Science.gov

Sample records for cell flow systems

  1. Ellipsoidal cell flow system

    DOEpatents

    Salzman, Gary C.; Mullaney, Paul F.

    1976-01-01

    The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.

  2. Electrochemical cell for rebalancing REDOX flow system

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1979-01-01

    An electrically rechargeable REDOX cell or battery system including one of more rebalancing cells is described. Each rebalancing cell is divided into two chambers by an ion permeable membrane. The first chamber is fed with gaseous hydrogen and a cathode fluid which is circulated through the cathode chamber of the REDOX cell is also passed through the second chamber of the rebalancing cell. Electrochemical reactions take place on the surface of insert electrodes in the first and second chambers to rebalance the electrochemical capacity of the anode and cathode fluids of the REDOX system.

  3. Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)

    SciTech Connect

    2010-09-09

    GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

  4. Porcine skin flow-through diffusion cell system.

    PubMed

    Baynes, R E

    2001-11-01

    Porcine Skin Flow-Through Diffusion Cell System (Ronald E. Baynes, North Carolina State University, Raleigh, North Carolina). Porcine skin can be used in a diffusion cell apparatus to study the rate and extent of absorption of topically applied chemicals through the skin. Although the skin of a number of animals can be used in this system, that of the pig most closely approximates human skin anatomically and physiologically.

  5. Parallel-plate fluid flow systems for bone cell stimulation.

    PubMed

    Huesa, Carmen; Helfrich, Miep H; Aspden, Richard M

    2010-04-19

    Bone responds to changes in its mechanical environment, but the mechanisms by which it does so are poorly understood. One hypothesis of mechanosensing in bone states that osteocytes can sense the flow of fluid through the canalicular system. To study this in vitro a number of fluid flow devices have been designed in which cells are placed between parallel plates in sealed chambers. Fluid flows through the chambers at controlled rates, most commonly driven by a peristaltic pump. In addition to fluid flow, high pressures have been observed in these chambers, but the effect of this on the cellular responses has generally been ignored or considered irrelevant, something challenged by recent cellular experiments using pressure only. We have, therefore, devised a system in which we can considerably reduce the pressure while maintaining the flow rate to enable study of their effects individually and in combination. As reducing pressure also reduces the risk of leaks in flow chambers, our system is suitable for real-time microscopical experiments. We present details of the new systems and of experiments with osteoblasts to illustrate the effects of fluid flow with and without additional pressure on the translocation of beta-catenin to the nucleus.

  6. NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Araghi, Koorosh R.

    2011-01-01

    NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.

  7. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  8. Method and apparatus for rebalancing a redox flow cell system

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F. (Inventor)

    1986-01-01

    A rebalance cell is provided for a REDOX electrochemical system of the type having anode and cathode fluids which are aqueous HCl solutions with two metal species in each. The rebalance cell has a cathode compartment and a chlorine compartment separated by an ion permeable membrane. By applying an electrical potential to the rebalance cell while circulating cathode fluid through the cathode compartment and while circulating an identical fluid through the chlorine compartment, any significant imbalance of the REDOX system is prevented.

  9. Method and apparatus for rebalancing a REDOX flow cell system

    NASA Technical Reports Server (NTRS)

    Gahn, R. F. (Inventor)

    1985-01-01

    A rebalance cell is provided for a REDOX electrochemical system of the type with anode and cathode fluids which are aqueous HC1 solutions with two metal species in each. The rebalance cell has a cathode compartment and a chlorine compartment separated by an ion permeable membrane. By applying an electrical potential to the rebalance cell while circulating cathode fluid through the cathode compartment and while circulating an identical fluid through the chlorine compartment, any significant imbalance of the REDOX system is prevented.

  10. Flow cells as quasi-ideal systems for biofouling simulation of industrial piping systems.

    PubMed

    Teodósio, Joana S; Silva, Filipe C; Moreira, Joana M R; Simões, Manuel; Melo, Luís F; Alves, Manuel A; Mergulhão, Filipe J

    2013-09-01

    Semi-circular flow cells are often used to simulate the formation of biofilms in industrial pipes with circular section because their planar surface allows easy sampling using coupons. Computational fluid dynamics was used to assess whether the flow in pipe systems can be emulated by the semi-circular flow cells that are used to study biofilm formation. The results show that this is the case for Reynolds numbers (Re) ranging from 10 to 1000 and 3500 to 10,000. A correspondence involving the friction factor was obtained in order to correlate any semi-circular flow cell to any circular pipe for Re between 10 and 100,000. The semi-circular flow cell was then used to assess experimentally the effect of Reynolds number (Re = 4350 and 6720) on planktonic cell concentration and biofilm formation using Escherichia coli JM109 (DE3). Lower planktonic cell concentrations and thicker biofilms (>1.2 mm) were obtained with the lower Re.

  11. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  12. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne; Burke, Kenneth; Jakupca, Ian

    2012-01-01

    This presentation describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover at the NASA Glenn Research Center. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the SCARAB rover s hotel loads. The power system, including the non-flow-through fuel cell technology, successfully demonstrated its goal as a range extender by powering hotel loads on the SCARAB rover, making this demonstration the first to use the non-flow-through fuel cell technology on a mobile platform.

  13. Recent advances in redox flow cell storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    Several features which were conceived and incorporated into complete redox systems that greatly enhanced its ability to be kept in proper charge balance, to be capable of internal voltage regulation, and in general be treated as a true multicell electrochemical system rather than an assembly of single cells that were wired together, were discussed. The technology status as it relates to the two application areas of solar photovoltaic/wind and distributed energy storage for electric utility applications was addressed. The cost and life advantages of redox systems were also covered.

  14. A cell counting/sorting system incorporated with a microfabricated flow cytometer chip

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Yi; Hsiung, Suz-Kai; Hung, Yung-Ching; Chang, Chen-Min; Liao, Teh-Lu; Lee, Gwo-Bin

    2006-07-01

    Flow cytometry is a popular technique for counting and sorting individual cells. This study presents and demonstrates a new cell counting/sorting system integrated with several essential components including a micromachined flow cytometer chip device, an optical detection system and a data analysis and control system to achieve the functions of cell sample injection, optical signal detection and cell collection. By using MEMS technology, we have integrated several microfluidic components such as micro pneumatic pumps/valves onto a polymer-based chip device. Three pneumatic micropumps are used to provide the hydrodynamic driving force for both sample and sheath flows such that hydrodynamic flow focusing can be achieved, and a micro flow switch device comprising three pneumatic microvalves located downstream of the micro sample flow channel is used for cell collection. Cell samples of human lung cancer cells labelled with commercially available fluorescent dyes have been detected and collected successfully utilizing the developed device. The real-time image of dye-labelled cell samples being excited and detected can be monitored and observed through the LCD panel by a custom designed CCD/APD holder and moving stage. Finally, micro flow switch devices were used to successfully sort the cells into the desired outlet channel, and the counting results of the specific cell samples were monitored through the counting panel. The current study focuses on the setup of the overall system. The proposed flow cytometer system has several advantages such as portability, low cost and easy operation process. The size of the system is 37 cm × 16 cm × 18 cm and the weight is 3.5 kg. The error rate of counting and sorting was 1.5% and 2%, respectively. The sorting frequency of the microvalve device is calculated to be 120 cells min-1. The developed microfluidic chip device could be a promising tool for cell-based application fields such as profiling, counting and sorting.

  15. MEMS-based flow cytometry: microfluidics-based cell identification system by fluorescent imaging.

    PubMed

    Wu, W K; Liang, C K; Huang, J Z

    2004-01-01

    This study utilizes MEMS technology to realize a novel low-cost microfluidics-based biochip system for flow-type cell handling. Powered by vacuum pump, the microfluidic driving system enables cells to move in order one by one in the biochip by an effect of sheath flow prefocus. Then, cells are guided to a fluorescent inspection region where two detection tasks such as cell image identification and cell counting are conducted. Currently, the glass-based biochip has been manufactured and all the related devices have been well set up in our laboratory. With this proposed prototype system, typical results about cell separation of yeast cell and PC-3 cell are available and their separated images are also presented, respectively. PMID:17270801

  16. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  17. RhizoFlowCell system reveals early effects of micropollutants on aquatic plant rhizosphere.

    PubMed

    Mynampati, Kalyan Chakravarthy; Lee, Yong Jian; Wijdeveld, Arjan; Reuben, Sheela; Samavedham, Lakshminarayanan; Kjelleberg, Staffan; Swarup, Sanjay

    2015-12-01

    In aquatic systems, one of the non-destructive ways to quantify toxicity of contaminants to plants is to monitor changes in root exudation patterns. In aquatic conditions, monitoring and quantifying such changes are currently challenging because of dilution of root exudates in water phase and lack of suitable instrumentation to measure them. Exposure to pollutants would not only change the plant exudation, but also affect the microbial communities that surround the root zone, thereby changing the metabolic profiles of the rhizosphere. This study aims at developing a device, the RhizoFlowCell, which can quantify metabolic response of plants, as well as changes in the microbial communities, to give an estimate of the stress to which the rhizosphere is exposed. The usefulness of RhizoFlowCell is demonstrated using naphthalene as a test pollutant. Results show that RhizoFlowCell system is useful in quantifying the dynamic metabolic response of aquatic rhizosphere to determine ecosystem health.

  18. RhizoFlowCell system reveals early effects of micropollutants on aquatic plant rhizosphere.

    PubMed

    Mynampati, Kalyan Chakravarthy; Lee, Yong Jian; Wijdeveld, Arjan; Reuben, Sheela; Samavedham, Lakshminarayanan; Kjelleberg, Staffan; Swarup, Sanjay

    2015-12-01

    In aquatic systems, one of the non-destructive ways to quantify toxicity of contaminants to plants is to monitor changes in root exudation patterns. In aquatic conditions, monitoring and quantifying such changes are currently challenging because of dilution of root exudates in water phase and lack of suitable instrumentation to measure them. Exposure to pollutants would not only change the plant exudation, but also affect the microbial communities that surround the root zone, thereby changing the metabolic profiles of the rhizosphere. This study aims at developing a device, the RhizoFlowCell, which can quantify metabolic response of plants, as well as changes in the microbial communities, to give an estimate of the stress to which the rhizosphere is exposed. The usefulness of RhizoFlowCell is demonstrated using naphthalene as a test pollutant. Results show that RhizoFlowCell system is useful in quantifying the dynamic metabolic response of aquatic rhizosphere to determine ecosystem health. PMID:26386206

  19. Setup and Validation of Flow Cell Systems for Biofouling Simulation in Industrial Settings

    PubMed Central

    Teodósio, Joana S.; Simões, Manuel; Alves, Manuel A.; Melo, Luís F.; Mergulhão, Filipe J.

    2012-01-01

    A biofouling simulation system consisting of a flow cell and a recirculation tank was used. The fluid circulates at a flow rate of 350 L· h−1 in a semicircular flow cell with hydraulic diameter of 18.3 mm, corresponding to an average velocity of 0.275 m· s−1. Using computational fluid dynamics for flow simulation, an average wall shear stress of 0.4 Pa was predicted. The validity of the numerical simulations was visually confirmed by inorganic deposit formation (using kaolin particles) and also by direct observation of pathlines of tracer PVC particles using streak photography. Furthermore, the validity of chemostat assumptions was verified by residence time analysis. The system was used to assess the influence of the dilution rate on biofilm formation by Escherichia coli JM109(DE3). Two dilution rates of 0.013 and 0.0043 h−1 were tested and the results show that the planktonic cell concentration is increased at the lower dilution rate and that no significant changes were detected on the amount of biofilm formed in both conditions. PMID:22666110

  20. Circulating tumor cell detection using a parallel flow micro-aperture chip system.

    PubMed

    Chang, Chun-Li; Huang, Wanfeng; Jalal, Shadia I; Chan, Bin-Da; Mahmood, Aamer; Shahda, Safi; O'Neil, Bert H; Matei, Daniela E; Savran, Cagri A

    2015-04-01

    We report on-chip isolation and detection of circulating tumor cells (CTCs) from blood samples using a system that integrates a microchip with immunomagnetics, high-throughput fluidics and size-based filtration. CTCs in a sample are targeted via their surface antigens using magnetic beads functionalized with antibodies. The mixture is then run through a fluidic chamber that contains a micro-fabricated chip with arrays of 8 μm diameter apertures. The fluid runs parallel to the microchip while a magnetic field is generated underneath to draw the beads and cells bound to them toward the chip surface for detection of CTCs that are larger than the apertures and clear out free beads and other smaller particles bound to them. The parallel flow configuration allows high volumetric flow rates, which reduces nonspecific binding to the chip surface and enables multiple circulations of the sample fluid through the system in a short period of time. In this study we first present models of the magnetic and fluidic forces in the system using a finite element method. We then verify the simulation results experimentally to determine an optimal flow rate. Next, we characterize the system by detecting cancer cell lines spiked into healthy human blood and show that on average 89% of the spiked MCF-7 breast cancer cells were detected. We finally demonstrate detection of CTCs in 49 out of 50 blood samples obtained from non-small cell lung cancer (NSCLC) patients and pancreatic cancer (PANC) patients. The number of CTCs detected ranges from 2 to 122 per 8 mL s of blood. We also demonstrate a statistically significant difference between the CTC counts of NSCLC patients who have received therapy and those who have not. PMID:25687986

  1. Circulating tumor cell detection using a parallel flow micro-aperture chip system.

    PubMed

    Chang, Chun-Li; Huang, Wanfeng; Jalal, Shadia I; Chan, Bin-Da; Mahmood, Aamer; Shahda, Safi; O'Neil, Bert H; Matei, Daniela E; Savran, Cagri A

    2015-04-01

    We report on-chip isolation and detection of circulating tumor cells (CTCs) from blood samples using a system that integrates a microchip with immunomagnetics, high-throughput fluidics and size-based filtration. CTCs in a sample are targeted via their surface antigens using magnetic beads functionalized with antibodies. The mixture is then run through a fluidic chamber that contains a micro-fabricated chip with arrays of 8 μm diameter apertures. The fluid runs parallel to the microchip while a magnetic field is generated underneath to draw the beads and cells bound to them toward the chip surface for detection of CTCs that are larger than the apertures and clear out free beads and other smaller particles bound to them. The parallel flow configuration allows high volumetric flow rates, which reduces nonspecific binding to the chip surface and enables multiple circulations of the sample fluid through the system in a short period of time. In this study we first present models of the magnetic and fluidic forces in the system using a finite element method. We then verify the simulation results experimentally to determine an optimal flow rate. Next, we characterize the system by detecting cancer cell lines spiked into healthy human blood and show that on average 89% of the spiked MCF-7 breast cancer cells were detected. We finally demonstrate detection of CTCs in 49 out of 50 blood samples obtained from non-small cell lung cancer (NSCLC) patients and pancreatic cancer (PANC) patients. The number of CTCs detected ranges from 2 to 122 per 8 mL s of blood. We also demonstrate a statistically significant difference between the CTC counts of NSCLC patients who have received therapy and those who have not.

  2. Multicolor detection of rare tumor cells in blood using a novel flow cytometry-based system.

    PubMed

    Watanabe, Masaru; Uehara, Yuri; Yamashita, Namiko; Fujimura, Yuu; Nishio, Kaori; Sawada, Takeshi; Takeda, Kazuo; Koizumi, Fumiaki; Koh, Yasuhiro

    2014-03-01

    The presence and number of circulating tumor cells (CTCs) in the blood of patients with solid tumors are predictive of their clinical outcomes. To date, the CellSearch system is the only US Food and Drug Administration-approved CTC enumeration system for advanced breast, prostate, and colon cancers. However, sensitivity issues due to epithelial cellular adhesion molecule (EpCAM)-based enrichment and limited capability for subsequent molecular analysis must be addressed before CTCs can be used as predictive markers in the clinical setting. We have developed a multicolor CTC detection system using cross-contamination-free flow cytometry, which permits the enumeration and characterization of CTCs for multiple molecular analyses. Tumor cell lines with different expression levels of EpCAM were spiked into peripheral blood obtained from healthy donors. Spike-in samples were negatively enriched using anti-CD45-coated magnetic beads to remove white blood cells, and this was followed by fixation and labeling with CD45-Alexa Fluor 700, EpCAM-phycoerythrin, cytokeratin (CK)-fluorescein isothiocyanate antibodies, and/or 7-aminoactinomycin D for nuclei staining. Excellent detection (slope = 0.760-0.888) and a linear performance (R(2) = 0.994-0.998) were noted between the observed and expected numbers of tumor cells, independent of EpCAM expression. The detection rate was markedly higher than that obtained using the CellSearch system, suggesting the superior sensitivity of our system in detecting EpCAM- tumor cells. Additionally, the incorporation of an epithelial-mesenchymal transition (EMT) marker allowed us to detect EpCAM-/CK- cells and EMT-induced tumor cells. Taken together, our multicolor CTC detection system may be highly efficient in detecting previously unrecognized populations of CTCs.

  3. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    PubMed

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system.

  4. Microalgal cell disruption in a high-power ultrasonic flow system.

    PubMed

    Wang, Meng; Yuan, Wenqiao

    2015-10-01

    A 2-kW continuous ultrasonic flow system (UFS) was found effective in the disruption of two microalgal strains: Scenedesmus dimorphus and Nannochloropsis oculata. Compared to the control, cell debris concentration of UFS treatments increased up to 202% for S. dimorphus and 112% for N. oculata. Similarly, Nile red stained lipid fluorescence density (NRSLD) increased up to 59.5% and 56.3% for S. dimorphus and N. oculata, respectively. It was also found that increasing ultrasound intensity improved cell disruption efficiency indicated by up to 54% increase in NRSLFD of the two strains. Increasing sonication-processing time to 3-min resulted in 33.0% increase for S. dimorphus and 45.7% increase for N. oculata in NRSLFD compared to the control. Cell recirculation was found beneficial to cell disruption, however, higher initial cell concentration significantly reduced cell disruption efficiency, indicated by 98.2% decrease in NRSLFD per cell when initial cell concentration increased from 4.25 × 10(6) to 1.7 × 10(7)cells ml(-1). PMID:26133474

  5. Enzyme-based flow injection analysis system for glutamine and glutamate in mammalian cell culture media.

    PubMed

    Mayer, C; Frauer, A; Schalkhammer, T; Pittner, F

    1999-03-01

    We present the setup of a flow injection analysis system designed for on-line monitoring of glutamate and glutamine. These amino acids represent a major energy source in mammalian cell culture. A cycling assay consisting of glutamate dehydrogenase and aspartate aminotransferase produces NADH proportional to the glutamate concentration in the sample. NADH is then measured spectrophotometrically. Glutamine is determined by conversion to glutamate which is fed into the cycling assay. The conversion of glutamine to glutamate is catalyzed by asparaginase. Asparaginase was used in place of glutaminase due to its relatively high reactivity with glutamine and a pH optimum similar to that of glutamate dehydrogenase. The enzymes were immobilized covalently to activated controlled pore glass beads and integrated into the flow injection analysis system. The application of the immobilized enzymes and the technical setup are presented in this paper.

  6. A fluid-structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems.

    PubMed

    Vaughan, T J; Haugh, M G; McNamara, L M

    2013-04-01

    Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid-structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell-substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo.

  7. A fluid–structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems

    PubMed Central

    Vaughan, T. J.; Haugh, M. G.; McNamara, L. M.

    2013-01-01

    Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid–structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell–substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo. PMID:23365189

  8. Coupled flow-structure-biochemistry simulations of dynamic systems of blood cells using an adaptive surface tracking method

    NASA Astrophysics Data System (ADS)

    Hoskins, M. H.; Kunz, R. F.; Bistline, J. E.; Dong, C.

    2009-07-01

    A method for the computation of low-Reynolds number dynamic blood cell systems is presented. The specific system of interest here is interaction between cancer cells and white blood cells in an experimental flow system. Fluid dynamics, structural mechanics, six-degree-of-freedom motion control, and surface biochemistry analysis components are coupled in the context of adaptive octree-based grid generation. Analytical and numerical verification of the quasi-steady assumption for the fluid mechanics is presented. The capabilities of the technique are demonstrated by presenting several three-dimensional cell system simulations, including the collision/interaction between a cancer cell and an endothelium adherent polymorphonuclear leukocyte (PMN) cell in a shear flow.

  9. Coupled Flow-Structure-Biochemistry Simulations of Dynamic Systems of Blood Cells Using an Adaptive Surface Tracking Method

    PubMed Central

    Hoskins, M.H.; Kunz, R.F.; Bistline, J.E.; Dong, C.

    2009-01-01

    A method for the computation of low Reynolds number dynamic blood cell systems is presented. The specific system of interest here is interaction between cancer cells and white blood cells in an experimental flow system. Fluid dynamics, structural mechanics, six-degree-of freedom motion control and surface biochemistry analysis components are coupled in the context of adaptive octree-based grid generation. Analytical and numerical verification of the quasi-steady assumption for the fluid mechanics is presented. The capabilities of the technique are demonstrated by presenting several three-dimensional cell system simulations, including the collision/interaction between a cancer cell and an endothelium adherent polymorphonuclear leukocyte (PMN) cell in a shear flow. PMID:20160939

  10. Simplified method for DNA and protein staining of human hematopoietic cell samples. [Cell flow systems

    SciTech Connect

    Crissman, H.A.; Egmond, J.V.; Holdrinet, R.S.; Pennings, A.; Haanen, C.

    1981-01-01

    A rapid reproducible method yielding high resolution analysis of DNA and protein in human hematopoietic cell samples has been developed by modification of the propidium iodide and fluorescein isothiocyanate procedure. Cell staining involves sequential addition of each reagent (RNase, fluorescein isothiocyanate and propidium iodide) to ethanol-fixed cells and requires no centrifugation steps. Stained cells are analyzed in the reagent solutions. Analysis of bone marrow samples from multiple myeloma patients showed mixed normal and aneuploid populations with a major portion of the aneuploid cells having a significantly higher protein content. This approach permitted differential cell cycle analysis of normal and the aneuploid populations.

  11. A Comparison of Flow-Through Versus Non-Flow-Through Proton Exchange Membrane Fuel Cell Systems for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2010-01-01

    As part of the Exploration Technology Development Program (ETDP) under the auspices of the Exploration Systems Mission Directorate (ESMD), NASA is developing both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems within the fuel cell portion of the Energy Storage Project. This effort is being led by the NASA Glenn Research Center (GRC) in partnership with the NASA Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL), NASA Kennedy Space Center (KSC), and industrial partners. The development goals are to improve fuel cell and electrolysis stack electrical performance, reduce system mass, volume, and parasitic power requirements, and increase system life and reliability. A major focus of this effort has been the parallel development of both flow-through and non-flow-through proton exchange membrane (PEM) primary fuel cell power systems. The plan has been, at the appropriate time, to select a single primary fuel cell technology for eventual flight hardware development. Ideally, that appropriate time would occur after both technologies have achieved a technology readiness level (TRL) of six, which represents an engineering model fidelity PEM fuel cell system being successfully tested in a relevant environment. Budget constraints in fiscal year 2009 and beyond have prevented NASA from continuing to pursue the parallel development of both primary fuel cell options. Because very limited data exists for either system, a toplevel, qualitative assessment based on engineering judgement was performed expeditiously to provide guidance for a selection. At that time, the non-flow-through technology was selected for continued development because of potentially major advantages in terms of weight, volume, parasitic power, reliability, and life. This author believes that the advantages are significant enough, and the potential benefits great enough, to offset the higher state of technology readiness of flow-through technology. This paper

  12. A whole-cell electrochemical biosensing system based on bacterial inward electron flow for fumarate quantification.

    PubMed

    Si, Rong-Wei; Zhai, Dan-Dan; Liao, Zhi-Hong; Gao, Lu; Yong, Yang-Chun

    2015-06-15

    Fumarate is of great importance as it is an oncometabolite as well as food spoilage indicator. However, cost-effective and fast quantification method for fumarate is lacking although it is urgently required. This work developed an electrochemical whole-cell biosensing system for fumarate quantification. A sensitive inwards electric output (electron flow from electrode into bacteria) responded to fumarate in Shewanella oneidensis MR-1 was characterized, and an electrochemical fumarate biosensing system was developed without genetic engineering. The biosensing system delivered symmetric current peak immediately upon fumarate addition, where the peak area increased in proportion to the increasing fumarate concentration with a wide range of 2 μM-10 mM (R(2)=0.9997). The limit of detection (LOD) and the limit of quantification (LOQ) are 0.83 μM and 1.2 μM, respectively. This biosensing system displayed remarkable specificity to fumarate against other possible interferences. It was also successfully applied to samples of apple juice and kidney tissue. This study added new dimension to electrochemical biosensor design, and provide a simple, cost-effective, fast and robust tool for fumarate quantification.

  13. Miniaturized Electrochemical Flow Cells

    PubMed Central

    Sahlin, Eskil; Halle, Alexandra ter; Schaefer, Kathleen; Horn, Jeffery; Then, Matthew; Weber, Stephen G.

    2006-01-01

    Several novel types of miniaturized electrochemical flow cells are described. The flow cells are fabricated in fluorinated ethylene propylene using a novel technique where channels with inner diameters down to 13 μm are integrated with electrodes. The channel is formed by shrinking and simultaneous melting of a heat shrink/melt tubing around a channel template (a tungsten wire) and electrodes followed by removal of the channel template. The technique allows incorporation of different electrode materials of different sizes. The electrode configuration consists of one or two working electrodes inside the channel and a counter electrode located in the channel outlet reservoir. Electrode configurations with different channel and working electrode sizes, different electrode materials including carbon fibers, glassy carbon rods, poly(tetrafluoroethylene)/carbon composite material, and platinum wires, and different arrangements have been assembled. Hydrodynamic voltammograms in dual-electrode (generator–collector) experiments indicate good potential control for cells with 25-μm channels, while there is some iR drop in cells with 13-μm channels. Cells prepared with a cylindrical working electrode tangent and perpendicular to a flow channel show a flow rate dependence consistent with thin-layer cell behavior. Electrode areas can be made in the range of 10−10–10−8 m2. PMID:12622401

  14. Redesigned Gas Mass Flow Sensors for Space Shuttle Pressure Control System and Fuel Cell System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A program was conducted to determine if a state of the art micro-machined silicon solid state flow sensor could be used to replace the existing space shuttle orbiter flow sensors. The rather aggressive goal was to obtain a new sensor which would also be a multi-gas sensor and operate over a much wider flow range and with a higher degree of accuracy than the existing sensors. Two types of sensors were tested. The first type was a venturi throat design and the second was a bypass design. The accuracy of venturi design was found to be marginally acceptable. The bypass sensor was much better although it still did not fully reach the accuracy goal. Two main problems were identified which would require further work.

  15. Ultrasonic flow metering system

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  16. Cascade redox flow battery systems

    SciTech Connect

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  17. Design of a Side-View Particle Imaging Velocimetry Flow System for Cell-Substrate Adhesion Studies

    PubMed Central

    Leyton-Mange, Jordan; Yang, Sung; Hoskins, Meghan H.; Kunz, Robert F.; Zahn, Jeffrey D.; Dong, Cheng

    2009-01-01

    Experimental models that mimic the flow conditions in microcapillaries have suggested that the local shear stresses and shear rates can mediate tumor cell and leukocyte arrest on the endothelium and subsequent sustained adhesion. However, further investigation has been limited by the lack of experimental models that allow quantitative measurement of the hydrodynamic environment over adherent cells. The purpose of this study was to develop a system capable of acquiring quantitative flow profiles over adherent cells. By combining the techniques of side-view imaging and particle image velocimetry (PIV), an in vitro model was constructed that is capable of obtaining quantitative flow data over cells adhering to the endothelium. The velocity over an adherent leukocyte was measured and the shear rate was calculated under low and high upstream wall shear. The microcapillary channel was modeled using computational fluid dynamics (CFD) and the calculated velocity profiles over cells under the low and high shear rates were compared to experimental results. The drag force applied to each cell by the fluid was then computed. This system provides a means for future study of the forces underlying adhesion by permitting characterization of the local hydrodynamic conditions over adherent cells. PMID:16524340

  18. A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems

    SciTech Connect

    Chauvet, Adrien Chergui, Majed; Tibiletti, Tania; Caffarri, Stefano

    2014-10-01

    The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ~0.35 ml/s that are suitable to pump laser repetition rates up to ~14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ~250 μl.

  19. Chemostat flow cell system: an in vitro model for the evaluation of antiplaque agents.

    PubMed

    Herles, S; Olsen, S; Afflitto, J; Gaffar, A

    1994-11-01

    We developed an experimental in vitro model of dental plaque to assess the potential efficacy of antiplaque agents. The model used a chemostat, which provided a continuous source of 5 species of oral bacteria grown in an artificial "saliva-like" medium. This mixture was pumped through six flow cells, each containing two types of surfaces on which plaque formed and was subsequently measured. Formation of bacterial plaque on hydroxyapatite surfaces was assessed by measurement of the DNA and protein content of the plaque film. The amount of bacterial plaque formed on germanium surfaces was measured by attenuated total reflectance (ATR/FT-IR) spectroscopy. Plaque viability was also assessed by a fluorescent staining technique. The quantity of plaque formed on both types of surfaces gradually increased with the duration of flow (from 24 to 72 h) through the cells during a 72-hour experimental period. The flow cells were then pulsed with experimental treatment solutions for 30 s, twice daily. Parallel to results of human clinical studies, the model was capable of discriminating among water, a placebo mouthrinse, and an active antimicrobial mouthrinse formulation containing 0.03% triclosan. It therefore offers a valuable alternative to animal model testing and allows for more rapid evaluations under well-controlled experimental conditions. PMID:7983262

  20. Chemostat flow cell system: an in vitro model for the evaluation of antiplaque agents.

    PubMed

    Herles, S; Olsen, S; Afflitto, J; Gaffar, A

    1994-11-01

    We developed an experimental in vitro model of dental plaque to assess the potential efficacy of antiplaque agents. The model used a chemostat, which provided a continuous source of 5 species of oral bacteria grown in an artificial "saliva-like" medium. This mixture was pumped through six flow cells, each containing two types of surfaces on which plaque formed and was subsequently measured. Formation of bacterial plaque on hydroxyapatite surfaces was assessed by measurement of the DNA and protein content of the plaque film. The amount of bacterial plaque formed on germanium surfaces was measured by attenuated total reflectance (ATR/FT-IR) spectroscopy. Plaque viability was also assessed by a fluorescent staining technique. The quantity of plaque formed on both types of surfaces gradually increased with the duration of flow (from 24 to 72 h) through the cells during a 72-hour experimental period. The flow cells were then pulsed with experimental treatment solutions for 30 s, twice daily. Parallel to results of human clinical studies, the model was capable of discriminating among water, a placebo mouthrinse, and an active antimicrobial mouthrinse formulation containing 0.03% triclosan. It therefore offers a valuable alternative to animal model testing and allows for more rapid evaluations under well-controlled experimental conditions.

  1. Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Jakupca, Ian J.

    2011-01-01

    Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.

  2. A new flow-regulating cell type in the Demosponge Tethya wilhelma - functional cellular anatomy of a leuconoid canal system.

    PubMed

    Hammel, Jörg U; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes.

  3. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also

  4. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  5. Miniaturized flow injection analysis system

    DOEpatents

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  6. Microfluidic system for facilitated quantification of nanoparticle accumulation to cells under laminar flow.

    PubMed

    Kusunose, Jiro; Zhang, Hua; Gagnon, M Karen J; Pan, Tingrui; Simon, Scott I; Ferrara, Katherine W

    2013-01-01

    The identification of novel, synthetic targeting ligands to endothelial receptors has led to the rapid development of targeted nanoparticles for drug, gene and imaging probe delivery. Central to development and optimization are effective models for assessing particle binding in vitro. Here, we developed a simple and cost effective method to quantitatively assess nanoparticle accumulation under physiologically-relevant laminar flow. We designed reversibly vacuum-sealed PDMS microfluidic chambers compatible with 35 mm petri dishes, which deliver uniform or gradient shear stress. These chambers have sufficient surface area for facile cell collection for particle accumulation quantitation through FACS. We tested this model by synthesizing and flowing liposomes coated with APN (K (D) ~ 300 μM) and VCAM-1-targeting (K (D) ~ 30 μM) peptides over HUVEC. Particle binding significantly increased with ligand concentration (up to 6 mol%) and decreased with excess PEG. While the accumulation of particles with the lower affinity ligand decreased with shear, accumulation of those with the higher affinity ligand was highest in a low shear environment (2.4 dyne/cm(2)), as compared with greater shear or the absence of shear. We describe here a robust flow chamber model that is applied to optimize the properties of 100 nm liposomes targeted to inflamed endothelium. PMID:22855121

  7. Principles of bone marrow processing and progenitor cell/mononuclear cell concentrate collection in a continuous flow blood cell separation system.

    PubMed

    Hester, J P; Rondón, G; Huh, Y O; Lauppe, M J; Champlin, R E; Deisseroth, A B

    1995-08-01

    The application of continuous flow apheresis technology to processing bone marrow for collection of the mononuclear progenitor cell population appears to follow the same principles as collection of mononuclear cells from peripheral blood. Unlike peripheral blood, however, where mobilization of cells from extravascular sites during the procedures contributes significantly to the final cell yield, the entire quantity of progenitor cells available for recovery from marrow is present in the original marrow when it is pooled. The process then becomes one of attempting optimal recovery of the cells of interest while excluding contaminating erythrocytes and cells of the myeloid series. This study reports the development of a protocol for recovery of MNC, CD33+, CD34+, and CD34+/DR- cells from harvested marrow for autologous and allogeneic transplants using a continuous flow blood cell separator, the variables influencing the recovery of the cells of interest and the clinical response to infusion of the processed cells.

  8. The effect of corrosion inhibitors on microbial communities associated with corrosion in a model flow cell system.

    PubMed

    Duncan, Kathleen E; Perez-Ibarra, Beatriz Monica; Jenneman, Gary; Harris, Jennifer Busch; Webb, Robert; Sublette, Kerry

    2014-01-01

    A model flow cell system was designed to investigate pitting corrosion in pipelines associated with microbial communities. A microbial inoculum producing copious amounts of H₂S was enriched from an oil pipeline biofilm sample. Reservoirs containing a nutrient solution and the microbial inoculum were pumped continuously through six flow cells containing mild steel corrosion coupons. Two cells received corrosion inhibitor "A", two received corrosion inhibitor "B", and two ("untreated") received no additional chemicals. Coupons were removed after 1 month and analyzed for corrosion profiles and biofilm microbial communities. Coupons from replicate cells showed a high degree of similarity in pitting parameters and in microbial community profiles, as determined by 16S rRNA gene sequence libraries but differed with treatment regimen, suggesting that the corrosion inhibitors differentially affected microbial species. Viable microbial biomass values were more than 10-fold higher for coupons from flow cells treated with corrosion inhibitors than for coupons from untreated flow cells. The total number of pits >10 mils diameter and maximum pitting rate were significantly correlated with each other and the total number of pits with the estimated abundance of sequences classified as Desulfomicrobium. The maximum pitting rate was significantly correlated with the sum of the estimated abundance of Desulfomicrobium plus Clostridiales, and with the sum of the estimated abundance of Desulfomicrobium plus Betaproteobacteria. The lack of significant correlation with the estimated abundance of Deltaproteobacteria suggests not all Deltaproteobacteria species contribute equally to microbiologically influenced corrosion (MIC) and that it is not sufficient to target one bacterial group when monitoring for MIC.

  9. Fibrin monomer increases platelet adherence to tumor cells in a flowing system: a possible role in metastasis?

    PubMed

    Biggerstaff, J P; Seth, N B; Meyer, T V; Amirkhosravi, A; Francis, J L

    1998-12-15

    Considerable evidence exists linking hemostasis and malignancy. Platelet adhesion to tumor cells has been implicated in the metastatic process. Plasma fibrinogen (Fg) and fibrin (Fn) monomer, increased in cancer, may play a role in tumor biology. Binding of Fn monomer to tumor cells and its effect on platelet-tumor cell adhesion in a flowing system were studied. Fn monomer was produced by adding thrombin (1 micro/mL) to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro (GPRP) amide. Fn monomer binding to live A375 cells was visualized by confocal laser scanning microscopy (CLSM). Adherent cells were perfused for 1h with Fn monomer, washed and stained in situ with anti-human Fn (American Biogenetic Sciences, Inc.) followed by goat anti-mouse IgG(FITC). Platelet adherence to Fn monomer treated A375 cells was performed under flow conditions by passing platelets (5x10(4)/microl 0.25 mL/min; labeled with the carbocyanine dye DiI) over the tumor cells for 30 min. CLSM images were obtained after washing. There was considerable binding of Fn monomer, but not Fg alone. Platelets adhered relatively weakly to untreated A375 cells and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or thrombin. However, pre-treatment with Fn monomer resulted in extensive platelet binding to tumor cells, suggesting that coagulation activation and the subsequent increase in circulating Fn monomer may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread.

  10. Fibrin monomer increases platelet adherence to tumor cells in a flowing system: a possible role in metastasis?

    PubMed

    Biggerstaff, J P; Seth, N B; Meyer, T V; Amirkhosravi, A; Francis, J L

    1998-12-15

    Considerable evidence exists linking hemostasis and malignancy. Platelet adhesion to tumor cells has been implicated in the metastatic process. Plasma fibrinogen (Fg) and fibrin (Fn) monomer, increased in cancer, may play a role in tumor biology. Binding of Fn monomer to tumor cells and its effect on platelet-tumor cell adhesion in a flowing system were studied. Fn monomer was produced by adding thrombin (1 micro/mL) to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro (GPRP) amide. Fn monomer binding to live A375 cells was visualized by confocal laser scanning microscopy (CLSM). Adherent cells were perfused for 1h with Fn monomer, washed and stained in situ with anti-human Fn (American Biogenetic Sciences, Inc.) followed by goat anti-mouse IgG(FITC). Platelet adherence to Fn monomer treated A375 cells was performed under flow conditions by passing platelets (5x10(4)/microl 0.25 mL/min; labeled with the carbocyanine dye DiI) over the tumor cells for 30 min. CLSM images were obtained after washing. There was considerable binding of Fn monomer, but not Fg alone. Platelets adhered relatively weakly to untreated A375 cells and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or thrombin. However, pre-treatment with Fn monomer resulted in extensive platelet binding to tumor cells, suggesting that coagulation activation and the subsequent increase in circulating Fn monomer may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread. PMID:9886911

  11. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  12. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles.

  13. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena

    PubMed Central

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.

    2015-01-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  14. Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2013-12-01

    A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.

  15. Flow Distribution in Hydraulic Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, S. N.

    1983-01-01

    General Flow Distribution Program analyzes pressure drops and flow distribution in closed and open hydraulic systems. Analyzes system on basis of incompressible flow though system may contain either compressible or incompressible fluid. Program solves fixed or variable flow problems for series, parallel, or series/parallel systems.

  16. Overhead Projection Cell for Streamline Flow

    ERIC Educational Resources Information Center

    Waage, Harold M.

    1969-01-01

    Describes the construction and operation of an overhead projection apparatus designed to demonstrate streamline flow of a liquid. The apparatus consists of a Plexiglass tank containing water in which plates forming the cell are submerged, a constant level reservoir, an overflow device and a system for marking the flow lines with a dye. (LC)

  17. Performance Mapping Studies in Redox Flow Cells

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Thaller, L. H.

    1981-01-01

    Pumping power requirements in any flow battery system constitute a direct parasitic energy loss. It is therefore useful to determine the practical lower limit for reactant flow rates. Through the use of a theoretical framework based on electrochemical first principles, two different experimental flow mapping techniques were developed to evaluate and compare electrodes as a function of flow rate. For the carbon felt electrodes presently used in NASA-Lewis Redox cells, a flow rate 1.5 times greater than the stoichiometric rate seems to be the required minimum.

  18. In situ monitoring of atmospheric nitrous acid based on multi-pumping flow system and liquid waveguide capillary cell.

    PubMed

    Liu, Yuhan; Lu, Keding; Dong, Huabin; Li, Xin; Cheng, Peng; Zou, Qi; Wu, Yusheng; Liu, Xingang; Zhang, Yuanhang

    2016-05-01

    In the last four decades, various techniques including spectroscopic, wet chemical and mass spectrometric methods, have been developed and applied for the detection of ambient nitrous acid (HONO). We developed a HONO detection system based on long path photometry which consists of three independent modules i.e., sampling module, fluid propulsion module and detection module. In the propulsion module, solenoid pumps are applied. With solenoid pumps the pulsed flow can be computer controlled both in terms of pump stroke volume and pulse frequency, which enables the attainment of a very stable flow rate. In the detection module, a customized Liquid Waveguide Capillary Cell (LWCC) is used. The customized LWCC pre-sets the optical fiber in-coupling with the liquid wave guide, providing the option of fast startup and easy maintenance of the absorption photometry. In summer 2014, our system was deployed in a comprehensive campaign at a rural site in the North China Plain. More than one month of high quality HONO data spanning from the limit of detection to 5ppb were collected. Intercomparison of our system with another established system from Forschungszentrum Juelich is presented and discussed. In conclusion, our instrument achieved a detection limit of 10pptV within 2min and a measurement uncertainty of 7%, which is well suited for investigation of the HONO budget from urban to rural conditions in China. PMID:27155434

  19. Using neural networks for high-speed blood cell classification in a holographic-microscopy flow-cytometry system

    NASA Astrophysics Data System (ADS)

    Schneider, B.; Vanmeerbeeck, G.; Stahl, R.; Lagae, L.; Bienstman, P.

    2015-03-01

    High-throughput cell sorting with flow cytometers is an important tool in modern clinical cell studies. Most cytometers use biomarkers that selectively bind to the cell, but induce significant changes in morphology and inner cell processes leading sometimes to its death. This makes label-based cell sorting schemes unsuitable for further investigation. We propose a label-free technique that uses a digital inline holographic microscopy for cell imaging and an integrated, optical neural network for high-speed classification. The perspective of dense integration makes it attractive to ultrafast, large-scale cell sorting. Network simulations for a ternary classification task (monocytes/granulocytes/lymphocytes) resulted in 89% accuracy.

  20. Deterministic Aperiodic Sickle Cell Blood Flows

    NASA Astrophysics Data System (ADS)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  1. Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems.

    PubMed

    Liu, G; Van der Mark, E J; Verberk, J Q J C; Van Dijk, J C

    2013-01-01

    The objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-year sampling program was carried out in two distribution systems in The Netherlands. Results demonstrated that, in both systems, the biomass differences measured by ATP were not significant. TCC differences were also not significant in treatment plant 1, but decreased slightly in treatment plant 2. TCC values were found to be higher at temperatures above 15°C than at temperatures below 15°C. The correlation study of parameters describing biostability found no relationship among TCC, heterotrophic plate counts, and Aeromonas. Also no relationship was found between TCC and ATP. Some correlation was found between the subgroup of high nucleic acid content bacteria and ATP (R (2) = 0.63). Overall, the results demonstrated that TCC is a valuable parameter to assess the drinking water biological quality and regrowth; it can directly and sensitively quantify biomass, detect small changes, and can be used to determine the subgroup of active HNA bacteria that are related to ATP.

  2. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications.

    PubMed

    Cennamo, Nunzio; Chiavaioli, Francesco; Trono, Cosimo; Tombelli, Sara; Giannetti, Ambra; Baldini, Francesco; Zeni, Luigi

    2016-02-04

    An optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG)/anti-IgG assay.

  3. A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications

    PubMed Central

    Cennamo, Nunzio; Chiavaioli, Francesco; Trono, Cosimo; Tombelli, Sara; Giannetti, Ambra; Baldini, Francesco; Zeni, Luigi

    2016-01-01

    An optical sensor platform based on surface plasmon resonance (SPR) in a plastic optical fiber (POF) integrated into a thermo-stabilized flow cell for biochemical sensing applications is proposed. This device has been realized and experimentally tested by using a classic receptor-analyte assay. For this purpose, the gold surface of the POF was chemically modified through the formation of a self-assembling monolayer. The surface robustness of the POF-SPR platform has been tested for the first time thanks to the flow cell. The experimental results show that the proposed device can be successfully used for label-free biochemical sensing. The final goal of this work is to achieve a complete, small-size, simple to use and low cost optical sensor system. The whole system with the flow cell and the optical sensor are extensively described, together with the experimental results obtained with an immunoglobulin G (IgG)/anti-IgG assay. PMID:26861328

  4. A radio-high-performance liquid chromatography dual-flow cell gamma-detection system for on-line radiochemical purity and labeling efficiency determination.

    PubMed

    Lindegren, S; Jensen, H; Jacobsson, L

    2014-04-11

    In this study, a method of determining radiochemical yield and radiochemical purity using radio-HPLC detection employing a dual-flow-cell system is evaluated. The dual-flow cell, consisting of a reference cell and an analytical cell, was constructed from two PEEK capillary coils to fit into the well of a NaI(Tl) detector. The radio-HPLC flow was directed from the injector to the reference cell allowing on-line detection of the total injected sample activity prior to entering the HPLC column. The radioactivity eluted from the column was then detected in the analytical cell. In this way, the sample will act as its own standard, a feature enabling on-line quantification of the processed radioactivity passing through the system. All data were acquired on-line via an analog signal from a rate meter using chromatographic software. The radiochemical yield and recovery could be simply and accurately determined by integration of the peak areas in the chromatogram obtained from the reference and analytical cells using an experimentally determined volume factor to correct for the effect of different cell volumes. PMID:24630054

  5. A radio-high-performance liquid chromatography dual-flow cell gamma-detection system for on-line radiochemical purity and labeling efficiency determination.

    PubMed

    Lindegren, S; Jensen, H; Jacobsson, L

    2014-04-11

    In this study, a method of determining radiochemical yield and radiochemical purity using radio-HPLC detection employing a dual-flow-cell system is evaluated. The dual-flow cell, consisting of a reference cell and an analytical cell, was constructed from two PEEK capillary coils to fit into the well of a NaI(Tl) detector. The radio-HPLC flow was directed from the injector to the reference cell allowing on-line detection of the total injected sample activity prior to entering the HPLC column. The radioactivity eluted from the column was then detected in the analytical cell. In this way, the sample will act as its own standard, a feature enabling on-line quantification of the processed radioactivity passing through the system. All data were acquired on-line via an analog signal from a rate meter using chromatographic software. The radiochemical yield and recovery could be simply and accurately determined by integration of the peak areas in the chromatogram obtained from the reference and analytical cells using an experimentally determined volume factor to correct for the effect of different cell volumes.

  6. Co-flow planar SOFC fuel cell stack

    DOEpatents

    Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.

    2004-11-30

    A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.

  7. Rebalancing electrolytes in redox flow battery systems

    SciTech Connect

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  8. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  9. Factor Xa generation at the surface of cultured rat vascular smooth muscle cells in an in vitro flow system.

    PubMed

    Hall, C L; Taubman, M B; Nemerson, Y; Turitto, V T

    1998-08-01

    The purpose of the present investigation was to explore the effects of well-defined flow conditions on the activity of tissue factor (TF) expressed on the surface of cultured rat vascular smooth muscle cells. Cells were cultured to confluence on Permanox brand slides and stimulated to express TF by a 90 min incubation with fresh growth medium containing 10 percent calf serum. The stimulated cells were then placed in a parallel plate flow chamber and perfused with Hank's Balanced Salt Solution containing factor VIIa, factor X (FX), and calcium. The chamber effluent was collected and assayed for factor Xa (FXa) and the steady-state flux of FXa was calculated. The flux values were 68.73, 94.81, 139.75, 138.19, 316.82, and 592.92 fmole/min/cm2 at wall shear rates of 10, 20, 40, 80, 320, and 1280 s-1, respectively. The FXa flux depended on the wall shear rate to a greater degree than predicted by classical mass transport theory. The flux at each shear rate was three to five times less than that calculated according to the Leveque solution. These features of the experimental data imply nonclassical behavior, which may partially result from a direct effect of flow on the cell layer.

  10. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  11. A negative dielectrophoresis and gravity-driven flow-based high-throughput and high-efficiency cell-sorting system.

    PubMed

    Lee, Dongkyu; Kim, Dowon; Kim, Youngwoong; Park, Ki-Hyun; Oh, Eun-Jee; Kim, Yonggoo; Kim, Byungkyu

    2014-02-01

    We present a negative dielectrophoresis (n-DEP)-based cell separation system for high-throughput and high-efficiency cell separation. To achieve a high throughput, the proposed system comprises macro-sized channel and cantilever-type electrode (CE) arrays (L × W × H = 150 µm × 500 µm × 50 µm) to generate n-DEP force. For high efficiency, double separation modules, which have macro-sized channels and CE arrays in each separation module, are employed. In addition, flow regulators to precisely control the hydrodynamic force are allocated for each outlet. Because the hydrodynamic force and the n-DEP force acting on the target cell are the main determinants of the separation efficiency, we evaluate the theoretical amount of hydrodynamic force and n-DEP force acting on each target cell. Based on theoretical results, separation conditions are experimentally investigated. Finally, to demonstrate the separation performance, we performed the separation of target cells (live K562) from nontarget cells (dead K562) under conditions of low voltage (7Vp-p with 100 kHz) and a flow rate of 15 µL•min⁻¹, 6 µL•min⁻¹, and 8 µL•min⁻¹ in outlets 1, 2, and 3, respectively. The system can separate target cells with 95% separation efficiency in the case of the ratio of 5:1 (live K562:dead K562).

  12. The Student Flow System.

    ERIC Educational Resources Information Center

    Madonna, Louis A.

    Simple continuity is applied with graph theory to generate a student flow model with multiple inputs and outputs. A graph of all semesters or nodes is laid out along with an input block for transfers in and an output block for transfers out. Arcs are connected from the zero node to the graduation node and these are placed in a time-forward…

  13. A New Flow-Regulating Cell Type in the Demosponge Tethya wilhelma – Functional Cellular Anatomy of a Leuconoid Canal System

    PubMed Central

    Hammel, Jörg U.; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes. PMID:25409176

  14. Fold and fabric relationships in temporally and spatially evolving slump systems: A multi-cell flow model

    NASA Astrophysics Data System (ADS)

    Alsop, G. Ian; Marco, Shmuel

    2014-06-01

    Folds generated in ductile metamorphic terranes and within unlithified sediments affected by slumping are geometrically identical to one another, and distinguishing the origin of such folds in ancient lithified rocks is therefore challenging. Foliation is observed to lie broadly parallel to the axial planes of tectonic folds, whilst it is frequently regarded as absent in slump folds. The presence of foliation is therefore often considered as a reliable criterion for distinguishing tectonic folds from those created during slumping. To test this assertion, we have examined a series of well exposed slump folds within the late Pleistocene Lisan Formation of the Dead Sea Basin. These slumps contain a number of different foliation types, including an axial-planar grain-shape fabric and a crenulation cleavage formed via microfolding of bedding laminae. Folds also contain a spaced disjunctive foliation characterised by extensional displacements across shear fractures. This spaced foliation fans around recumbent fold hinges, with kinematics reversing across the axial plane indicating a flexural shear fold mechanism. Overall, the spaced foliation is penecontemporaneous with each individual slump where it occurs, although in detail it is pre, syn or post the local folds. The identification of foliations within undoubted slump folds indicates that the presence or absence of foliation is not in itself a robust criterion to distinguish tectonic from soft-sediment folds. Extensional shear fractures displaying a range of temporal relationships with slump folds suggests that traditional single-cell flow models, where extension is focussed at the head and contraction in the lower toe of the slump, are a gross simplification. We therefore propose a new multi-cell flow model involving coeval second-order flow cells that interact with neighbouring cells during translation of the slump.

  15. FLOW SYSTEM FOR REACTOR

    DOEpatents

    Zinn, W.H.

    1963-06-11

    A reactor is designed with means for terminating the reaction when returning coolant is below a predetermined temperature. Coolant flowing from the reactor passes through a heat exchanger to a lower reservoir, and then circulates between the lower reservoir and an upper reservoir before being returned to the reactor. Means responsive to the temperature of the coolant in the return conduit terminate the chain reaction when the temperature reaches a predetermined minimum value. (AEC)

  16. Glucose Dependency of the Metabolic Pathway of HEK 293 Cells Measured by a Flow-through Type pH/CO2 Sensor System Using ISFETs

    NASA Astrophysics Data System (ADS)

    Yamada, Akira; Mohri, Satoshi; Nakamura, Michihiro; Naruse, Keiji

    Our group previously reported the application of a flow-through type pH/CO2 sensor system designed to evaluate the metabolic activity of cultured cells. The sensor system consists of two ion-sensitive field effect transistors (ISFETs), an ISFET to measure the total pH change and an ISFET enclosed within a gas-permeable silicone tube to measure the pH change attributable to CO2. In that study, we used the system to quantitatively analyze metabolic switching induced by glucose concentration changes in three cultured cell types (bovine arterial endothelium cell (BAEC), human umbilical vein endothelium cell (HUVEC), and rat cardiomuscle cell (RCMC)), and to measure the production rates of total carbonate and free lactic acid in the cultured cells. In every cell type examined, a decrease in the glucose concentration led to an increase in total carbonate, a product of cellular respiration, and a decrease of free lactic acid, a product of glycolysis. There were very significant differences among the cell types, however, in the glucose concentrations at the metabolic switching points. We postulated that the cell has a unique switching point on the metabolic pathway from glycolysis to respiration. In this paper we use our sensor system to evaluate the metabolic switching of human embryonic kidney 293 cells triggered by glucose concentration changes. The superior metabolic pathway switched from glycolysis to respiration when the glucose concentration decreased to about 2 mM. This result was very similar to that obtained in our earlier experiments on HUVECs, but far different from our results on the other two cells types, BAECs and RCMCs. This sensor system will be useful for analyzing cellular metabolism for many applications and will yield novel information on different cell types.

  17. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  18. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  19. Mirrored serpentine flow channels for fuel cell

    SciTech Connect

    Rock, Jeffrey Allan

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  20. Advanced flow cytometric analysis of nanoparticle targeting to rare leukemic stem cells in peripheral human blood in a defined model system

    NASA Astrophysics Data System (ADS)

    Cooper, Christy L.; Leary, James F.

    2015-03-01

    Leukemia stem cells are both stem-like and leukemic-like. This complicates their detection as rare circulating tumor cells in the peripheral blood of leukemia patients. Since leukemic stem cells are also resistant to standard chemotherapeutic regimens, new therapeutic strategies need to be designed to kill the leukemic stem cells without killing normal stem cells. In these initial targeting studies we utilized a bioinformatics approach to design an antibodyfluorescent nanoparticle conjugate for targeting to these leukemic stem cells and to minimize targeting to normal stemprogenitor cells. Multicolor flow cytometric analyses were performed on a BD FACS Aria III. Human leukemic stem cell-like cell RS4;11 (with putative immunophenotype CD133+/CD24+/-, CD34+/-, CD38+, CD10-/Flt3+) was spiked into normal hematopoietic stem-progenitor cells obtained from a "buffy coat" prep (with putative immunophenotype CD133- /CD34+/CD38-/CD10-/Flt-3-) to be used as a model human leukemia patient. To analyze the model system, digital data mixtures of the two cell types were first created and assigned classifiers in order to create truth sets. ROC (Receiver Operating Characteristic) and multidimensional cluster analyses were used to evaluate the specificity and sensitivity of the immunophenotyping panel and for automated cell population identification, respectively. Costs of misclassification (false targeting) were also accounted for by this analysis scheme. Ultimately, this analysis scheme will be applied to use of nanoparticle-antibody conjugates at therapeutic doses for targeted killing of leukemia stem cells preferentially to normal stem -progenitor cells.

  1. Electrically rechargeable REDOX flow cell

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1976-01-01

    A bulk energy storage system is designed with an electrically rechargeable reduction-oxidation (REDOX) cell divided into two compartments by a membrane, each compartment containing an electrode. An anode fluid is directed through the first compartment at the same time that a cathode fluid is directed through the second compartment. Means are provided for circulating the anode and cathode fluids, and the electrodes are connected to an intermittent or non-continuous electrical source, which when operating, supplies current to a load as well as to the cell to recharge it. Ancillary circuitry is provided for disconnecting the intermittent source from the cell at prescribed times and for circulating the anode and cathode fluids according to desired parameters and conditions.

  2. Moat flow system around sunspots in shallow subsurface layers

    SciTech Connect

    Švanda, Michal; Sobotka, Michal; Bárta, Tomáš

    2014-08-01

    We investigate the subsurface moat flow system around McIntosh H-type symmetrical sunspots and compare it to the flow system within supergranular cells. Representatives of both types of flows are constructed by means of the statistical averaging of flow maps obtained by time-distance helioseismic inversions. We find that moat flows around H-type sunspots replace supergranular flows but there are two principal differences between the two phenomena: the moat flow is asymmetrical, probably due to the proper motion of sunspots with respect to the local frame of rest, while the flow in the supergranular cell is highly symmetrical. Furthermore, the whole moat is a downflow region, while the supergranule contains the upflow in the center, which turns into the downflow at about 60% of the cell radius from its center. We estimate that the mass downflow rate in the moat region is at least two times larger than the mass circulation rate within the supergranular cell.

  3. Fuel cell with internal flow control

    SciTech Connect

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  4. An innovative method to identify autoantigens expressed on the endothelial cell surface: serological identification system for autoantigens using a retroviral vector and flow cytometry (SARF).

    PubMed

    Shirai, Tsuyoshi; Fujii, Hiroshi; Ono, Masao; Watanabe, Ryu; Ishii, Tomonori; Harigae, Hideo

    2013-01-01

    Autoantibodies against integral membrane proteins are usually pathogenic. Although anti-endothelial cell antibodies (AECAs) are considered to be critical, especially for vascular lesions in collagen diseases, most molecules identified as autoantigens for AECAs are localized within the cell and not expressed on the cell surface. For identification of autoantigens, proteomics and expression library analyses have been performed for many years with some success. To specifically target cell-surface molecules in identification of autoantigens, we constructed a serological identification system for autoantigens using a retroviral vector and flow cytometry (SARF). Here, we present an overview of recent research in AECAs and their target molecules and discuss the principle and the application of SARF. Using SARF, we successfully identified three different membrane proteins: fibronectin leucine-rich transmembrane protein 2 (FLRT2) from patients with systemic lupus erythematosus (SLE), intercellular adhesion molecule 1 (ICAM-1) from a patient with rheumatoid arthritis, and Pk (Gb3/CD77) from an SLE patient with hemolytic anemia, as targets for AECAs. SARF is useful for specific identification of autoantigens expressed on the cell surface, and identification of such interactions of the cell-surface autoantigens and pathogenic autoantibodies may enable the development of more specific intervention strategies in autoimmune diseases.

  5. An Innovative Method to Identify Autoantigens Expressed on the Endothelial Cell Surface: Serological Identification System for Autoantigens Using a Retroviral Vector and Flow Cytometry (SARF)

    PubMed Central

    Shirai, Tsuyoshi; Fujii, Hiroshi; Ono, Masao; Watanabe, Ryu; Ishii, Tomonori; Harigae, Hideo

    2013-01-01

    Autoantibodies against integral membrane proteins are usually pathogenic. Although anti-endothelial cell antibodies (AECAs) are considered to be critical, especially for vascular lesions in collagen diseases, most molecules identified as autoantigens for AECAs are localized within the cell and not expressed on the cell surface. For identification of autoantigens, proteomics and expression library analyses have been performed for many years with some success. To specifically target cell-surface molecules in identification of autoantigens, we constructed a serological identification system for autoantigens using a retroviral vector and flow cytometry (SARF). Here, we present an overview of recent research in AECAs and their target molecules and discuss the principle and the application of SARF. Using SARF, we successfully identified three different membrane proteins: fibronectin leucine-rich transmembrane protein 2 (FLRT2) from patients with systemic lupus erythematosus (SLE), intercellular adhesion molecule 1 (ICAM-1) from a patient with rheumatoid arthritis, and Pk (Gb3/CD77) from an SLE patient with hemolytic anemia, as targets for AECAs. SARF is useful for specific identification of autoantigens expressed on the cell surface, and identification of such interactions of the cell-surface autoantigens and pathogenic autoantibodies may enable the development of more specific intervention strategies in autoimmune diseases. PMID:23401699

  6. Comparative in vitro dissolution study of carbamazepine immediate-release products using the USP paddles method and the flow-through cell system

    PubMed Central

    Medina, José Raúl; Salazar, Dulce Karina; Hurtado, Marcela; Cortés, Alma Rosa; Domínguez-Ramírez, Adriana Miriam

    2013-01-01

    Dissolution profiles of four carbamazepine immediate-release generic products (200 mg tablets) and the reference product Tegretol® were evaluated using the USP paddles method and an alternative method with the flow-through cell system, USP Apparatus 4. Under official conditions all products met the Q specification, dissolution profiles of generic products were similar to the dissolution profile of the reference product (f2 > 50) and model-independent parameters showed non significant differences to the reference product except mean dissolution time for product A (p < 0.05). On the other hand, when the flow-through cell system was used, none of the products met the pharmacopeial specification at 15 min and product A did not reach dissolution criteria at 60 min, dissolution profiles of all generic products were not similar to the reference product profile (f2 < 50) and all model-independent parameters showed significant differences compared to the reference product (p < 0.05). Weibull’s model was more useful for adjusting the dissolution data of all products in both USP apparatuses and Td values showed significant differences compared to the reference product (p < 0.05) when USP Apparatus 4 was used. These results indicate that the proposed method, using the flow-through cell system, is more discriminative in evaluating both, rate and extent of carbamazepine dissolution process from immediate-release generic products. PMID:24648826

  7. Blood Cell Interactions and Segregation in Flow

    PubMed Central

    Munn, Lance L.; Dupin, Michael M.

    2009-01-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall. PMID:18188702

  8. Pulse-Flow Microencapsulation System

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2006-01-01

    The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.

  9. Fuel cell system combustor

    DOEpatents

    Pettit, William Henry

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  10. Electrohydrodynamic Flows in Electrochemical Systems

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    2005-01-01

    Recent studies have established a new class of assembly processes with colloidal suspensions. Particles are driven together to form large crystalline structures in both dc and ac fields. The current work centers on this new class of flows in ac fields. In the research carried out under the current award, it was established that: (i) Small colloidal particles crystallize near an electrode due to electrohydrodynamic flows induced by an sinusoidally varying applied potential. (ii) These flows originate due to disturbances in the electrode polarization layer arising from the presence of the particles. Inasmuch as the charge and the field strength both scale on the applied field, the flows are proportional to the square of the applied voltage. (iii) Suspensions of two different sorts of particles can be crystallized and will form well-ordered binary crystals. (iv) At high frequencies the EHD flows die out. Thus, with a homogeneous system the particles become widely spaced due to dipolar repulsion. With a binary suspension, however, the particles may become attractive due to dipolar attraction arising from differences in electrokinetic dipoles. Consequently binary crystals form at both high and low frequencies.

  11. Modeling of flow field in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Karvonen, Suvi; Hottinen, Tero; Saarinen, Jaakko; Himanen, Olli

    Isothermal two- and three-dimensional polymer electrolyte membrane (PEM) fuel cell cathode flow field models were implemented to study the behavior of reactant and reaction product gas flow in a parallel channel flow field. The focus was on the flow distribution across the channels and the total pressure drop across the flow field. The effect of the density and viscosity variation in the gas resulting from the composition change due to cell reactions was studied and the models were solved with governing equations based on three different approximations. The focus was on showing how a uniform flow profile can be achieved by improving an existing channel design. The modeling results were verified experimentally. A close to uniform flow distribution was achieved in a parallel channel system.

  12. Numerical Simulation of Sickle Cell Blood Flow in the Microcirculation

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Carlson, Brian E.

    2001-11-01

    A numerical simulation of normal and sickle cell blood flow through the transverse arteriole-capillary microcirculation is carried out to model the dominant mechanisms involved in the onset of vascular stasis in sickle cell disease. The transverse arteriole-capillary network is described by Strahler's network branching method, and the oxygen and blood transport in the capillaries is modeled by a Krogh cylinder analysis utilizing Lighthill's lubrication theory, as developed by Berger and King. Poiseuille's law is used to represent blood flow in the arterioles. Applying this flow and transport model and utilizing volumetric flow continuity at each network bifurcation, a nonlinear system of equations is obtained, which is solved iteratively using a steepest descent algorithm coupled with a Newton solver. Ten different networks are generated and flow results are calculated for normal blood and sickle cell blood without and with precapillary oxygen loss. We find that total volumetric blood flow through the network is greater in the two sickle cell blood simulations than for normal blood owing to the anemia associated with sickle cell disease. The percentage of capillary blockage in the network increases dramatically with decreasing pressure drop across the network in the sickle cell cases while there is no blockage when normal blood flows through simulated networks. It is concluded that, in sickle cell disease, without any vasomotor dilation response to decreasing oxygen concentrations in the blood, capillary blockage will occur in the microvasculature even at average pressure drops across the transverse arteriole-capillary networks.

  13. Spatial response variations within biosensor flow cells

    NASA Astrophysics Data System (ADS)

    Cant, Nicola; Harrison, Sarah

    2012-02-01

    Biosensors are currently being developed for the detection of a wide range of analytes in a variety of scenarios. One such area is that of environmental monitoring for the presence of biological threats, from toxins through to viruses and bacteria. The varying nature, and in particular disparate size, of such a variety of analytes poses a significant challenge in the development of effective high confidence instruments. Many existing biosensors employ functionalised flow cells in which spatially defined arrays of surface immobilised recognition elements are present to specifically capture their analyte of interest. Experimental data obtained using a grating coupled SPR instrument, the BIAcore Flexchip, has revealed spatial dependency differences in response behaviours between proteinaceous and particulate analytes. In particular, the magnitude of responses seen with Bacillus anthracis spores across the instruments flow cell appear to be influenced by shear and gravitational effects whilst those from soluble proteins are more uniform. We have explored this dependence to understand its fundamental impact on the successful implementation of multi-analyte environmental biological detection systems.

  14. Flow regimes in a trapped vortex cell

    NASA Astrophysics Data System (ADS)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  15. Schlieren System For Flow Studies In Round Glass Pipes

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Rhodes, David B.; Jones, Stephen B.

    1990-01-01

    In schlieren system for studying flow of gas in transparent pipe of circular cross section, cylindrical lenses placed on opposite sides of pipe compensate for refraction caused by wall of pipe. Enables direct visualization of such phenomena as laminar or turbulent flow, shock waves, vortexes, and flow separations in systems having inherently cylindrical geometry; potentially unreliable extrapolations from results in flat-sided test cells no longer necessary.

  16. Flow cytometer jet monitor system

    DOEpatents

    Van den Engh, Ger

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  17. A laboratory scale supersonic combustive flow system

    SciTech Connect

    Sams, E.C.; Zerkle, D.K.; Fry, H.A.; Wantuck, P.J.

    1995-02-01

    A laboratory scale supersonic flow system [Combustive Flow System (CFS)] which utilizes the gaseous products of methane-air and/or liquid fuel-air combustion has been assembled to provide a propulsion type exhaust flow field for various applications. Such applications include providing a testbed for the study of planar two-dimensional nozzle flow fields with chemistry, three-dimensional flow field mixing near the exit of rectangular nozzles, benchmarking the predictive capability of various computational fluid dynamic codes, and the development and testing of advanced diagnostic techniques. This paper will provide a detailed description of the flow system and data related to its operation.

  18. Coded illumination for motion-blur free imaging of cells on cell-phone based imaging flow cytometer

    NASA Astrophysics Data System (ADS)

    Saxena, Manish; Gorthi, Sai Siva

    2014-10-01

    Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

  19. Geophysical Fluid Flow Cell (GFFC) Simulation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    These simulations of atmospheric flow use the same experimental parameters but started with slightly different initial conditions in the model. The simulations were part of data analysis for the Geophysical Fluid Flow Cell (GFFC), a planet in a test tube apparatus flown on Spacelab to mimic the atmospheres on gas giant planets and stars. (Credit: Dr. Tim Miller of Global Hydrology and Climate Center at the Marshall Space Flight Center)

  20. Evolution of Unsteady Groundwater Flow Systems

    NASA Astrophysics Data System (ADS)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition

  1. Flow over glycocalyx covered endothelial cells.

    NASA Astrophysics Data System (ADS)

    Waters, Sarah L.; Liu, Shu Q.; Grotberg, James B.

    1997-11-01

    Blood vessels are lined with a monolayer of endothelial cells that interact with the blood flow. Two structural features of the endothelial membrane may influence the fluid dynamics over the endothelium: 1) the endothelial membrane bumpiness; and 2) the porous glycocalyx layer covering the cell surface. The bumpiness of the endothelium may induce regions of recirculation, and the glycocalyx may effect the flow pattern at the cell surface. An analytical study is presented for pressure driven blood flow in the microcirculation. The vessel is modeled as a rigid, impermeable, symmetric two--dimensional channel, which has sinusoidally wavy walls. The vessel has two regions: 1) the glycocalyx layer which is modeled as a uniformly thick poroelastic deformable wall layer using biphasic mixture theory; and 2) the free lumen where the Navier--Stokes equations of motion apply. Analytical results are obtained by making the long wavelength approximation. The model predicts the fluid flow and hence the shear stress exerted by the flow on the individual endothelial cells and at the glycocalyx--lumen interface. Implications of the results for biological events such as molecular transport and signal transduction are considered.

  2. Flow field measurements in the cell culture unit

    NASA Technical Reports Server (NTRS)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  3. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation.

    PubMed

    Oon, Yoong-Ling; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Sin; Lehl, Harvinder Kaur; Thung, Wei-Eng

    2015-06-01

    An innovative design of upflow constructed wetland-microbial fuel cell (UFCW-MFC) planted with cattail was used for simultaneous wastewater treatment and electricity generation. The electrodes material employed in the study was carbon felt. The main aim of this study is to assess the performance of the UFCW coupling with MFC in term of ability to treat wastewater and the capability to generate bioelectricity. The oxidation reduction potential (ORP) and dissolved oxygen (DO) profile showed that the anaerobic and aerobic regions were well developed in the lower and upper bed, respectively, of UFCW-MFC. Biodegradation of organic matter, nitrification and denitrification was investigated and the removal efficiencies of COD, NO3(-), NH4(+) were 100%, 40%, and 91%, respectively. The maximum power density of 6.12 mW m(-2) and coulombic efficiency of 8.6% were achieved at electrode spacing of anode 1 (A1) and cathode (15 cm).

  4. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  5. Cell migration does not produce membrane flow

    PubMed Central

    1990-01-01

    We have previously reported that rearward migration of surface particles on slowly moving cells is not driven by membrane flow (Sheetz, M. P., S. Turney, H. Qian, and E. L. Elson. 1989. Nature (Lond.). 340:284-288) and recent photobleaching measurements have ruled out any rapid rearward lipid flow (Lee, J., M. Gustafsson, D. E. Magnussen, and K. Jacobson. 1990. Science (Wash. DC.) 247:1229-1233). It was not possible, however, to conclude from those studies that a slower or tank-tread membrane lipid flow does not occur. Therefore, we have used the technology of single particle tracking to examine the movements of diffusing particles on rapidly locomoting fish keratocytes where the membrane current is likely to be greatest. The keratocytes had a smooth lamellipodial surface on which bound Con A-coated gold particles were observed either to track toward the nuclear region (velocity of 0.35 +/- 0.15 micron/s) or to diffuse randomly (apparent diffusion coefficient of [3.5 +/- 2.0] x 10(-10) cm2/s). We detected no systematic drift relative to the cell edge of particles undergoing random diffusion even after the cell had moved many micrometers. The average net particle displacement was 0.01 +/- 2.7% of the cell displacement. These results strongly suggest that neither the motions of membrane proteins driven by the cytoskeleton nor other possible factors produce a bulk flow of membrane lipid. PMID:2211827

  6. Internal-flow systems for aircraft

    NASA Technical Reports Server (NTRS)

    Rogallo, F M

    1941-01-01

    An investigation has been made to determine efficient arrangements for an internal-flow system of an aircraft when such a system operates by itself or in combination with other flow systems. The investigation included a theoretical treatment of the problem and tests in the NACA 5-foot vertical wind tunnel of inlet and outlet openings in a flat plate and in a wing.

  7. New optical configuration for flow cytometric sorting of aspherical cells

    NASA Astrophysics Data System (ADS)

    Sharpe, John C.; Schaare, Peter N.; Kuennemeyer, Rainer

    1997-05-01

    The orthogonal axes of illumination, flow, and detection in conventional sorting flow cytometers can limit accuracy or throughput when making fluorescence measurements on a spherical cells. A new radially symmetric optical configuration has been designed to overcome these problems. Both illumination and fluorescence collection are performed by a single optical element which encircles the sample stream flow axis. Unlike existing epi-illumination flow cytometer designs, these optics are compatible with electrostatic sorting. The resolution of this system is currently being evaluated for DNA chromosome content measurement with an ultimate goal of separation of X- and Y- chromosome-bearing mammalian spermatozoa. We describe the new optical configuration and present preliminary results of instrument performance. Comparison with a conventional orthogonal optical geometry is made using fluorescent microspheres, chicken red blood cells and chinchilla sperm.

  8. Electrochemical cell operation and system

    DOEpatents

    Maru, Hansraj C.

    1980-03-11

    Thermal control in fuel cell operation is affected through sensible heat of process gas by providing common input manifolding of the cell gas flow passage in communication with the cell electrolyte and an additional gas flow passage which is isolated from the cell electrolyte and in thermal communication with a heat-generating surface of the cell. Flow level in the cell gas flow passage is selected based on desired output electrical energy and flow level in the additional gas flow passage is selected in accordance with desired cell operating temperature.

  9. An optical absorption cell with vapor cross flow.

    NASA Technical Reports Server (NTRS)

    Hendrickson, P. E.; Walls, W. L.; Broersma, S.

    1973-01-01

    Description of a water vapor cross flow system that simulates meteorological conditions and effectively curbs any disturbing effects of walls and vacuum connections in an optical absorption cell. Vapor equilibrium is established within 30 min. A 6.3 micron infrared beam traverses the pressure, temperature, and humidity controlled vapor column. The effect of these thermodynamic parameters can be examined.

  10. Artificial Hair Cells for Sensing Flows

    NASA Technical Reports Server (NTRS)

    Chen, Jack

    2007-01-01

    The purpose of this article is to present additional information about the flow-velocity sensors described briefly in the immediately preceding article. As noted therein, these sensors can be characterized as artificial hair cells that implement an approximation of the sensory principle of flow-sensing cilia of fish: A cilium is bent by an amount proportional to the flow to which it is exposed. A nerve cell at the base of the cilium senses the flow by sensing the bending of the cilium. In an artificial hair cell, the artificial cilium is a microscopic cantilever beam, and the bending of an artificial cilium is measured by means of a strain gauge at its base (see Figure 1). Figure 2 presents cross sections of a representative sensor of this type at two different stages of its fabrication process. The process consists of relatively- low-temperature metallization, polymer-deposition, microfabrication, and surface-micromachining subprocesses, including plastic-deformation magnetic assembly (PDMA), which is described below. These subprocesses are suitable for a variety of substrate materials, including silicon, some glasses, and some polymers. Moreover, because it incorporates a polymeric supporting structure, this sensor is more robust, relative to its silicon-based counterparts.

  11. Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming

    2015-03-01

    Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.

  12. Chemical responses of single yeast cells studied by fluorescence microspectroscopy under solution-flow conditions.

    PubMed

    Kogi, Osamu; Kim, Haeng-Boo; Kitamura, Noboru

    2002-07-01

    A microspectroscopy system combined with a fluid manifold was developed to manipulate and analyze "single" living cells. A sample buffer solution containing living cells was introduced into a flow cell set on a thermostated microscope stage and a few cells were allowed to attach to the bottom wall of the flow cell. With these living cells being attached to the wall, other floating cells were pumped out by flowing a buffer solution. These procedures made it possible to keep a few cells in the flow cell and to analyze single cells by fluorescence microspectroscopy. The technique was applied to study the time course of staining processes of single living yeast (Saccharomyces cerevisiae) cells by using two types of a fluorescent probe. The present methodology was shown to be of primary importance for obtaining biochemical/physiological information on single living cells and also for studying cell-to-cell variations in several characteristics.

  13. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells

    PubMed Central

    Song, Jisun L.; Au, Kelly H.; Huynh, Kimberly T.

    2013-01-01

    We present two novel microfluidic flow cells developed to provide reliable control of flow distributions and chemical gradients in biofilm studies. We developed a single-inlet microfluidic flow cell to support biofilm growth under a uniform velocity field, and a double-inlet flow cell to provide a very smooth transverse concentration gradient. Both flow cells consist of a layer of polydimethylsiloxane (PDMS) bonded to glass cover slips and were fabricated using the replica molding technique. We demonstrate the capabilities of the flow cells by quantifying flow patterns before and after growth of Pseudomonas aeruginosa biofilms through particle imaging velocimetry, and by evaluating concentration gradients within the double-inlet microfluidic flow cell. Biofilm growth substantially increased flow complexity by diverting flow around biomass, creating high- and low-velocity regions and surface friction. Under a glucose gradient in the double-inlet flow cell, P. aeruginosa biofilms grew in proportion to the local glucose concentration, producing distinct spatial patterns in biofilm biomass relative to the imposed glucose gradient. When biofilms were subjected to a ciprofloxacin gradient, spatial patterns of fractions of dead cells were also in proportion to the local antibiotic concentration. These results demonstrate that the microfluidic flow cells are suitable for quantifying flow complexities resulting from flow-biofilm interactions and investigating spatial patterns of biofilm growth under chemical gradients. These novel microfluidic flow cells will facilitate biofilm research that requires flow control and in situ imaging, particularly investigations of biofilm-environment interactions. PMID:24038055

  14. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells.

    PubMed

    Song, Jisun L; Au, Kelly H; Huynh, Kimberly T; Packman, Aaron I

    2014-03-01

    We present two novel microfluidic flow cells developed to provide reliable control of flow distributions and chemical gradients in biofilm studies. We developed a single-inlet microfluidic flow cell to support biofilm growth under a uniform velocity field, and a double-inlet flow cell to provide a very smooth transverse concentration gradient. Both flow cells consist of a layer of polydimethylsiloxane (PDMS) bonded to glass cover slips and were fabricated using the replica molding technique. We demonstrate the capabilities of the flow cells by quantifying flow patterns before and after growth of Pseudomonas aeruginosa biofilms through particle imaging velocimetry, and by evaluating concentration gradients within the double-inlet microfluidic flow cell. Biofilm growth substantially increased flow complexity by diverting flow around biomass, creating high- and low-velocity regions and surface friction. Under a glucose gradient in the double-inlet flow cell, P. aeruginosa biofilms grew in proportion to the local glucose concentration, producing distinct spatial patterns in biofilm biomass relative to the imposed glucose gradient. When biofilms were subjected to a ciprofloxacin gradient, spatial patterns of fractions of dead cells were also in proportion to the local antibiotic concentration. These results demonstrate that the microfluidic flow cells are suitable for quantifying flow complexities resulting from flow-biofilm interactions and investigating spatial patterns of biofilm growth under chemical gradients. These novel microfluidic flow cells will facilitate biofilm research that requires flow control and in situ imaging, particularly investigations of biofilm-environment interactions. PMID:24038055

  15. Detection of Intracellular Granularity Induction in Prostate Cancer Cell Lines by Small Molecules Using the HyperCyt® High-Throughput Flow Cytometry System

    PubMed Central

    HAYNES, MARK K.; STROUSE, J. JACOB; WALLER, ANNA; LEITAO, ANDREI; CURPAN, RAMONA F.; BOLOGA, CRISTIAN; OPREA, TUDOR I.; PROSSNITZ, ERIC R.; EDWARDS, BRUCE S.; SKLAR, LARRY A.; THOMPSON, TODD A.

    2013-01-01

    Prostate cancer is a leading cause of death among men due to the limited number of treatment strategies available for advanced disease. Discovery of effective chemotherapeutics involves the identification of agents that inhibit cancer cell growth. Increases in intracellular granularity have been observed during physiological processes that include senescence, apoptosis, and autophagy, making this phenotypic change a useful marker for identifying small molecules that induce cellular growth arrest or death. In this regard, epithelial-derived cancer cell lines appear uniquely susceptible to increased intracellular granularity following exposure to chemotherapeutics. We have established a novel flow cytometry approach that detects increases in side light scatter in response to morphological changes associated with intracellular granularity in the androgen-sensitive LNCaP and androgen-independent PC3 human prostate cancer cell lines. A cell-based assay was developed to screen for small molecule inducers of intracellular granularity using the HyperCyt® high-throughput flow cytometry platform. Validation was performed using the Prestwick Chemical Library, where known modulators of LNCaP intracellular granularity, such as testosterone, were identified. Nonandrogenic inducers of granularity were also detected. A further screen of ~25,000 small molecules led to the identification of a class of aryl-oxazoles that increased intracellular granularity in both cell lines, often leading to cell death. The most potent agents exhibited submicromolar efficacy in LNCaP and PC3 cells. PMID:19470718

  16. Detection of intracellular granularity induction in prostate cancer cell lines by small molecules using the HyperCyt high-throughput flow cytometry system.

    PubMed

    Haynes, Mark K; Strouse, J Jacob; Waller, Anna; Leitao, Andrei; Curpan, Ramona F; Bologa, Cristian; Oprea, Tudor I; Prossnitz, Eric R; Edwards, Bruce S; Sklar, Larry A; Thompson, Todd A

    2009-07-01

    Prostate cancer is a leading cause of death among men due to the limited number of treatment strategies available for advanced disease. Discovery of effective chemotherapeutics involves the identification of agents that inhibit cancer cell growth. Increases in intracellular granularity have been observed during physiological processes that include senescence, apoptosis, and autophagy, making this phenotypic change a useful marker for identifying small molecules that induce cellular growth arrest or death. In this regard, epithelial-derived cancer cell lines appear uniquely susceptible to increased intracellular granularity following exposure to chemotherapeutics. We have established a novel flow cytometry approach that detects increases in side light scatter in response to morphological changes associated with intracellular granularity in the androgen-sensitive LNCaP and androgen-independent PC3 human prostate cancer cell lines. A cell-based assay was developed to screen for small molecule inducers of intracellular granularity using the HyperCyt high-throughput flow cytometry platform. Validation was performed using the Prestwick Chemical Library, where known modulators of LNCaP intracellular granularity, such as testosterone, were identified. Nonandrogenic inducers of granularity were also detected. A further screen of approximately 25,000 small molecules led to the identification of a class of aryl-oxazoles that increased intracellular granularity in both cell lines, often leading to cell death. The most potent agents exhibited submicromolar efficacy in LNCaP and PC3 cells. PMID:19470718

  17. Flow Cytometric Analysis of Immune Cells Within Murine Aorta.

    PubMed

    Gjurich, Breanne N; Taghavie-Moghadam, Parésa L; Galkina, Elena V

    2015-01-01

    The immune system plays a critical role in the modulation of atherogenesis at all stages of the disease. However, there are many technical difficulties when studying the immune system within murine aortas. Common techniques such as PCR and immunohistochemistry have answered many questions about the presence of immune cells and mediators of inflammation within the aorta yet many questions remain unanswered due to the limitations of these techniques. On the other hand, cumulatively the flow cytometry approach has propelled the immunology field forward but it has been challenging to apply this technique to aortic tissues. Here, we describe the methodology to isolate and characterize the immune cells within the murine aorta and provide examples of functional assays for aortic leukocytes using flow cytometry. The method involves the harvesting and enzymatic digestion of the aorta, extracellular and intracellular protein staining, and a subsequent flow cytometric analysis. PMID:26445788

  18. A simple and rapid screening method for sulfonamides in honey using a flow injection system coupled to a liquid waveguide capillary cell.

    PubMed

    Catelani, Tiago Augusto; Tóth, Ildikó Vargáné; Lima, José L F C; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-04-01

    A rapid and simple screening method was developed for the determination of sulfonamides in honey samples by flow injection analysis (FIA) coupled to a liquid waveguide capillary cell. The proposed method is based on the reaction between sulfonamides and p-dimethylaminocinnamaldehyde (p-DAC) in the presence of sodium dodecylsulate (SDS) in dilute acid medium (hydrochloric acid), with the reaction product being measured spectrophotometrically at λ(max) = 565 nm. Experimental design methodology was used to optimize the analytical conditions. The proposed technique was applied to the determination of sulfonamides (sulfaquinoxaline, sulfadimethoxine, and sulfathiazole) in honey samples, in a concentration range from 6.00 × 10(-3) to 1.15 × 10(-1)mg L(-1). The detection (LOD) and quantification (LOQ) limits were 1.66 × 10(-3) and 5.54 × 10(-3)mg L(-1), respectively. Positive and false positive samples were also analyzed by a confirmatory HPLC method. The proposed system enables the screening of sulfonamides in honey samples with a low number of false positive results, with fast response therefore offers a new tool for consumer protection. PMID:24607139

  19. Systems and methods for rebalancing redox flow battery electrolytes

    DOEpatents

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  20. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  1. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  2. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    PubMed Central

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2012-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass because of faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research. PMID:21656713

  3. Cell stretching in extensional flows for assaying cell mechanics

    NASA Astrophysics Data System (ADS)

    Gossett, Daniel; Tse, Henry; Adeyiga, Oladunni; Yang, Otto; Rao, Jianyu; di Carlo, Dino

    2013-03-01

    There is growing evidence that cell deformability is a useful indicator of cell state and may be a label-free biomarker of metastatic potential, degree of differentiation, and leukocyte activation. In order for deformability measurements to be clinically valuable given the heterogeneity of biological samples, there exists a need for a high-throughput assay of this biophysical property. We developed a robust method for obtaining high-throughput (>1,000 cells/sec) single-cell mechanical measurements which employs coupled hydrodynamic lift forces and curvature-induced secondary flows to uniformly position cells in flow, extensional flow stretching, high-speed imaging, and automated image analysis to extract diameter and deformability parameters. Using this method we have assayed numerous in vitro models of cellular transformations and clinical fluids where malignant cells manifest. We found transformations associated with increased motility or invasiveness increased deformability and the presence of large and deformable cells within clinical pleural fluids correlated well with cytological diagnoses of malignancy. This agrees with the hypothesis that cancerous cells are deformable by necessity-to be able to transverse tight endothelial gaps and invade tissues.

  4. Redox flow cell development and demonstration project, calendar year 1977

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Research and development on the redox flow cell conducted from January 1, 1977, to December 31, 1977, are described in this report. The major focus of the effort during 1977 was the key technology issues that directly influence the fundamental feasibility of the overall redox concept. These issues were the development of a suitable ion exchange membrane for the system, the screening and study of candidate redox couples to achieve optimum cell performance, and the carrying out of systems analysis and modeling to develop system performance goals and cost estimates.

  5. CD4 T-Cell Enumeration in a Field Setting: Evaluation of CyFlow Counter Using the CD4 Easy Count Kit-Dry and Pima CD4 Systems

    PubMed Central

    Wade, Djibril; Diaw, Papa Alassane; Daneau, Géraldine; Camara, Makhtar; Dieye, Tandakha Ndiaye; Mboup, Souleymane; Kestens, Luc

    2013-01-01

    Background Flow Cytometry (FCM) is still considered to be the method of choice for accurate CD4 enumeration. However, the use of FCM in developing countries is problematic due to their cost and complexity. Lower-cost technologies have been introduced. We evaluated CyFlow Counter together with its lyophilized reagents, and Pima CD4 in high-temperature area, using FACSCount as reference. Materials and Methods Whole blood samples were consecutively collected by venipuncture from 111 HIV+ patients and 17 HIV-negative donors. CD4 T-cell enumeration was performed on CyFlow Counter, Pima CD4 and FACSCount. Results CyFlow Counter and Pima CD4 systems showed good correlation with FACSCount (slope of 0.82 and 0.90, and concordance ρc of 0.94 and 0.98, respectively). CyFlow Counter showed absolute or relative biases (LOA) of −63 cells/mm3 (−245 to 120) or −9.8% (−38.1 to 18.4) respectively, and Pima CD4 showed biases (LOA) of −30 cells/mm3 (−160 to 101) or −3.5% (−41.0 to 33.9%). CyFlow Counter and Pima CD4 showed respectively 106.7% and 105.9% of similarity with FACSCount. According to WHO-2010 ART initiation threshold of 350 cells/mm3, CyFlow Counter and Pima CD4 showed respectively sensibility of 100% and 97%, and specificity of 91% and 93%. CyFlow Counter and Pima CD4 were strongly correlated (slope of 1.09 and ρc of 0.95). These alternative systems showed good agreement with bias of 33 cells/mm3 (−132 to 203) or 6.3% (−31.2 to 43.8), and similarity of 104.3%. Conclusion CyFlow Counter using CD4 easy count kit-dry and Pima CD4 systems can accurately provide CD4 T-cell counts with acceptable agreement to those of FACSCount. PMID:24066184

  6. 3D-printed and CNC milled flow-cells for chemiluminescence detection.

    PubMed

    Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S

    2014-08-01

    Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines. PMID:24881540

  7. A dynamic plug flow reactor model for a vanadium redox flow battery cell

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-04-01

    A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.

  8. A high flow turbine CPAP system.

    PubMed

    Moran, J L; Jackson, M P; Cameron, D M; Peisach, A R; Cunningham, D N; O'Fathartaigh, M S

    1988-01-01

    A continuous high flow CPAP system incorporating a turbine blower is described. The system achieves inspiratory flow rates of 150 l/min or more by means of reticulated gas flow and inspired oxygen fractions of 0.21-0.95. Positive airway pressure is provided by weighted disc valves and a modified aviation-type CPAP face mask provides electronic communication with the patient. The mobility of the system also enables its use as an intermittent physiotherapy aid. Work of breathing of the system, as assessed by total pressure fluctuations is at a minimum.

  9. Ex-situ experimental studies on serpentine flow field design for redox flow battery systems

    NASA Astrophysics Data System (ADS)

    Jyothi Latha, T.; Jayanti, S.

    2014-02-01

    Electrolyte distribution using parallel flow field for redox flow battery (RFB) applications shows severe non-uniformity, while the conventional design of using the carbon felt itself as the flow distributor gives too high pressure drop. An optimized flow field design for uniform flow distribution at a minimal parasitic power loss is therefore needed for RFB systems. Since the materials and geometrical dimensions in RFBs are very different from those used in fuel cells, the hydrodynamics of the flow fields in RFBs is likely to be very different. In the present paper, we report on a fundamental study of the hydrodynamics of a serpentine flow field relevant to RFB applications. The permeability of the porous medium has been measured under different compression ratios and this is found to be in the range of 5-8 × 10-11 m2. The pressure drop in two serpentine flow fields of different geometric characteristics has been measured over a range of Reynolds numbers. Further analysis using computational fluid dynamics simulations brings out the importance of the compression of the porous medium as an additional parameter in determining the flow distribution and pressure drop in these flow fields.

  10. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  11. Acoustic Flow Monitor System - User Manual

    USGS Publications Warehouse

    LaHusen, Richard

    2005-01-01

    INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.

  12. LADEE Propulsion System Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.

    2013-01-01

    Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012

  13. Monitoring electrolyte concentrations in redox flow battery systems

    DOEpatents

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  14. Flow cytometer acquisition and detection system

    SciTech Connect

    Casstevens, Martin K.; Burzynski, Ryszard; Weibel, John; Kachynski, Alexander

    2010-05-04

    A flow cytometer has a flow cell through which a sample flows and at least one laser emitting an excitation beam for illuminating a corresponding interrogation region in the flow cell. Scattered and fluorescence light from each interrogation region is collected by one or more input fibers for that region, and the input fiber(s) are fed to a dispersion module for that interrogation region that disperses the incoming light into different spectral regions. The dispersed light is conveyed, such as by a plurality of output fibers, to one or more photosensitive detectors. Thus, time multiplexed light signals may be delivered to a detector whereby several unique light signals can be measured by a single detector.

  15. The Geophysical Fluid Flow Cell Experiment

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.

    1999-01-01

    The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.

  16. Flow-cell fibre-optic enzyme sensor for phenols

    SciTech Connect

    Papkovsky, D.B.; Ghindilis, A.L.; Kurochkin, I.N. )

    1993-07-01

    A solid-state fibre-optic luminescent oxygen sensor was used for flow-through measurements. It acts as a transducer in a new flow-cell enzyme sensor arrangement. This arrangement comprises a flow path, sample injector, microcolumn with the immobilized enzyme, oxygen membrane and fibre-optic connector joined together to form an integral unit. Laccase enzyme was used as a recognition system which provided specific oxidation of the substrates with the dissolved oxygen being monitored. The assay procedure was optimized and performance of the new system studied. The sensor was applied to the determination polyphenol content in tea, brandy, etc. (quality control test). The sensitivity to some important phenolic compounds was tested with the view of industrial wastewater control applications. 5 refs., 6 figs., 1 tab.

  17. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  18. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, M.S.

    1997-06-24

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.

  19. Flow Battery System Design for Manufacturability.

    SciTech Connect

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  20. Neural network system for traffic flow management

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Elibiary, Khalid J.; Petersson, L. E. Rickard

    1992-09-01

    Atlanta will be the home of several special events during the next five years ranging from the 1996 Olympics to the 1994 Super Bowl. When combined with the existing special events (Braves, Falcons, and Hawks games, concerts, festivals, etc.), the need to effectively manage traffic flow from surface streets to interstate highways is apparent. This paper describes a system for traffic event response and management for intelligent navigation utilizing signals (TERMINUS) developed at Georgia Tech for adaptively managing special event traffic flows in the Atlanta, Georgia area. TERMINUS (the original name given Atlanta, Georgia based upon its role as a rail line terminating center) is an intelligent surface street signal control system designed to manage traffic flow in Metro Atlanta. The system consists of three components. The first is a traffic simulation of the downtown Atlanta area around Fulton County Stadium that models the flow of traffic when a stadium event lets out. Parameters for the surrounding area include modeling for events during various times of day (such as rush hour). The second component is a computer graphics interface with the simulation that shows the traffic flows achieved based upon intelligent control system execution. The final component is the intelligent control system that manages surface street light signals based upon feedback from control sensors that dynamically adapt the intelligent controller's decision making process. The intelligent controller is a neural network model that allows TERMINUS to control the configuration of surface street signals to optimize the flow of traffic away from special events.

  1. A CLIPS expert system for clinical flow cytometry data analysis

    NASA Technical Reports Server (NTRS)

    Salzman, G. C.; Duque, R. E.; Braylan, R. C.; Stewart, C. C.

    1990-01-01

    An expert system is being developed using CLIPS to assist clinicians in the analysis of multivariate flow cytometry data from cancer patients. Cluster analysis is used to find subpopulations representing various cell types in multiple datasets each consisting of four to five measurements on each of 5000 cells. CLIPS facts are derived from results of the clustering. CLIPS rules are based on the expertise of Drs. Stewart, Duque, and Braylan. The rules incorporate certainty factors based on case histories.

  2. Ultrasonic flow imaging system: A feasibility study

    SciTech Connect

    Sheen, S.H.; Lawrence, W.P.; Chien, H.T.; Raptis, A.C.

    1991-09-01

    This report examines the feasibility and potential problems in developing a real-time ultrasonic flow imaging instrument for on-line monitoring of mixed-phased flows such as coal slurries. State-of-the-art ultrasonic imaging techniques are assessed for this application. Reflection and diffraction tomographies are proposed for further development, including image-reconstruction algorithms and parallel processing systems. A conventional ultrasonic C-scan technique is used to demonstrate the feasibility of imaging the particle motion in a solid/water flow. 13 refs., 11 figs.

  3. Investigation of propellant flow control system

    NASA Technical Reports Server (NTRS)

    Liebman, A. A.

    1973-01-01

    Mechanical, electromechanical, and fluidic concepts were studied as propellant flow control system for oxygen/hydrogen attitude control thrusters. A mechanical flow controller was designed, fabricated, and tested with hydrogen, oxygen, and nitrogen over a range of inlet pressures and temperatures. Results of these tests are presented along with a discussion of a flight-weight design. Also presented are recommendations for further design and development. A detailed coverage of the fluidics investigation is included.

  4. Cancer cell glycocalyx mediates mechanotransduction and flow-regulated invasion.

    PubMed

    Qazi, Henry; Palomino, Rocio; Shi, Zhong-Dong; Munn, Lance L; Tarbell, John M

    2013-11-01

    Mammalian cells are covered by a surface proteoglycan (glycocalyx) layer, and it is known that blood vessel-lining endothelial cells use the glycocalyx to sense and transduce the shearing forces of blood flow into intracellular signals. Tumor cells in vivo are exposed to forces from interstitial fluid flow that may affect metastatic potential but are not reproduced by most in vitro cell motility assays. We hypothesized that glycocalyx-mediated mechanotransduction of interstitial flow shear stress is an un-recognized factor that can significantly enhance metastatic cell motility and play a role in augmentation of invasion. Involvement of MMP levels, cell adhesion molecules (CD44, α3 integrin), and glycocalyx components (heparan sulfate and hyaluronan) was investigated in a cell/collagen gel suspension model designed to mimic the interstitial flow microenvironment. Physiological levels of flow upregulated MMP levels and enhanced the motility of metastatic cells. Blocking the flow-enhanced expression of MMP activity or adhesion molecules (CD44 and integrins) resulted in blocking the flow-enhanced migratory activity. The presence of a glycocalyx-like layer was verified around tumor cells, and the degradation of this layer by hyaluronidase and heparinase blocked the flow-regulated invasion. This study shows for the first time that interstitial flow enhancement of metastatic cell motility can be mediated by the cell surface glycocalyx - a potential target for therapeutics.

  5. Automated cell viability assessment using a microfluidics based portable imaging flow analyzer

    PubMed Central

    Jagannadh, Veerendra Kalyan; Adhikari, Jayesh Vasudeva; Gorthi, Sai Siva

    2015-01-01

    In this work, we report a system-level integration of portable microscopy and microfluidics for the realization of optofluidic imaging flow analyzer with a throughput of 450 cells/s. With the use of a cellphone augmented with off-the-shelf optical components and custom designed microfluidics, we demonstrate a portable optofluidic imaging flow analyzer. A multiple microfluidic channel geometry was employed to demonstrate the enhancement of throughput in the context of low frame-rate imaging systems. Using the cell-phone based digital imaging flow analyzer, we have imaged yeast cells present in a suspension. By digitally processing the recorded videos of the flow stream on the cellphone, we demonstrated an automated cell viability assessment of the yeast cell population. In addition, we also demonstrate the suitability of the system for blood cell counting. PMID:26015835

  6. Automated cell viability assessment using a microfluidics based portable imaging flow analyzer.

    PubMed

    Jagannadh, Veerendra Kalyan; Adhikari, Jayesh Vasudeva; Gorthi, Sai Siva

    2015-03-01

    In this work, we report a system-level integration of portable microscopy and microfluidics for the realization of optofluidic imaging flow analyzer with a throughput of 450 cells/s. With the use of a cellphone augmented with off-the-shelf optical components and custom designed microfluidics, we demonstrate a portable optofluidic imaging flow analyzer. A multiple microfluidic channel geometry was employed to demonstrate the enhancement of throughput in the context of low frame-rate imaging systems. Using the cell-phone based digital imaging flow analyzer, we have imaged yeast cells present in a suspension. By digitally processing the recorded videos of the flow stream on the cellphone, we demonstrated an automated cell viability assessment of the yeast cell population. In addition, we also demonstrate the suitability of the system for blood cell counting. PMID:26015835

  7. Mimicking the Interfacial Dynamics of Flowing White Blood Cells

    NASA Astrophysics Data System (ADS)

    Santore, Maria

    2015-03-01

    The rolling of particles on surfaces, facilitated by hydrodynamic forces combined with localized surface interactions of the appropriate strengths, spatial arrangements, and ranges, is a technologically useful means of transporting and manipulating particles. One's intuition for the rolling of a marble or a car tire cannot be extrapolated down to microparticle length scales because the microparticle interactions are dominated by electrostatic, van der Waals, and hydrogen bonding interactions rather than a friction that depends on an imposed normal force. Indeed, our microparticle rolling systems are inspired by the rolling of white blood cells on the inner walls of venules as part of the innate immune response: Selectin molecules engage with their counterparts on the opposing surfaces to slow cell motion relative to that for freely flowing cells. In the resulting rolling signature, ligand-receptor binding and crack closing on the front of the cell are balanced with molecular dis-bonding and crack opening at the rear. The contact region is relatively static, allowing other interactions (for instance signaling) to occur for a finite duration. Thus, achieving particle rolling in synthetic systems is important because it facilitates particle-surface interactions in a continuous nonfouling fashion where the contact surface is continually renewed. In developing a synthetic model for this system, we employ polymers to modify flowing particles and /or planar collectors, producing heterogeneous interfaces which can support rolling or produce other motion signatures such as skipping, arrest, or free flow. We identify, in the synthetic system, combinations of variables that produce rolling and demonstrate how the distinction between rolling and arrest is not a simple matter of the adhesion strength between the particles and the collector. Rolling is a cooperative process and the coordination of binding in one location with dis-bonding in another requires appropriate length

  8. Flow Systems Newsletters, 1978-1979

    SciTech Connect

    Jett, J.H.

    1980-03-01

    The purpose of the Newsletter is to provide a means of rapid communication among interested investigators in the fields of biology, medicine and instrumental development who use the powerful techniques of flow cytometry and cell sorting. The Newsletter is entirely dependent upon contributions from readers for its content. Those contributions fall into the categories of abstracts of papers accepted for publication, research notes, research questions, positions desired, positions available, and announcements of general interest to the flow community. In this report, the eight Newsletters issued during 1978-1979 are compiled.

  9. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  10. Droplet Dynamics of a Flowing Emulsion System

    NASA Astrophysics Data System (ADS)

    Cypull, Olivia; Feitosa, Klebert

    The inner workings of glassy systems have long been a topic of interest for soft material scientists. Similarities between the jamming behavior of emulsions and the glass transition of glassy systems have prompted the conjecture that they might share the same underlying mechanism. Here we study a dense oil-in-water emulsion system forced to flow through a narrow microchannel. By matching the index of refraction of the two phases, we image the internal dynamics of the droplets in a confocal microscope. At low velocity speeds, we find that the velocity along the edge of the microchannel was not significantly different than then the average droplet velocity in the bulk suggesting a near plug flow. By contrast the droplets near the edge experienced more movement perpendicular to the flow indicating the fluidization effect of the confining walls.

  11. From Traffic Flow to Economic System

    NASA Astrophysics Data System (ADS)

    Bando, M.

    The optimal velocity model which is applied to traffic flow phenomena explains a spontaneous formation of traffic congestion. We discuss why the model works well in describing both free-flow and congested flow states in a unified way. The essential ingredient is that our model takes account of a sort of time delay in reacting to a given stimulus. This causes instability of many-body system, and yields a kind of phase transition above a certain critical density. Especially there appears a limit cycle on the phase space along which individual vehicle moves, and they show cyclic behavior. Once that we recognize the mechanism the same idea can be applied to a variety of phenomena which show cyclic behavior observed in many-body systems. As an example of such applications, we investigate business cycles commonly observed in economic system. We further discuss a possible origin of a kind of cyclic behavior observed in climate change.

  12. Fuel cell system configurations

    DOEpatents

    Kothmann, Richard E.; Cyphers, Joseph A.

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  13. Code System to Calculate Tornado-Induced Flow Material Transport.

    SciTech Connect

    ANDRAE, R. W.

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.

  14. Counter-Flow Cooling Tower Test Cell

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Nožička, Jiří

    2014-03-01

    The article contains a design of a functional experimental model of a cross-flow mechanical draft cooling tower and the results and outcomes of measurements. This device is primarily used for measuring performance characteristics of cooling fills, but with a simple rebuild, it can be used for measuring other thermodynamic processes that take part in so-called wet cooling. The main advantages of the particular test cell lie in the accuracy, size, and the possibility of changing the water distribution level. This feature is very useful for measurements of fills of different heights without the influence of the spray and rain zone. The functionality of this test cell has been verified experimentally during assembly, and data from the measurement of common film cooling fills have been compared against the results taken from another experimental line. For the purpose of evaluating the data gathered, computational scripts were created in the MATLAB numerical computing environment. The first script is for exact calculation of the thermal balance of the model, and the second is for determining Merkel's number via Chebyshev's method.

  15. A Mechanical System to Reproduce Cardiovascular Flows

    NASA Astrophysics Data System (ADS)

    Lindsey, Thomas; Valsecchi, Pietro

    2010-11-01

    Within the framework of the "Pumps&Pipes" collaboration between ExxonMobil Upstream Research Company and The DeBakey Heart and Vascular Center in Houston, a hydraulic control system was developed to accurately simulate general cardiovascular flows. The final goal of the development of the apparatus was the reproduction of the periodic flow of blood through the heart cavity with the capability of varying frequency and amplitude, as well as designing the systolic/diastolic volumetric profile over one period. The system consists of a computer-controlled linear actuator that drives hydraulic fluid in a closed loop to a secondary hydraulic cylinder. The test section of the apparatus is located inside a MRI machine, and the closed loop serves to physically separate all metal moving parts (control system and actuator cylinder) from the MRI-compatible pieces. The secondary cylinder is composed of nonmetallic elements and directly drives the test section circulatory flow loop. The circulatory loop consists of nonmetallic parts and several types of Newtonian and non-Newtonian fluids, which model the behavior of blood. This design allows for a periodic flow of blood-like fluid pushed through a modeled heart cavity capable of replicating any healthy heart condition as well as simulating anomalous conditions. The behavior of the flow inside the heart can thus be visualized by MRI techniques.

  16. Aqueous semi-solid flow cell: demonstration and analysis.

    PubMed

    Li, Zheng; Smith, Kyle C; Dong, Yajie; Baram, Nir; Fan, Frank Y; Xie, Jing; Limthongkul, Pimpa; Carter, W Craig; Chiang, Yet-Ming

    2013-10-14

    An aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)3-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions. The importance of plug flow to achieving high energy efficiency in flow batteries utilizing highly non-Newtonian flow electrodes is emphasized.

  17. Aqueous semi-solid flow cell: demonstration and analysis

    SciTech Connect

    Li, Z; Smith, KC; Dong, YJ; Baram, N; Fan, FY; Xie, J; Limthongkul, P; Carter, WC; Chiang, YM

    2013-01-01

    An aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)(3)-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions. The importance of plug flow to achieving high energy efficiency in flow batteries utilizing highly non-Newtonian flow electrodes is emphasized.

  18. Mechanical response of tumor cells flowing through a microfluidic capillary

    NASA Astrophysics Data System (ADS)

    Khan, Zeina S.; Kamyabi, Nabiollah; Hussain, Fazle; Vanapalli, Siva A.

    2014-03-01

    Circulating tumor cells, the primary cause of cancer metastasis, are transported throughout the body to distant organs by blood flow. Despite the importance of cell transport and deformability in the vasculature for cancer metastasis, quantitative understanding of the hydrodynamic interactions between the cells and the blood vessel walls is lacking. Using a model microfluidic capillary of rectangular cross-section with an on-chip manometer coupled with high speed video imaging, we quantitatively investigate the hydrodynamic behavior via the cell excess pressure drop. By characterizing our device with simple model systems including viscous drops and soft elastic particles, we find that the excess pressure drop shows no apparent dependence on elastic modulus or interfacial tension, but depends significantly on internal viscosity for moderate confinements and shear stresses within the physiological range of 1-10 Pa. This suggests that the metastatic potential of circulating cells can be characterized by the effective viscosity. We test this hypothesis with several tumor cell lines and find that the effective cell viscosity determined from excess pressure drop measurements can be used to differentiate highly from lowly invasive cells.

  19. Resource Prospector Propulsion System Cold Flow Testing

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu

    2015-01-01

    Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and

  20. Systems cell biology.

    PubMed

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  1. Systems cell biology

    PubMed Central

    Mast, Fred D.; Ratushny, Alexander V.

    2014-01-01

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology. PMID:25225336

  2. Synergistic effect of high-affinity binding and flow preconditioning on endothelial cell adhesion.

    PubMed

    Mathur, Anshu B; Truskey, George A; Reichert, William M

    2003-01-01

    The current study examined whether the combined introduction of high-affinity avidin-biotin bonds and fibronectin-integrin bonds (i.e., dual ligand treatment) would further augment the adhesion of flow-preconditioned endothelial cells to model substrates via contributions to the actin cytoskeleton and the formation of focal contacts. Human umbilical vein endothelial cells (HUVEC) were grown under static conditions or exposed to a flow-preconditioning regimen for 24 h. Cell retention was determined by exposure to 75 dynes/cm(2). The combination of flow preconditioning and the dual ligand treatment yielded higher cell retention under flow compared to the cells adherent via fibronectin-integrin bonds only. This increase in adhesion strength correlated with a greater focal contact area. Elongation of the HUVEC occurred after exposure to flow preconditioning; however, orientation of dual ligand adherent cells was restricted due to the presence of the high-affinity ligand. Flow-preconditioned cells showed increased stress fiber formation compared to nonconditioned cells although the stress fibers per cell for flow-preconditioned cells were the same on both the ligand systems employed. The results indicate that enhanced adhesion strength is due to a combination of increased focal contact area, stress fiber formation, and cell alignment. PMID:12483708

  3. Design Flexibility of Redox Flow Systems. [for energy storage applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1982-01-01

    The characteristics inherent in Redox flow systems permit considerable latitude in designing systems for specific storage applications. The first of these characteristics is the absence of plating/deplating reactions with their attendant morphology changes at the electrodes. This permits a given Redox system to operate over a wide range of depths of discharge and charge/discharge rates. The second characteristic is the separation of power generating components (stacks) from the energy storage components (tanks). This results in cost effective system design, ease of system growth via modularization, and freedom from sizing restraints so that the whole spectrum of applications, from utilities down to single residence can be considered. The final characteristic is the commonality of the reactant fluids which assures that all cells at all times are receiving reactants at the same state of charge. Since no cell can be out of balance with respect to any other cell, it is possible for some cells to be charged while others are discharging, in effect creating a DC to DC transformer. It is also possible for various groups of cells to be connected to separate loads, thus supplying a range of output voltages. Also, trim cells can be used to maintain constant bus voltage as the load is changed or as the depth of discharge increases. The commonality of reactant fluids also permits any corrective measures such as rebalancing to occur at the system level instead of at the single cell level.

  4. Code System to Calculate Tornado-Induced Flow Material Transport.

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation systemmore » components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.« less

  5. High-throughput magnetic flow sorting of human cells selected on the basis of magnetophoretic mobility

    NASA Astrophysics Data System (ADS)

    Reece, Lisa M.; Sanders, Lehanna; Kennedy, David; Guernsey, Byron; Todd, Paul; Leary, James F.

    2010-02-01

    We have shown the potential of a new method for optimizing the separation of human stem cell subsets from peripheral blood based on a novel cell labeling technique that leverages the capabilities of a new commercially available high speed magnetic cell sorting system (IKOTECH LLC, New Albany, IN). This new system sorts cells in a continuously flowing manner using a Quadrupole Magnetic cell Sorter (QMS). The sorting mechanism is based upon the magnetophoretic mobility of the cells, a property related to the relative binding distributions of magnetic particles per cell, as determined by the utilization of a Magnetic Cell Tracking Velocimeter (MCTV). KG-1 cells were competitively labeled with anti-CD34 magnetic beads and anti-CD34 FITC to obtain an optimal level of magnetophoretic mobility as visualized by the MCTV for high throughput sort recovery in the QMS. In QMS sorting, the concept of split-flow thin channel (SPLITT) separation technology is applied by having a sample stream enter a vertical annular flow channel near the channel's interior wall followed by another sheath flow entering near the exterior wall. The two flows are initially separated by a flow splitter. They pass through the bore of a Halbach permanent quadrupole magnet assembly, which draws magnetized cells outward and deflects them into a positive outflow, while negative cells continue straight out via the inner flow lamina. QMS sorts cells based upon their magnetophoretic mobility, or the velocity of a cell per unit ponderomotive force, the counterpart of fluorescence intensity in flow cytometry. The magnetophoretic mobility distribution of a cell population, measured by automated MCTV, is used as input data for the algorithmic control of sample, sheath, and outlet flow velocities of the QMS. In this study, the relative binding distributions of magnetic particles per cell were determined by MCTV using novel sorting and sizing algorithms. The resulting mobility histograms were used to set the QMS

  6. Alternative flow cytometry strategies to analyze stem cells and cell death in planarians.

    PubMed

    Peiris, Tanuja Harshani; García-Ojeda, Marcos E; Oviedo, Néstor J

    2016-04-01

    Planarians possess remarkable stem cell populations that continuously support cellular turnover and are instrumental in the regeneration of tissues upon injury. Cellular turnover and tissue regeneration in planarians rely on the proper integration of local and systemic signals that regulate cell proliferation and cell death. Thus, understanding the signals controlling cellular proliferation and cell death in planarians could provide valuable insights for maintenance of adult body homeostasis and the biology of regeneration. Flow cytometry techniques have been utilized widely to identify, isolate, and characterize planarian stem cell populations. We developed alternative flow cytometry strategies that reduce the number of reagents and the time of sample preparation to analyze stem cells and cell death in planarians. The sensitivity of these methods is validated with functional studies using RNA interference and treatment with  γ irradiation or stressful conditions that are known to trigger cell death. Altogether, we provide a community resource intended to minimize adverse effects during ex vivo studies of stem cells and cell death in planarians.

  7. Alternative flow cytometry strategies to analyze stem cells and cell death in planarians

    PubMed Central

    Peiris, Tanuja Harshani; García‐Ojeda, Marcos E.

    2016-01-01

    Abstract Planarians possess remarkable stem cell populations that continuously support cellular turnover and are instrumental in the regeneration of tissues upon injury. Cellular turnover and tissue regeneration in planarians rely on the proper integration of local and systemic signals that regulate cell proliferation and cell death. Thus, understanding the signals controlling cellular proliferation and cell death in planarians could provide valuable insights for maintenance of adult body homeostasis and the biology of regeneration. Flow cytometry techniques have been utilized widely to identify, isolate, and characterize planarian stem cell populations. We developed alternative flow cytometry strategies that reduce the number of reagents and the time of sample preparation to analyze stem cells and cell death in planarians. The sensitivity of these methods is validated with functional studies using RNA interference and treatment with  γ irradiation or stressful conditions that are known to trigger cell death. Altogether, we provide a community resource intended to minimize adverse effects during ex vivo studies of stem cells and cell death in planarians. PMID:27307993

  8. The Analysis of Cell Cycle, Proliferation, and Asymmetric Cell Division by Imaging Flow Cytometry.

    PubMed

    Filby, Andrew; Day, William; Purewal, Sukhveer; Martinez-Martin, Nuria

    2016-01-01

    Measuring cellular DNA content by conventional flow cytometry (CFC) and fluorescent DNA-binding dyes is a highly robust method for analysing cell cycle distributions within heterogeneous populations. However, any conclusions drawn from single-parameter DNA analysis alone can often be confounded by the asynchronous nature of cell proliferation. We have shown that by combining fluorescent DNA stains with proliferation tracking dyes and antigenic staining for mitotic cells one can elucidate the division history and cell cycle position of any cell within an asynchronously dividing population. Furthermore if one applies this panel to an imaging flow cytometry (IFC) system then the spatial information allows resolution of the four main mitotic phases and the ability to study molecular distributions within these populations. We have employed such an approach to study the prevalence of asymmetric cell division (ACD) within activated immune cells by measuring the distribution of key fate determining molecules across the plane of cytokinesis in a high-throughput, objective, and internally controlled manner. Moreover the ability to perform high-resolution, temporal dissection of the cell division process lends itself perfectly to investigating the influence chemotherapeutic agents exert on the proliferative capacity of transformed cell lines. Here we describe the method in detail and its application to both ACD and general cell cycle analysis. PMID:27460238

  9. Ultrasonic Enrichment of Flowing Blood Cells in Capillars: Influence of the Flow Rate

    NASA Astrophysics Data System (ADS)

    Carreras, Pilar; Gonzalez, Itziar; Ahumada, Oscar

    Red blood cells subjected to standing waves collect at the pressure nodes during their flow motion. Blood is a non-newtonian fluid whose density and other properties are defined by its flow velocity. Their drift motion is governed by the radiation force together with hydrodynamic conditions. This work presents a study of the blood cell enrichment performed in a rectangular capillar at f=1 MHz as a function of their flow motion. The cells collect along the central axis of the capillary in very few seconds, with a clearance in other lateral areas. Optimal flow rates below 100uL/min were found in the experiments.

  10. Parallel-plate flow chamber and continuous flow circuit to evaluate endothelial progenitor cells under laminar flow shear stress.

    PubMed

    Lane, Whitney O; Jantzen, Alexandra E; Carlon, Tim A; Jamiolkowski, Ryan M; Grenet, Justin E; Ley, Melissa M; Haseltine, Justin M; Galinat, Lauren J; Lin, Fu-Hsiung; Allen, Jason D; Truskey, George A; Achneck, Hardean E

    2012-01-01

    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12).

  11. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  12. Traction Forces of Endothelial Cells under Slow Shear Flow

    PubMed Central

    Perrault, Cecile M.; Brugues, Agusti; Bazellieres, Elsa; Ricco, Pierre; Lacroix, Damien; Trepat, Xavier

    2015-01-01

    Endothelial cells are constantly exposed to fluid shear stresses that regulate vascular morphogenesis, homeostasis, and disease. The mechanical responses of endothelial cells to relatively high shear flow such as that characteristic of arterial circulation has been extensively studied. Much less is known about the responses of endothelial cells to slow shear flow such as that characteristic of venous circulation, early angiogenesis, atherosclerosis, intracranial aneurysm, or interstitial flow. Here we used a novel, to our knowledge, microfluidic technique to measure traction forces exerted by confluent vascular endothelial cell monolayers under slow shear flow. We found that cells respond to flow with rapid and pronounced increases in traction forces and cell-cell stresses. These responses are reversible in time and do not involve reorientation of the cell body. Traction maps reveal that local cell responses to slow shear flow are highly heterogeneous in magnitude and sign. Our findings unveil a low-flow regime in which endothelial cell mechanics is acutely responsive to shear stress. PMID:26488643

  13. In vivo cell characteristic extraction and identification by photoacoustic flow cytography.

    PubMed

    He, Guo; Xu, Dong; Qin, Huan; Yang, Sihua; Xing, Da

    2015-10-01

    We present a photoacoustic flow cytography with fast cross-sectional (B-scan) imaging to precisely identify specific cells in vivo. The B-scan imaging speed of the system is up to 200 frame/s with a lateral resolution of 1.5 μm, which allows to dynamically image the flowing cells within the microvascular. The shape, size and photoacoustic intensity of the target cells are extracted from streaming images and integrated into a standard pattern to distinguish cell types. Circulating red blood cells and melanoma cells in blood vessels are simultaneously identified on melanoma-bearing mouse model. The results demonstrate that in vivo photoacoustic flow cytography can provide cells characteristics analysis and cell type's visual identification, which will be applied for noninvasively monitoring circulating tumor cells (CTCs) and analyzing hematologic diseases.

  14. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  15. Extension of dynamics of granular flow methodology to cell biology

    NASA Astrophysics Data System (ADS)

    Kummer, A.; Ocone, R.

    2003-04-01

    In a previous paper (J. Non-Newtonian Fluid Mech. 76 (1998) 5), the analogy between the methodology typical of the dynamics of polymeric liquids and those used in granular flow theory was investigated. It was shown that such a methodology could be successfully extended to granular flow, and then it was speculated on the possibility of extending it to diverse areas. In this paper two important conclusions are reached. Firstly we show that the methodology behind the statistical theories (which starting from the microstructural element eventually leads to the formulation of constitutive equations (AICHE Symposium Series, Vol. 93, 1997, p. 103)) can be extended to an apparently completely different field, namely cell biology. We then show that classical thermodynamics, as applied to epigenetic systems, presents limitations which can be overcome following an axiomatic thermodynamic route (J. Rheol. 37 (1993) 727).

  16. Lymphatic vessel development: fluid flow and valve-forming cells.

    PubMed

    Kume, Tsutomu

    2015-08-01

    Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow-associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders.

  17. Human red blood cells deformed under thermal fluid flow.

    PubMed

    Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang

    2006-03-01

    The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.

  18. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Chen, Zongzheng; Xiang, Cheng; Liu, Bo; Xie, Handi; Qin, Kairong

    2016-06-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  19. Collection of in vivo-like liver cell secretome with alternative sample enrichment method using a hollow fiber bioreactor culture system combined with tangential flow filtration for secretomics analysis.

    PubMed

    Wen, Yao-Tseng; Chang, Yu-Chen; Lin, Lung-Cheng; Liao, Pao-Chi

    2011-01-17

    A hollow fiber bioreactor (HFB) culture system coupled with a tangential flow filtration (TFF) device was used for HepG2 cell secretome analysis. In order to reduce the loss of low-molecular-weight proteins, two new features, the hollow fiber with 0.1 μm pore size and a TFF device with a membrane of 1kDa molecular weight cutoff, were added to the system described previously. The HFB culture system and the conventional dish culture method for secretome collection were compared side by side. It was observed that only a small fraction of cells (<0.01%) were lysed in the HFB culture system, in contrast to the 2.73% in the conventional dish culture. A total of 111 proteins were identified in the collected conditioned medium (CM) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with this improved collection procedure. Many of these proteins reported to be biomarkers for liver-related diseases. About 16% of the identified proteins were smaller than 20kDa, demonstrating that the modified collection system had the ability to reduce the loss of low-molecular-weight proteins, in contrast to our previous collection system. The percentage increase of proteins classified as extracellular space or plasma membrane between the conventional dish culture and the HFB culture system was 40-60%. We believed that in vivo-like culture environments could support liver cells to improve protein secretion than conventional dish cultures. We suggest that the combination of the HFB culture system, TFF device, and LC-MS/MS analysis, would be an efficient procedure for the collection and characterization of in vivo-like cell secretome. PMID:21167988

  20. Flow and Diffusion in Channel-Guided Cell Migration

    PubMed Central

    Marel, Anna-Kristina; Zorn, Matthias; Klingner, Christoph; Wedlich-Söldner, Roland; Frey, Erwin; Rädler, Joachim O.

    2014-01-01

    Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport

  1. Cell Radiation Experiment System

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2010-01-01

    The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

  2. Fuel cell system

    DOEpatents

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  3. Modeling of a thermally integrated 10 kWe planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction

    NASA Astrophysics Data System (ADS)

    Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas

    2015-04-01

    Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.

  4. Aerodynamic Flow Field Measurements for Automotive Systems

    NASA Technical Reports Server (NTRS)

    Hepner, Timothy E.

    1999-01-01

    The design of a modern automotive air handling system is a complex task. The system is required to bring the interior of the vehicle to a comfortable level in as short a time as possible. A goal of the automotive industry is to predict the interior climate of an automobile using advanced computational fluid dynamic (CFD) methods. The development of these advanced prediction tools will enable better selection of engine and accessory components. The goal of this investigation was to predict methods used by the automotive industry. To accomplish this task three separate experiments were performed. The first was a laboratory setup where laser velocimeter (LV) flow field measurements were made in the heating and air conditioning unit of a Ford Windstar. The second involved flow field measurements in the engine compartment of a Ford Explorer, with the engine running idle. The third mapped the flow field exiting the center dashboard panel vent inside the Explorer, while the circulating fan operated at 14 volts. All three experiments utilized full-coincidence three-component LV systems. This enabled the mean and fluctuating velocities to be measured along with the Reynolds stress terms.

  5. Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature.

    PubMed

    Fernando, Eustace; Keshavarz, Taj; Kyazze, Godfrey

    2014-03-01

    In this study, the commercially used model azo dye Acid Orange-7 (AO-7) was fully degraded into less toxic intermediates using an integrated microbial fuel cell (MFC) and aerobic bioreactor system. The integrated bioreactor system was operated at ambient temperature and continuous-flow mode. AO-7 loading rate was varied during experiments from 70gm(-3)day(-1) to 210gm(-3)day(-1). Colour and soluble COD removal rates reached>90% under all AO-7 loading rates. The MFC treatment stage prompted AO-7 to undergo reductive degradation into its constituent aromatic amines. HPLC-MS analysis of metabolite extracts from the aerobic stage of the bioreactor system indicated further oxidative degradation of the resulting aromatic amines into simpler compounds. Bioluminescence based Vibrio fischeri ecotoxicity testing demonstrated that aerobic stage effluent exhibited toxicity reductions of approximately fivefold and ten-fold respectively compared to the dye wastewater influent and MFC-stage effluent.

  6. Research development of designing flow cells for optical absorption detectors.

    PubMed

    Yang, Sandong; Tang, Tao; Li, Tong; Wang, Fengyun; Hao, Qingli

    2016-02-01

    The optical absorption detector is one of the most commonly used detectors for high performance liquid chromatography (HPLC). As a core part of this kind of detector, the designs of flow cells, where light passes through samples for acquiring samples information, will affect the performance of a detector. In order to enhance the signal to noise ratio of detectors and reduce the bands broadening that come from flow cells, it is necessary to design a flow cell with a longer optical path length and a less cell volume while maintaining the luminous flux. However the limitations of the machining capacity make it difficult to increase the optical path length, reduce the cell volume and keep or increase the luminous flux simultaneously. It is a challenge to optimize the designing and machining of flow cells so as to improve the performance of detectors. This review discusses the development of designing flow cells based on the detection principle in some aspects of increasing the optical path length, reducing the cell volume, taking the advantages of total reflection and so on. At the same time, some of the designs are illustrated in detail. These various ideas and structures are significant references for designing flow cells and developing optical absorption detectors. PMID:27382716

  7. Apheresis experience with a continuous flow cell separator.

    PubMed

    Norol, F; Aubert, C; Scotto, F; Duedari, N

    1988-01-01

    The Dideco Vivacell separator is a continuous-flow centrifugation system that has only recently been used for cytapheresis. The authors' experience with this separator in 451 plateletpheresis and 164 leukapheresis procedures is presented. Platelet collection provided high platelet yields (9.53 +/- 2.85 X 10(11) with a collection efficiency of 74 +/- 14 percent for about 6 liters of total blood processed. Functional integrity was confirmed by normal in vitro tests (aggregation and response to hypotonic stress) and good in vivo recovery (55%). In leukapheresis, white cell yields were high (3.42 +/- 1.2 X 10(10) with 85 percent polymorphonuclear neutrophil cells. Their oxidative metabolism functions (generation of free oxygen radicals), investigated by chemiluminescence, were increased over donor values. Donor reactions, all of the mild citrate type, were rare.

  8. Detection of circulating immune complexes by Raji cell assay: comparison of flow cytometric and radiometric methods

    SciTech Connect

    Kingsmore, S.F.; Crockard, A.D.; Fay, A.C.; McNeill, T.A.; Roberts, S.D.; Thompson, J.M.

    1988-01-01

    Several flow cytometric methods for the measurement of circulating immune complexes (CIC) have recently become available. We report a Raji cell flow cytometric assay (FCMA) that uses aggregated human globulin (AHG) as primary calibrator. Technical advantages of the Raji cell flow cytometric assay are discussed, and its clinical usefulness is evaluated in a method comparison study with the widely used Raji cell immunoradiometric assay. FCMA is more precise and has greater analytic sensitivity for AHG. Diagnostic sensitivity by the flow cytometric method is superior in systemic lupus erythematosus (SLE), rheumatoid arthritis, and vasculitis patients: however, diagnostic specificity is similar for both assays, but the reference interval of FCMA is narrower. Significant correlations were found between CIC levels obtained with both methods in SLE, rheumatoid arthritis, and vasculitis patients and in longitudinal studies of two patients with cerebral SLE. The Raji cell FCMA is recommended for measurement of CIC levels to clinical laboratories with access to a flow cytometer.

  9. Refinement Of Hexahedral Cells In Euler Flow Computations

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1996-01-01

    Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.

  10. Single chamber fuel cells: Flow geometry, rate and composition considerations

    SciTech Connect

    Stefan, Ionel C.; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2003-11-17

    Four different single chamber fuel cell designs were compared using propane-air gas mixtures. Gas flow around the electrodes has a significant influence on the open circuit voltage and the power density of the cell. The strong influence of flow geometry is likely due to its effect on gas composition, particularly on the oxygen chemical potential at the two electrodes as a result of gas mixing. The chamber design which exposes the cathode first to the inlet gas was found to yield the best performance at lower flow rates, while the open tube design with the electrodes equally exposed to the inlet gas worked best at higher flow rates.

  11. Method for Studying Microbial Biofilms in Flowing-Water Systems

    PubMed Central

    Pedersen, Karsten

    1982-01-01

    A method for the study of microbial biofilms in flowing-water systems was developed with special reference to the flow conditions in electrochemical concentration cells. Seawater was circulated in a semiclosed flow system through biofilm reactors (3 cm s−1) with microscope cover slips arranged in lamellar piles parallel with the flow. At fixed time intervals cover slips with their biofilm were removed from the pile, stained with crystal violet, and mounted on microscope slides. The absorbances of the slides were measured at 590 nm and plotted against time to give microbial biofilm development. From calibration experiments a staining time of 1 min and a rinse time of 10 min in a tap water flow (3 cm s−1) were considered sufficient. When an analysis of variance was performed on biofilm development data, 78% of the total variance was found to be due to random natural effects; the rest could be explained by experimental effects. The absorbance values correlated well with protein N, dry weight, and organic weight in two biofilm experiments, one with a biofilm with a high (75%) and one with a low (∼25%, normal) inorganic content. Comparisons of regression lines revealed that the absorbance of the stained biofilms was an estimate closely related to biofilm dry weight. PMID:16345929

  12. Fluid flow dynamics in MAS systems.

    PubMed

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599

  13. Flow Induced Electrification of Liquid Insulated Systems.

    NASA Astrophysics Data System (ADS)

    Washabaugh, Andrew Patrick

    1995-01-01

    The transport or motion of semi-insulating liquids has led to flow induced static electrification and catastrophic failures in several industries. While techniques for reducing the hazard have been developed, the roles of seemingly important parameters are poorly understood. The objective of this thesis was to measure and understand the fundamental parameters of the flow electrification process that, together with the laws of electroquasistatics and physicochemical hydrodynamics, can be used to predict the performance of complex flow systems, with particular attention to transformer applications. A rotating cylindrical electrode apparatus, which provided cylindrical Couette flow, was used to simulate flow electrification in an electric power transformer. The apparatus had Shell Diala A transformer oil filling the annulus between coaxial cylindrical stainless steel electrodes that were either bare metal, or covered by a thin copper sheet and/or EHV-Weidmann HiVal pressboard insulation. Extensive experiments characterized the time transient and steady state behavior of the electrification through measurements of the volume charge density, the terminal voltage, and the terminal current as the system was driven out of equilibrium by changes in the flow rate (inner cylinder rotation rates of 100-1400 rpm, Reynolds numbers of 5 times 10^3-5 times 10^5), temperature (15-70 ^circ), insulation moisture content (0.5-20 ppm in the oil), applied voltage (0-2 kV DC), and concentration of the non-ionizable anti-static additive 1,2,3 benzotriazole (BTA, 0-60 ppm). Generally, the electrification increased with flow rate and temperature but the BTA appeared to cause competing effects: it decreased the volume charge density on the liquid side of the interface (by a factor of 4), which reduces the electrification, but also decreased the oil conductivity (by a factor of 10), which enhances the electrification. A critical oil BTA concentration of 5 -8 ppm minimized the electrification

  14. Multiphase Flow Measurement System of Oil Well

    NASA Astrophysics Data System (ADS)

    Huang, Zhiyao; He, Chaohong; Liang, Qilin

    2007-06-01

    A new multiphase flow measurement system of oil well was developed. This measurement system was based on the combination of a separator, two level meters and three commercial flowmeters. The separator separated the crude oil into three components: gas, water and oil-water mixture. By means of the automatic control of two interface levels (the oil-water interface level and the oil-gas interface level), three components were measured by the corresponding commercial flowmeters. The developed measurement system had been tested at Shengli Oilfield in China. The test results show that the developed measurement system is effective. It is suitable for the flowrate measurement of Chinese oil well with high water fraction and its accuracy is also satisfactory.

  15. Laser rastering flow cytometry: fast cell counting and identification

    NASA Astrophysics Data System (ADS)

    Vacca, G.; Junnarkar, M. R.; Goldblatt, N. R.; Yee, M. W.; Van Slyke, B. M.; Briese, T. C.

    2009-02-01

    We describe the concept of laser rastering flow cytometry, where a rapidly scanning laser beam allows counting and classification of cells at much higher rates than currently possible. Modifications to existing flow cytometers to implement the concept include an acousto-optic deflector, fast analog-to-digital conversion, and a two-step digital-signal-processing scheme that handles the high data rates and provides key assay information. Results are shown that prove the concept, demonstrating the ability to resolve closely spaced cells and to measure cells at rates more than an order of magnitude faster than on conventional flow-cytometer-based hematology analyzers.

  16. 46 CFR 153.358 - Venting system flow capacity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Venting system flow capacity. 153.358 Section 153.358... Venting Systems § 153.358 Venting system flow capacity. (a) The cross-sectional flow area of any vent system segment, including any PV or SR valve, must at no point be less than that of a pipe whose...

  17. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the

  18. Traffic Flow Wide-Area Surveillance system

    SciTech Connect

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.

    1994-09-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a Traffic Flow Wide-Area Surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  19. Simulation of water flow in terrestrial systems

    2008-12-18

    ParFlow is a parallel, variabley saturated groundwater flow code that is especially suitable for large scale problem. ParFlow simulates the three-dimensional saturated and variably saturated subsurface flow in heterogeneous porous media in three spatial dimensions. ParFlow's developemt and appkication has been on-ging for more than 10 uear. ParFlow has recently been extended to coupled surface-subsurface flow to enabel the simulation of hillslope runoff and channel routing in a truly integrated fashion. ParFlow simulates the three-dimensionalmore » varably saturated subsurface flow in strongly heterogeneous porous media in three spatial dimension.« less

  20. Adhesion behavior of endothelial progenitor cells to endothelial cells in simple shear flow

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-Bo; Li, Yu-Qing; Gao, Quan-Chao; Cheng, Bin-Bin; Shen, Bao-Rong; Yan, Zhi-Qiang; Jiang, Zong-Lai

    2011-12-01

    The adhesion of endothelial progenitor cells (EPCs) on endothelial cells (ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseases. Here, the rolling and adhesion behavior of EPCs on ECs was studied numerically. A two-dimensional numerical model was developed based on the immersed boundary method for simulating the rolling and adhesion of cells in a channel flow. The binding force arising from the catch bond of a receptor and ligand pair was modeled with stochastic Monte Carlo method and Hookean spring model. The effect of tumor necrosis factor alpha (TNF- α) on the expression of the number of adhesion molecules in ECs was analyzed experimentally. A flow chamber system with CCD camera was set up to observe the top view of the rolling of EPCs on the substrate cultivated with ECs. Numerical results prove that the adhesion of EPC on ECs is closely related to membrane stiffness of the cell and shear rate of the flow. It also suggests that the adhesion force between EPC and EC by P-selectin glycoprotein ligand-1 only is not strong enough to bond the cell onto vessel walls unless contributions of other catch bond are considered. Experimental results demonstrate that TNF- α enhanced the expressions of VCAM, ICAM, P-selectin and E-selectin in ECs, which supports the numerical results that the rolling velocity of EPC on TNF- α treated EC substrate decreases obviously compared with its velocity on the untreated one. It is found that because the adhesion is affected by both the rolling velocity and the deformability of the cell, an optimal stiffness of EPC may exist at a given shear rate of flow for achieving maximum adhesion rates.

  1. The Redox flow system for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.

    1976-01-01

    A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.

  2. Chaotic dynamics of red blood cells in oscillating shear flow

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit; Cordasco, Daniel

    2015-11-01

    A 3D computational study of deformable red blood cells in dilute suspension and subject to sinusoidally oscillating shear flow is considered. It is observed that the cell exhibits either a periodic motion or a chaotic motion. In the periodic motion, the cell reverses its orientation either about the flow direction or about the flow gradient, depending on the initial conditions. In certain parameter range, the initial conditions are forgotten and the cells become entrained in the same sequence of horizontal reversals. The chaotic dynamics is characterized by a nonperiodic sequence of horizontal and vertical reversals, and swings. The study provides the first conclusive evidence of the chaotic dynamics of fully deformable cells in oscillating flow using a deterministic numerical model without the introduction of any stochastic noise. An analysis of the chaotic dynamics shows that chaos is only possible in certain frequency bands when the cell membrane can rotate by a certain amount allowing the cells to swing near the maximum shear rate. We make a novel observation that the occurrence of the vertical or horizontal reversal depends only on whether a critical angle, that is independent of the flow frequency, is exceeded at the instant of flow reversal.

  3. A pumpless perfusion cell culture cap with two parallel channel layers keeping the flow rate constant.

    PubMed

    Lee, Dong Woo; Yi, Sang Hyun; Ku, Bosung; Kim, Jhingook

    2012-01-01

    This article presents a novel pumpless perfusion cell culture cap, the gravity-driven flow rate of which is kept constant by the height difference of two parallel channel layers. Previous pumpless perfusion cell culture systems create a gravity-driven flow by means of the hydraulic head difference (Δh) between the source reservoir and the drain reservoir. As more media passes from the source reservoir to the drain reservoir, the source media level decreases and the drain media level increases. Thus, previous works based on a gravity-driven flow were unable to supply a constant flow rate for the perfusion cell culture. However, the proposed perfusion cell culture cap can supply a constant flow rate, because the media level remains unchanged as the media moves laterally through each channel having same media level. In experiments, using the different fluidic resistances, the perfusion cap generated constant flow rates of 871 ± 27 μL h(-1) and 446 ± 11 μL h(-1) . The 871 and 446 μL h(-1) flow rates replace the whole 20 mL medium in the petri dish with a fresh medium for days 1 and 2, respectively. In the perfusion cell (A549 cell line) culture with the 871 μL h(-1) flow rate, the proposed cap can maintain a lactate concentration of about 2200 nmol mL(-1) and an ammonia concentration of about 3200 nmol mL(-1) . Moreover, although the static cell culture maintains cell viability for 5 days, the perfusion cell culture with the 871 μL h(-1) flow rate can maintain cell viability for 9 days. PMID:22927366

  4. A Multichannel Dampened Flow System for Studies on Shear Stress-Mediated Mechanotransduction

    PubMed Central

    Voyvodic, Peter L.; Min, Daniel; Baker, Aaron B.

    2012-01-01

    Shear stresses are powerful regulators of cellular function and potent mediators of the development of vascular disease. We have designed and optimized a system allowing the application of flow to cultured cells in a multichannel format. By using a multichannel peristaltic pump, flow can be driven continuously in the system for long-term studies in multiple isolated flow loops. A key component of the system is a dual-chamber pulse dampener that removes the pulsatility of the flow without the need for having an open system or elevated reservoir. We optimized the design parameters of the pulse dampening chambers for the maximum reduction in flow pulsation while minimizing the fluid needed for each isolated flow channel. Human umbilical vein endothelial cells (HUVECs) were exposed to steady and pulsatile shear stress using the system. We found that cells under steady flow had a marked increased production of eNOS and formation of actin stress fibers in comparison to those under pulsatile flow conditions. Overall, the results confirm the utility of the device as a practical means to apply shear stress to cultured cells in the multichannel format and provide steady, long term flow to microfluidic devices. PMID:22836694

  5. A multichannel dampened flow system for studies on shear stress-mediated mechanotransduction.

    PubMed

    Voyvodic, Peter L; Min, Daniel; Baker, Aaron B

    2012-09-21

    Shear stresses are powerful regulators of cellular function and potent mediators of the development of vascular disease. We have designed and optimized a system allowing the application of flow to cultured cells in a multichannel format. By using a multichannel peristaltic pump, flow can be driven continuously in the system for long-term studies in multiple isolated flow loops. A key component of the system is a dual-chamber pulse dampener that removes the pulsatility of the flow without the need for having an open system or elevated reservoir. We optimized the design parameters of the pulse dampening chambers for the maximum reduction in flow pulsation while minimizing the fluid needed for each isolated flow channel. Human umbilical vein endothelial cells (HUVECs) were exposed to steady and pulsatile shear stress using the system. We found that cells under steady flow had a marked increased production of eNOS and formation of actin stress fibers in comparison to those under pulsatile flow conditions. Overall, the results confirm the utility of the device as a practical means to apply shear stress to cultured cells in the multichannel format and provide steady, long term flow to microfluidic devices.

  6. Systems control of BMP morphogen flow in vertebrate embryos

    PubMed Central

    Plouhinec, Jean-Louis; Zakin, Lise; De Robertis, Edward M.

    2011-01-01

    Embryonic morphogenetic programs coordinate cell behavior to ensure robust pattern formation. Having identified components of those programs by molecular genetics, developmental biology is now borrowing concepts and tools from systems biology to decode their regulatory logic. Dorsal-ventral (D-V) patterning of the frog gastrula by Bone Morphogenetic Proteins (BMPs) is one of the best studied examples of a self-regulating embryonic patterning system. Embryological analyses and mathematical modeling are revealing that the BMP activity gradient is maintained by a directed flow of BMP ligands towards the ventral side. Pattern robustness is ensured through feedback control of the levels of extracellular BMP pathway modulators that adjust the flow to the dimensions of the embryonic field. PMID:21937218

  7. Methods for improved resolution of flow electrophoresis cells

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.; Fogal, G. L.

    1974-01-01

    First method involves remote adjusting of zeta potential. Second approach sandwiches two conducting metal plates between opposite cell walls and thin insulating layer. Third method forces buffer to flow in direction opposite particle streams.

  8. Gas-Particle Interactions in a Microgravity Flow Cell

    NASA Technical Reports Server (NTRS)

    Louge, Michel; Jenkins, James

    1999-01-01

    We are developing a microgravity flow cell in which to study the interaction of a flowing gas with relatively massive particles that collide with each other and with the moving boundaries of the cell. The absence of gravity makes possible the independent control of the relative motion of the boundaries and the flow of the gas. The cell will permit gas-particle interactions to be studied over the entire range of flow conditions over which the mixture is not turbulent. Within this range, we shall characterize the viscous dissipation of the energy of the particle fluctuations, measure the influence of particle-phase viscosity on the pressure drop along the cell, and observe the development of localized inhomogeneities that are likely to be associated with the onset of clusters. These measurements and observations should contribute to an understanding of the essential physics of pneumatic transport.

  9. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  10. Flow of Red Blood Cells in Stenosed Microvessels

    PubMed Central

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-01-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis. PMID:27319318

  11. Flow of Red Blood Cells in Stenosed Microvessels

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  12. Low cost, radial flow, solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Petrik, M. A.

    The Interscience Radial Flow (IRF) SOFC is designed to minimize problems in high-temperature operation and for low-cost fabrication. The cell has planar, non-sintered construction, uses particulate materials to form porous electrodes, and has internal radial flow. The object of this phase was to demonstrate feasibility of multi-cell stack operation. Performance milestone was 15% DC HHV efficiency with hydrogen at greater than 50 mW/sq cm over 100 h.

  13. Flow-Through Electroporation of HL-60 White Blood Cell Suspensions using Nanoporous Membrane Electrodes.

    PubMed

    Chen, Zhiqiang; Akenhead, Michael A; Sun, Xinghua; Sapper, Harrison; Shin, Hainsworth Y; Hinds, Bruce J

    2016-08-01

    A flow-through electroporation system, based on a novel nanoporous membrane/electrode design, for the delivery of cell wall-impermeant molecules into model leukocytes, HL-60 promyelocytes, was demonstrated. The ability to apply low voltages to cell populations, with nm-scale concentrated electric field in a periodic array, contributes to high cell viability. With applied biases of 1-4V, delivery of target molecules was achieved with 90% viability and up to 65% transfection efficiency. More importantly, the system allowed electrophoretic pumping of molecules from a microscale reservoir across the membrane/electrode system into a microfluidic flow channel for transfection of cells, a design that can reduce reagent amount by eightfold compared to current strategies. The flow-through system, which forces intimate membrane/electrode contact by using a 10μm channel height, can be easily scaled-up by adjusting the microfluidic channel geometry and/or the applied voltage pulse frequency to control cell residence times at the cell membrane/electrode interface. The demonstrated system shows promise in clinical applications where low-cost, high cell viability and high volume transfection methods are needed without the risk of viral vectors. In particular genetic modification of freely mobile white blood cells to either target disease cells or to express desired protein/enzyme biomolecules is an important target platform enabled by this device system. PMID:27377174

  14. Expert systems for flow cytometry data analysis: A preliminary report

    SciTech Connect

    Salzman, G.C. ); Stewart, C.C. . Lab. of Flow Cytometry); Duque, R.E. )

    1990-01-01

    Flow Cytometry has become an accepted technique in the clinical laboratory for rapid immunophenotyping of patient blood samples. Multiple, fluorescent labeled monoclonal antibodies are used to tag the cells, which are then analyzed one at a time at rates of several thousand cells a second. Patient samples are processed through the flow cytometer at more than one a minute. Clinicians are being overwhelmed by the large amount of data that must be analyzed to provide the information needed to assist in disease diagnosis. An expert system is being developed to assist clinicians in analyzing this multivariate flow cytometry data. The data from each sample are processed by a clustering algorithm, which finds the means of the distinct cell subpopulations in a sample. These mean values of fluorescence are translated into words such as negative,'' dim'' and bright'' and the words are combined into patterns that are matched against the premises on the left hand side of the rules used to identify the disease categories. This is a report of work in progress. 13 refs., 4 figs.

  15. Flow cytometric immunofluorescence of rat anterior pituitary cells

    NASA Technical Reports Server (NTRS)

    Hatfield, J. Michael; Hymer, W. C.

    1985-01-01

    A flow cytometric immunofluorescence technique was developed for the quantification of growth hormone, prolactin, and luteinizing hormone producing cells. The procedure is based on indirect-immunofluorescence of intracellular hormone using an EPICS V cell sorter and can objectively count 50,000 cells in about 3 minutes. It can be used to study the dynamics of pituitary cell populations under various physiological and pharmacological conditions.

  16. 46 CFR 153.358 - Venting system flow capacity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Venting system flow capacity. 153.358 Section 153.358 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Venting Systems § 153.358 Venting system flow capacity. (a) The cross-sectional flow area of any...

  17. 46 CFR 153.358 - Venting system flow capacity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Venting system flow capacity. 153.358 Section 153.358 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Venting Systems § 153.358 Venting system flow capacity. (a) The cross-sectional flow area of any...

  18. 46 CFR 153.358 - Venting system flow capacity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Venting system flow capacity. 153.358 Section 153.358 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS... Venting Systems § 153.358 Venting system flow capacity. (a) The cross-sectional flow area of any...

  19. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry

    PubMed Central

    Tkaczyk, Eric R.; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E.; Luker, Gary D.; Norris, Theodore B.; Baker, James R.

    2008-01-01

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes. PMID:19221581

  20. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry.

    PubMed

    Tkaczyk, Eric R; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E; Luker, Gary D; Norris, Theodore B; Baker, James R

    2008-02-15

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes.

  1. VLT Data Flow System Begins Operation

    NASA Astrophysics Data System (ADS)

    1999-06-01

    Building a Terabyte Archive at the ESO Headquarters The ESO Very Large Telescope (VLT) is the sum of many sophisticated parts. The site at Cerro Paranal in the dry Atacama desert in Northern Chile is one of the best locations for astronomical observations from the surface of the Earth. Each of the four 8.2-m telescopes is a technological marvel with self-adjusting optics placed in a gigantic mechanical structure of the utmost precision, continuously controlled by advanced soft- and hardware. A multitude of extremely complex instruments with sensitive detectors capture the faint light from distant objects in the Universe and record the digital data fast and efficiently as images and spectra, with a minimum of induced noise. And now the next crucial link in this chain is in place. A few nights ago, following an extended test period, the VLT Data Flow System began providing the astronomers with a steady stream of high-quality, calibrated image and spectral data, ready to be interpreted. The VLT project has entered into a new phase with a larger degree of automation. Indeed, the first 8.2-m Unit Telescope, ANTU, with the FORS1 and ISAAC instruments, has now become a true astronomy machine . A smooth flow of data through the entire system ESO PR Photo 25a/99 ESO PR Photo 25a/99 [Preview - JPEG: 400 x 292 pix - 104k] [Normal - JPEG: 800 x 584 pix - 264k] [High-Res - JPEG: 3000 x 2189 pix - 1.5M] Caption to ESO PR Photo 25a/99 : Simplified flow diagramme for the VLT Data Flow System . It is a closed-loop software system which incorporates various subsystems that track the flow of data all the way from the submission of proposals to storage of the acquired data in the VLT Science Archive Facility. The DFS main components are: Program Handling, Observation Handling, Telescope Control System, Science Archive, Pipeline and Quality Control. Arrows indicate lines of feedback. Already from the start of this project more than ten years ago, the ESO Very Large Telescope was

  2. Computational cell analysis for label-free detection of cell properties in a microfluidic laminar flow.

    PubMed

    Zhang, Alex Ce; Gu, Yi; Han, Yuanyuan; Mei, Zhe; Chiu, Yu-Jui; Geng, Lina; Cho, Sung Hwan; Lo, Yu-Hwa

    2016-06-20

    Although a flow cytometer, being one of the most popular research and clinical tools for biomedicine, can analyze cells based on the cell size, internal structures such as granularity, and molecular markers, it provides little information about the physical properties of cells such as cell stiffness and physical interactions between the cell membrane and fluid. In this paper, we propose a computational cell analysis technique using cells' different equilibrium positions in a laminar flow. This method utilizes a spatial coding technique to acquire the spatial position of the cell in a microfluidic channel and then uses mathematical algorithms to calculate the ratio of cell mixtures. Most uniquely, the invented computational cell analysis technique can unequivocally detect the subpopulation of each cell type without labeling even when the cell type shows a substantial overlap in the distribution plot with other cell types, a scenario limiting the use of conventional flow cytometers and machine learning techniques. To prove this concept, we have applied the computation method to distinguish live and fixed cancer cells without labeling, count neutrophils from human blood, and distinguish drug treated cells from untreated cells. Our work paves the way for using computation algorithms and fluidic dynamic properties for cell classification, a label-free method that can potentially classify over 200 types of human cells. Being a highly cost-effective cell analysis method complementary to flow cytometers, our method can offer orthogonal tests in companion with flow cytometers to provide crucial information for biomedical samples. PMID:27163941

  3. Water injected fuel cell system compressor

    DOEpatents

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  4. Upward swimming of a sperm cell in shear flow

    NASA Astrophysics Data System (ADS)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  5. Upward swimming of a sperm cell in shear flow.

    PubMed

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation. PMID:27078385

  6. Upward swimming of a sperm cell in shear flow.

    PubMed

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  7. A flow boiling microchannel thermosyphon for fuel cell thermal management

    NASA Astrophysics Data System (ADS)

    Garrity, Patrick Thomas

    To provide a high power density thermal management system for proton exchange membrane (PEM) fuel cell applications, a passively driven thermal management system was assembled to operate in a closed loop two-phase thermosyphon. The system has two major components; a microchannel evaporator plate and a condenser. The microchannel evaporator plate was fabricated with 56 square channels that have a 1 mm x 1 mm cross section and are 115 mm long. Experiments were conducted with a liquid cooled condenser with heat flux as the control variable. Measurements of mass flow rate, temperature field, and pressure drop have been made for the thermosyphon loop. A model is developed to predict the system characteristics such as the temperature and pressure fields, flow rate, flow regime, heat transfer coefficient, and maximum heat flux. When the system is subjected to a heat load that exceeds the maximum heat flux, an unstable flow regime is observed that causes flow reversal and eventual dryout near the evaporator plate wall. This undesirable phenomenon is modeled based on a quasi-steady state assumption, and the model is capable of predicting the heat flux at the onset of instability for quasi-steady two-phase flow. Another focus of this work is the performance of the condenser portion of the loop, which will be air cooled in practice. The aim is to reduce air side thermal resistance and increase the condenser performance, which is accomplished with extended surfaces. A testing facility is assembled to observe the air side heat transfer performance of three aluminum foam samples and three modified carbon foam samples, used as extended surfaces. The aluminum foam samples have a bulk density of 216 kilograms per cubic meter with pore sizes of 0.5, 1, and 2 mm. The modified carbon foam samples have bulk densities of 284, 317, and 400 kilograms per cubic meter and machined flow passages of 3.2 mm. in diameter. Each sample is observed under forced convection with air velocity as the

  8. Flow distribution in the manifold of PEM fuel cell stack

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hsien; Jung, Shiauh-Ping; Yen, Shi-Chern

    In this study, the pressure variation and the flow distribution in the manifold of a fuel-cell stack are simulated by a computational fluid dynamics (CFD) approach. Two dimensional stack model composed of 72 cells filled with porous media is constructed to evaluate pressure drop caused by channel flow resistance. In order to simplify this model, electrochemical reactions, heat and mass transport phenomena are ignored and air is treated as working fluid to investigate flow distribution in stacks. Design parameters such as the permeability of the porous media, the manifold width and the air feeding rate were changed to estimate uniformity of the flow distribution in the manifold. A momentum-balance theory and a pressure-drop model are presented to explain the physical mechanism of flow distribution. Modeling results indicate that both the channel resistance and the manifold width can enhance the uniformity of the flow distribution. In addition, a lower air feeding rate can also enhance the uniformity of flow distribution. However, excessive pressure drop is not beneficial for realistic applications of a fuel-cell stack and hence enhanced manifold width is a better solution for flow distribution.

  9. Rapid Cell Population Identification in Flow Cytometry Data*

    PubMed Central

    Aghaeepour, Nima; Nikolic, Radina; Hoos, Holger H.; Brinkman, Ryan R.

    2011-01-01

    We have developed flowMeans, a time-efficient and accurate method for automated identification of cell populations in flow cytometry (FCM) data based on K-means clustering. Unlike traditional K-means, flowMeans can identify concave cell populations by modelling a single population with multiple clusters. flowMeans uses a change point detection algorithm to determine the number of sub-populations, enabling the method to be used in high throughput FCM data analysis pipelines. Our approach compares favourably to manual analysis by human experts and current state-of-the-art automated gating algorithms. flowMeans is freely available as an open source R package through Bioconductor. PMID:21182178

  10. Fluid flow plate for decreased density of fuel cell assembly

    DOEpatents

    Vitale, Nicholas G.

    1999-01-01

    A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.

  11. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    SciTech Connect

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) have been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.

  12. Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    NASA Astrophysics Data System (ADS)

    Jervis, Rhodri; Brown, Leon D.; Neville, Tobias P.; Millichamp, Jason; Finegan, Donal P.; Heenan, Thomas M. M.; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Flow batteries represent a possible grid-scale energy storage solution, having many advantages such as scalability, separation of power and energy capabilities, and simple operation. However, they can suffer from degradation during operation and the characteristics of the felt electrodes are little understood in terms of wetting, compression and pressure drops. Presented here is the design of a miniature flow cell that allows the use of x-ray computed tomography (CT) to study carbon felt materials in situ and operando, in both lab-based and synchrotron CT. Through application of the bespoke cell it is possible to observe felt fibres, electrolyte and pore phases and therefore enables non-destructive characterisation of an array of microstructural parameters during the operation of flow batteries. Furthermore, we expect this design can be readily adapted to the study of other electrochemical systems.

  13. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  14. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  15. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  16. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  17. Thaw flow control for liquid heat transport systems

    DOEpatents

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  18. Liquid flow cells having graphene on nitride for microscopy

    DOEpatents

    Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.

  19. New all-vanadium redox flow cell

    NASA Astrophysics Data System (ADS)

    Skyllas-Kazacos, M.; Rychcik, M.; Robins, R. G.; Fane, A. G.; Green, M. A.

    1986-05-01

    A laboratory-scale cell was constructed to test the performance of V(II)/V(III) and V(IV)/V(V) half-cells in an all-vanadium redox battery. Graphite plates were used as electrodes, and the membrane was manufactured from a sulfonated polyehylene anion-selective material. The average charging efficiency of the cell was over 90 percent. Stability tests on the reduced and oxidized electrolytes, measured over the temperature range of -5 C to 60 C, showed no accelerated decomposition at high temperatures and no crystallization at the lower temperatures. After prolonged usage, however, a slow deterioration of the positive electrode and the membrane was observed.

  20. Full dynamics of a red blood cell in shear flow.

    PubMed

    Dupire, Jules; Socol, Marius; Viallat, Annie

    2012-12-18

    At the cellular scale, blood fluidity and mass transport depend on the dynamics of red blood cells in blood flow, specifically on their deformation and orientation. These dynamics are governed by cellular rheological properties, such as internal viscosity and cytoskeleton elasticity. In diseases in which cell rheology is altered genetically or by parasitic invasion or by changes in the microenvironment, blood flow may be severely impaired. The nonlinear interplay between cell rheology and flow may generate complex dynamics, which remain largely unexplored experimentally. Under simple shear flow, only two motions, "tumbling" and "tank-treading," have been described experimentally and relate to cell mechanics. Here, we elucidate the full dynamics of red blood cells in shear flow by coupling two videomicroscopy approaches providing multidirectional pictures of cells, and we analyze the mechanical origin of the observed dynamics. We show that contrary to common belief, when red blood cells flip into the flow, their orientation is determined by the shear rate. We discuss the "rolling" motion, similar to a rolling wheel. This motion, which permits the cells to avoid energetically costly deformations, is a true signature of the cytoskeleton elasticity. We highlight a hysteresis cycle and two transient dynamics driven by the shear rate: an intermittent regime during the "tank-treading-to-flipping" transition and a Frisbee-like "spinning" regime during the "rolling-to-tank-treading" transition. Finally, we reveal that the biconcave red cell shape is highly stable under moderate shear stresses, and we interpret this result in terms of stress-free shape and elastic buckling. PMID:23213229

  1. Pockels-effect cell for gas-flow simulation

    NASA Technical Reports Server (NTRS)

    Weimer, D.

    1982-01-01

    A Pockels effect cell using a 75 cu cm DK*P crystal was developed and used as a gas flow simulator. Index of refraction gradients were produced in the cell by the fringing fields of parallel plate electrodes. Calibration curves for the device were obtained for index of refraction gradients in excess of .00025 m.

  2. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean

    2014-01-01

    Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.

  3. Stochastic uncertainty analysis for unconfined flow systems

    USGS Publications Warehouse

    Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming

    2006-01-01

    A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen-Loeve decomposition-based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen-Loeve decomposition, polynomial expansion, and perturbation methods. The random log-transformed hydraulic conductivity field (InKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of InKS- Next, head h is decomposed as a perturbation expansion series ??A(m), where A(m) represents the mth-order head term with respect to the standard deviation of InKS. Then A(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients Ai1,i2(m)...,im are deterministic and solved sequentially from low to high expansion orders using MODFLOW-2000. Finally, the statistics of head and flux are computed using simple algebraic operations on Ai1,i2(m)...,im. A series of numerical test results in 2-D and 3-D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique. Copyright 2006 by the American Geophysical Union.

  4. Segmentation of touching cell nuclei using gradient flow tracking.

    PubMed

    Li, G; Liu, T; Nie, J; Guo, L; Chen, J; Zhu, J; Xia, W; Mara, A; Holley, S; Wong, S T C

    2008-07-01

    Reliable cell nuclei segmentation is an important yet unresolved problem in biological imaging studies. This paper presents a novel computerized method for robust cell nuclei segmentation based on gradient flow tracking. This method is composed of three key steps: (1) generate a diffused gradient vector flow field; (2) perform a gradient flow tracking procedure to attract points to the basin of a sink; and (3) separate the image into small regions, each containing one nucleus and nearby peripheral background, and perform local adaptive thresholding in each small region to extract the cell nucleus from the background. To show the generality of the proposed method, we report the validation and experimental results using microscopic image data sets from three research labs, with both over-segmentation and under-segmentation rates below 3%. In particular, this method is able to segment closely juxtaposed or clustered cell nuclei, with high sensitivity and specificity in different situations.

  5. Margination of White Blood Cells in Microcapillary Flow

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry A.; Fornleitner, Julia; Gompper, Gerhard

    2012-01-01

    Margination of white blood cells (WBCs) towards vessel walls is an essential precondition for their efficient adhesion to the vascular endothelium. We perform numerical simulations with a two-dimensional blood flow model to investigate the dependence of WBC margination on hydrodynamic interactions of blood cells with the vessel walls, as well as on their collective behavior and deformability. We find WBC margination to be optimal in intermediate ranges of red blood cell (RBC) volume fractions and flow rates, while, beyond these ranges, it is substantially attenuated. RBC aggregation enhances WBC margination, while WBC deformability reduces it. These results are combined in state diagrams, which identify WBC margination for a wide range of flow and cell suspension conditions.

  6. New flow cytometric assays for monitoring cell-mediated cytotoxicity.

    PubMed

    Zaritskaya, Liubov; Shurin, Michael R; Sayers, Thomas J; Malyguine, Anatoli M

    2010-06-01

    The exact immunologic responses after vaccination that result in effective antitumor immunity have not yet been fully elucidated and the data from ex vivo T-cell assays have not yet defined adequate surrogate markers for clinical efficacy. A more detailed knowledge of the specific immune responses that correlate with positive clinical outcomes should help to develop better or novel strategies to effectively activate the immune system against tumors. Furthermore, clinically relevant material is often limited and, thus, precludes the ability to perform multiple assays. The two main assays currently used to monitor lymphocyte-mediated cytoxicity in cancer patients are the (51)Cr-release assay and IFN-gamma ELISpot assay. The former has a number of disadvantages, including low sensitivity, poor labeling and high spontaneous release of isotope from some tumor target cells. Additional problems with the (51)Cr-release assay include difficulty in obtaining autologous tumor targets, and biohazard and disposal problems for the isotope. The ELISpot assays do not directly measure cytotoxic activity and are, therefore, a surrogate marker of cyotoxic capacity of effector T cells. Furthermore, they do not assess cytotoxicity mediated by the production of the TNF family of death ligands by the cytotoxic cells. Therefore, assays that allow for the simultaneous measurement of several parameters may be more advantageous for clinical monitoring. In this respect, multifactor flow cytometry-based assays are a valid addition to the currently available immunologic monitoring assays. Use of these assays will enable detection and enumeration of tumor-specific cytotoxic T lymphocytes and their specific effector functions and any correlations with clinical responses. Comprehensive, multifactor analysis of effector cell responses after vaccination may help to detect factors that determine the success or failure of a vaccine and its immunological potency.

  7. High Throughput Label Free Measurement of Cancer Cell Adhesion Kinetics Under Hemodynamic Flow

    PubMed Central

    Spencer, Adrianne; Baker, Aaron B.

    2016-01-01

    The kinetics of receptor-mediated cell adhesion to extracellular matrix and adherent cell monolayers plays a key role in many physiological and pathological processes including cancer metastasis. Within this process the presence of fluidic shear forces is a key regulator of binding equilibrium and kinetics of cell adhesion. Current techniques to examine the kinetics of cell adhesion are either performed in the absence of flow or are low throughput, limiting their application to pharmacological compound screening or the high throughput investigation of biological mechanisms. We developed a high throughput flow device that applies flow in a multi-well format and interfaced this system with electric cell-substrate impedance sensing (ECIS) system to allow label free detection of cell adhesion. We demonstrate that this combined system is capable of making real time measurements of cancer cell adhesion to extracellular matrix and immobilized platelets. In addition, we examined the dependence of the kinetics of binding of cancer cells on the level of shear stress and in the presence of small molecule inhibitors to adhesion-related pathways. This versatile system is broadly adaptable to the high throughput study of cell adhesion kinetics for many applications including drug screening and the investigation of the mechanisms of cancer metastasis. PMID:26816215

  8. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  9. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.

    PubMed

    Moore, Lee R; Williams, P Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J; Zborowski, Maciej

    2014-02-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures, require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation.

  10. Investigating Biofilm Recalcitrance In Pipe Flow Systems

    NASA Astrophysics Data System (ADS)

    Aggarwal, S.; Stewart, P. S.; Hozalski, R. M.

    2015-12-01

    It is challenging to remove biofilms from pipe walls owing to their recalcitrant nature. Several physiological explanations resulting from the community existence of microbes have been offered to explain the recalcitrant nature of biofilms. Herein a biophysical aspect of biofilm recalcitrance is being reported. While optimal efficiency argument suggests that bacterial biofilms would be just strong enough to withstand the surrounding shear forces, our experimental findings reveal the biofilms to be at least 330 to 55000 times stronger. Additionally, Monte-Carlo simulations for biofilm detachment in drinking water systems were performed, which show that the existing flow velocities are insufficient for significant biofilm removal and warrant alternative detachment strategies. This emphasizes the importance of considering strategies for biofilm weakening (and subsequent detachment) in conjunction with or as an alternative to bacterial inactivation.

  11. Sample introduction system for a flow cytometer

    DOEpatents

    Engh, G. van den

    1997-02-11

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

  12. Sample introduction system for a flow cytometer

    DOEpatents

    Van den Engh, Ger

    1997-01-01

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

  13. Three-dimensional cell culture model for measuring the effects of interstitial fluid flow on tumor cell invasion.

    PubMed

    Tchafa, Alimatou M; Shah, Arpit D; Wang, Shafei; Duong, Melissa T; Shieh, Adrian C

    2012-07-25

    fluid flow on cells in vitro and quantifies its effects on invasion (Figure 1). This method has been published in multiple studies to measure the effects of fluid flow on stromal and cancer cell invasion (13-15, 17). By changing the matrix composition, cell type, and cell concentration, this method can be applied to other diseases and physiological systems to study the effects of interstitial flow on cellular processes such as invasion, differentiation, proliferation, and gene expression.

  14. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  15. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, C.C.; Taylor, L.T.

    1985-01-04

    A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  16. Mentat: An object-oriented macro data flow system

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Liu, Jane W. S.

    1988-01-01

    Mentat, an object-oriented macro data flow system designed to facilitate parallelism in distributed systems, is presented. The macro data flow model is a model of computation similar to the data flow model with two principal differences: the computational complexity of the actors is much greater than in traditional data flow systems, and there are persistent actors that maintain state information between executions. Mentat is a system that combines the object-oriented programming paradigm and the macro data flow model of computation. Mentat programs use a dynamic structure called a future list to represent the future of computations.

  17. Design, evaluation, and application of continuous-flow cells for organic electrochemical synthesis. Final report

    SciTech Connect

    Nobe, K.

    1982-09-30

    Two examples of the oxidation and reduction of aldehydes as a paired synthesis have been studied. These are model systems for potential energy savings in organic electrochemical synthesis. Both are indirect processes; the reduction via alkali metal amalgam and the oxidation via hypobromite. One, using furfural as the substrate, has proved unsuccessful due to the oxidation of its reduction products with the electrogenerated oxidant, bromine. The other paired synthesis, using glucose, has been operated successfully in two types of parallel plate flow cells and two types of porous, packed bed flow cells. To date, the optimum electrode materials and operating conditions for the glucose paired reaction, as determined by product yields and current efficiencies, are an amalgamated zinc cathode, a graphite anode, an initial glucose concentration of 0.8M, a 0.8M NaBr supporting electrolyte and an electrolyte flow rate of 0.8 1/min. Both constant current (10 mA/cm/sup 2/) and constant cathode potential (-2.10V vs SCE) electrolyses were performed under the above conditions. Electrolyses carried out in the parallel plate flow cell and the packed bed flow cell in which the current and electrolyte flow are parallel to one another gave comparable results. Lower current efficiencies were obtained in the porous, packed bed flow cell with perpendicular current and flow. The reasons for the poorer results in the perpendicular configuration cell are not known at this time and further experimentation is required with this system. The current efficiencies and yields of both the oxidation reaction (the production of gluconic acid) and the reduction reaction (the formation of sorbitol) in the packed bed cells were found to be dependent on solution pH.

  18. How cells flow in the spreading of cellular aggregates

    PubMed Central

    Beaune, Grégory; Stirbat, Tomita Vasilica; Khalifat, Nada; Cochet-Escartin, Olivier; Garcia, Simon; Gurchenkov, Vasily Valérïévitch; Murrell, Michael P.; Dufour, Sylvie; Cuvelier, Damien; Brochard-Wyart, Françoise

    2014-01-01

    Like liquid droplets, cellular aggregates, also called “living droplets,” spread onto adhesive surfaces. When deposited onto fibronectin-coated glass or polyacrylamide gels, they adhere and spread by protruding a cellular monolayer (precursor film) that expands around the droplet. The dynamics of spreading results from a balance between the pulling forces exerted by the highly motile cells at the periphery of the film, and friction forces associated with two types of cellular flows: (i) permeation, corresponding to the entry of the cells from the aggregates into the film; and (ii) slippage as the film expands. We characterize these flow fields within a spreading aggregate by using fluorescent tracking of individual cells and particle imaging velocimetry of cell populations. We find that permeation is limited to a narrow ring of width ξ (approximately a few cells) at the edge of the aggregate and regulates the dynamics of spreading. Furthermore, we find that the subsequent spreading of the monolayer depends heavily on the substrate rigidity. On rigid substrates, the migration of the cells in the monolayer is similar to the flow of a viscous liquid. By contrast, as the substrate gets softer, the film under tension becomes unstable with nucleation and growth of holes, flows are irregular, and cohesion decreases. Our results demonstrate that the mechanical properties of the environment influence the balance of forces that modulate collective cell migration, and therefore have important implications for the spreading behavior of tissues in both early development and cancer. PMID:24835175

  19. Determination of natural killer cell function by flow cytometry.

    PubMed Central

    Kane, K L; Ashton, F A; Schmitz, J L; Folds, J D

    1996-01-01

    Natural killer cells (NK cells) are a subset of peripheral blood lymphocytes that mediate non-major histocompatibility complex-restricted cytotoxicity of foreign target cells. The "gold standard" assay for NK cell activity has been the chromium release assay. This method is not easily performed in the clinical laboratory because of difficulties with disposal of radioactive and hazardous materials, short reagent half-lives, expense, and difficulties with assay standardization. We describe a flow cytometric assay for the clinical measurement of NK cell activity. This study compared the chromium release assay and the flow cytometric assay by using clinically relevant specimens. There were no significant differences between the two assays in the measurement of lytic activity for 17 peripheral blood specimens or in reproducibility in repeated samplings of healthy individuals. We also established a normal range of values for NK activity in healthy adults and identified a small cluster of individuals who have exceptionally high or low levels of NK activity. The flow cytometric assay was validated by testing specimens from subjects expected to have abnormally low levels of NK activity (pregnant women) and specimens from healthy individuals in whom the activity of NK cells was enhanced by exposure to interleukin-2 or alpha interferon. Treatment with these agents was associated with a significant increase in NK activity. These results confirm and extend those of others, showing that the flow cytometric assay is a viable alternative to the chromium release assay for measuring NK cell activity. PMID:8705672

  20. Deterministic sequential isolation of floating cancer cells under continuous flow.

    PubMed

    Tran, Quang D; Kong, Tian Fook; Hu, Dinglong; Marcos; Lam, Raymond H W

    2016-08-01

    Isolation of rare cells, such as circulating tumor cells, has been challenging because of their low abundance and limited timeframes of expressions of relevant cell characteristics. In this work, we devise a novel hydrodynamic mechanism to sequentially trap and isolate floating cells in biosamples. We develop a microfluidic device for the sequential isolation of floating cancer cells through a series of microsieves to obtain up to 100% trapping yield and >95% sequential isolation efficiency. We optimize the trappers' dimensions and locations through both computational and experimental analyses using microbeads and cells. Furthermore, we investigated the functional range of flow rates for effective sequential cell isolation by taking the cell deformability into account. We verify the cell isolation ability using the human breast cancer cell line MDA-MB-231 with perfect agreement with the microbead results. The viability of the isolated cells can be maintained for direct identification of any cell characteristics within the device. We further demonstrate that this device can be applied to isolate the largest particles from a sample containing multiple sizes of particles, revealing its possible applicability in isolation of circulating tumor cells in cancer patients' blood. Our study provides a promising sequential cell isolation strategy with high potential for rapid detection and analysis of general floating cells, including circulating tumor cells and other rare cell types. PMID:27387093

  1. Laser cross-flow gas system

    DOEpatents

    Duncan, David B.

    1992-01-01

    A method and laser apparatus are disclosed which provide for a cross-flow of gas near one end of a laser discharge tube. The cross-flow of gas causes a concentration gradient which affects diffusion of contaminants in the discharge tube towards the cross-flow of the gas, which contaminants are then withdrawn from the discharge tube.

  2. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  3. Red blood cell clustering in Poiseuille microcapillary flow

    NASA Astrophysics Data System (ADS)

    Tomaiuolo, Giovanna; Lanotte, Luca; Ghigliotti, Giovanni; Misbah, Chaouqi; Guido, Stefano

    2012-05-01

    Red blood cells (RBC) flowing in microcapillaries tend to associate into clusters, i.e., small trains of cells separated from each other by a distance comparable to cell size. This process is usually attributed to slower RBCs acting to create a sequence of trailing cells. Here, based on the first systematic investigation of collective RBC flow behavior in microcapillaries in vitro by high-speed video microscopy and numerical simulations, we show that RBC size polydispersity within the physiological range does not affect cluster stability. Lower applied pressure drops and longer residence times favor larger RBC clusters. A limiting cluster length, depending on the number of cells in a cluster, is found by increasing the applied pressure drop. The insight on the mechanism of RBC clustering provided by this work can be applied to further our understanding of RBC aggregability, which is a key parameter implicated in clotting and thrombus formation.

  4. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  5. Circulation times of cancer cells by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Yan; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. Hepatocellular carcinoma may metastasize to lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor: the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed "in vivo flow cytometer" combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines, high-metastatic HCCLM3 cells and low-metastatic HepG2 cells, which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly, the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison, <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  6. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.

    PubMed

    Benavente-Babace, A; Gallego-Pérez, D; Hansford, D J; Arana, S; Pérez-Lorenzo, E; Mujika, M

    2014-11-15

    Lab on a chip (LOC) systems provide interesting and low-cost solutions for key studies and applications in the biomedical field. Along with microfluidics, these microdevices make single-cell manipulation possible with high spatial and temporal resolution. In this work we have designed, fabricated and characterized a versatile and inexpensive microfluidic platform for on-chip selective single-cell trapping and treatment using laminar co-flow. The combination of co-existing laminar flow manipulation and hydrodynamic single-cell trapping for selective treatment offers a cost-effective solution for studying the effect of novel drugs on single-cells. The operation of the whole system is experimentally simple, highly adaptable and requires no specific equipment. As a proof of concept, a cytotoxicity study of ethanol in isolated hepatocytes is presented. The developed microfluidic platform controlled by means of co-flow is an attractive and multipurpose solution for the study of new substances of high interest in cell biology research. In addition, this platform will pave the way for the study of cell behavior under dynamic and controllable fluidic conditions providing information at the individual cell level. Thus, this analysis device could also hold a great potential to easily use the trapped cells as sensing elements expanding its functionalities as a cell-based biosensor with single-cell resolution. PMID:24907537

  7. Cortical Flow-Driven Shapes of Nonadherent Cells

    NASA Astrophysics Data System (ADS)

    Callan-Jones, A. C.; Ruprecht, V.; Wieser, S.; Heisenberg, C. P.; Voituriez, R.

    2016-01-01

    Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment.

  8. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  9. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  10. Designing piping systems for two-phase flow

    SciTech Connect

    Cindric, D.T.; Gandhi, S.L.; Williams, R.A.

    1987-03-01

    A wide range of industrial systems, such as thermosiphon reboilers and chemical reactors, involve two-phase gas-liquid flow in conduits. Design of these systems requires information about the flow regime, pressure drop, slug velocity and length, and heat transfer coefficient. An understanding of two-phase flow is critical for the reliable and cost-effective design of such systems. The successful design of a pipeline in two-phase flow, for example, is a two-step process. The first step is the determination of the flow regime. If an undesirable flow regime, such as slug flow, is not anticipated and adequately designed for, the resulting flow pattern can upset a tower control system or cause mechanical failures of piping components. The second step is the calculation of flow parameters such as pressure drop and density to size lines and equipment. Since the mechanism of fluid flow (and heat transfer) depends on the flow pattern, separate flow models are required for different flow patterns.

  11. Classification of biological cells using a sound wave based flow cytometer

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Gnyawali, Vaskar; Van De Vondervoort, Mia; Daghighi, Yasaman; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    A flow cytometer that uses sound waves to determine the size of biological cells is presented. In this system, a microfluidic device made of polydimethylsiloxane (PDMS) was developed to hydrodynamically flow focus cells in a single file through a target area. Integrated into the microfluidic device was an ultrasound transducer with a 375 MHz center frequency, aligned opposite the transducer was a pulsed 532 nm laser focused into the device by a 10x objective. Each passing cell was insonfied with a high frequency ultrasound pulse, and irradiated with the laser. The resulting ultrasound and photoacoustic waves from each cell were analyzed using signal processing methods, where features in the power spectra were compared to theoretical models to calculate the cell size. Two cell lines with different size distributions were used to test the system: acute myeloid leukemia cells (AML) and melanoma cells. Over 200 cells were measured using this system. The average calculated diameter of the AML cells was 10.4 +/- 2.5 μm using ultrasound, and 11.4 +/- 2.3 μm using photoacoustics. The average diameter of the melanoma cells was 16.2 +/- 2.9 μm using ultrasound, and 18.9 +/- 3.5 μm using photoacoustics. The cell sizes calculated using ultrasound and photoacoustic methods agreed with measurements using a Coulter Counter, where the AML cells were 9.8 +/- 1.8 μm and the melanoma cells were 16.0 +/- 2.5 μm. These results demonstrate a high speed method of assessing cell size using sound waves, which is an alternative method to traditional flow cytometry techniques.

  12. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  13. Dynamic modelling of packaging material flow systems.

    PubMed

    Tsiliyannis, Christos A

    2005-04-01

    A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data. PMID:15864957

  14. Cytosolic Calcium Measurements in Renal Epithelial Cells by Flow Cytometry

    PubMed Central

    Lee, Wing-Kee; Dittmar, Thomas

    2014-01-01

    A variety of cellular processes, both physiological and pathophysiological, require or are governed by calcium, including exocytosis, mitochondrial function, cell death, cell metabolism and cell migration to name but a few. Cytosolic calcium is normally maintained at low nanomolar concentrations; rather it is found in high micromolar to millimolar concentrations in the endoplasmic reticulum, mitochondrial matrix and the extracellular compartment. Upon stimulation, a transient increase in cytosolic calcium serves to signal downstream events. Detecting changes in cytosolic calcium is normally performed using a live cell imaging set up with calcium binding dyes that exhibit either an increase in fluorescence intensity or a shift in the emission wavelength upon calcium binding. However, a live cell imaging set up is not freely accessible to all researchers. Alternative detection methods have been optimized for immunological cells with flow cytometry and for non-immunological adherent cells with a fluorescence microplate reader. Here, we describe an optimized, simple method for detecting changes in epithelial cells with flow cytometry using a single wavelength calcium binding dye. Adherent renal proximal tubule epithelial cells, which are normally difficult to load with dyes, were loaded with a fluorescent cell permeable calcium binding dye in the presence of probenecid, brought into suspension and calcium signals were monitored before and after addition of thapsigargin, tunicamycin and ionomycin. PMID:25407650

  15. Fuel cell gas management system

    DOEpatents

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  16. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    PubMed

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  17. Reduction of Europium in a Redox Flow Cell

    NASA Astrophysics Data System (ADS)

    Lu, Daluh; Horng, Jiin-Shiung; Tung, Chia-Pao

    1988-05-01

    An electrolytic cell similar to the iron I chromium redox flow cell was used to investigate the reduction of europium. The cell contains two compartments partitioned by an anion exchange membrane, which is permeable to chloride ions. The anolyte is ferrous chloride which is oxidized to ferric form at the anode. Rare-earth chloride prepared from Taiwan black monazite is fed as the catholyte. The reduction of europium was tested in two connected cells at 20 and 45°C. All of Eu3+ can be reduced at 45°C, and 72% of the europium can be recovered in sulfate form. In oxide form, purity is about 84%.

  18. Blood Flow through an Open-Celled Foam

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  19. Flow-enhanced solution printing of all-polymer solar cells.

    PubMed

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C K; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F; Mannsfeld, Stefan C B; Bao, Zhenan

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

  20. Flow-enhanced solution printing of all-polymer solar cells

    SciTech Connect

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

  1. Flow-enhanced solution printing of all-polymer solar cells

    PubMed Central

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-01-01

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility. PMID:26264528

  2. Cell-based flow cytometry assay to measure cytotoxic activity.

    PubMed

    Noto, Alessandra; Ngauv, Pearline; Trautmann, Lydie

    2013-12-17

    Cytolytic activity of CD8+ T cells is rarely evaluated. We describe here a new cell-based assay to measure the capacity of antigen-specific CD8+ T cells to kill CD4+ T cells loaded with their cognate peptide. Target CD4+ T cells are divided into two populations, labeled with two different concentrations of CFSE. One population is pulsed with the peptide of interest (CFSE-low) while the other remains un-pulsed (CFSE-high). Pulsed and un-pulsed CD4+ T cells are mixed at an equal ratio and incubated with an increasing number of purified CD8+ T cells. The specific killing of autologous target CD4+ T cells is analyzed by flow cytometry after coculture with CD8+ T cells containing the antigen-specific effector CD8+ T cells detected by peptide/MHCI tetramer staining. The specific lysis of target CD4+ T cells measured at different effector versus target ratios, allows for the calculation of lytic units, LU₃₀/10(6) cells. This simple and straightforward assay allows for the accurate measurement of the intrinsic capacity of CD8+ T cells to kill target CD4+ T cells.

  3. Volumetric system calibrates meters for large flow rates

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Volumetric system calibrates meters used for large liquid flow rates. The system employs trip probes and equipment to time the flow of liquid from a tare vessel into a calibrated vessel. This calibration system is used in the petroleum and chemical industries.

  4. Performance on ETL 1 kW redox flow cell

    NASA Astrophysics Data System (ADS)

    Nozaki, K.; Kaneko, H.; Negishi, A.; Ozawa, T.

    A 1 kW - 3 kWh redox flow cell, in which 96 bipolar cells with the apparent electrode area of 432 sq cm are involved, has been developed and tested in Electrotechnical Laboratory. The rated output current and voltage are 26 A and 43 V. To elucidate fundamental aspects of the anolyte, polarography and spectroscopy were applied as well as observations with a miniaturized redox flow cell, and influence of the complex species in the anolyte on the cell performance has been recognized. During the charge and discharge cycles the anolyte was continuously monitored by the spectroscopy or controlled potential coulometry, while a voltammetric detector was applied for monitoring the catholyte. Further screening of carbon fiber electrode materials has been continued after the previous presentation, and among more than 70 varieties were found a few kinds of carbon fiber, with which the target performance can be achieved.

  5. Fuel cell system with interconnect

    DOEpatents

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  6. Fuel cell system with interconnect

    DOEpatents

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  7. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  8. Heat transfer and flow in solar energy and bioenergy systems

    NASA Astrophysics Data System (ADS)

    Xu, Ben

    culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected

  9. A comparative flow visualization study of thermocapillary flow in drops in liquid-liquid systems

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rashidnia, N.

    1991-01-01

    Experiments are performed to visualize thermocapillary flow in drops in an immiscible host liquid. The host liquid used is silicone oil. Drops of three different liquids are used, viz, vegetable oil, water-methanol mixture anad pure methanol. Clear evidence of thermocapillary flow is seen in vegetable oil drops. For a mixture of water and methanol (approximately 50-50 by weight), natural convection is seen to dominate the flow outside the drop. Pure methanol drops exhibit thermocapillary flow, but dissolve in silicone oil. A small amount of water added to pure methanol significantly reduces the dissolution. Flow oscillations occur in this system for both isothermal and non-isothermal conditions.

  10. Detection, isolation, and capture of circulating breast cancer cells with photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran; Njoroge, Martin; Goldschmidt, Benjamin S.; Gaffigan, Brian; Rood, Kyle; Viator, John A.

    2013-03-01

    According to the CDC, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis, or the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems, significantly worsens the prognosis of any breast cancer patient. In this study, a technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser with a 5 ns pulse at 532 nm is used to interrogate thousands of cells with one pulse as they flow through the beam path. Cells which are pigmented, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to provide pigment. After which, the device is calibrated to demonstrate a single-cell detection limit. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25-45 breast cancer cells per 1 mL of blood. An in vitro photoacoustic flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy, it can also be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  11. Dynamic deformability of sickle red blood cells in microphysiological flow

    PubMed Central

    Alapan, Y.; Matsuyama, Y.; Little, J. A.; Gurkan, U. A.

    2016-01-01

    In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion (vaso-occlusion) in SCD patients. Here, we present a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. We measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs in blood samples obtained from 24 subjects. We introduce a new parameter to assess deformability of RBCs: the dynamic deformability index (DDI), which is defined as the time-dependent change of the cell’s aspect ratio in response to fluid flow shear stress. Our results show that DDI of HbS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, we observed subpopulations of HbS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, we tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. We observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events. PMID:27437432

  12. Cartesian grid simulations of gas-solids flow systems with complex geometry

    SciTech Connect

    Dietiker, Jean-Francois; Li, Tingwen; Garg, Rahul; Shahnam, Mehrdad

    2013-02-01

    Complex geometries encountered in many applications of gas–solids flow need special treatment in most legacy multiphase flow solvers with Cartesian numerical grid. This paper briefly outlines the implementation of a cut cell technique in the open-source multiphase flow solver—MFIX for accurate representation of complex geometries. Specifically, applications of the Cartesian cut cell method to different gas–solids fluidization systems including a small scale bubbling fluidized bed with submerged tube bundle and a complete pilot-scale circulating fluidized bed will be presented. In addition to qualitative predictions on the general flow behaviors inside each system, quantitative comparison with the available experimental data will be presented. Furthermore, some results on extending the current cut-cell technique to Lagrangian–Eulerian simulations will be presented.

  13. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  14. A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Anderson, Ryan; Zhang, Lifeng; Ding, Yulong; Blanco, Mauricio; Bi, Xiaotao; Wilkinson, David P.

    Water management in PEM fuel cells has received extensive attention due to its key role in fuel cell performance. The unavoidable water, from humidified gas streams and electrochemical reaction, leads to gas-liquid two-phase flow in the flow channels of fuel cells. The presence of two-phase flow increases the complexity in water management in PEM fuel cells, which remains a challenging hurdle in the commercialization of this technology. Unique water emergence from the gas diffusion layer, which is different from conventional gas-liquid two-phase flow where water is introduced from the inlet together with the gas, leads to different gas-liquid flow behaviors, including pressure drop, flow pattern, and liquid holdup along flow field channels. These parameters are critical in flow field design and fuel cell operation and therefore two-phase flow has received increasing attention in recent years. This review emphasizes gas-liquid two-phase flow in minichannels or microchannels related to PEM fuel cell applications. In situ and ex situ experimental setups have been utilized to visualize and quantify two-phase flow phenomena in terms of flow regime maps, flow maldistribution, and pressure drop measurements. Work should continue to make the results more relevant for operating PEM fuel cells. Numerical simulations have progressed greatly, but conditions relevant to the length scales and time scales experienced by an operating fuel cell have not been realized. Several mitigation strategies exist to deal with two-phase flow, but often at the expense of overall cell performance due to parasitic power losses. Thus, experimentation and simulation must continue to progress in order to develop a full understanding of two-phase flow phenomena so that meaningful mitigation strategies can be implemented.

  15. Flow induced pulsations in pipe systems

    NASA Astrophysics Data System (ADS)

    Bruggeman, Jan Cornelis

    1987-12-01

    The aeroacoustic behavior of a low Mach number, high Reynolds number flow through a pipe with closed side branches was investigated. Sound is generated by coherent structures of concentrated vorticity formed periodically in the separated flow in the T-shaped junctions of side branches and the main pipe. The case of moderate pulsation amplitudes was investigated. It appears that the vortical flow in a T-joint is an aeroacoustic source of constant strength when acoustic energy losses due to radiation and friction are small but not negligible. When acoustic energy losses due to radiation and friction are negligible, the nonlinear character of vortex damping is the amplitude limiting mechanism. It is stressed that aeroacoustic sources should not be neglected in studies of the response of a piping lay-out with flow to, e.g., the pulsating output of a compressor.

  16. Flow and storage in groundwater systems.

    PubMed

    Alley, William M; Healy, Richard W; LaBaugh, James W; Reilly, Thomas E

    2002-06-14

    The dynamic nature of groundwater is not readily apparent, except where discharge is focused at springs or where recharge enters sinkholes. Yet groundwater flow and storage are continually changing in response to human and climatic stresses. Wise development of groundwater resources requires a more complete understanding of these changes in flow and storage and of their effects on the terrestrial environment and on numerous surface-water features and their biota.

  17. Design, construction and evaluation of a simulated geothermal flow system

    SciTech Connect

    Mackanic, J.C.

    1980-07-28

    A system was designed and built to simulate the flow from a geothermal well. The simulated flow will be used to power a Lysholm engine, the performance of which will then be evaluated for different simulated geothermal flows. Two main subjects are covered: 1) the design, construction and evaluation of the behavior of the system that simulates the geothermal flow; included in that topic is a discussion of the probable behavior of the Lysholm engine when it is put into operation, and 2) the investigation of the use of dynamic modeling techniques to determine whether they can provide a suitable means for predicting the behavior of the system.

  18. Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry

    PubMed Central

    Gump, Jacob M; Thorburn, Andrew

    2014-01-01

    We detail here a protocol using tandem-tagged mCherry-EGFP-LC3 (C-G-LC3) to quantify autophagic flux in single cells by ratiometric flow cytometry and to isolate subpopulations of cells based on their relative levels of autophagic flux. This robust and sensitive method measures autophagic flux rather than autophagosome number and is an important addition to the autophagy researcher’s array of tools for measuring autophagy. Two crucial steps in this protocol are i) generate cells constitutively expressing C-G-LC3 with low to medium fluorescence and low fluorescence variability, and ii) correctly set up gates and voltage/gain on a properly equipped flow cytometer. We have used this method to measure autophagic flux in a variety of cell types and experimental systems using many different autophagy stimuli. On a sorting flow cytometer, this technique can be used to isolate cells with different levels of basal autophagic flux, or cells with variable induction of flux in response to a given stimulus for further analysis or experimentation. We have also combined quantification of autophagic flux with methods to measure apoptosis and cell surface proteins, demonstrating the usefulness of this protocol in combination with other flow cytometry labels and markers. PMID:24915460

  19. Comparative testing of various flow-cell detectors fabricated using CaF{sub 2} solid scintillator

    SciTech Connect

    Kawano, T.; Ohashi, H.; Hamada, Y.; Jamsranjav, E.

    2015-03-15

    A monitoring system based on a flow-cell detector was developed for measuring the tritium concentration in water. The flow-cell detector was fabricated using a granular CaF{sub 2} solid scintillator. This system does not use a liquid scintillation counting system and does not generate radioactive organic liquid waste. Moreover, continuous real-time measurements are possible, in contrast to a liquid scintillation counting system, which requires batch measurements. For further development of the system, four flow-cell detectors were fabricated. They included a single 3-mm-diameter cell, three 3-mm-diameter cells in series, a single 5-mm-diameter cell, and three 5-mm-diameter cells in series. Continuously flowing water containing tritium at various concentrations was passed through the flow cells, and tritium count were measured for 600 and 10000 s. Investigating the relation between the count rate and concentration, the three 5-mm-diameter cells were most sensitive, with a linear relation maintained down to approximately 2 Bq/ml and 10 Bq/ml for 10000- and 600-s measurements, respectively. (authors)

  20. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  1. Heat transfer analysis for peripheral blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Hattori, Hideharu; Sato, Nobuhiko; Ichige, Yukiko; Kiguchi, Masashi

    2009-06-01

    Some disorders such as circulatory disease and metabolic abnormality cause many problems to peripheral blood flow condition. Therefore, frequent measurement of the blood flow condition is bound to contribute to precaution against those disorders and to control of conditions of the diseases. We propose a convenient means of blood flow volume measurement at peripheral part, such as fingertips. Principle of this measurement is based on heat transfer characteristics of peripheral part containing the blood flow. Transition response analysis of skin surface temperature has provided measurement model of the peripheral blood flow volume. We developed the blood flow measurement system based on that model and evaluated it by using artificial finger under various temperature conditions of ambience and internal fluid. The evaluation results indicated that proposed method could estimate the volume of the fluid regardless of temperature condition of them. Finally we applied our system to real finger testing and have obtained results correlated well with laser Doppler blood flow meter values.

  2. Multi-stage fuel cell system method and apparatus

    DOEpatents

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  3. Compact Fuel-Cell System Would Consume Neat Methanol

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.

  4. Employment of synchronized cells and flow microfluorometry in investigations on the JB-1 ascites tumour chalones.

    PubMed

    Bichel, P; Barfod, N M; Jakobsen, A

    1975-11-01

    In most experimental ascites tumours the growth rate decreases with increasing age and cell number. This decrease is caused by a prolongation of the cell cycle and an increasing accumulation of non-cycling cells in resting (or quiescent) G1 and G2 compartments. In cell-free ascitic fluid from the JB-1 ascites tumour in the plateau phase of growth lowmolecular-weight substances have been found which reversibly and specifically arrest JB-1 cells in G1 and G2. The present paper describes an in-vitro model for testing the effect of the humoral growth inhibitors contained in the ascitic fluid. The test system is based on synchronized JB-1 cells analysed by flow-through cytofluorometry. Addition to the synchronous cells of a ultrafiltrate (less than 50000 Daltons) of the JB-1 ascitic fluid was found to induce a complete, but temporary arrest of the cells at the G1-S border.

  5. INNOVATIVE URBAN WET-WEATHER FLOW MANAGEMENT SYSTEMS

    EPA Science Inventory

    This report describes innovative methods to improve wet weather flow (WWF) management systems, that provide drainage services at the same time as decreasing stormwater pollutant discharges, for urban developments of the 21st century. Traditionally, wet-weather collection systems...

  6. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    : Belcher, Wayne R.

    2004-01-01

    provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  7. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  8. Reversible logic gates based on enzyme-biocatalyzed reactions and realized in flow cells: a modular approach.

    PubMed

    Fratto, Brian E; Katz, Evgeny

    2015-05-18

    Reversible logic gates, such as the double Feynman gate, Toffoli gate and Peres gate, with 3-input/3-output channels are realized using reactions biocatalyzed with enzymes and performed in flow systems. The flow devices are constructed using a modular approach, where each flow cell is modified with one enzyme that biocatalyzes one chemical reaction. The multi-step processes mimicking the reversible logic gates are organized by combining the biocatalytic cells in different networks. This work emphasizes logical but not physical reversibility of the constructed systems. Their advantages and disadvantages are discussed and potential use in biosensing systems, rather than in computing devices, is suggested. PMID:25778455

  9. Segmented flow generation by chip reactors for highly parallelized cell cultivation.

    PubMed

    Grodrian, Andreas; Metze, Josef; Henkel, Thomas; Martin, Karin; Roth, Martin; Köhler, J Michael

    2004-06-15

    Micro system technology offers convenient tools for the production of handling devices for small liquid volumes which can be used in cell cultivation. Here, a modular system for the rapid generation of cell suspension aliquots is presented. The system is used to produce and analyze high numbers of well-separated culture volumes. Selected clones may be retrieved from the system. Therefore, the principle of segmented flow is applied. Portions of aqueous culture medium containing one cell or very small cell ensembles are separated from each other by a nonmiscible liquid like dodecane, tetradecane or mineral oil. In addition, the alkane separates the culture droplets from the innerside of the walls of chip channels and capillaries. This way, compatibility problems between cell wall surfaces and the chemical character of walls are excluded. The separated culture droplets are guided by micro flow transportation in different channel and chamber topologies. The whole system has the character of a serially operating cell processing system. The aliquot generation can be sped up to frequencies of about 30 Hz in each microchannel. That means, that about 10(5) individual cultural volumes can be produced per hour or about 2 million per day. The survival and the growth of microorganisms has been shown for model organisms as well as for organisms from a natural sample (soil). PMID:15093213

  10. Segmented flow generation by chip reactors for highly parallelized cell cultivation

    NASA Astrophysics Data System (ADS)

    Grodrian, A.; Metze, J.; Henkel, Thomas; Roth, M.; Kohler, Johann M.

    2002-11-01

    Micro system technology offers convenient tools for the production of handling devices for small liquid volumes which can be used in cell cultivation. Here, a modular system for the rapid generation of cell suspension aliquotes is presented. The system is used to produce and analyze high numbers of strongly separated cultural volumes. Selected clones may be retrieved from the system. Therefore, the principle of segmented flow is applies. Portions of aqueous culture medium containing one cell or very small cell ensembles are separated from each other by a nonmiscible liquid like dodecane or mineral oil. In addition, the oil separates the cultivation droplets from the innerside of the walls of chip channels and capillaries. This way, compatibility problems between cell wall surfaces and the chemical character of technical walls are excluded. The separated cultivation droplets are guided by micro flow transportation in different channel and chamber topologies. The whole system has the character of a serially working cell processing system. The aliquot generation can be speeded up to frequencies of about 30 Hz in each micro channel. That means, that about 105 individual cultural volumes can be produced per hour or about 2 million per day.

  11. Computational analysis of fluid flow within a device for applying biaxial strain to cultured cells.

    PubMed

    Lee, Jason; Baker, Aaron B

    2015-05-01

    In vitro systems for applying mechanical strain to cultured cells are commonly used to investigate cellular mechanotransduction pathways in a variety of cell types. These systems often apply mechanical forces to a flexible membrane on which cells are cultured. A consequence of the motion of the membrane in these systems is the generation of flow and the unintended application of shear stress to the cells. We recently described a flexible system for applying mechanical strain to cultured cells, which uses a linear motor to drive a piston array to create biaxial strain within multiwell culture plates. To better understand the fluidic stresses generated by this system and other systems of this type, we created a computational fluid dynamics model to simulate the flow during the mechanical loading cycle. Alterations in the frequency or maximal strain magnitude led to a linear increase in the average fluid velocity within the well and a nonlinear increase in the shear stress at the culture surface over the ranges tested (0.5-2.0 Hz and 1-10% maximal strain). For all cases, the applied shear stresses were relatively low and on the order of millipascal with a dynamic waveform having a primary and secondary peak in the shear stress over a single mechanical strain cycle. These findings should be considered when interpreting experimental results using these devices, particularly in the case when the cell type used is sensitive to low magnitude, oscillatory shear stresses. PMID:25611013

  12. Effect of Flow on Gene Regulation in Smooth Muscle Cells and Macromolecular Transport Across Endothelial Cell Monolayers

    NASA Technical Reports Server (NTRS)

    McIntire, Larry V.; Wagner, John E.; Papadaki, Maria; Whitson, Peggy A.; Eskin, Suzanne G.

    1996-01-01

    Endothelial cells line all of the vessels of the circulatory system, providing a non-thrombogenic conduit for blood flow; they regulate many complex functions in the vasculature, such as coagulation, fibrinolysis, platelet aggregation, vessel tone and growth, and leukocyte traffic; and they form the principal barrier to transport of substances between the blood and the surrounding tissue space. The permeability of endothelial cell changes with environmental stimuli; shear stress, in particular, applied either in vivo, or in vitro, induces changes in protein expression and secretion of vasoactive factors by endothelial cells. The ability to study the effects of shear on the macromolecular permeability of the cerebral vasculature is particularly important, since in no other place is the barrier function of the endothelium more important than in the brain. The endothelial cells of this organ have developed special barrier properties that keep the cerebral system from experiencing any drastic change in composition; together with glial cells, they form the blood brain barrier (BBB). We have studied the effect of flow on bovine BBB using flow chambers and tissue culture systems.

  13. Photothermal imaging of moving cells in lymph and blood flow in vivo

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Galanzha, Ekaterina I.; Tuchin, Valery V.

    2004-07-01

    The in vivo capabilities of a new, integrated optical system for studying lymph and blood flow were explored, including imaging of moving red and white blood cells. This system combined transmission microscopy with different dual-beam photothermal (PT) techniques, such as PT imaging, PT thermolens method, and PT deflection velocimetry. All of these PT techniques are based on irradiation of rat mesenteric microvessels with a short laser pulse and on detection of temperature-dependent variations of the refractive index with a second, probe laser beam. In general, the concept of in vivo PT flow cytometry was developed, with a focus on real-time monitoring of moving blood cells in their natural states without labeling (e.g., fluorescent), including obtaining PT images of the cells and determining their flow velocity and response to different interventions. Preliminary experiments revealed many potential applications of this integrated system: (1) quantitation of lymph and blood flow without probes; (2) imaging of moving red and white blood cells; (3) visualization and tracking of PT nanoprobes and sensitizers; (4) comparison of laser-tissue interactions in vivo and in vitro, especially optimization of laser treatment of vascular lesions (port-wine stains, lymphatic malformations, etc.); and (5) determination of the link between in vitro and in vivo cytotoxicity studies.

  14. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  15. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    SciTech Connect

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  16. Micropatterned surfaces for controlling cell adhesion and rolling under flow.

    PubMed

    Nalayanda, Divya D; Kalukanimuttam, Mahendran; Schmidtke, David W

    2007-04-01

    Cell adhesion and rolling on the vascular wall is critical to both inflammation and thrombosis. In this study we demonstrate the feasibility of using microfluidic patterning for controlling cell adhesion and rolling under physiological flow conditions. By controlling the width of the lines (50-1000 microm) and the spacing between them (50-100 microm) we were able to fabricate surfaces with well-defined patterns of adhesion molecules. We demonstrate the versatility of this technique by patterning surfaces with 3 different adhesion molecules (P-selectin, E-selectin, and von Willebrand Factor) and controlling the adhesion and rolling of three different cell types (neutrophils, Chinese Hamster Ovary cells, and platelets). By varying the concentration of the incubating solution we could control the surface ligand density and hence the cell rolling velocity. Finally by patterning surfaces with both P-selectin and von Willebrand Factor we could control the rolling of both leukocytes and platelets simultaneously. The technique described in this paper provides and effective and inexpensive way to fabricate patterned surfaces for use in cell rolling assays under physiologic flow conditions. PMID:17160704

  17. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.

    PubMed

    Rodrigues, Raquel O; Pinho, Diana; Faustino, Vera; Lima, Rui

    2015-12-01

    Blood flow presents several interesting phenomena in microcirculation that can be used to develop microfluidic devices capable to promote blood cells separation and analysis in continuous flow. In the last decade there have been numerous microfluidic studies focused on the deformation of red blood cells (RBCs) flowing through geometries mimicking microvessels. In contrast, studies focusing on the deformation of white blood cells (WBCs) are scarce despite this phenomenon often happens in the microcirculation. In this work, we present a novel integrative microfluidic device able to perform continuous separation of a desired amount of blood cells, without clogging or jamming, and at the same time, capable to assess the deformation index (DI) of both WBCs and RBCs. To determine the DI of both WBCs and RBCs, a hyperbolic converging microchannel was used, as well as a suitable image analysis technique to measure the DIs of these blood cells along the regions of interest. The results show that the WBCs have a much lower deformability than RBCs when subjected to the same in vitro flow conditions, which is directly related to their cytoskeleton and nucleus contents. The proposed strategy can be easily transformed into a simple and inexpensive diagnostic microfluidic system to simultaneously separate and assess blood cells deformability. PMID:26482154

  18. Parallel flow in hele-shaw cells with ferrofluids

    PubMed

    Miranda; Widom

    2000-02-01

    Parallel flow in a Hele-Shaw cell occurs when two immiscible liquids flow with relative velocity parallel to the interface between them. The interface is unstable due to a Kelvin-Helmholtz type of instability in which fluid flow couples with inertial effects to cause an initial small perturbation to grow. Large amplitude disturbances form stable solitons. We consider the effects of applied magnetic fields when one of the two fluids is a ferrofluid. The dispersion relation governing mode growth is modified so that the magnetic field can destabilize the interface even in the absence of inertial effects. However, the magnetic field does not affect the speed of wave propogation for a given wave number. We note that the magnetic field creates an effective interaction between the solitons. PMID:11046508

  19. Compliant fuel cell system

    DOEpatents

    Bourgeois, Richard Scott; Gudlavalleti, Sauri

    2009-12-15

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  20. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  1. Alternative experiments using the geophysical fluid flow cell

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1984-01-01

    This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.

  2. A study of differential-flow-rate-cell corrosion in seawater

    SciTech Connect

    Miyasaka, M.; Kishimoto, K.; Aoki, S.

    1995-10-01

    Mechanisms of differential-flow-rate-cell corrosion (differential-aeration-cell corrosion caused by differential flow rates) of cast iron in seawater were studied. Potential and current density distributions produced by the differential-flow-rate-cell were on actual pumps and a model test cell. Boundary element analysis was also performed on differential-flow-rate-cell corrosion occurred in the model test cell. These studies demonstrate that differential-flow-rate-cell corrosion has characteristics similar to those of galvanic corrosion, and thus can be treated in the same manner as galvanic corrosion.

  3. Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry.

    PubMed

    Sica, Valentina; Maiuri, M Chiara; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    Different modes of regulated cell death (RCD) can be initiated by distinct molecular machineries and their morphological manifestations can be difficult to discriminate. Moreover, cells responding to stress often activate an adaptive response centered around autophagy, and whether such a response is cytoprotective or cytotoxic cannot be predicted based on morphological parameters only. Molecular definitions are therefore important to understand various RCD subroutines from a mechanistic perspective. In vitro, various forms of RCD including apoptosis and autophagic cell death can be easily discriminated from each other with assays that involve chemical or pharmacological interventions targeting key components of either pathway. Here, we detail a straightforward method to discriminate apoptosis from autophagic cell death by flow cytometry, based on the broad-spectrum caspase inhibitor Z-VAD-fmk and the genetic inhibition of ATG5.

  4. Flow monitor reliability design criteria for thermal mass flow measurement systems

    SciTech Connect

    Groce, P.J.

    1995-12-31

    Implementation of Title IV of the Clean Air Act greatly expanded the market of mass flow measurement in utility flue gas ducts and stacks. Lessons learned from recent experience in this demanding application resulted in the rapid evolution of equipment designed to ensure accuracy, reliability and ease of maintenance. Thermal mass flow measurement, one of three accepted methods of mass flow measurement, has proven to be an accurate and reliable means of achieving dependable flow data. Aside from system accuracy and repeatability, on-line time appears to be the critical performance factor for any mass flow measurement system. This paper addresses the major design features that have resulted in maximum on-line time and conformance with compliance plans.

  5. Computation of subsonic flow around airfoil systems with multiple separation

    NASA Technical Reports Server (NTRS)

    Jacob, K.

    1982-01-01

    A numerical method for computing the subsonic flow around multi-element airfoil systems was developed, allowing for flow separation at one or more elements. Besides multiple rear separation also sort bubbles on the upper surface and cove bubbles can approximately be taken into account. Also, compressibility effects for pure subsonic flow are approximately accounted for. After presentation the method is applied to several examples and improved in some details. Finally, the present limitations and desirable extensions are discussed.

  6. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel

    PubMed Central

    Yaginuma, T.; Oliveira, M. S. N.; Lima, R.; Ishikawa, T.; Yamaguchi, T.

    2013-01-01

    It is well known that certain pathological conditions result in a decrease of red blood cells (RBCs) deformability and subsequently can significantly alter the blood flow in microcirculation, which may block capillaries and cause ischemia in the tissues. Microfluidic systems able to obtain reliable quantitative measurements of RBC deformability hold the key to understand and diagnose RBC related diseases. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction followed by a sudden expansion is presented. We provide a detailed quantitative description of the degree of deformation of human RBCs under a controlled homogeneous extensional flow field. We measured the deformation index (DI) as well as the velocity of the RBCs travelling along the centerline of the channel for four different flow rates and analyze the impact of the particle Reynolds number. The results show that human RBC deformation tends to reach a plateau value in the region of constant extensional rate, the value of which depends on the extension rate. Additionally, we observe that the presence of a sudden expansion downstream of the hyperbolic contraction modifies the spatial distribution of cells and substantially increases the cell free layer (CFL) downstream of the expansion plane similarly to what is seen in other expansion flows. Beyond a certain value of flow rate, there is only a weak effect of inlet flow rates on the enhancement of the downstream CFL. These in vitro experiments show the potential of using microfluidic systems with hyperbolic-shaped microchannels both for the separation of the RBCs from plasma and to assess changes in RBC deformability in physiological and pathological situations for clinical purposes. However, the selection of the geometry and the identification of the most suitable region to evaluate the changes on the RBC deformability under extensional flows are crucial if microfluidics is to be used as an in vitro clinical

  7. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel.

    PubMed

    Yaginuma, T; Oliveira, M S N; Lima, R; Ishikawa, T; Yamaguchi, T

    2013-01-01

    It is well known that certain pathological conditions result in a decrease of red blood cells (RBCs) deformability and subsequently can significantly alter the blood flow in microcirculation, which may block capillaries and cause ischemia in the tissues. Microfluidic systems able to obtain reliable quantitative measurements of RBC deformability hold the key to understand and diagnose RBC related diseases. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction followed by a sudden expansion is presented. We provide a detailed quantitative description of the degree of deformation of human RBCs under a controlled homogeneous extensional flow field. We measured the deformation index (DI) as well as the velocity of the RBCs travelling along the centerline of the channel for four different flow rates and analyze the impact of the particle Reynolds number. The results show that human RBC deformation tends to reach a plateau value in the region of constant extensional rate, the value of which depends on the extension rate. Additionally, we observe that the presence of a sudden expansion downstream of the hyperbolic contraction modifies the spatial distribution of cells and substantially increases the cell free layer (CFL) downstream of the expansion plane similarly to what is seen in other expansion flows. Beyond a certain value of flow rate, there is only a weak effect of inlet flow rates on the enhancement of the downstream CFL. These in vitro experiments show the potential of using microfluidic systems with hyperbolic-shaped microchannels both for the separation of the RBCs from plasma and to assess changes in RBC deformability in physiological and pathological situations for clinical purposes. However, the selection of the geometry and the identification of the most suitable region to evaluate the changes on the RBC deformability under extensional flows are crucial if microfluidics is to be used as an in vitro clinical

  8. Special purpose computer system for flow visualization using holography technology.

    PubMed

    Abe, Yukio; Masuda, Nobuyuki; Wakabayashi, Hideaki; Kazo, Yuta; Ito, Tomoyoshi; Satake, Shin-ichi; Kunugi, Tomoaki; Sato, Kazuho

    2008-05-26

    We have designed a special purpose computer system for visualizing fluid flow using digital holographic particle tracking velocimetry (DHPTV). This computer contains an Field Programmble Gate Array (FPGA) chip in which a pipeline for calculating the intensity of an object from a hologram by fast Fourier transform is installed. This system can produce 100 reconstructed images from a 1024 x 1024-grid hologram in 3.3 sec. It is expected that this system will contribute to fluid flow analysis.

  9. Applications of fixed-time flow cytometry in cell biology

    NASA Astrophysics Data System (ADS)

    Tarnok, Attila

    1998-04-01

    Flow cytometric (FCM) measurement of intracellular free calcium [Ca2+]i, transients is usually done by two methods: (a) after a short prerun period to assess the baseline the measurement is stopped, stimulus is added and the measurement continued or (b) stimulus is injected during measurement and the sample pressure briefly increased to deliver cells rapidly to the detection point. In (a) measurement of very short transients [Ca2+]i is impeded by the lag time between stimulus addition and restart of acquisition. In (b) response of pressure sensitive cells is hard to analyze. Furthermore, (a) and (b) do not allow to quantify and sort rare responders. A simple Fixed- Time device has been developed. Ca2+ sensitive fluorescent dye labeled cells and a stimulus are placed in different vials. Both fluids are forced by the same pressure through tubing that merges into a T-junction where they mix and are delivered through a connecting tube to the FCM: [Ca2+]i is measured at a certain time after stimulation that is adjusted by sample flow rate and length of the connecting tube. With Fixed-Time, the pressure sensitive neuronal NH15-CA2 cell was analyzed. Furthermore, rare neurotransmitter responsive fibroblast from normal and transfected cultures were sorted and cloned and their dose response characterized. The results demonstrate that fixed- time FCM is an important tool for the analysis of the cells physiology and the preparation of responders.

  10. Rapid flow-induced responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; McIntire, L. V.

    2001-01-01

    Endothelial cells alter their morphology, growth rate, and metabolism in response to fluid shear stress. To study rapid flow-induced responses in the 3D endothelial cell morphology and calcium distribution, coupled fluorescence microscopy with optical sectioning, digital imaging, and numerical deconvolution techniques have been utilized. Results demonstrate that within the first minutes of flow application nuclear calcium is increasing. In the same time frame whole cell height and nuclear height are reduced by about 1 microm. Whole cell height changes may facilitate reduction of shear stress gradients on the luminal surface, whereas nuclear structural changes may be important for modulating endothelial growth rate and metabolism. To study the role of the cytoskeleton in these responses, endothelial cells have been treated with specific disrupters (acrylamide, cytochalasin D, and colchicine) of each of the cytoskeleton elements (intermediate filaments, microfilaments, and microtubules, respectively). None of these compounds had any effect on the shear-induced calcium response. Cytochalasin D and acrylamide did not affect the shear-induced nuclear morphology changes. Colchicine, however, completely abrogated the response, indicating that microtubules may be implicated in force transmission from the plasma membrane to the nucleus. A pedagogical model based on tensegrity theory principles is presented that is consistent with the results on the 3D endothelial morphology.

  11. Systems and Sensors for Debris-flow Monitoring and Warning

    PubMed Central

    Arattano, Massimo; Marchi, Lorenzo

    2008-01-01

    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums

  12. Flow simulation system for generalized static and dynamic grids

    NASA Astrophysics Data System (ADS)

    Koomullil, Roy Paulose

    The objective of this study is to develop a flow simulation system using generalized grids that can be used on static geometries and on dynamically moving bodies. In a generalized grid, the physical domain of interest is decomposed into cells with arbitrary number of sides. The grid can be structured, unstructured, hanging node type, or a combination of the above. An edge-based data structure is used to store the grid information. This makes it easier to handle cells with any number of sides. The full Navier-Stokes equations, in the integral form, are taken as the relations that govern the fluid flow. A cell centered finite volume scheme is used for solving the governing equations. The numerical flux across the cell faces is calculated by an upwind scheme based on Roe's approximate Riemann solver. Taylor's series expansion of a function of multiple variables together with Green's theorem is used for the linear reconstruction of the conserved variables. The accuracy of the computations with first order and higher order schemes are compared. Limiter functions are used to preserve monotonocity and the effect of two different limiter functions on the convergence history is studied. Skin friction coefficient is used to study the accuracy of the limiter functions. Explicit and implicit schemes are implemented and the Generalized Minimal Residual (GMRES) method is used to solve the sparse linear system of equations resulting from the implicit scheme. The flux Jacobians for the implicit schemes are evaluated either using an approximate analytical method or numerical differentiation procedure. The effect of these Jacobians on the convergence of the solution to steady state is compared. Boundary conditions based on the characteristic variables are implemented for generalized grids. The viscous fluxes are evaluated explicitly. Spalart-Almaras one equation turbulence model is implemented for hybrid grids to evaluate the turbulent viscosity. For dynamically moving bodies, the

  13. Design flow factors for sewerage systems in small arid communities.

    PubMed

    Imam, Emad H; Elnakar, Haitham Y

    2014-09-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.

  14. Design flow factors for sewerage systems in small arid communities

    PubMed Central

    Imam, Emad H.; Elnakar, Haitham Y.

    2013-01-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521

  15. Design flow factors for sewerage systems in small arid communities.

    PubMed

    Imam, Emad H; Elnakar, Haitham Y

    2014-09-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521

  16. Monitoring circulating apoptotic cells by in-vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Wei, Xunbin; Tan, Yuan; Chen, Yun; Zhang, Li; Li, Yan; Liu, Guangda; Wu, Bin; Wang, Chen

    2008-02-01

    Chemotherapies currently constitute one main venue of cancer treatment. For a large number of adult and elderly patients, however, treatment options are poor. These patients may suffer from disease that is resistant to conventional chemotherapy or may not be candidates for curative therapies because of advanced age or poor medical conditions. To control disease in these patients, new therapies must be developed that are selectively targeted to unique characteristics of tumor cell growth and metastasis. A reliable early evaluation and prediction of response to the chemotherapy is critical to its success. Chemotherapies induce apoptosis in tumor cells and a portion of such apoptotic cancer cells may be present in the circulation. However, the fate of circulating tumor cells is difficult to assess with conventional methods that require blood sampling. We report the in situ measurement of circulating apoptotic cells in live animals using in vivo flow cytometry, a novel method that enables real-time detection and quantification of circulating cells without blood extraction. Apoptotic cells are rapidly cleared from the circulation with a half-life of ~10 minutes. Real-time monitoring of circulating apoptotic cells can be useful for detecting early changes in disease processes, as well as for monitoring response to therapeutic intervention.

  17. Tracking Immune Cell Proliferation and Cytotoxic Potential Using Flow Cytometry

    PubMed Central

    Tario, Joseph D.; Muirhead, Katharine A.; Pan, Dalin; Munson, Mark E.; Wallace, Paul K.

    2015-01-01

    In the second edition of this series, we described the use of cell tracking dyes in combination with tetramer reagents and traditional phenotyping protocols to monitor levels of proliferation and cytokine production in antigen-specific CD8+ T cells. In particular, we illustrated how tracking dye fluorescence profiles could be used to ascertain the precursor frequencies of different subsets in the T-cell pool that are able to bind tetramer, synthesize cytokines, undergo antigen-driven proliferation, and/or carry out various combinations of these functional responses. Analysis of antigen-specific proliferative responses represents just one of many functions that can be monitored using cell tracking dyes and flow cytometry. In this third edition, we address issues to be considered when combining two different tracking dyes with other phenotypic and viability probes for the assessment of cytotoxic effector activity and regulatory T-cell functions. We summarize key characteristics of and differences between general protein- and membrane-labeling dyes, discuss determination of optimal staining concentrations, and provide detailed labeling protocols for both dye types. Examples of the advantages of two-color cell tracking are provided in the form of protocols for (a) independent enumeration of viable effector and target cells in a direct cytotoxicity assay and (b) simultaneous monitoring of proliferative responses in effector and regulatory T cells. PMID:21116982

  18. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.

    PubMed

    Schwalbe, Margot A B; Sevey, Benjamin J; Webb, Jacqueline F

    2016-04-01

    The mechanosensory lateral line system of fishes detects water motions within a few body lengths of the source. Several types of artificial stimuli have been used to probe lateral line function in the laboratory, but few studies have investigated the role of flow sensing in benthic feeding teleosts. In this study, we used artificial flows emerging from a sandy substrate to assess the contribution of flow sensing to prey detection in the peacock cichlid, Aulonocara stuartgranti, which feeds on benthic invertebrates in Lake Malawi. Using a positive reinforcement protocol, we trained fish to respond to flows lacking the visual and chemical cues generated by tethered prey in prior studies with A. stuartgranti Fish successfully responded to artificial flows at all five rates presented (characterized using digital particle image velocimetry), and showed a range of flow-sensing behaviors, including an unconditioned bite response. Immediately after lateral line inactivation, fish rarely responded to flows and the loss of vital fluorescent staining of hair cells (with 4-di-2-ASP) verified lateral line inactivation. Within 2 days post-treatment, some aspects of flow-sensing behavior returned and after 7 days, flow-sensing behavior and hair cell fluorescence both returned to pre-treatment levels, which is consistent with the reported timing of hair cell regeneration in other vertebrates. The presentation of ecologically relevant water flows to assess flow-sensing behaviors and the use of a positive reinforcement protocol are methods that present new opportunities to study the role of flow sensing in the feeding ecology of benthic feeding fishes. PMID:27030780

  19. Morphological analysis of tumor cell/endothelial cell interactions under shear flow.

    PubMed

    Chotard-Ghodsnia, Roxana; Haddad, Oualid; Leyrat, Anne; Drochon, Agnès; Verdier, Claude; Duperray, Alain

    2007-01-01

    In the process of hematogenous cancer metastasis, tumor cells (TCs) must shed into the blood stream, survive in the blood circulation, migrate through the vascular endothelium (extravasation) and proliferate in the target organs. However, the precise mechanisms by which TCs penetrate the endothelial cell (EC) junctions remain one of the least understood aspects of TC extravasation. This question has generally been addressed under static conditions, despite the important role of flow induced mechanical stress on the circulating cell-endothelium interactions. Moreover, flow studies were generally focused on transient or firm adhesion steps of TC-EC interactions and did not consider TCs spreading or extravasation. In this paper, we used a parallel-plate flow chamber to investigate TC-EC interactions under flow conditions. An EC monolayer was cultured on the lower plate of the flow chamber to model the endothelial barrier. Circulating TCs were introduced into the flow channel under a well-defined flow field and TC cell shape changes on the EC monolayer were followed in vitro with live phase contrast and fluorescence microscopy. Two spreading patterns were observed: radial spreading which corresponds to TC extravasation, and axial spreading where TCs formed a mosaic TC-EC monolayer. By investigating the changes in area and minor/major aspect ratio, we have established a simple quantitative basis for comparing spreading modes under various shear stresses. Contrary to radial spreading, the extent of axial spreading was increased by shear stress.

  20. Pulsed photoacoustic flow imaging with a handheld system

    NASA Astrophysics Data System (ADS)

    van den Berg, Pim J.; Daoudi, Khalid; Steenbergen, Wiendelt

    2016-02-01

    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging-ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75 mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ˜7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.

  1. Pulsed photoacoustic flow imaging with a handheld system.

    PubMed

    van den Berg, Pim J; Daoudi, Khalid; Steenbergen, Wiendelt

    2016-02-01

    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging--ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75  mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ∼7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.

  2. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

    PubMed

    Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen

    2016-04-13

    Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. PMID:26917414

  3. The closed circuit and the low flow systems.

    PubMed

    Parthasarathy, S

    2013-09-01

    A breathing system is defined as an assembly of components, which delivers gases from the anesthesia machine to the patients' airways. When the components are arranged as a circle, it is termed a circle system. The flow of exhaled gases is unidirectional in the system. The system contains a component (absorber), which absorbs exhaled carbon dioxide and it is not necessary to give high fresh gas flows as in Mapleson systems. When the adjustable pressure limiting (APL) valve is closed and all the exhaled gases without carbon dioxide are returned to the patient, the system becomes a totally closed one. Such a circle system can be used with flows as low as 250 to 500 mL and clinically can be termed as low-flow systems. The components of the circle system can be arranged in different ways with adherence to basic rules: (1) Unidirectional valve must be present between the reservoir bag and the patient on both inspiratory and expiratory sides; (2) fresh gas must not enter the system between the expiratory unidirectional valve and the patient; and (3) the APL valve must not be placed between the patient and the inspiratory unidirectional valve. The functional analysis is explained in detail. During the function, the arrangement of components is significant only at higher fresh gas flows. With the introduction of low resistance valves, improved soda lime canisters and low dead space connectors, the use of less complicated pediatric circle systems is gaining popularity to anesthetize children. There are bidirectional flow systems with carbon dioxide absorption. The Waters to and fro system, a classic example of bidirectional flow systems with a canister to absorb carbon dioxide, is valveless and portable. It was widely used in the past and now is only of historical importance.

  4. Automated microscopy system for peripheral blood cells

    NASA Astrophysics Data System (ADS)

    Boev, Sergei F.; Sazonov, Vladimir V.; Kozinets, Gennady I.; Pogorelov, Valery M.; Gusev, Alexander A.; Korobova, Farida V.; Vinogradov, Alexander G.; Verdenskaya, Natalya V.; Ivanova, Irina A.

    2000-11-01

    The report describes the instrument ASPBS (Automated Screening of Peripheral Blood Cells) designed for an automated analysis of dry blood smears. The instrument is based on computer microscopy and uses dry blood smears prepared according to the standard Romanovskii-Giemza procedure. In comparison with the well-known flow cytometry systems, our instrument provides more detailed information and offers an opporunity of visualizing final results. The basic performances of the instrument are given. Software of this instrument is based on digital image processing and image recognition procedures. It is pointed out that the instrument can be used as a fairly universal tool in scientific research, public demonstrations, in medical treatment, and in medical education. The principle used as the basis of the instrument appeared adequate for creating an instrument version serviceable even during space flights where standard manual procedures and flow cytometry systems fail. The benefit of the use of the instrument in clinical laboratories is described.

  5. Modelling of uncertainness for a flow and level system

    NASA Astrophysics Data System (ADS)

    Hernández, C.; Angel, L.; Viola, J.

    2016-07-01

    This paper presents the identification of uncertainness that affects the dynamics of a flow and level system. Initially, flow a level system is descripted. Then, family of plants is determined from the identification of dynamic model for different operating conditions. The uncertain model reflects the changes for different operating conditions when the output flow and storage tank dimensions are varied. Finally, the maximum multiplicative uncertain is calculated to define the desired controller specifications to achieve a robust stability and performance of the closed loop system.

  6. Development of Cellular Absorptive Tracers (CATs) for a Quantitative Characterization of Microbial Mass in Flow Systems

    SciTech Connect

    Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.

    2005-03-16

    We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.

  7. Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.

    PubMed

    Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro

    2015-06-09

    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies.

  8. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    NASA Technical Reports Server (NTRS)

    Jaminet, J. F.; Kendall, J. S.

    1976-01-01

    Research related to determining the feasibility of producing continuous power from fissile fuel in the gaseous state is presented. The development of three laboratory-scale flow systems for handling gaseous UF6 at temperatures up to 500 K, pressure up to approximately 40 atm, and continuous flow rates up to approximately 50g/s is presented. A UF6 handling system fabricated for static critical tests currently being conducted is described. The system was designed to supply UF6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressure up to 4 atm. A second UF6 handling system designed to provide a circulating flow of up to 50g/s of gaseous UF6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described. Data from flow tests using UF6 and UF6/He mixtures with this system at flow rates up to approximately 12g/s and pressure up to 4 atm are presented. A third UF6 handling system fabricated to provide a continuous flow of UF6 at flow rates up to 5g/s and at pressures up to 40 atm for use in rf-heated, uranium plasma confinement experiments is described.

  9. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood

    PubMed Central

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-01-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis. PMID:27596736

  10. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood.

    PubMed

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-01-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis. PMID:27596736

  11. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood

    NASA Astrophysics Data System (ADS)

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-09-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis.

  12. Determinants of resting cerebral blood flow in sickle cell disease.

    PubMed

    Bush, Adam M; Borzage, Matthew T; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J; Coates, Thomas D; Wood, John C

    2016-09-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated. This study examined the physiological determinants of CBF in 37 patients with sickle cell disease, 38 ethnicity matched control subjects and 16 patients with anemia of non-sickle origin. Cerebral blood flow was measured using phase contrast MRI of the carotid and vertebral arteries. CBF increased inversely to oxygen content (r(2)  = 0.69, P < 0.0001). Brain oxygen delivery, the product of CBF and oxygen content, was normal in all groups. Brain composition, specifically the relative amounts of grey and white matter, was the next strongest CBF predictor, presumably by influencing cerebral metabolic rate. Grey matter/white matter ratio and CBF declined monotonically until the age of 25 in all subjects, consistent with known maturational changes in brain composition. Further CBF reductions were observed with age in subjects older than 35 years of age, likely reflecting microvascular aging. On multivariate regression, CBF was independent of disease state, hemoglobin S, hemoglobin F, reticulocyte count and cell free hemoglobin, suggesting that it is regulated similarly in patients and control subjects. In conclusion, sickle cell disease patients had sufficient oxygen delivery at rest, but accomplish this only by marked increases in their resting CBF, potentially limiting their ability to further augment flow in response to stress. Am. J. Hematol. 91:912-917, 2016. © 2016 Wiley Periodicals, Inc. PMID:27263497

  13. Variable flow -- the quest for system energy efficiency

    SciTech Connect

    Eppelheimer, D.M.

    1996-12-31

    Varying condenser water flow has long been used as a method of controlling head pressure in water-cooled refrigeration systems. This method of head pressure control has been applied successfully on systems with scroll, reciprocating, heli-rotor, and centrifugal compressors. Condenser water flow is altered either by bypassing the condenser via a three-way valve or by throttling flow with a two-way valve. Today, the affordability and potential energy savings of adjustable speed drives makes this the preferred method of varying flow. In the quest for greater energy savings, many designers propose to vary the flow of water through the evaporators of chillers also. This feat is not as easily accomplished as the first. There are system designs that allow variable flow of chilled water at the system level while maintaining constant flow through the chiller evaporator. Yet in spite of the risk and the presence of other variable options, some still wish to vary the flow of chilled water through the evaporator by large proportions. Can it be done? Of course! However, there are a few engineering problems that must be tackled to accomplish this feat. This paper delineates those problems.

  14. System proportions fluid-flow in response to demand signals

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.

  15. Improved Method for Bacterial Cell Capture after Flow Cytometry Cell Sorting ▿

    PubMed Central

    Guillebault, D.; Laghdass, M.; Catala, P.; Obernosterer, I.; Lebaron, P.

    2010-01-01

    Fixed cells with different nucleic acid contents and scatter properties (low nucleic acid [LNA], high nucleic acid 1 [HNA1], and HNA2) were sorted by flow cytometry (FCM). For each sort, 10,000 cells were efficiently captured on poly-l-lysine-coated microplates, resulting in efficient and reproducible PCR amplification. PMID:20817799

  16. Guide to Flow Measurement for Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  17. Boundary-layer-ingesting inlet flow control system

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)

    2010-01-01

    A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.

  18. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  19. Actin polymerization and intracellular solvent flow in cell surface blebbing

    PubMed Central

    1995-01-01

    The cortical actin gel of eukaryotic cells is postulated to control cell surface activity. One type of protrusion that may offer clues to this regulation are the spherical aneurysms of the surface membrane known as blebs. Blebs occur normally in cells during spreading and alternate with other protrusions, such as ruffles, suggesting similar protrusive machinery is involved. We recently reported that human melanoma cell lines deficient in the actin filament cross-linking protein, ABP-280, show prolonged blebbing, thus allowing close study of blebs and their dynamics. Blebs expand at different rates of volume increase that directly predict the final size achieved by each bleb. These rates decrease as the F-actin concentration of the cells increase over time after plating on a surface, but do so at lower concentrations in ABP-280 expressing cells. Fluorescently labeled actin and phalloidin injections of blebbing cells indicate that a polymerized actin structure is not present initially, but appears later and is responsible for stopping further bleb expansion. Therefore, it is postulated that blebs occur when the fluid-driven expansion of the cell membrane is sufficiently rapid to initially outpace the local rate of actin polymerization. In this model, the rate of intracellular solvent flow driving this expansion decreases as cortical gelation is achieved, whether by factors such as ABP-280, or by concentrated actin polymers alone, thereby leading to decreased size and occurrence of blebs. Since the forces driving bleb extension would always be present in a cell, this process may influence other cell protrusions as well. PMID:7790356

  20. Measuring information flow in cellular networks by the systems biology method through microarray data.

    PubMed

    Chen, Bor-Sen; Li, Cheng-Wei

    2015-01-01

    In general, it is very difficult to measure the information flow in a cellular network directly. In this study, based on an information flow model and microarray data, we measured the information flow in cellular networks indirectly by using a systems biology method. First, we used a recursive least square parameter estimation algorithm to identify the system parameters of coupling signal transduction pathways and the cellular gene regulatory network (GRN). Then, based on the identified parameters and systems theory, we estimated the signal transductivities of the coupling signal transduction pathways from the extracellular signals to each downstream protein and the information transductivities of the GRN between transcription factors in response to environmental events. According to the proposed method, the information flow, which is characterized by signal transductivity in coupling signaling pathways and information transductivity in the GRN, can be estimated by microarray temporal data or microarray sample data. It can also be estimated by other high-throughput data such as next-generation sequencing or proteomic data. Finally, the information flows of the signal transduction pathways and the GRN in leukemia cancer cells and non-leukemia normal cells were also measured to analyze the systematic dysfunction in this cancer from microarray sample data. The results show that the signal transductivities of signal transduction pathways change substantially from normal cells to leukemia cancer cells.

  1. Energy flow for electric power system deregulation

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung

    Over the past few years, the electric power utility industry in North America and other countries has experienced a strong drive towards deregulation. People have considered the necessity of deregulation of electric utilities for higher energy efficiency and energy saving. The vertically integrated monopolistic industry is being transferred into a horizontally integrated competitive structure in some countries. Wheeling charges are a current high priority problem throughout the power industry, for independent power producers, as well as regulators. Nevertheless the present transmission pricing mechanism fails to be adjusted by a customer loading condition. Customer loading is dynamic, but the present wheeling charge method is fixed, not real-time. A real-time wheeling charge method is developed in this dissertation. This dissertation introduces a concept of a power flow network which can be used for the calculation of power contribution factors in a network. The contribution factor is defined as the ratio of the power contributed by a particular source to a line flow or bus load to the total output of the source. Generation, transmission, and distribution companies can employ contribution factors for the calculation of energy cost, wheeling charges, and loss compensation. Based on the concept of contribution factors, a proposed loss allocation method is developed in this dissertation. Besides, counterflow condition will be given a credit in the proposed loss allocation method. A simple 22-bus example was used for evaluating the contribution factors, proposed wheeling charge method, and loss allocation method.

  2. Tracking Epithelial Cell Junctions in C. elegans Embryogenesis With Active Contours Guided by SIFT Flow

    PubMed Central

    Lee, Chen-Yu; Gonçalves, Monira; Chisholm, Andrew D.; Cosman, Pamela C.

    2015-01-01

    Quantitative analysis of cell shape in live samples is an important goal in developmental biology. Automated or semiautomated segmentation and tracking of cell nuclei has been successfully implemented in several biological systems. Segmentation and tracking of cell surfaces has been more challenging. Here, we present a new approach to tracking cell junctions in the developing epidermis of C. elegans embryos. Epithelial junctions as visualized with DLG-1::GFP form lines at the subapical circumference of differentiated epidermal cells and delineate changes in epidermal cell shape and position. We develop and compare two approaches for junction segmentation. For the first method (projection approach), 3-D cell boundaries are projected into 2D for segmentation using active contours with a nonintersecting force, and subsequently tracked using scale-invariant feature transform (SIFT) flow. The resulting 2-D tracked boundaries are then back-projected into 3-D space. The second method (volumetric approach) uses a 3-D extended version of active contours guided by SIFT flow in 3-D space. In both methods, cell junctions are manually located at the first time point and tracked in a fully automated way for the remainder of the video. Using these methods, we have generated the first quantitative description of ventral epidermal cell movements and shape changes during epidermal enclosure. PMID:24771564

  3. Miniature battery-operated electromagnetic system for blood flow measurements

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1971-01-01

    System consisting of solid state electronics package and a pair of standard flow-transducer cuffs is useful in cardiovascular studies. Device shows good zero stability and calibrations, and low noise levels.

  4. Two-phase flow cell for chemiluminescence and bioluminescence measurements

    SciTech Connect

    Mullin, J.L.; Seitz, W.R.

    1984-01-01

    A new approach to two-phase CL (chemiluminescence) measurements is reported. A magnetically stirred reagent phase is separated from the analyte phase by a dialysis membrane so that only smaller molecules can go from one phase to the other. The system is designed so that the analyte phase flows through a spiral groove on an aluminum block that is flush against the dialysis membrane. As solution flows through the spiral grove, analyte diffuses into the reagent phase where it reacts to produce light. A simple model is developed to predict how this system will behave. Experimentally, the system is evaluated by using the luminol reaction catalyzed by peroxidase, the firefly reaction, and the bacterial bioluminescence reaction. 10 references, 4 tables, 6 figures.

  5. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.

    PubMed

    Khalili, Amelia Ahmad; Ahmad, Mohd Ridzuan

    2015-01-01

    Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh) manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid's velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications. PMID:26569218

  6. A modular segmented-flow platform for 3D cell cultivation.

    PubMed

    Lemke, Karen; Förster, Tobias; Römer, Robert; Quade, Mandy; Wiedemeier, Stefan; Grodrian, Andreas; Gastrock, Gunter

    2015-07-10

    In vitro 3D cell cultivation is promised to equate tissue in vivo more realistically than 2D cell cultivation corresponding to cell-cell and cell-matrix interactions. Therefore, a scalable 3D cultivation platform was developed. This platform, called pipe-based bioreactors (pbb), is based on the segmented-flow technology: aqueous droplets are embedded in a water-immiscible carrier fluid. The droplet volumes range from 60 nL to 20 μL and are used as bioreactors lined up in a tubing like pearls on a string. The modular automated platform basically consists of several modules like a fluid management for a high throughput droplet generation for self-assembly or scaffold-based 3D cell cultivation, a storage module for incubation and storage, and an analysis module for monitoring cell aggregation and proliferation basing on microscopy or photometry. In this report, the self-assembly of murine embryonic stem cells (mESCs) to uniformly sized embryoid bodies (EBs), the cell proliferation, the cell viability as well as the influence on the cell differentiation to cardiomyocytes are described. The integration of a dosage module for medium exchange or agent addition will enable pbb as long-term 3D cell cultivation system for studying stem cell differentiation, e.g. cardiac myogenesis or for diagnostic and therapeutic testing in personalized medicine.

  7. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    PubMed Central

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh) manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications. PMID:26569218

  8. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.

    PubMed

    Khalili, Amelia Ahmad; Ahmad, Mohd Ridzuan

    2015-11-09

    Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh) manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid's velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications.

  9. Fuzzy modelling of power system optimal load flow

    SciTech Connect

    Miranda, V.; Saraiva, J.T. )

    1992-05-01

    In this paper, a fuzzy model for power system operation is presented. Uncertainties in loads and generations are modeled as fuzzy numbers. System behavior under known (while uncertain) injections is dealt with by a DC fuzzy power flow model. System optimal (while uncertain) operation is calculated with linear programming procedures where the problem nature and structure allows some efficient techniques such as Dantzig Wolfe decomposition and dual simplex to be used. Among the results, one obtains a fuzzy cost value for system operation and possibility distributions for branch power flows and power generations. Some risk analysis is possible, as system robustness and exposure indices can be derived and hedging policies can be investigated.

  10. [Helical (spiral or swirling) blood flow in cardiovascular system].

    PubMed

    Kirsanov, R I; Kulikov, V P

    2013-01-01

    In article covers theoretical preconditions for the hypothesis about helical (spiral or swirling) blood flow in cardiovascular system followed by its experimental corroboration. The role of the modern blood flow visualization methods--such as Color Doppler ultrasound and magnetic-resonance angiography--in registration and investigation of the regularities of the given phenomenon is described. The data describing the known parameters of helical blood flow--such as direction of the rotation and its quantitative parameters in large arteries--are given. The main hypotheses for flow screw mechanisms are considered from the point of view of cardiovascular system structural organization. Biological role of helical blood flow is discussed, in respect of which there are diametrically opposed points of view, which consider it as a physiological phenomenon on one side, and as a patogenetic factor of atherosclerosis development on the other.

  11. Multiscale modeling of mechanosensing channels on vesicles and cell membranes in 3D constricted flows and shear flows

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Pak, On Shun; Young, Yuan-Nan; Liu, Allen; Stone, Howard

    2015-11-01

    We investigate the gating of mechanosensing channels (Mscls) on vesicles and cell membranes under different flow conditions using a multiscale approach. At the cell level (microns), the membrane tension is calculated using a 3D two-component whole-cell membrane model based on dissipative particle dynamics (DPD), including the cortex cytoskeleton and its interactions with the lipid bilayer. At the Mscl level (nanometers), we predict the relation between channel gating and the membrane tension obtained from a cell-level model using a semi-analytical model based on the bilayer hydrophobic mismatch energy. We systematically study the gating of Mscls of vesicles and cell membranes in constricted channel flows and shear flows, and explore the dependence of the gating on flow rate, cell shape and size. The results provide guidance for future experiments in inducing Mscl opening for various purposes such as drug delivery.

  12. Improved Measurement of B(sub 22) of Macromolecules in a Flow Cell

    NASA Technical Reports Server (NTRS)

    Wilson, Wilbur; Fanguy, Joseph; Holman, Steven; Guo, Bin

    2008-01-01

    An improved apparatus has been invented for use in determining the osmotic second virial coefficient of macromolecules in solution. In a typical intended application, the macromolecules would be, more specifically, protein molecules, and the protein solution would be pumped through a flow cell to investigate the physical and chemical conditions that affect crystallization of the protein in question. Some background information is prerequisite to a meaningful description of the novel aspects of this apparatus. A method of determining B22 from simultaneous measurements of the static transmittance (taken as an indication of concentration) and static scattering of light from the same location in a flowing protein solution was published in 2004. The apparatus used to implement the method at that time included a dual-detector flow cell, which had two drawbacks: a) The amount of protein required for analysis of each solution condition was of the order of a milligram - far too large a quantity for a high-throughput analysis system, for which microgram or even nanogram quantities of protein per analysis are desirable. b) The design of flow cell was such that two light sources were used to probe different regions of the flowing solution. Consequently, the apparatus did not afford simultaneous measurements at the same location in the solution and, hence, did not guarantee an accurate determination of B22.

  13. Tension of red blood cell membrane in simple shear flow

    NASA Astrophysics Data System (ADS)

    Omori, T.; Ishikawa, T.; Barthès-Biesel, D.; Salsac, A.-V.; Imai, Y.; Yamaguchi, T.

    2012-11-01

    When a red blood cell (RBC) is subjected to an external flow, it is deformed by the hydrodynamic forces acting on its membrane. The resulting elastic tensions in the membrane play a key role in mechanotransduction and govern its rupture in the case of hemolysis. In this study, we analyze the motion and deformation of an RBC in a simple shear flow and the resulting elastic tensions on the membrane. The large deformation of the red blood cell is modelled by coupling a finite element method to solve the membrane mechanics and a boundary element method to solve the flows of the internal and external liquids. Depending on the capillary number Ca, ratio of the viscous to elastic forces, we observe three kinds of RBC motion: tumbling at low Ca, swinging at larger Ca, and breathing at the transitions. In the swinging regime, the region of the high principal tensions periodically oscillates, whereas that of the high isotropic tensions is almost unchanged. Due to the strain-hardening property of the membrane, the deformation is limited but the membrane tension increases monotonically with the capillary number. We have quantitatively compared our numerical results with former experimental results. It indicates that a membrane isotropic tension O(10-6 N/m) is high enough for molecular release from RBCs and that the typical maximum membrane principal tension for haemolysis would be O(10-4 N/m). These findings are useful to clarify not only the membrane rupture but also the mechanotransduction of RBCs.

  14. Modeling of gaseous flows within proton exchange membrane fuel cells

    SciTech Connect

    Weisbrod, K.R.; Vanderborgh, N.E.; Grot, S.A.

    1996-12-31

    Development of a comprehensive mechanistic model has been helpful to understand PEM fuel cell performance. Both through-the-electrode and down-the-channel models have been developed to support our experimental effort to enhance fuel cell design and operation. The through-the-electrode model was described previously. This code describes the known transport properties and dynamic processes that occur within a membrane and electrode assembly. Key parameters include transport through the backing layers, water diffusion and electroosmotic transport in the membrane, and reaction electrochemical kinetics within the cathode catalyst layer. In addition, two geometric regions within the cathode layer are represented, the first region below saturation and second with liquid water present. Although processes at high gas stoichiometry are well represented by more simple codes, moderate stoichiometry processes require a two dimensional representation that include the gaseous composition and temperature along flow channel. Although usually PEM hardware utilizes serpentine flow channels, this code does not include such geometric features and thus the flow can be visualized along a single channel.

  15. Surface deformation and shear flow in ligand mediated cell adhesion.

    PubMed

    Sircar, Sarthok; Roberts, Anthony J

    2016-10-01

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.

  16. NOAA-USGS Debris-Flow Warning System - Final Report

    USGS Publications Warehouse

    ,

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  17. Laminar Flow Control Leading Edge Systems in Simulated Airline Service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.

  18. Validation and verification of expert systems using evidence flow graphs

    NASA Technical Reports Server (NTRS)

    Becker, Lee A.; Green, Peter E.; Duckworth, R. James; Bhatnagar, Jayant

    1989-01-01

    This paper describes an ongoing investigation into the use of evidence flow graph techniques for performing V&V of expert systems. This method involves translating a rule-base into an evidence flow graph, a representation originally developed for real-time intelligent systems in distributed environments, and then running simulations of the evidence flow graph. Certain errors can be found during the translation process. The simulations can detect output sensitivity to rule firing order, to order of presentation of inputs, and to small changes in input values.

  19. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  20. Synchronization trigger control system for flow visualization

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  1. White blood cell counting system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  2. 46 CFR 153.358 - Venting system flow capacity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Venting system flow capacity. 153.358 Section 153.358 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.358 Venting system...

  3. Computational modeling of air-breathing microfluidic fuel cells with flow-over and flow-through anodes

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Ye, Ding-ding; Sui, Pang-Chieh; Djilali, Ned; Zhu, Xun

    2014-08-01

    A three-dimensional computational model for air-breathing microfluidic fuel cells (AMFCs) with flow-over and flow-through anodes is developed. The coupled multiphysics phenomena of fluid flow, species transport and electrochemical reactions are resolved numerically. The model has been validated against experimental data using an in-house AMFC prototype with a flow-through anode. Characteristics of fuel transfer and fuel crossover for both types of anodes are investigated. The model results reveal that the fuel transport to the flow-over anode is intrinsically limited by the fuel concentration boundary layer. Conversely, fuel transport for the flow-through anode is convectively enhanced by the permeate flow, and no concentration boundary layer is observed. An unexpected additional advantage of the flow-through anode configuration is lower parasitic (crossover) current density than the flow-over case at practical low flow rates. Cell performance of the flow-through case is found to be limited by reaction kinetics. The present model provides insights into the fuel transport and fuel crossover in air-breathing microfluidic fuel cells and provides guidance for further design and operation optimization.

  4. A bulk flow model of a brush seal system

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, S.; Braun, M. J.; Choy, F.; Mullen, R. L.

    1991-01-01

    Fibers can be readily fabricated into a variety of seal configurations that are compliant and responsive to high speed or lightly loaded systems. A linear, circular, or contoured brush seal system is a contact seal consisting of the bristle pattern and hardened interface. When compared to a labyrinth seal, the brush seal system is superior and features low leakage, dynamic stability, and permits compliant structures. But in turn, the system usually requires a hardened smooth interface and permits only limited pressure drops. Wear life and wear debris for operations with static or dynamic excitation are largely undetermined. A seal system involves control of fluid within specific boundaries. The brush and rub ring (or rub surface) form a seal system. Design similitudes, a bulk flow model, and rub ring (interface) coatings are discussed. The bulk flow model calculations are based on flows in porous media and filters. The coatings work is based on experience and expanded to include current practice.

  5. Ambient pressure fuel cell system

    DOEpatents

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  6. Proliferation and differentiation of oligodendrocyte progenitor cells induced from rat embryonic neural precursor cells followed by flow cytometry.

    PubMed

    Lü, He-Zuo; Wang, Yan-Xia; Li, Ying; Fu, Sai-Li; Hang, Qin; Lu, Pei-Hua

    2008-08-01

    Previous studies have shown that a cell-intrinsic timer might determine when oligodendrocyte progenitor cells (OPCs) isolated from the central nervous system (CNS) stop dividing and initiate differentiation in a defined environment. In this report, the proliferation and differentiation of OPCs induced from neural precursor cells (NPCs) were analyzed by flow cytometry combined with carboxyfluorescein diacetate succinimidyl ester labeling and propidium iodide staining, respectively. When OPCs were cultured in OPC-medium, more than 30% of cells were in S- and G2/M-phases, and continuously self-renewed without differentiation. After exposure to thyroid hormone, there was an obvious decrease in the fraction of cells in both S- and G2/M-phases (<10%). Furthermore, the OPCs no longer proliferated, but differentiated into oligodendrocytes. The dynamic proliferation and differentiation characteristics of OPCs induced from NPCs and analyzed by flow cytometry were similar to those of OPCs isolated from the CNS and analyzed by other methods. These studies indicated that the proliferation and differentiation of OPCs can be followed simply and rapidly by flow cytometry. PMID:18473382

  7. Electrochemical Oscillations of Nickel Electrodissolution in an Epoxy-Based Microchip Flow Cell.

    PubMed

    Cioffi, Alexander G; Martin, R Scott; Kiss, István Z

    2011-08-01

    We investigate the nonlinear dynamics of transpassive electrodissolution of nickel in sulfuric acid in an epoxy-based microchip flow cell. We observed bistability, smooth, relaxation, and period-2 waveform current oscillations with external resistance attached to the electrode in the microfabricated electrochemical cell with 0.05 mm diameter Ni wire under potentiostatic control. Experiments with 1mm × 0.1 mm Ni electrode show spontaneous oscillations without attached external resistance; similar surface area electrode in macrocell does not exhibit spontaneous oscillations. Combined experimental and numerical studies show that spontaneous oscillation with the on-chip fabricated electrochemical cell occurs because of the unusually large ohmic potential drop due to the constrained current in the narrow flow channel. This large IR potential drop is expected to have an important role in destabilizing negative differential resistance electrochemical (e.g., metal dissolution and electrocatalytic) systems in on-chip integrated microfludic flow cells. The proposed experimental setup can be extendend to multi-electrode configurations; the epoxy-based substrate procedure thus holds promise in electroanalytical applications that require collector-generator multi-electrodes wires with various electrode sizes, compositions, and spacings as well as controlled flow conditions.

  8. Electrochemical Oscillations of Nickel Electrodissolution in an Epoxy-Based Microchip Flow Cell

    PubMed Central

    Cioffi, Alexander G.; Martin, R. Scott; Kiss, István Z.

    2011-01-01

    We investigate the nonlinear dynamics of transpassive electrodissolution of nickel in sulfuric acid in an epoxy-based microchip flow cell. We observed bistability, smooth, relaxation, and period-2 waveform current oscillations with external resistance attached to the electrode in the microfabricated electrochemical cell with 0.05 mm diameter Ni wire under potentiostatic control. Experiments with 1mm × 0.1 mm Ni electrode show spontaneous oscillations without attached external resistance; similar surface area electrode in macrocell does not exhibit spontaneous oscillations. Combined experimental and numerical studies show that spontaneous oscillation with the on-chip fabricated electrochemical cell occurs because of the unusually large ohmic potential drop due to the constrained current in the narrow flow channel. This large IR potential drop is expected to have an important role in destabilizing negative differential resistance electrochemical (e.g., metal dissolution and electrocatalytic) systems in on-chip integrated microfludic flow cells. The proposed experimental setup can be extendend to multi-electrode configurations; the epoxy-based substrate procedure thus holds promise in electroanalytical applications that require collector-generator multi-electrodes wires with various electrode sizes, compositions, and spacings as well as controlled flow conditions. PMID:21822407

  9. Use of acoustic monitoring system for debris flow discharge evaluation

    NASA Astrophysics Data System (ADS)

    Galgaro, A. G.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2003-04-01

    In 1997 an automated system for monitoring of debris flows has been installed in the Acquabona channel Dolomites, Italy. Induction geophones, with a specific frequency of 10 Hz, measure the amplitude of vertical ground vibrations generated by the passage of a flowing mass along the channel. Continuous acoustic logs and ultrasonic hydrograph recorded at the lower-channel measurement station for the debris flow of August 17, 1998, show a striking correspondence. This correspondence, already observed in different flow sites, is represented by the best fit between flow depth and flow sensor amplitude. Average front velocity for surges, calculated from the signal peak time shift and the distance between the sensors along the flow path, range between 2.00 and 7.7 m/s. As the ultrasonic sensor provides a way to measure the variation of the flow section area with the flow depth, the debris flow peak discharge may be estimated; obtained values of debris flow peak discharge range from 4 and 30 m3/s. Volumes were calculated by integrating instantaneous discharges through the hydrograph and by integrating the geophone log (acoustic flux). Volumes of 13700 m3 and 15500 m3 have been respectively obtained. The slight difference between the two values may result from the fact that acoustic records: i) are sensitive to the high frequencies, typical of the debris flow tails; ii) sum up the contributions sent by the whole flowing mass, while the ecometer detect the flow depth at every time at only one section. As a consequence the rising of the whole geophone log gives a higher value at the integration result. This only acoustic system can give a reasonably proxy for discharge and total volumes involved, which are among the most important parameters for debris flow hazard assessment and planning countermeasures. This methodology can be used in other debris flow sites if they are calibrated by the acoustic characterization of debris, obtained by both seismic surveys and SPT tests, and

  10. Beyond conventional cell analysis: the latest science and technology in flow cytometry.

    PubMed

    Wright, Sharlene

    2016-01-01

    Combining powerful performance and innovative design and technology, it is possible to deliver a compact, easy-to-use flow cytometry system. Pushing the 'norms' of conventional flow cytometry, today's--and tomorrow's--systems enable complex research into high-content applications in cell biology, as well as a deeper understanding of the advantages gained from the emerging nanoparticle frontier. Flow cytometry is a powerful tool for interrogating complex biological questions at the forefront of biomedical and life science research and increasingly for clinical laboratory applications. Today's investigators want to harness that power and are demanding smaller and more powerful instruments that are more affordable and easier to use. Using innovation, engineers are able to deliver solutions to meet the challenge.

  11. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2014-09-01

    was 91.4 cells per mL, with a 95% confidence interval of 86-97 cells per mL. These low cell concentrations and the large volume capabilities of the system may overcome the limitations of current cytometry, and are applicable to rare cell (such as circulating tumor cell) detection The simplicity and low cost of this device suggests that it may have a potential use in developing point-of-care clinical flow cytometry for resource-poor settings associated with global health. PMID:24995370

  12. Predicting dissolution via hydrodynamics: salicylic acid tablets in flow through cell dissolution.

    PubMed

    Cammarn, S R; Sakr, A

    2000-05-25

    A model was established for the dissolution of non-disintegrating salicylic acid tablets as a function of hydrodynamic conditions in the Flow Through Cell system (USP Apparatus 4). The approach was to model the dissolution rate of the material as a function of the Reynold's number, the dimensionless engineering term that describes the degree of turbulence. The dissolution rate of USP calibrator salicylic acid tablets was measured as a function of tablet size, orientation within the cell, dissolution media flow rate, and cell size. All of these variables were found to have an effect on dissolution rate, consistent with theory. An equation to predict this dissolution was established as: N(SH)=-21.1+12.6xN(RE)(0.5), R(2)=0.99; 10

  13. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  14. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  15. Relation of streams, lakes, and wetlands to groundwater flow systems

    USGS Publications Warehouse

    Winter, T.C.

    1999-01-01

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surfacewater bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains.

  16. Interplay of Proximal Flow Confluence and Distal Flow Divergence in Patient-Specific Vertebrobasilar System.

    PubMed

    Yin, Xiaoping; Huang, Xu; Feng, Yundi; Tan, Wenchang; Liu, Huaijun; Huo, Yunlong

    2016-01-01

    Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine the distribution of hemodynamic parameters in the vertebrobasilar system, based on computer tomography angiography images. Here, the interplay of upstream flow confluence and downstream flow divergence was hypothesized to be a determinant factor for the hemodynamic distribution in the vertebrobasilar system. A computational fluid dynamics model was used to compute the flow fields in patient-specific vertebrobasilar models (n = 6). The inlet and outlet boundary conditions were the aortic pressure waveform and flow resistances, respectively. A 50% reduction of total outlet area was found to induce a ten-fold increase in surface area ratio of low time-averaged wall shear stress (i.e., TAWSS ≤ 4 dynes/cm2). This study enhances our understanding of the posterior circulation associated with the incidence of atherosclerotic plaques. PMID:27467755

  17. Interplay of Proximal Flow Confluence and Distal Flow Divergence in Patient-Specific Vertebrobasilar System

    PubMed Central

    Yin, Xiaoping; Huang, Xu; Feng, Yundi; Tan, Wenchang; Liu, Huaijun

    2016-01-01

    Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine the distribution of hemodynamic parameters in the vertebrobasilar system, based on computer tomography angiography images. Here, the interplay of upstream flow confluence and downstream flow divergence was hypothesized to be a determinant factor for the hemodynamic distribution in the vertebrobasilar system. A computational fluid dynamics model was used to compute the flow fields in patient-specific vertebrobasilar models (n = 6). The inlet and outlet boundary conditions were the aortic pressure waveform and flow resistances, respectively. A 50% reduction of total outlet area was found to induce a ten-fold increase in surface area ratio of low time-averaged wall shear stress (i.e., TAWSS ≤ 4 dynes/cm2). This study enhances our understanding of the posterior circulation associated with the incidence of atherosclerotic plaques. PMID:27467755

  18. Interplay of Proximal Flow Confluence and Distal Flow Divergence in Patient-Specific Vertebrobasilar System.

    PubMed

    Yin, Xiaoping; Huang, Xu; Feng, Yundi; Tan, Wenchang; Liu, Huaijun; Huo, Yunlong

    2016-01-01

    Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine the distribution of hemodynamic parameters in the vertebrobasilar system, based on computer tomography angiography images. Here, the interplay of upstream flow confluence and downstream flow divergence was hypothesized to be a determinant factor for the hemodynamic distribution in the vertebrobasilar system. A computational fluid dynamics model was used to compute the flow fields in patient-specific vertebrobasilar models (n = 6). The inlet and outlet boundary conditions were the aortic pressure waveform and flow resistances, respectively. A 50% reduction of total outlet area was found to induce a ten-fold increase in surface area ratio of low time-averaged wall shear stress (i.e., TAWSS ≤ 4 dynes/cm2). This study enhances our understanding of the posterior circulation associated with the incidence of atherosclerotic plaques.

  19. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry.

    PubMed

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-06-24

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  20. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry.

    PubMed

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-01-01

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation. PMID:26114386

  1. Investigation of hydrate formation and transportability in multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Grasso, Giovanny A.

    cohesion force (3.32 mN/m). These measurements prove the importance of natural surfactants in crude oil for particle dispersion. An experimental methodology was provided to determine the effectiveness of asphaltenes as a dispersant. Even though hydrate deposition was inferred from the flowloop tests, it could not be verified from these measurements. Custom-made experimental set-ups (a recirculation liquid system, a rocking cell and a lab-scale mini-loop) were used to isolate the hydrate deposi- tion investigation. Besides water, mineral oil 70T and King Ranch condensate were used in combination with water for the deposition investigation. One of the most important deliverables of this thesis was the construction of a lab-scale flowloop that provides insight on deposition phenomenon in multiphase flow, representing the only set-up, reported in the literature, suitable for this investigation. The miniloop can handle gas-liquid flow (maximum flow rates of 10 Nm3/m for gas and 22 GPM for liquid) through a 10 ft. long straight section (2 in. standard tubing). The testing section (30 in. long) was designed to observe hydrate deposition on the wall. Three mechanisms of hydrate deposition were identified: film growth, particles adhering and particle bedding. The maximum water conversions were: 27.5 ml in the rocking cell, 2400 ml in the miniloop with 100 % WC and 250 ml in the miniloop for dispersed water in mineral oil 70T. The measured DP across to the testing section ranged from 0 to 8 in. H2O. Deposits were obtained for different flow regimes, including 100 % LL, stratified, stratified- wavy and slug flow. The maximum deposit thickness was 1.5 in., obtained in the gas flowing section. When deposits form from particle cohesion, they were easy to slough. From all the experimental worked in this thesis, hydrates accumulated depending on the degrees of subcooling of the bulk fluid, film growth (between 3 to 5 F), deposition from a combination of film growth and particle cohesion

  2. Investigation of hydrate formation and transportability in multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Grasso, Giovanny A.

    cohesion force (3.32 mN/m). These measurements prove the importance of natural surfactants in crude oil for particle dispersion. An experimental methodology was provided to determine the effectiveness of asphaltenes as a dispersant. Even though hydrate deposition was inferred from the flowloop tests, it could not be verified from these measurements. Custom-made experimental set-ups (a recirculation liquid system, a rocking cell and a lab-scale mini-loop) were used to isolate the hydrate deposi- tion investigation. Besides water, mineral oil 70T and King Ranch condensate were used in combination with water for the deposition investigation. One of the most important deliverables of this thesis was the construction of a lab-scale flowloop that provides insight on deposition phenomenon in multiphase flow, representing the only set-up, reported in the literature, suitable for this investigation. The miniloop can handle gas-liquid flow (maximum flow rates of 10 Nm3/m for gas and 22 GPM for liquid) through a 10 ft. long straight section (2 in. standard tubing). The testing section (30 in. long) was designed to observe hydrate deposition on the wall. Three mechanisms of hydrate deposition were identified: film growth, particles adhering and particle bedding. The maximum water conversions were: 27.5 ml in the rocking cell, 2400 ml in the miniloop with 100 % WC and 250 ml in the miniloop for dispersed water in mineral oil 70T. The measured DP across to the testing section ranged from 0 to 8 in. H2O. Deposits were obtained for different flow regimes, including 100 % LL, stratified, stratified- wavy and slug flow. The maximum deposit thickness was 1.5 in., obtained in the gas flowing section. When deposits form from particle cohesion, they were easy to slough. From all the experimental worked in this thesis, hydrates accumulated depending on the degrees of subcooling of the bulk fluid, film growth (between 3 to 5 F), deposition from a combination of film growth and particle cohesion

  3. Tubular Compressed Collagen Scaffolds for Ureteral Tissue Engineering in a Flow Bioreactor System.

    PubMed

    Vardar, Elif; Engelhardt, Eva-Maria; Larsson, Hans M; Mouloungui, Elodie; Pinnagoda, Kalitha; Hubbell, Jeffrey A; Frey, Peter

    2015-09-01

    Ureteral replacement by tissue engineering might become necessary following tissue loss after excessive ureteral trauma, after retroperitoneal cancer, or even after failed reconstructive surgery. This need has driven innovation in the design of novel scaffolds and specific cell culture techniques for urinary tract reconstruction. In this study, compressed tubular collagen scaffolds were evaluated, addressing the physical and biological characterization of acellular and cellular collagen tubes in a new flow bioreactor system, imitating the physiological pressure, peristalsis, and flow conditions of the human ureter. Collagen tubes, containing primary human smooth muscle and urothelial cells, were evaluated regarding their change in gene and protein expression under dynamic culture conditions. A maximum intraluminal pressure of 22.43 ± 0.2 cm H2O was observed in acellular tubes, resulting in a mean wall shear stress of 4 dynes/cm(2) in the tubular constructs. Dynamic conditions directed the differentiation of both cell types into their mature forms. This was confirmed by their gene expression of smooth muscle alpha-actin, smoothelin, collagen type I and III, elastin, laminin type 1 and 5, cytokeratin 8, and uroplakin 2. In addition, smooth muscle cell alignment predominantly perpendicular to the flow direction was observed, comparable to the cell orientation in native ureteral tissue. These results revealed that coculturing human smooth muscle and urothelial cells in compressed collagen tubes under human ureteral flow-mimicking conditions could lead to cell-engineered biomaterials that might ultimately be translated into clinical applications.

  4. Stochastic modelling of individual cell growth using flow chamber microscopy images.

    PubMed

    Kutalik, Zoltán; Razaz, Moe; Elfwing, Anders; Ballagi, András; Baranyi, József

    2005-11-25

    In this paper, we analysed individual cell growth images obtained by flow chamber microscopy system. We used replicate flow chamber experiment data as reported by [Elfwing, A., Le Marc, Y., Baranyi, J., Ballagi, A., 2004. Observing the growth and division of large number of individual bacteria using image analysis. Applied and Environmental Microbiology 70, 675-678] involving both unstressed and heat shocked Listeria innocua cells. After observing the kinetics of a large number of cells, we propose a new stochastic model for their individual growth. By comparing our model with other existing models in the literature, we demonstrate that ours can accurately describe the growth of both stressed and unstressed cells. Our results indicate that the lag period, in terms of cell division, coincides dominantly with a lag period in terms of cell size. We also reveal various connections between cell length, lag time and cell division models. Finally, we present the results of our investigation on the effect of the duration of sublethal heat shock on the found growth properties.

  5. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  6. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    NASA Astrophysics Data System (ADS)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  7. Cytoplasm dynamics and cell motion: two-phase flow models.

    PubMed

    Alt, W; Dembo, M

    1999-03-01

    The motion of amoeboid cells is characterized by cytoplasmic streaming and by membrane protrusions and retractions which occur even in the absence of interactions with a substratum. Cell translocation requires, in addition, a transmission mechanism wherein the power produced by the cytoplasmic engine is applied to the substratum in a highly controlled fashion through specific adhesion proteins. Here we present a simple mechano-chemical model that tries to capture the physical essence of these complex biomolecular processes. Our model is based on the continuum equations for a viscous and reactive two-phase fluid model with moving boundaries, and on force balance equations that average the stochastic interactions between actin polymers and membrane proteins. In this paper we present a new derivation and analysis of these equations based on minimization of a power functional. This derivation also leads to a clear formulation and classification of the kinds of boundary conditions that should be specified at free surfaces and at the sites of interaction of the cell and the substratum. Numerical simulations of a one-dimensional lamella reveal that even this extremely simplified model is capable of producing several typical features of cell motility. These include periodic 'ruffle' formation, protrusion-retraction cycles, centripetal flow and cell-substratum traction forces. PMID:10204394

  8. Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping.

    PubMed

    Snowden, Michael E; King, Philip H; Covington, James A; Macpherson, Julie V; Unwin, Patrick R

    2010-04-15

    Here we demonstrate the use of microstereolithography (MSL), a 3D direct manufacturing technique, as a viable method to produce small-scale microfluidic components for electrochemical flow detection. The flow cell is assembled simply by resting the microfabricated component on the electrode of interest and securing with thread! This configuration allows the use of a wide range of electrode materials. Furthermore, our approach eliminates the need for additional sealing methods, such as adhesives, waxes, and screws, which have previously been deployed. In addition, it removes any issues associated with compression of the cell chamber. MSL allows a reduction of the dimensions of the channel geometry (and the resultant component) and, compared to most previously produced devices, it offers a high degree of flexibility in the design, reduced manufacture time, and high reliability. Importantly, the polymer utilized does not distort so that the cell maintains well-defined geometrical dimensions after assembly. For the studies herein the channel dimensions were 3 mm wide, 3.5 mm long, and 192 or 250 mum high. The channel flow cell dimensions were chosen to ensure that the substrate electrodes experienced laminar flow conditions, even with volume flow rates of up to 64 mL min(-1) (the limit of our pumping system). The steady-state transport-limited current response, for the oxidation of ferrocenylmethyl trimethylammonium hexaflorophosphate (FcTMA(+)), at gold and polycrystalline boron doped diamond (pBDD) band electrodes was in agreement with the Levich equation and/or finite element simulations of mass transport. We believe that this method of creating and using channel flow electrodes offers a wide range of new applications from electroanalysis to electrocatalysis.

  9. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.

  10. MAG-GATE System for Molten metal Flow Control

    SciTech Connect

    Richard D. Nathenson, P.E.

    2004-05-15

    The need for improved active flow control has been recognized as part of the Steel Industry Technology Roadmap. Under TRP 9808 for the American Iron and Steel Institute and the Department of Energy, Concept Engineering Group Inc. has developed MAG-GATE{trademark}, an electromagnetic system for active molten metal flow control. Two hot steel tests were successfully conducted in 2003 at the Whemco Foundry Division, Midland, PA. Approximately 110,000 pounds of 0.2% carbon steel were poured through the device subject to electromagnetic flow control. Excellent agreement between predicted and actual flow control was found. A survey of the molten metal flow control practices at 100 continuous casters in North America was also conducted in 2003. This report summarizes the results of the development program to date. Preliminary designs are described for the next step of a beta test at an operating billet/bloom or slab caster.

  11. Method, apparatus and system for controlling fluid flow

    DOEpatents

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.

    2007-10-30

    A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.

  12. Redox flow cell development and demonstration project, calendar year 1976

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The major focus of the effort was the key technology issues that directly influence the fundamental feasibility of the overall redox concept. These issues were the development of a suitable semipermeable separator membrane for the system, the screening and study of candidate redox couples to achieve optimum cell performance, and the carrying out of systems analysis and modeling to develop system performance goals and cost estimates.

  13. Minimizing ultraviolet noise due to mis-matches between detector flow cell and post column mobile phase temperatures in supercritical fluid chromatography: effect of flow cell design.

    PubMed

    Berger, Terry A

    2014-10-17

    A mis-match between the post-column mobile phase temperature and the UV detector flow cell temperature can cause significant UV noise in supercritical fluid chromatography (SFC). Deviations as little as 5 °C can increase noise as much as 5 times, making the detector unsuited for trace analysis. Two approaches were used to minimize this noise. When a flow cell was in direct thermal contact (metal on metal) with the detector optical bench, the mobile phase temperature was actively controlled to the measured flow cell temperature, by using one of the heat exchangers (HX) in the column compartment. However, with some older, but still widely used flow cell designs, this required repeated, hourly monitoring of the flow cell temperature and repeated manual adjustment of the heat exchanger temperature, due to thermal drift. Flow cell design had a strong influence on susceptibility to this thermally induced noise. Thermally insulating the flow cell from the optical bench made some cells much less susceptible to such thermally induced noise. Five different flow cells, some insulated, some un-insulated, were evaluated. Most had a truncated conical flow path, but one had a cylindrical flow path. Using either approach, the ASTM noise, with a 10mm, 13 μL conical flow cell, could be optimized to ≈0.007 mAU at 2.5 Hz, in SFC, which is very near the 0.006 mAU manufacturer's specification for HPLC. The insulated version of this flow cell required far less optimization, compared to the un-insulated version. At 150 bar, an experimental 3mm, 2 μL flow cell, with only one side insulated, yielded noise slightly too high (≈0.16-0.18 mAU) for trace analysis, at 80 Hz. However, at 200 bar, noise at 80 Hz was <0.06 mAU, which should allow quantification of a 1 mAU tall trace component with a signal to noise ratio (S/N) >10. Even partially un-insulated, this flow cell design was much less susceptible to thermally induced noise. Further insulating this flow cell design failed to improve

  14. Minimizing ultraviolet noise due to mis-matches between detector flow cell and post column mobile phase temperatures in supercritical fluid chromatography: effect of flow cell design.

    PubMed

    Berger, Terry A

    2014-10-17

    A mis-match between the post-column mobile phase temperature and the UV detector flow cell temperature can cause significant UV noise in supercritical fluid chromatography (SFC). Deviations as little as 5 °C can increase noise as much as 5 times, making the detector unsuited for trace analysis. Two approaches were used to minimize this noise. When a flow cell was in direct thermal contact (metal on metal) with the detector optical bench, the mobile phase temperature was actively controlled to the measured flow cell temperature, by using one of the heat exchangers (HX) in the column compartment. However, with some older, but still widely used flow cell designs, this required repeated, hourly monitoring of the flow cell temperature and repeated manual adjustment of the heat exchanger temperature, due to thermal drift. Flow cell design had a strong influence on susceptibility to this thermally induced noise. Thermally insulating the flow cell from the optical bench made some cells much less susceptible to such thermally induced noise. Five different flow cells, some insulated, some un-insulated, were evaluated. Most had a truncated conical flow path, but one had a cylindrical flow path. Using either approach, the ASTM noise, with a 10mm, 13 μL conical flow cell, could be optimized to ≈0.007 mAU at 2.5 Hz, in SFC, which is very near the 0.006 mAU manufacturer's specification for HPLC. The insulated version of this flow cell required far less optimization, compared to the un-insulated version. At 150 bar, an experimental 3mm, 2 μL flow cell, with only one side insulated, yielded noise slightly too high (≈0.16-0.18 mAU) for trace analysis, at 80 Hz. However, at 200 bar, noise at 80 Hz was <0.06 mAU, which should allow quantification of a 1 mAU tall trace component with a signal to noise ratio (S/N) >10. Even partially un-insulated, this flow cell design was much less susceptible to thermally induced noise. Further insulating this flow cell design failed to improve

  15. Stochastic modeling of a lava-flow aquifer system

    USGS Publications Warehouse

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  16. Flow cytometric measurement of pollutant stresses on algal cells

    SciTech Connect

    Berglund, D.L.; Eversman, S.

    1988-03-01

    The lichen Usnea fulvoreagens (Raes). Raes. was treated with four pH levels (5.5, 4.5, 3.5, and 2.5) of simulated acid rain (sulfuric acid, nitric acid, and a 1:1 combination of both) and automobile exhaust. The samples were dissociated and analyzed by a Becton-Dickinson FACS 440 flow cytometer. Analyses included measurement of chlorophyll autofluorescence and fluorescence due to uptake of fluorescein diacetate (FDA) and calcofluor white M2R (CFW). Cell parameters measured were esterase activity (FDA), membrane permeability (FDA, CFW), and intracellular pH (FDA). Mean fluorescence intensity from FDA staining and numbers of events were incorporated with autofluorescence information to produce a stress index of relative cell stress. Results indicated that highly stressed samples (lower pH treatments and greater exposure to exhaust) exhibited a low stress index of FDA fluorescence.Au

  17. Flow cytometric measurement of pollutant stresses on algal cells.

    PubMed

    Berglund, D L; Eversman, S

    1988-03-01

    The lichen Usnea fulvoreagens (Räs). Räs. was treated with four pH levels (5.5, 4.5, 3.5, and 2.5) of simulated acid rain (sulfuric acid, nitric acid, and a 1:1 combination of both) and automobile exhaust. The samples were dissociated and analyzed by a Becton-Dickinson FACS 440 flow cytometer. Analyses included measurement of chlorophyll autofluorescence and fluorescence due to uptake of fluorescein diacetate (FDA) and calcofluor white M2R (CFW). Cell parameters measured were esterase activity (FDA), membrane permeability (FDA, CFW), and intracellular pH (FDA). Mean fluorescence intensity from FDA staining and numbers of events were incorporated with autofluorescence information to produce a "stress index" of relative cell stress. Results indicated that highly stressed samples (lower pH treatments and greater exposure to exhaust) exhibited a low "stress index" of FDA fluorescence.

  18. Advanced spacecraft fuel cell systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1972-01-01

    The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.

  19. Flow Analysis on a Limited Volume Chilled Water System

    SciTech Connect

    Zheng, Lin

    2012-07-31

    LANL Currently has a limited volume chilled water system for use in a glove box, but the system needs to be updated. Before we start building our new system, a flow analysis is needed to ensure that there are no high flow rates, extreme pressures, or any other hazards involved in the system. In this project the piping system is extremely important to us because it directly affects the overall design of the entire system. The primary components necessary for the chilled water piping system are shown in the design. They include the pipes themselves (perhaps of more than one diameter), the various fitting used to connect the individual pipes to form the desired system, the flow rate control devices (valves), and the pumps that add energy to the fluid. Even the most simple pipe systems are actually quite complex when they are viewed in terms of rigorous analytical considerations. I used an 'exact' analysis and dimensional analysis considerations combined with experimental results for this project. When 'real-world' effects are important (such as viscous effects in pipe flows), it is often difficult or impossible to use only theoretical methods to obtain the desired results. A judicious combination of experimental data with theoretical considerations and dimensional analysis are needed in order to reduce risks to an acceptable level.

  20. Dynamic modes of red blood cells in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2010-06-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle θ , and phase angle ϕ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-treading (TT): ϕ rotates while the shape and θ oscillate. (ii) tumbling (TB): θ rotates while the shape and ϕ oscillate. (iii) intermediate motion: both ϕ and θ rotate synchronously or intermittently. In oscillatory shear flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude, respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. The thermal fluctuations can induce transitions between two orbits at very low shear amplitudes. For a high mean shear rate with small shear oscillation, the shape and θ oscillate in the TT motion but only one attractor exists even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying the viscoelasticity of RBCs, synthetic capsules, and lipid vesicles.

  1. System and method for bidirectional flow and controlling fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.

    1999-03-23

    A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.

  2. System and method for bidirectional flow and controlling fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German

    1999-01-01

    A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.

  3. The Numerical Simulation of Flow around Ejection System

    NASA Astrophysics Data System (ADS)

    Zhang, Dalin; Wei, Tao

    Aerodynamic characteristics of an Ejection Seat System at different angles of attack are studied by the numerical method and the flow mechanisms for such flows are carefully analyzed. The governing equations are Reynolds-averaged Navier-Stokes equations which are solved by the unstructured finite volume method. Upwind Osher scheme is used for spatial discretization and five-stage Runge-Kutta scheme is applied for temporal discretization. The DES model based on S-A one equation turbulence model is adopted. Parallel computation is based on the domain decomposition method and multi-block is achieved by using METIS system. The experimental data is used to validate this method. This research is helpful to understand the aerodynamic characteristics and flow mechanisms of Ejection Seat System at different angles of attack and Mach numbers, and can provide reasonable reference for Ejection Seat System design.

  4. Portable Fluorescence Imaging System for Hypersonic Flow Facilities

    NASA Technical Reports Server (NTRS)

    Wilkes, J. A.; Alderfer, D. W.; Jones, S. B.; Danehy, P. M.

    2003-01-01

    A portable fluorescence imaging system has been developed for use in NASA Langley s hypersonic wind tunnels. The system has been applied to a small-scale free jet flow. Two-dimensional images were taken of the flow out of a nozzle into a low-pressure test section using the portable planar laser-induced fluorescence system. Images were taken from the center of the jet at various test section pressures, showing the formation of a barrel shock at low pressures, transitioning to a turbulent jet at high pressures. A spanwise scan through the jet at constant pressure reveals the three-dimensional structure of the flow. Future capabilities of the system for making measurements in large-scale hypersonic wind tunnel facilities are discussed.

  5. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  6. A contribution about ferrofluid based flow manipulation and locomotion systems

    NASA Astrophysics Data System (ADS)

    Zimmermann, K.; Zeidis, I.; Bohm, V.; Popp, J.

    2009-02-01

    With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.

  7. Fuel cell manifold sealing system

    DOEpatents

    Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.

    1980-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  8. Information systems for material flow management in construction processes

    NASA Astrophysics Data System (ADS)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  9. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence.

    PubMed

    Ishikawa, Takuji; Fujiwara, Hiroki; Matsuki, Noriaki; Yoshimoto, Takefumi; Imai, Yohsuke; Ueno, Hironori; Yamaguchi, Takami

    2011-02-01

    Bifurcations and confluences are very common geometries in biomedical microdevices. Blood flow at microchannel bifurcations has different characteristics from that at confluences because of the multiphase properties of blood. Using a confocal micro-PIV system, we investigated the behaviour of red blood cells (RBCs) and cancer cells in microchannels with geometrically symmetric bifurcations and confluences. The behaviour of RBCs and cancer cells was strongly asymmetric at bifurcations and confluences whilst the trajectories of tracer particles in pure water were almost symmetric. The cell-free layer disappeared on the inner wall of the bifurcation but increased in size on the inner wall of the confluence. Cancer cells frequently adhered to the inner wall of the bifurcation but rarely to other locations. Because the wall surface coating and the wall shear stress were almost symmetric for the bifurcation and the confluence, the result indicates that not only chemical mediation and wall shear stress but also microscale haemodynamics play important roles in the adhesion of cancer cells to the microchannel walls. These results provide the fundamental basis for a better understanding of blood flow and cell adhesion in biomedical microdevices.

  10. 93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND SYSTEM 2, FACING WEST IN MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor.

    PubMed

    Sivarapatna, Amogh; Ghaedi, Mahboobe; Le, Andrew V; Mendez, Julio J; Qyang, Yibing; Niklason, Laura E

    2015-01-01

    Endothelial cells (ECs) exist in different microenvironments in vivo, including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study, a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic, anti-inflammatory, arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 h, as demonstrated by qRT-PCR for arterial markers EphrinB2, CXCR4, Conexin40 and Notch1, as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore, the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype, and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications.

  12. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor

    PubMed Central

    Sivarapatna, Amogh; Ghaedi, Mahboobe; Le, Andrew V.; Mendez, Julio J.; Qyang, Yibing; Niklason, Laura E.

    2015-01-01

    Endothelial cells (ECs) exist in different microenvironments in vivo, including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study, a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic, anti-inflammatory, arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 hours, as demonstrated by qRT-PCR for arterial markers EphrinB2, CXCR4, Conexin40 and Notch1, as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore, the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype, and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications. PMID:25890758

  13. Cerebral blood flow in sickle cell cerebrovascular disease

    SciTech Connect

    Huttenlocher, P.R.; Moohr, J.W.; Johns, L.; Brown, F.D.

    1984-05-01

    Cerebral blood flow (CBF) has been studied by the xenon-133 (/sup 133/Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the /sup 133/Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The /sup 133/Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke.

  14. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    NASA Astrophysics Data System (ADS)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  15. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2010-12-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  16. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  17. Preliminary design of an intermittent smoke flow visualization system

    NASA Technical Reports Server (NTRS)

    Ward, Donald T.; Myatt, James H.

    1993-01-01

    A prototype intermittent flow visualization system that was designed to study vortex flow field dynamics has been constructed and tested through its ground test phase. It produces discrete pulses of dense white smoke consisting of particles of terephthalic acid by the pulsing action of a fast-acting three-way valve. The trajectories of the smoke pulses can be tracked by a video imaging system without intruding in the flow around in flight. Two methods of pulsing the smoke were examined. The simplest and safest approach is to simply divert the smoke between the two outlet ports on the valve; this approach should be particularly effective if it were desired to inject smoke at two locations during the same test event. The second approach involves closing off one of the outlet ports to momentarily block the flow. The second approach requires careful control of valve dwell times to avoid excessive pressure buildup within the cartridge container. This method also increases the velocity of the smoke injected into the flow. The flow of the smoke has been blocked for periods ranging from 30 to 80 milliseconds, depending on the system volume and the length of time the valve is allowed to remain open between valve closings.

  18. A zero-flow microfluidics for long-term cell culture and detection

    NASA Astrophysics Data System (ADS)

    Sang, Shengbo; Tang, Xiaoliang; Feng, Qiliang; Jian, Aoqun; Zhang, Wendong

    2015-04-01

    A zero-flow microfluidic design is proposed in this paper, which can be used for long-term cell culture and detection, especially for a lab-on-chip integrated with a biosensor. It consists of two parts: a main microchannel; and a circle microchamber. The Finite Element Method (FEM) was employed to predict the fluid transport properties for a minimum fluid flow disturbance. Some commonly used microfluidic structures were also analysed systematically to prove the designed structure. Then the designed microfluidics was fabricated. Based on the simulations and experiments, this design provides a continuous flow environment, with a relatively stable and low shear stress atmosphere, similar to a zero-flow environment. Furthermore, the nutrients maintaining cells' normal growth can be taken into the chamber through the diffusion effect. It also proves that the microfluidics can realize long-term cell culture and detection. The application of the structure in the field of biological microelectromechenical systems (BioMEMS) will provide a research foundation for microfluidic technology.

  19. Continuous flow electrophoresis: The effect of sample concentration on throughput and resolution in an upward flowing system

    NASA Technical Reports Server (NTRS)

    Jandebeur, T. S.

    1980-01-01

    The effect of sample concentration on throughput and resolution in a modified continuous particle electrophoresis (CPE) system with flow in an upward direction is investigated. Maximum resolution is achieved at concentrations ranging from 2 x 10 to the 8th power cells/ml to 8 x 10 to the 8th power cells/ml. The widest peak separation is at 2 x 10 to the 8th power cells/ml; however, the sharpest peaks and least overlap between cell populations is at 8 x 10 to the 8th power cells/ml. Apparently as a result of improved electrophoresis cell performance due to coasting the chamber with bovine serum albumin, changing the electrode membranes and rinse, and lowering buffer temperatures, sedimentation effects attending to higher concentrations are diminished. Throughput as measured by recovery of fixed cells is diminished at the concentrations judged most likely to yield satisfactory resolution. The tradeoff appears to be improved recovery/throughput at the expense of resolution.

  20. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  1. Flow-through cell electroporation microchip integrating dielectrophoretic viable cell sorting.

    PubMed

    Wei, Zewen; Li, Xueming; Zhao, Deyao; Yan, Hao; Hu, Zhiyuan; Liang, Zicai; Li, Zhihong

    2014-10-21

    Microfluidics based continuous cell electroporation is an appealing approach for high-throughput cell transfection, but cell viability of existing methods is usually compromised by adverse electrical or hydrodynamic effects. Here we present the validation of a flow-through cell electroporation microchip, in which dielectrophoretic force was employed to sort viable cells. By integrating parallel electroporation electrodes and dielectrophoresis sorting electrodes together in a simple straight microfluidic channel, sufficient electrical pulses were applied for efficient electroporation, and a proper sinusoidal electrical field was subsequently utilized to exclude damaged cells by dielectrophoresis. Thus, the difficulties for seeking the fine balance between electrotransfection efficiency and cell viability were steered clear. After careful investigation and optimization of the DEP behaviors of electroporated cells, efficient electrotransfection of plasmid DNA was demonstrated in vulnerable neuron cells and several hard-to-transfect primary cell types with excellent cell viability. This microchip constitutes a novel way of continuous cell transfection to significantly improve the cell viability of existing methodologies.

  2. Oxygen transport and cell viability in an annular flow bioreactor: comparison of laminar Couette and Taylor-vortex flow regimes.

    PubMed

    Curran, Stephen J; Black, Richard A

    2005-03-30

    Rotating wall vessel bioreactors have been proposed as a means of controlling the fluid dynamic environment during long-term culture of mammalian cells and engineered tissues. In this study, we show how the delivery of oxygen to cells in an annular flow bioreactor is enhanced by the forced convective transport afforded by Taylor vortex flows. A fiberoptic oxygen probe with negligible lag time was used to measure the dissolved oxygen concentration in real time and under carefully controlled aeration conditions. From these data, the overall mass transfer coefficients were calculated and mass transport correlations determined under laminar Couette flow conditions and discrete Taylor vortex flow regimes, including laminar, wavy, and turbulent flows. While oxygen transport in Taylor vortex flows was significantly greater, and the available oxygen exceeded that consumed by murine fibroblasts in free suspension, the proportion of cells that remained viable decreased with increasing Reynolds number (101.8 < Rei < 1018), which we attribute to the action of fluid shear stresses on the cells as opposed to any limitation in mass transport. Nevertheless, the results of this study suggest that laminar Taylor-vortex flow regimes provide an effective means of maintaining the levels of oxygen transport required for long-term cell culture. PMID:15696514

  3. Improved Diffuse Fluorescence Flow Cytometer Prototype for High Sensitivity Detection of Rare Circulating Cells In Vivo

    NASA Astrophysics Data System (ADS)

    Pestana, Noah Benjamin

    Accurate quantification of circulating cell populations is important in many areas of pre-clinical and clinical biomedical research, for example, in the study of cancer metastasis or the immune response following tissue and organ transplants. Normally this is done "ex-vivo" by drawing and purifying a small volume of blood and then analyzing it with flow cytometry, hemocytometry or microfludic devices, but the sensitivity of these techniques are poor and the process of handling samples has been shown to affect cell viability and behavior. More recently "in vivo flow cytometry" (IVFC) techniques have been developed where fluorescently-labeled cells flowing in a small blood vessel in the ear or retina are analyzed, but the sensitivity is generally poor due to the small sampling volume. To address this, our group recently developed a method known as "Diffuse Fluorescence Flow Cytometry" (DFFC) that allows detection and counting of rare circulating cells with diffuse photons, offering extremely high single cell counting sensitivity. In this thesis, an improved DFFC prototype was designed and validated. The chief improvements were three-fold, i) improved optical collection efficiency, ii) improved detection electronics, and iii) development of a method to mitigate motion artifacts during in vivo measurements. In combination, these improvements yielded an overall instrument detection sensitivity better than 1 cell/mL in vivo, which is the most sensitive IVFC system reported to date. Second, development and validation of a low-cost microfluidic device reader for analysis of ocular fluids is described. We demonstrate that this device has equivalent or better sensitivity and accuracy compared a fluorescence microscope, but at an order-of-magnitude reduced cost with simplified operation. Future improvements to both instruments are also discussed.

  4. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  5. Transport processes in biological systems: Tumoral cells and human brain

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  6. System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    SciTech Connect

    Alver, B.; Ballintijn, M.; Busza, W.; Decowski, M. P.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; Vale, C.; Nieuwenhuizen, G. J. van; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.

    2007-06-15

    This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.

  7. Multiparameter Lab-on-a-Chip flow cytometry of the cell cycle.

    PubMed

    Skommer, Joanna; Akagi, Jin; Takeda, Kazuo; Fujimura, Yuu; Khoshmanesh, Khashayar; Wlodkowic, Donald

    2013-04-15

    Multiparameter analysis of apoptosis in relation to cell cycle position is helpful in exploring mechanism of action of anticancer drugs that target specific molecular cogs of the cell cycle. This work demonstrates a new rationale for using microfluidic Lab-on-a-Chip flow cytometry (μFCM) with a simple 2D hydrodynamic focusing for the multiparameter analysis of apoptosis and DNA ploidy analysis in human hematopoietic cancer cells. The microfluidic system employs disposable microfluidic cartridges fabricated using injection moulding in optically transparent poly(methylmethacrylate). The dedicated and miniaturized electronic hardware interface enables up to six parameter detections using a combination of spatially separated solid-state 473 nm (10 mW) and 640 nm (20 mW) lasers and x-y stage for rapid laser alignment adjustment. We provide evidence that the simple 2D flow focusing on a chip-based device is sufficient to measure cellular DNA content in both fixed and living tumor cells. The feasibility of using the μFCM system for multiparameter analysis of caspase activation and dissipation of mitochondrial inner membrane potential (ΔΨ(m) loss) in relation to DNA content is also demonstrated. The data shows that straightforward microfluidic chip designs are sufficient to acquire high quality biological data when combined with sophisticated electronic interfaces. They can be a viable alternative to conventional FCM for multiparameter detection of programmed cell death.

  8. OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Chan, William M.

    2012-01-01

    Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.

  9. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  10. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.

    PubMed Central

    Davey, H M; Kell, D B

    1996-01-01

    The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity. PMID:8987359

  11. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  12. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  13. Flow-enhanced solution printing of all-polymer solar cells

    DOE PAGESBeta

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; et al

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhancedmore » all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.« less

  14. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  15. Modeling of flow systems for implementation under KATE

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    1990-01-01

    The modeling of flow systems is a task currently being investigated at Kennedy Space Center in parallel with the development of the KATE artificial intelligence system used for monitoring diagnosis and control. Various aspects of the modeling issues are focussed on with particular emphasis on a water system scheduled for demonstration within the KATE environment in September of this year. LISP procedures were written to solve the continuity equations for three internal pressure nodes using Newton's method for simultaneous nonlinear equations.

  16. Advancing the detection of maternal haematopoietic microchimeric cells in fetal immune organs in mice by flow cytometry

    PubMed Central

    Solano, Maria Emilia; Thiele, Kristin; Stelzer, Ina Annelies; Mittrücker, Hans-Willi; Arck, Petra Clara

    2014-01-01

    Maternal microchimerism, which occurs naturally during gestation in hemochorial placental mammals upon transplacental migration of maternal cells into the fetus, is suggested to significantly influence the fetal immune system. In our previous publication, we explored the sensitivity of quantitative polymerase chain reaction and flow cytometry to detect cellular microchimerism. With that purpose, we created mixed cells suspensions in vitro containing reciprocal frequencies of wild type cells and cells positive for enhanced green fluorescent protein or CD45.1+, respectively. Here, we now introduce the H-2 complex, which defines the major histocompatibility complex in mice and is homologous to HLA in human, as an additional target to detect maternal microchimerism among fetal haploidentical cells. We envision that this advanced approach to detect maternal microchimeric cells by flow cytometry facilitates the pursuit of phenotypic, gene expression and functional analysis of microchimeric cells in future studies. PMID:25483743

  17. Shock-induced turbulent flow in baffle systems

    SciTech Connect

    Kuhl, A.L.; Reichenbach, H.

    1993-07-01

    Experiments are described on shock propagation through 2-D aligned and staggered baffle systems. Flow visualization was provided by shadow and schlieren photography, recorded by the Cranz-Schardin camera. Also single-frame, infinite-fringe, color interferograms were used. Intuition suggests that this is a rather simple 2-D shock diffraction problem. However, flow visualization reveals that the flow rapidly evolved into a complex 3-D turbulent mixing problem. Mushroom-shaped mixing regions blocked the flow into the next baffle orifice. Thus energy was transferred from the directed kinetic energy (induced by the shock) to rotational energy of turbulent mixing, and then dissipated by molecular effects. These processes dramatically dissipate the strength of the shock wave. The experiments provide an excellent test case that could be used to assess the accuracy of computer code calculations of such problems.

  18. Flow Analysis of X-34 Main Propulsion System Feedlines

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Garcia, Robert

    2000-01-01

    The X-34 Main Propulsion System (MPS) configuration includes the liquid oxygen (LOX) and rocket propellant #1 (RP-1) feedlines. The flow analyses of these feedlines were performed and documented in previous studies. These analyses predicted a relatively low inlet distortion and nearly even flow split at the engine interface. The new design for these MPS feedlines has been recommended recently. The new configuration includes a tighter radius in the RP-1 feedline and a neck-down section between the gimbals. Conversely, the LOX feedline is very similar to the previous design. There were concerns that this new RP-1 configuration might generate a greater flow distortion at the engine interface than the original design. To resolve this issue, a Computation Fluid Dynamics (CFD) analysis was conducted to determine the flow Field in the new RP-1 feedlines.

  19. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  20. Lockheed laminar-flow control systems development and applications

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1987-01-01

    Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.

  1. Rotation of a rod system containing inertial fluid flow

    NASA Astrophysics Data System (ADS)

    Sergeev, A. D.

    2012-11-01

    This paper considers a rod system for which it is possible to correctly formulate and solve the problem of three-dimensional motion in the physical space of an elastic pipeline area containing inertial incompressible fluid flow. The precession of the axis of an elastic pipeline along which inertial incompressible fluid flows is described, a physical phenomenon which has not been previously studied. With the use of rigid body dynamics, it was theoretically established that a three-dimensional dynamic process is possible in an open (exchanging mass with the environment) elastic-inertial rod system.

  2. The intercell dynamics of T cells and dendritic cells in a lymph node-on-a-chip flow device.

    PubMed

    Moura Rosa, Patrícia; Gopalakrishnan, Nimi; Ibrahim, Hany; Haug, Markus; Halaas, Øyvind

    2016-10-01

    T cells play a central role in immunity towards cancer and infectious diseases. T cell responses are initiated in the T cell zone of the lymph node (LN), where resident antigen-bearing dendritic cells (DCs) prime and activate antigen-specific T cells passing by. In the present study, we investigated the T cell : DC interaction in a microfluidic device to understand the intercellular dynamics and physiological conditions in the LN. We show random migration of antigen-specific T cells onto the antigen-presenting DC monolayer independent of the flow direction with a mean T cell : DC dwell time of 12.8 min and a mean velocity of 6 μm min(-1). Furthermore, we investigated the antigen specific vs. unspecific attachment and detachment of CD8(+) and CD4(+) T cells to DCs under varying shear stress. In our system, CD4(+) T cells showed long stable contacts with APCs, whereas CD8(+) T cells presented transient interactions with DCs. By varying the shear stress from 0.01 to 100 Dyn cm(-2), it was also evident that there was a much stronger attachment of antigen-specific than unspecific T cells to stationary DCs up to 1-12 Dyn cm(-2). The mechanical force of the cell : cell interaction associated with the pMHC-TCR match under controlled tangential shear force was estimated to be in the range of 0.25-4.8 nN. Finally, upon performing attachment & detachment tests, there was a steady accumulation of antigen specific CD8(+) T cells and CD4(+) T cells on DCs at low shear stresses, which were released at a stress of 12 Dyn cm(-2). This microphysiological model provides new possibilities to recreate a controlled mechanical force threshold of pMHC-TCR binding, allowing the investigation of intercellular signalling of immune synapses and therapeutic targets for immunotherapy.

  3. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.

    PubMed

    Jenkins, Patrick; Naivar, Mark A; Houston, Jessica P

    2015-11-01

    Flow cytometry is a powerful means for in vitro cellular analyses where multi-fluorescence and multi-angle light scattering can indicate unique biochemical or morphological features of single cells. Yet, to date, flow cytometry systems have lacked the ability to capture complex fluorescence dynamics due to the transient nature of flowing cells. In this contribution we introduce a simple approach for measuring multiple fluorescence lifetimes from a single cytometric event. We leverage square wave modulation, Fourier analysis, and high frequency digitization and show the ability to resolve more than one fluorescence lifetime from fluorescently-labelled cells and microspheres. Illustration of a flow cytometer capable of capturing multiple fluorescence lifetime measurements; creating potential for multi-parametric, time-resolved signals to be captured for every color channel. PMID:25727072

  4. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.

    PubMed

    Jenkins, Patrick; Naivar, Mark A; Houston, Jessica P

    2015-11-01

    Flow cytometry is a powerful means for in vitro cellular analyses where multi-fluorescence and multi-angle light scattering can indicate unique biochemical or morphological features of single cells. Yet, to date, flow cytometry systems have lacked the ability to capture complex fluorescence dynamics due to the transient nature of flowing cells. In this contribution we introduce a simple approach for measuring multiple fluorescence lifetimes from a single cytometric event. We leverage square wave modulation, Fourier analysis, and high frequency digitization and show the ability to resolve more than one fluorescence lifetime from fluorescently-labelled cells and microspheres. Illustration of a flow cytometer capable of capturing multiple fluorescence lifetime measurements; creating potential for multi-parametric, time-resolved signals to be captured for every color channel.

  5. Quantitative assessment of immune cells in the injured spinal cord tissue by flow cytometry: a novel use for a cell purification method.

    PubMed

    Nguyen, Hal X; Beck, Kevin D; Anderson, Aileen J

    2011-04-09

    Detection of immune cells in the injured central nervous system (CNS) using morphological or histological techniques has not always provided true quantitative analysis of cellular inflammation. Flow cytometry is a quick alternative method to quantify immune cells in the injured brain or spinal cord tissue. Historically, flow cytometry has been used to quantify immune cells collected from blood or dissociated spleen or thymus, and only a few studies have attempted to quantify immune cells in the injured spinal cord by flow cytometry using fresh dissociated cord tissue. However, the dissociated spinal cord tissue is concentrated with myelin debris that can be mistaken for cells and reduce cell count reliability obtained by the flow cytometer. We have advanced a cell preparation method using the OptiPrep gradient system to effectively separate lipid/myelin debris from cells, providing sensitive and reliable quantifications of cellular inflammation in the injured spinal cord by flow cytometry. As described in our recent study (Beck & Nguyen et al., Brain. 2010 Feb; 133 (Pt 2): 433-47), the OptiPrep cell preparation had increased sensitivity to detect cellular inflammation in the injured spinal cord, with counts of specific cell types correlating with injury severity. Critically, novel usage of this method provided the first characterization of acute and chronic cellular inflammation after SCI to include a complete time course for polymorphonuclear leukocytes (PMNs, neutrophils), macrophages/microglia, and T-cells over a period ranging from 2 hours to 180 days post-injury (dpi), identifying a surprising novel second phase of cellular inflammation. Thorough characterization of cellular inflammation using this method may provide a better understanding of neuroinflammation in the injured CNS, and reveal an important multiphasic component of neuroinflammation that may be critical for the design and implementation of rational therapeutic treatment strategies, including both

  6. [Analysis of patient flow by radiology information system].

    PubMed

    Nakano, Tsutomu; Murakami, Seiichi

    2010-03-20

    HIS (hospital information system) and PACS (picture archiving and communication system) have become widely popular in clinical offices, and use of RIS (radiology information system) in the department of radiology has spread, creating networking between HIS, PACS, and diagnostic systems. RIS receives patient data and order data from HIS and sends them to the diagnostic systems. On the other hand, the RIS sends the implementation record and accounting data to HIS. When receiving and transmitting of these data are done by the RIS, the event's time is recorded in the RIS as attendant data. This paper proposes a way to analyze patient flow from the records of the event's time. The method counts the number of the accepted examinations y(i) (i = 0, 1, ... N) and the completed examinations z(i) every divided time t from the RIS work list, and computes the following three characteristic values related to patient flow. Those values are average expended time T; T = ( Sigma z(i ) i t - Sigma y(i ) i t ) / Sigma y(i) ,number of exam queue q(i); q(i) = Sigma y(i) - Sigma z(i) , and dissolved time of queue w(i); w(i) = q(i ) ( t / z(i) ). The method analyzes patient flow of radiology using these characteristic values. It also performs a simulation of the flow in cases of equipment trouble.

  7. Multiple well systems with non-Darcy flow.

    PubMed

    Mijic, Ana; Mathias, Simon A; LaForce, Tara C

    2013-01-01

    Optimization of groundwater and other subsurface resources requires analysis of multiple-well systems. The usual modeling approach is to apply a linear flow equation (e.g., Darcy's law in confined aquifers). In such conditions, the composite response of a system of wells can be determined by summating responses of the individual wells (the principle of superposition). However, if the flow velocity increases, the nonlinear losses become important in the near-well region and the principle of superposition is no longer valid. This article presents an alternative method for applying analytical solutions of non-Darcy flow for a single- to multiple-well systems. The method focuses on the response of the central injection well located in an array of equally spaced wells, as it is the well that exhibits the highest pressure change within the system. This critical well can be represented as a single well situated in the center of a closed square domain, the width of which is equal to the well spacing. It is hypothesized that a single well situated in a circular region of the equivalent plan area adequately represents such a system. A test case is presented and compared with a finite-difference solution for the original problem, assuming that the flow is governed by the nonlinear Forchheimer equation. PMID:23039097

  8. "Spot and hop": internal referencing for surface plasmon resonance imaging using a three-dimensional microfluidic flow cell array.

    PubMed

    Eddings, Mark A; Eckman, Josh W; Arana, Carlos A; Papalia, Giuseppe A; Connolly, John E; Gale, Bruce K; Myszka, David G

    2009-02-15

    We have developed a novel referencing technique for surface plasmon resonance imaging systems referred to as "spot and hop." The technique enables internal referencing for individual flow cells in a parallel processing microfluidic network. Internal referencing provides the ability to correct for nonspecific binding and instrument drift, significantly improving data quality at each region of interest. The performance of a 48-flow-cell device was demonstrated through a series of studies, including "rise and fall" time, ligand preconcentration, ligand immobilization, analyte binding, and regeneration tests. Interfacing parallel processing fluidics with imaging systems will significantly expand the throughput and applications of array-based optical biosensors while retaining high data quality.

  9. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, A.V.

    1983-10-12

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  10. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, Anthony V.

    1985-01-01

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  11. Mathematical modelling of flow distribution in the human cardiovascular system

    NASA Technical Reports Server (NTRS)

    Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.

    1992-01-01

    The paper presents a detailed model of the entire human cardiovascular system which aims to study the changes in flow distribution caused by external stimuli, changes in internal parameters, or other factors. The arterial-venous network is represented by 325 interconnected elastic segments. The mathematical description of each segment is based on equations of hydrodynamics and those of stress/strain relationships in elastic materials. Appropriate input functions provide for the pumping of blood by the heart through the system. The analysis employs the finite-element technique which can accommodate any prescribed boundary conditions. Values of model parameters are from available data on physical and rheological properties of blood and blood vessels. As a representative example, simulation results on changes in flow distribution with changes in the elastic properties of blood vessels are discussed. They indicate that the errors in the calculated overall flow rates are not significant even in the extreme case of arteries and veins behaving as rigid tubes.

  12. High density cell culture system

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  13. Improving Viability of Stem Cells During Syringe Needle Flow Through the Design of Hydrogel Cell Carriers

    PubMed Central

    Aguado, Brian A.; Mulyasasmita, Widya; Su, James; Lampe, Kyle J.

    2012-01-01

    Cell transplantation is a promising therapy for a myriad of debilitating diseases; however, current delivery protocols using direct injection result in poor cell viability. We demonstrate that during the actual cell injection process, mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we hypothesize that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. We use a controlled in vitro model of cell injection to demonstrate success of this acute protection strategy for a wide range of cell types including human umbilical vein endothelial cells (HUVEC), human adipose stem cells, rat mesenchymal stem cells, and mouse neural progenitor cells. Specifically, alginate hydrogels with plateau storage moduli (G′) ranging from 0.33 to 58.1 Pa were studied. A compliant crosslinked alginate hydrogel (G′=29.6 Pa) yielded the highest HUVEC viability, 88.9%±5.0%, while Newtonian solutions (i.e., buffer only) resulted in 58.7%±8.1% viability. Either increasing or decreasing the hydrogel storage modulus reduced this protective effect. Further, cells within noncrosslinked alginate solutions had viabilities lower than media alone, demonstrating that the protective effects are specifically a result of mechanical gelation and not the biochemistry of alginate. Experimental and theoretical data suggest that extensional flow at the entrance of the syringe needle is the main cause of acute cell death. These results provide mechanistic insight into the role of mechanical forces during cell delivery and support the use of protective hydrogels in future clinical stem cell injection studies. PMID:22011213

  14. Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation)

    SciTech Connect

    Pesaran, A.; Kim, G.; Markel, T.; Wipke, K.

    2005-05-01

    Presentation on Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation) for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia on May 23-26, 2005.

  15. Biofilm streamers cause rapid clogging of flow systems

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Drescher, Knut; Wingreen, Ned; Bassler, Bonnie; Stone, Howard

    2012-11-01

    Biofilms are antibiotic-resistant, sessile bacterial communities that are found on most surfaces on Earth. In addition to constituting the most abundant form of bacterial life, biofilms also cause chronic and medical device-associated infections. Despite their importance, basic information about how biofilms behave in common ecological environments is lacking. Here we demonstrate that flow through soil-like porous materials, industrial filters, and medical stents dramatically modifies the morphology of Pseudomonas aeruginosa biofilms to form streamers which over time bridge the space between obstacles and corners in non-uniform environments. Using a microfluidic model system we find that, contrary to the accepted paradigm, the accumulation of surface-attached bacterial biofilm has little effect on flow resistance whereas the formation of biofilm streamers causes sudden and rapid clogging. The time at which clogging happens depends on bacterial growth, while the duration of the clogging transition is driven by flow-mediated transport of bacteria to the clogging site. Flow-induced shedding of extracellular matrix from the resident biofilm generates a sieve-like network that catches bacteria flowing by, which add to the network of extracellular matrix, to cause exponentially rapid clogging. We expect these biofilm streamers to be ubiquitous in nature, and to have profound effects on flow through porous materials in environmental, industrial, and medical environments.

  16. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect

    Steve Magee; Richard Gehman

    2005-07-12

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  17. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, C.P.; Olden, J.D.; Lytle, D.A.; Melis, T.S.; Schmidt, J.C.; Bray, E.N.; Freeman, Mary C.; Gido, K.B.; Hemphill, N.P.; Kennard, M.J.; McMullen, L.E.; Mims, M.C.; Pyron, M.; Robinson, C.T.; Williams, J.G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  18. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  19. Automotive Power Flow System; Auto Mechanics I: 9043.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive power flow system course sets the foundation in the theory of operation of the standard and automatic transmission, clutch assemblies, drive-line and rear axle assemblies. This is a one or two quinmester credit course covering 45 clock hours. In the fourth quinmester course in the tenth year, instruction consists of lectures,…

  20. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  1. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion

    PubMed Central

    Behr, Julie; Gaskin, Byron; Fu, Changliang; Dong, Cheng; Kunz, Robert

    2015-01-01

    This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC) and substrate adherent polymorphonuclear neutrophils (PMN) is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD) framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs. PMID:26366568

  2. A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay.

    PubMed

    Olivier, L A; Truskey, G A

    1993-10-01

    Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area.

  3. Two-photon, two-color in vivo flow cytometry to noninvasively monitor multiple circulating cell lines

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Eric R.; Zhong, Cheng Frank; Ye, Jing Yong; Katnik, Steve; Myc, Andrzej; Thomas, Thommey; Luker, Kathryn E.; Luker, Gary D.; Baker, James R., Jr.; Norris, Theodore B.

    2007-07-01

    We have developed a new two-photon system for in vivo flow cytometry, thereby allowing us to simultaneously quantify different circulating populations in a single animal. The instrument was able to resolve minute-by-minute depletion dynamics of injected fluorescent microspheres at finer time scales than conventional flow cytometry. Also observed were the circulation dynamics of human MCF-7 and MDA-MB-435 breast cancer cells, which have low and high metastatic potential, respectively. After co-injection of both cell types into mice, markedly greater numbers of MCF-7 cells were present in the circulation at early time points. While low metastatic MCF-7 cells were cleared from the vascular system within 24 hours, detectable numbers of metastatic MDA-MB- 435 cells in the circulation remained constant over time. When we replace the commercial (80-MHz) NIR excitation laser with a reduced-repetition-rate (20-MHz) mode-locked oscillator, the signal is enhanced four-fold, enabling superior detection in blood of cell lines expressing fluorescent proteins tdTomato and mPlum (crosslabeled with DiI and DiD). Detection sensitivity versus incident laser power is understood in terms of detected event photon count distribution, which can be predicted with simple fluorophore distribution assumptions. The technique of two-color, two-photon flow cytometry greatly enhances the capabilities of ex vivo flow cytometry to investigate dynamics of circulating cells in cancer and other important diseases.

  4. Water outlet control mechanism for fuel cell system operation in variable gravity environments

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)

    2007-01-01

    A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.

  5. Fuel cell system and method

    DOEpatents

    Maru, Hansraj C.; Farooque, Mohammad

    1984-01-01

    A fuel cell system comprising a fuel cell including first and second electrolyte-communicative passage means, a third electrolyte-isolated passage means in thermal communication with a heat generating surface of the cell, independent first, second and third input manifolds for the first, second and third passage means, the first input manifold being adapted to be connected to a first supply for a first process gas and one of the second and third input manifold means being adapted to be connected to a second supply for a second process gas, and means for conveying a portion of the gas passing out of the passage means fed by the one input manifold means to the other of the second and third input manifold means.

  6. Flow of a circulating tumor cell and red blood cells in microvessels

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2015-12-01

    Quantifying the behavior of circulating tumor cells (CTCs) in the blood stream is of fundamental importance for understanding metastasis. Here, we investigate the flow mode and velocity of CTCs interacting with red blood cells (RBCs) in various sized microvessels. The flow of leukocytes in microvessels has been described previously; a leukocyte forms a train with RBCs in small microvessels and exhibits margination in large microvessels. Important differences in the physical properties of leukocytes and CTCs result from size. The dimensions of leukocytes are similar to those of RBCs, but CTCs are significantly larger. We investigate numerically the size effects on the flow mode and the cell velocity, and we identify similarities and differences between leukocytes and CTCs. We find that a transition from train formation to margination occurs when (R -a ) /tR≈1 , where R is the vessel radius, a is the cell radius, and tR is the thickness of RBCs, but that the motion of RBCs differs from the case of leukocytes. Our results also show that the velocities of CTCs and leukocytes are larger than the average blood velocity, but only CTCs move faster than RBCs for microvessels of R /a ≈1.5 -2.0 . These findings are expected to be useful not only for understanding metastasis, but also for developing microfluidic devices.

  7. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    USGS Publications Warehouse

    Sepulveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  8. Coupled thermal, electrical, and fluid flow analyses of AMTEC multitube cell with adiabatic side wall

    NASA Astrophysics Data System (ADS)

    Schock, A.; Or, C.; Noravian, H.

    1997-01-01

    The paper describes a novel OSC-generated methodology for analyzing the performance of multitube AMTEC (Alkali Metal Thermal-to-Electrical Conversion) cells, which are under development by AMPS (Advanced Modular Power Systems, Inc.) for the Air Force Phillips Laboratory (AFPL) and NASA's Jet Propulsion Laboratory (JPL), for possible application to the Pluto Express and other space missions. The OSC study was supported by the Department of Energy (DOE), and was strongly encouraged by JPL, AFPL, and AMPS. It resulted in an iterative procedure for the coupled solution of the interdependent thermal, electrical, and fluid flow differential and integral equations governing the performance of AMTEC cells and generators. The paper clarifies the OSC procedure by presenting detailed results of its application to an illustrative example of a converter cell with an adiabatic side wall, including the non-linear axial variation of temperature, pressure, open-circuit voltage, interelectrode voltage, current density, axial current, sodium mass flow, and power density. The next paper in these proceedings describes parametric results obtained by applying the same procedure to variations of the baseline adiabatic converter design, culminating in an OSC-recommended revised cell design. A subsequent paper in these proceedings extends the procedure to analyze a variety of OSC-designed radioisotope-heated generators employing non-adiabatic multitube AMTEC cells.

  9. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    PubMed

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-01-01

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702

  10. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    PubMed Central

    Verma, Arjun; Fratto, Brian E.; Privman, Vladimir; Katz, Evgeny

    2016-01-01

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702

  11. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    PubMed

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-07-05

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  12. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  13. Influence of gravity on flow distribution of red blood cells in microcirculation.

    PubMed

    Tateishi, N; Suzuki, Y; Shirai, M; Maeda, N

    2000-07-01

    The influence of the gravity on flow distribution of erythrocytes in microcirculation was examined. We developed a new centrifuge system with a rotation disc. An observation system of blood flow in a micro-flow channel was arranged on the disc. Erythrocyte flow in the micro-flow tube was displaced under the gravity. This study suggests that the gravity affects the transfer of substances from blood vessels to tissues.

  14. Theory to Predict Shear Stress on Cells in Turbulent Blood Flow

    PubMed Central

    Morshed, Khandakar Niaz; Bark Jr., David; Forleo, Marcio; Dasi, Lakshmi Prasad

    2014-01-01

    Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally. PMID:25171175

  15. Theory to predict shear stress on cells in turbulent blood flow.

    PubMed

    Morshed, Khandakar Niaz; Bark, David; Forleo, Marcio; Dasi, Lakshmi Prasad

    2014-01-01

    Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.

  16. Harvesting Energy from Salinity Differences Using Battery Electrodes in a Concentration Flow Cell.

    PubMed

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-09-01

    Salinity-gradient energy (SGE) technologies produce carbon-neutral and renewable electricity from salinity differences between seawater and freshwater. Capacitive mixing (CapMix) is a promising class of SGE technologies that captures energy using capacitive or battery electrodes, but CapMix devices have produced relatively low power densities and often require expensive materials. Here, we combined existing CapMix approaches to develop a concentration flow cell that can overcome these limitations. In this system, two identical battery (i.e., faradaic) electrodes composed of copper hexacyanoferrate (CuHCF) were simultaneously exposed to either high (0.513 M) or low (0.017 M) concentration NaCl solutions in channels separated by a filtration membrane. The average power density produced was 411 ± 14 mW m(-2) (normalized to membrane area), which was twice as high as previously reported values for CapMix devices. Power production was continuous (i.e., it did not require a charging period and did not vary during each step of a cycle) and was stable for 20 cycles of switching the solutions in each channel. The concentration flow cell only used inexpensive materials and did not require ion-selective membranes or precious metals. The results demonstrate that the concentration flow cell is a promising approach for efficiently harvesting energy from salinity differences. PMID:27518198

  17. Harvesting Energy from Salinity Differences Using Battery Electrodes in a Concentration Flow Cell.

    PubMed

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-09-01

    Salinity-gradient energy (SGE) technologies produce carbon-neutral and renewable electricity from salinity differences between seawater and freshwater. Capacitive mixing (CapMix) is a promising class of SGE technologies that captures energy using capacitive or battery electrodes, but CapMix devices have produced relatively low power densities and often require expensive materials. Here, we combined existing CapMix approaches to develop a concentration flow cell that can overcome these limitations. In this system, two identical battery (i.e., faradaic) electrodes composed of copper hexacyanoferrate (CuHCF) were simultaneously exposed to either high (0.513 M) or low (0.017 M) concentration NaCl solutions in channels separated by a filtration membrane. The average power density produced was 411 ± 14 mW m(-2) (normalized to membrane area), which was twice as high as previously reported values for CapMix devices. Power production was continuous (i.e., it did not require a charging period and did not vary during each step of a cycle) and was stable for 20 cycles of switching the solutions in each channel. The concentration flow cell only used inexpensive materials and did not require ion-selective membranes or precious metals. The results demonstrate that the concentration flow cell is a promising approach for efficiently harvesting energy from salinity differences.

  18. An annotation system for 3D fluid flow visualization

    NASA Technical Reports Server (NTRS)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  19. Subsonic Flow for the Multidimensional Euler-Poisson System

    NASA Astrophysics Data System (ADS)

    Bae, Myoungjean; Duan, Ben; Xie, Chunjing

    2016-04-01

    We establish the existence and stability of subsonic potential flow for the steady Euler-Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler-Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori {C^{1,α}} estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler-Poisson system which enables us to obtain {C^{1,α}} estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler-Poisson system under perturbations of various data.

  20. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.