-of-function mutations to Dnmt1 expression and in turn miR-142-3p expression. Additionally, we show a correlation between expression of these genes and patient survival, suggesting that they may have potential to be therapeutic targets.

  12. Phase I dendritic cell p53 peptide vaccine for head and neck cancer.

    PubMed

    Schuler, Patrick J; Harasymczuk, Malgorzata; Visus, Carmen; Deleo, Albert; Trivedi, Sumita; Lei, Yu; Argiris, Athanassios; Gooding, William; Butterfield, Lisa H; Whiteside, Theresa L; Ferris, Robert L

    2014-05-01

    p53 accumulation in head and neck squamous cell carcinoma (HNSCC) cells creates a targetable tumor antigen. Adjuvant dendritic cell (DC)-based vaccination against p53 was tested in a phase I clinical trial. Monocyte-derived DC from 16 patients were loaded with two modified HLA-class I p53 peptides (Arm 1), additional Th tetanus toxoid peptide (Arm 2), or additional Th wild-type (wt) p53-specific peptide (Arm 3). Vaccine DCs (vDC) were delivered to inguinal lymph nodes at three time points. vDC phenotype, circulating p53-specific T cells, and regulatory T cells (Treg) were serially monitored by flow cytometry and cytokine production by Luminex. vDC properties were compared with those of DC1 generated with an alternative maturation regimen. No grade II-IV adverse events were observed. Two-year disease-free survival of 88% was favorable. p53-specific T-cell frequencies were increased postvaccination in 11 of 16 patients (69%), with IFN-γ secretion detected in four of 16 patients. Treg frequencies were consistently decreased (P = 0.006) relative to prevaccination values. The phenotype and function of DC1 were improved relative to vDC. Adjuvant p53-specific vaccination of patients with HNSCC was safe and associated with promising clinical outcome, decreased Treg levels, and modest vaccine-specific immunity. HNSCC patients' DC required stronger maturation stimuli to reverse immune suppression and improve vaccine efficacy. ©2014 AACR.

  13. Regulation of p53 Stability and Apoptosis by a ROR Agonist

    PubMed Central

    Wang, Yongjun; Solt, Laura A.; Kojetin, Douglas J.; Burris, Thomas P.

    2012-01-01

    Activation of p53 function leading to cell-cycle arrest and/or apoptosis is a promising strategy for development of anti-cancer therapeutic agents. Here, we describe a novel mechanism for stabilization of p53 protein expression via activation of the orphan nuclear receptor, RORα. We demonstrate that treatment of cancer cells with a newly described synthetic ROR agonist, SR1078, leads to p53 stabilization and induction of apoptosis. These data suggest that synthetic ROR agonists may hold utility in the treatment of cancer. PMID:22509368

  14. Regulation of p53 stability and apoptosis by a ROR agonist.

    PubMed

    Wang, Yongjun; Solt, Laura A; Kojetin, Douglas J; Burris, Thomas P

    2012-01-01

    Activation of p53 function leading to cell-cycle arrest and/or apoptosis is a promising strategy for development of anti-cancer therapeutic agents. Here, we describe a novel mechanism for stabilization of p53 protein expression via activation of the orphan nuclear receptor, RORα. We demonstrate that treatment of cancer cells with a newly described synthetic ROR agonist, SR1078, leads to p53 stabilization and induction of apoptosis. These data suggest that synthetic ROR agonists may hold utility in the treatment of cancer.

  15. CDIP, a novel pro-apoptotic gene, regulates TNFalpha-mediated apoptosis in a p53-dependent manner.

    PubMed

    Brown, Lauren; Ongusaha, Pat P; Kim, Hyung-Gu; Nuti, Shanthy; Mandinova, Anna; Lee, Ji Won; Khosravi-Far, Roya; Aaronson, Stuart A; Lee, Sam W

    2007-07-25

    We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-alpha expression tightly correlates with CDIP expression, and that inhibition of TNF-alpha signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-alpha is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-alpha impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 --> CDIP --> TNF-alpha apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy.

  16. MicroRNA-125b is a novel negative regulator of p53.

    PubMed

    Le, Minh T N; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F; Lim, Bing

    2009-04-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3' untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with gamma-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response.

  17. MicroRNA-125b is a novel negative regulator of p53

    PubMed Central

    Le, Minh T.N.; Teh, Cathleen; Shyh-Chang, Ng; Xie, Huangming; Zhou, Beiyan; Korzh, Vladimir; Lodish, Harvey F.; Lim, Bing

    2009-01-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we demonstrate that miR-125b, a brain-enriched microRNA, is a bona fide negative regulator of p53 in both zebrafish and humans. miR-125b-mediated down-regulation of p53 is strictly dependent on the binding of miR-125b to a microRNA response element in the 3′ untranslated region of p53 mRNA. Overexpression of miR-125b represses the endogenous level of p53 protein and suppresses apoptosis in human neuroblastoma cells and human lung fibroblast cells. In contrast, knockdown of miR-125b elevates the level of p53 protein and induces apoptosis in human lung fibroblasts and in the zebrafish brain. This phenotype can be rescued significantly by either an ablation of endogenous p53 function or ectopic expression of miR-125b in zebrafish. Interestingly, miR-125b is down-regulated when zebrafish embryos are treated with γ-irradiation or camptothecin, corresponding to the rapid increase in p53 protein in response to DNA damage. Ectopic expression of miR-125b suppresses the increase of p53 and stress-induced apoptosis. Together, our study demonstrates that miR-125b is an important negative regulator of p53 and p53-induced apoptosis during development and during the stress response. PMID:19293287

  18. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA.

    PubMed

    Zhao, Carolyn Y; Grinkevich, Vera V; Nikulenkov, Fedor; Bao, Wenjie; Selivanova, Galina

    2010-05-01

    Expression of mutant p53 correlates with poor prognosis in many tumors, therefore strategies aimed at reactivation of mutant p53 are likely to provide important benefits for treatment of tumors that are resistant to chemotherapy and radiotherapy. We have previously identified and characterized a small molecule RITA which binds p53 and induces a conformational change which prevents the binding of p53 to several inhibitors, including its own destructor MDM2. In this way, RITA rescues the tumor suppression function of wild type p53. Here, we demonstrate that RITA suppressed the growth and induced apoptosis in human tumor cell lines of a diverse origin carrying mutant p53 proteins. RITA restored transcriptional transactivation and transrepression function of several hot spot p53 mutants. The ability of RITA to rescue the activity of different p53 mutants suggests its generic mechanism of action. Thus, RITA is a promising lead for the development of anti-cancer drugs that reactivate the tumor suppressor function of p53 in cancer cells irrespective whether they express mutant or wild type p53.

  19. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    PubMed

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and

  20. Immunohistochemical expression of p53 proteins in Wilms' tumour: a possible association with the histological prognostic parameter of anaplasia.

    PubMed

    Cheah, P L; Looi, L M; Chan, L L

    1996-01-01

    Wilms' tumour (nephroblastoma) has been associated with chromosomal abnormalities at the 11p13, 11p15 and 16q regions. A study into the possibility of mutations occurring within p53, the ubiquitous adult tumour suppressor gene, in Wilms' tumour was carried out. Thirty-eight cases were studied. Of these 36 were categorised into the favourable histology group and two into the unfavourable histology group based on the National Wilms' Tumour Study criteria. Archival formalin-fixed, paraffin-embedded tissue sections from each case were stained with a polyclonal (AB565:Chemicon) and a monoclonal (DO7:Dako) antibody raised against p53 protein using a peroxidase-labelled streptavidin biotin kit (Dako). 'Cure' (disease-free survival of 60 months or longer) was documented in 39% of cases with favourable histology tumours. Eleven percent in this group succumbed to the disease. Both cases with unfavourable histology died. Four out of 36 (11%) tumours with favourable histology demonstrated weak to moderate staining with both AB565 and DO7 in more than 75% of tumour cells. In contrast, p53 protein expression in unfavourable histology tumours was significantly increased compared with the favourable histology group (P = 0.021) with both cases demonstrating immunopositivity in > 75% of tumour cells when stained with AB565 and DO7. The intensity of staining ranged from moderate to strong in both cases. It appears from this preliminary study that the immunohistochemical expression of p53 protein in Wilms' tumour, presumably a result of mutation in the p53 tumour suppressor gene, correlates with histological classification, histological categorisation being one of the useful features in the prognostic assessment of Wilms' tumours.

  1. Silencing of p53 RNA through transarterial delivery ameliorates renal tubular injury and downregulates GSK-3β expression after ischemia-reperfusion injury.

    PubMed

    Fujino, Takayuki; Muhib, Sharifi; Sato, Nobuyuki; Hasebe, Naoyuki

    2013-12-01

    p53, a pivotal protein in the apoptotic pathway, has been identified as a mediator of transcriptional responses to ischemia-reperfusion (IR) injury. The characteristics and functional significance of the p53 response in vivo are largely unknown in IR-induced kidney injury. Therapeutic opportunities of delivering small interfering RNA (siRNA) via venous injection have gained recognition; however, systemic adverse effects of siRNA therapy should be considered. To prevent IR-induced kidney injury, we tested the efficacy of transarterial administration of siRNA targeting p53 (p53 siRNA). Female C57BL/6 mice underwent unilateral renal artery ischemia for 30 min, followed by reperfusion. siRNA experiments utilized short hairpin (sh) RNA plasmid-based approaches. Transfection of shRNA was performed using cationic polymer transfection reagent. Injection of synthetic p53 shRNA into the left renal artery just after ischemia improved tubular injury, apoptosis, and the swelling of mitochondria in cells of the thick ascending limb of Henle (mTALH) at the outer medullary regions. Staining of upregulated p53 was colocalized with the inducible expression of glycogen synthase kinase-3β (GSK-3β) at mTALH after IR injury. p53 shRNA inhibited GSK-3β expression and restored β-catenin expression at mTALH. For IR-induced kidney injury, transarterial delivery of p53 siRNA is an effective pharmacological intervention. Targeting siRNA to p53 leads to an attenuation of apoptosis and mitochondrial damage through the downregulation of GSK-3β expression and upregulation of β-catenin. Local delivery of vectors such as p53 siRNA through a transaortic catheter is clinically useful in reducing the adverse effect of siRNA-related therapy.

  2. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-κB and other signal transcription factors in head and neck squamous cell carcinoma

    PubMed Central

    Yan, Bin; Yang, Xinping; Lee, Tin-Lap; Friedman, Jay; Tang, Jun; Van Waes, Carter; Chen, Zhong

    2007-01-01

    Background Differentially expressed gene profiles have previously been observed among pathologically defined cancers by microarray technologies, including head and neck squamous cell carcinomas (HNSCCs). However, the molecular expression signatures and transcriptional regulatory controls that underlie the heterogeneity in HNSCCs are not well defined. Results Genome-wide cDNA microarray profiling of ten HNSCC cell lines revealed novel gene expression signatures that distinguished cancer cell subsets associated with p53 status. Three major clusters of over-expressed genes (A to C) were defined through hierarchical clustering, Gene Ontology, and statistical modeling. The promoters of genes in these clusters exhibited different patterns and prevalence of transcription factor binding sites for p53, nuclear factor-κB (NF-κB), activator protein (AP)-1, signal transducer and activator of transcription (STAT)3 and early growth response (EGR)1, as compared with the frequency in vertebrate promoters. Cluster A genes involved in chromatin structure and function exhibited enrichment for p53 and decreased AP-1 binding sites, whereas clusters B and C, containing cytokine and antiapoptotic genes, exhibited a significant increase in prevalence of NF-κB binding sites. An increase in STAT3 and EGR1 binding sites was distributed among the over-expressed clusters. Novel regulatory modules containing p53 or NF-κB concomitant with other transcription factor binding motifs were identified, and experimental data supported the predicted transcriptional regulation and binding activity. Conclusion The transcription factors p53, NF-κB, and AP-1 may be important determinants of the heterogeneous pattern of gene expression, whereas STAT3 and EGR1 may broadly enhance gene expression in HNSCCs. Defining these novel gene signatures and regulatory mechanisms will be important for establishing new molecular classifications and subtyping, which in turn will promote development of targeted

  3. Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Tsuyoshi; Abe, Takahiro; Nakamoto, Norimichi

    Recent studies have suggested that nicotine critically affects bone metabolism. Many studies have examined the effects of nicotine on proliferation and differentiation, but the underlying molecular mechanisms remain unclear. We examined cell cycle regulators involved in the proliferation and differentiation of MC3T3-E1 cells. Nicotine induced cell proliferation in association with p53 down-regulation and cyclin D1 up-regulation. In differentiated cells, nicotine reduced alkaline phosphatase activity and mineralized nodule formation in dose-dependent manners. Furthermore, p53 expression was sustained in nicotine-treated cells during differentiation. These findings indicate that nicotine promotes the cell cycle and inhibits differentiation in association with p53 regulation in pre-osteoblasticmore » cells.« less

  4. Cnidium officinale Makino extract induces apoptosis through activation of caspase-3 and p53 in human liver cancer HepG2 cells

    PubMed Central

    Hong, Heeok; An, Jeong Cheol; de La Cruz, Joseph F.; Hwang, Seong-Gu

    2017-01-01

    A number of diverse studies have reported the anticancer properties of Cnidium officinale Makino (CO). However, the apoptotic effect of this traditional medicinal herb in human hepatocellular carcinoma cells (HepG2) remains to be elucidated. Therefore, the present study investigated the ability of CO to reduce cell viability through apoptotic pathways. Cell viability was determined using the 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide assay. CO extract-induced apoptosis in HepG2 cells was assessed by Hoechst 33258 staining. The cell cycle was monitored using fluorescence-activated cell sorting analysis with propidium iodide staining. Furthermore, the present study explored whether various signaling molecules associated with HepG2 cell death were affected by CO treatment, including caspase-3, B-cell lymphoma 2 (Bcl-2), tumor protein p53 (p53), cyclin-dependent kinase 4 (CDK4) and cyclin D. The expression levels of these genes were examined by reverse-transcription polymerase chain reaction and western blotting. The expression levels of caspase-3 and p53 were upregulated with CO extract treatment, whereas those of Bcl-2, CDK4 and cyclin D were significantly downregulated. Cleaved caspase-3 expression was upregulated following treatment with CO extract in a dose-dependent manner. Collectively, the data suggest that CO extract has the potential to induce apoptosis of HepG2 cells and may act by suppressing the cell cycle, which leads to caspase-3 cleavage and p53 signaling. PMID:28966688

  5. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis.

    PubMed

    Fong, Chii Shyang; Mazo, Gregory; Das, Tuhin; Goodman, Joshua; Kim, Minhee; O'Rourke, Brian P; Izquierdo, Denisse; Tsou, Meng-Fu Bryan

    2016-07-02

    Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency.

  6. Expression of p53 and Bcl-xL as predictive markers for larynx preservation in advanced laryngeal cancer

    PubMed Central

    Kumar, Bhavna; Cordell, Kitrina G.; D’Silva, Nisha; Prince, Mark E.; Adams, Meredith E.; Fisher, Susan G.; Wolf, Gregory T.; Carey, Thomas E.; Bradford, Carol R.

    2012-01-01

    Objective To assess tumor markers in advanced laryngeal cancer. Design Marker expression and clinical outcome. Setting Laboratory. Patients Pretreatment tumor biopsies were analyzed from patients enrolled in the Department of Veterans Affairs laryngeal cancer trial. Main Outcome Measures Expression of p53 and Bcl-xL in pretreatment biopsies was assessed for correlation with chemotherapy response, laryngeal preservation, and survival. Results Higher rates of larynx preservation were observed in patients whose tumors expressed p53 versus those that did not (73% versus 53%, p = 0.0304). Higher rates of larynx preservation were also observed in patients whose tumors expressed low levels of Bcl-xL versus those that expressed high levels (90% versus 60%, p = 0.02). Patients were then categorized into 3 risk groups (low, intermediate and high risk) based on their tumor p53 and Bcl-xL expression status. We observed that patients whose tumors had the high risk biomarker profile (low p53 and high Bcl-xL) were less likely to preserve their larynx than patients whose tumors had the intermediate risk (high p53 and low or high Bcl-xL) or low risk (low p53 and low Bcl-xL) biomarker profile. The larynx preservation rates were 100%, 76% and 54% for the low, intermediate and high risk groups respectively (Fisher exact 0.039). Conclusions Tumor expression of p53 and Bcl-xL is a strong predictor of successful organ preservation in patients treated with induction chemotherapy followed by radiation in responding tumors. PMID:18427001

  7. Expression of CD44s and CD44v6 in transitional cell carcinomas of the urinary bladder: comparison with tumour grade, proliferative activity and p53 immunoreactivity of tumour cells.

    PubMed

    Kuncová, Jitka; Urban, Michael; Mandys, Václav

    2007-11-01

    Alterations of CD44 glycoproteins have been shown to play an important role in progression of various malignancies, including urothelial cancer. We investigated expression patterns of CD44s and CD44v6 in transitional cell carcinoma (TCC) of the urinary bladder in relation to tumour grade, proliferative activity, and immunoreactivity for p53. The selected markers were detected immunohistochemically in 122 samples of TCC. We found a close relationship between CD44s and CD44v6 expression and tumour grade. The extension of positive staining for CD44s and CD44v6 towards the luminal surface was a predominant feature of differentiated carcinomas (grades 1 and 2), suggesting deranged maturation of cancer cells related to their neoplastic transformation. Heterogeneous expression of CD44s and CD44v6 predominated in poorly differentiated tumours (G3-4). However, areas of squamous differentiation within the high-grade tumours displayed strong immunoreactivity for both CD44s and CD44v6. The proliferative activity and p53 overexpression increased with the dedifferentiation of the tumour. The results of this study are discussed in relation to the significance of CD44 expression in TCC and to the explanation for controversial results reported in previous studies on the relationship between CD44 expression and the biological behaviour of urothelial cells.

  8. Differential expression of microRNA501-5p affects the aggressiveness of clear cell renal carcinoma

    PubMed Central

    Mangolini, Alessandra; Bonon, Anna; Volinia, Stefano; Lanza, Giovanni; Gambari, Roberto; Pinton, Paolo; Russo, Gian Rosario; del Senno, Laura; Dell’Atti, Lucio; Aguiari, Gianluca

    2014-01-01

    Renal cell carcinoma is a common neoplasia of the adult kidney that accounts for about 3% of adult malignancies. Clear cell renal carcinoma is the most frequent subtype of kidney cancer and 20–40% of patients develop metastases. The absence of appropriate biomarkers complicates diagnosis and prognosis of this disease. In this regard, small noncoding RNAs (microRNAs), which are mutated in several neoplastic diseases including kidney carcinoma, may be optimal candidates as biomarkers for diagnosis and prognosis of this kind of cancer. Here we show that patients with clear cell kidney carcinoma that express low levels of miR501-5p exhibited a good prognosis compared with patients with unchanged or high levels of this microRNA. Consistently, in kidney carcinoma cells the downregulation of miR501-5p induced an increased caspase-3 activity, p53 expression as well as decreased mTOR activation, leading to stimulation of the apoptotic pathway. Conversely, miR501-5p upregulation enhanced the activity of mTOR and promoted both cell proliferation and survival. These biological processes occurred through p53 inactivation by proteasome degradation in a mechanism involving MDM2-mediated p53 ubiquitination. Our results support a role for miR501-5p in balancing apoptosis and cell survival in clear cell renal carcinoma. In particular, the downregulation of microRNA501-5p promotes a good prognosis, while its upregulation contributes to a poor prognosis, in particular, if associated with p53 and MDM2 overexpression and mTOR activation. Thus, the expression of miR501-5p is a possible biomarker for the prognosis of clear cell renal carcinoma. PMID:25426415

  9. miR-24-3p Suppresses Malignant Behavior of Lacrimal Adenoid Cystic Carcinoma by Targeting PRKCH to Regulate p53/p21 Pathway.

    PubMed

    Zhang, Ming-Xue; Zhang, Jie; Zhang, Hong; Tang, Hua

    2016-01-01

    MicroRNA (miRNA) may function as an oncogene or a tumor suppressor in tumorigenesis. However, the mechanism of miRNAs in adenoid cystic carcinoma (ACC) is unclear. Here, we provide evidence that miR-24-3p was downreglated and functions as a tumor suppressor in human lacrimal adenoid cystic carcinoma by suppressing proliferation and migration/invasion while promoting apoptosis. miR-24-3p down-regulated protein kinase C eta (PRKCH) by binding to its untranslated region (3'UTR). PRKCH increased the of the cell growth and migration/invasion in ACC cells and suppressed the expression of p53 and p21 in both mRNA and protein level. The overexpression of miR-24-3p decreased its malignant phenotype. Ectopic expression of PRKCH counteracted the suppression of malignancy induced by miR-24-3p, as well as ectopic expression of miR-24-3p rescued the suppression of PRKCH in the p53/p21 pathway. These results suggest that miR-24-3p promotes the p53/p21 pathway by down-regulating PRKCH expression in lacrimal adenoid cystic carcinoma cells.

  10. p53 as the focus of gene therapy: past, present and future.

    PubMed

    Valente, Joana Fa; Queiroz, Joao A; Sousa, Fani

    2018-01-15

    Several gene deviations can be responsible for triggering oncogenic processes. However, mutations in tumour suppressor genes are usually more associated to malignant diseases, being p53 one of the most affected and studied element. p53 is implicated in a number of known cellular functions, including DNA damage repair, cell cycle arrest in G1/S and G2/M and apoptosis, being an interesting target for cancer treatment. Considering these facts, the development of gene therapy approaches focused on p53 expression and regulation seems to be a promising strategy for cancer therapy. Several studies have shown that transfection of cancer cells with wild-type p53 expressing plasmids could directly drive cells into apoptosis and/or growth arrest, suggesting that a gene therapy approach for cancer treatment can be based on the re-establishment of the normal p53 expression levels and function. Up until now, several clinical research studies using viral and non-viral vectors delivering p53 genes, isolated or combined with other therapeutic agents, have been accomplished and there are already in the market therapies based on the use of this gene. This review summarizes the different methods used to deliver and/or target the p53 as well as the main results of therapeutic effect obtained with the different strategies applied. Finally, the ongoing approaches are described, also focusing the combinatorial therapeutics to show the increased therapeutic potential of combining gene therapy vectors with chemo or radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. ATM and MET kinases are synthetic lethal with non-genotoxic activation of p53

    PubMed Central

    Sullivan, Kelly D.; Padilla-Just, Nuria; Henry, Ryan E.; Porter, Christopher C.; Kim, Jihye; Tentler, John J.; Eckhardt, S. Gail; Tan, Aik Choon; DeGregori, James; Espinosa, Joaquín M.

    2012-01-01

    The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a ‘Synthetic Lethal with Nutlin-3’ genome-wide shRNA screen, which revealed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors enable Nutlin-3 to kill tumor spheroids. These results identify novel pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies. PMID:22660439

  12. Apoptosis of haematopoietic cells upon thymidylate synthase inhibition is independent of p53 accumulation and CD95-CD95 ligand interaction.

    PubMed Central

    Muñoz-Pinedo, C; Oliver, F J; López-Rivas, A

    2001-01-01

    Treatment of haematopoietic BA/F3 cells with the thymidylate synthase inhibitor 5-fluoro-2'-deoxyuridine (FUdR) activated apoptosis through a mechanism that required continuous protein synthesis and was inhibited by Bcl-2 over-expression. Analysis of p53 levels in cells treated with FUdR indicated a marked accumulation of this protein. Accumulation of p53 was also observed in cells over-expressing Bcl-2. In BA/F3 cells transfected with a cDNA coding for the human papilloma virus protein E6, p53 accumulation after FUdR treatment was inhibited markedly. However, apoptosis was induced in both control and E6 cells to a similar extent. The role of the CD95/CD95 ligand (CD95L) system in FUdR-induced apoptosis was also assessed. As determined by reverse transcriptase PCR, BA/F3 expressed a low constitutive level of CD95L mRNA, which decreased following FUdR treatment. Moreover, blocking CD95-CD95L interactions with antagonistic CD95 monoclonal antibody did not prevent drug-induced apoptosis. Furthermore, analysis of caspase involvement showed important differences in apoptosis induced by CD95-triggering or FUdR treatment. In summary, these results suggest that apoptosis induced by thymineless stress in haematopoietic BA/F3 cells occurs by a mechanism that does not require accumulation of p53 and which is independent of CD95-CD95L interactions. PMID:11115403

  13. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD

    PubMed Central

    Wu, Rui; Liang, Yingjian; Lin, Meihua; Liu, Jia; Chan, Chang S.; Hu, Wenwei; Feng, Zhaohui

    2014-01-01

    Cancer cells display enhanced glycolysis to meet their energetic and biosynthetic demands even under normal oxygen concentrations. Recent studies have revealed that tumor suppressor p53 represses glycolysis under normoxia as a novel mechanism for tumor suppression. As the common microenvironmental stress for tumors, hypoxia drives the metabolic switch from the oxidative phosphorylation to glycolysis, which is crucial for survival and proliferation of cancer cells under hypoxia. The p53's role and mechanism in regulating glycolysis under hypoxia is poorly understood. Here, we found that p53 represses hypoxia-stimulated glycolysis in cancer cells through RRAD, a newly-identified p53 target. RRAD expression is frequently decreased in lung cancer. Ectopic expression of RRAD greatly reduces glycolysis whereas knockdown of RRAD promotes glycolysis in lung cancer cells. Furthermore, RRAD represses glycolysis mainly through inhibition of GLUT1 translocation to the plasma membrane. Under hypoxic conditions, p53 induces RRAD, which in turn inhibits the translocation of GLUT1 and represses glycolysis in lung cancer cells. Blocking RRAD by siRNA greatly abolishes p53's function in repressing glycolysis under hypoxia. Taken together, our results revealed an important role and mechanism of p53 in antagonizing the stimulating effect of hypoxia on glycolysis, which contributes to p53's function in tumor suppression. PMID:25114038

  14. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer

    PubMed Central

    Suh, Seong O.; Chen, Yi; Zaman, Mohd Saif; Hirata, Hiroshi; Yamamura, Soichiro; Shahryari, Varahram; Liu, Jan; Tabatabai, Z.Laura; Kakar, Sanjay; Deng, Guoren; Tanaka, Yuichiro; Dahiya, Rajvir

    2011-01-01

    MiR-145 is downregulated in various cancers including prostate cancer. However, the underlying mechanisms of miR-145 downregulation are not fully understood. Here, we reported that miR-145 was silenced through DNA hypermethylation and p53 mutation status in laser capture microdissected (LCM) prostate cancer and matched adjacent normal tissues. In 22 of 27 (81%) prostate tissues, miR-145 was significantly downregulated in the cancer compared with the normal tissues. Further studies on miR-145 downregulation mechanism showed that miR-145 is methylated at the promoter region in both prostate cancer tissues and 50 different types of cancer cell lines. In seven cancer cell lines with miR-145 hypermethylation, 5-aza-2′-deoxycytidine treatment dramatically induced miR-145 expression. Interestingly, we also found a significant correlation between miR-145 expression and the status of p53 gene in both LCM prostate tissues and 47 cancer cell lines. In 29 cell lines with mutant p53, miR-145 levels were downregulated in 28 lines (97%), whereas in 18 cell lines with wild-type p53 (WT p53), miR-145 levels were downregulated in only 6 lines (33%, P < 0.001). Electrophoretic mobility shift assay showed that p53 binds to the p53 response element upstream of miR-145, but the binding was inhibited by hypermethylation. To further confirm that p53 binding to miR-145 could regulate miR-145 expression, we transfected WT p53 and MUT p53 into PC-3 cells and found that miR-145 is upregulated by WT p53 but not with MUTp53. The apoptotic cells are increased after WT p53 transfection. In summary, this is the first report documenting that downregulation of miR-145 is through DNA methylation and p53 mutation pathways in prostate cancer. PMID:21349819

  15. Regulation of autophagy by cytoplasmic p53

    PubMed Central

    Tasdemir, Ezgi; Maiuri, M. Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M.; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2009-01-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that knockout, knockdown or pharmacological inhibition of p53 can induce autophagy in human, mouse and nematode cells. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53-/- cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53. PMID:18454141

  16. p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoe, Yasuko; Okuyama, Teruhiro; Taniguchi, Yoshihito

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Progenitor migration is accompanied by an increase in their numbers in the adult brain. Black-Right-Pointing-Pointer p53 Mutation suppressed an increase in the number of the migrated progenitors. Black-Right-Pointing-Pointer The decreased progenitor number is not due to enhanced cell death. Black-Right-Pointing-Pointer p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zonesmore » in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.« less

  17. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    PubMed

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Impact of the Ki-67 labeling index and p53 expression status on disease-free survival in pT1 urothelial carcinoma of the bladder.

    PubMed

    Vetterlein, Malte W; Roschinski, Julia; Gild, Philipp; Marks, Phillip; Soave, Armin; Doh, Ousman; Isbarn, Hendrik; Höppner, Wolfgang; Wagner, Walter; Shariat, Shahrokh F; Brausi, Maurizio; Büscheck, Franziska; Sauter, Guido; Fisch, Margit; Rink, Michael

    2017-12-01

    The identification of protein biomarkers to guide treatment decisions regarding adjuvant therapies for high-risk non-muscle-invasive bladder cancer (NMIBC) has been of increasing interest. Evidence of the impact of tumor suppressor gene product p53 and cell proliferation marker Ki-67 on oncologic outcomes in bladder cancer patients at highest risk of recurrence and progression is partially contradictory. We sought to mirror contemporary expression patterns of p53 and Ki-67 in a select cohort of patients with pT1 bladder cancer. Patients from four Northern German institutions with a primary diagnosis of pT1 bladder cancer between 2009 and 2016 and complete data regarding p53 or Ki-67 expression status were included for final analyses. Baseline patient characteristics (age, gender, age-adjusted Charlson comorbidity index) and tumor characteristics [diagnostic sequence, tumor focality, concomitant carcinoma in situ, 1973 World Health Organization (WHO) grading, lymphovascular invasion, adjuvant instillation therapy] were abstracted by retrospective chart review. Immunohistochemistry for detection of p53 and Ki-67 expression was performed according to standardized protocols. Microscopic analyses were performed by central pathologic review. First, we compared patients with positive vs. negative p53 expression and Ki-67 labeling index [>40% vs. ≤40%; cutoffs based on best discriminative ability in univariable Cox regression analysis with disease-free survival (DFS) as endpoint] with regard to baseline and tumor characteristics. Second, we evaluated the effect of biomarker positivity on DFS by plotting univariable Kaplan-Meier curves and performing uni- and multivariable Cox regression analyses. Of 102 patients with complete information on p53 status, 44 (43.1%) were p53 positive, and they more often harbored concomitant carcinoma in situ (50.0% vs. 27.6%; P=0.032) and 1973 WHO grade 3 (97.7% vs. 69.0%; P=0.001) compared to their p53 negative counterparts. Of 79

  19. Regulation of autophagy by cytoplasmic p53.

    PubMed

    Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2008-06-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.

  20. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms.

    PubMed

    Guo, Zengli; Kong, Qing; Liu, Cui; Zhang, Song; Zou, Liyun; Yan, Feng; Whitmire, Jason K; Xiong, Yue; Chen, Xian; Wan, Yisong Y

    2016-01-05

    On activation, naive T cells grow in size and enter cell cycle to mount immune response. How the fundamental processes of T-cell growth and cell cycle entry are regulated is poorly understood. Here we report that DCAF1 (Ddb1-cullin4-associated-factor 1) is essential for these processes. The deletion of DCAF1 in T cells impairs their peripheral homeostasis. DCAF1 is upregulated on T-cell receptor activation and critical for activation-induced T-cell growth, cell cycle entry and proliferation. In addition, DCAF1 is required for T-cell expansion and function during anti-viral and autoimmune responses in vivo. DCAF1 deletion leads to a drastic stabilization of p53 protein, which can be attributed to a requirement of DCAF1 for MDM2-mediated p53 poly-ubiquitination. Importantly, p53 deletion rescues the cell cycle entry defect but not the growth defect of DCAF1-deficient cells. Therefore, DCAF1 is vital for T-cell function through p53-dependent and -independent mechanisms.

  1. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms

    PubMed Central

    Guo, Zengli; Kong, Qing; Liu, Cui; Zhang, Song; Zou, Liyun; Yan, Feng; Whitmire, Jason K.; Xiong, Yue; Chen, Xian; Wan, Yisong Y.

    2016-01-01

    On activation, naive T cells grow in size and enter cell cycle to mount immune response. How the fundamental processes of T-cell growth and cell cycle entry are regulated is poorly understood. Here we report that DCAF1 (Ddb1–cullin4-associated-factor 1) is essential for these processes. The deletion of DCAF1 in T cells impairs their peripheral homeostasis. DCAF1 is upregulated on T-cell receptor activation and critical for activation-induced T-cell growth, cell cycle entry and proliferation. In addition, DCAF1 is required for T-cell expansion and function during anti-viral and autoimmune responses in vivo. DCAF1 deletion leads to a drastic stabilization of p53 protein, which can be attributed to a requirement of DCAF1 for MDM2-mediated p53 poly-ubiquitination. Importantly, p53 deletion rescues the cell cycle entry defect but not the growth defect of DCAF1-deficient cells. Therefore, DCAF1 is vital for T-cell function through p53-dependent and -independent mechanisms. PMID:26728942

  2. Super p53 for Treatment of Ovarian Cancer

    DTIC Science & Technology

    2017-09-01

    System 3, Clontech) containing wt-p53, p53-CC, and ZsGreen (control) were made. Ad-ZsGreen was tested in ID8 cells, which showed very high expression...views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army...MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14

  3. P53 alters the cytotoxicity and genotoxicity for oxidized graphene in human B-lymphoblastoid cells

    NASA Astrophysics Data System (ADS)

    Petibone, Dayton Matthew

    Widespread use of oxidized graphene nanomaterials in industry, medicine, and consumer products raises concern about potential adverse impacts on human health. The p53 tumor suppressor protein is crucial to maintaining cellular and genetic stability to prevent carcinogenesis. Here, we show that oxygen functionalized graphene (f-G) absorption and p53 functional status correlate with cytotoxicity and genotoxicity in human B-lymphoblastoid cells. Trends in f-G absorption by were dose-dependent. Cells with functional p53 exposed to f-G arrested in G0/G1 phase of the cell cycle, suppressed f-G induced reactive oxygen species (ROS), and had elevated apoptosis. While compared to p53 competent cells, the p53 deficient cells exposed to f-G accumulated in S-phase of the cell cycle, had elevated ROS levels, and evaded apoptosis. The f-G genotoxicity was evident as increased loss-of-heterozygosity mutants independent of p53 status, and structural chromosome damage in p53 deficient cells. These findings have broad implications for the safety and efficacy of oxidized graphene nanomaterials in industrial, consumer products and biomedical applications.

  4. Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F₁F0-ATP synthase.

    PubMed

    Bergeaud, Marie; Mathieu, Lise; Guillaume, Arnaud; Moll, Ute M; Mignotte, Bernard; Le Floch, Nathalie; Vayssière, Jean-Luc; Rincheval, Vincent

    2013-09-01

    We and others previously reported that endogenous p53 can be located at mitochondria in the absence of stress, suggesting that p53 has a role in the normal physiology of this organelle. The aim of this study was to characterize in unstressed cells the intramitochondrial localization of p53 and identify new partners and functions of p53 in mitochondria. We find that the intramitochondrial pool of p53 is located in the intermembrane space and the matrix. Of note, unstressed HCT116 p53(+/+) cells simultaneously show increased O₂ consumption and decreased mitochondrial superoxide production compared with their p53-null counterpart. This data was confirmed by stable H1299 cell lines expressing low levels of p53 specifically targeted to the matrix. Using immunoprecipitation and mass spectrometry, we identified the oligomycin sensitivity-conferring protein (OSCP), a subunit of the F₁F₀-ATP synthase complex, as a new partner of endogenous p53, specifically interacting with p53 localized in the matrix. Interestingly, this interaction seems implicated in mitochondrial p53 localization. Moreover, p53 localized in the matrix promotes the assembly of F₁F₀-ATP synthase. Taking into account that deregulations of mitochondrial respiration and reactive oxygen species production are tightly linked to cancer development, we suggest that mitochondrial p53 may be an important regulator of normal mitochondrial and cellular physiology, potentially exerting tumor suppression activity inside mitochondria.

  5. p63 and p73 coordinate p53 function to determine the balance between survival, cell death, and senescence in adult neural precursor cells

    PubMed Central

    Fatt, M P; Cancino, G I; Miller, F D; Kaplan, D R

    2014-01-01

    The p53 family members p73 and p63 have been implicated in various aspects of stem cell regulation. Here, we have asked whether they work together to regulate stem cell biology, focusing upon neural precursor cells (NPCs) in the adult murine brain. By studying mice that are haploinsufficient for p63 and/or p73, we show that these two proteins cooperate to ensure appropriate NPC self-renewal and long-term maintenance in the hippocampus and forebrain, and that when both are haploinsufficient, the NPC deficits are significantly greater than haploinsufficiency for either alone. We show that, in the case of p63+/− mice, this decrease in adult NPCs is caused by enhanced apoptosis. However, when p73 is coincidently haploinsufficient, this rescues the enhanced apoptosis of p63+/− NPCs under both basal conditions and following genotoxic stress, instead causing increased cellular senescence. This increase in cellular senescence is likely due, at least in part, to increased levels of basal DNA damage and p53 activation, as genetic ablation of p53 completely rescues the senescence phenotype observed in p63+/−; p73+/− mice. Thus, the presence of p73 determines whether p63+/− NPCs exhibit increased p53-dependent apoptosis or senescence. Together, these studies demonstrate that p63 and p73 cooperate to maintain adult NPC pools through regulation of p53 function; p63 antagonizes p53 to promote cellular survival, whereas p73 regulates self-renewal and p53-mediated apoptosis versus senescence. PMID:24809925

  6. CDIP, a novel pro-apoptotic gene, regulates TNFα-mediated apoptosis in a p53-dependent manner

    PubMed Central

    Brown, Lauren; Ongusaha, Pat P; Kim, Hyung-Gu; Nuti, Shanthy; Mandinova, Anna; Lee, Ji Won; Khosravi-Far, Roya; Aaronson, Stuart A; Lee, Sam W

    2007-01-01

    We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-α expression tightly correlates with CDIP expression, and that inhibition of TNF-α signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-α is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-α impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 → CDIP → TNF-α apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy. PMID:17599062

  7. Regulatory module involving FGF13, miR-504, and p53 regulates ribosomal biogenesis and supports cancer cell survival

    PubMed Central

    Bublik, Débora R.; Bursać, Slađana; Sheffer, Michal; Oršolić, Ines; Shalit, Tali; Tarcic, Ohad; Kotler, Eran; Mouhadeb, Odelia; Hoffman, Yonit; Fuchs, Gilad; Levin, Yishai; Volarević, Siniša; Oren, Moshe

    2017-01-01

    The microRNA miR-504 targets TP53 mRNA encoding the p53 tumor suppressor. miR-504 resides within the fibroblast growth factor 13 (FGF13) gene, which is overexpressed in various cancers. We report that the FGF13 locus, comprising FGF13 and miR-504, is transcriptionally repressed by p53, defining an additional negative feedback loop in the p53 network. Furthermore, we show that FGF13 1A is a nucleolar protein that represses ribosomal RNA transcription and attenuates protein synthesis. Importantly, in cancer cells expressing high levels of FGF13, the depletion of FGF13 elicits increased proteostasis stress, associated with the accumulation of reactive oxygen species and apoptosis. Notably, stepwise neoplastic transformation is accompanied by a gradual increase in FGF13 expression and increased dependence on FGF13 for survival (“nononcogene addiction”). Moreover, FGF13 overexpression enables cells to cope more effectively with the stress elicited by oncogenic Ras protein. We propose that, in cells in which activated oncogenes drive excessive protein synthesis, FGF13 may favor survival by maintaining translation rates at a level compatible with the protein quality-control capacity of the cell. Thus, FGF13 may serve as an enabler, allowing cancer cells to evade proteostasis stress triggered by oncogene activation. PMID:27994142

  8. Decursin exerts anti-cancer activity in MDA-MB-231 breast cancer cells via inhibition of the Pin1 activity and enhancement of the Pin1/p53 association.

    PubMed

    Kim, Ji-Hyun; Jung, Ji Hoon; Kim, Sung-Hoon; Jeong, Soo-Jin

    2014-02-01

    The peptidyl-prolyl cis/trans isomerase Pin1 is overexpressed in a wide variety of cancer cells and thus considered as an important target molecule for cancer therapy. This study demonstrates that decursin, a bioactive compound from Angelica gigas, exert the anti-cancer effect against breast cancer cells via regulation of Pin1 and its related signaling molecules. We observed that decursin induced G1 arrest with decrease in cyclin D1 level in Pin1-expressing breast cancer cells MDA-MB-231, but not Pin1-non-expressing breast cancer cells MDA-MB-157. In addition, decursin significantly reduced protein expression and enzymatic activity of Pin1 in MDA-MB-231 cells. Further, we found that decursin treatment enhanced the p53 expression level and failed to down-regulate Pin1 in the cells transfected with p53 siRNA, indicating the importance of p53 in the decursin-mediated Pin1 inhibition in MDA-MB-231 cells. Decursin stimulated association between Pin1 to p53. Moreover, decursin facilitated p53 transcription in MDA-MB-231 cells. Overall, our current study suggests the potential of decursin as an attractive cancer therapeutic agent for breast cancer by targeting Pin1 protein. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Transitional cell carcinoma in fishing cats (Prionailurus viverrinus): pathology and expression of cyclooxygenase-1, -2, and p53.

    PubMed

    Landolfi, J A; Terio, K A

    2006-09-01

    A high prevalence of urinary bladder transitional-cell carcinoma (TCC) has been noted in captive fishing cats (Prionailurus viverrinus). Of the 91 adult deaths between 1995 and 2004, 12 (13%) were attributed to TCC. To help elucidate mechanisms of carcinogenesis, archival sections of urinary bladder from 14 fishing cats were examined histologically and immunohistochemically for p53, cyclooxygenase (COX)-1, and COX-2 expression. Ten cats had TCC, and 4 were unaffected. The average age at death was 10.8 years in affected individuals and 10.5 years in unaffected individuals. There was no sex predilection. Fishing cat TCCs were characterized histologically as papillary and infiltrating (n = 6), nonpapillary and infiltrating (n = 3), or carcinoma in situ (n = 1). Glandular and squamous metaplasia, necrosis, and lymphatic invasion were prominent histologic features. Two individuals had documented metastasis. p53 nuclear immunolabeling was detected in 4/10 (40%) TCCs. In two cases, immunolabeling was limited to less than 10% of the neoplastic cellular population and was comparable to staining of normal fishing cat bladder. Therefore, p53 gene mutation did not appear to be an essential component of TCC carcinogenesis in examined fishing cats. COX-1 immunohistochemistry was negative in all cases. All TCCs had some degree of COX-2 cytoplasmic immunolabeling, which was exclusively within the invasive portions of the neoplasms. Papillary portions were uniformly negative. COX-2 overexpression was a prominent feature in the majority of the examined fishing cat TCCs, suggesting that COX-2-mediated mechanisms of carcinogenesis are important in this species and that COX-inhibiting drugs may be of therapeutic benefit.

  10. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanam, U.; Ray, A.; Sehgal, P.B.

    1991-09-01

    The aberrant overexpression of interleukin 6 (IL-6) is implicated as an autocrine mechanism in the enhanced proliferation of the neoplastic cell elements in various B- and T-cell malignancies and in some carcinomas and sarcomas; many of these neoplasms have been shown to be associated with a mutated p53 gene. The possibility that wild-type (wt) p53, a nuclear tumor-suppressor protein, but not its transforming mutants might serve to repress IL-6 gene expression was investigated in HeLa cells. The authors transiently cotransfected these cells with constitutive cytomegalovirus (CMV) enhancer/promoter expression plasmids overproducing wt or mutant human or murine p53 and with appropriatemore » chloramphenicol acetyltransferase (CAT) reporter plasmids containing the promoter elements of human IL-6, c-fos, or {beta}-actin genes or of porcine major histocompatibility complex (MHC) class I gene in pN-38 to evaluate the effect of the various p53 species on these promoters. These observations identify transcriptional repression as a property of p53 and suggest that p53 and RB may be involved as transcriptional repressors in modulating IL-6 gene expression during cellular differentiation and oncogenesis.« less

  11. p53 and c-myc activation by Pasteurella haemolytica leukotoxin is correlated with bovine mononuclear cells apoptosis.

    PubMed

    Marcatili, A; D'Isanto, M; Vitiello, M; Galdiero, R; Galdiero, M

    2002-04-01

    To analyse the role of Pasteurella haemolytica Leukotoxin (LKT) in the mechanism of apoptotic cell death of bovine lymphocytes, we evaluated DNA fragmentation and p53 and c-myc expression. P. haemolytica strain ATCC 14003 was cultivated for LKT production. DNA fragmentation was analysed by electrophoresis on Agarose gel. DNA strand breaks in individual apoptotic cells were also detected by an in situ Terminal deoxy nucleotidyl Transferase (TdT). The Polymerase Chain Reaction (PCR) procedure was used for verified p53 and c-myc activation by P. haemolytica LKT. LKT was able to induce DNA fragmentation in a dose and time-dependent fashion. The greatest apoptotic effect was obtained using LKT at a concentration of 0.25 U. The results show that p53 and c-myc activation by LKT is correlated with apoptosis of bovine lymphocytes and monocytes. Our data suggest that LKT may have an important role in the bacterial virulence of Pasteurella haemolytica.

  12. Human Oncoprotein MDM2 Up-regulates Expression of NF-κB2 Precursor p100 Conferring a Survival Advantage to Lung Cells

    PubMed Central

    Vaughan, Catherine; Mohanraj, Lathika; Singh, Shilpa; Dumur, Catherine I.; Ramamoorthy, Mahesh; Garrett, Carleton T.; Windle, Brad; Yeudall, W. Andrew; Deb, Sumitra

    2011-01-01

    The current model predicts that MDM2 is primarily overexpressed in cancers with wild-type (WT) p53 and contributes to oncogenesis by degrading p53. Following a correlated expression of MDM2 and NF-κB2 transcripts in human lung tumors, we have identified a novel transactivation function of MDM2. Here, we report that in human lung tumors, overexpression of MDM2 was found in approximately 30% of cases irrespective of their p53 status, and expression of MDM2 and NF-κB2 transcripts showed a highly significant statistical correlation in tumors with WT p53. We investigated the significance of this correlated expression in terms of mechanism and biological function. Increase in MDM2 expression from its own promoter in transgenic mice remarkably enhanced expression of NF-κB2 compared with its non-transgenic littermates. Knockdown or elimination of endogenous MDM2 expression in cultured non-transformed or lung tumor cells drastically reduced expression of NF-κB2 transcripts, suggesting a normal physiological role of MDM2 in regulating NF-κB2 transcription. MDM2 could up-regulate expression of NF-κB2 transcripts when its p53-interaction domain was blocked with Nutlin-3, indicating that the MDM2-p53 interaction is dispensable for up-regulation of NF-κB2 expression. Consistently, analysis of functional domains of MDM2 indicated that although the p53-interaction domain of MDM2 contributes to the up-regulation of the NFκB2 promoter, MDM2 does not require direct interactions with p53 for this function. Accordingly, MDM2 overexpression in non-transformed or lung cancer cells devoid of p53 also generated a significant increase in the expression of NF-κB2 transcript and its targets CXCL-1 and CXCL-10, whereas elimination of MDM2 expression had the opposite effects. MDM2-mediated increase in p100/NF-κB2 expression reduced cell death mediated by paclitaxel. Furthermore, knockdown of NF-κB2 expression retarded cell proliferation. Based on these data, we propose that MDM2

  13. A novel chalcone derivative, LQFM064, induces breast cancer cells death via p53, p21, KIT and PDGFRA.

    PubMed

    Cabral, Bruna Lannuce Silva; da Silva, Artur Christian Garcia; de Ávila, Renato Ivan; Cortez, Alane Pereira; Luzin, Rangel Magalhães; Lião, Luciano Morais; de Souza Gil, Eric; Sanz, Gérman; Vaz, Boniek G; Sabino, José R; Menegatti, Ricardo; Valadares, Marize Campos

    2017-09-30

    This study shows the design, synthesis and antitumoral potential evaluation of a novel chalcone-like compound, (E)-3- (3, 5-di-ter-butyl-4-hydroxyphenyl)-1- (4-hydroxy-3-methoxyphenyl) prop-2-en-1-one [LQFM064) (4)], against human breast adenocarcinoma MCF7 cells. Some toxicological parameters were also investigated. LQFM064) (4) exhibited cytotoxic activity against MCF7 cells (IC 50 =21μM), in a concentration dependent-manner, and triggered significant changes in cell morphology and biochemical/molecular parameters, which are suggestive of an apoptosis inductor. LQFM064) (4) (21μM) induced cell cycle arrest at G0/G1 phase with increased p53 and p21 expressions. It was also shown that the compound (4) did not interfere directly in p53/MDM2 complexation of MCF7 cells. In these cells, externalization of phosphatidylserine, cytochrome c release, increased expression of caspases-7, -8 and -9, reduced mitochondrial membrane potential and ROS overgeneration were also detected following LQFM064 (4) treatment. Further analysis revealed the activation of both apoptotic pathways via modulation of the proteins involved in the extrinsic and intrinsic pathways with an increase in TNF-R1, Fas-L and Bax levels and a reduction in Bcl-2 expression. Furthermore, KIT proto-oncogene receptor tyrosine kinase, insulin-like growth factor (IGF1) and platelet-derived growth factor receptor A (PDGFRA) were downregulated, while glutathione S-transferase P1 (GSTP1) and interferon regulatory factor 5 (IRF5) expressions were increased by LQFM064 (4)-triggered cytotoxic effects in MCF7 cells. Moreover, it can be inferred that compound (4) has a moderate acute oral systemic toxicity hazard, since its estimated LD 50 was 452.50mg/kg, which classifies it as UN GHS Category 4 (300mg/kg>LD 50 <2000mg/kg). Furthermore, LQFM064 (4) showed a reduced potential myelotoxicity (IC 50 =150μM for mouse bone marrow hematopoietic progenitors). In conclusion, LQFM064 (4) was capable of inducing breast cancer

  14. Alpha-linolenic acid regulates Cox2/VEGF/MAP kinase pathway and decreases the expression of HPV oncoproteins E6/E7 through restoration of p53 and Rb expression in human cervical cancer cell lines.

    PubMed

    Deshpande, Rashmi; Mansara, Prakash; Kaul-Ghanekar, Ruchika

    2016-03-01

    Cervical cancer represents the largest cause of mortality in women worldwide. In our previous report, we have shown how alpha-linolenic acid (ALA), an omega-3 fatty acid, regulated the growth of cervical cancer cells. The present study aimed to explore mechanistic details for the anticancer activity of ALA in cervical cancer cell lines, SiHa and HeLa. ALA significantly modulated the growth kinetics of the cells and reduced cell migration with concomitant decrease in the expression of VEGF, MMP-2, and MMP-9 proteins. Besides this, ALA significantly decreased the expression of phosphorylated p38, pERK1/2, c-JUN, NFκB, and COX2, proteins. Most importantly, ALA reduced the expression of HPV onco-proteins E6 and E7, resulting into restoration of expression of tumor suppressor proteins, p53 and Rb. These results suggested that ALA could be explored for its therapeutic potential in cervical cancer.

  15. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells.

    PubMed

    Czyz, Jaroslaw; Guan, Kaomei; Zeng, Qinghua; Nikolova, Teodora; Meister, Armin; Schönborn, Frank; Schuderer, Jürgen; Kuster, Niels; Wobus, Anna M

    2004-05-01

    Effects of electromagnetic fields (EMF) simulating exposure to the Global System for Mobile Communications (GSM) signals were studied using pluripotent embryonic stem (ES) cells in vitro. Wild-type ES cells and ES cells deficient for the tumor suppressor p53 were exposed to pulse modulated EMF at 1.71 GHz, lower end of the uplink band of GSM 1800, under standardized and controlled conditions, and transcripts of regulatory genes were analyzed during in vitro differentiation. Two dominant GSM modulation schemes (GSM-217 and GSM-Talk), which generate temporal changes between GSM-Basic (active during talking phases) and GSM-DTX (active during listening phases thus simulating a typical conversation), were applied to the cells at and below the basic safety limits for local exposures as defined for the general public by the International Commission on Nonionizing Radiation Protection (ICNIRP). GSM-217 EMF induced a significant upregulation of mRNA levels of the heat shock protein, hsp70 of p53-deficient ES cells differentiating in vitro, paralleled by a low and transient increase of c-jun, c-myc, and p21 levels in p53-deficient, but not in wild-type cells. No responses were observed in either cell type after EMF exposure to GSM-Talk applied at similar slot-averaged specific absorption rates (SAR), but at lower time-averaged SAR values. Cardiac differentiation and cell cycle characteristics were not affected in embryonic stem and embryonic carcinoma cells after exposure to GSM-217 EMF signals. Our data indicate that the genetic background determines cellular responses to GSM modulated EMF. Bioelectromagnetics 25:296-307, 2004. Copyright 2004 Wiley-Liss, Inc.

  16. KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage

    PubMed Central

    Moon, Eui Jung; Razorenova, Olga V.; Krieg, Adam J.; von Eyben, Rie

    2017-01-01

    Abstract The p53 tumor suppressor protein plays a critical role in orchestrating the genomic response to various stress signals by acting as a master transcriptional regulator. Differential gene activity is controlled by transcription factors but also dependent on the underlying chromatin structure, especially on covalent histone modifications. After screening different histone lysine methyltransferases and demethylases, we identified JMJD2B/KDM4B as a p53-inducible gene in response to DNA damage. p53 directly regulates JMJD2B gene expression by binding to a canonical p53-consensus motif in the JMJD2B promoter. JMJD2B induction attenuates the transcription of key p53 transcriptional targets including p21, PIG3 and PUMA, and this modulation is dependent on the catalytic capacity of JMJD2B. Conversely, JMJD2B silencing led to an enhancement of the DNA-damage driven induction of p21 and PIG3. These findings indicate that JMJD2B acts in an auto-regulatory loop by which p53, through JMJD2B activation, is able to influence its own transcriptional program. Functionally, exogenous expression of JMJD2B enhanced subcutaneous tumor growth of colon cancer cells in a p53-dependent manner, and genetic inhibition of JMJD2B impaired tumor growth in vivo. These studies provide new insights into the regulatory effect exerted by JMJD2B on tumor growth through the modulation of p53 target genes. PMID:28073943

  17. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xia; School of Ocean, Shandong University, Weihai 264209; Wu, William K.K.

    2011-03-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G{sub 2}/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine,more » suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21{sup Waf1/Cip1}. In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B{sub 1}, a cyclin required for progression through the G{sub 2}/M phase. Taken together, DHA induces G{sub 2}/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.« less

  18. Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling

    PubMed Central

    Lengner, Christopher J.; Steinman, Heather A.; Gagnon, James; Smith, Thomas W.; Henderson, Janet E.; Kream, Barbara E.; Stein, Gary S.; Lian, Jane B.; Jones, Stephen N.

    2006-01-01

    Mdm2 is required to negatively regulate p53 activity at the peri-implantation stage of early mouse development. However, the absolute requirement for Mdm2 throughout embryogenesis and in organogenesis is unknown. To explore Mdm2–p53 signaling in osteogenesis, Mdm2-conditional mice were bred with Col3.6-Cre–transgenic mice that express Cre recombinase in osteoblast lineage cells. Mdm2-conditional Col3.6-Cre mice die at birth and display multiple skeletal defects. Osteoblast progenitor cells deleted for Mdm2 have elevated p53 activity, reduced proliferation, reduced levels of the master osteoblast transcriptional regulator Runx2, and reduced differentiation. In contrast, p53-null osteoprogenitor cells have increased proliferation, increased expression of Runx2, increased osteoblast maturation, and increased tumorigenic potential, as mice specifically deleted for p53 in osteoblasts develop osteosarcomas. These results demonstrate that p53 plays a critical role in bone organogenesis and homeostasis by negatively regulating bone development and growth and by suppressing bone neoplasia and that Mdm2-mediated inhibition of p53 function is a prerequisite for Runx2 activation, osteoblast differentiation, and proper skeletal formation. PMID:16533949

  19. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.

    PubMed

    Ihry, Robert J; Worringer, Kathleen A; Salick, Max R; Frias, Elizabeth; Ho, Daniel; Theriault, Kraig; Kommineni, Sravya; Chen, Julie; Sondey, Marie; Ye, Chaoyang; Randhawa, Ranjit; Kulkarni, Tripti; Yang, Zinger; McAllister, Gregory; Russ, Carsten; Reece-Hoyes, John; Forrester, William; Hoffman, Gregory R; Dolmetsch, Ricardo; Kaykas, Ajamete

    2018-06-11

    CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells 1-3 . Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells 3-13 . Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction 3 . The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations 14 , cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

  20. Patterns of Proteins that Associate with p53 or with p53 Binding Sites Present in the Ribosomal Gene Cluster and MDM2 (P2) Promoter

    DTIC Science & Technology

    2000-08-01

    Spodoptera frugiperda (Sf21) cells were infected with a recombinant baculovirus expressing the wild-type human p53. 3-4 and 10-1 cells were grown at 37 ’C in...for further use. Spodoptera fugiperda (Sf21) cells were grown at 27 0C in TC-100 medium (GIBCO), supplemented with 10% of heat inactivated Fetal

  1. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    PubMed Central

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  2. Non-Thermal Atmospheric Pressure Plasma Preferentially Induces Apoptosis in p53-Mutated Cancer Cells by Activating ROS Stress-Response Pathways

    PubMed Central

    Ma, Yonghao; Ha, Chang Seung; Hwang, Seok Won; Lee, Hae June; Kim, Gyoo Cheon; Lee, Kyo-Won; Song, Kiwon

    2014-01-01

    Non-thermal atmospheric pressure plasma (NTAPP) is an ionized gas at room temperature and has potential as a new apoptosis-promoting cancer therapy that acts by generating reactive oxygen species (ROS). However, it is imperative to determine its selectivity and standardize the components and composition of NTAPP. Here, we designed an NTAPP-generating apparatus combined with a He gas feeding system and demonstrated its high selectivity toward p53-mutated cancer cells. We first determined the proper conditions for NTAPP exposure to selectively induce apoptosis in cancer cells. The apoptotic effect of NTAPP was greater for p53-mutated cancer cells; artificial p53 expression in p53-negative HT29 cells decreased the pro-apoptotic effect of NTAPP. We also examined extra- and intracellular ROS levels in NTAPP-treated cells to deduce the mechanism of NTAPP action. While NTAPP-mediated increases in extracellular nitric oxide (NO) did not affect cell viability, intracellular ROS increased under NTAPP exposure and induced apoptotic cell death. This effect was dose-dependently reduced following treatment with ROS scavengers. NTAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of NTAPP as a potent cancer therapy. Collectively, these results strongly support the potential of NTAPP as a selective anticancer treatment, especially for p53-mutated cancer cells. PMID:24759730

  3. Immunohistochemical Study of p53 Expression in Patients with Erosive and Non-Erosive Oral Lichen Planus

    PubMed Central

    Shiva, Atena; Zamanian, Ali; Arab, Shahin; Boloki, Mahsa

    2018-01-01

    Statement of the Problem: Oral lichen planus is a common mucocutaneous lesion with a chronic inflammatory process mediated by immune factors while a few cases of the disease become malignant. Purpose: This study aimed to determine the frequency of p53 marker as a tumor suppressor in patients with erosive and non-erosive oral lichen planus (OLP) by using immunohistochemical methods. Materials and Method: This descriptive cross-sectional study investigated the p53 expression in 16 erosive OLP, 16 non-erosive OLP samples, and 8 samples of normal oral mucosa through immunohistochemistry. The percentage of stained cells in basal and suprabasal layers, and inflammatory infiltrate were graded according to the degree of staining; if 0%, <10%, 10-25%, and >50% of the cells were stained, they were considered as (-), (+), (++), (+++) and (++++), respectively. The obtained data was statistically analyzed and compared by using Chi square and Fisher’s exact test. Results: The mean percentage of p53 positive cells in erosive OLP (34.5±14.2) was considerably higher than that in non-erosive OLP (23.8±10.4) and normal mucosa (17.5±17). There was a significant difference among the three groups of erosive, non-erosive and control in terms of staining intensity. No significant difference existed between the patients’ age and sex in the two OLP groups. Conclusion: The increased incidence of p53 from normal mucosa to erosive OLP indicated the difference between biological behavior of erosive and non-erosive OLP. It can be claimed that the erosive OLP has great premalignant potential compared with the non-erosive one.

  4. Correlation of MET gene amplification and TP53 mutation with PD-L1 expression in non-small cell lung cancer

    PubMed Central

    Albitar, Maher; Sudarsanam, Sucha; Ma, Wanlong; Jiang, Shiping; Chen, Wayne; Funari, Vincent; Blocker, Forrest; Agersborg, Sally

    2018-01-01

    Background The role of MET amplification in lung cancer, particularly in relation to checkpoint inhibition and EGFR WT, has not been fully explored. In this study, we correlated PD-L1 expression with MET amplification and EGFR, KRAS, or TP53 mutation in primary lung cancer. Methods In this retrospective study, tissue collected from 471 various tumors, including 397 lung cancers, was tested for MET amplification by FISH with a MET/centromere probe. PD-L1 expression was evaluated using clone SP142 and standard immunohistochemistry, and TP53, KRAS, and EGFR mutations were tested using next generation sequencing. Results Our results revealed that PD-L1 expression in non-small cell lung cancer is inversely correlated with EGFR mutation (P=0.0003), and positively correlated with TP53 mutation (P=0.0001) and MET amplification (P=0.004). Patients with TP53 mutations had significantly higher MET amplification (P=0.007), and were more likely (P=0.0002) to be EGFR wild type. There was no correlation between KRAS mutation and overall PD-L1 expression, but significant positive correlation between PD-L1 expression and KRAS with TP53 co-mutation (P=0.0002). A cut-off for the ratio of MET: centromere signal was determined as 1.5%, and 4% of lung cancer patients were identified as MET amplified. Conclusions This data suggests that in lung cancer both MET and TP53 play direct roles in regulating PD-L1 opposing EGFR. Moreover, KRAS and TP53 co-mutation may cooperate to drive PD-L1 expression in lung cancer. Adding MET or TP53 inhibitors to checkpoint inhibitors may be an attractive combination therapy in patients with lung cancer and MET amplification. PMID:29568386

  5. Histone Deacetylase Inhibitor Trichostatin a Promotes the Apoptosis of Osteosarcoma Cells through p53 Signaling Pathway Activation

    PubMed Central

    Deng, Zhantao; Liu, Xiaozhou; Jin, Jiewen; Xu, Haidong; Gao, Qian; Wang, Yong; Zhao, Jianning

    2016-01-01

    Purpose: The purpose of this study was to investigate the profile of histone deacetylase (HDAC) activity and expression in osteosarcoma cells and tissues from osteosarcoma patients and to examine the mechanism by which a histone deacetylase (HDAC) inhibitor, Trichostatin A (TSA), promotes the apoptosis of osteosarcoma cells. Methods: HDAC activity and histone acetyltransferase (HAT) activity were determined in nuclear extracts of MG63 cells, hFOB 1.19 cells and tissues from 6 patients with primary osteosarcoma. The protein expression of Class I HDACs (1, 2, 3 and 8) and the activation of the p53 signaling pathway were examined by Western blot. Cell growth and apoptosis were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2H-tetrazolium bromide (MTT) assay and flow cytometry, respectively. Results: Nuclear HDAC activity and class I HDAC expression were significantly higher in MG63 cells than in hFOB 1.19 cells, and a similar trend was observed in the human osteosarcoma tissues compared with the paired adjacent non-cancerous tissues. TSA significantly inhibited the growth of MG63 cells and promoted apoptosis in a dose-dependent manner through p53 signaling pathway activation. Conclusion: Class I HDACs play a central role in the pathogenesis of osteosarcoma, and HDAC inhibitors may thus have promise as new therapeutic agents against osteosarcoma. PMID:27877082

  6. Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, T.-F.; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; Department of Medical Technology, Central Taiwan University of Science and Technology, Taichung 40605, Taiwan

    2007-12-15

    Undecylprodigiosin (UP) is a bacterial bioactive metabolite produced by Streptomyces and Serratia. In this study, we explored the anticancer effect of UP. Human breast carcinoma cell lines BT-20, MCF-7, MDA-MB-231 and T47D and one nonmalignant human breast epithelial cell line, MCF-10A, were tested in this study. We found that UP exerted a potent cytotoxicity against all breast carcinoma cell lines in a dose- and time-dependent manner. In contrast, UP showed limited toxicity to MCF-10A cells, indicating UP's cytotoxic effect is selective for malignant cells. UP's cytotoxic effect was due to apoptosis, as confirmed by positive TUNEL signals, annexin V-binding, caspasemore » 9 activation and PARP cleavage. Notably, UP-induced apoptosis was blocked by the pan-caspase inhibitor z-VAD.fmk, further indicating the involvement of caspase activity. Moreover, UP caused a marked decrease of the levels of antiapoptotic BCL-X{sub L}, Survivin and XIAP while enhancing the levels of proapoptotic BIK, BIM, MCL-1S and NOXA, consequently favoring induction of apoptosis. Additionally, we found that cells with functional p53 (MCF-7, T47D) or mutant p53 (BT-20, MDA-MB-231) were both susceptible to UP's cytotoxicity. Importantly, UP was able to induce apoptosis in MCF-7 cells with p53 knockdown by RNA interference, confirming the dispensability of p53 in UP-induced apoptosis. Overall, our results establish that UP induces p53-independent apoptosis in breast carcinoma cells with no marked toxicity to nonmalignant cells, raising the possibility of its use as a new chemotherapeutic drug for breast cancer irrespective of p53 status.« less

  7. The Ubiquitin Ligase COP1 Promotes Glioma Cell Proliferation by Preferentially Downregulating Tumor Suppressor p53.

    PubMed

    Zou, Shenshan; Zhu, Yufu; Wang, Bin; Qian, Fengyuan; Zhang, Xiang; Wang, Lei; Fu, Chunling; Bao, Hanmo; Xie, Manyi; Gao, Shangfeng; Yu, Rutong; Shi, Hengliang

    2017-09-01

    Human glioma causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying glioma progression are still largely unknown. COP1 (constitutively photomorphogenic 1), an E3 ubiquitin ligase, is important in cell survival, development, cell growth, and cancer biology by regulating different substrates. As is well known, both tumor suppressor p53 and oncogenic protein c-JUN could be ubiquitinated and degraded by ubiquitin ligase COP1, which may be the reason that COP1 serves as an oncogene or a tumor suppressor in different cancer types. Up to now, the possible role of COP1 in human glioma is still unclear. In the present study, we found that the expression of COP1 was upregulated in human glioma tissues. The role of COP1 in glioma cell proliferation was investigated using COP1 loss- and gain-of-function. The results showed that downregulation of COP1 by short hairpin RNA (shRNA) inhibited glioma cell proliferation, while overexpression of COP1 significantly promoted it. Furthermore, we demonstrated that COP1 only interacted with and regulated p53, but not c-JUN. Taken together, these results indicate that COP1 may play a role in promoting glioma cell proliferation by interacting with and downregulating tumor suppressor p53 rather than oncogenic protein c-JUN.

  8. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  9. Mechanisms of Breast Carcinogenesis Involving Wild-Type p53

    DTIC Science & Technology

    2001-09-01

    Nelson, C. E., Gryka , M . A., Litwak, G., Gebhardt, M ., level of p53 that was expressed in the cells in both these studies Bressac, B., Ozturk, M ., Baker...14 Publication resulting from this research: 1. Resnick-Silverman, L., S. St Clair, M . Maurer, K...activation by the tumor suppressor protein p53. Genes Dev 12:2102-7. 2. Tang, H. Y., K. Zhao, J. F. Pizzolato, M . Fonarev, J. C. Langer, and J. J

  10. Expression of p53 and selected proliferative markers (Ki-67, MCM3, PCNA, and topoisomerase IIα) in borderline ovarian tumors: Correlation with clinicopathological features.

    PubMed

    Ciepliński, Klaudiusz; Jóźwik, Maciej; Semczuk-Sikora, Anna; Gogacz, Marek; Lewkowicz, Dorota; Ignatov, Atanas; Semczuk, Andrzej

    2018-02-01

    The expression of p53 has been studied not only in primary human ovarian carcinomas, but also in borderline ovarian tumors, however, the results were discordant. Expression patterns of proteins involved in cell proliferation and apoptosis have been investigated in various human neoplasms, including female genital tract neoplasms. The aim of this investigation was to assess the staining pattern and immunolocalization of p53 and selected proliferative markers (Ki-67, MCM3, PCNA, and topoisomerase IIα) in borderline ovarian tumors (BOTs). The study group consisted of 42 women who underwent pelvic surgery between 2006-2015. The median patients' age was 46 years. The immunoperoxidase technique was employed using antibodies against p53, Ki-67, MCM3, PCNA, and topoisomerase IIα. For p53, nuclear expression was observed in BOTs, however, cytoplasmatic immunoreactivity was also detected. Altogether, 25 (60%) tumors demonstrated positive p53 immunostaining, including overexpression found in 6 (14%). There were no significant differences in p53 expression between subgroups of clinicopathological variables. Immunoexpression of Ki-67, MCM3, PCNA, and topoisomerase IIα was nuclear. Ki-67 expression was positive in 12 (29%) cases and there was a trend towards a relationship between patients' age and Ki-67 staining (P=0.08). Interestingly, a significantly higher Ki-67 expression was found in tumors of ≥10 cm in diameter compared to smaller tumors (P=0.008). MCM3 expression was detected in 38 (90%) tumors, and PCNA expression in 28 (67%), yet none of clinicopathological factors was related to them. Topoisomerase IIα expression was present in 14 (33%) cases and, interestingly, its significantly higher expression was observed in BOTs of ≥10 cm in diameter compared to smaller tumors (P=0.008). Moreover, Spearman's correlation revealed highly significant positive associations between Ki-67 and topoisomerase IIα (R=0.403, P=0.008) and Ki-67 and MCM3 (R=0.469, P=0.001). We

  11. Low p53 Binding Protein 1 (53BP1) Expression Is Associated With Increased Local Recurrence in Breast Cancer Patients Treated With Breast-Conserving Surgery and Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neboori, Hanmanth J.R.; Haffty, Bruce G., E-mail: hafftybg@umdnj.edu; Wu Hao

    2012-08-01

    Purpose: To investigate whether the expression of p53 binding protein 1 (53BP1) has prognostic significance in a cohort of early-stage breast cancer patients treated with breast-conserving surgery and radiotherapy (BCS+RT). Methods and Materials: A tissue microarray of early-stage breast cancer treated with BCS+RT from a cohort of 514 women was assayed for 53BP1, estrogen receptor, progesterone receptor, and HER2 expression by immunohistochemistry. Through log-rank tests and univariate and multivariate models, the staining profile of each tumor was correlated with clinical endpoints, including ipsilateral breast recurrence-free survival (IBRFS), distant metastasis-free survival (DMFS), cause-specific survival (CSS), recurrence-free survival (RFS), and overall survivalmore » (OS). Results: Of the 477 (93%) evaluable tumors, 63 (13%) were scored as low. Low expression of 53BP1 was associated with worse outcomes for all endpoints studied, including 10-year IBRFS (76.8% vs. 90.5%; P=.01), OS (66.4% vs. 81.7%; P=.02), CSS (66.0% vs. 87.4%; P<.01), DMFS (55.9% vs. 87.0%; P<.01), and RFS (45.2% vs. 80.6%; P<.01). Multivariate analysis incorporating various clinico-pathologic markers and 53BP1 expression found that 53BP1 expression was again an independent predictor of all endpoints (IBRFS: P=.0254; OS: P=.0094; CSS: P=.0033; DMFS: P=.0006; RFS: P=.0002). Low 53BP1 expression was also found to correlate with triple-negative (TN) phenotype (P<.01). Furthermore, in subset analysis of all TN breast cancer, negative 53BP1 expression trended for lower IBRFS (72.3% vs. 93.9%; P=.0361) and was significant for worse DMFS (48.2% vs. 86.8%; P=.0035) and RFS (37.8% vs. 83.7%; P=.0014). Conclusion: Our data indicate that low 53BP1 expression is an independent prognostic indicator for local relapse among other endpoints in early-stage breast cancer and TN breast cancer patients treated with BCS+RT. These results should be verified in larger cohorts of patients to validate their

  12. Minnelide/Triptolide Impairs Mitochondrial Function by Regulating SIRT3 in P53-Dependent Manner in Non-Small Cell Lung Cancer.

    PubMed

    Kumar, Ajay; Corey, Catherine; Scott, Iain; Shiva, Sruti; D'Cunha, Jonathan

    2016-01-01

    Minnelide/Triptolide (TL) has recently emerged as a potent anticancer drug in non-small cell lung cancer (NSCLC). However, the precise mechanism of its action remains ambiguous. In this study, we elucidated the molecular basis for TL-induced cell death in context to p53 status. Cell death was attributed to dysfunction of mitochondrial bioenergetics in p53-deficient cells, which was characterized by decreased mitochondrial respiration, steady-state ATP level and membrane potential, but augmented reactive oxygen species (ROS). Increased ROS production resulted in oxidative stress in TL-treated cells. This was exhibited by elevated nuclear levels of a redox-sensitive transcriptional factor, NF-E2-related factor-2 (NRF2), along with diminished cellular glutathione (GSH) content. We further demonstrated that in the absence of p53, TL blunted the expression of mitochondrial SIRT3 triggering increased acetylation of NDUAF9 and succinate dehydrogenase, components of complexes I and II of the electron transport chain (ETC). TL-mediated hyperacetylation of complexes I and II proteins and these complexes displayed decreased enzymatic activities. We also provide the evidence that P53 regulate steady-state level of SIRT3 through Proteasome-Pathway. Finally, forced overexpression of Sirt3, but not deacetylase-deficient mutant of Sirt3 (H243Y), restored the deleterious effect of TL on p53-deficient cells by rescuing mitochondrial bioenergetics. On contrary, Sirt3 deficiency in the background of wild-type p53 triggered TL-induced mitochondrial impairment that echoed TL effect in p53-deficeint cells. These findings illustrate a novel mechanism by which TL exerts its potent effects on mitochondrial function and ultimately the viability of NSCLC tumor.

  13. Differential S-phase progression after irradiation of p53 functional versus non-functional tumour cells

    PubMed Central

    Zölzer, Friedo; Mußfeldt, Tamare; Streffer, Christian

    2014-01-01

    Background Many pathways seem to be involved in the regulation of the intra-S-phase checkpoint after exposure to ionizing radiation, but the role of p53 has proven to be rather elusive. Here we have a closer look at the progression of irradiated cells through S-phase in dependence of their p53 status. Materials and methods. Three pairs of tumour cell lines were used, each consisting of one p53 functional and one p53 non-functional line. Cells were labelled with bromodeoxyuridine(BrdU) immediately after irradiation, they were then incubated in label-free medium, and at different times afterwards their position within the S-phase was determined by means of flow cytometry. Results While in the p53 deficient cells progression through S-phase was slowed significantly over at least a few hours, it was halted for just about an hour in the p53 proficient cells and then proceeded without further delay or even at a slightly accelerated pace. Conclusions It is clear from the experiments presented here that p53 does play a role for the progress of cells through the S-phase after X-ray exposure, but the exact mechanisms by which replicon initiation and elongation is controlled in irradiated cells remain to be elucidated. PMID:25435848

  14. Silymarin modulates doxorubicin-induced oxidative stress, Bcl-xL and p53 expression while preventing apoptotic and necrotic cell death in the liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Nirav; Joseph, Cecil; Corcoran, George B.

    2010-06-01

    The emergence of silymarin (SMN) as a natural remedy for liver diseases, coupled with its entry into NIH clinical trial, signifies its hepatoprotective potential. SMN is noted for its ability to interfere with apoptotic signaling while acting as an antioxidant. This in vivo study was designed to explore the hepatotoxic potential of Doxorubicin (Dox), the well-known cardiotoxin, and in particular whether pre-exposures to SMN can prevent hepatotoxicity by reducing Dox-induced free radical mediated oxidative stress, by modulating expression of apoptotic signaling proteins like Bcl-xL, and by minimizing liver cell death occurring by apoptosis or necrosis. Groups of male ICR micemore » included Control, Dox alone, SMN alone, and Dox with SMN pre/co-treatment. Control and Dox groups received saline i.p. for 14 days. SMN was administered p.o. for 14 days at 16 mg/kg/day. An approximate LD{sub 50} dose of Dox, 60 mg/kg, was administered i.p. on day 12 to animals receiving saline or SMN. Animals were euthanized 48 h later. Dox alone induced frank liver injury (> 50-fold increase in serum ALT) and oxidative stress (> 20-fold increase in malondialdehyde [MDA]), as well as direct damage to DNA (> 15-fold increase in DNA fragmentation). Coincident genomic damage and oxidative stress influenced genomic stability, reflected in increased PARP activity and p53 expression. Decreases in Bcl-xL protein coupled with enhanced accumulation of cytochrome c in the cytosol accompanied elevated indexes of apoptotic and necrotic cell death. Significantly, SMN exposure reduced Dox hepatotoxicity and associated apoptotic and necrotic cell death. The effects of SMN on Dox were broad, including the ability to modulate changes in both Bcl-xL and p53 expression. In animals treated with SMN, tissue Bcl-xL expression exceeded control values after Dox treatment. Taken together, these results demonstrated that SMN (i) reduced, delayed onset, or prevented toxic effects of Dox which are typically

  15. CDC25B and p53 are independently implicated in radiation sensitivity for human esophageal cancers.

    PubMed

    Miyata, H; Doki, Y; Shiozaki, H; Inoue, M; Yano, M; Fujiwara, Y; Yamamoto, H; Nishioka, K; Kishi, K; Monden, M

    2000-12-01

    Ionized radiation leads to G1 arrest and apoptosis by a p53-dependent pathway and G2-M arrest through a p53-independent pathway. In this study, we evaluated the role of cell cycle-regulating molecules in the sensitivity of cancer cells for radiation therapy. Forty-seven patients with squamous cell carcinomas of the esophagus had undergone radiation therapy, followed by surgical resection. They were classified as sensitive to radiation (SR, 14 cases) with no residual tumor in the surgical specimen or as resistant to radiation (RR, 33 cases) with viable residual tumors. Their preradiation biopsy samples were immunohistochemically investigated for the expressions of cell cycle-related molecules, including p53, CDC25A, CDC25B, cyclin D1, cyclin B1, and Ki-67. p53 expression was negative in 71% (10 of 14) of SR and positive in 91% (30 of 33) of RR. The association was strong between high radiation sensitivity and negative p53 expression (P < 0.0001). CDC25B, which is not expressed in normal epithelium but is in the cytoplasm of esophageal cancers, was strongly expressed (2+) in 46% (6 of 14) of SR and in 6% (2 of 23) of RR. Thus, the sensitivity for radiation therapy was significantly correlated with CDC25B overexpression. With respect to CDC25A, cyclin D1, cyclin B1, and Ki-67, no statistically significant differences were found in their expressions between SR and RR tumors. p53 and CDC25B expressions showed no significant associations, and multivariate analysis revealed that both p53 and CDC25B are significant independent markers for predicting radiation sensitivity. CDC25B was revealed to be a novel predictor of radiation sensitivity in esophageal cancers. Because CDC25B is an oncogene, which affects G2-M progression, these results suggest the importance of a p53-independent G2-M checkpoint in radiation therapy.

  16. Wip1 and p53 contribute to HTLV-1 Tax-induced tumorigenesis

    PubMed Central

    2012-01-01

    Background Human T-cell Leukemia Virus type 1 (HTLV-1) infects 20 million individuals world-wide and causes Adult T-cell Leukemia/Lymphoma (ATLL), a highly aggressive T-cell cancer. ATLL is refractory to treatment with conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis. HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein. Results Using genetically altered mice, we report here that Tax expression does not achieve a functional equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53−/− genotype). Thus, we find statistically significant differences in tumorigenesis between Tax+p53+/+versus Tax+p53−/− mice. We also find a role contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably, Tax+Wip1−/− mice show statistically significant reduced prevalence of tumorigenesis compared to Tax+Wip1+/+ counterparts. Conclusions Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of Tax-induced tumors in mice. PMID:23256545

  17. Modulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by Zac1 through the antagonistic regulators p53 and histone deacetylase 1 in HeLa Cells.

    PubMed

    Liu, Pei-Yao; Chan, James Yi-Hsin; Lin, Hsiu-Chen; Wang, Sung-Ling; Liu, Shu-Ting; Ho, Ching-Liang; Chang, Li-Chien; Huang, Shih-Ming

    2008-07-01

    Zac1 is a novel seven-zinc finger protein which possesses the ability to bind specifically to GC-rich DNA elements. Zac1 not only promotes apoptosis and cell cycle arrest but also acts as a transcriptional cofactor for p53 and a number of nuclear receptors. Our previous study indicated that the enhancement of p53 activity by Zac1 is much more pronounced in HeLa cells compared with other cell lines tested. This phenomenon might be due to the coactivator effect of Zac1 on p53 and the ability of Zac1 to reverse E6 inhibition of p53. In the present study, we showed that Zac1 acted synergistically with either p53 or a histone deacetylase inhibitor, trichostatin A, to enhance p21(WAF1/Cip1) promoter activity. We showed that Zac1 physically interacted with some nuclear receptor corepressors such as histone deacetylase 1 (HDAC1) and mSin3a, and the induction of p21(WAF1/Cip1) gene and protein by Zac1 was suppressed by either overexpressing HDAC1 or its deacetylase-dead mutant. In addition, our data suggest that trichostatin A-induced p21(WAF1/Cip1) protein expression might be mediated through a p53-independent and HDAC deacetylase-independent pathway. Taken together, our data suggest that Zac1 might be involved in regulating the p21(WAF1/Cip1) gene and protein expression through its protein-protein interaction with p53 and HDAC1 in HeLa cells.

  18. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships.

    PubMed

    Mantovani, Fiamma; Zannini, Alessandro; Rustighi, Alessandra; Del Sal, Giannino

    2015-10-01

    The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.

    PubMed

    Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore

    2007-02-01

    Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.

  20. Anti-cancer peptides from ras-p21 and p53 proteins.

    PubMed

    Pincus, Matthew R; Fenelus, Maly; Sarafraz-Yazdi, Ehsan; Adler, Victor; Bowne, Wilbur; Michl, Josef

    2011-01-01

    We have employed computer-based molecular modeling approaches to design peptides from the ras-p21 and p53 proteins that either induce tumor cell reversion to the untransformed phenotype or induce tumor cell necrosis without affecting normal cells. For rasp21, we have computed and superimposed the average low energy structures for the wild-type protein and oncogenic forms of this protein and found that specific domains change conformation in the oncogenic proteins. We have synthesized peptides corresponding to these and found that ras peptides, 35-47 (PNC-7) and 96-110 (PNC-2), block oncogenic ras-p21-induced oocyte maturation but have no effect on insulin-induced oocyte maturation that requires activation of endogenous wild-type ras-p21. These results show signal transduction pathway differences between oncogenic and activated wild-type ras-p21. Both peptides, attached to a membrane-penetrating peptide (membrane residency peptide or MRP), either induce phenotypic reversion to the untransformed phenotype or tumor cell necrosis of several ras-transformed cell lines, but have no effect on the growth of normal cells. Using other computational methods, we have designed two peptides, PNC-27 and 28, containing HDM-2-protein-binding domain sequences from p53 linked on their C-termini to the MRP that induce pore formation in the membranes of a wide range of cancer cells but not any normal cells tested. This is due to the expression of HDM-2 in the cancer cell membrane that does not occur in normal cells. These peptides eradicate a highly malignant tumor in nude mice with no apparent side effects. Both ras and p53 peptides show promise as anti-tumor agents in humans.

  1. Photodynamic injury of isolated crayfish neuron and surrounding glial cells: the role of p53

    NASA Astrophysics Data System (ADS)

    Sharifulina, S. A.; Uzdensky, A. B.

    2015-03-01

    The pro-apoptotic transcription factor p53 is involved in cell responses to injurious impacts. Using its inhibitor pifithrin- α and activators tenovin-1, RITA and WR-1065, we studied its potential participation in inactivation and death of isolated crayfish mechanoreceptor neuron and satellite glial cells induced by photodynamic treatment, a strong inducer of oxidative stress. In dark, p53 activation by tenovin-1 or WR-1065 shortened activity of isolated neurons. Tenovin-1 and WR-1065 induced apoptosis of glial cells, whereas pifithrin-α was anti-apoptotic. Therefore, p53 mediated glial apoptosis and suppression of neuronal activity after axotomy. Tenovin-1 but not other p53 modulators induced necrosis of axotomized neurons and surrounding glia, possibly, through p53-independent pathway. Under photodynamic treatment, p53 activators tenovin-1 and RITA enhanced glial apoptosis indicating the pro-apoptotic activity of p53. Photoinduced necrosis of neurons and glia was suppressed by tenovin-1 and, paradoxically, by pifithrin-α. Modulation of photoinduced changes in the neuronal activity and necrosis of neurons and glia was possibly p53-independent. The different effects of p53 modulators on neuronal and glial responses to axotomy and photodynamic impact were apparently associated with different signaling pathways in neurons and glial cells.

  2. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    PubMed

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  3. Functional activation of mutant p53V172F by platinum analogs in cisplatin-resistant human tumor cells is dependent on serine-20 phosphorylation

    PubMed Central

    Xie, Xiaolei; He, Guangan; Siddik, Zahid H.

    2017-01-01

    Dysfunctionality of the p53 tumor suppressor is a major cause of therapeutic drug resistance in cancer. Recently we reported that mutant, but otherwise functional, p53V172F was inactivated in cisplatin-resistant 2780CP/Cl-16 and 2780CP/Cl-24 human ovarian tumor cells by increased recruitment of the inhibitor MDM4. The current study demonstrates that, unlike cisplatin, platinum analogs oxaliplatin and DACH-diacetato-dichloro-Pt(IV) (DAP), strongly stabilize and activate p53V172F in resistant cells, as indicated by prolonged p53 half-life and transactivation of targets p21 (CDKN1A) and MDM2. This increase in MDM2 reduced MDM4 levels in cell lysates as well as the p53 immunocomplex and prevented reversion of p53 to the inactive p53-MDM2-MDM4 bound state. Phosphorylation of p53 at Ser15 was demonstrated by all three drugs in sensitive A2780 and corresponding resistant 2780CP/Cl-16 and 2780CP/Cl-24 cell lines. However, cisplatin induced Ser20 phosphorylation in A2780 cells only, but not in resistant cells; in contrast, both DAP and oxaliplatin induced this phosphorylation in all three cell lines. The inference that Ser20 phosphorylation is more important for p53 activation was confirmed by ectopic expression of a phosphomimetic (S20D) mutant p53 that displayed reduced binding, relative to wild-type p53, to both MDM2 and MDM4 in p53-knockout A2780 cells. In consonance, temporal studies demonstrated drug-induced Ser15 phosphorylation coincided with p53 stabilization, whereas Ser20 phosphorylation coincided with p53 transactivation. Implications Cisplatin fails to activate the pathway involved in phosphorylating mutant p53V172F at Ser20 in resistant cells, but this phosphorylation is restored by oxaliplatin and DAP that reactivates p53 function and circumvents cisplatin resistance. PMID:28031409

  4. Murine Gammaherpesvirus 68 LANA and SOX Homologs Counteract ATM-Driven p53 Activity during Lytic Viral Replication

    PubMed Central

    Sifford, Jeffrey M.; Stahl, James A.; Salinas, Eduardo

    2015-01-01

    ABSTRACT Tumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function. IMPORTANCE Gammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine

  5. Evaluation of bax, bcl-2, p21 and p53 genes expression variations on cerebellum of BALB/c mice before and after birth under mobile phone radiation exposure.

    PubMed

    Ghatei, Najmeh; Nabavi, Ariane Sadr; Toosi, Mohammad Hossein Bahreyni; Azimian, Hosein; Homayoun, Mansour; Targhi, Reza Ghasemnezhad; Haghir, Hossein

    2017-09-01

    The increasing rate of over using cell phones has been considerable in youths and pregnant women. We examined the effect of mobile phones radiation on genes expression variation on cerebellum of BALB/c mice before and after of the birth. In this study, a mobile phone jammer, which is an instrument to prevent receiving signals between cellular phones and base transceiver stations (two frequencies 900 and 1800 MHz) for exposure was used and twelve pregnant mice (BALB/c) divided into two groups (n=6), first group irradiated in pregnancy period (19th day), the second group did not irradiate in pregnancy period. After childbirth, offspring were classified into four groups (n=4): Group1: control, Group 2: B1 (Irradiated after birth), Group 3: B2 (Irradiated in pregnancy period and after birth), Group 4: B3 (Irradiated in pregnancy period). When maturity was completed (8-10 weeks old), mice were dissected and cerebellum was isolated. The expression level of bax , bcl-2, p21 and p53 genes examined by real-time reverse transcription polymerase chain reaction (Real-Time RT- PCR). The data showed that mobile phone radio waves were ineffective on the expression level of bcl-2 and p53 genes) P >0.05(. Also gene expression level of bax decreased and gene expression level of p21 increased comparing to the control group ( P <0.05). From the obtained data it could be concluded that the mobile phone radiations did not induce apoptosis in cells of the cerebellum and the injured cells can be repaired by cell cycle arrest.

  6. Flow cytometric characterization of phenotype, DNA indices and p53 gene expression in 55 cases of acute leukemia.

    PubMed

    Powari, Manish; Varma, Neelam; Varma, Subhash; Marwaha, Ram Kumar; Sandhu, Harpreet; Ganguly, Nirmal Kumar

    2002-06-01

    To characterize the phenotype of acute leukemia cases using flow cytometry, to detect mixed lineage cases and to use DNA index determination, including S-phase fraction (SPF) and p53 detection, to find if there was any correlation of SPF and p53 expression with outcome. Fifty-five cases of acute leukemia were enrolled in this study. A complete hemogram and routine bone marrow examination, including cytochemistry, was done. Mycloperoxidase-negative cases were evaluated on a flow cytometer using monoclonal antibodies. DNA indices were determined by flow cytometry in all cases, and p53 was detected immunohistochemically using the alkaline phosphatase/antialkaline phosphatase technique. Acute myeloblastic leukemia (AML) was diagnosed in 32 cases; acute lymphoblastic leukemia (ALL) was diagnosed in 18 (14 B lineage and 4 T line age). Four cases showed mixed lineage leukemia, and undifferentiated acute leukemia was diagnosed in one case. The mean/range of SPF for these groups were 3.76/0.33-6.91, 6.25/0.15-21.4, 2.89/0.35-10.64, 2.60/0.72-6.94 and 7.34, respectively. Aneuploidy was detected in two cases of B-lineage ALL and tetraploidy in a case of AML-M7, while all others were diploid p53. Was detected in 6 of 55 cases (10.90%). Follow-up was available for 24 patients. Five patients relapsed, and four had B-cell type ALL and were diploid and expressed no p53 gene. SPF% did not show any correlation with outcome. These data suggest that within acute leukemia subtypes, there is a wide variation in SPF. SPF does not seem to correlate with outcome. Immunophenotyping is essential to determine the lineage in myeloperoxidase-negative cases. It is perhaps the only way to diagnose mixed lineage leukemia and aberrant expression of markers presently. The p53 gene was detected less frequently. However, more studies are required from different centers with longer follow-up to evaluate prognostic significance.

  7. p53 Hypersensitivity Is the Predominant Mechanism of the Unique Responsiveness of Testicular Germ Cell Tumor (TGCT) Cells to Cisplatin

    PubMed Central

    Gutekunst, Matthias; Oren, Moshe; Weilbacher, Andrea; Dengler, Michael A.; Markwardt, Christiane; Thomale, Jürgen; Aulitzky, Walter E.; van der Kuip, Heiko

    2011-01-01

    Consistent with the excellent clinical results in testicular germ cell tumors (TGCT), most cell lines derived from this cancer show an exquisite sensitivity to Cisplatin. It is well accepted that the high susceptibility of TGCT cells to apoptosis plays a central role in this hypersensitive phenotype. The role of the tumor suppressor p53 in this response, however, remains controversial. Here we show that siRNA-mediated silencing of p53 is sufficient to completely abrogate hypersensitivity not only to Cisplatin but also to non-genotoxic inducers of p53 such as the Mdm2 antagonist Nutlin-3 and the proteasome inhibitor Bortezomib. The close relationship between p53 protein levels and induction of apoptosis is lost upon short-term differentiation, indicating that this predominant pro-apoptotic function of p53 is unique in pluripotent embryonal carcinoma (EC) cells. RNA interference experiments as well as microarray analysis demonstrated a central role of the pro-apoptotic p53 target gene NOXA in the p53-dependent apoptotic response of these cells. In conclusion, our data indicate that the hypersensitivity of TGCT cells is a result of their unique sensitivity to p53 activation. Furthermore, in the very specific cellular context of germ cell-derived pluripotent EC cells, p53 function appears to be limited to induction of apoptosis. PMID:21532991

  8. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism

    PubMed Central

    Pereira, Diane M.; Simões, André E. S.; Gomes, Sofia E.; Castro, Rui E.; Carvalho, Tânia; Rodrigues, Cecília M. P.; Borralho, Pedro M.

    2016-01-01

    The MEK5/ERK5 signaling pathway is emerging as an important contributor to colon cancer onset, progression and metastasis; however, its relevance to chemotherapy resistance remains unknown. Here, we evaluated the impact of the MEK5/ERK5 cascade in colon cancer cell sensitivity to 5-fluorouracil (5-FU). Increased ERK5 expression was correlated with poor overall survival in colon cancer patients. In colon cancer cells, 5-FU exposure impaired endogenous KRAS/MEK5/ERK5 expression and/or activation. In turn, MEK5 constitutive activation reduced 5-FU-induced cytotoxicity. Using genetic and pharmacological approaches, we showed that ERK5 inhibition increased caspase-3/7 activity and apoptosis following 5-FU exposure. Mechanistically, this was further associated with increased p53 transcriptional activation of p21 and PUMA. In addition, ERK5 inhibition increased the response of HCT116 p53+/+ cells to 5-FU, but failed to sensitize HCT116 p53−/− cells to the cytotoxic effects of this chemotherapeutic agent, suggesting a p53-dependent axis mediating 5-FU sensitization. Finally, ERK5 inhibition using XMD8-92 was shown to increase the antitumor effects of 5-FU in a murine subcutaneous xenograft model, enhancing apoptosis while markedly reducing tumor growth. Collectively, our results suggest that ERK5-targeted in hibition provides a promising therapeutic approach to overcome resistance to 5-FU-based chemotherapy and improve colon cancer treatment. PMID:27144434

  9. Hepatitis C virus Core overcomes all-trans retinoic acid-induced apoptosis in human hepatoma cells by inhibiting p14 expression via DNA methylation

    PubMed Central

    Kwak, Juri; Choi, Jung-Hye; Jang, Kyung Lib

    2017-01-01

    All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to induce p14 expression via promoter hypomethylation to activate the p14-MDM2-p53 pathway, which leads to activation of the p53-dependent apoptotic pathway and subsequent induction of apoptosis in human hepatoma cells. In the present study, we found that hepatitis C virus (HCV) Core derived from ectopic expression or HCV infection overcomes ATRA-induced apoptosis in p53-positive hepatoma cells. For this effect, HCV Core upregulated both protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b and thereby repressed p14 expression via promoter hypermethylation, resulting in inactivation of the pathway leading to p53 accumulation in the presence of ATRA. As a result, HCV Core prevented ATRA from activating several apoptosis-related molecules, including Bax, p53 upregulated modulator of apoptosis, caspase-9, caspase-3, and poly (ADP-ribose) polymerase. In addition, complementation of p14 in the Core-expressing cells by either ectopic expression or treatment with 5-Aza-2′dC almost completely abolished the potential of HCV Core to suppress ATRA-induced apoptosis. Based on these observations, we conclude that HCV Core executes its oncogenic potential by suppressing the p53-dependent apoptosis induced by ATRA in human hepatoma cells. PMID:29156743

  10. 6-mercaptopurine (6-MP) induces p53-mediated apoptosis of neural progenitor cells in the developing fetal rodent brain.

    PubMed

    Kanemitsu, H; Yamauchi, H; Komatsu, M; Yamamoto, S; Okazaki, S; Uchida, K; Nakayama, H

    2009-01-01

    6-mercaptopurine (6-MP), a DNA-damaging agent, induces apoptosis of neural progenitor cells, and causes malformation in the fetal brain. The aim of the present study is to clarify the molecular pathway of 6-MP-induced apoptosis of neural progenitor cells in the fetal telencephalon of rats and mice. p53 protein is activated by DNA damage and induces apoptosis through either the intrinsic pathway involving the mitochondria or the extrinsic pathway triggered by death receptors. In this study, the expression of puma and cleaved caspase-9 proteins, which are specific intrinsic pathway factors, increased in the rat telencephalon after 6-MP treatment. 6-MP-induced apoptosis of neural progenitor cells was completely absent in p53-deficient mice. On the other hand, the expression of Fas protein, an extrinsic pathway factor, did not change throughout the experimental period in the rat telencephalon treated with 6-MP. The number of apoptotic neural progenitor cells was similar among Fas-mutated lpr/lpr and wild-type mice, suggesting that the Fas pathway does not play a significant role in 6-MP-induced apoptosis of neural progenitor cells. These results may suggest that the p53-mediated intrinsic pathway is essential for 6-MP-induced apoptosis of neural progenitor cells in the developing telencephalon of rats and mice.

  11. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    PubMed

    Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A; Ostrosky-Wegman, Patricia

    2015-01-01

    Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  12. The p53–Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity

    PubMed Central

    Pant, Vinod; Xiong, Shunbin; Jackson, James G.; Post, Sean M.; Abbas, Hussein A.; Quintás-Cardama, Alfonso; Hamir, Amirali N.; Lozano, Guillermina

    2013-01-01

    The p53–Mdm2 feedback loop is perceived to be critical for regulating stress-induced p53 activity and levels. However, this has never been tested in vivo. Using a genetically engineered mouse with mutated p53 response elements in the Mdm2 P2 promoter, we show that feedback loop-deficient Mdm2P2/P2 mice are viable and aphenotypic and age normally. p53 degradation kinetics after DNA damage in radiosensitive tissues remains similar to wild-type controls. Nonetheless, DNA damage response is elevated in Mdm2P2/P2 mice. Enhanced p53-dependent apoptosis sensitizes hematopoietic stem cells (HSCs), causing drastic myeloablation and lethality. These results suggest that while basal Mdm2 levels are sufficient to regulate p53 in most tissues under homeostatic conditions, the p53–Mdm2 feedback loop is critical for regulating p53 activity and sustaining HSC function after DNA damage. Therefore, transient disruption of p53–Mdm2 interaction could be explored as a potential adjuvant/therapeutic strategy for targeting stem cells in hematological malignancies. PMID:23973961

  13. MicroRNA501-5p induces p53 proteasome degradation through the activation of the mTOR/MDM2 pathway in ADPKD cells.

    PubMed

    de Stephanis, Lucia; Mangolini, Alessandra; Servello, Miriam; Harris, Peter C; Dell'Atti, Lucio; Pinton, Paolo; Aguiari, Gianluca

    2018-09-01

    Cell proliferation and apoptosis are typical hallmarks of autosomal dominant polycystic kidney disease (ADPKD) and cause the development of kidney cysts that lead to end-stage renal disease (ESRD). Many factors, impaired by polycystin complex loss of function, may promote these biological processes, including cAMP, mTOR, and EGFR signaling pathways. In addition, microRNAs (miRs) may also regulate the ADPKD related signaling network and their dysregulation contributes to disease progression. However, the role of miRs in ADPKD pathogenesis has not been fully understood, but also the function of p53 is quite obscure, especially its regulatory contribution on cell proliferation and apoptosis. Here, we describe for the first time that miR501-5p, upregulated in ADPKD cells and tissues, induces the activation of mTOR kinase by PTEN and TSC1 gene repression. The increased activity of mTOR kinase enhances the expression of E3 ubiquitin ligase MDM2 that in turn promotes p53 ubiquitination, leading to its degradation by proteasome machinery in a network involving p70S6K. Moreover, the overexpression of miR501-5p stimulates cell proliferation in kidney cells by the inhibition of p53 function in a mechanism driven by mTOR signaling. In fact, the downregulation of this miR as well as the pharmacological treatment with proteasome and mTOR inhibitors in ADPKD cells reduces cell growth by the activation of apoptosis. Consequently, the stimulation of cell death in ADPKD cells may occur through the inhibition of mTOR/MDM2 signaling and the restoring of p53 function. The data presented here confirm that the impaired mTOR signaling plays an important role in ADPKD. © 2018 Wiley Periodicals, Inc.

  14. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Xin; Xu Ke; Xu Yufang

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report heremore » that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P{sub 2} promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research Highlights: > B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. > B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. > B1 induced significant increase of p53 binding to Bcl-2 P{sub 2} promoter TATA box.« less

  15. Phosphorylation and gene expression of p53 are not affected in human cells exposed to 2.1425 GHz band CW or W-CDMA modulated radiation allocated to mobile radio base stations.

    PubMed

    Hirose, H; Sakuma, N; Kaji, N; Suhara, T; Sekijima, M; Nojima, T; Miyakoshi, J

    2006-09-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields induce apoptosis or other cellular stress response that activate p53 or the p53-signaling pathway. First, we evaluated the response of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and wideband code division multiple access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced apoptosis or any signs of stress. Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg, and CW radiation at 80 mW/kg for 24 or 48 h. Human IMR-90 fibroblasts from fetal lungs were exposed to both W-CDMA and CW radiation at a SAR of 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the percentage of apoptotic cells were observed between the test groups exposed to RF signals and the sham-exposed negative controls, as evaluated by the Annexin V affinity assay. No significant differences in expression levels of phosphorylated p53 at serine 15 or total p53 were observed between the test groups and the negative controls by the bead-based multiplex assay. Moreover, microarray hybridization and real-time RT-PCR analysis showed no noticeable differences in gene expression of the subsequent downstream targets of p53 signaling involved in apoptosis between the test groups and the negative controls. Our results confirm that exposure to low-level RF signals up to 800 mW/kg does not induce p53-dependent apoptosis, DNA damage, or other stress response in human

  16. The expanding regulatory universe of p53 in gastrointestinal cancer.

    PubMed

    Fesler, Andrew; Zhang, Ning; Ju, Jingfang

    2016-01-01

    Tumor suppresser gene TP53 is one of the most frequently deleted or mutated genes in gastrointestinal cancers. As a transcription factor, p53 regulates a number of important protein coding genes to control cell cycle, cell death, DNA damage/repair, stemness, differentiation and other key cellular functions. In addition, p53 is also able to activate the expression of a number of small non-coding microRNAs (miRNAs) through direct binding to the promoter region of these miRNAs.  Many miRNAs have been identified to be potential tumor suppressors by regulating key effecter target mRNAs. Our understanding of the regulatory network of p53 has recently expanded to include long non-coding RNAs (lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer biology.  With our increased understanding of the important functions of these non-coding RNAs and their relationship with p53, we are gaining exciting new insights into the biology and function of cells in response to various growth environment changes. In this review we summarize the current understanding of the ever expanding involvement of non-coding RNAs in the p53 regulatory network and its implications for our understanding of gastrointestinal cancer.

  17. An analysis of microvessel density, androgen receptor, p53 and HER-2/neu expression and Gleason score in prostate cancer . preliminary results and therapeutic implications.

    PubMed

    Mydlo, J H; Kral, J G; Volpe, M; Axotis, C; Macchia, R J; Pertschuk, L P

    1998-01-01

    To investigate relationships between microvessel density (MVD), androgen receptors (AR), mutant p53 and HER-2/neu expression and Gleason score (GS) to further understand the tumor biology of prostate cancer (CAP). Slides of CAP from patients who underwent radical prostatectomy or channel transurethral resection of the prostate (TURP) were tested for androgen receptors by immunocytochemical assay and MVD was analyzed by staining with antibodies to the endothelial cell membrane molecule PECAM-1/CD-31. The p53 monoclonal antibody D07 and HER-2 9G6 mouse monoclonal antibody were used to assess p53 and HER-2/neu expression, respectively. The results were correlated with GS and clinical stage by multivariate analysis. We found a fourfold greater expression of MVD in prostate cancer specimens compared to neighboring normal prostate tissue. We observed a greater concentration of MVD in the higher Gleason scores (r = 0.40, p = 0. 06), and a correlation of Gleason score with mutant p53 expression (r = 0.57, p <0.05). We did not observe any associations between AR or HER-2/neu to Gleason score. More than half of the patients with specimens with 50% or greater expression of mutant p53 were in stage D2 (T4NxM1b) at the time of biopsy. We observed a correlation between mutant p53 and GS, and a greater concentration of MVD in the higher GS. Since the neovascularity of prostate tumors can be attenuated by radiation and hormones, while mutant p53 may confer resistance to such treatment, it appears that p53 expression may also play an important role in addition to angiogenesis in the virulence of prostate cancer. These data may aid in allocating patients to different treatment modalities.

  18. p53 Regulates insulin-like growth factor-I receptor gene expression in uterine serous carcinoma and predicts responsiveness to an insulin-like growth factor-I receptor-directed targeted therapy.

    PubMed

    Attias-Geva, Zohar; Bentov, Itay; Kidron, Dvora; Amichay, Keren; Sarfstein, Rive; Fishman, Ami; Bruchim, Ilan; Werner, Haim

    2012-07-01

    The role of the insulin-like growth factors (IGF) in endometrial cancer has been well established. The IGF-I receptor (IGF-IR), which mediates the biological actions of IGF-I, is usually overexpressed in endometrial tumours. Uterine serous carcinoma (USC) constitutes a defined histological category among endometrial cancers. Mutation of the p53 gene appears early in the course of the disease and is considered a key event in the initiation of USC. The aim of the present study was to evaluate the potential interactions between p53 and the IGF-IR in USC. In addition, we investigated the role of p53 as a biomarker in IGF-IR targeted therapies. Immunohistochemical analysis in a collection of 35 USC specimens revealed that IGF-IR is highly expressed in primary and metastatic USC. Likewise, p53 was expressed in 85.7% of primary tumours and 100% of metastases. A significant negative correlation between p53 expression and survival was noticed. In addition, using USC-derived cell lines we provide evidence that p53 regulates IGF-IR gene expression via a mechanism that involves repression of the IGF-IR promoter. We show that the mechanism of action of p53 involves interaction with zinc finger protein Sp1, a potent transactivator of the IGF-IR gene. Finally, we demonstrate that USC tumours overexpressing p53 are more likely to benefit from anti-IGF-IR therapies. In summary, we provide evidence that p53 regulates IGF-IR gene expression in USC cells via a mechanism that involves repression of the IGF-IR promoter. The interplay between the p53 and IGF-I signalling pathways is of major basic and translational relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Immunohistochemistry Study of P53 and C-erbB-2 Expression in Trophoblastic Tissue and Their Predictive Values in Diagnosing Malignant Progression of Simple Molar Pregnancy

    PubMed Central

    Hasanzadeh, Malihe; Sharifi, Norrie; Farazestanian, Marjaneh; Nazemian, Seyed Saman; Madani Sani, Faezeh

    2016-01-01

    Background Finding a tumor marker to predict the aggressive behavior of molar pregnancy in early stages has yet been a topic for studies. Objectives In this survey we planned to study patients with molar pregnancy to 1) assess the p53 and c-erbB-2 expression in trophoblastic tissue, 2) to study the relationship between their expression intensity and progression of a molar pregnancy to gestational trophoblastic neoplasia, and 3) to determine a cut off value for the amount of p53 and c-erbB-2 expression which might correlate with aggressive behavior of molar pregnancy. Patients and Methods In a prospective cross sectional study by using a high accuracy technique EnVision Tm system for immunohistochemistry staining of molar pregnancy samples, we evaluated p53 and c-erbB-2 expression in cytotrophoblast and syncytiotrophoblast and the correlation of their expression with progression of molar pregnancy to gestational trophoblastic neoplasia (GTN). Normal prostatic tissue and Breast cancer tissue were used as positive controls. Results We studied 28 patients with simple molar pregnancy (SMP) and 30 with GTN. Cytotrophobalst had significantly higher expression of p53 and c-erbB-2 and syncytiotrophoblast had greater expression of p53 in GTN group as compared to SMP group. The cut off values for percentage of p53 positive immunostained cytotrophoblast and syncytiotrophoblast were 5.5% and 2.5%. In c-erbB-2 positive membranous stained cytotrophoblast the cut off was 12.5%. Conclusions Our data suggests that over expression of p53 and c-erbB-2 is associated with malignant progression of molar pregnancy. We encountered that high expression of p53 and c-erbB-2 in trophoblastic cells could predict gestational trophoblastic neoplasia during the early stages. PMID:27703642

  20. Bim directly antagonizes Bcl-xl in doxorubicin-induced prostate cancer cell apoptosis independently of p53.

    PubMed

    Yang, Min-Chi; Lin, Ru-Wei; Huang, Shih-Bo; Huang, Shin-Yuan; Chen, Wen-Jie; Wang, Shiaw; Hong, Yi-Ren; Wang, Chihuei

    2016-01-01

    Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.