Sample records for cell grid cell

  1. Occupancy change detection system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-01

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for producing an occupancy grid map of an environment around the robot, scanning the environment to generate a current obstacle map relative to a current robot position, and converting the current obstacle map to a current occupancy grid map. The instructions also include processing each grid cell in the occupancy grid map. Within the processing of each grid cell, the instructions include comparing each grid cell in the occupancy grid map to a corresponding grid cell in the current occupancy grid map. For grid cells with a difference, the instructions include defining a change vector for each changed grid cell, wherein the change vector includes a direction from the robot to the changed grid cell and a range from the robot to the changed grid cell.

  2. During running in place, grid cells integrate elapsed time and distance run

    PubMed Central

    Kraus, Benjamin J.; Brandon, Mark P.; Robinson, Robert J.; Connerney, Michael A.; Hasselmo, Michael E.; Eichenbaum, Howard

    2015-01-01

    Summary The spatial scale of grid cells may be provided by self-generated motion information or by external sensory information from environmental cues. To determine whether grid cell activity reflects distance traveled or elapsed time independent of external information, we recorded grid cells as animals ran in place on a treadmill. Grid cell activity was only weakly influenced by location but most grid cells and other neurons recorded from the same electrodes strongly signaled a combination of distance and time, with some signaling only distance or time. Grid cells were more sharply tuned to time and distance than non-grid cells. Many grid cells exhibited multiple firing fields during treadmill running, parallel to the periodic firing fields observed in open fields, suggesting a common mode of information processing. These observations indicate that, in the absence of external dynamic cues, grid cells integrate self-generated distance and time information to encode a representation of experience. PMID:26539893

  3. Probabilistic Learning by Rodent Grid Cells

    PubMed Central

    Cheung, Allen

    2016-01-01

    Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population readout of a set of probabilistic spatial computations. PMID:27792723

  4. Spiking Neurons in a Hierarchical Self-Organizing Map Model Can Learn to Develop Spatial and Temporal Properties of Entorhinal Grid Cells and Hippocampal Place Cells

    PubMed Central

    Pilly, Praveen K.; Grossberg, Stephen

    2013-01-01

    Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous adaptive robots capable of spatial navigation. PMID:23577130

  5. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less

  6. Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells.

    PubMed

    Trimper, John B; Trettel, Sean G; Hwaun, Ernie; Colgin, Laura Lee

    2017-01-01

    At rest, hippocampal "place cells," neurons with receptive fields corresponding to specific spatial locations, reactivate in a manner that reflects recently traveled trajectories. These "replay" events have been proposed as a mechanism underlying memory consolidation, or the transfer of a memory representation from the hippocampus to neocortical regions associated with the original sensory experience. Accordingly, it has been hypothesized that hippocampal replay of a particular experience should be accompanied by simultaneous reactivation of corresponding representations in the neocortex and in the entorhinal cortex, the primary interface between the hippocampus and the neocortex. Recent studies have reported that coordinated replay may occur between hippocampal place cells and medial entorhinal cortex grid cells, cells with multiple spatial receptive fields. Assessing replay in grid cells is problematic, however, as the cells exhibit regularly spaced spatial receptive fields in all environments and, therefore, coordinated replay between place cells and grid cells may be detected by chance. In the present report, we adapted analytical approaches utilized in recent studies of grid cell and place cell replay to determine the extent to which coordinated replay is spuriously detected between grid cells and place cells recorded from separate rats. For a subset of the employed analytical methods, coordinated replay was detected spuriously in a significant proportion of cases in which place cell replay events were randomly matched with grid cell firing epochs of equal duration. More rigorous replay evaluation procedures and minimum spike count requirements greatly reduced the amount of spurious findings. These results provide insights into aspects of place cell and grid cell activity during rest that contribute to false detection of coordinated replay. The results further emphasize the need for careful controls and rigorous methods when testing the hypothesis that place cells and grid cells exhibit coordinated replay.

  7. Global Population Distribution (1990),Terrestrial Area and Country Name Information on a One by One Degree Grid Cell Basis

    DOE Data Explorer

    Li, Yi-Fan [Canadian Global Emissions Inventory Centre, Downsview, Ontario (Canada); Brenkert, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1996-01-01

    This data base contains gridded (one degree by one degree) information on the world-wide distribution of the population for 1990 and country-specific information on the percentage of the country's population present in each grid cell (Li, 1996a). Secondly, the data base contains the percentage of a country's total area in a grid cell and the country's percentage of the grid cell that is terrestrial (Li, 1996b). Li (1996b) also developed an indicator signifying how many countries are represented in a grid cell and if a grid cell is part of the sea; this indicator is only relevant for the land, countries, and sea-partitioning information of the grid cell. Thirdly, the data base includes the latitude and longitude coordinates of each grid cell; a grid code number, which is a translation of the latitude/longitude value and is used in the Global Emission Inventory Activity (GEIA) data bases; the country or region's name; and the United Nations three-digit country code that represents that name.

  8. The functional micro-organization of grid cells revealed by cellular-resolution imaging

    PubMed Central

    Heys, James G.; Rangarajan, Krsna V.; Dombeck, Daniel A.

    2015-01-01

    Summary Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater micro-circuit level understanding of the brain’s representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to non-grid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: The similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a “Mexican Hat” shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. PMID:25467986

  9. Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells

    PubMed Central

    Trimper, John B.; Trettel, Sean G.; Hwaun, Ernie; Colgin, Laura Lee

    2017-01-01

    At rest, hippocampal “place cells,” neurons with receptive fields corresponding to specific spatial locations, reactivate in a manner that reflects recently traveled trajectories. These “replay” events have been proposed as a mechanism underlying memory consolidation, or the transfer of a memory representation from the hippocampus to neocortical regions associated with the original sensory experience. Accordingly, it has been hypothesized that hippocampal replay of a particular experience should be accompanied by simultaneous reactivation of corresponding representations in the neocortex and in the entorhinal cortex, the primary interface between the hippocampus and the neocortex. Recent studies have reported that coordinated replay may occur between hippocampal place cells and medial entorhinal cortex grid cells, cells with multiple spatial receptive fields. Assessing replay in grid cells is problematic, however, as the cells exhibit regularly spaced spatial receptive fields in all environments and, therefore, coordinated replay between place cells and grid cells may be detected by chance. In the present report, we adapted analytical approaches utilized in recent studies of grid cell and place cell replay to determine the extent to which coordinated replay is spuriously detected between grid cells and place cells recorded from separate rats. For a subset of the employed analytical methods, coordinated replay was detected spuriously in a significant proportion of cases in which place cell replay events were randomly matched with grid cell firing epochs of equal duration. More rigorous replay evaluation procedures and minimum spike count requirements greatly reduced the amount of spurious findings. These results provide insights into aspects of place cell and grid cell activity during rest that contribute to false detection of coordinated replay. The results further emphasize the need for careful controls and rigorous methods when testing the hypothesis that place cells and grid cells exhibit coordinated replay. PMID:28824388

  10. Anisotropic encoding of three-dimensional space by place cells and grid cells

    PubMed Central

    Hayman, R.; Verriotis, M.; Jovalekic, A.; Fenton, A.A.; Jeffery, K.J.

    2011-01-01

    The subjective sense of space may result in part from the combined activity of place cells, in the hippocampus, and grid cells in posterior cortical regions such as entorhinal cortex and pre/parasubiculum. In horizontal planar environments, place cells provide focal positional information while grid cells supply odometric (distance-measuring) information. How these cells operate in three dimensions is unknown, even though the real world is three–dimensional. The present study explored this issue in rats exploring two different kinds of apparatus, a climbing wall (the “pegboard”) and a helix. Place and grid cell firing fields had normal horizontal characteristics but were elongated vertically, with grid fields forming stripes. It appears that grid cell odometry (and by implication path integration) is impaired/absent in the vertical domain, at least when the animal itself remains horizontal. These findings suggest that the mammalian encoding of three-dimensional space is anisotropic. PMID:21822271

  11. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis

    PubMed Central

    Dordek, Yedidyah; Soudry, Daniel; Meir, Ron; Derdikman, Dori

    2016-01-01

    Many recent models study the downstream projection from grid cells to place cells, while recent data have pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells. We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights are learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network are non-negative, the output converges to a hexagonal lattice. Without the non-negativity constraint, the output converges to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules is −1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA. DOI: http://dx.doi.org/10.7554/eLife.10094.001 PMID:26952211

  12. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.

    PubMed

    Grossberg, Stephen; Pilly, Praveen K

    2014-02-05

    A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC ('neural relativity'). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.

  13. Optimizing solar-cell grid geometry

    NASA Technical Reports Server (NTRS)

    Crossley, A. P.

    1969-01-01

    Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.

  14. Framing the grid: effect of boundaries on grid cells and navigation.

    PubMed

    Krupic, Julija; Bauza, Marius; Burton, Stephen; O'Keefe, John

    2016-11-15

    Cells in the mammalian hippocampal formation subserve neuronal representations of environmental location and support navigation in familiar environments. Grid cells constitute one of the main cell types in the hippocampal formation and are widely believed to represent a universal metric of space independent of external stimuli. Recent evidence showing that grid symmetry is distorted in non-symmetrical environments suggests that a re-examination of this hypothesis is warranted. In this review we will discuss behavioural and physiological evidence for how environmental shape and in particular enclosure boundaries influence grid cell firing properties. We propose that grid cells encode the geometric layout of enclosures. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. Membrane potential dynamics of grid cells

    PubMed Central

    Domnisoru, Cristina; Kinkhabwala, Amina A.; Tank, David W.

    2014-01-01

    During navigation, grid cells increase their spike rates in firing fields arranged on a strikingly regular triangular lattice, while their spike timing is often modulated by theta oscillations. Oscillatory interference models of grid cells predict theta amplitude modulations of membrane potential during firing field traversals, while competing attractor network models predict slow depolarizing ramps. Here, using in-vivo whole-cell recordings, we tested these models by directly measuring grid cell intracellular potentials in mice running along linear tracks in virtual reality. Grid cells had large and reproducible ramps of membrane potential depolarization that were the characteristic signature tightly correlated with firing fields. Grid cells also exhibited intracellular theta oscillations that influenced their spike timing. However, the properties of theta amplitude modulations were not consistent with the view that they determine firing field locations. Our results support cellular and network mechanisms in which grid fields are produced by slow ramps, as in attractor models, while theta oscillations control spike timing. PMID:23395984

  16. A single-cell spiking model for the origin of grid-cell patterns

    PubMed Central

    Kempter, Richard

    2017-01-01

    Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity. PMID:28968386

  17. Modelling effects on grid cells of sensory input during self‐motion

    PubMed Central

    Raudies, Florian; Hinman, James R.

    2016-01-01

    Abstract The neural coding of spatial location for memory function may involve grid cells in the medial entorhinal cortex, but the mechanism of generating the spatial responses of grid cells remains unclear. This review describes some current theories and experimental data concerning the role of sensory input in generating the regular spatial firing patterns of grid cells, and changes in grid cell firing fields with movement of environmental barriers. As described here, the influence of visual features on spatial firing could involve either computations of self‐motion based on optic flow, or computations of absolute position based on the angle and distance of static visual cues. Due to anatomical selectivity of retinotopic processing, the sensory features on the walls of an environment may have a stronger effect on ventral grid cells that have wider spaced firing fields, whereas the sensory features on the ground plane may influence the firing of dorsal grid cells with narrower spacing between firing fields. These sensory influences could contribute to the potential functional role of grid cells in guiding goal‐directed navigation. PMID:27094096

  18. The functional micro-organization of grid cells revealed by cellular-resolution imaging.

    PubMed

    Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A

    2014-12-03

    Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Grid and non-grid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes

    PubMed Central

    Diehl, Geoffrey W.; Hon, Olivia J.; Leutgeb, Stefan; Leutgeb, Jill K.

    2017-01-01

    Summary The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well characterized classes, nearly all of the remaining two thirds of mEC cells can be categorized as spatially selective. We refer to these cells as non-grid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, non-grid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information. PMID:28343867

  20. Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse.

    PubMed

    Chen, Guifen; Manson, Daniel; Cacucci, Francesca; Wills, Thomas Joseph

    2016-09-12

    Grid cells are spatially modulated neurons within the medial entorhinal cortex whose firing fields are arranged at the vertices of tessellating equilateral triangles [1]. The exquisite periodicity of their firing has led to the suggestion that they represent a path integration signal, tracking the organism's position by integrating speed and direction of movement [2-10]. External sensory inputs are required to reset any errors that the path integrator would inevitably accumulate. Here we probe the nature of the external sensory inputs required to sustain grid firing, by recording grid cells as mice explore familiar environments in complete darkness. The absence of visual cues results in a significant disruption of grid cell firing patterns, even when the quality of the directional information provided by head direction cells is largely preserved. Darkness alters the expression of velocity signaling within the entorhinal cortex, with changes evident in grid cell firing rate and the local field potential theta frequency. Short-term (<1.5 s) spike timing relationships between grid cell pairs are preserved in the dark, indicating that network patterns of excitatory and inhibitory coupling between grid cells exist independently of visual input and of spatially periodic firing. However, we find no evidence of preserved hexagonal symmetry in the spatial firing of single grid cells at comparable short timescales. Taken together, these results demonstrate that visual input is required to sustain grid cell periodicity and stability in mice and suggest that grid cells in mice cannot perform accurate path integration in the absence of reliable visual cues. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex

    PubMed Central

    Raudies, Florian; Hasselmo, Michael E.

    2015-01-01

    Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432

  2. Purely Translational Realignment in Grid Cell Firing Patterns Following Nonmetric Context Change

    PubMed Central

    Marozzi, Elizabeth; Ginzberg, Lin Lin; Alenda, Andrea; Jeffery, Kate J.

    2015-01-01

    Grid cells in entorhinal and parahippocampal cortices contribute to a network, centered on the hippocampal place cell system, that constructs a representation of spatial context for use in navigation and memory. In doing so, they use metric cues such as the distance and direction of nearby boundaries to position and orient their firing field arrays (grids). The present study investigated whether they also use purely nonmetric “context” information such as color and odor of the environment. We found that, indeed, purely nonmetric cues—sufficiently salient to cause changes in place cell firing patterns—can regulate grid positioning; they do so independently of orientation, and thus interact with linear but not directional spatial inputs. Grid cells responded homogeneously to context changes. We suggest that the grid and place cell networks receive context information directly and also from each other; the information is used by place cells to compute the final decision of the spatial system about which context the animal is in, and by grid cells to help inform the system about where the animal is within it. PMID:26048956

  3. The abrupt development of adult-like grid cell firing in the medial entorhinal cortex

    PubMed Central

    Wills, Thomas J.; Barry, Caswell; Cacucci, Francesca

    2012-01-01

    Understanding the development of the neural circuits subserving specific cognitive functions such as navigation remains a central problem in neuroscience. Here, we characterize the development of grid cells in the medial entorhinal cortex, which, by nature of their regularly spaced firing fields, are thought to provide a distance metric to the hippocampal neural representation of space. Grid cells emerge at the time of weaning in the rat, at around 3 weeks of age. We investigated whether grid cells in young rats are functionally equivalent to those observed in the adult as soon as they appear, or if instead they follow a gradual developmental trajectory. We find that, from the very youngest ages at which reproducible grid firing is observed (postnatal day 19): grid cells display adult-like firing fields that tessellate to form a coherent map of the local environment; that this map is universal, maintaining its internal structure across different environments; and that grid cells in young rats, as in adults, also encode a representation of direction and speed. To further investigate the developmental processes leading up to the appearance of grid cells, we present data from individual medial entorhinal cortex cells recorded across more than 1 day, spanning the period before and after the grid firing pattern emerged. We find that increasing spatial stability of firing was correlated with increasing gridness. PMID:22557949

  4. Optimizing Grid Patterns on Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  5. Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells

    PubMed Central

    Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.

    2012-01-01

    Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing. PMID:22559204

  6. Grid-Optimization Program for Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  7. Grid scale drives the scale and long-term stability of place maps

    PubMed Central

    Mallory, Caitlin S; Hardcastle, Kiah; Bant, Jason S; Giocomo, Lisa M

    2018-01-01

    Medial entorhinal cortex (MEC) grid cells fire at regular spatial intervals and project to the hippocampus, where place cells are active in spatially restricted locations. One feature of the grid population is the increase in grid spatial scale along the dorsal-ventral MEC axis. However, the difficulty in perturbing grid scale without impacting the properties of other functionally-defined MEC cell types has obscured how grid scale influences hippocampal coding and spatial memory. Here, we use a targeted viral approach to knock out HCN1 channels selectively in MEC, causing grid scale to expand while leaving other MEC spatial and velocity signals intact. Grid scale expansion resulted in place scale expansion in fields located far from environmental boundaries, reduced long-term place field stability and impaired spatial learning. These observations, combined with simulations of a grid-to-place cell model and position decoding of place cells, illuminate how grid scale impacts place coding and spatial memory. PMID:29335607

  8. From grid cells to place cells with realistic field sizes

    PubMed Central

    2017-01-01

    While grid cells in the medial entorhinal cortex (MEC) of rodents have multiple, regularly arranged firing fields, place cells in the cornu ammonis (CA) regions of the hippocampus mostly have single spatial firing fields. Since there are extensive projections from MEC to the CA regions, many models have suggested that a feedforward network can transform grid cell firing into robust place cell firing. However, these models generate place fields that are consistently too small compared to those recorded in experiments. Here, we argue that it is implausible that grid cell activity alone can be transformed into place cells with robust place fields of realistic size in a feedforward network. We propose two solutions to this problem. Firstly, weakly spatially modulated cells, which are abundant throughout EC, provide input to downstream place cells along with grid cells. This simple model reproduces many place cell characteristics as well as results from lesion studies. Secondly, the recurrent connections between place cells in the CA3 network generate robust and realistic place fields. Both mechanisms could work in parallel in the hippocampal formation and this redundancy might account for the robustness of place cell responses to a range of disruptions of the hippocampal circuitry. PMID:28750005

  9. Grid cells form a global representation of connected environments.

    PubMed

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-05-04

    The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Grid Cells Form a Global Representation of Connected Environments

    PubMed Central

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-01-01

    Summary The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5–8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9–11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. PMID:25913404

  11. Linear Look-Ahead in Conjunctive Cells: An Entorhinal Mechanism for Vector-Based Navigation

    PubMed Central

    Kubie, John L.; Fenton, André A.

    2012-01-01

    The crisp organization of the “firing bumps” of entorhinal grid cells and conjunctive cells leads to the notion that the entorhinal cortex may compute linear navigation routes. Specifically, we propose a process, termed “linear look-ahead,” by which a stationary animal could compute a series of locations in the direction it is facing. We speculate that this computation could be achieved through learned patterns of connection strengths among entorhinal neurons. This paper has three sections. First, we describe the minimal grid cell properties that will be built into our network. Specifically, the network relies on “rigid modules” of neurons, where all members have identical grid scale and orientation, but differ in spatial phase. Additionally, these neurons must be densely interconnected with synapses that are modifiable early in the animal’s life. Second, we investigate whether plasticity during short bouts of locomotion could induce patterns of connections amongst grid cells or conjunctive cells. Finally, we run a simulation to test whether the learned connection patterns can exhibit linear look-ahead. Our results are straightforward. A simulated 30-min walk produces weak strengthening of synapses between grid cells that do not support linear look-ahead. Similar training in a conjunctive cell module produces a small subset of very strong connections between cells. These strong pairs have three properties: the pre- and post-synaptic cells have similar heading direction. The cell pairs have neighboring grid bumps. Finally, the spatial offset of firing bumps of the cell pair is in the direction of the common heading preference. Such a module can produce strong and accurate linear look-ahead starting in any location and extending in any direction. We speculate that this process may: (1) compute linear paths to goals; (2) update grid cell firing during navigation; and (3) stabilize the rigid modules of grid cells and conjunctive cells. PMID:22557948

  12. Method of making a back contacted solar cell

    DOEpatents

    Gee, James M.

    1995-01-01

    A back-contacted solar cell having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell.

  13. Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum

    PubMed Central

    Hasselmo, Michael E.

    2008-01-01

    The spiking activity of hippocampal neurons during REM sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories (Louie and Wilson, 2001). Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the movement of the simulated rat drives activity of a population of head direction cells that updates the activity of a population of entorhinal grid cells. The population of grid cells drives the activity of place cells coding individual locations. Associations between location and movement direction are encoded by modification of excitatory synaptic connections from place cells to speed modulated head direction cells. During simulated REM sleep, the population of place cells coding an experienced location activates the head direction cells coding the associated movement direction. Spiking of head direction cells then causes frequency shifts within the population of entorhinal grid cells to update a phase representation of location. Spiking grid cells then activate new place cells that drive new head direction activity. In contrast to models that perform temporally compressed sequence retrieval similar to sharp wave activity, this model can simulate data on temporally structured replay of hippocampal place cell activity during REM sleep at time scales similar to those observed during waking. These mechanisms could be important for episodic memory of trajectories. PMID:18973557

  14. Short-circuit current improvement in thin cells with a gridded back contact

    NASA Technical Reports Server (NTRS)

    Giuliano, M.; Wohlgemuth, J.

    1980-01-01

    The use of gridded back contact on thin silicon solar cells 50 micrometers was investigated. An unexpected increase in short circuit current of almost 10 percent was experienced for 2 cm x 2 cm cells. Control cells with the standard continuous contact metallization were fabricated at the same time as the gridded back cells with all processes identical up to the formation of the back contact. The gridded back contact pattern was delineated by evaporation of Ti-Pd over a photo-resist mask applied to the back of the wafer; the Ti-Pd film on the controls was applied in the standard fashion in a continuous layer over the back of the cell. The Ti-Pd contacts were similarly applied to the front of the wafer, and the grid pattern on both sides of the cell was electroplated with 8-10 micrometers of silver.

  15. Selforganization of modular activity of grid cells

    PubMed Central

    Urdapilleta, Eugenio; Si, Bailu

    2017-01-01

    Abstract A unique topographical representation of space is found in the concerted activity of grid cells in the rodent medial entorhinal cortex. Many among the principal cells in this region exhibit a hexagonal firing pattern, in which each cell expresses its own set of place fields (spatial phases) at the vertices of a triangular grid, the spacing and orientation of which are typically shared with neighboring cells. Grid spacing, in particular, has been found to increase along the dorso‐ventral axis of the entorhinal cortex but in discrete steps, that is, with a modular structure. In this study, we show that such a modular activity may result from the self‐organization of interacting units, which individually would not show discrete but rather continuously varying grid spacing. Within our “adaptation” network model, the effect of a continuously varying time constant, which determines grid spacing in the isolated cell model, is modulated by recurrent collateral connections, which tend to produce a few subnetworks, akin to magnetic domains, each with its own grid spacing. In agreement with experimental evidence, the modular structure is tightly defined by grid spacing, but also involves grid orientation and distortion, due to interactions across modules. Thus, our study sheds light onto a possible mechanism, other than simply assuming separate networks a priori, underlying the formation of modular grid representations. PMID:28768062

  16. Method of making a back contacted solar cell

    DOEpatents

    Gee, J.M.

    1995-11-21

    A back-contacted solar cell is described having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell. 2 figs.

  17. Grid cell spatial tuning reduced following systemic muscarinic receptor blockade

    PubMed Central

    Newman, Ehren L.; Climer, Jason R.; Hasselmo, Michael E.

    2014-01-01

    Grid cells of the medial entorhinal cortex exhibit a periodic and stable pattern of spatial tuning that may reflect the output of a path integration system. This grid pattern has been hypothesized to serve as a spatial coordinate system for navigation and memory function. The mechanisms underlying the generation of this characteristic tuning pattern remain poorly understood. Systemic administration of the muscarinic antagonist scopolamine flattens the typically positive correlation between running speed and entorhinal theta frequency in rats. The loss of this neural correlate of velocity, an important signal for the calculation of path integration, raises the question of what influence scopolamine has on the grid cell tuning as a read out of the path integration system. To test this, the spatial tuning properties of grid cells were compared before and after systemic administration of scopolamine as rats completed laps on a circle track for food rewards. The results show that the spatial tuning of the grid cells was reduced following scopolamine administration. The tuning of head direction cells, in contrast, was not reduced by scopolamine. This is the first report to demonstrate a link between cholinergic function and grid cell tuning. This work suggests that the loss of tuning in the grid cell network may underlie the navigational disorientation observed in Alzheimer's patients and elderly individuals with reduced cholinergic tone. PMID:24493379

  18. On-site fuel cell field test support program

    NASA Astrophysics Data System (ADS)

    Staniunas, J. W.; Merten, G. P.

    1982-01-01

    In order to assess the impact of grid connection on the potential market for fuel cell service, applications studies were conducted to identify the fuel cell operating modes and corresponding fuel cell sizing criteria which offer the most potential for initial commercial service. The market for grid-connected fuel cell service was quantified using United's market analysis program and computerized building data base. Electric and gas consumption data for 268 buildings was added to our surveyed building data file, bringing the total to 407 buildings. These buildings were analyzed for grid-isolated and grid-connected fuel cell service. The results of the analyses indicated that the nursing home, restaurant and health club building sectors offer significant potential for fuel cell service.

  19. Chromosomal aberrations in Sigmodon hispidus from a Superfund site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, B.; McBee, K.; Lochmiller, R.

    1995-12-31

    Cotton rats (Sigmodon hispidus) were collected from an EPA Superfund site located on an abandoned oil refinery. Three trapping grids were located on the refinery and three similar grids were located at uncontaminated localities which served as reference sites. Bone marrow metaphase chromosome preparations were examined for chromosomal damage. For each individual, 50 cells were scored for six classes of chromosomal lesions. For the fall 1991 trapping period, mean number of aberrant cells per individual was 2.33, 0.85, and 1.50 for the three Superfund grids., Mean number of aberrant cells per individual was 2.55, 2.55, and 2.12 from the referencemore » grids. Mean number of lesions per cell was 2.77, 0.86, and 1.9 from the Superfund grids, and 3.55, 2.77, and 2.50 from the reference grids. For the spring 1992 trapping period, more damage was observed in animals from both Superfund and reference sites; however, animals from Superfund grids had more damage than animals from reference grids. Mean number of aberrant cells per individual was 3.50, 3.25, and 3.70 from the Superfund grids, and 2.40, 2.11, and 1.40 from the reference grids. Mean number of lesions per cell was 4.80, 4.25, and 5.50 from the Superfund grids, and 2.60, 2.33, and 1.50 from the reference grids. These data suggest animals may be more susceptible to chromosomal damage during winter months, and animals from the Superfund grids appear to be more severely affected than animals from reference grids.« less

  20. Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields

    PubMed Central

    Pastoll, Hugh; Ramsden, Helen L.; Nolan, Matthew F.

    2012-01-01

    The medial entorhinal cortex (MEC) is an increasingly important focus for investigation of mechanisms for spatial representation. Grid cells found in layer II of the MEC are likely to be stellate cells, which form a major projection to the dentate gyrus. Entorhinal stellate cells are distinguished by distinct intrinsic electrophysiological properties, but how these properties contribute to representation of space is not yet clear. Here, we review the ionic conductances, synaptic, and excitable properties of stellate cells, and examine their implications for models of grid firing fields. We discuss why existing data are inconsistent with models of grid fields that require stellate cells to generate periodic oscillations. An alternative possibility is that the intrinsic electrophysiological properties of stellate cells are tuned specifically to control integration of synaptic input. We highlight recent evidence that the dorsal-ventral organization of synaptic integration by stellate cells, through differences in currents mediated by HCN and leak potassium channels, influences the corresponding organization of grid fields. Because accurate cellular data will be important for distinguishing mechanisms for generation of grid fields, we introduce new data comparing properties measured with whole-cell and perforated patch-clamp recordings. We find that clustered patterns of action potential firing and the action potential after-hyperpolarization (AHP) are particularly sensitive to recording condition. Nevertheless, with both methods, these properties, resting membrane properties and resonance follow a dorsal-ventral organization. Further investigation of the molecular basis for synaptic integration by stellate cells will be important for understanding mechanisms for generation of grid fields. PMID:22536175

  1. Framing of grid cells within and beyond navigation boundaries

    PubMed Central

    Savelli, Francesco; Luck, JD; Knierim, James J

    2017-01-01

    Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain’s cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes. DOI: http://dx.doi.org/10.7554/eLife.21354.001 PMID:28084992

  2. Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding

    PubMed Central

    Hayman, Robin M. A.; Casali, Giulio; Wilson, Jonathan J.; Jeffery, Kate J.

    2015-01-01

    Neural encoding of navigable space involves a network of structures centered on the hippocampus, whose neurons –place cells – encode current location. Input to the place cells includes afferents from the entorhinal cortex, which contains grid cells. These are neurons expressing spatially localized activity patches, or firing fields, that are evenly spaced across the floor in a hexagonal close-packed array called a grid. It is thought that grids function to enable the calculation of distances. The question arises as to whether this odometry process operates in three dimensions, and so we queried whether grids permeate three-dimensional (3D) space – that is, form a lattice – or whether they simply follow the environment surface. If grids form a 3D lattice then this lattice would ordinarily be aligned horizontally (to explain the usual hexagonal pattern observed). A tilted floor would transect several layers of this putative lattice, resulting in interruption of the hexagonal pattern. We model this prediction with simulated grid lattices, and show that the firing of a grid cell on a 40°-tilted surface should cover proportionally less of the surface, with smaller field size, fewer fields, and reduced hexagonal symmetry. However, recording of real grid cells as animals foraged on a 40°-tilted surface found that firing of grid cells was almost indistinguishable, in pattern or rate, from that on the horizontal surface, with if anything increased coverage and field number, and preserved field size. It thus appears unlikely that the sloping surface transected a lattice. However, grid cells on the slope displayed slightly degraded firing patterns, with reduced coherence and slightly reduced symmetry. These findings collectively suggest that the grid cell component of the metric representation of space is not fixed in absolute 3D space but is influenced both by the surface the animal is on and by the relationship of this surface to the horizontal, supporting the hypothesis that the neural map of space is “multi-planar” rather than fully volumetric. PMID:26236245

  3. Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex.

    PubMed

    Winter, Shawn S; Mehlman, Max L; Clark, Benjamin J; Taube, Jeffrey S

    2015-10-05

    Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal's movements. These signals include grid cells, which fire at multiple locations, forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz electroencephalogram (EEG) oscillation that is modulated by the animals' movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall head-direction (HD) cell characteristics, but abolished both velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity, which may be used as a speed signal to generate the repeating pattern of grid cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex

    PubMed Central

    Winter, Shawn S.; Mehlman, Max L.; Clark, Benjamin J.; Taube, Jeffrey S.

    2015-01-01

    Summary Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal’s movements. These signals include grid cells, which fire at multiple locations forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz EEG oscillation that is modulated by the animals’ movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall HD cell characteristics, and abolished velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity. Velocity modulation of theta may be used as a speed signal to generate the repeating pattern of grid cells. PMID:26387719

  5. Use of upscaled elevation and surface roughness data in two-dimensional surface water models

    USGS Publications Warehouse

    Hughes, J.D.; Decker, J.D.; Langevin, C.D.

    2011-01-01

    In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.

  6. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty

    PubMed Central

    Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil

    2014-01-01

    We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144

  7. HELP - A Multimaterial Eulerian Program in Two Space Dimensions and Time

    DTIC Science & Technology

    1976-04-01

    ASSUMPTIONS 3-1 3.2 STRENGTH PHASE (SPHASE) 3-1 3.2.1 Definition of Strain Rate Derivatives for Cells at a Grid Boundary 3-3 3.2.2 Definition...of Interpolated Strain Rates and Stresses for Cells at a Grid Boundary 3-4 3.2.3 Definition of Velocities and Deviator Stresses at Grid Boundaries...Grid Boundaries 3-9 3.4.2 Change of Momentum for Cells at Reflective Grid Boundaries in TPHASE.. 3-10 3.4.3 Correction to Theoretical Energy for

  8. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.

    PubMed

    Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen

    2012-02-01

    Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.

  9. Nuclear reactor spacer grid and ductless core component

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1989-01-01

    The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.

  10. OxfordGrid: a web interface for pairwise comparative map views.

    PubMed

    Yang, Hongyu; Gingle, Alan R

    2005-12-01

    OxfordGrid is a web application and database schema for storing and interactively displaying genetic map data in a comparative, dot-plot, fashion. Its display is composed of a matrix of cells, each representing a pairwise comparison of mapped probe data for two linkage groups or chromosomes. These are arranged along the axes with one forming grid columns and the other grid rows with the degree and pattern of synteny/colinearity between the two linkage groups manifested in the cell's dot density and structure. A mouse click over the selected grid cell launches an image map-based display for the selected cell. Both individual and linear groups of mapped probes can be selected and displayed. Also, configurable links can be used to access other web resources for mapped probe information. OxfordGrid is implemented in C#/ASP.NET and the package, including MySQL schema creation scripts, is available at ftp://cggc.agtec.uga.edu/OxfordGrid/.

  11. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function

    PubMed Central

    Shay, Christopher F.; Ferrante, Michele; Chapman, G. William; Hasselmo, Michael E.

    2015-01-01

    Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spiking threshold and delivering sinusoidal inputs, superimposed with realistic inhibitory synaptic inputs to test the capacity of cells to selectively respond to specific phases of inhibitory input. Stellate cells showed a specific phase range of hyperpolarizing inputs that elicited spiking, but non-stellate cells did not show phase specificity. In both cell types, the phase range of spiking output occurred between the peak and subsequent descending zero crossing of the sinusoid. The phases of inhibitory inputs that induced spikes shifted earlier as the baseline sinusoid frequency increased, while spiking output shifted to later phases. Increases in magnitude of the inhibitory inputs shifted the spiking output to earlier phases. Pharmacological blockade of h-current abolished the phase selectivity of hyperpolarizing inputs eliciting spikes. A network computational model using cells possessing similar rebound properties as found in vitro produces spatially periodic firing properties resembling grid cell firing when a simulated animal moves along a linear track. These results suggest that the ability of mEC stellate cells to fire rebound spikes in response to a specific range of phases of inhibition could support complex attractor dynamics that provide completion and separation to maintain spiking activity of specific grid cell populations. PMID:26385258

  12. GRIDGEN Version 1.0: a computer program for generating unstructured finite-volume grids

    USGS Publications Warehouse

    Lien, Jyh-Ming; Liu, Gaisheng; Langevin, Christian D.

    2015-01-01

    GRIDGEN is a computer program for creating layered quadtree grids for use with numerical models, such as the MODFLOW–USG program for simulation of groundwater flow. The program begins by reading a three-dimensional base grid, which can have variable row and column widths and spatially variable cell top and bottom elevations. From this base grid, GRIDGEN will continuously divide into four any cell intersecting user-provided refinement features (points, lines, and polygons) until the desired level of refinement is reached. GRIDGEN will then smooth, or balance, the grid so that no two adjacent cells, including overlying and underlying cells, differ by more than a user-specified level tolerance. Once these gridding processes are completed, GRIDGEN saves a tree structure file so that the layered quadtree grid can be quickly reconstructed as needed. Once a tree structure file has been created, GRIDGEN can then be used to (1) export the layered quadtree grid as a shapefile, (2) export grid connectivity and cell information as ASCII text files for use with MODFLOW–USG or other numerical models, and (3) intersect the grid with shapefiles of points, lines, or polygons, and save intersection output as ASCII text files and shapefiles. The GRIDGEN program is demonstrated by creating a layered quadtree grid for the Biscayne aquifer in Miami-Dade County, Florida, using hydrologic features to control where refinement is added.

  13. Refinement Of Hexahedral Cells In Euler Flow Computations

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1996-01-01

    Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.

  14. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules.

    PubMed

    Mosheiff, Noga; Agmon, Haggai; Moriel, Avraham; Burak, Yoram

    2017-06-01

    Grid cells in the entorhinal cortex encode the position of an animal in its environment with spatially periodic tuning curves with different periodicities. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal's motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trend seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder. This readout scheme requires persistence over different timescales, depending on the grid cell module. Thus, we propose that the brain may employ an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory processing.

  15. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules

    PubMed Central

    Mosheiff, Noga; Agmon, Haggai; Moriel, Avraham

    2017-01-01

    Grid cells in the entorhinal cortex encode the position of an animal in its environment with spatially periodic tuning curves with different periodicities. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal’s motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trend seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder. This readout scheme requires persistence over different timescales, depending on the grid cell module. Thus, we propose that the brain may employ an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory processing. PMID:28628647

  16. Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells

    PubMed Central

    Sun, Chen; Kitamura, Takashi; Yamamoto, Jun; Martin, Jared; Pignatelli, Michele; Kitch, Lacey J.; Schnitzer, Mark J.; Tonegawa, Susumu

    2015-01-01

    Entorhinal–hippocampal circuits in the mammalian brain are crucial for an animal’s spatial and episodic experience, but the neural basis for different spatial computations remain unknown. Medial entorhinal cortex layer II contains pyramidal island and stellate ocean cells. Here, we performed cell type-specific Ca2+ imaging in freely exploring mice using cellular markers and a miniature head-mounted fluorescence microscope. We found that both oceans and islands contain grid cells in similar proportions, but island cell activity, including activity in a proportion of grid cells, is significantly more speed modulated than ocean cell activity. We speculate that this differential property reflects island cells’ and ocean cells’ contribution to different downstream functions: island cells may contribute more to spatial path integration, whereas ocean cells may facilitate contextual representation in downstream circuits. PMID:26170279

  17. Accurate path integration in continuous attractor network models of grid cells.

    PubMed

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  18. Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease

    PubMed Central

    Fu, Hongjun; Rodriguez, Gustavo A.; Herman, Mathieu; Emrani, Sheina; Nahmani, Eden; Barrett, Geoffrey; Figueroa, Helen Y.; Goldberg, Eliana

    2017-01-01

    Summary The earliest stages of Alzheimer's disease (AD) are characterized by the formation of mature tangles in the entorhinal cortex and disorientation and confusion navigating familiar places. The medial entorhinal cortex (MEC) contains specialized neurons called grid cells that form part of the spatial navigation system. Here we show in a transgenic mouse model expressing mutant human tau predominantly in the EC that the formation of mature tangles in old mice was associated with excitatory cell loss and deficits in grid cell function, including destabilized grid fields and reduced firing rates, as well as altered network activity. Overt tau pathology in the aged mice was accompanied by spatial memory deficits. Therefore, tau pathology initiated in the entorhinal cortex could lead to deficits in grid cell firing and underlie the deterioration of spatial cognition seen in human AD. PMID:28111080

  19. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  20. Sparse grid techniques for particle-in-cell schemes

    NASA Astrophysics Data System (ADS)

    Ricketson, L. F.; Cerfon, A. J.

    2017-02-01

    We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.

  1. Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells

    PubMed Central

    Barry, Caswell; Heys, James G.; Hasselmo, Michael E.

    2012-01-01

    Existing pharmacological and lesion data indicate that acetylcholine plays an important role in memory formation. For example, increased levels of acetylcholine in the hippocampal formation are known to be associated with successful encoding while disruption of the cholinergic system leads to impairments on a range of mnemonic tasks. However, cholinergic signaling from the medial septum also plays a central role in generating and pacing theta-band oscillations throughout the hippocampal formation. Recent experimental results suggest a potential link between these distinct phenomena. Environmental novelty, a condition associated with strong cholinergic drive, has been shown to induce an expansion in the firing pattern of entorhinal grid cells and a reduction in the frequency of theta measured from the LFP. Computational modeling suggests the spatial activity of grid cells is produced by interference between neuronal oscillators; scale being determined by theta-band oscillations impinging on entorhinal stellate cells, the frequency of which is modulated by acetylcholine. Here we propose that increased cholinergic signaling in response to environmental novelty triggers grid expansion by reducing the frequency of the oscillations. Furthermore, we argue that cholinergic induced grid expansion may enhance, or even induce, encoding by producing a mismatch between expanded grid cells and other spatial inputs to the hippocampus, such as boundary vector cells. Indeed, a further source of mismatch is likely to occur between grid cells of different native scales which may expand by different relative amounts. PMID:22363266

  2. Getting the current out

    NASA Astrophysics Data System (ADS)

    Burger, D. R.

    1983-11-01

    Progress of a photovoltaic (PV) device from a research concept to a competitive power-generation source requires an increasing concern with current collection. The initial metallization focus is usually on contact resistance, since a good ohmic contact is desirable for accurate device characterization measurements. As the device grows in size, sheet resistance losses become important and a metal grid is usually added to reduce the effective sheet resistance. Later, as size and conversion efficiency continue to increase, grid-line resistance and cell shadowing must be considered simultaneously, because grid-line resistance is inversely related to total grid-line area and cell shadowing is directly related. A PV cell grid design must consider the five power-loss phenomena mentioned above: sheet resistance, contact resistance, grid resistance, bus-bar resistance and cell shadowing. Although cost, reliability and usage are important factors in deciding upon the best metallization system, this paper will focus only upon grid-line design and substrate material problems for flat-plate solar arrays.

  3. Vector-based navigation using grid-like representations in artificial agents.

    PubMed

    Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan

    2018-05-01

    Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.

  4. Unstructured viscous grid generation by advancing-front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.

  5. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ.

    NASA Technical Reports Server (NTRS)

    Coirier, William John

    1994-01-01

    A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.

  6. Decadal changes in shortwave irradiance at the surface in the period from 1960 to 2000 estimated from Global Energy Balance Archive Data

    NASA Astrophysics Data System (ADS)

    Gilgen, H.; Roesch, A.; Wild, M.; Ohmura, A.

    2009-05-01

    Decadal changes in shortwave irradiance at the Earth's surface are estimated for the period from approximately 1960 through to 2000 from pyranometer records stored in the Global Energy Balance Archive. For this observational period, estimates could be calculated for a total of 140 cells of the International Satellite Cloud Climatology Project grid (an equal area 2.5° × 2.5° grid at the equator) using regression models allowing for station effects. In large regions worldwide, shortwave irradiance decreases in the first half of the observational period, recovers from the decrease in the 1980s, and thereafter increases, in line with previous reports. Years of trend reversals are determined for the grid cells which are best described with a second-order polynomial model. This reversal of the trend is observed in the majority of the grid cells in the interior of Europe and in Japan. In China, shortwave irradiance recovers during the 1990s in the majority of the grid cells in the southeast and northeast from the decrease observed in the period from 1960 through to 1990. A reversal of the trend in the 1980s or early 1990s is also observed for two grid cells in North America, and for the grid cells containing the Kuala Lumpur (Malaysia), Singapore, Casablanca (Morocco), Valparaiso (Chile) sites, and, noticeably, the remote South Pole and American Samoa sites. Negative trends persist, i.e., shortwave radiation decreases, for the observational period 1960 through to 2000 at the European coasts, in central and northwest China, and for three grid cells in India and two in Africa.

  7. Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells

    PubMed Central

    Si, Bailu; Romani, Sandro; Tsodyks, Misha

    2014-01-01

    The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path integration even when the recurrent connections are subject to random perturbations. PMID:24743341

  8. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations. Part 1; Viscous Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.

    2009-01-01

    Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.

  9. Correlations and Functional Connections in a Population of Grid Cells

    PubMed Central

    Roudi, Yasser

    2015-01-01

    We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern. PMID:25714908

  10. Medial Entorhinal Grid Cells and Head Direction Cells Rotate with a T-Maze More Often During Less Recently Experienced Rotations

    PubMed Central

    Gupta, Kishan; Beer, Nathan J.; Keller, Lauren A.; Hasselmo, Michael E.

    2014-01-01

    Prior studies of head direction (HD) cells indicate strong landmark control over the preferred firing direction of these cells, with few studies exhibiting shifts away from local reference frames over time. We recorded spiking activity of grid and HD cells in the medial entorhinal cortex of rats, testing correlations of local environmental cues with the spatial tuning curves of these cells' firing fields as animals performed continuous spatial alternation on a T-maze that shared the boundaries of an open-field arena. The environment was rotated into configurations the animal had either seen or not seen in the past recording week. Tuning curves of both cell types demonstrated commensurate shifts of tuning with T-maze rotations during less recent rotations, more so than recent rotations. This strongly suggests that animals are shifting their reference frame away from the local environmental cues over time, learning to use a different reference frame more likely reliant on distal or idiothetic cues. In addition, grid fields demonstrated varying levels of “fragmentation” on the T-maze. The propensity for fragmentation does not depend on grid spacing and grid score, nor animal trajectory, indicating the cognitive treatment of environmental subcompartments is likely driven by task demands. PMID:23382518

  11. Generation of a composite grid for turbine flows and consideration of a numerical scheme

    NASA Technical Reports Server (NTRS)

    Choo, Y.; Yoon, S.; Reno, C.

    1986-01-01

    A composite grid was generated for flows in turbines. It consisted of the C-grid (or O-grid) in the immediate vicinity of the blade and the H-grid in the middle of the blade passage between the C-grids and in the upstream region. This new composite grid provides better smoothness, resolution, and orthogonality than any single grid for a typical turbine blade with a large camber and rounded leading and trailing edges. The C-H (or O-H) composite grid has an unusual grid point that is connected to more than four neighboring nodes in two dimensions (more than six neighboring nodes in three dimensions). A finite-volume lower-upper (LU) implicit scheme to be used on this grid poses no problem and requires no special treatment because each interior cell of this composite grid has only four neighboring cells in two dimensions (six cells in three dimensions). The LU implicit scheme was demonstrated to be efficient and robust for external flows in a broad flow regime and can be easily applied to internal flows and extended from two to three dimensions.

  12. An optimized top contact design for solar cell concentrators

    NASA Technical Reports Server (NTRS)

    Desalvo, Gregory C.; Barnett, Allen M.

    1985-01-01

    A new grid optimization scheme is developed for point focus solar cell concentrators which employs a separated grid and busbar concept. Ideally, grid lines act as the primary current collectors and receive all of the current from the semiconductor region. Busbars are the secondary collectors which pick up current from the grids and carry it out of the active region of the solar cell. This separation of functions leads to a multithickness metallization design, where the busbars are made larger in cross section than the grids. This enables the busbars to carry more current per unit area of shading, which is advantageous under high solar concentration where large current densities are generated. Optimized grid patterns using this multilayer concept can provide a 1.6 to 20 percent increase in output power efficiency over optimized single thickness grids.

  13. Spatial cell firing during virtual navigation of open arenas by head-restrained mice.

    PubMed

    Chen, Guifen; King, John Andrew; Lu, Yi; Cacucci, Francesca; Burgess, Neil

    2018-06-18

    We present a mouse virtual reality (VR) system which restrains head-movements to horizontal rotations, compatible with multi-photon imaging. This system allows expression of the spatial navigation and neuronal firing patterns characteristic of real open arenas (R). Comparing VR to R: place and grid, but not head-direction, cell firing had broader spatial tuning; place, but not grid, cell firing was more directional; theta frequency increased less with running speed; whereas increases in firing rates with running speed and place and grid cells' theta phase precession were similar. These results suggest that the omni-directional place cell firing in R may require local-cues unavailable in VR, and that the scale of grid and place cell firing patterns, and theta frequency, reflect translational motion inferred from both virtual (visual and proprioceptive) and real (vestibular translation and extra-maze) cues. By contrast, firing rates and theta phase precession appear to reflect visual and proprioceptive cues alone. © 2018, Chen et al.

  14. Obstacle-avoiding navigation system

    DOEpatents

    Borenstein, Johann; Koren, Yoram; Levine, Simon P.

    1991-01-01

    A system for guiding an autonomous or semi-autonomous vehicle through a field of operation having obstacles thereon to be avoided employs a memory for containing data which defines an array of grid cells which correspond to respective subfields in the field of operation of the vehicle. Each grid cell in the memory contains a value which is indicative of the likelihood, or probability, that an obstacle is present in the respectively associated subfield. The values in the grid cells are incremented individually in response to each scan of the subfields, and precomputation and use of a look-up table avoids complex trigonometric functions. A further array of grid cells is fixed with respect to the vehicle form a conceptual active window which overlies the incremented grid cells. Thus, when the cells in the active window overly grid cell having values which are indicative of the presence of obstacles, the value therein is used as a multiplier of the precomputed vectorial values. The resulting plurality of vectorial values are summed vectorially in one embodiment of the invention to produce a virtual composite repulsive vector which is then summed vectorially with a target-directed vector for producing a resultant vector for guiding the vehicle. In an alternative embodiment, a plurality of vectors surrounding the vehicle are computed, each having a value corresponding to obstacle density. In such an embodiment, target location information is used to select between alternative directions of travel having low associated obstacle densities.

  15. A 'digital' technique for manual extraction of data from aerial photography

    NASA Technical Reports Server (NTRS)

    Istvan, L. B.; Bondy, M. T.

    1977-01-01

    The interpretation procedure described uses a grid cell approach. In addition, a random point is located in each cell. The procedure required that the cell/point grid be established on a base map, and identical grids be made to precisely match the scale of the photographic frames. The grid is then positioned on the photography by visual alignment to obvious features. Several alignments on one frame are sometimes required to make a precise match of all points to be interpreted. This system inherently corrects for distortions in the photography. Interpretation is then done cell by cell. In order to meet the time constraints, first order interpretation should be maintained. The data is put onto coding forms, along with other appropriate data, if desired. This 'digital' manual interpretation technique has proven to be efficient, and time and cost effective, while meeting strict requirements for data format and accuracy.

  16. Analysis and comparison of oxygen consumption of HepG2 cells in a monolayer and three-dimensional high density cell culture by use of a matrigrid®.

    PubMed

    Weise, Frank; Fernekorn, Uta; Hampl, Jörg; Klett, Maren; Schober, Andreas

    2013-09-01

    By the use of a MatriGrid® we have established a three-dimensional high density cell culture. The MatriGrid® is a culture medium permeable, polymeric scaffold with 187 microcavities. In these cavities (300 μm diameter and 207 μm deep) the cells can growth three-dimensionally. For these experiments we measured the oxygen consumption of HepG2 cell cultures in order to optimize cultivation conditions. We measured and compared the oxygen consumption, growth rate and vitality under three different cultivation conditions: monolayer, three-dimensional static and three-dimensional actively perfused. The results show that the cells in a three-dimensional cell culture consume less oxygen as in a monolayer cell culture and that the actively perfused three-dimensional cell culture in the MatriGrid® has a similar growth rate and vitality as the monolayer culture. Copyright © 2013 Wiley Periodicals, Inc.

  17. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Viscous Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.

    2010-01-01

    Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes - a node-averaging scheme and two schemes with nearest-neighbor and adaptive compact stencils for least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Tests from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The tests of the second class are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes may degenerate on mixed grids, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to that of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping based on a distance function commonly available in practical schemes or modifying the scheme stencil to reflect the direction of strong coupling. The major conclusion is that accuracies of the node centered and the best cell-centered schemes are comparable at equivalent number of degrees of freedom.

  18. Velocity field calculation for non-orthogonal numerical grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G. P.

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Josh; Kurtz, Jennifer

    This National Renewable Energy Laboratory industry-inspired Laboratory Directed Research and Development project evaluates the feasibility and economics of using fuel cell backup power systems in cell towers to provide grid services (e.g., balancing, ancillary services, demand response). The work is intended to evaluate the integration of thousands of under-utilized, clean, efficient, and reliable fuel cell systems that are already installed in cell towers for potential grid and ancillary services.

  20. Uncertainty in gridded CO 2 emissions estimates

    DOE PAGES

    Hogue, Susannah; Marland, Eric; Andres, Robert J.; ...

    2016-05-19

    We are interested in the spatial distribution of fossil-fuel-related emissions of CO 2 for both geochemical and geopolitical reasons, but it is important to understand the uncertainty that exists in spatially explicit emissions estimates. Working from one of the widely used gridded data sets of CO 2 emissions, we examine the elements of uncertainty, focusing on gridded data for the United States at the scale of 1° latitude by 1° longitude. Uncertainty is introduced in the magnitude of total United States emissions, the magnitude and location of large point sources, the magnitude and distribution of non-point sources, and from themore » use of proxy data to characterize emissions. For the United States, we develop estimates of the contribution of each component of uncertainty. At 1° resolution, in most grid cells, the largest contribution to uncertainty comes from how well the distribution of the proxy (in this case population density) represents the distribution of emissions. In other grid cells, the magnitude and location of large point sources make the major contribution to uncertainty. Uncertainty in population density can be important where a large gradient in population density occurs near a grid cell boundary. Uncertainty is strongly scale-dependent with uncertainty increasing as grid size decreases. In conclusion, uncertainty for our data set with 1° grid cells for the United States is typically on the order of ±150%, but this is perhaps not excessive in a data set where emissions per grid cell vary over 8 orders of magnitude.« less

  1. Comparison of local grid refinement methods for MODFLOW

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.; Leake, S.A.

    2006-01-01

    Many ground water modeling efforts use a finite-difference method to solve the ground water flow equation, and many of these models require a relatively fine-grid discretization to accurately represent the selected process in limited areas of interest. Use of a fine grid over the entire domain can be computationally prohibitive; using a variably spaced grid can lead to cells with a large aspect ratio and refinement in areas where detail is not needed. One solution is to use local-grid refinement (LGR) whereby the grid is only refined in the area of interest. This work reviews some LGR methods and identifies advantages and drawbacks in test cases using MODFLOW-2000. The first test case is two dimensional and heterogeneous; the second is three dimensional and includes interaction with a meandering river. Results include simulations using a uniform fine grid, a variably spaced grid, a traditional method of LGR without feedback, and a new shared node method with feedback. Discrepancies from the solution obtained with the uniform fine grid are investigated. For the models tested, the traditional one-way coupled approaches produced discrepancies in head up to 6.8% and discrepancies in cell-to-cell fluxes up to 7.1%, while the new method has head and cell-to-cell flux discrepancies of 0.089% and 0.14%, respectively. Additional results highlight the accuracy, flexibility, and CPU time trade-off of these methods and demonstrate how the new method can be successfully implemented to model surface water-ground water interactions. Copyright ?? 2006 The Author(s).

  2. Hippocampal Remapping Is Constrained by Sparseness rather than Capacity

    PubMed Central

    Kammerer, Axel; Leibold, Christian

    2014-01-01

    Grid cells in the medial entorhinal cortex encode space with firing fields that are arranged on the nodes of spatial hexagonal lattices. Potential candidates to read out the space information of this grid code and to combine it with other sensory cues are hippocampal place cells. In this paper, we investigate a population of grid cells providing feed-forward input to place cells. The capacity of the underlying synaptic transformation is determined by both spatial acuity and the number of different spatial environments that can be represented. The codes for different environments arise from phase shifts of the periodical entorhinal cortex patterns that induce a global remapping of hippocampal place fields, i.e., a new random assignment of place fields for each environment. If only a single environment is encoded, the grid code can be read out at high acuity with only few place cells. A surplus in place cells can be used to store a space code for more environments via remapping. The number of stored environments can be increased even more efficiently by stronger recurrent inhibition and by partitioning the place cell population such that learning affects only a small fraction of them in each environment. We find that the spatial decoding acuity is much more resilient to multiple remappings than the sparseness of the place code. Since the hippocampal place code is sparse, we thus conclude that the projection from grid cells to the place cells is not using its full capacity to transfer space information. Both populations may encode different aspects of space. PMID:25474570

  3. Solving Navigational Uncertainty Using Grid Cells on Robots

    PubMed Central

    Milford, Michael J.; Wiles, Janet; Wyeth, Gordon F.

    2010-01-01

    To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments. PMID:21085643

  4. TU-H-BRC-07: Therapeutic Benefit in Spatially Fractionated Radiotherapy (GRID) Using Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanasamy, G; Zhang, X; Paudel, N

    Purpose: The aim of this project is to study the therapeutic ratio (TR) for helical Tomotherapy (HT) based spatially fractionated radiotherapy (GRID). Estimation of TR was based on the linear-quadratic cell survival model by comparing the normal cell survival in a HT GRID to that of a uniform dose delivery in an open-field for the same tumor survival. Methods: HT GRID plan was generated using a patient specific virtual GRID block pattern of non-divergent, cylinder shaped holes using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT GRID irradiation to an open field irradiationmore » with an equivalent dose that result in the same tumor cell SF. The ratio was estimated from DVH data on ten patient plans with deep seated, bulky tumor approved by the treating radiation oncologist. Dependence of the TR values on radio-sensitivity of the tumor cells and prescription dose were also analyzed. Results: The mean ± standard deviation (SD) of TR was 4.0±0.7 (range: 3.1 to 5.5) for the 10 patients with single fraction dose of 20 Gy and tumor cell SF of 0.5 at 2 Gy. In addition, mean±SD of TR = 1±0.1 and 18.0±5.1 were found for tumor with SF of 0.3 and 0.7, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the TR to 2.0±0.2 and 1.2±0.04 for a tumor cell SF of 0.5 at 2 Gy. In this study, the SF of normal cells was assumed to be 0.5 at 2 Gy. Conclusion: HT GRID displayed a significant therapeutic advantage over uniform dose from an open field irradiation. TR increases with the radioresistance of the tumor cells and with prescription dose.« less

  5. Numerical generation of two-dimensional grids by the use of Poisson equations with grid control at boundaries

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Steger, J. L.

    1980-01-01

    A method for generating boundary-fitted, curvilinear, two dimensional grids by the use of the Poisson equations is presented. Grids of C-type and O-type were made about airfoils and other shapes, with circular, rectangular, cascade-type, and other outer boundary shapes. Both viscous and inviscid spacings were used. In all cases, two important types of grid control can be exercised at both inner and outer boundaries. First is arbitrary control of the distances between the boundaries and the adjacent lines of the same coordinate family, i.e., stand-off distances. Second is arbitrary control of the angles with which lines of the opposite coordinate family intersect the boundaries. Thus, both grid cell size (or aspect ratio) and grid cell skewness are controlled at boundaries. Reasonable cell size and shape are ensured even in cases wherein extreme boundary shapes would tend to cause skewness or poorly controlled grid spacing. An inherent feature of the Poisson equations is that lines in the interior of the grid smoothly connect the boundary points (the grid mapping functions are second order differentiable).

  6. Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces

    NASA Astrophysics Data System (ADS)

    Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott

    2014-03-01

    Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.

  7. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Francis, Robert W.

    1987-01-01

    Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.

  8. Application of spatially gridded temperature and land cover data sets for urban heat island analysis

    USGS Publications Warehouse

    Gallo, Kevin; Xian, George Z.

    2014-01-01

    Two gridded data sets that included (1) daily mean temperatures from 2006 through 2011 and (2) satellite-derived impervious surface area, were combined for a spatial analysis of the urban heat-island effect within the Dallas-Ft. Worth Texas region. The primary advantage of using these combined datasets included the capability to designate each 1 × 1 km grid cell of available temperature data as urban or rural based on the level of impervious surface area within the grid cell. Generally, the observed differences in urban and rural temperature increased as the impervious surface area thresholds used to define an urban grid cell were increased. This result, however, was also dependent on the size of the sample area included in the analysis. As the spatial extent of the sample area increased and included a greater number of rural defined grid cells, the observed urban and rural differences in temperature also increased. A cursory comparison of the spatially gridded temperature observations with observations from climate stations suggest that the number and location of stations included in an urban heat island analysis requires consideration to assure representative samples of each (urban and rural) environment are included in the analysis.

  9. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Inviscid Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2010-01-01

    Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.

  10. Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors.

    PubMed

    Narayanasamy, Ganesh; Zhang, Xin; Meigooni, Ali; Paudel, Nava; Morrill, Steven; Maraboyina, Sanjay; Peacock, Loverd; Penagaricano, Jose

    2017-08-01

    Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear-quadratic cell survival model. HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT-GRID irradiation to an open debulking field of an equivalent dose that result in the same tumor cell SF. TR was estimated from DVH data on ten HT-GRID patient plans with deep seated, bulky tumor. Dependence of the TR values on radiosensitivity of the tumor cells and prescription dose was analyzed. The mean ± standard deviation (SD) of TR was 4.0 ± 0.7 (range: 3.1-5.5) for the 10 patients with single fraction maximum dose of 20 Gy to GTV assuming a tumor cell SF at 2 Gy (SF2 t ) value of 0·5. In addition, the mean ± SD of TR values for SF2 t values of 0.3 and 0.7 were found to be 1 ± 0.1 and 18.0 ± 5.1, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the respective TR values to 2.0 ± 0.2 and 1.2 ± 0.04 for a SF2 t value of 0.5. HT-GRID therapy demonstrates a significant therapeutic advantage over uniform dose from an open field irradiation for the same tumor cell kill. TR increases with the radioresistance of the tumor cells and with prescription dose.

  11. MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.

    2013-01-01

    A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton-Raphson formulation, respectively.

  12. Context-dependent spatially periodic activity in the human entorhinal cortex

    PubMed Central

    Nguyen, T. Peter; Török, Ágoston; Shen, Jason Y.; Briggs, Deborah E.; Modur, Pradeep N.; Buchanan, Robert J.

    2017-01-01

    The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency. PMID:28396399

  13. A computer program for converting rectangular coordinates to latitude-longitude coordinates

    USGS Publications Warehouse

    Rutledge, A.T.

    1989-01-01

    A computer program was developed for converting the coordinates of any rectangular grid on a map to coordinates on a grid that is parallel to lines of equal latitude and longitude. Using this program in conjunction with groundwater flow models, the user can extract data and results from models with varying grid orientations and place these data into grid structure that is oriented parallel to lines of equal latitude and longitude. All cells in the rectangular grid must have equal dimensions, and all cells in the latitude-longitude grid measure one minute by one minute. This program is applicable if the map used shows lines of equal latitude as arcs and lines of equal longitude as straight lines and assumes that the Earth 's surface can be approximated as a sphere. The program user enters the row number , column number, and latitude and longitude of the midpoint of the cell for three test cells on the rectangular grid. The latitude and longitude of boundaries of the rectangular grid also are entered. By solving sets of simultaneous linear equations, the program calculates coefficients that are used for making the conversion. As an option in the program, the user may build a groundwater model file based on a grid that is parallel to lines of equal latitude and longitude. The program reads a data file based on the rectangular coordinates and automatically forms the new data file. (USGS)

  14. Bayesian Non-Stationary Index Gauge Modeling of Gridded Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Verdin, A.; Bracken, C.; Caldwell, J.; Balaji, R.; Funk, C. C.

    2017-12-01

    We propose a Bayesian non-stationary model to generate watershed scale gridded estimates of extreme precipitation return levels. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset is used to obtain gridded seasonal precipitation extremes over the Taylor Park watershed in Colorado for the period 1981-2016. For each year, grid cells within the Taylor Park watershed are aggregated to a representative "index gauge," which is input to the model. Precipitation-frequency curves for the index gauge are estimated for each year, using climate variables with significant teleconnections as proxies. Such proxies enable short-term forecasting of extremes for the upcoming season. Disaggregation ratios of the index gauge to the grid cells within the watershed are computed for each year and preserved to translate the index gauge precipitation-frequency curve to gridded precipitation-frequency maps for select return periods. Gridded precipitation-frequency maps are of the same spatial resolution as CHIRPS (0.05° x 0.05°). We verify that the disaggregation method preserves spatial coherency of extremes in the Taylor Park watershed. Validation of the index gauge extreme precipitation-frequency method consists of ensuring extreme value statistics are preserved on a grid cell basis. To this end, a non-stationary extreme precipitation-frequency analysis is performed on each grid cell individually, and the resulting frequency curves are compared to those produced by the index gauge disaggregation method.

  15. Persistence of Rift Valley fever virus in East Africa

    NASA Astrophysics Data System (ADS)

    Gachohi, J.; Hansen, F.; Bett, B.; Kitala, P.

    2012-04-01

    Rift Valley fever virus (RVFv) is a mosquito-borne pathogen of livestock, wildlife and humans that causes severe outbreaks in intervals of several years. One of the open questions is how the virus persists between outbreaks. We developed a spatially-explicit, individual-based simulation model of the RVFv transmission dynamics to investigate this question. The model, is based on livestock and mosquito population dynamics. Spatial aspects are explicitly represented by a set of grid cells that represent mosquito breeding sites. A grid cell measures 500 by 500m and the model considers a grid of 100 by 100 grid cells; the model thus operates on the regional scale of 2500km2. Livestock herds move between grid cells, and provide connectivity between the cells. The model is used to explore the spatio-temporal dynamics of RVFv persistence in absence of a wildlife reservoir in an east African semi-arid context. Specifically, the model assesses the importance of local virus persistence in mosquito breeding sites relative to global virus persistence mitigated by movement of hosts. Local persistence is determined by the length of time the virus remains in a mosquito breeding site once introduced. In the model, this is a function of the number of mosquitoes that emerge infected and their lifespan. Global persistence is determined by the level of connectivity between isolated grid cells. Our work gives insights into the ecological and epidemiological conditions under which RVFv persists. The implication for disease surveillance and management are discussed.

  16. CdS thin film solar cells for terrestrial power

    NASA Technical Reports Server (NTRS)

    Shirland, F. A.

    1975-01-01

    The development of very low cost long lived Cu2S/CdS thin film solar cells for large scale energy conversion is reported. Excellent evaporated metal grid patterns were obtained using a specially designed aperture mask. Vacuum evaporated gold and copper grids of 50 lines per inch and 1 micron thickness were adequate electrically for the fine mesh contacting grid. Real time roof top sunlight exposure tests of encapsulated CdS cells showed no loss in output after 5 months. Accelerated life testing of encapsulated cells showed no loss of output power after 6 months of 12 hour dark-12 hour AMI illumination cycles at 40 C, 60 C, 80 C and 100 C temperatures. However, the cells changed their basic parameters, such as series and shunt resistance and junction capacitance.

  17. Environmental boundaries as a mechanism for correcting and anchoring spatial maps

    PubMed Central

    2016-01-01

    Abstract Ubiquitous throughout the animal kingdom, path integration‐based navigation allows an animal to take a circuitous route out from a home base and using only self‐motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place‐specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration‐based spatial navigation. Supporting this idea, grid cells appear to provide an environment‐independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark‐driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations. PMID:26563618

  18. Position Papers for the First Workshop on Principles and Practice of Constraint Programming Held in Newport, Rhode Island on April 28-30, 1993

    DTIC Science & Technology

    1993-04-30

    There are alternative methods to MBB’s, based on decomposition of space into disjoint cells. These include uniform grid method [Fr84], quadtree-based...space. The IIn grid and quadtree methods there is a trade off between the resolution of the cells (and thus quantity of the cells) and the effectiveness...Mathematics, 13, pp. 221-229, 1983. 9 IFr84] W.R. Franklin, Adaptive grids for geometric operations, Cartographica 21, 2 g 3, pp. 160-167, 1984. (Gun87

  19. Coarse-grained hydrodynamics from correlation functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Bruce

    This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configuration from a molecular dynamics simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilbrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is applied to some simple hydrodynamic cases to determine the feasibility of applying this to realistic nanoscale systems.

  20. Linking field-based ecological data with remotely sensed data using a geographic information system in two malaria endemic urban areas of Kenya.

    PubMed

    Eisele, Thomas P; Keating, Joseph; Swalm, Chris; Mbogo, Charles M; Githeko, Andrew K; Regens, James L; Githure, John I; Andrews, Linda; Beier, John C

    2003-12-10

    BACKGROUND: Remote sensing technology provides detailed spectral and thermal images of the earth's surface from which surrogate ecological indicators of complex processes can be measured. METHODS: Remote sensing data were overlaid onto georeferenced entomological and human ecological data randomly sampled during April and May 2001 in the cities of Kisumu (population asymptotically equal to 320,000) and Malindi (population asymptotically equal to 81,000), Kenya. Grid cells of 270 meters x 270 meters were used to generate spatial sampling units for each city for the collection of entomological and human ecological field-based data. Multispectral Thermal Imager (MTI) satellite data in the visible spectrum at five meter resolution were acquired for Kisumu and Malindi during February and March 2001, respectively. The MTI data were fit and aggregated to the 270 meter x 270 meter grid cells used in field-based sampling using a geographic information system. The normalized difference vegetation index (NDVI) was calculated and scaled from MTI data for selected grid cells. Regression analysis was used to assess associations between NDVI values and entomological and human ecological variables at the grid cell level. RESULTS: Multivariate linear regression showed that as household density increased, mean grid cell NDVI decreased (global F-test = 9.81, df 3,72, P-value = <0.01; adjusted R2 = 0.26). Given household density, the number of potential anopheline larval habitats per grid cell also increased with increasing values of mean grid cell NDVI (global F-test = 14.29, df 3,36, P-value = <0.01; adjusted R2 = 0.51). CONCLUSIONS: NDVI values obtained from MTI data were successfully overlaid onto georeferenced entomological and human ecological data spatially sampled at a scale of 270 meters x 270 meters. Results demonstrate that NDVI at such a scale was sufficient to describe variations in entomological and human ecological parameters across both cities.

  1. A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1994-01-01

    A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: a gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.

  2. A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.

  3. Entorhinal cortex receptive fields are modulated by spatial attention, even without movement

    PubMed Central

    König, Peter; König, Seth; Buffalo, Elizabeth A

    2018-01-01

    Grid cells in the entorhinal cortex allow for the precise decoding of position in space. Along with potentially playing an important role in navigation, grid cells have recently been hypothesized to make a general contribution to mental operations. A prerequisite for this hypothesis is that grid cell activity does not critically depend on physical movement. Here, we show that movement of covert attention, without any physical movement, also elicits spatial receptive fields with a triangular tiling of space. In monkeys trained to maintain central fixation while covertly attending to a stimulus moving in the periphery we identified a significant population (20/141, 14% neurons at a FDR <5%) of entorhinal cells with spatially structured receptive fields. This contrasts with recordings obtained in the hippocampus, where grid-like representations were not observed. Our results provide evidence that neurons in macaque entorhinal cortex do not rely on physical movement. PMID:29537964

  4. Toward Verification of USM3D Extensions for Mixed Element Grids

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Frink, Neal T.; Ding, Ejiang; Parlette, Edward B.

    2013-01-01

    The unstructured tetrahedral grid cell-centered finite volume flow solver USM3D has been recently extended to handle mixed element grids composed of hexahedral, prismatic, pyramidal, and tetrahedral cells. Presently, two turbulence models, namely, baseline Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST), support mixed element grids. This paper provides an overview of the various numerical discretization options available in the newly enhanced USM3D. Using the SA model, the flow solver extensions are verified on three two-dimensional test cases available on the Turbulence Modeling Resource website at the NASA Langley Research Center. The test cases are zero pressure gradient flat plate, planar shear, and bump-inchannel. The effect of cell topologies on the flow solution is also investigated using the planar shear case. Finally, the assessment of various cell and face gradient options is performed on the zero pressure gradient flat plate case.

  5. Development of a Dynamic Operational Scheduling Algorithm for an Independent Micro-Grid with Renewable Energy

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    A micro-grid with the capacity for sustainable energy is expected to be a distributed energy system that exhibits quite a small environmental impact. In an independent micro-grid, “green energy,” which is typically thought of as unstable, can be utilized effectively by introducing a battery. In the past study, the production-of-electricity prediction algorithm (PAS) of the solar cell was developed. In PAS, a layered neural network is made to learn based on past weather data and the operation plan of the compound system of a solar cell and other energy systems was examined using this prediction algorithm. In this paper, a dynamic operational scheduling algorithm is developed using a neural network (PAS) and a genetic algorithm (GA) to provide predictions for solar cell power output. We also do a case study analysis in which we use this algorithm to plan the operation of a system that connects nine houses in Sapporo to a micro-grid composed of power equipment and a polycrystalline silicon solar cell. In this work, the relationship between the accuracy of output prediction of the solar cell and the operation plan of the micro-grid was clarified. Moreover, we found that operating the micro-grid according to the plan derived with PAS was far superior, in terms of equipment hours of operation, to that using past average weather data.

  6. Interdigitated photovoltaic power conversion device

    DOEpatents

    Ward, James Scott; Wanlass, Mark Woodbury; Gessert, Timothy Arthur

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  7. Interdigitated photovoltaic power conversion device

    DOEpatents

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  8. A high-order spatial filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-04-01

    A high-order spatial filter is developed for the spectral-element-method dynamical core on the cubed-sphere grid which employs the Gauss-Lobatto Lagrange interpolating polynomials (GLLIP) as orthogonal basis functions. The filter equation is the high-order Helmholtz equation which corresponds to the implicit time-differencing of a diffusion equation employing the high-order Laplacian. The Laplacian operator is discretized within a cell which is a building block of the cubed sphere grid and consists of the Gauss-Lobatto grid. When discretizing a high-order Laplacian, due to the requirement of C0 continuity along the cell boundaries the grid-points in neighboring cells should be used for the target cell: The number of neighboring cells is nearly quadratically proportional to the filter order. Discrete Helmholtz equation yields a huge-sized and highly sparse matrix equation whose size is N*N with N the number of total grid points on the globe. The number of nonzero entries is also almost in quadratic proportion to the filter order. Filtering is accomplished by solving the huge-matrix equation. While requiring a significant computing time, the solution of global matrix provides the filtered field free of discontinuity along the cell boundaries. To achieve the computational efficiency and the accuracy at the same time, the solution of the matrix equation was obtained by only accounting for the finite number of adjacent cells. This is called as a local-domain filter. It was shown that to remove the numerical noise near the grid-scale, inclusion of 5*5 cells for the local-domain filter was found sufficient, giving the same accuracy as that obtained by global domain solution while reducing the computing time to a considerably lower level. The high-order filter was evaluated using the standard test cases including the baroclinic instability of the zonal flow. Results indicated that the filter performs better on the removal of grid-scale numerical noises than the explicit high-order viscosity. It was also presented that the filter can be easily implemented on the distributed-memory parallel computers with a desirable scalability.

  9. The Impact of Sika Deer on Vegetation in Japan: Setting Management Priorities on a National Scale

    NASA Astrophysics Data System (ADS)

    Ohashi, Haruka; Yoshikawa, Masato; Oono, Keiichi; Tanaka, Norihisa; Hatase, Yoriko; Murakami, Yuhide

    2014-09-01

    Irreversible shifts in ecosystems caused by large herbivores are becoming widespread around the world. We analyzed data derived from the 2009-2010 Sika Deer Impact Survey, which assessed the geographical distribution of deer impacts on vegetation through a questionnaire, on a scale of 5-km grid-cells. Our aim was to identify areas facing irreversible ecosystem shifts caused by deer overpopulation and in need of management prioritization. Our results demonstrated that the areas with heavy impacts on vegetation were widely distributed across Japan from north to south and from the coastal to the alpine areas. Grid-cells with heavy impacts are especially expanding in the southwestern part of the Pacific side of Japan. The intensity of deer impacts was explained by four factors: (1) the number of 5-km grid-cells with sika deer in neighboring 5 km-grid-cells in 1978 and 2003, (2) the year sika deer were first recorded in a grid-cell, (3) the number of months in which maximum snow depth exceeded 50 cm, and (4) the proportion of urban areas in a particular grid-cell. Based on our model, areas with long-persistent deer populations, short snow periods, and fewer urban areas were predicted to be the most vulnerable to deer impact. Although many areas matching these criteria already have heavy deer impact, there are some areas that remain only slightly impacted. These areas may need to be designated as having high management priority because of the possibility of a rapid intensification of deer impact.

  10. The impact of Sika deer on vegetation in Japan: setting management priorities on a national scale.

    PubMed

    Ohashi, Haruka; Yoshikawa, Masato; Oono, Keiichi; Tanaka, Norihisa; Hatase, Yoriko; Murakami, Yuhide

    2014-09-01

    Irreversible shifts in ecosystems caused by large herbivores are becoming widespread around the world. We analyzed data derived from the 2009-2010 Sika Deer Impact Survey, which assessed the geographical distribution of deer impacts on vegetation through a questionnaire, on a scale of 5-km grid-cells. Our aim was to identify areas facing irreversible ecosystem shifts caused by deer overpopulation and in need of management prioritization. Our results demonstrated that the areas with heavy impacts on vegetation were widely distributed across Japan from north to south and from the coastal to the alpine areas. Grid-cells with heavy impacts are especially expanding in the southwestern part of the Pacific side of Japan. The intensity of deer impacts was explained by four factors: (1) the number of 5-km grid-cells with sika deer in neighboring 5 km-grid-cells in 1978 and 2003, (2) the year sika deer were first recorded in a grid-cell, (3) the number of months in which maximum snow depth exceeded 50 cm, and (4) the proportion of urban areas in a particular grid-cell. Based on our model, areas with long-persistent deer populations, short snow periods, and fewer urban areas were predicted to be the most vulnerable to deer impact. Although many areas matching these criteria already have heavy deer impact, there are some areas that remain only slightly impacted. These areas may need to be designated as having high management priority because of the possibility of a rapid intensification of deer impact.

  11. Ray tracing a three dimensional scene using a grid

    DOEpatents

    Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron

    2013-02-26

    Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.

  12. Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu, E-mail: hualinzhang@yahoo.com; Zhong, Hualiang; Barth, Rolf F.

    2014-02-15

    Purpose: To evaluate the impact of dose size in single fraction, spatially fractionated (grid) radiotherapy for selectively killing infiltrated melanoma cancer cells of different tumor sizes, using different radiobiological models. Methods: A Monte Carlo technique was employed to calculate the 3D dose distribution of a commercially available megavoltage grid collimator in a 6 MV beam. The linear-quadratic (LQ) and modified linear quadratic (MLQ) models were used separately to evaluate the therapeutic outcome of a series of single fraction regimens that employed grid therapy to treat both acute and late responding melanomas of varying sizes. The dose prescription point was atmore » the center of the tumor volume. Dose sizes ranging from 1 to 30 Gy at 100% dose line were modeled. Tumors were either touching the skin surface or having their centers at a depth of 3 cm. The equivalent uniform dose (EUD) to the melanoma cells and the therapeutic ratio (TR) were defined by comparing grid therapy with the traditional open debulking field. The clinical outcomes from recent reports were used to verify the authors’ model. Results: Dose profiles at different depths and 3D dose distributions in a series of 3D melanomas treated with grid therapy were obtained. The EUDs and TRs for all sizes of 3D tumors involved at different doses were derived through the LQ and MLQ models, and a practical equation was derived. The EUD was only one fifth of the prescribed dose. The TR was dependent on the prescribed dose and on the LQ parameters of both the interspersed cancer and normal tissue cells. The results from the LQ model were consistent with those of the MLQ model. At 20 Gy, the EUD and TR by the LQ model were 2.8% higher and 1% lower than by the MLQ, while at 10 Gy, the EUD and TR as defined by the LQ model were only 1.4% higher and 0.8% lower, respectively. The dose volume histograms of grid therapy for a 10 cm tumor showed different dosimetric characteristics from those of conventional radiotherapy. A significant portion of the tumor volume received a very large dose in grid therapy, which ensures significant tumor cell killing in these regions. Conversely, some areas received a relatively small dose, thereby sparing interspersed normal cells and increasing radiation tolerance. The radiobiology modeling results indicated that grid therapy could be useful for treating acutely responding melanomas infiltrating radiosensitive normal tissues. The theoretical model predictions were supported by the clinical outcomes. Conclusions: Grid therapy functions by selectively killing infiltrating tumor cells and concomitantly sparing interspersed normal cells. The TR depends on the radiosensitivity of the cell population, dose, tumor size, and location. Because the volumes of very high dose regions are small, the LQ model can be used safely to predict the clinical outcomes of grid therapy. When treating melanomas with a dose of 15 Gy or higher, single fraction grid therapy is clearly advantageous for sparing interspersed normal cells. The existence of a threshold fraction dose, which was found in the authors’ theoretical simulations, was confirmed by clinical observations.« less

  13. Streamline integration as a method for two-dimensional elliptic grid generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.

    We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less

  14. Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1996-01-01

    A Cartesian cell-based approach for adaptively refined solutions of the Euler and Navier-Stokes equations in two dimensions is presented. Grids about geometrically complicated bodies are generated automatically, by the recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal cut cells are created using modified polygon-clipping algorithms. The grid is stored in a binary tree data structure that provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite volume formulation. The convective terms are upwinded: A linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The results of a study comparing the accuracy and positivity of two classes of cell-centered, viscous gradient reconstruction procedures is briefly summarized. Adaptively refined solutions of the Navier-Stokes equations are shown using the more robust of these gradient reconstruction procedures, where the results computed by the Cartesian approach are compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.

  15. Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling

    NASA Astrophysics Data System (ADS)

    Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.

    2013-09-01

    Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows that water barriers are better preserved with the new method. This research confirms the idea that topographical information, mainly the boundary locations and object classes, can enrich the height grid for this hydrological application.

  16. Grid-cell representations in mental simulation

    PubMed Central

    Bellmund, Jacob LS; Deuker, Lorena; Navarro Schröder, Tobias; Doeller, Christian F

    2016-01-01

    Anticipating the future is a key motif of the brain, possibly supported by mental simulation of upcoming events. Rodent single-cell recordings suggest the ability of spatially tuned cells to represent subsequent locations. Grid-like representations have been observed in the human entorhinal cortex during virtual and imagined navigation. However, hitherto it remains unknown if grid-like representations contribute to mental simulation in the absence of imagined movement. Participants imagined directions between building locations in a large-scale virtual-reality city while undergoing fMRI without re-exposure to the environment. Using multi-voxel pattern analysis, we provide evidence for representations of absolute imagined direction at a resolution of 30° in the parahippocampal gyrus, consistent with the head-direction system. Furthermore, we capitalize on the six-fold rotational symmetry of grid-cell firing to demonstrate a 60° periodic pattern-similarity structure in the entorhinal cortex. Our findings imply a role of the entorhinal grid-system in mental simulation and future thinking beyond spatial navigation. DOI: http://dx.doi.org/10.7554/eLife.17089.001 PMID:27572056

  17. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale

    PubMed Central

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (v m) and ponding time of depression (t p), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (l i) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (v i) was derived from the upstream flow accumulation area using v m. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of l i/v i) and t p. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635

  18. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale.

    PubMed

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs.

  19. The Design of Connection Solid Oxide Fuel Cell (SOFC) Integrated Grid with Three-Phase Inverter

    NASA Astrophysics Data System (ADS)

    Darjat; Sulistyo; Triwiyatno, Aris; Thalib, Humaid

    2018-03-01

    Fuel cell technology is a relatively new energy-saving technology that has the potential to replace conventional energy technologies. Among the different types of generation technologies, fuel cells is the generation technologies considered as a potential source of power generation because it is flexible and can be placed anywhere based distribution system. Modeling of SOFC is done by using Nernst equation. The output power of the fuel cell can be controlled by controlling the flow rate of the fuels used in the process. Three-phase PWM inverter is used to get the form of three-phase voltage which same with the grid. In this paper, the planning and design of the SOFC are connected to the grid.

  20. Diffraction Analysis of Antennas With Mesh Surfaces

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya

    1987-01-01

    Strip-aperture model replaces wire-grid model. Far-field radiation pattern of antenna with mesh reflector calculated more accurately with new strip-aperture model than with wire-grid model of reflector surface. More adaptable than wire-grid model to variety of practical configurations and decidedly superior for reflectors in which mesh-cell width exceeds mesh thickness. Satisfies reciprocity theorem. Applied where mesh cells are no larger than tenth of wavelength. Small cell size permits use of simplifying approximation that reflector-surface current induced by electromagnetic field is present even in apertures. Approximation useful in calculating far field.

  1. Simulating fluxes from heterogeneous land surfaces: Explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS)

    NASA Technical Reports Server (NTRS)

    Seth, Anji; Giorgi, Filippo; Dickinson, Robert E.

    1994-01-01

    A vectorized version of the biosphere-atmosphere transfer scheme (VBATS) is used to study moisture, energy, and momentum fluxes from heterogeneous land surfaces st the scale of an atmospheric model (AM) grid cells. To incorporate subgrid scale inhomogeneity, VBATS includes two important features: (1) characterization of the land surface (vegetation and soil parameters) at N subgrid points within an AM grid cell and (2) explicit distribution of climate forcing (precipitation, clouds, etc.) over the subgrid. In this study, VBATS is used in stand-alone mode to simulate a single AM grid cell and to evaluate the effects of subgrid scale vegetation and climate specification on the surface fluxes and hydrology. It is found that the partitioning of energy can be affected by up to 30%, runoff by 50%, and surface stress in excess of 60%. Distributing climate forcing over the AM grid cell increases the Bowen ratio, as a result of enhanced sensible heat flux and reduced latent heat flux. The combined effect of heterogeneous vegetation and distribution of climate is found to be dependent on the dominat vegetation class in the AM grid cell. Development of this method is part of a larger program to explore the importance of subgrid scale processes in regional and global climate simulations.

  2. Land Cover Change Detection using Neural Network and Grid Cells Techniques

    NASA Astrophysics Data System (ADS)

    Bagan, H.; Li, Z.; Tangud, T.; Yamagata, Y.

    2017-12-01

    In recent years, many advanced neural network methods have been applied in land cover classification, each of which has both strengths and limitations. In which, the self-organizing map (SOM) neural network method have been used to solve remote sensing data classification problems and have shown potential for efficient classification of remote sensing data. In SOM, both the distribution and the topology of features of the input layer are identified by using an unsupervised, competitive, neighborhood learning method. The high-dimensional data are then projected onto a low-dimensional map (competitive layer), usually as a two-dimensional map. The neurons (nodes) in the competitive layer are arranged by topological order in the input space. Spatio-temporal analyses of land cover change based on grid cells have demonstrated that gridded data are useful for obtaining spatial and temporal information about areas that are smaller than municipal scale and are uniform in size. Analysis based on grid cells has many advantages: grid cells all have the same size allowing for easy comparison; grids integrate easily with other scientific data; grids are stable over time and thus facilitate the modelling and analysis of very large multivariate spatial data sets. This study chose time-series MODIS and Landsat images as data sources, applied SOM neural network method to identify the land utilization in Inner Mongolia Autonomous Region of China. Then the results were integrated into grid cell to get the dynamic change maps. Land cover change using MODIS data in Inner Mongolia showed that urban area increased more than fivefold in recent 15 years, along with the growth of mining area. In terms of geographical distribution, the most obvious place of urban expansion is Ordos in southwest Inner Mongolia. The results using Landsat images from 1986 to 2014 in northeastern part of the Inner Mongolia show degradation in grassland from 1986 to 2014. Grid-cell-based spatial correlation analysis also confirmed a strong negative correlation between grassland and barren land, indicating that grassland degradation in this region is due to the urbanization and coal mining activities over the past three decades.

  3. Efficient Fluid Dynamic Design Optimization Using Cartesian Grids

    NASA Technical Reports Server (NTRS)

    Dadone, A.; Grossman, B.; Sellers, Bill (Technical Monitor)

    2004-01-01

    This report is subdivided in three parts. The first one reviews a new approach to the computation of inviscid flows using Cartesian grid methods. The crux of the method is the curvature-corrected symmetry technique (CCST) developed by the present authors for body-fitted grids. The method introduces ghost cells near the boundaries whose values are developed from an assumed flow-field model in vicinity of the wall consisting of a vortex flow, which satisfies the normal momentum equation and the non-penetration condition. The CCST boundary condition was shown to be substantially more accurate than traditional boundary condition approaches. This improved boundary condition is adapted to a Cartesian mesh formulation, which we call the Ghost Body-Cell Method (GBCM). In this approach, all cell centers exterior to the body are computed with fluxes at the four surrounding cell edges. There is no need for special treatment corresponding to cut cells which complicate other Cartesian mesh methods.

  4. The National Grid Project: A system overview

    NASA Technical Reports Server (NTRS)

    Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel

    1995-01-01

    The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.

  5. The Art of Grid Fields: Geometry of Neuronal Time

    PubMed Central

    Shilnikov, Andrey L.; Maurer, Andrew Porter

    2016-01-01

    The discovery of grid cells in the entorhinal cortex has both elucidated our understanding of spatial representations in the brain, and germinated a large number of theoretical models regarding the mechanisms of these cells’ striking spatial firing characteristics. These models cross multiple neurobiological levels that include intrinsic membrane resonance, dendritic integration, after hyperpolarization characteristics and attractor dynamics. Despite the breadth of the models, to our knowledge, parallels can be drawn between grid fields and other temporal dynamics observed in nature, much of which was described by Art Winfree and colleagues long before the initial description of grid fields. Using theoretical and mathematical investigations of oscillators, in a wide array of mediums far from the neurobiology of grid cells, Art Winfree has provided a substantial amount of research with significant and profound similarities. These theories provide specific inferences into the biological mechanisms and extraordinary resemblances across phenomenon. Therefore, this manuscript provides a novel interpretation on the phenomenon of grid fields, from the perspective of coupled oscillators, postulating that grid fields are the spatial representation of phase resetting curves in the brain. In contrast to prior models of gird cells, the current manuscript provides a sketch by which a small network of neurons, each with oscillatory components can operate to form grid cells, perhaps providing a unique hybrid between the competing attractor neural network and oscillatory interference models. The intention of this new interpretation of the data is to encourage novel testable hypotheses. PMID:27013981

  6. Comparison of properties of medial entorhinal cortex layer II neurons in two anatomical dimensions with and without cholinergic activation.

    PubMed

    Yoshida, Motoharu; Jochems, Arthur; Hasselmo, Michael E

    2013-01-01

    Mechanisms underlying grid cell firing in the medial entorhinal cortex (MEC) still remain unknown. Computational modeling studies have suggested that cellular properties such as spike frequency adaptation and persistent firing might underlie the grid cell firing. Recent in vivo studies also suggest that cholinergic activation influences grid cell firing. Here we investigated the anatomical distribution of firing frequency adaptation, the medium spike after hyperpolarization potential (mAHP), subthreshold membrane potential oscillations, sag potential, input resistance and persistent firing, in MEC layer II principal cells using in vitro whole-cell patch clamp recordings in rats. Anatomical distributions of these properties were compared along both the dorso-ventral and medio-lateral axes, both with and without the cholinergic receptor agonist carbachol. We found that spike frequency adaptation is significantly stronger in ventral than in dorsal neurons both with and without carbachol. Spike frequency adaptation was significantly correlated with the duration of the mAHP, which also showed a gradient along the dorso-ventral axis. In carbachol, we found that about 50% of MEC layer II neurons show persistent firing which lasted more than 30 seconds. Persistent firing of MEC layer II neurons might contribute to grid cell firing by providing the excitatory drive. Dorso-ventral differences in spike frequency adaptation we report here are opposite from previous predictions by a computational model. We discuss an alternative mechanism as to how dorso-ventral differences in spike frequency adaptation could contribute to different scales of grid spacing.

  7. Theta phase precession of grid and place cell firing in open environments

    PubMed Central

    Jeewajee, A.; Barry, C.; Douchamps, V.; Manson, D.; Lever, C.; Burgess, N.

    2014-01-01

    Place and grid cells in the rodent hippocampal formation tend to fire spikes at successively earlier phases relative to the local field potential theta rhythm as the animal runs through the cell's firing field on a linear track. However, this ‘phase precession’ effect is less well characterized during foraging in two-dimensional open field environments. Here, we mapped runs through the firing fields onto a unit circle to pool data from multiple runs. We asked which of seven behavioural and physiological variables show the best circular–linear correlation with the theta phase of spikes from place cells in hippocampal area CA1 and from grid cells from superficial layers of medial entorhinal cortex. The best correlate was the distance to the firing field peak projected onto the animal's current running direction. This was significantly stronger than other correlates, such as instantaneous firing rate and time-in-field, but similar in strength to correlates with other measures of distance travelled through the firing field. Phase precession was stronger in place cells than grid cells overall, and robust phase precession was seen in traversals through firing field peripheries (although somewhat less than in traversals through the centre), consistent with phase coding of displacement along the current direction. This type of phase coding, of place field distance ahead of or behind the animal, may be useful for allowing calculation of goal directions during navigation. PMID:24366140

  8. Reliable Detection and Smart Deletion of Malassez Counting Chamber Grid in Microscopic White Light Images for Microbiological Applications.

    PubMed

    Denimal, Emmanuel; Marin, Ambroise; Guyot, Stéphane; Journaux, Ludovic; Molin, Paul

    2015-08-01

    In biology, hemocytometers such as Malassez slides are widely used and are effective tools for counting cells manually. In a previous work, a robust algorithm was developed for grid extraction in Malassez slide images. This algorithm was evaluated on a set of 135 images and grids were accurately detected in most cases, but there remained failures for the most difficult images. In this work, we present an optimization of this algorithm that allows for 100% grid detection and a 25% improvement in grid positioning accuracy. These improvements make the algorithm fully reliable for grid detection. This optimization also allows complete erasing of the grid without altering the cells, which eases their segmentation.

  9. Metal nano-grids for transparent conduction in solar cells

    DOE PAGES

    Muzzillo, Christopher P.

    2017-05-11

    A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGsmore » with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.« less

  10. Metal nano-grids for transparent conduction in solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher P.

    A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGsmore » with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.« less

  11. Back surface reflectors for solar cells

    NASA Technical Reports Server (NTRS)

    Chai, A. T.

    1980-01-01

    Sample solar cells were fabricated to study the effects of various back surface reflectors on the device performance. They are typical 50 micrometers thick, space quality, silicon solar cells except for variations of the back contact configuration. The back surfaces of the sample cells are polished to a mirror like finish, and have either conventional full contacts or grid finger contacts. Measurements and evaluation of various metallic back surface reflectors, as well as cells with total internal reflection, are presented. Results indicate that back surface reflectors formed using a grid finger back contact are more effective reflectors than cells with full back metallization and that Au, Ag, or Cu are better back surface reflector metals than Al.

  12. OMEGA System Performance Assessment and Coverage Evaluation (PACE) Workstation Design and Implementation. Volume 2

    DTIC Science & Technology

    1991-02-15

    picked, Ce11Pop" .xmonth, CeliPcpUpA .hour’ . Phase kND $80) = 0 ELSE IF (stationinfol36’ [stations. picked, CellIP-- CpA .n=nh, CeSUP pP.hour . Phiase...CellGrid, irt (322,24. 281,314, RightCeliGridAction, ShoCe11~ta, DcNot-hingPr-oc, bJii ne (lfepnIi lfs t.Xj05,efIghplit. Y4, 60,16,white, blak , black...8217.Hilite(oc,yy); with CellPI~p do begin if (SubCells (Hcnth,Hr] .X < (Get~4axX - RightsideStatsA .width - SubCellIs (Month, Hour) Width - SubCellP~ cpA

  13. A principle of economy predicts the functional architecture of grid cells.

    PubMed

    Wei, Xue-Xin; Prentice, Jason; Balasubramanian, Vijay

    2015-09-03

    Grid cells in the brain respond when an animal occupies a periodic lattice of 'grid fields' during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 for realistic neurons, (iv) the scale ratio should vary modestly within and between animals. These results explain the measured grid structure in rodents. We also predict optimal organization in one and three dimensions, the number of modules, and, with added assumptions, the ratio between grid periods and field widths.

  14. Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Junyi; Subramani, Thiyagu; Sun, Yonglie; Jevasuwan, Wipakorn; Fukata, Naoki

    2018-05-01

    Silicon nanowire solar cells were fabricated by metal catalyzed electroless etching (MCEE) followed by thermal chemical vapor deposition (CVD). In this study, we investigated two effects, a UV/ozone treatment and the use of a micro-grid electrodes, to enhance light absorption and reduce the optic losses in the solar cell device. The UV/ozone treatment successfully improved the conversion efficiency. The micro-grid electrodes were then applied in solar cell devices subjected to a back surface field (BSF) treatment and rapid thermal annealing (RTA). These effects improved the conversion efficiency from 9.4% to 10.9%. Moreover, to reduce surface recombination and improve the continuity of front electrodes, we optimized the etching time of the MCEE process, giving a high efficiency of 12.3%.

  15. Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.

    PubMed

    Crăciun, Cora

    2014-08-01

    CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Square cell packing in the Drosophila embryo through spatiotemporally regulated EGF receptor signaling

    PubMed Central

    Tamada, Masako; Zallen, Jennifer A.

    2015-01-01

    Summary Cells display dynamic and diverse morphologies during development, but the strategies by which differentiated tissues achieve precise shapes and patterns are not well understood. Here we identify a developmental program that generates a highly ordered square cell grid in the Drosophila embryo through sequential and spatially regulated cell alignment, oriented cell division, and apicobasal cell elongation. The basic leucine zipper transcriptional regulator Cnc is necessary and sufficient to produce a square cell grid in the presence of a midline signal provided by the EGF receptor ligand, Spitz. Spitz orients cell divisions through a Pins/LGN-dependent spindle positioning mechanism and controls cell shape and alignment through a transcriptional pathway that requires the Pointed ETS domain protein. These results identify a strategy for producing ordered square cell packing configurations in epithelia and reveal a molecular mechanism by which organized tissue structure is generated through spatiotemporally regulated responses to EGF receptor activation. PMID:26506305

  17. A robust, efficient equidistribution 2D grid generation method

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Delzanno, Gian Luca; Finn, John; Chung, Jeojin; Lapenta, Giovanni

    2007-11-01

    We present a new cell-area equidistribution method for two- dimensional grid adaptation [1]. The method is able to satisfy the equidistribution constraint to arbitrary precision while optimizing desired grid properties (such as isotropy and smoothness). The method is based on the minimization of the grid smoothness integral, constrained to producing a given positive-definite cell volume distribution. The procedure gives rise to a single, non-linear scalar equation with no free-parameters. We solve this equation numerically with the Newton-Krylov technique. The ellipticity property of the linearized scalar equation allows multigrid preconditioning techniques to be effectively used. We demonstrate a solution exists and is unique. Therefore, once the solution is found, the adapted grid cannot be folded due to the positivity of the constraint on the cell volumes. We present several challenging tests to show that our new method produces optimal grids in which the constraint is satisfied numerically to arbitrary precision. We also compare the new method to the deformation method [2] and show that our new method produces better quality grids. [1] G.L. Delzanno, L. Chac'on, J.M. Finn, Y. Chung, G. Lapenta, A new, robust equidistribution method for two-dimensional grid generation, in preparation. [2] G. Liao and D. Anderson, A new approach to grid generation, Appl. Anal. 44, 285--297 (1992).

  18. GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.

  19. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.

    1999-01-01

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

  20. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.

    1999-02-16

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

  1. Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.

  2. Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions

    PubMed Central

    Shipston‐Sharman, Oliver; Solanka, Lukas

    2016-01-01

    Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. PMID:27870120

  3. Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles.

    PubMed

    Yang, Ping; Kattawar, George W; Liou, Kuo-Nan; Lu, Jun Q

    2004-08-10

    Two grid configurations can be employed to implement the finite-difference time-domain (FDTD) technique in a Cartesian system. One configuration defines the electric and magnetic field components at the cell edges and cell-face centers, respectively, whereas the other reverses these definitions. These two grid configurations differ in terms of implication on the electromagnetic boundary conditions if the scatterer in the FDTD computation is a dielectric particle. The permittivity has an abrupt transition at the cell interface if the dielectric properties of two adjacent cells are not identical. Similarly, the discontinuity of permittivity is also observed at the edges of neighboring cells that are different in terms of their dielectric constants. We present two FDTD schemes for light scattering by dielectric particles to overcome the above-mentioned discontinuity on the basis of the electromagnetic boundary conditions for the two Cartesian grid configurations. We also present an empirical approach to accelerate the convergence of the discrete Fourier transform to obtain the field values in the frequency domain. As a new application of the FDTD method, we investigate the scattering properties of multibranched bullet-rosette ice crystals at both visible and thermal infrared wavelengths.

  4. Standardized UXO Technology Demonstration Site, Scoring Record No. 943

    DTIC Science & Technology

    2014-08-01

    COLLERAN ROAD ABERDEEN PROVING GROUND, MARYLAND 21005-5059 Printed on Recycled Paper TEDT-AT-SL-M MEMORANDUM FOR Program Manager – SERDP...equipment. Small munitions grid Contains 300 grid cells . The center of each grid cell contains either munitions, clutter, or nothing with a portion...weather was warm and the field dry throughout the survey period for Battelle. 12 3.3.3 Soil Moisture Three soil probes were placed at various

  5. Cause and Cure-Deterioration in Accuracy of CFD Simulations with Use of High-Aspect-Ratio Triangular/Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji

    2017-01-01

    In the multi-dimensional space-time conservation element and solution element16 (CESE) method, triangles and tetrahedral mesh elements turn out to be the most natural building blocks for 2D and 3D spatial grids, respectively. As such, the CESE method is naturally compatible with the simplest 2D and 3D unstructured grids and thus can be easily applied to solve problems with complex geometries. However, because (a) accurate solution of a high-Reynolds number flow field near a solid wall requires that the grid intervals along the direction normal to the wall be much finer than those in a direction parallel to the wall and, as such, the use of grid cells with extremely high aspect ratio (103 to 106) may become mandatory, and (b) unlike quadrilateral hexahedral grids, it is well-known that accuracy of gradient computations involving triangular tetrahedral grids tends to deteriorate rapidly as cell aspect ratio increases. As a result, the use of triangular tetrahedral grid cells near a solid wall has long been deemed impractical by CFD researchers. In view of (a) the critical role played by triangular tetrahedral grids in the CESE development, and (b) the importance of accurate resolution of high-Reynolds number flow field near a solid wall, as will be presented in the main paper, a comprehensive and rigorous mathematical framework that clearly identifies the reasons behind the accuracy deterioration as described above has been developed for the 2D case involving triangular cells. By avoiding the pitfalls identified by the 2D framework, and its 3D extension, it has been shown numerically.

  6. Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried

    1999-01-01

    The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.

  7. Multi-Material Front Contact for 19% Thin Film Solar Cells.

    PubMed

    van Deelen, Joop; Tezsevin, Yasemin; Barink, Marco

    2016-02-06

    The trade-off between transmittance and conductivity of the front contact material poses a bottleneck for thin film solar panels. Normally, the front contact material is a metal oxide and the optimal cell configuration and panel efficiency were determined for various band gap materials, representing Cu(In,Ga)Se₂ (CIGS), CdTe and high band gap perovskites. Supplementing the metal oxide with a metallic copper grid improves the performance of the front contact and aims to increase the efficiency. Various front contact designs with and without a metallic finger grid were calculated with a variation of the transparent conductive oxide (TCO) sheet resistance, scribing area, cell length, and finger dimensions. In addition, the contact resistance and illumination power were also assessed and the optimal thin film solar panel design was determined. Adding a metallic finger grid on a TCO gives a higher solar cell efficiency and this also enables longer cell lengths. However, contact resistance between the metal and the TCO material can reduce the efficiency benefit somewhat.

  8. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, Steven J.

    1987-01-01

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120.degree. at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking and interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  9. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, S.J.

    1985-03-15

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120/sup 0/ at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  10. Coarse-grained hydrodynamics from correlation functions

    NASA Astrophysics Data System (ADS)

    Palmer, Bruce

    2018-02-01

    This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configurations from a molecular dynamics simulation or other atomistic simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilibrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is demonstrated on a discrete particle simulation of diffusion with a spatially dependent diffusion coefficient. Correlation functions are calculated from the particle simulation and the spatially varying diffusion coefficient is recovered using a fitting procedure.

  11. Grid generation in three dimensions by Poisson equations with control of cell size and skewness at boundary surfaces

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Steger, J. L.

    1983-01-01

    An algorithm for generating computational grids about arbitrary three-dimensional bodies is developed. The elliptic partial differential equation (PDE) approach developed by Steger and Sorenson and used in the NASA computer program GRAPE is extended from two to three dimensions. Forcing functions which are found automatically by the algorithm give the user the ability to control mesh cell size and skewness at boundary surfaces. This algorithm, as is typical of PDE grid generators, gives smooth grid lines and spacing in the interior of the grid. The method is applied to a rectilinear wind-tunnel case and to two body shapes in spherical coordinates.

  12. Elliptic generation of composite three-dimensional grids about realistic aircraft

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1986-01-01

    An elliptic method for generating composite grids about realistic aircraft is presented. A body-conforming grid is first generated about the entire aircraft by the solution of Poisson's differential equation. This grid has relatively coarse spacing, and it covers the entire physical domain. At boundary surfaces, cell size is controlled and cell skewness is nearly eliminated by inhomogeneous terms, which are found automatically by the program. Certain regions of the grid in which high gradients are expected, and which map into rectangular solids in the computational domain, are then designated for zonal refinement. Spacing in the zonal grids is reduced by adding points with a simple, algebraic scheme. Details of the grid generation method are presented along with results of the present application, a wing-body configuration based on the F-16 fighter aircraft.

  13. A principle of economy predicts the functional architecture of grid cells

    PubMed Central

    Wei, Xue-Xin; Prentice, Jason; Balasubramanian, Vijay

    2015-01-01

    Grid cells in the brain respond when an animal occupies a periodic lattice of ‘grid fields’ during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 for realistic neurons, (iv) the scale ratio should vary modestly within and between animals. These results explain the measured grid structure in rodents. We also predict optimal organization in one and three dimensions, the number of modules, and, with added assumptions, the ratio between grid periods and field widths. DOI: http://dx.doi.org/10.7554/eLife.08362.001 PMID:26335200

  14. Grid cell mechanisms and function: Contributions of entorhinal persistent spiking and phase resetting

    PubMed Central

    Hasselmo, Michael E.

    2008-01-01

    This article presents a model of grid cell firing based on the intrinsic persistent firing shown experimentally in neurons of entorhinal cortex. In this model, the mechanism of persistent firing allows individual neurons to hold a stable baseline firing frequency. Depolarizing input from speed modulated head direction cells transiently shifts the frequency of firing from baseline, resulting in a shift in spiking phase in proportion to the integral of velocity. The convergence of input from different persistent firing neurons causes spiking in a grid cell only when the persistent firing neurons are within similar phase ranges. This model effectively simulates the two-dimensional firing of grid cells in open field environments, as well as the properties of theta phase precession. This model provides an alternate implementation of oscillatory interference models. The persistent firing could also interact on a circuit level with rhythmic inhibition and neurons showing membrane potential oscillations to code position with spiking phase. These mechanisms could operate in parallel with computation of position from visual angle and distance of stimuli. In addition to simulating two-dimensional grid patterns, models of phase interference can account for context-dependent firing in other tasks. In network simulations of entorhinal cortex, hippocampus and postsubiculum, the reset of phase effectively replicates context-dependent firing by entorhinal and hippocampal neurons during performance of a continuous spatial alternation task, a delayed spatial alternation task with running in a wheel during the delay period, and a hairpin maze task. PMID:19021258

  15. Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA

    USGS Publications Warehouse

    Gallo, Kevin P.; Tarpley, Dan; Mitchell, Ken; Csiszar, Ivan; Owen, Timothy W.; Reed, Bradley C.

    2001-01-01

    The land cover classes developed under the coordination of the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) have been analyzed for a study area that includes the Conterminous United States and portions of Mexico and Canada. The 1-km resolution data have been analyzed to produce a gridded data set that includes within each 20-km grid cell: 1) the three most dominant land cover classes, 2) the fractional area associated with each of the three dominant classes, and 3) the fractional area covered by water. Additionally, the monthly fraction of green vegetation cover (fgreen) associated with each of the three dominant land cover classes per grid cell was derived from a 5-year climatology of 1-km resolution NOAA-AVHRR data. The variables derived in this study provide a potential improvement over the use of monthly fgreen linked to a single land cover class per model grid cell.

  16. Draft reference grid cells for emergency response reconnaissance developed for use by the US Environmental Protection Agency [ER.QUADS6K_EPA

    EPA Pesticide Factsheets

    Draft reference grid cells for emergency response reconnaissance developed for use by the US Environmental Protection Agency. Grid cells are based on densification of the USGS Quarterquad (1:12,000 scale or 12K) grids for the continental United States, Alaska, Hawaii and Puerto Rico and are roughly equivalent to 1:6000 scale (6K) quadrangles approximately 2 miles long on each side. Note: This file is >80MB in size. Regional subsets have been created from this national file that include a 20 mile buffer of tiles around each EPA Region. To access the regional subsets, go to http://geodata.epa.gov/OSWER/6kquads_epa.zip and select the name of the file that corresponds to your region of interest (e.g. 6kquadr1.zip is the name of the file created for EPA Region 1).

  17. Using Grid Cells for Navigation

    PubMed Central

    Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil

    2015-01-01

    Summary Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this “vector navigation” relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. PMID:26247860

  18. Fast and accurate Voronoi density gridding from Lagrangian hydrodynamics data

    NASA Astrophysics Data System (ADS)

    Petkova, Maya A.; Laibe, Guillaume; Bonnell, Ian A.

    2018-01-01

    Voronoi grids have been successfully used to represent density structures of gas in astronomical hydrodynamics simulations. While some codes are explicitly built around using a Voronoi grid, others, such as Smoothed Particle Hydrodynamics (SPH), use particle-based representations and can benefit from constructing a Voronoi grid for post-processing their output. So far, calculating the density of each Voronoi cell from SPH data has been done numerically, which is both slow and potentially inaccurate. This paper proposes an alternative analytic method, which is fast and accurate. We derive an expression for the integral of a cubic spline kernel over the volume of a Voronoi cell and link it to the density of the cell. Mass conservation is ensured rigorously by the procedure. The method can be applied more broadly to integrate a spherically symmetric polynomial function over the volume of a random polyhedron.

  19. A New Family of Multilevel Grid Connected Inverters Based on Packed U Cell Topology.

    PubMed

    Pakdel, Majid; Jalilzadeh, Saeid

    2017-09-29

    In this paper a novel packed U cell (PUC) based multilevel grid connected inverter is proposed. Unlike the U cell arrangement which consists of two power switches and one capacitor, in the proposed converter topology a lower DC power supply from renewable energy resources such as photovoltaic arrays (PV) is used as a base power source. The proposed topology offers higher efficiency and lower cost using a small number of power switches and a lower DC power source which is supplied from renewable energy resources. Other capacitor voltages are extracted from the base lower DC power source using isolated DC-DC power converters. The operation principle of proposed transformerless multilevel grid connected inverter is analyzed theoretically. Operation of the proposed multilevel grid connected inverter is verified through simulation studies. An experimental prototype using STM32F407 discovery controller board is performed to verify the simulation results.

  20. Triangle Geometry Processing for Surface Modeling and Cartesian Grid Generation

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J. (Inventor); Melton, John E. (Inventor); Berger, Marsha J. (Inventor)

    2002-01-01

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  1. Triangle geometry processing for surface modeling and cartesian grid generation

    DOEpatents

    Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  2. Wave Information Studies of US Coastlines: Hindcast Wave Information for the Great Lakes: Lake Erie

    DTIC Science & Technology

    1991-10-01

    total ice cover) for individual grid cells measuring 5 km square. 42. The GLERL analyzed each half-month data set to provide the maximum, minimum...average, median, and modal ice concentrations for each 5-km cell . The median value, which represents an estimate of the 50-percent point of the ice...incorporating the progression and decay of the time-dependent ice cover was complicated by the fact that different grid cell sizes were used for mapping the ice

  3. Glaucoma Diagnostic Capability of Global and Regional Measurements of Isolated Ganglion Cell Layer and Inner Plexiform Layer.

    PubMed

    Chien, Jason L; Ghassibi, Mark P; Patthanathamrongkasem, Thipnapa; Abumasmah, Ramiz; Rosman, Michael S; Skaat, Alon; Tello, Celso; Liebmann, Jeffrey M; Ritch, Robert; Park, Sung Chul

    2017-03-01

    To compare glaucoma diagnostic capability of global/regional macular layer parameters in different-sized grids. Serial horizontal spectral-domain optical coherence tomography scans of macula were obtained. Automated macular grids with diameters of 3, 3.45, and 6 mm were used. For each grid, 10 parameters (total volume; average thicknesses in 9 regions) were obtained for 5 layers: macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), ganglion cell-inner plexiform layer (GCIPL; GCL+IPL), and ganglion cell complex (GCC; mRNFL+GCL+IPL). Sixty-nine normal eyes (69 subjects) and 87 glaucomatous eyes (87 patients) were included. For the total volume parameter, the area under the receiver operating characteristic curves (AUCs) in 6-mm grid were larger than the AUCs in 3- and 3.45-mm grids for GCL, GCC, GCIPL, and mRNFL (all P<0.020). For the average thickness parameters, the best AUC in 6-mm grid (T2 region for GCL, IPL, and GCIPL; I2 region for mRNFL and GCC) was greater than the best AUC in 3-mm grid for GCL, GCC, and mRNFL (P<0.045). The AUC of GCL volume (0.920) was similar to those of GCC (0.920) and GCIPL (0.909) volume. The AUC of GCL T2 region thickness (0.942) was similar to those of GCC I2 region (0.942) and GCIPL T2 region (0.934) thickness. Isolated macular GCL appears to be as good as GCC and GCIPL in glaucoma diagnosis, while IPL does not. Larger macular grids may be better at detecting glaucoma. Each layer has a characteristic region with the best glaucoma diagnostic capability.

  4. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatsonis, Nikolaos A.; Spirkin, Anton

    2009-06-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error andmore » sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.« less

  5. Conceptual Design of the Everglades Depth Estimation Network (EDEN) Grid

    USGS Publications Warehouse

    Jones, John W.; Price, Susan D.

    2007-01-01

    INTRODUCTION The Everglades Depth Estimation Network (EDEN) offers a consistent and documented dataset that can be used to guide large-scale field operations, to integrate hydrologic and ecological responses, and to support biological and ecological assessments that measure ecosystem responses to the Comprehensive Everglades Restoration Plan (Telis, 2006). Ground elevation data for the greater Everglades and the digital ground elevation models derived from them form the foundation for all EDEN water depth and associated ecologic/hydrologic modeling (Jones, 2004, Jones and Price, 2007). To use EDEN water depth and duration information most effectively, it is important to be able to view and manipulate information on elevation data quality and other land cover and habitat characteristics across the Everglades region. These requirements led to the development of the geographic data layer described in this techniques and methods report. Relying on extensive experience in GIS data development, distribution, and analysis, a great deal of forethought went into the design of the geographic data layer used to index elevation and other surface characteristics for the Greater Everglades region. To allow for simplicity of design and use, the EDEN area was broken into a large number of equal-sized rectangles ('Cells') that in total are referred to here as the 'grid'. Some characteristics of this grid, such as the size of its cells, its origin, the area of Florida it is designed to represent, and individual grid cell identifiers, could not be changed once the grid database was developed. Therefore, these characteristics were selected to design as robust a grid as possible and to ensure the grid's long-term utility. It is desirable to include all pertinent information known about elevation and elevation data collection as grid attributes. Also, it is very important to allow for efficient grid post-processing, sub-setting, analysis, and distribution. This document details the conceptual design of the EDEN grid spatial parameters and cell attribute-table content.

  6. Weekly agricultural emissions and ambient concentrations of ammonia: Validation of an emission inventory

    NASA Astrophysics Data System (ADS)

    Bittman, Shabtai; Jones, Keith; Vingarzan, Roxanne; Hunt, Derek E.; Sheppard, Steve C.; Tait, John; So, Rita; Zhao, Johanna

    2015-07-01

    Weekly inventories for emissions of agricultural ammonia were calculated for 139 4 × 4 km grid cells over 52 weeks in the intensely farmed Lower Fraser Valley, BC. The grid cells were located both inside and outside an area that had been depopulated of poultry due to an outbreak of Avian Influenza prior to the start of the study. During the study period, ambient ammonia concentrations were measured hourly at two locations outside the cull area and one location inside the cull area. Large emission differences between grid cells and differences in temporal variation between cells were related to farming practices and meteorological factors such as temperature and rainfall. Weekly average ambient concentrations at the three sampling locations were significantly correlated with estimates of weekly emissions for many of the grid cells in the study area. Inside the cull area, ambient concentrations during the cull (week 1) were 37% of the concentrations after the cull (week 52), while outside the cull there was almost no difference between week 1 and week 52, suggesting that in normal (non-cull) conditions, about 60% of the ambient ammonia was due to poultry farms. Estimated emissions in weeks 1 and 52 for grid cells affected by the cull indicated that over 90% of the emissions came from poultry. The discrepancy in difference between week 1 and 52 for emissions and ambient concentrations could be due to atmospheric factors like transport, atmospheric reactions, dispersion or deposition; to errors in the inventory including farming data, emission factors; and omission of some non-poultry emission sources. Overall the study supports the ammonia emission inventory estimates. Detailed emission data helps in modeling ammonia in the atmosphere and is useful for developing abatement policy.

  7. Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast-growing Eucalyptus forest plantation using airborne LiDAR data.

    PubMed

    Silva, Carlos Alberto; Hudak, Andrew Thomas; Klauberg, Carine; Vierling, Lee Alexandre; Gonzalez-Benecke, Carlos; de Padua Chaves Carvalho, Samuel; Rodriguez, Luiz Carlos Estraviz; Cardil, Adrián

    2017-12-01

    LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m -2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m. The results show that LiDAR pulse density of 5 pulses m -2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m -2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system. LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m -2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.

  8. Transfrontier Macroseismic Data Exchange in Europe: Intensity Assessment of M>4 Earthquakes by a Grid Cell Approach

    NASA Astrophysics Data System (ADS)

    Van Noten, K.; Lecocq, T.; Sira, C.; Hinzen, K. G.; Camelbeeck, T.

    2016-12-01

    In the US, the USGS is the only institute that gathers macroseismic data through its online "Did You Feel It?" (DYFI) system allowing a homogeneous and consistent intensity assessment. In Europe, however, we face a much more complicated situation. As almost every nation has its own inquiry in their national language(s) and both the EMSC and the USGS run an international DYFI inquiry, responses to European transfrontier-felt seismic events are strongly fragmented across different institutes. To make a realistic ground motion intensity assessment, macroseismic databases need to be merged in a consistent way hereby dealing with duplicated responses, different intensity calculations and legal issues (observer's privacy). In this presentation, we merge macroseismic datasets by a grid cell approach. Instead of using the irregularly-shaped, arbitrary municipal boundaries, we structure the model area into (100 km2) grid cells and assign an intensity value to each grid cell based on all institutional (geocoded) responses in that cell. The resulting macroseismic grid cell distribution shows a less subjective and more homogeneous intensity distribution than the classic community distribution despite less datapoints are used after geocoding the participant's location. The method is demonstrated on the 2011 ML 4.3 (MW 3.7) Goch (Germany) and the 2015 ML 4.2 (MW 3.7) Ramsgate (UK) earthquakes both felt in NW Europe. Integration of data results in a non-circular distribution in which the felt area extends significantly more in E-W than in N-S direction, illustrating a low-pass filtering effect due to the south-to-north increasing thickness of cover sediments above the regional London-Brabant Massif. Ground motions were amplified and attenuated at places with a shallow and deep basement, respectively. To large extend, the shape of the attenuation model derived through the grid cell intensity points is rather similar as the Atkinson and Wald (2007) CEUS prediction. The attenuation only suffers from underreported low intensities and non-reported intensity I at large epicentral distance. Figure: European institutes that provide an online "Did You Feel It?" inquiry. The question mark indicates countries in which an inquiry is absent or has not been found.

  9. Solar Maps Development: How the Maps Were Made | Geospatial Data Science |

    Science.gov Websites

    10% of a true measured value within the grid cell. Due to terrain effects and other microclimate effects and other microclimate influences, the local cloud cover can vary significantly even within a approximately 10% of a true measured value within the grid cell. Due to terrain effects and other microclimate

  10. Documentation and analysis of a geographic information system application for combining data layers, using nonpoint-source pollution as an example

    USGS Publications Warehouse

    Kiesler, James L.

    2002-01-01

    An analysis of the application indicates that the selected data layers to be combined should be at the greatest spatial resolution possible; however, all data layers do not have to be at the same spatial resolution. The spatial variation of the data layers should be adequately defined. The size of each grid cell should be small enough to maintain the spatial definition of smaller features within the data layers. The most accurate results are shown to occur when the values for the grid cells representing the individual data layers are summed and the mean of the summed grid-cell values is used to describe the watershed of interest.

  11. Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Choy, Wallace C. H.; Zhang, Di; Xie, Fengxian; Xin, Jianzhuo; Leung, C. W.

    2013-03-01

    Hybrid transparent monolayer graphene/metal grid is proposed as top electrode of semitransparent organic solar cells. The hybrid electrode using gold grid on flexible polyethylene terephthalate substrate shows very low sheet resistance of 22 ± 3 Ω/□ and high optical transmittance of 81.4%, which is comparable to conventional indium tin oxide/glass electrode. Using lamination process, the layer of poly(3,4-ethylenedioythiophene):poly(styrenesulfonate) doped with D-sorbitol plays an important role in the electrical performance of the laminated devices. In addition, the devices show best power convention efficiency of 3.1% and fill factor of 55.0%, which are much better than those of similar graphene-based semitransparent organic solar cells.

  12. Domain decomposition by the advancing-partition method for parallel unstructured grid generation

    NASA Technical Reports Server (NTRS)

    Banihashemi, legal representative, Soheila (Inventor); Pirzadeh, Shahyar Z. (Inventor)

    2012-01-01

    In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.

  13. Geometrically Flexible and Efficient Flow Analysis of High Speed Vehicles Via Domain Decomposition, Part 1: Unstructured-Grid Solver for High Speed Flows

    NASA Technical Reports Server (NTRS)

    White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki

    2017-01-01

    The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on a non-hex-dominant grid.

  14. Semianalytical computation of path lines for finite-difference models

    USGS Publications Warehouse

    Pollock, D.W.

    1988-01-01

    A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author

  15. A topological coordinate system for the diamond cubic grid.

    PubMed

    Čomić, Lidija; Nagy, Benedek

    2016-09-01

    Topological coordinate systems are used to address all cells of abstract cell complexes. In this paper, a topological coordinate system for cells in the diamond cubic grid is presented and some of its properties are detailed. Four dependent coordinates are used to address the voxels (triakis truncated tetrahedra), their faces (hexagons and triangles), their edges and the points at their corners. Boundary and co-boundary relations, as well as adjacency relations between the cells, can easily be captured by the coordinate values. Thus, this coordinate system is apt for implementation in various applications, such as visualizations, morphological and topological operations and shape analysis.

  16. Silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.; Addis, F. W.; Miller, W. A.

    1985-01-01

    The MINP solar cell concept refers to a cell structure designed to be a base region dominated device. Thus, it is desirable that recombination losses are reduced to the point that they occur only in the base region. The most unique feature of the MINP cell design is that a tunneling contact is utilized for the metallic contact on the front surface. The areas under the collector grid and bus bar are passivated by a thin oxide of tunneling thickness. Efforts must also be taken to minimize recombination at the surface between grid lines, at the junction periphery and within the emitter. Results of both theoretical and experimental studies of silicon MINP cells are given. Performance calculations are described which give expected efficiencies as a function of base resistivity and junction depth. Fabrication and characterization of cells are discussed which are based on 0.2 ohm-cm substrates, diffused emitters on the order of 0.15 to 0.20 microns deep, and with Mg MIS collector grids. A total area AM 1 efficiency of 16.8% was achieved. Detailed analyses of photocurrent and current loss mechanisms are presented and utilized to discuss future directions of research. Finally, results reported by other workers are discussed.

  17. Place Cells, Grid Cells, and Memory

    PubMed Central

    Moser, May-Britt; Rowland, David C.; Moser, Edvard I.

    2015-01-01

    The hippocampal system is critical for storage and retrieval of declarative memories, including memories for locations and events that take place at those locations. Spatial memories place high demands on capacity. Memories must be distinct to be recalled without interference and encoding must be fast. Recent studies have indicated that hippocampal networks allow for fast storage of large quantities of uncorrelated spatial information. The aim of the this article is to review and discuss some of this work, taking as a starting point the discovery of multiple functionally specialized cell types of the hippocampal–entorhinal circuit, such as place, grid, and border cells. We will show that grid cells provide the hippocampus with a metric, as well as a putative mechanism for decorrelation of representations, that the formation of environment-specific place maps depends on mechanisms for long-term plasticity in the hippocampus, and that long-term spatiotemporal memory storage may depend on offline consolidation processes related to sharp-wave ripple activity in the hippocampus. The multitude of representations generated through interactions between a variety of functionally specialized cell types in the entorhinal–hippocampal circuit may be at the heart of the mechanism for declarative memory formation. PMID:25646382

  18. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    PubMed Central

    Onesto, Valentina; Cosentino, Carlo; Di Fabrizio, Enzo; Cesarelli, Mario; Amato, Francesco; Gentile, Francesco

    2016-01-01

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect. PMID:27403421

  19. Durability and reliability of electric vehicle batteries under electric utility grid operations: Bidirectional charging impact analysis

    NASA Astrophysics Data System (ADS)

    Dubarry, Matthieu; Devie, Arnaud; McKenzie, Katherine

    2017-08-01

    Vehicle-to-grid and Grid-to-vehicle strategies are often cited as promising to mitigate the intermittency of renewable energy on electric power grids. However, their impact on the vehicle battery degradation has not been investigated in detail. The aim of this work is to understand the impact of bidirectional charging on commercial Li-ion cells used in electric vehicles today. Results show that additional cycling to discharge vehicle batteries to the power grid, even at constant power, is detrimental to cell performance. This additional use of the battery packs could shorten the lifetime for vehicle use to less than five years. By contrast, the impact of delaying the charge in order to reduce the impact on the power grid is found to be negligible at room temperature, but could be significant in warmer climates.

  20. Shearing-induced asymmetry in entorhinal grid cells.

    PubMed

    Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I

    2015-02-12

    Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.

  1. EAULIQ: The Next Generation

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Fowler, Laura D.

    1999-01-01

    This report summarizes the design of a new version of the stratiform cloud parameterization called Eauliq; the new version is called Eauliq NG. The key features of Eauliq NG are: (1) a prognostic fractional area covered by stratiform cloudiness, following the approach developed by M. Tiedtke for use in the ECMWF model; (2) separate prognostic thermodynamic variables for the clear and cloudy portions of each grid cell; (3) separate vertical velocities for the clear and cloudy portions of each grid cell, allowing the model to represent some aspects of observed mesoscale circulations; (4) cumulus entrainment from both the clear and cloudy portions of a grid cell, and cumulus detrainment into the cloudy portion only; and (5) the effects of the cumulus-induced subsidence in the cloudy portion of a grid cell on the cloud water and ice there. In this paper we present the mathematical framework of Eauliq NG; a discussion of cumulus effects; a new parameterization of lateral mass exchanges between clear and cloudy regions; and a theory to determine the mesoscale mass circulation, based on the hypothesis that the stratiform clouds remain neutrally buoyant through time and that the mesoscale circulations are the mechanism which makes this possible. An appendix also discusses some time-differencing methods.

  2. On the Quality of Velocity Interpolation Schemes for Marker-in-Cell Method and Staggered Grids

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.

    2017-03-01

    The marker-in-cell method is generally considered a flexible and robust method to model the advection of heterogenous non-diffusive properties (i.e., rock type or composition) in geodynamic problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without considering the divergence of the velocity field at the interpolated locations (i.e., non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Journal of Computational Physics 166:218-252, 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. To remedy this at low computational costs, Jenny et al. (Journal of Computational Physics 166:218-252, 2001) and Meyer and Jenny (Proceedings in Applied Mathematics and Mechanics 4:466-467, 2004) proposed a simple, conservative velocity interpolation scheme for 2-D staggered grid, while Wang et al. (Geochemistry, Geophysics, Geosystems 16(6):2015-2023, 2015) extended the formulation to 3-D finite element methods. Here, we adapt this formulation for 3-D staggered grids (correction interpolation) and we report on the quality of various velocity interpolation methods for 2-D and 3-D staggered grids. We test the interpolation schemes in combination with different advection schemes on incompressible Stokes problems with strong velocity gradients, which are discretized using a finite difference method. Our results suggest that a conservative formulation reduces the dispersion and clustering of markers, minimizing the need of unphysical marker control in geodynamic models.

  3. Concepts for thin-film GaAs concentrator cells. [for solar photovoltaic space power systems

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Gale, R. P.; Mcclelland, R.; King, B.; Dingle, J.

    1989-01-01

    The development of advanced GaAs concentrator solar cells, and in particular, the use of CLEFT (cleavage of lateral epitaxial films for transfer) processes for formation of thin-film structures is reported. The use of CLEFT has made possible processing of the back, and cells with back surface grids are discussed. Data on patterned junction development are presented; such junctions are expected to be useful in back surface applications requiring point contacts, grating structures, and interdigitated back contacts. CLEFT concentrator solar cells with grids on the front and back surfaces are reported here; these cells are 4 microns thick and are bonded to glass covers for support. Air mass zero efficiency of 18.8 percent has been obtained for a CLEFT concentrator operating at 18.5 suns.

  4. Electrostatic bonding of thin (approximately 3 mil) 7070 cover glass to Ta2O5 AR-coated thin (approximately 2 mil) silicon wafers and solar cells

    NASA Technical Reports Server (NTRS)

    Egelkrout, D. W.; Horne, W. E.

    1980-01-01

    Electrostatic bonding (ESB) of thin (3 mil) Corning 7070 cover glasses to Ta2O5 AR-coated thin (2 mil) silicon wafers and solar cells is investigated. An experimental program was conducted to establish the effects of variations in pressure, voltage, temperature, time, Ta2O5 thickness, and various prebond glass treatments. Flat wafers without contact grids were used to study the basic effects for bonding to semiconductor surfaces typical of solar cells. Solar cells with three different grid patterns were used to determine additional requirements caused by the raised metallic contacts.

  5. Using Grid Cells for Navigation.

    PubMed

    Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil

    2015-08-05

    Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this "vector navigation" relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. APORT: a program for the area-based apportionment of county variables to cells of a polar grid. [Airborne pollutant transport models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, D.E.; Little, C.A.

    1978-11-01

    The APORT computer code was developed to apportion variables tabulated for polygon-structured civil districts onto cells of a polar grid. The apportionment is based on fractional overlap between the polygon and the grid cells. Centering the origin of the polar system at a pollutant source site yields results that are very useful for assessing and interpreting the effects of airborne pollutant dissemination. The APOPLT graphics code, which uses the same data set as APORT, provides a convenient visual display of the polygon structure and the extent of the polar grid. The APORT/APOPLT methodology was verified by application to county summariesmore » of cattle population for counties surrounding the Oyster Creek, New Jersey, nuclear power plant. These numerical results, which were obtained using approximately 2-min computer time on an IBM System 360/91 computer, compare favorably to results of manual computations in both speed and accuracy.« less

  7. Deriving flow directions for coarse-resolution (1-4 km) gridded hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Reed, Seann M.

    2003-09-01

    The National Weather Service Hydrology Laboratory (NWS-HL) is currently testing a grid-based distributed hydrologic model at a resolution (4 km) commensurate with operational, radar-based precipitation products. To implement distributed routing algorithms in this framework, a flow direction must be assigned to each model cell. A new algorithm, referred to as cell outlet tracing with an area threshold (COTAT) has been developed to automatically, accurately, and efficiently assign flow directions to any coarse-resolution grid cells using information from any higher-resolution digital elevation model. Although similar to previously published algorithms, this approach offers some advantages. Use of an area threshold allows more control over the tendency for producing diagonal flow directions. Analyses of results at different output resolutions ranging from 300 m to 4000 m indicate that it is possible to choose an area threshold that will produce minimal differences in average network flow lengths across this range of scales. Flow direction grids at a 4 km resolution have been produced for the conterminous United States.

  8. Local transformations of the hippocampal cognitive map.

    PubMed

    Krupic, Julija; Bauza, Marius; Burton, Stephen; O'Keefe, John

    2018-03-09

    Grid cells are neurons active in multiple fields arranged in a hexagonal lattice and are thought to represent the "universal metric for space." However, they become nonhomogeneously distorted in polarized enclosures, which challenges this view. We found that local changes to the configuration of the enclosure induce individual grid fields to shift in a manner inversely related to their distance from the reconfigured boundary. The grid remained primarily anchored to the unchanged stable walls and showed a nonuniform rescaling. Shifts in simultaneously recorded colocalized grid fields were strongly correlated, which suggests that the readout of the animal's position might still be intact. Similar field shifts were also observed in place and boundary cells-albeit of greater magnitude and more pronounced closer to the reconfigured boundary-which suggests that there is no simple one-to-one relationship between these three different cell types. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

    DOE PAGES

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; ...

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less

  10. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yang; Zhou, Guangmin; Shi, Feifei

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less

  11. A simple procedure to analyze positions of interest in infectious cell cultures by correlative light and electron microscopy.

    PubMed

    Madela, Kazimierz; Banhart, Sebastian; Zimmermann, Anja; Piesker, Janett; Bannert, Norbert; Laue, Michael

    2014-01-01

    Plastic cell culture dishes that contain a thin bottom of highest optical quality including an imprinted finder grid (μ-Dish Grid-500) are optimally suited for routine correlative light and electron microscopy using chemical fixation. Such dishes allow high-resolution fluorescence and bright-field imaging using fixed and living cells and are compatible with standard protocols for scanning and transmission electron microscopy. Ease of use during cell culture and imaging, as well as a tight cover render the dishes particularly suitable for working with infectious organisms up to the highest biosafety level. Detailed protocols are provided and demonstrated by showing two examples: monitoring the production of virus-like particles of the Human Endogenous Retrovirus HERV-K(HML-2) by HeLa cells and investigation of Rab11-positive membrane-compartments of HeLa cells after infection with Chlamydia trachomatis. © 2014 Elsevier Inc. All rights reserved.

  12. Self-similar grid patterns in free-space shuffle-exchange networks

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    1993-12-01

    Self-similar grid patterns are proposed as an alternative to rectangular grid, array optoelectronic sources, and detectors of smart pixels. For shuffle based multistage interconnection networks, it is suggested that smart pixel should not be arrayed on a rectangular grid and that smart pixel unit cell should be the kernel of a self-similar grid pattern.

  13. Al/Pb lightweight grids prepared by molten salt electroless plating for application in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Hong, Bo; Jiang, Liangxing; Hao, Ketao; Liu, Fangyang; Yu, Xiaoying; Xue, Haitao; Li, Jie; Liu, Yexiang

    2014-06-01

    In this paper, a lightweight Pb plated Al (Al/Pb) grid was prepared by molten salt electroless plating. The SEM and bonding strength test show that the lead coating is deposited with a smooth surface and firm combination. CV test shows that the electrochemical properties of Al/Pb electrodes are stable. 2.0 V single-cell flooded lead-acid batteries with Al/Pb grids as negative collectors are assembled and the performances including 20 h capacity, rate capacity, cycle life, internal resistance are investigated. The results show that the cycle life of Al/Pb-grid cells is about 475 cycles and can meet the requirement of lead-acid batteries. Al/Pb grids are conducive to the refinement of PbSO4 grain, and thereby reduce the internal resistance of battery and advance the utilization of active mass. Moreover, weight of Al/Pb grid is only 55.4% of the conventional-grid. In this way, mass specific capacity of Al/Pb-grid negatives is 17.8% higher and the utilization of active mass is 6.5% higher than conventional-grid negatives.

  14. Parallel grid library for rapid and flexible simulation development

    NASA Astrophysics Data System (ADS)

    Honkonen, I.; von Alfthan, S.; Sandroos, A.; Janhunen, P.; Palmroth, M.

    2013-04-01

    We present an easy to use and flexible grid library for developing highly scalable parallel simulations. The distributed cartesian cell-refinable grid (dccrg) supports adaptive mesh refinement and allows an arbitrary C++ class to be used as cell data. The amount of data in grid cells can vary both in space and time allowing dccrg to be used in very different types of simulations, for example in fluid and particle codes. Dccrg transfers the data between neighboring cells on different processes transparently and asynchronously allowing one to overlap computation and communication. This enables excellent scalability at least up to 32 k cores in magnetohydrodynamic tests depending on the problem and hardware. In the version of dccrg presented here part of the mesh metadata is replicated between MPI processes reducing the scalability of adaptive mesh refinement (AMR) to between 200 and 600 processes. Dccrg is free software that anyone can use, study and modify and is available at https://gitorious.org/dccrg. Users are also kindly requested to cite this work when publishing results obtained with dccrg. Catalogue identifier: AEOM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License version 3 No. of lines in distributed program, including test data, etc.: 54975 No. of bytes in distributed program, including test data, etc.: 974015 Distribution format: tar.gz Programming language: C++. Computer: PC, cluster, supercomputer. Operating system: POSIX. The code has been parallelized using MPI and tested with 1-32768 processes RAM: 10 MB-10 GB per process Classification: 4.12, 4.14, 6.5, 19.3, 19.10, 20. External routines: MPI-2 [1], boost [2], Zoltan [3], sfc++ [4] Nature of problem: Grid library supporting arbitrary data in grid cells, parallel adaptive mesh refinement, transparent remote neighbor data updates and load balancing. Solution method: The simulation grid is represented by an adjacency list (graph) with vertices stored into a hash table and edges into contiguous arrays. Message Passing Interface standard is used for parallelization. Cell data is given as a template parameter when instantiating the grid. Restrictions: Logically cartesian grid. Running time: Running time depends on the hardware, problem and the solution method. Small problems can be solved in under a minute and very large problems can take weeks. The examples and tests provided with the package take less than about one minute using default options. In the version of dccrg presented here the speed of adaptive mesh refinement is at most of the order of 106 total created cells per second. http://www.mpi-forum.org/. http://www.boost.org/. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data management services for parallel dynamic applications, Comput. Sci. Eng. 4 (2002) 90-97. http://dx.doi.org/10.1109/5992.988653. https://gitorious.org/sfc++.

  15. Assessment of rockfall susceptibility by integrating statistical and physically-based approaches

    NASA Astrophysics Data System (ADS)

    Frattini, Paolo; Crosta, Giovanni; Carrara, Alberto; Agliardi, Federico

    In Val di Fassa (Dolomites, Eastern Italian Alps) rockfalls constitute the most significant gravity-induced natural disaster that threatens both the inhabitants of the valley, who are few, and the thousands of tourists who populate the area in summer and winter. To assess rockfall susceptibility, we developed an integrated statistical and physically-based approach that aimed to predict both the susceptibility to onset and the probability that rockfalls will attain specific reaches. Through field checks and multi-temporal aerial photo-interpretation, we prepared a detailed inventory of both rockfall source areas and associated scree-slope deposits. Using an innovative technique based on GIS tools and a 3D rockfall simulation code, grid cells pertaining to the rockfall source-area polygons were classified as active or inactive, based on the state of activity of the associated scree-slope deposits. The simulation code allows one to link each source grid cell with scree deposit polygons by calculating the trajectory of each simulated launch of blocks. By means of discriminant analysis, we then identified the mix of environmental variables that best identifies grid cells with low or high susceptibility to rockfalls. Among these variables, structural setting, land use, and morphology were the most important factors that led to the initiation of rockfalls. We developed 3D simulation models of the runout distance, intensity and frequency of rockfalls, whose source grid cells corresponded either to the geomorphologically-defined source polygons ( geomorphological scenario) or to study area grid cells with slope angle greater than an empirically-defined value of 37° ( empirical scenario). For each scenario, we assigned to the source grid cells an either fixed or variable onset susceptibility; the latter was derived from the discriminant model group (active/inactive) membership probabilities. Comparison of these four models indicates that the geomorphological scenario with variable onset susceptibility appears to be the most realistic model. Nevertheless, political and legal issues seem to guide local administrators, who tend to select the more conservative empirically-based scenario as a land-planning tool.

  16. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troia, Matthew J.; McManamay, Ryan A.

    Primary biodiversity data constitute observations of particular species at given points in time and space. Open-access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open-access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records frommore » the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). In this study, we aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well-surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well-surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well-surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional sampling biases. Lastly, this comprehensive assessment of biodiversity data across the contiguous United States provides a prioritization scheme to fill in the gaps by contributing existing occurrence records to the public domain and planning future surveys.« less

  17. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States

    DOE PAGES

    Troia, Matthew J.; McManamay, Ryan A.

    2016-06-12

    Primary biodiversity data constitute observations of particular species at given points in time and space. Open-access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open-access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records frommore » the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). In this study, we aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well-surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well-surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well-surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional sampling biases. Lastly, this comprehensive assessment of biodiversity data across the contiguous United States provides a prioritization scheme to fill in the gaps by contributing existing occurrence records to the public domain and planning future surveys.« less

  18. Hebbian Plasticity Realigns Grid Cell Activity with External Sensory Cues in Continuous Attractor Models

    PubMed Central

    Mulas, Marcello; Waniek, Nicolai; Conradt, Jörg

    2016-01-01

    After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments. PMID:26924979

  19. New ghost-node method for linking different models with varied grid refinement

    USGS Publications Warehouse

    James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.

    2006-01-01

    A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.

  20. Path and site effects deduced from merged transfrontier internet macroseismic data of two recent M4 earthquakes in northwest Europe using a grid cell approach

    NASA Astrophysics Data System (ADS)

    Van Noten, Koen; Lecocq, Thomas; Sira, Christophe; Hinzen, Klaus-G.; Camelbeeck, Thierry

    2017-04-01

    The online collection of earthquake reports in Europe is strongly fragmented across numerous seismological agencies. This paper demonstrates how collecting and merging online institutional macroseismic data strongly improves the density of observations and the quality of intensity shaking maps. Instead of using ZIP code Community Internet Intensity Maps, we geocode individual response addresses for location improvement, assign intensities to grouped answers within 100 km2 grid cells, and generate intensity attenuation relations from the grid cell intensities. Grid cell intensity maps are less subjective and illustrate a more homogeneous intensity distribution than communal ZIP code intensity maps. Using grid cells for ground motion analysis offers an advanced method for exchanging transfrontier equal-area intensity data without sharing any personal information. The applicability of the method is demonstrated on the felt responses of two clearly felt earthquakes: the 8 September 2011 ML 4.3 (Mw 3.7) Goch (Germany) and the 22 May 2015 ML 4.2 (Mw 3.7) Ramsgate (UK) earthquakes. Both events resulted in a non-circular distribution of intensities which is not explained by geometrical amplitude attenuation alone but illustrates an important low-pass filtering due to the sedimentary cover above the Anglo-Brabant Massif and in the Lower Rhine Graben. Our study illustrates the effect of increasing bedrock depth on intensity attenuation and the importance of the WNW-ESE Caledonian structural axis of the Anglo-Brabant Massif for seismic wave propagation. Seismic waves are less attenuated - high Q - along the strike of a tectonic structure but are more strongly attenuated - low Q - perpendicular to this structure, particularly when they cross rheologically different seismotectonic units separated by crustal-rooted faults.

  1. Hierarchical and Parallelizable Direct Volume Rendering for Irregular and Multiple Grids

    NASA Technical Reports Server (NTRS)

    Wilhelms, Jane; VanGelder, Allen; Tarantino, Paul; Gibbs, Jonathan

    1996-01-01

    A general volume rendering technique is described that efficiently produces images of excellent quality from data defined over irregular grids having a wide variety of formats. Rendering is done in software, eliminating the need for special graphics hardware, as well as any artifacts associated with graphics hardware. Images of volumes with about one million cells can be produced in one to several minutes on a workstation with a 150 MHz processor. A significant advantage of this method for applications such as computational fluid dynamics is that it can process multiple intersecting grids. Such grids present problems for most current volume rendering techniques. Also, the wide range of cell sizes (by a factor of 10,000 or more), which is typical of such applications, does not present difficulties, as it does for many techniques. A spatial hierarchical organization makes it possible to access data from a restricted region efficiently. The tree has greater depth in regions of greater detail, determined by the number of cells in the region. It also makes it possible to render useful 'preview' images very quickly (about one second for one-million-cell grids) by displaying each region associated with a tree node as one cell. Previews show enough detail to navigate effectively in very large data sets. The algorithmic techniques include use of a kappa-d tree, with prefix-order partitioning of triangles, to reduce the number of primitives that must be processed for one rendering, coarse-grain parallelism for a shared-memory MIMD architecture, a new perspective transformation that achieves greater numerical accuracy, and a scanline algorithm with depth sorting and a new clipping technique.

  2. Minimizing the Standard Deviation of Spatially Averaged Surface Cross-Sectional Data from the Dual-Frequency Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kim, Hyokyung

    2016-01-01

    For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.

  3. Technique for Low Amperage Potline Operation for Electricity Grid Storage

    NASA Astrophysics Data System (ADS)

    Taylor, Mark P.; Chen, John J. J.

    2015-03-01

    Following a critical review and analysis of steady-state energy balance windows for large modern cell technologies [ Taylor et al ., Met. Mat. Transactions E, 9th Sept. 2014], the issue of a substantial reduction in energy input and heat output to a specific cell technology is addressed in this paper. To investigate the feasibility of such a reduction, the dynamic response to substantial changes in cell amperage and energy input must be quantified. If large amperage reductions can be shown to be feasible and to have no major detrimental affects, a flexible amperage operating philosophy would allow the use of smelting cells as an energy reservoir in the following way: in times of high electricity demand the cells would operate at reduced amperage, releasing electricity to the grid, while in times of low demand or an over-supply of electricity on the grid, the cells would store the surplus electricity in the form of additional aluminum metal. However, to take the above concept out of the realms of the theoretical, it will first be necessary to demonstrate an ability to predict and control the response of the cell to such changes in energy input through regulating the heat losses from the cell. The process of regulation of cell heat loss is quite foreign to operators of aluminum smelters, because the technology to regulate heat loss from smelting cells has not existed previously. This technology does now exist in the form of patented heat exchangers [ Taylor et al ., US Patent 7,901,617 B2, Mar. 8, 2011], but its impact on smelter cell walls must be examined in a dynamic analysis to determine the effect on the molten bath temperature and liquid mass within the cell. The objective of this paper therefore is to perform a first-order analysis of this problem, and to identify the key scientific issues in regulating cell heat loss and in the operating philosophy of heat loss regulation.

  4. Unstructured Euler flow solutions using hexahedral cell refinement

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1991-01-01

    An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.

  5. A Cell-Centered Multigrid Algorithm for All Grid Sizes

    NASA Technical Reports Server (NTRS)

    Gjesdal, Thor

    1996-01-01

    Multigrid methods are optimal; that is, their rate of convergence is independent of the number of grid points, because they use a nested sequence of coarse grids to represent different scales of the solution. This nesting does, however, usually lead to certain restrictions of the permissible size of the discretised problem. In cases where the modeler is free to specify the whole problem, such constraints are of little importance because they can be taken into consideration from the outset. We consider the situation in which there are other competing constraints on the resolution. These restrictions may stem from the physical problem (e.g., if the discretised operator contains experimental data measured on a fixed grid) or from the need to avoid limitations set by the hardware. In this paper we discuss a modification to the cell-centered multigrid algorithm, so that it can be used br problems with any resolution. We discuss in particular a coarsening strategy and choice of intergrid transfer operators that can handle grids with both an even or odd number of cells. The method is described and applied to linear equations obtained by discretization of two- and three-dimensional second-order elliptic PDEs.

  6. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage.

    PubMed

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; Zhuo, Denys; Zhao, Jie; Liu, Kai; Liu, Yayuan; Zu, Chenxi; Chen, Wei; Zhang, Rufan; Huang, Xuanyi; Cui, Yi

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called "dead" sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm -3 , 2 g sulfur in a single cell), high volumetric energy density (135 Wh L -1 ), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.Lithium polysulfide batteries suffer from the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium. Here the authors show a reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity.

  7. Schnek: A C++ library for the development of parallel simulation codes on regular grids

    NASA Astrophysics Data System (ADS)

    Schmitz, Holger

    2018-05-01

    A large number of algorithms across the field of computational physics are formulated on grids with a regular topology. We present Schnek, a library that enables fast development of parallel simulations on regular grids. Schnek contains a number of easy-to-use modules that greatly reduce the amount of administrative code for large-scale simulation codes. The library provides an interface for reading simulation setup files with a hierarchical structure. The structure of the setup file is translated into a hierarchy of simulation modules that the developer can specify. The reader parses and evaluates mathematical expressions and initialises variables or grid data. This enables developers to write modular and flexible simulation codes with minimal effort. Regular grids of arbitrary dimension are defined as well as mechanisms for defining physical domain sizes, grid staggering, and ghost cells on these grids. Ghost cells can be exchanged between neighbouring processes using MPI with a simple interface. The grid data can easily be written into HDF5 files using serial or parallel I/O.

  8. Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.

    2008-01-01

    This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.

  9. ORPC RivGen Hydrokinetic Turbine Wake Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Jim; Guerra, Maricarmen

    Field measurements of mean flow and turbulence parameters at the Kvichak river prior to and after the deployment of ORPC's RivGen hydrokinetic turbine. Data description and turbine wake analysis are presented in the attached manuscript "Wake measurements from a hydrokinetic river turbine" by Guerra and Thomson (recently submitted to Renewable Energy). There are three data sets: NoTurbine (prior to deployment), Not_Operational_Turbine (turbine underwater, but not operational), and Operational_Turbine. The data has been quality controlled and organized into a three-dimensional grid using a local coordinate system described in the paper. All data sets are in Matlab format (.mat). Variables available inmore » the data sets are: qx: X coordinate matrix (m) qy: Y coordinate matrix (m) z : z coordinate vector (m) lat : grid cell latitude (degrees) lon: grid cell longitude (degrees) U : velocity magnitude (m/s) Ux: x velocity (m/s) Vy: y velocity (m/s) W: vertical velocity (m/s) Pseudo_beam.b_i: pseudo-along beam velocities (i = 1 to 4) (m/s) (structure with raw data within each grid cell) beam5.b5: 5th-beam velocity (m/s) (structure with raw data within each grid cell) tke: turbulent kinetic energy (m2/s2) epsilon: TKE dissipation rate (m2/s3) Reynolds stresses: uu, vv, ww, uw, vw (m2/s2) Variables from the Not Operational Turbine data set are identified with _T Variables from the Operational Turbine data set are identified with _TO« less

  10. A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features

    NASA Astrophysics Data System (ADS)

    Karimi-Fard, M.; Durlofsky, L. J.

    2016-10-01

    A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.

  11. Gold Nanoparticle Contrast Agents in Mammography: A Feasibility Study

    DTIC Science & Technology

    2008-08-01

    grid and allowed to dry for 6 hours prior to imaging. The grid was then imaged using a high-resolution transmission electron microscopy, and the...9. Lasfargues EY , Coutinho WG, Redfield ES. Isolation of two human tumor epithelial cell lines from solid breast carcinomas. Journal of National...tissue [14]. These probes have also been used to track immune-stimulating cells implanted into cancer patients for treatment purposes. Targeted contrast

  12. Dynamic modeling and evaluation of solid oxide fuel cell - combined heat and power system operating strategies

    NASA Astrophysics Data System (ADS)

    Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott

    Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.

  13. Urbanization and the more-individuals hypothesis.

    PubMed

    Chiari, Claudia; Dinetti, Marco; Licciardello, Cinzia; Licitra, Gaetano; Pautasso, Marco

    2010-03-01

    1. Urbanization is a landscape process affecting biodiversity world-wide. Despite many urban-rural studies of bird assemblages, it is still unclear whether more species-rich communities have more individuals, regardless of the level of urbanization. The more-individuals hypothesis assumes that species-rich communities have larger populations, thus reducing the chance of local extinctions. 2. Using newly collated avian distribution data for 1 km(2) grid cells across Florence, Italy, we show a significantly positive relationship between species richness and assemblage abundance for the whole urban area. This richness-abundance relationship persists for the 1 km(2) grid cells with less than 50% of urbanized territory, as well as for the remaining grid cells, with no significant difference in the slope of the relationship. These results support the more-individuals hypothesis as an explanation of patterns in species richness, also in human modified and fragmented habitats. 3. However, the intercept of the species richness-abundance relationship is significantly lower for highly urbanized grid cells. Our study confirms that urban communities have lower species richness but counters the common notion that assemblages in densely urbanized ecosystems have more individuals. In Florence, highly inhabited areas show fewer species and lower assemblage abundance. 4. Urbanized ecosystems are an ongoing large-scale natural experiment which can be used to test ecological theories empirically.

  14. Estimation of aquifer scale proportion using equal area grids: assessment of regional scale groundwater quality

    USGS Publications Warehouse

    Belitz, Kenneth; Jurgens, Bryant C.; Landon, Matthew K.; Fram, Miranda S.; Johnson, Tyler D.

    2010-01-01

    The proportion of an aquifer with constituent concentrations above a specified threshold (high concentrations) is taken as a nondimensional measure of regional scale water quality. If computed on the basis of area, it can be referred to as the aquifer scale proportion. A spatially unbiased estimate of aquifer scale proportion and a confidence interval for that estimate are obtained through the use of equal area grids and the binomial distribution. Traditionally, the confidence interval for a binomial proportion is computed using either the standard interval or the exact interval. Research from the statistics literature has shown that the standard interval should not be used and that the exact interval is overly conservative. On the basis of coverage probability and interval width, the Jeffreys interval is preferred. If more than one sample per cell is available, cell declustering is used to estimate the aquifer scale proportion, and Kish's design effect may be useful for estimating an effective number of samples. The binomial distribution is also used to quantify the adequacy of a grid with a given number of cells for identifying a small target, defined as a constituent that is present at high concentrations in a small proportion of the aquifer. Case studies illustrate a consistency between approaches that use one well per grid cell and many wells per cell. The methods presented in this paper provide a quantitative basis for designing a sampling program and for utilizing existing data.

  15. Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaelson, Lynne M.; Munoz, Krystal; Karas, Joseph

    The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of 1 dollar / W DC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipmentmore » choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200 thermal cycles, with results similar to silver paste control cells. 100 cells have been processed through Technic’s novel demo plating tool built and installed during budget period 2. This plating tool performed consistently from cell to cell, providing gentle handling for the solar cells. An agreement has been signed with a cell manufacturer to process their cells through our plating chemistry and equipment. Their main focus for plated contacts is to reduce the direct materials cost by utilizing nickel, copper, and tin in place of silver paste. Based on current market conditions and cost model calculations, the overall savings offered by plated contacts is only 3.5% dollar/W versus silver paste contacts; however, the direct materials savings depend on the silver market. If silver prices increase, plated contacts may find a wider adoption in the solar industry in order to keep the direct materials costs down for front grid contacts.« less

  16. Optimized design and control of an off grid solar PV/hydrogen fuel cell power system for green buildings

    NASA Astrophysics Data System (ADS)

    Ghenai, C.; Bettayeb, M.

    2017-11-01

    Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.

  17. User Guide and Documentation for Five MODFLOW Ground-Water Modeling Utility Programs

    USGS Publications Warehouse

    Banta, Edward R.; Paschke, Suzanne S.; Litke, David W.

    2008-01-01

    This report documents five utility programs designed for use in conjunction with ground-water flow models developed with the U.S. Geological Survey's MODFLOW ground-water modeling program. One program extracts calculated flow values from one model for use as input to another model. The other four programs extract model input or output arrays from one model and make them available in a form that can be used to generate an ArcGIS raster data set. The resulting raster data sets may be useful for visual display of the data or for further geographic data processing. The utility program GRID2GRIDFLOW reads a MODFLOW binary output file of cell-by-cell flow terms for one (source) model grid and converts the flow values to input flow values for a different (target) model grid. The spatial and temporal discretization of the two models may differ. The four other utilities extract selected 2-dimensional data arrays in MODFLOW input and output files and write them to text files that can be imported into an ArcGIS geographic information system raster format. These four utilities require that the model cells be square and aligned with the projected coordinate system in which the model grid is defined. The four raster-conversion utilities are * CBC2RASTER, which extracts selected stress-package flow data from a MODFLOW binary output file of cell-by-cell flows; * DIS2RASTER, which extracts cell-elevation data from a MODFLOW Discretization file; * MFBIN2RASTER, which extracts array data from a MODFLOW binary output file of head or drawdown; and * MULT2RASTER, which extracts array data from a MODFLOW Multiplier file.

  18. An Analysis of Waves Underlying Grid Cell Firing in the Medial Enthorinal Cortex.

    PubMed

    Bonilla-Quintana, Mayte; Wedgwood, Kyle C A; O'Dea, Reuben D; Coombes, Stephen

    2017-08-25

    Layer II stellate cells in the medial enthorinal cortex (MEC) express hyperpolarisation-activated cyclic-nucleotide-gated (HCN) channels that allow for rebound spiking via an [Formula: see text] current in response to hyperpolarising synaptic input. A computational modelling study by Hasselmo (Philos. Trans. R. Soc. Lond. B, Biol. Sci. 369:20120523, 2013) showed that an inhibitory network of such cells can support periodic travelling waves with a period that is controlled by the dynamics of the [Formula: see text] current. Hasselmo has suggested that these waves can underlie the generation of grid cells, and that the known difference in [Formula: see text] resonance frequency along the dorsal to ventral axis can explain the observed size and spacing between grid cell firing fields. Here we develop a biophysical spiking model within a framework that allows for analytical tractability. We combine the simplicity of integrate-and-fire neurons with a piecewise linear caricature of the gating dynamics for HCN channels to develop a spiking neural field model of MEC. Using techniques primarily drawn from the field of nonsmooth dynamical systems we show how to construct periodic travelling waves, and in particular the dispersion curve that determines how wave speed varies as a function of period. This exhibits a wide range of long wavelength solutions, reinforcing the idea that rebound spiking is a candidate mechanism for generating grid cell firing patterns. Importantly we develop a wave stability analysis to show how the maximum allowed period is controlled by the dynamical properties of the [Formula: see text] current. Our theoretical work is validated by numerical simulations of the spiking model in both one and two dimensions.

  19. GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelsen, K.; Næss, S. K.; Eriksen, H. K., E-mail: kristin.mikkelsen@astro.uio.no

    2013-11-10

    We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3)more » better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N{sub par}. One of the main goals of the present paper is to determine how large N{sub par} can be, while still maintaining reasonable computational efficiency; we find that N{sub par} = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme.« less

  20. Woven-grid sealed quasi-bipolar lead-acid battery construction and fabricating method

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1989-01-01

    A quasi-bipolar lead-acid battery construction includes a plurality of bipolar cells disposed in side-by-side relation to form a stack, and a pair of monoplanar plates at opposite ends of the stack, the cell stack and monopolar plates being contained within a housing of the battery. Each bipolar cell is loaded with an electrolyte and composed of a bipolar electrode plate and a pair of separator plates disposed on opposite sides of the electrode plate and peripherally sealed thereto. Each bipolar electrode plate is composed of a partition sheet and two bipolar electrode elements folded into a hairpin configuration and applied over opposite edges of the partition sheet so as to cover the opposite surfaces of the opposite halves thereof. Each bipolar electrode element is comprised of a woven grid with a hot-melt strip applied to a central longitudinal region of the grid along which the grid is folded into the hairpin configuration, and layers of negative and positive active material pastes applied to opposite halves of the grid on opposite sides of the central hot-melt strip. The grid is made up of strands of conductive and non-conductive yarns composing the respective transverse and longitudinal weaves of the grid. The conductive yarn has a multi-stranded glass core surrounded and covered by a lead sheath, whereas the non-conductive yarn has a multi-stranded glass core surrounded and covered by a thermally activated sizing.

  1. New multigrid approach for three-dimensional unstructured, adaptive grids

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Vijayan; Kallinderis, Y.

    1994-01-01

    A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coaser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with a special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.

  2. Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    A cut-cell approach to Computational Fluid Dynamics (CFD) that utilizes the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated, which permits adaptation based on improving the calculation of a specified output (off-body pressure signature) in supersonic inviscid flow. These predicted signatures are compared to wind tunnel measurements on and off the configuration centerline 10 body lengths below the model to validate the method for sonic boom prediction. Accurate mid-field sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly-refined, shock-aligned anisotropic grids were produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provided stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut-cells with an output-based adaptive scheme completely automated this accurate prediction capability after a triangular mesh is generated for the cut surface. This automation drastically reduces the manual intervention required by existing methods.

  3. Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.

    1977-01-01

    Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.

  4. Optimization of solar cell contacts by system cost-per-watt minimization

    NASA Technical Reports Server (NTRS)

    Redfield, D.

    1977-01-01

    New, and considerably altered, optimum dimensions for solar-cell metallization patterns are found using the recently developed procedure whose optimization criterion is the minimum cost-per-watt effect on the entire photovoltaic system. It is also found that the optimum shadow fraction by the fine grid is independent of metal cost and resistivity as well as cell size. The optimum thickness of the fine grid metal depends on all these factors, and in familiar cases it should be appreciably greater than that found by less complete analyses. The optimum bus bar thickness is much greater than those generally used. The cost-per-watt penalty due to the need for increased amounts of metal per unit area on larger cells is determined quantitatively and thereby provides a criterion for the minimum benefits that must be obtained in other process steps to make larger cells cost effective.

  5. Method for contact resistivity measurements on photovoltaic cells and cell adapted for such measurement

    NASA Technical Reports Server (NTRS)

    Burger, Dale R. (Inventor)

    1986-01-01

    A method is disclosed for scribing at least three grid contacts of a photovoltaic cell to electrically isolate them from the grid contact pattern used to collect solar current generated by the cell, and using the scribed segments for determining parameters of the cell by a combination of contact end resistance (CER) measurements using a minimum of three equally or unequally spaced lines, and transmission line modal (TLM) measurements using a minimum of four unequally spaced lines. TLM measurements may be used to determine sheet resistance under the contact, R.sub.sk, while CER measurements are used to determine contact resistivity, .rho..sub.c, from a nomograph of contact resistivity as a function of contact end resistance and sheet resistivity under the contact. In some cases, such as the case of silicon photovoltaic cells, sheet resistivity under the contact may be assumed to be equal to the known sheet resistance, R.sub.s, of the semiconductor material, thereby obviating the need for TLM measurements to determine R.sub.sk.

  6. A new ghost-node method for linking different models and initial investigations of heterogeneity and nonmatching grids

    USGS Publications Warehouse

    Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.-A.

    2007-01-01

    A flexible, robust method for linking parent (regional-scale) and child (local-scale) grids of locally refined models that use different numerical methods is developed based on a new, iterative ghost-node method. Tests are presented for two-dimensional and three-dimensional pumped systems that are homogeneous or that have simple heterogeneity. The parent and child grids are simulated using the block-centered finite-difference MODFLOW and control-volume finite-element FEHM models, respectively. The models are solved iteratively through head-dependent (child model) and specified-flow (parent model) boundary conditions. Boundary conditions for models with nonmatching grids or zones of different hydraulic conductivity are derived and tested against heads and flows from analytical or globally-refined models. Results indicate that for homogeneous two- and three-dimensional models with matched grids (integer number of child cells per parent cell), the new method is nearly as accurate as the coupling of two MODFLOW models using the shared-node method and, surprisingly, errors are slightly lower for nonmatching grids (noninteger number of child cells per parent cell). For heterogeneous three-dimensional systems, this paper compares two methods for each of the two sets of boundary conditions: external heads at head-dependent boundary conditions for the child model are calculated using bilinear interpolation or a Darcy-weighted interpolation; specified-flow boundary conditions for the parent model are calculated using model-grid or hydrogeologic-unit hydraulic conductivities. Results suggest that significantly more accurate heads and flows are produced when both Darcy-weighted interpolation and hydrogeologic-unit hydraulic conductivities are used, while the other methods produce larger errors at the boundary between the regional and local models. The tests suggest that, if posed correctly, the ghost-node method performs well. Additional testing is needed for highly heterogeneous systems. ?? 2007 Elsevier Ltd. All rights reserved.

  7. Three-dimensional zonal grids about arbitrary shapes by Poisson's equation

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.

    1988-01-01

    A method for generating 3-D finite difference grids about or within arbitrary shapes is presented. The 3-D Poisson equations are solved numerically, with values for the inhomogeneous terms found automatically by the algorithm. Those inhomogeneous terms have the effect near boundaries of reducing cell skewness and imposing arbitrary cell height. The method allows the region of interest to be divided into zones (blocks), allowing the method to be applicable to almost any physical domain. A FORTRAN program called 3DGRAPE has been written to implement the algorithm. Lastly, a method for redistributing grid points along lines normal to boundaries will be described.

  8. Exploration Gap Assessment (FY13 Update)

    DOE Data Explorer

    Dan Getman

    2013-09-30

    This submission contains an update to the previous Exploration Gap Assessment funded in 2012, which identify high potential hydrothermal areas where critical data are needed (gap analysis on exploration data). The uploaded data are contained in two data files for each data category: A shape (SHP) file containing the grid, and a data file (CSV) containing the individual layers that intersected with the grid. This CSV can be joined with the map to retrieve a list of datasets that are available at any given site. A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to five data types: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data

  9. High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids

    NASA Astrophysics Data System (ADS)

    Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.

    2015-02-01

    A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.

  10. Mathematical modeling of polymer flooding using the unstructured Voronoi grid

    NASA Astrophysics Data System (ADS)

    Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.

    2017-12-01

    Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.

  11. The R package 'icosa' for coarse resolution global triangular and penta-hexagonal gridding

    NASA Astrophysics Data System (ADS)

    Kocsis, Adam T.

    2017-04-01

    With the development of the internet and the computational power of personal computers, open source programming environments have become indispensable for science in the past decade. This includes the increase of the GIS capacity of the free R environment, which was originally developed for statistical analyses. The flexibility of R made it a preferred programming tool in a multitude of disciplines from the area of the biological and geological sciences. Many of these subdisciplines operate with incidence (occurrence) data that are in a large number of cases to be grained before further analyses can be conducted. This graining is executed mostly by gridding data to cells of a Gaussian grid of various resolutions to increase the density of data in a single unit of the analyses. This method has obvious shortcomings despite the ease of its application: well-known systematic biases are induced to cell sizes and shapes that can interfere with the results of statistical procedures, especially if the number of incidence points influences the metrics in question. The 'icosa' package employs a common method to overcome this obstacle by implementing grids with roughly equal cell sizes and shapes that are based on tessellated icosahedra. These grid objects are essentially polyhedra with xyz Cartesian vertex data that are linked to tables of faces and edges. At its current developmental stage, the package uses a single method of tessellation which balances grid cell size and shape distortions, but its structure allows the implementation of various other types of tessellation algorithms. The resolution of the grids can be set by the number of breakpoints inserted into a segment forming an edge of the original icosahedron. Both the triangular and their inverted penta-hexagonal grids are available for creation with the package. The package also incorporates functions to look up coordinates in the grid very effectively and data containers to link data to the grid structure. The classes defined in the package are communicating with classes of the 'sp' and 'raster' packages and functions are supplied that allow resolution change and type conversions. Three-dimensional rendering is made available with the 'rgl' package and two-dimensional projections can be calculated using 'sp' and 'rgdal'. The package was developed as part of a project funded by the Deutsche Forschungsgemeinschaft (KO - 5382/1-1).

  12. CVD-MPFA full pressure support, coupled unstructured discrete fracture-matrix Darcy-flux approximations

    NASA Astrophysics Data System (ADS)

    Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur

    2017-11-01

    Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the matrix and the fractures, where large discontinuities in permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which reduces the condition number of the global linear system and leads to larger time steps for tracer transport. The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the results demonstrate the method is also robust for transient flow. Furthermore, we present FPS coupled with a lower-dimensional fracture model, where fractures are strictly lower-dimensional in the physical mesh as well as in the computational domain. We present a comparison of the hybrid-grid FPS method and the lower-dimensional fracture model for several cases of isotropic and anisotropic fractured media which illustrate the benefits of the respective methods.

  13. Buried MoO x/Ag Electrode Enables High-Efficiency Organic/Silicon Heterojunction Solar Cells with a High Fill Factor.

    PubMed

    Xia, Zhouhui; Gao, Peng; Sun, Teng; Wu, Haihua; Tan, Yeshu; Song, Tao; Lee, Shuit-Tong; Sun, Baoquan

    2018-04-25

    Silicon (Si)/organic heterojunction solar cells based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and n-type Si have attracted wide interests because they promise cost-effectiveness and high-efficiency. However, the limited conductivity of PEDOT:PSS leads to an inefficient hole transport efficiency for the heterojunction device. Therefore, a high dense top-contact metal grid electrode is required to assure the efficient charge collection efficiency. Unfortunately, the large metal grid coverage ratio electrode would lead to undesirable optical loss. Here, we develop a strategy to balance PEDOT:PSS conductivity and grid optical transmittance via a buried molybdenum oxide/silver grid electrode. In addition, the grid electrode coverage ratio is optimized to reduce its light shading effect. The buried electrode dramatically reduces the device series resistance, which leads to a higher fill factor (FF). With the optimized buried electrode, a record FF of 80% is achieved for flat Si/PEDOT:PSS heterojunction devices. With further enhancement adhesion between the PEDOT:PSS film and Si substrate by a chemical cross-linkable silance, a power conversion efficiency of 16.3% for organic/textured Si heterojunction devices is achieved. Our results provide a path to overcome the inferior organic semiconductor property to enhance the organic/Si heterojunction solar cell.

  14. Increasing accuracy of dispersal kernels in grid-based population models

    USGS Publications Warehouse

    Slone, D.H.

    2011-01-01

    Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.

  15. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault

    USGS Publications Warehouse

    Barall, Michael

    2009-01-01

    We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.

  16. Modeling and Simulation With Operational Databases to Enable Dynamic Situation Assessment & Prediction

    DTIC Science & Technology

    2010-11-01

    subsections discuss the design of the simulations. 3.12.1 Lanchester5D Simulation A Lanchester simulation was developed to conduct performance...benchmarks using the WarpIV Kernel and HyperWarpSpeed. The Lanchester simulation contains a user-definable number of grid cells in which blue and red...forces engage in battle using Lanchester equations. Having a user-definable number of grid cells enables the simulation to be stressed with high entity

  17. An improved cellular automaton method to model multispecies biofilms.

    PubMed

    Tang, Youneng; Valocchi, Albert J

    2013-10-01

    Biomass-spreading rules used in previous cellular automaton methods to simulate multispecies biofilm introduced extensive mixing between different biomass species or resulted in spatially discontinuous biomass concentration and distribution; this caused results based on the cellular automaton methods to deviate from experimental results and those from the more computationally intensive continuous method. To overcome the problems, we propose new biomass-spreading rules in this work: Excess biomass spreads by pushing a line of grid cells that are on the shortest path from the source grid cell to the destination grid cell, and the fractions of different biomass species in the grid cells on the path change due to the spreading. To evaluate the new rules, three two-dimensional simulation examples are used to compare the biomass distribution computed using the continuous method and three cellular automaton methods, one based on the new rules and the other two based on rules presented in two previous studies. The relationship between the biomass species is syntrophic in one example and competitive in the other two examples. Simulation results generated using the cellular automaton method based on the new rules agree much better with the continuous method than do results using the other two cellular automaton methods. The new biomass-spreading rules are no more complex to implement than the existing rules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.; ,; ,; ,; ,; ,

    2000-01-01

    Numerical methods based on unstructured grids, with irregular cells, usually require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error associated with the numerical approximation scheme. For a logically cubic mesh, the lowest-order shape functions are chosen in a natural way to conserve intercell fluxes that vary linearly in logical space. Vector test functions, while somewhat restricted by the mapping into the logical reference cube, admit a wider class of possibilities. Ideally, an error minimization procedure to select the test function from an acceptable class of candidates would be the best procedure. Lacking such a procedure, we first investigate the effect of possible test functions on the pressure distribution over the control volume; specifically, we look for test functions that allow for the elimination of intermediate pressures on cell faces. From these results, we select three forms for the test function for use in a control-volume mixed method code and subject them to an error analysis for different forms of grid irregularity; errors are reported in terms of the discrete L2 norm of the velocity error. Of these three forms, one appears to produce optimal results for most forms of grid irregularity.

  19. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  20. Silicon-fiber blanket solar-cell array concept

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.

    1973-01-01

    Proposed economical manufacture of solar-cell arrays involves parallel, planar weaving of filaments made of doped silicon fibers with diffused radial junction. Each filament is a solar cell connected either in series or parallel with others to form a blanket of deposited grids or attached electrode wire mesh screens.

  1. In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Molecular imaging by mass spectrometry (MS) is emerging as a tool to determine the distribution of proteins, lipids and metabolites in tissues. The existing imaging methods, however, rely on predefined typically rectangular grids for sampling that ignore the natural cellular organization of the tiss...

  2. SURFACE WATER FLOW IN LANDSCAPE MODELS: 1. EVERGLADES CASE STUDY. (R824766)

    EPA Science Inventory

    Many landscape models require extensive computational effort using a large array of grid cells that represent the landscape. The number of spatial cells may be in the thousands and millions, while the ecological component run in each of the cells to account for landscape dynamics...

  3. DOE Hydrogen & Fuel Cell Overview

    DTIC Science & Technology

    2011-01-13

    Overview of Combined Heat+Power PowerElectricity Natural Gas Heat + Cooling Natural Gas or Biogas ...Fuel Cell Technologies Program eere.energy.gov Source: US DOE 10/2010 Biogas Benefits: Preliminary Analysis Stationary fuel...with the national grid. Source: US DOE 1/2011 6 | Fuel Cell Technologies Program eere.energy.gov Biogas Resource Example

  4. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids

    NASA Astrophysics Data System (ADS)

    Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard

    2013-02-01

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.

  5. Design, manufacturing and measurement of a PV miniconcentrator for front point-contact silicon solar cells

    NASA Astrophysics Data System (ADS)

    Pérez, D.; Miñano, J. C.; Benítez, P.; Muñoz, F.; Mohedano, R.

    2005-08-01

    A novel photovoltaic concentrator has been developed in the framework of the European project "High efficiency silicon solar cells concentrator". In this project, front-contacted silicon solar cell have also been designed and manufactured by the project leader (the French LETI). This silicon cell concept is potentially capable to perform well (24% efficiency has been predicted) for much higher concentration levels than the back-contacted cells (and, of course, than the two-side contacted cells). The concentrator is formed by one lens of squared contour with flat entry surface and large-facet Fresnel exit surface, and a secondary that encapsulates the solar cell. On the contrary to the conventional Fresnel lens plus nonimaging secondary concentrators, the primary and secondary are designed simultaneously, leading to better concentration-acceptance angle product without compromise with the compactness. The grid lines in the front-contacted cells are aluminium prisms (which contact the p+ and n+ emitters, alternatively), acting as a linear cone concentrator that concentrates Cg =1.52× in the cross sectional dimension of the prisms. The secondary concentrator has a refractive rotational symmetric top surface that is crossed with two linear flow-line TIR mirror. Then, in the cross section normal to the aluminium prisms, the secondary provides a 2D concentration of Cg =12×, while in the cross section parallel to the prisms it provides a 2D concentration of Cg =24.16× as the grid lines in this dimension. Therefore, the cell is rectangular (1:2.08 aspect ratio), being the grid lines parallel to the shorter rectangle side. The total 3D geometrical concentration is 24.16×(12×1.52) = 455× for the square aperture and rectangular cell, and gets a design acceptance angle α=+/-1.8 degrees. Injection moulded prototypes are have been manufactured and measured, proving an optical efficiency of 79%. Computer modelling of the concentrator performance will also be presented.

  6. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback. Results indicate: (1) The new method exhibits quadratic convergence for homogeneous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. Cell emulation and preliminary results.

    DOT National Transportation Integrated Search

    2016-07-01

    This report details preliminary results of the testing plan implemented by the Hawaii Natural Energy Institute to evaluate Electric Vehicle (EV) battery durability and reliability under electric utility grid operations. Commercial EV battery cells ar...

  8. Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast‑growing Eucalyptus forest plantation using airborne LiDAR data

    Treesearch

    Carlos Alberto Silva; Andrew Thomas Hudak; Carine Klauberg; Lee Alexandre Vierling; Carlos Gonzalez‑Benecke; Samuel de Padua Chaves Carvalho; Luiz Carlos Estraviz Rodriguez; Adrian Cardil

    2017-01-01

    LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m− 2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations...

  9. Integrating TITAN2D Geophysical Mass Flow Model with GIS

    NASA Astrophysics Data System (ADS)

    Namikawa, L. M.; Renschler, C.

    2005-12-01

    TITAN2D simulates geophysical mass flows over natural terrain using depth-averaged granular flow models and requires spatially distributed parameter values to solve differential equations. Since a Geographical Information System (GIS) main task is integration and manipulation of data covering a geographic region, the use of a GIS for implementation of simulation of complex, physically-based models such as TITAN2D seems a natural choice. However, simulation of geophysical flows requires computationally intensive operations that need unique optimizations, such as adaptative grids and parallel processing. Thus GIS developed for general use cannot provide an effective environment for complex simulations and the solution is to develop a linkage between GIS and simulation model. The present work presents the solution used for TITAN2D where data structure of a GIS is accessed by simulation code through an Application Program Interface (API). GRASS is an open source GIS with published data formats thus GRASS data structure was selected. TITAN2D requires elevation, slope, curvature, and base material information at every cell to be computed. Results from simulation are visualized by a system developed to handle the large amount of output data and to support a realistic dynamic 3-D display of flow dynamics, which requires elevation and texture, usually from a remote sensor image. Data required by simulation is in raster format, using regular rectangular grids. GRASS format for regular grids is based on data file (binary file storing data either uncompressed or compressed by grid row), header file (text file, with information about georeferencing, data extents, and grid cell resolution), and support files (text files, with information about color table and categories names). The implemented API provides access to original data (elevation, base material, and texture from imagery) and slope and curvature derived from elevation data. From several existing methods to estimate slope and curvature from elevation, the selected one is based on estimation by a third-order finite difference method, which has shown to perform better or with minimal difference when compared to more computationally expensive methods. Derivatives are estimated using weighted sum of 8 grid neighbor values. The method was implemented and simulation results compared to derivatives estimated by a simplified version of the method (uses only 4 neighbor cells) and proven to perform better. TITAN2D uses an adaptative mesh grid, where resolution (grid cell size) is not constant, and visualization tools also uses texture with varying resolutions for efficient display. The API supports different resolutions applying bilinear interpolation when elevation, slope and curvature are required at a resolution higher (smaller cell size) than the original and using a nearest cell approach for elevations with lower resolution (larger) than the original. For material information nearest neighbor method is used since interpolation on categorical data has no meaning. Low fidelity characteristic of visualization allows use of nearest neighbor method for texture. Bilinear interpolation estimates the value at a point as the distance-weighted average of values at the closest four cell centers, and interpolation performance is just slightly inferior compared to more computationally expensive methods such as bicubic interpolation and kriging.

  10. Plotting Lightning-Stroke Data

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Garst, R. A.

    1986-01-01

    Data on lightning-stroke locations become easier to correlate with cloudcover maps with aid of new graphical treatment. Geographic region divided by grid into array of cells. Number of lightning strokes in each cell tabulated, and value representing density of lightning strokes assigned to each cell. With contour-plotting routine, computer draws contours of lightning-stroke density for region. Shapes of contours compared directly with shapes of storm cells.

  11. GIS characterization of spatially distributed lifeline damage

    USGS Publications Warehouse

    Toprak, Selcuk; O'Rourke, Thomas; Tutuncu, Ilker

    1999-01-01

    This paper describes the visualization of spatially distributed water pipeline damage following an earthquake using geographical information systems (GIS). Pipeline damage is expressed as a repair rate (RR). Repair rate contours are developed with GIS by dividing the study area into grid cells (n ?? n), determining the number of particular pipeline repairs in each grid cell, and dividing the number of repairs by the length of that pipeline in each cell area. The resulting contour plot is a two-dimensional visualization of point source damage. High damage zones are defined herein as areas with an RR value greater than the mean RR for the entire study area of interest. A hyperbolic relationship between visual display of high pipeline damage zones and grid size, n, was developed. The relationship is expressed in terms of two dimensionless parameters, threshold area coverage (TAC) and dimensionless grid size (DGS). The relationship is valid over a wide range of different map scales spanning approximately 1,200 km2 for the largest portion of the Los Angeles water distribution system to 1 km2 for the Marina in San Francisco. This relationship can aid GIS users to get sufficiently refined, but easily visualized, maps of damage patterns.

  12. High-resolution precipitation database for the last two centuries in Italy: climatologies and anomalies

    NASA Astrophysics Data System (ADS)

    Crespi, Alice; Brunetti, Michele; Maugeri, Maurizio

    2017-04-01

    The availability of gridded high-resolution spatial climatologies and corresponding secular records has acquired an increasing importance in the recent years both to research purposes and as decision-support tools in the management of natural resources and economical activities. High-resolution monthly precipitation climatologies for Italy were computed by gridding on a 30-arc-second-resolution Digital Elevation Model (DEM) the precipitation normals (1961-1990) obtained from a quality-controlled dataset of about 6200 stations covering the Italian surface and part of the Northern neighbouring regions. Starting from the assumption that the precipitation distribution is strongly influenced by orography, especially elevation, a local weighted linear regression (LWLR) of precipitation versus elevation was performed at each DEM cell. The regression coefficients for each cell were estimated by selecting the stations with the highest weights in which the distances and the level of similarity between the station cells and the considered grid cell, in terms of orographic features, are taken into account. An optimisation procedure was then set up in order to define, for each month and for each grid cell, the most suitable decreasing coefficients for the weighting factors which enter in the LWLR scheme. The model was validated by the comparison with the results provided by inverse distance weighting (IDW) applied both to station normals and to the residuals of a global regression of station normals versus elevation. In both cases, the LWLR leave-one-out reconstructions show the best agreement with the observed station normals, especially when considering specific station clusters (high elevation sites for example). After producing the high-resolution precipitation climatological field, the temporal component on the high-resolution grid was obtained by following the anomaly method. It is based on the assumption that the spatio-temporal structure of the signal of a meteorological variable over a certain area can be described by the superimposition of two independent fields: the climatologies and the anomalies, i.e. the departures from the normal values. The secular precipitation anomaly records were thus estimated for each cell of the grid by averaging the anomaly values of neighbouring stations, by means of Gaussian weighting functions, taking into account both the distance and the elevation differences between the stations and the considered grid cell. The local secular precipitation records were then obtained by multiplying the local estimated anomalies for the corresponding 1961-1990 normals. To compute the anomaly field, a different dataset was used by selecting the stations with the longest series and extending them both to the past, retrieving data from non-digitised archives, and to the more recent decades. In particular, after a careful procedure of updating, quality-check and homogenisation of series, this methodology was applied on two Italian areas characterised by very different orography: Sardinia region and the Alpine areas within Adda basin.

  13. High-Throughput Mechanobiology Screening Platform Using Micro- and Nanotopography.

    PubMed

    Hu, Junqiang; Gondarenko, Alexander A; Dang, Alex P; Bashour, Keenan T; O'Connor, Roddy S; Lee, Sunwoo; Liapis, Anastasia; Ghassemi, Saba; Milone, Michael C; Sheetz, Michael P; Dustin, Michael L; Kam, Lance C; Hone, James C

    2016-04-13

    We herein demonstrate the first 96-well plate platform to screen effects of micro- and nanotopographies on cell growth and proliferation. Existing high-throughput platforms test a limited number of factors and are not fully compatible with multiple types of testing and assays. This platform is compatible with high-throughput liquid handling, high-resolution imaging, and all multiwell plate-based instrumentation. We use the platform to screen for topographies and drug-topography combinations that have short- and long-term effects on T cell activation and proliferation. We coated nanofabricated "trench-grid" surfaces with anti-CD3 and anti-CD28 antibodies to activate T cells and assayed for interleukin 2 (IL-2) cytokine production. IL-2 secretion was enhanced at 200 nm trench width and >2.3 μm grating pitch; however, the secretion was suppressed at 100 nm width and <0.5 μm pitch. The enhancement on 200 nm grid trench was further amplified with the addition of blebbistatin to reduce contractility. The 200 nm grid pattern was found to triple the number of T cells in long-term expansion, a result with direct clinical applicability in adoptive immunotherapy.

  14. The Impacts of Bowtie Effect and View Angle Discontinuity on MODIS Swath Data Gridding

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei

    2007-01-01

    We have analyzed two effects of the MODIS viewing geometry on the quality of gridded imagery. First, the fact that the MODIS scans a swath of the Earth 10 km wide at nadir, causes abrupt change of the view azimuth angle at the boundary of adjacent scans. This discontinuity appears as striping of the image clearly visible in certain cases with viewing geometry close to principle plane over the snow of the glint area of water. The striping is a true surface Bi-directional Reflectance Factor (BRF) effect and should be preserved during gridding. Second, due to bowtie effect, the observations in adjacent scans overlap each other. Commonly used method of calculating grid cell value by averaging all overlapping observations may result in smearing of the image. This paper describes a refined gridding algorithm that takes the above two effects into account. By calculating the grid cell value by averaging the overlapping observations from a single scan, the new algorithm preserves the measured BRF signal and enhances sharpness of the image.

  15. Selective Capture of Histidine-tagged Proteins from Cell Lysates Using TEM grids Modified with NTA-Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Benjamin, Christopher J.; Wright, Kyle J.; Bolton, Scott C.; Hyun, Seok-Hee; Krynski, Kyle; Grover, Mahima; Yu, Guimei; Guo, Fei; Kinzer-Ursem, Tamara L.; Jiang, Wen; Thompson, David H.

    2016-10-01

    We report the fabrication of transmission electron microscopy (TEM) grids bearing graphene oxide (GO) sheets that have been modified with Nα, Nα-dicarboxymethyllysine (NTA) and deactivating agents to block non-selective binding between GO-NTA sheets and non-target proteins. The resulting GO-NTA-coated grids with these improved antifouling properties were then used to isolate His6-T7 bacteriophage and His6-GroEL directly from cell lysates. To demonstrate the utility and simplified workflow enabled by these grids, we performed cryo-electron microscopy (cryo-EM) of His6-GroEL obtained from clarified E. coli lysates. Single particle analysis produced a 3D map with a gold standard resolution of 8.1 Å. We infer from these findings that TEM grids modified with GO-NTA are a useful tool that reduces background and improves both the speed and simplicity of biological sample preparation for high-resolution structure elucidation by cryo-EM.

  16. Selective Capture of Histidine-tagged Proteins from Cell Lysates Using TEM grids Modified with NTA-Graphene Oxide.

    PubMed

    Benjamin, Christopher J; Wright, Kyle J; Bolton, Scott C; Hyun, Seok-Hee; Krynski, Kyle; Grover, Mahima; Yu, Guimei; Guo, Fei; Kinzer-Ursem, Tamara L; Jiang, Wen; Thompson, David H

    2016-10-17

    We report the fabrication of transmission electron microscopy (TEM) grids bearing graphene oxide (GO) sheets that have been modified with N α , N α -dicarboxymethyllysine (NTA) and deactivating agents to block non-selective binding between GO-NTA sheets and non-target proteins. The resulting GO-NTA-coated grids with these improved antifouling properties were then used to isolate His 6 -T7 bacteriophage and His 6 -GroEL directly from cell lysates. To demonstrate the utility and simplified workflow enabled by these grids, we performed cryo-electron microscopy (cryo-EM) of His 6 -GroEL obtained from clarified E. coli lysates. Single particle analysis produced a 3D map with a gold standard resolution of 8.1 Å. We infer from these findings that TEM grids modified with GO-NTA are a useful tool that reduces background and improves both the speed and simplicity of biological sample preparation for high-resolution structure elucidation by cryo-EM.

  17. Testing the Efficacy of Global Biodiversity Hotspots for Insect Conservation: The Case of South African Katydids.

    PubMed

    Bazelet, Corinna S; Thompson, Aileen C; Naskrecki, Piotr

    2016-01-01

    The use of endemism and vascular plants only for biodiversity hotspot delineation has long been contested. Few studies have focused on the efficacy of global biodiversity hotspots for the conservation of insects, an important, abundant, and often ignored component of biodiversity. We aimed to test five alternative diversity measures for hotspot delineation and examine the efficacy of biodiversity hotspots for conserving a non-typical target organism, South African katydids. Using a 1° fishnet grid, we delineated katydid hotspots in two ways: (1) count-based: grid cells in the top 10% of total, endemic, threatened and/or sensitive species richness; vs. (2) score-based: grid cells with a mean value in the top 10% on a scoring system which scored each species on the basis of its IUCN Red List threat status, distribution, mobility and trophic level. We then compared katydid hotspots with each other and with recognized biodiversity hotspots. Grid cells within biodiversity hotspots had significantly higher count-based and score-based diversity than non-hotspot grid cells. There was a significant association between the three types of hotspots. Of the count-based measures, endemic species richness was the best surrogate for the others. However, the score-based measure out-performed all count-based diversity measures. Species richness was the least successful surrogate of all. The strong performance of the score-based method for hotspot prediction emphasizes the importance of including species' natural history information for conservation decision-making, and is easily adaptable to other organisms. Furthermore, these results add empirical support for the efficacy of biodiversity hotspots in conserving non-target organisms.

  18. Testing the Efficacy of Global Biodiversity Hotspots for Insect Conservation: The Case of South African Katydids

    PubMed Central

    Bazelet, Corinna S.; Thompson, Aileen C.; Naskrecki, Piotr

    2016-01-01

    The use of endemism and vascular plants only for biodiversity hotspot delineation has long been contested. Few studies have focused on the efficacy of global biodiversity hotspots for the conservation of insects, an important, abundant, and often ignored component of biodiversity. We aimed to test five alternative diversity measures for hotspot delineation and examine the efficacy of biodiversity hotspots for conserving a non-typical target organism, South African katydids. Using a 1° fishnet grid, we delineated katydid hotspots in two ways: (1) count-based: grid cells in the top 10% of total, endemic, threatened and/or sensitive species richness; vs. (2) score-based: grid cells with a mean value in the top 10% on a scoring system which scored each species on the basis of its IUCN Red List threat status, distribution, mobility and trophic level. We then compared katydid hotspots with each other and with recognized biodiversity hotspots. Grid cells within biodiversity hotspots had significantly higher count-based and score-based diversity than non-hotspot grid cells. There was a significant association between the three types of hotspots. Of the count-based measures, endemic species richness was the best surrogate for the others. However, the score-based measure out-performed all count-based diversity measures. Species richness was the least successful surrogate of all. The strong performance of the score-based method for hotspot prediction emphasizes the importance of including species’ natural history information for conservation decision-making, and is easily adaptable to other organisms. Furthermore, these results add empirical support for the efficacy of biodiversity hotspots in conserving non-target organisms. PMID:27631131

  19. Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost

    NASA Astrophysics Data System (ADS)

    Huang, Haibin; Tian, Gangyu; Zhou, Lang; Yuan, Jiren; Fahrner, Wolfgang R.; Zhang, Wenbin; Li, Xingbing; Chen, Wenhao; Liu, Renzhong

    2018-03-01

    A novel structure of Ag grid/SiN x /n+-c-Si/n-c-Si/i-a-Si:H/p+-a-Si:H/TCO/Ag grid was designed to increase the efficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost. The simulation results show that the new structure obtains higher efficiency compared with the typical bifacial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current (J sc), while retaining the advantages of a high open-circuit voltage, low temperature coefficient, and good weak-light performance. Moreover, real cells composed of the novel structure with dimensions of 75 mm ×75 mm were fabricated by a special fabrication recipe based on industrial processes. Without parameter optimization, the cell efficiency reached 21.1% with the J sc of 41.7 mA/cm2. In addition, the novel structure attained 28.55% potential conversion efficiency under an illumination of AM 1.5 G, 100 mW/cm2. We conclude that the configuration of the Ag grid/SiN x /n+-c-Si/n-c-Si/i-a-Si:H/p+-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost. Project supported by the Jiangxi Provincial Key Research and Development Foundation, China (Grant No. 2016BBH80043), the Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, China (Grant No. NJ20160032), and the National Natural Science Foundation of China (Grant Nos. 61741404, 61464007, and 51561022).

  20. Does the entorhinal cortex use the Fourier transform?

    PubMed Central

    Orchard, Jeff; Yang, Hao; Ji, Xiang

    2013-01-01

    Some neurons in the entorhinal cortex (EC) fire bursts when the animal occupies locations organized in a hexagonal grid pattern in their spatial environment. Place cells have also been observed, firing bursts only when the animal occupies a particular region of the environment. Both of these types of cells exhibit theta-cycle modulation, firing bursts in the 4–12 Hz range. Grid cells fire bursts of action potentials that precess with respect to the theta cycle, a phenomenon dubbed “theta precession.” Various models have been proposed to explain these phenomena, and how they relate to navigation. Among the most promising are the oscillator interference models. The bank-of-oscillators model proposed by Welday et al. (2011) exhibits all these features. However, their simulations are based on theoretical oscillators, and not implemented entirely with spiking neurons. We extend their work in a number of ways. First, we place the oscillators in a frequency domain and reformulate the model in terms of Fourier theory. Second, this perspective suggests a division of labor for implementing spatial maps: position vs. map layout. The animal's position is encoded in the phases of the oscillators, while the spatial map shape is encoded implicitly in the weights of the connections between the oscillators and the read-out nodes. Third, it reveals that the oscillator phases all need to conform to a linear relationship across the frequency domain. Fourth, we implement a partial model of the EC using spiking leaky integrate-and-fire (LIF) neurons. Fifth, we devise new coupling mechanisms, enlightened by the global phase constraint, and show they are capable of keeping spiking neural oscillators in consistent formation. Our model demonstrates place cells, grid cells, and phase precession. The Fourier model also gives direction for future investigations, such as integrating sensory feedback to combat drift, or explaining why grid cells exist at all. PMID:24376415

  1. Unstructured Cartesian/prismatic grid generation for complex geometries

    NASA Technical Reports Server (NTRS)

    Karman, Steve L., Jr.

    1995-01-01

    The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.

  2. Gap Assessment (FY 13 Update)

    DOE Data Explorer

    Getman, Dan

    2013-09-30

    To help guide its future data collection efforts, The DOE GTO funded a data gap analysis in FY2012 to identify high potential hydrothermal areas where critical data are needed. This analysis was updated in FY2013 and the resulting datasets are represented by this metadata. The original process was published in FY 2012 and is available here: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Esposito.pdf Though there are many types of data that can be used for hydrothermal exploration, five types of exploration data were targeted for this analysis. These data types were selected for their regional reconnaissance potential, and include many of the primary exploration techniques currently used by the geothermal industry. The data types include: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data To determine data coverage, metadata for exploration data (including data type, data status, and coverage information) were collected and catalogued from nodes on the National Geothermal Data System (NGDS). It is the intention of this analysis that the data be updated from this source in a semi-automated fashion as new datasets are added to the NGDS nodes. In addition to this upload, an online tool was developed to allow all geothermal data providers to access this assessment and to directly add metadata themselves and view the results of the analysis via maps of data coverage in Geothermal Prospector (http://maps.nrel.gov/gt_prospector). A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to the five data types. Using these five data coverage maps and the USGS Resource Potential Map, sites were identified for future data collection efforts. These sites signify both that the USGS has indicated high favorability of occurrence of geothermal resources and that data gaps exist. The uploaded data are contained in two data files for each data category. The first file contains the grid and is in the SHP file format (shape file.) Each populated grid cell represents a 10k area within which data is known to exist. The second file is a CSV (comma separated value) file that contains all of the individual layers that intersected with the grid. This CSV can be joined with the map to retrieve a list of datasets that are available at any given site. The attributes in the CSV include: 1. grid_id : The id of the grid cell that the data intersects with 2. title: This represents the name of the WFS service that intersected with this grid cell 3. abstract: This represents the description of the WFS service that intersected with this grid cell 4. gap_type: This represents the category of data availability that these data fall within. As the current processing is pulling data from NGDS, this category universally represents data that are available in the NGDS and are ready for acquisition for analytic purposes. 5. proprietary_type: Whether the data are considered proprietary 6. service_type: The type of service 7. base_url: The service URL

  3. A nominally second-order cell-centered Lagrangian scheme for simulating elastic–plastic flows on two-dimensional unstructured grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maire, Pierre-Henri, E-mail: maire@celia.u-bordeaux1.fr; Abgrall, Rémi, E-mail: remi.abgrall@math.u-bordeau1.fr; Breil, Jérôme, E-mail: breil@celia.u-bordeaux1.fr

    2013-02-15

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic–plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs themore » von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.« less

  4. A mixed volume grid approach for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Jorgenson, Philip C. E.

    1996-01-01

    An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal, and hexahedral cells, as well the general cut cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data structures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study upon a series of hexahedral, tetrahedral, prismatic, and Cartesian meshes for an analytic inviscid problem. A series of laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory, and experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cylinder combination.

  5. Simulation of axisymmetric jets with a finite element Navier-Stokes solver and a multilevel VOF approach

    NASA Astrophysics Data System (ADS)

    Cervone, A.; Manservisi, S.; Scardovelli, R.

    2010-09-01

    A multilevel VOF approach has been coupled to an accurate finite element Navier-Stokes solver in axisymmetric geometry for the simulation of incompressible liquid jets with high density ratios. The representation of the color function over a fine grid has been introduced to reduce the discontinuity of the interface at the cell boundary. In the refined grid the automatic breakup and coalescence occur at a spatial scale much smaller than the coarse grid spacing. To reduce memory requirements, we have implemented on the fine grid a compact storage scheme which memorizes the color function data only in the mixed cells. The capillary force is computed by using the Laplace-Beltrami operator and a volumetric approach for the two principal curvatures. Several simulations of axisymmetric jets have been performed to show the accuracy and robustness of the proposed scheme.

  6. A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Møyner, Olav, E-mail: olav.moyner@sintef.no; Lie, Knut-Andreas, E-mail: knut-andreas.lie@sintef.no

    2016-01-01

    A wide variety of multiscale methods have been proposed in the literature to reduce runtime and provide better scaling for the solution of Poisson-type equations modeling flow in porous media. We present a new multiscale restricted-smoothed basis (MsRSB) method that is designed to be applicable to both rectilinear grids and unstructured grids. Like many other multiscale methods, MsRSB relies on a coarse partition of the underlying fine grid and a set of local prolongation operators (multiscale basis functions) that map unknowns associated with the fine grid cells to unknowns associated with blocks in the coarse partition. These mappings are constructedmore » by restricted smoothing: Starting from a constant, a localized iterative scheme is applied directly to the fine-scale discretization to compute prolongation operators that are consistent with the local properties of the differential operators. The resulting method has three main advantages: First of all, both the coarse and the fine grid can have general polyhedral geometry and unstructured topology. This means that partitions and good prolongation operators can easily be constructed for complex models involving high media contrasts and unstructured cell connections introduced by faults, pinch-outs, erosion, local grid refinement, etc. In particular, the coarse partition can be adapted to geological or flow-field properties represented on cells or faces to improve accuracy. Secondly, the method is accurate and robust when compared to existing multiscale methods and does not need expensive recomputation of local basis functions to account for transient behavior: Dynamic mobility changes are incorporated by continuing to iterate a few extra steps on existing basis functions. This way, the cost of updating the prolongation operators becomes proportional to the amount of change in fluid mobility and one reduces the need for expensive, tolerance-based updates. Finally, since the MsRSB method is formulated on top of a cell-centered, conservative, finite-volume method, it is applicable to any flow model in which one can isolate a pressure equation. Herein, we only discuss single and two-phase incompressible models. Compressible flow, e.g., as modeled by the black-oil equations, is discussed in a separate paper.« less

  7. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Linares, Pablo, E-mail: pablo.garcia-linares@cea.fr; Voarino, Philippe; Besson, Pierre

    2015-09-28

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I{sub SC}) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions andmore » away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications.« less

  8. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  9. An unstaggered central scheme on nonuniform grids for the simulation of a compressible two-phase flow model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touma, Rony; Zeidan, Dia

    In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potentialmore » of the proposed scheme.« less

  10. Development of the Hippocampal Cognitive Map in Pre-weanling Rats

    PubMed Central

    Wills, Tom; Cacucci, Francesca; Burgess, Neil; O’Keefe, John

    2011-01-01

    Orienting in large-scale space depends on the interaction of environmental experience and pre-configured, possibly innate, constructs. Place, head-direction and grid cells in the hippocampal formation provide allocentric representations of space. Here we show how these cognitive representations emerge and develop as rat pups first begin to explore their environment. Directional, locational and rhythmic organization of firing are present during initial exploration, including adult-like directional firing. The stability and precision of place cell firing continues to develop throughout juvenility. Stable grid cell firing appears later but matures rapidly to adult levels. Our results demonstrate the presence of three neuronal representations of space prior to extensive experience, and show how they develop with age. PMID:20558720

  11. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    NASA Astrophysics Data System (ADS)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  12. Solar cells and methods of fabrication thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumate, Seth Daniel; Hutchings, Douglas Arthur; Mohammed, Hafeezuddin

    A passivation layer is deposited on a first portion of a region of the solar cell. A grid line is deposited on a second portion of the region. The passivation layer is annealed to drive chemical species from the passivation layer to deactivate an electrical activity of a dopant in the first portion of the region of the solar cell.

  13. Global 3-D FDTD Maxwell's-Equations Modeling of Ionospheric Disturbances Associated with Earthquakes Using an Optimized Geodesic Grid

    NASA Astrophysics Data System (ADS)

    Simpson, J. J.; Taflove, A.

    2005-12-01

    We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd. ed. Norwood, MA: Artech House, 2005. [2] M. Hayakawa, K. Ohta, A. P. Nickolaenko, and Y. Ando, "Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan," Ann. Geophysicae, in press. [3] J. J. Simpson and A. Taflove, "3-D FDTD modeling of ULF/ELF propagation within the global Earth-ionosphere cavity using an optimized geodesic grid," Proc. IEEE AP-S International Symposium, Washington, D.C., July 2005.

  14. Inverters for interfacing of solar cells with the power grid

    NASA Astrophysics Data System (ADS)

    Karamanzanis, G. N.; Jackson, R. D.

    In this work, based on a research course in the Engineering Dep. Cambridge University, some non-classical inverter circuits are studied. They can be used for interfacing solar cells with the power grid at low voltage (230V) and at low power level. They are based on d.c. choppers which have a fast switching transistor. Their theoretical efficiency is 100 percent and they provide a satisfactory output current waveform in phase to the a.c. line voltage. The problems of control are also studied using a suitable mathematical model.

  15. Method for producing solar energy panels by automation

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A solar cell panel was fabricated by photoetching a pattern of collector grid systems with appropriate interconnections and bus bar tabs into a glass or plastic sheet. These regions were then filled with a first, thin conductive metal film followed by a layer of a mixed metal oxide, such as InAsO or InSnO. The multiplicity of solar cells were bonded between the protective sheet at the sites of the collector grid systems and a back electrode substrate by conductive metal filled epoxy to complete the fabrication of an integrated solar panel.

  16. A parallel electrostatic Particle-in-Cell method on unstructured tetrahedral grids for large-scale bounded collisionless plasma simulations

    NASA Astrophysics Data System (ADS)

    Averkin, Sergey N.; Gatsonis, Nikolaos A.

    2018-06-01

    An unstructured electrostatic Particle-In-Cell (EUPIC) method is developed on arbitrary tetrahedral grids for simulation of plasmas bounded by arbitrary geometries. The electric potential in EUPIC is obtained on cell vertices from a finite volume Multi-Point Flux Approximation of Gauss' law using the indirect dual cell with Dirichlet, Neumann and external circuit boundary conditions. The resulting matrix equation for the nodal potential is solved with a restarted generalized minimal residual method (GMRES) and an ILU(0) preconditioner algorithm, parallelized using a combination of node coloring and level scheduling approaches. The electric field on vertices is obtained using the gradient theorem applied to the indirect dual cell. The algorithms for injection, particle loading, particle motion, and particle tracking are parallelized for unstructured tetrahedral grids. The algorithms for the potential solver, electric field evaluation, loading, scatter-gather algorithms are verified using analytic solutions for test cases subject to Laplace and Poisson equations. Grid sensitivity analysis examines the L2 and L∞ norms of the relative error in potential, field, and charge density as a function of edge-averaged and volume-averaged cell size. Analysis shows second order of convergence for the potential and first order of convergence for the electric field and charge density. Temporal sensitivity analysis is performed and the momentum and energy conservation properties of the particle integrators in EUPIC are examined. The effects of cell size and timestep on heating, slowing-down and the deflection times are quantified. The heating, slowing-down and the deflection times are found to be almost linearly dependent on number of particles per cell. EUPIC simulations of current collection by cylindrical Langmuir probes in collisionless plasmas show good comparison with previous experimentally validated numerical results. These simulations were also used in a parallelization efficiency investigation. Results show that the EUPIC has efficiency of more than 80% when the simulation is performed on a single CPU from a non-uniform memory access node and the efficiency is decreasing as the number of threads further increases. The EUPIC is applied to the simulation of the multi-species plasma flow over a geometrically complex CubeSat in Low Earth Orbit. The EUPIC potential and flowfield distribution around the CubeSat exhibit features that are consistent with previous simulations over simpler geometrical bodies.

  17. Review of status developments of high-efficiency crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng

    2018-03-01

    In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.

  18. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    PubMed

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  19. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    PubMed Central

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  20. TRIGRS - A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0

    USGS Publications Warehouse

    Baum, Rex L.; Savage, William Z.; Godt, Jonathan W.

    2008-01-01

    The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model (TRIGRS) is a Fortran program designed for modeling the timing and distribution of shallow, rainfall-induced landslides. The program computes transient pore-pressure changes, and attendant changes in the factor of safety, due to rainfall infiltration. The program models rainfall infiltration, resulting from storms that have durations ranging from hours to a few days, using analytical solutions for partial differential equations that represent one-dimensional, vertical flow in isotropic, homogeneous materials for either saturated or unsaturated conditions. Use of step-function series allows the program to represent variable rainfall input, and a simple runoff routing model allows the user to divert excess water from impervious areas onto more permeable downslope areas. The TRIGRS program uses a simple infinite-slope model to compute factor of safety on a cell-by-cell basis. An approximate formula for effective stress in unsaturated materials aids computation of the factor of safety in unsaturated soils. Horizontal heterogeneity is accounted for by allowing material properties, rainfall, and other input values to vary from cell to cell. This command-line program is used in conjunction with geographic information system (GIS) software to prepare input grids and visualize model results.

  1. Real-space microscopic electrical imaging of n+-p junction beneath front-side Ag contact of multicrystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Jiang, C.-S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

    2012-04-01

    We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, which is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.

  2. Real-Space Microscopic Electrical Imaging of n+-p Junction Beneath Front-Side Ag Contact of Multicrystalline Si Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, C. S.; Li, Z. G.; Moutinho, H. R.

    2012-04-15

    We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, whichmore » is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.« less

  3. GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Wang, Luying; Ran, Wei; Qin, Fenghua

    2016-10-01

    A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and null memory recycling is realized to improve the efficiency of memory utilization. It is found that results obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050, which demonstrates that parallel running of the cell-based AMR method on GPU is feasible and efficient. Our results also indicate that the new development of GPU architecture benefits the fluid dynamics computing significantly.

  4. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Test cells comprise specimen sand contained in a latex membrane (with a grid pattern for CCD cameras) between metal end plates and housed in a water-filled Lexan jacket. Experiment flown on STS-79 and STS-89. Principal Investigator: Dr. Stein Sture.

  5. Reactive Power Compensation Using an Energy Management System

    DTIC Science & Technology

    2014-09-01

    bulk power grid or independent of the grid in islanded mode using various DG sources ( photovoltaic panels, fuel cells, gas generators, batteries...developed in order to forecast the system’s response to both capacitive and inductive power demands on the grid. The process was then confirmed in a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited REACTIVE POWER

  6. Three-Dimensional High-Order Spectral Finite Volume Method for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel; Wang, Z. J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Many areas require a very high-order accurate numerical solution of conservation laws for complex shapes. This paper deals with the extension to three dimensions of the Spectral Finite Volume (SV) method for unstructured grids, which was developed to solve such problems. We first summarize the limitations of traditional methods such as finite-difference, and finite-volume for both structured and unstructured grids. We then describe the basic formulation of the spectral finite volume method. What distinguishes the SV method from conventional high-order finite-volume methods for unstructured triangular or tetrahedral grids is the data reconstruction. Instead of using a large stencil of neighboring cells to perform a high-order reconstruction, the stencil is constructed by partitioning each grid cell, called a spectral volume (SV), into 'structured' sub-cells, called control volumes (CVs). One can show that if all the SV cells are partitioned into polygonal or polyhedral CV sub-cells in a geometrically similar manner, the reconstructions for all the SVs become universal, irrespective of their shapes, sizes, orientations, or locations. It follows that the reconstruction is reduced to a weighted sum of unknowns involving just a few simple adds and multiplies, and those weights are universal and can be pre-determined once for all. The method is thus very efficient, accurate, and yet geometrically flexible. The most critical part of the SV method is the partitioning of the SV into CVs. In this paper we present the partitioning of a tetrahedral SV into polyhedral CVs with one free parameter for polynomial reconstructions up to degree of precision five. (Note that the order of accuracy of the method is one order higher than the reconstruction degree of precision.) The free parameter will be determined by minimizing the Lebesgue constant of the reconstruction matrix or similar criteria to obtain optimized partitions. The details of an efficient, parallelizable code to solve three-dimensional problems for any order of accuracy are then presented. Important aspects of the data structure are discussed. Comparisons with the Discontinuous Galerkin (DG) method are made. Numerical examples for wave propagation problems are presented.

  7. FAS multigrid calculations of three dimensional flow using non-staggered grids

    NASA Technical Reports Server (NTRS)

    Matovic, D.; Pollard, A.; Becker, H. A.; Grandmaison, E. W.

    1993-01-01

    Grid staggering is a well known remedy for the problem of velocity/pressure coupling in incompressible flow calculations. Numerous inconveniences occur, however, when staggered grids are implemented, particularly when a general-purpose code, capable of handling irregular three-dimensional domains, is sought. In several non-staggered grid numerical procedures proposed in the literature, the velocity/pressure coupling is achieved by either pressure or velocity (momentum) averaging. This approach is not convenient for simultaneous (block) solvers that are preferred when using multigrid methods. A new method is introduced in this paper that is based upon non-staggered grid formulation with a set of virtual cell face velocities used for pressure/velocity coupling. Instead of pressure or velocity averaging, a momentum balance at the cell face is used as a link between the momentum and mass balance constraints. The numerical stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D), both during the smoothing and inter-grid transfer, which is a convenient feature when a block point solver is applied. The results for a lid-driven cavity and a cube in a lid-driven cavity are presented and compared to staggered grid calculations using the same multigrid algorithm. The method is shown to be stable and produce a smooth (wiggle-free) pressure field.

  8. A spatial classification and database for management, research, and policy making: The Great Lakes aquatic habitat framework

    USGS Publications Warehouse

    Wang, Lizhu; Riseng, Catherine M.; Mason, Lacey; Werhrly, Kevin; Rutherford, Edward; McKenna, James E.; Castiglione, Chris; Johnson, Lucinda B.; Infante, Dana M.; Sowa, Scott P.; Robertson, Mike; Schaeffer, Jeff; Khoury, Mary; Gaiot, John; Hollenhurst, Tom; Brooks, Colin N.; Coscarelli, Mark

    2015-01-01

    Managing the world's largest and most complex freshwater ecosystem, the Laurentian Great Lakes, requires a spatially hierarchical basin-wide database of ecological and socioeconomic information that is comparable across the region. To meet such a need, we developed a spatial classification framework and database — Great Lakes Aquatic Habitat Framework (GLAHF). GLAHF consists of catchments, coastal terrestrial, coastal margin, nearshore, and offshore zones that encompass the entire Great Lakes Basin. The catchments captured in the database as river pour points or coastline segments are attributed with data known to influence physicochemical and biological characteristics of the lakes from the catchments. The coastal terrestrial zone consists of 30-m grid cells attributed with data from the terrestrial region that has direct connection with the lakes. The coastal margin and nearshore zones consist of 30-m grid cells attributed with data describing the coastline conditions, coastal human disturbances, and moderately to highly variable physicochemical and biological characteristics. The offshore zone consists of 1.8-km grid cells attributed with data that are spatially less variable compared with the other aquatic zones. These spatial classification zones and their associated data are nested within lake sub-basins and political boundaries and allow the synthesis of information from grid cells to classification zones, within and among political boundaries, lake sub-basins, Great Lakes, or within the entire Great Lakes Basin. This spatially structured database could help the development of basin-wide management plans, prioritize locations for funding and specific management actions, track protection and restoration progress, and conduct research for science-based decision making.

  9. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  10. Support grid for fuel elements in a nuclear reactor

    DOEpatents

    Finch, Lester M.

    1977-01-01

    A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.

  11. Effectively Transparent Front Contacts for Optoelectronic Devices

    DOE PAGES

    Saive, Rebecca; Borsuk, Aleca M.; Emmer, Hal S.; ...

    2016-06-10

    Effectively transparent front contacts for optoelectronic devices achieve a measured transparency of up to 99.9% and a measured sheet resistance of 4.8 Ω sq-1. These 3D microscale triangular cross-section grid fingers redirect incoming photons efficiently to the active semiconductor area and can replace standard grid fingers as well as transparent conductive oxide layers in optoelectronic devices. Optoelectronic devices such as light emitting diodes, photodiodes, and solar cells play an important and expanding role in modern technology. Photovoltaics is one of the largest optoelectronic industry sectors and an ever-increasing component of the world's rapidly growing renewable carbon-free electricity generation infrastructure. Inmore » recent years, the photovoltaics field has dramatically expanded owing to the large-scale manufacture of inexpensive crystalline Si and thin film cells and modules. The current record efficiency (η = 25.6%) Si solar cell utilizes a heterostructure intrinsic thin layer (HIT) design[1] to enable increased open circuit voltage, while more mass-manufacturable solar cell architectures feature front contacts.[2, 3] Thus improved solar cell front contact designs are important for future large-scale photovoltaics with even higher efficiency.« less

  12. Micro-grid platform based on NODE.JS architecture, implemented in electrical network instrumentation

    NASA Astrophysics Data System (ADS)

    Duque, M.; Cando, E.; Aguinaga, A.; Llulluna, F.; Jara, N.; Moreno, T.

    2016-05-01

    In this document, I propose a theory about the impact of systems based on microgrids in non-industrialized countries that have the goal to improve energy exploitation through alternatives methods of a clean and renewable energy generation and the creation of the app to manage the behavior of the micro-grids based on the NodeJS, Django and IOJS technologies. The micro-grids allow the optimal way to manage energy flow by electric injection directly in electric network small urban's cells in a low cost and available way. In difference from conventional systems, micro-grids can communicate between them to carry energy to places that have higher demand in accurate moments. This system does not require energy storage, so, costs are lower than conventional systems like fuel cells, solar panels or else; even though micro-grids are independent systems, they are not isolated. The impact that this analysis will generate, is the improvement of the electrical network without having greater control than an intelligent network (SMART-GRID); this leads to move to a 20% increase in energy use in a specified network; that suggest there are others sources of energy generation; but for today's needs, we need to standardize methods and remain in place to support all future technologies and the best option are the Smart Grids and Micro-Grids.

  13. Refining area of occupancy to address the modifiable areal unit problem in ecology and conservation.

    PubMed

    Moat, Justin; Bachman, Steven P; Field, Richard; Boyd, Doreen S

    2018-05-23

    The 'modifiable areal unit problem' is prevalent across many aspects of spatial analysis within ecology and conservation. The problem is particularly manifest when calculating metrics for extinction risk estimation, for example, area of occupancy (AOO). Although embedded into the International Union for the Conservation of Nature (IUCN) Red List criteria, AOO is often not used or is poorly applied. Here we evaluate new and existing methods for calculating AOO from occurrence records and present a method for determining the minimum AOO using a uniform grid. We evaluate the grid cell shape, grid origin and grid rotation with both real-world and simulated data, reviewing the effects on AOO values, and possible impacts for species already assessed on the IUCN Red List. We show that AOO can vary by up to 80% and a ratio of cells to points of 1:1.21 gives the maximum variation in the number of occupied cells. These findings potentially impact 3% of existing species on the IUCN Red List, as well as species not yet assessed. We show that a new method that combines both grid rotation and moving grid origin gives fast, robust and reproducible results and, in the majority of cases, achieves the minimum AOO. As well as reporting minimum AOO, we outline a confidence interval which should be incorporated into existing tools that support species risk assessment. We also make further recommendations for reporting AOO and other areal measurements within ecology, leading to more robust methods for future species risk assessment. This article is protected by copyright. All rights reserved. © 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  14. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  15. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg, and 120deg to the original horizontal coordinate axis. The net result is that one has checked for line segments at angular intervals of 30deg. For even finer angular resolution, one could, for example, then rotate the rectangular-grid image +/-45deg before sampling to perform checking for line segments at angular intervals of 15deg.

  16. Status of silicon solar cell technology

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1976-01-01

    Major progress in solar cell technology leading to increased efficiency has occurred since 1970. Technical approaches leading to this increased output include surface texturing, improved antireflection coatings, reduced grid pattern area coverage, shallow junctions and back surface fields. The status of these developments and their incorporation into cell production is discussed. Future research and technology trends leading to further efficiency increases and substantial cost reductions are described.

  17. Time-dependent grid adaptation for meshes of triangles and tetrahedra

    NASA Technical Reports Server (NTRS)

    Rausch, Russ D.

    1993-01-01

    This paper presents in viewgraph form a method of optimizing grid generation for unsteady CFD flow calculations that distributes the numerical error evenly throughout the mesh. Adaptive meshing is used to locally enrich in regions of relatively large errors and to locally coarsen in regions of relatively small errors. The enrichment/coarsening procedures are robust for isotropic cells; however, enrichment of high aspect ratio cells may fail near boundary surfaces with relatively large curvature. The enrichment indicator worked well for the cases shown, but in general requires user supervision for a more efficient solution.

  18. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  19. A Tutorial on Creating a Grid Cell Land Cover Data File from Remote Sensing Data.

    DTIC Science & Technology

    1985-06-01

    Creating a Grid Cell Land Cover Data File from Remote Sensing Data Gary E. Ford, Doreen L Meyer, and V. Ralph Algazi Signal and Image Processing Laboratory... L 1. INTRODUCTION Spatial data management systems, also known as geographic information systems, pro- vide powerful, practical tools for the...erosion [8]. Other -... ..... .. . . .. . . -5- 60 Z 0"C. 0 0. , ...- 9L> c 0 o o ( L - 0- 0.0a c 0 4- b. 0 ~ CL*~ C 0 .CL x 0 I" .- -J oo : -. 0 a a Z 0Z I1

  20. Grid therapy using high definition multileaf collimators: realizing benefits of the bystander effect.

    PubMed

    Peng, Valery; Suchowerska, Natalka; Rogers, Linda; Claridge Mackonis, Elizabeth; Oakes, Samantha; McKenzie, David R

    2017-08-01

    In microbeam radiotherapy (MRT), parallel arrays of high-intensity synchrotron x-ray beams achieve normal tissue sparing without compromising tumor control. Grid-therapy using clinical linacs has spatial modulation on a larger scale and achieves promising results for palliative treatments of bulky tumors. The availability of high definition multileaf collimators (HDMLCs) with 2.5 mm leaves provides an opportunity for grid-therapy to more closely approach MRT. However, challenges to the wider implementation of grid-therapy remain because spatial modulation of the target volume runs counter to current radiotherapy practice and mechanisms for the beneficial effects of MRT are not fully understood. Without more knowledge of cell dose responses, a quantitative basis for planning treatments is difficult. The aim of this study is to determine if therapeutic benefits of MRT can be achieved using a linac with HDMLCs and if so, to develop a predictive model to support treatment planning. HD120-MLCs of a Varian Novalis TX TM were used to generate grid patterns of 2.5 and 5.0 mm spacing, which were characterized dosimetrically using Gafchromic TM EBT3 film. Clonogenic survival of normal (HUVEC) and cancer (NCI-H460, HCC-1954) cell lines following irradiation under the grid and open fields using a 6 MV photon beam were compared in-vitro for the same average dose. Relative to an open field, survival of normal cells in a 2.5 mm striped field was the same, while the survival of both cancer cell lines was significantly lower. A mathematical model was developed to incorporate dose gradients of the spatial modulation into the standard linear quadratic model. Our new bystander extended LQ model assumes spatial gradients drive the diffusion of soluble factors that influence survival through bystander effects, successfully predicting the experimental results that show an increased therapeutic ratio. Our results challenge conventional radiotherapy practice and propose that additional gain can be realized by prescribing spatially modulated treatments to harness the bystander effect.

  1. Regional photochemical air quality modeling in the Mexico-US border area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza, A.; Russell, A.G.; Mejia, G.M.

    1998-12-31

    The Mexico-United States border area has become an increasingly important region due to its commercial, industrial and urban growth. As a result, environmental concerns have risen. Treaties like the North American Free Trade Agreement (NAFTA) have further motivated the development of environmental impact assessment in the area. Of particular concern are air quality, and how the activities on both sides of the border contribute to its degradation. This paper presents results of applying a three-dimensional photochemical airshed model to study air pollution dynamics along the Mexico-United States border. In addition, studies were conducted to assess how size resolution impacts themore » model performance. The model performed within acceptable statistic limits using 12.5 x 12.5 km{sup 2} grid cells, and the benefits using finer grids were limited. Results were further used to assess the influence of grid-cell size on the modeling of control strategies, where coarser grids lead to significant loss of information.« less

  2. Towards a PTAS for the generalized TSP in grid clusters

    NASA Astrophysics Data System (ADS)

    Khachay, Michael; Neznakhina, Katherine

    2016-10-01

    The Generalized Traveling Salesman Problem (GTSP) is a combinatorial optimization problem, which is to find a minimum cost cycle visiting one point (city) from each cluster exactly. We consider a geometric case of this problem, where n nodes are given inside the integer grid (in the Euclidean plane), each grid cell is a unit square. Clusters are induced by cells `populated' by nodes of the given instance. Even in this special setting, the GTSP remains intractable enclosing the classic Euclidean TSP on the plane. Recently, it was shown that the problem has (1.5+8√2+ɛ)-approximation algorithm with complexity bound depending on n and k polynomially, where k is the number of clusters. In this paper, we propose two approximation algorithms for the Euclidean GTSP on grid clusters. For any fixed k, both algorithms are PTAS. Time complexity of the first one remains polynomial for k = O(log n) while the second one is a PTAS, when k = n - O(log n).

  3. Defect inspection of periodic patterns with low-order distortions

    NASA Astrophysics Data System (ADS)

    Khalaj, Babak H.; Aghajan, Hamid K.; Paulraj, Arogyaswami; Kailath, Thomas

    1994-03-01

    A self-reliance technique is developed for detecting defects in repeated pattern wafers and masks with low-order distortions. If the patterns are located on a perfect rectangular grid, it is possible to estimate the period of repeated patterns in both directions, and then produce a defect-free reference image for making comparison with the actual image. But in some applications, the repeated patterns are somehow shifted from their desired position on a rectangular grid, and the aforementioned algorithm cannot be directly applied. In these situations, to produce a defect-free reference image and locate the defected cells, it is necessary to estimate the amount of misalignment of each cell beforehand. The proposed technique first estimates the misalignment of repeated patterns in each row and column. After estimating the location of all cells in the image, a defect-free reference image is generated by averaging over all the cells and is compared with the input image to localize the possible defects.

  4. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

    PubMed Central

    2018-01-01

    Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions. PMID:29465399

  5. A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface

    NASA Astrophysics Data System (ADS)

    Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo

    2016-09-01

    The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.

  6. On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Pusok, A. E.; Popov, A.

    2015-12-01

    The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation reduces the dispersion or clustering of markers and that the density of markers remains steady over time without the need of additional marker control. Jenny et al. (2001, J Comp Phys, 166, 218-252 Meyer and Jenny (2004), Proc Appl Math Mech, 4, 466-467 Wang et al. (2015), G3, Vol.16 Funding was provided by the ERC Starting Grant #258830.

  7. An efficient biological pathway layout algorithm combining grid-layout and spring embedder for complicated cellular location information

    PubMed Central

    2010-01-01

    Background Graph drawing is one of the important techniques for understanding biological regulations in a cell or among cells at the pathway level. Among many available layout algorithms, the spring embedder algorithm is widely used not only for pathway drawing but also for circuit placement and www visualization and so on because of the harmonized appearance of its results. For pathway drawing, location information is essential for its comprehension. However, complex shapes need to be taken into account when torus-shaped location information such as nuclear inner membrane, nuclear outer membrane, and plasma membrane is considered. Unfortunately, the spring embedder algorithm cannot easily handle such information. In addition, crossings between edges and nodes are usually not considered explicitly. Results We proposed a new grid-layout algorithm based on the spring embedder algorithm that can handle location information and provide layouts with harmonized appearance. In grid-layout algorithms, the mapping of nodes to grid points that minimizes a cost function is searched. By imposing positional constraints on grid points, location information including complex shapes can be easily considered. Our layout algorithm includes the spring embedder cost as a component of the cost function. We further extend the layout algorithm to enable dynamic update of the positions and sizes of compartments at each step. Conclusions The new spring embedder-based grid-layout algorithm and a spring embedder algorithm are applied to three biological pathways; endothelial cell model, Fas-induced apoptosis model, and C. elegans cell fate simulation model. From the positional constraints, all the results of our algorithm satisfy location information, and hence, more comprehensible layouts are obtained as compared to the spring embedder algorithm. From the comparison of the number of crossings, the results of the grid-layout-based algorithm tend to contain more crossings than those of the spring embedder algorithm due to the positional constraints. For a fair comparison, we also apply our proposed method without positional constraints. This comparison shows that these results contain less crossings than those of the spring embedder algorithm. We also compared layouts of the proposed algorithm with and without compartment update and verified that latter can reach better local optima. PMID:20565884

  8. Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids

    NASA Technical Reports Server (NTRS)

    Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)

    1994-01-01

    A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.

  9. N/P GaAs concentrator solar cells with an improved grid and bushbar contact design

    NASA Technical Reports Server (NTRS)

    Desalvo, G. C.; Mueller, E. H.; Barnett, A. M.

    1985-01-01

    The major requirements for a solar cell used in space applications are high efficiency at AMO irradiance and resistance to high energy radiation. Gallium arsenide, with a band gap of 1.43 eV, is one of the most efficient sunlight to electricity converters (25%) when the the simple diode model is used to calculate efficiencies at AMO irradiance, GaAs solar cells are more radiation resistant than silicon solar cells and the N/P GaAs device has been reported to be more radiation resistant than similar P/N solar cells. This higher resistance is probably due to the fact that only 37% of the current is generated in the top N layer of the N/P cell compared to 69% in the top layer of a P/N solar cell. This top layer of the cell is most affected by radiation. It has also been theoretically calculated that the optimized N/P device will prove to have a higher efficiency than a similar P/N device. The use of a GaP window layer on a GaAs solar cell will avoid many of the inherent problems normally associated with a GaAlAs window while still proving good passivation of the GaAs surface. An optimized circular grid design for solar cell concentrators has been shown which incorporates a multi-layer metallization scheme. This multi-layer design allows for a greater current carrying capacity for a unit area of shading, which results in a better output efficiency.

  10. Convective Weather Forecast Quality Metrics for Air Traffic Management Decision-Making

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Gyarfas, Brett; Chan, William N.; Meyn, Larry A.

    2006-01-01

    Since numerical weather prediction models are unable to accurately forecast the severity and the location of the storm cells several hours into the future when compared with observation data, there has been a growing interest in probabilistic description of convective weather. The classical approach for generating uncertainty bounds consists of integrating the state equations and covariance propagation equations forward in time. This step is readily recognized as the process update step of the Kalman Filter algorithm. The second well known method, known as the Monte Carlo method, consists of generating output samples by driving the forecast algorithm with input samples selected from distributions. The statistical properties of the distributions of the output samples are then used for defining the uncertainty bounds of the output variables. This method is computationally expensive for a complex model compared to the covariance propagation method. The main advantage of the Monte Carlo method is that a complex non-linear model can be easily handled. Recently, a few different methods for probabilistic forecasting have appeared in the literature. A method for computing probability of convection in a region using forecast data is described in Ref. 5. Probability at a grid location is computed as the fraction of grid points, within a box of specified dimensions around the grid location, with forecast convection precipitation exceeding a specified threshold. The main limitation of this method is that the results are dependent on the chosen dimensions of the box. The examples presented Ref. 5 show that this process is equivalent to low-pass filtering of the forecast data with a finite support spatial filter. References 6 and 7 describe the technique for computing percentage coverage within a 92 x 92 square-kilometer box and assigning the value to the center 4 x 4 square-kilometer box. This technique is same as that described in Ref. 5. Characterizing the forecast, following the process described in Refs. 5 through 7, in terms of percentage coverage or confidence level is notionally sound compared to characterizing in terms of probabilities because the probability of the forecast being correct can only be determined using actual observations. References 5 through 7 only use the forecast data and not the observations. The method for computing the probability of detection, false alarm ratio and several forecast quality metrics (Skill Scores) using both the forecast and observation data are given in Ref. 2. This paper extends the statistical verification method in Ref. 2 to determine co-occurrence probabilities. The method consists of computing the probability that a severe weather cell (grid location) is detected in the observation data in the neighborhood of the severe weather cell in the forecast data. Probabilities of occurrence at the grid location and in its neighborhood with higher severity, and with lower severity in the observation data compared to that in the forecast data are examined. The method proposed in Refs. 5 through 7 is used for computing the probability that a certain number of cells in the neighborhood of severe weather cells in the forecast data are seen as severe weather cells in the observation data. Finally, the probability of existence of gaps in the observation data in the neighborhood of severe weather cells in forecast data is computed. Gaps are defined as openings between severe weather cells through which an aircraft can safely fly to its intended destination. The rest of the paper is organized as follows. Section II summarizes the statistical verification method described in Ref. 2. The extension of this method for computing the co-occurrence probabilities in discussed in Section HI. Numerical examples using NCWF forecast data and NCWD observation data are presented in Section III to elucidate the characteristics of the co-occurrence probabilities. This section also discusses the procedure for computing throbabilities that the severity of convection in the observation data will be higher or lower in the neighborhood of grid locations compared to that indicated at the grid locations in the forecast data. The probability of coverage of neighborhood grid cells is also described via examples in this section. Section IV discusses the gap detection algorithm and presents a numerical example to illustrate the method. The locations of the detected gaps in the observation data are used along with the locations of convective weather cells in the forecast data to determine the probability of existence of gaps in the neighborhood of these cells. Finally, the paper is concluded in Section V.

  11. Parallel hyperbolic PDE simulation on clusters: Cell versus GPU

    NASA Astrophysics Data System (ADS)

    Rostrup, Scott; De Sterck, Hans

    2010-12-01

    Increasingly, high-performance computing is looking towards data-parallel computational devices to enhance computational performance. Two technologies that have received significant attention are IBM's Cell Processor and NVIDIA's CUDA programming model for graphics processing unit (GPU) computing. In this paper we investigate the acceleration of parallel hyperbolic partial differential equation simulation on structured grids with explicit time integration on clusters with Cell and GPU backends. The message passing interface (MPI) is used for communication between nodes at the coarsest level of parallelism. Optimizations of the simulation code at the several finer levels of parallelism that the data-parallel devices provide are described in terms of data layout, data flow and data-parallel instructions. Optimized Cell and GPU performance are compared with reference code performance on a single x86 central processing unit (CPU) core in single and double precision. We further compare the CPU, Cell and GPU platforms on a chip-to-chip basis, and compare performance on single cluster nodes with two CPUs, two Cell processors or two GPUs in a shared memory configuration (without MPI). We finally compare performance on clusters with 32 CPUs, 32 Cell processors, and 32 GPUs using MPI. Our GPU cluster results use NVIDIA Tesla GPUs with GT200 architecture, but some preliminary results on recently introduced NVIDIA GPUs with the next-generation Fermi architecture are also included. This paper provides computational scientists and engineers who are considering porting their codes to accelerator environments with insight into how structured grid based explicit algorithms can be optimized for clusters with Cell and GPU accelerators. It also provides insight into the speed-up that may be gained on current and future accelerator architectures for this class of applications. Program summaryProgram title: SWsolver Catalogue identifier: AEGY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v3 No. of lines in distributed program, including test data, etc.: 59 168 No. of bytes in distributed program, including test data, etc.: 453 409 Distribution format: tar.gz Programming language: C, CUDA Computer: Parallel Computing Clusters. Individual compute nodes may consist of x86 CPU, Cell processor, or x86 CPU with attached NVIDIA GPU accelerator. Operating system: Linux Has the code been vectorised or parallelized?: Yes. Tested on 1-128 x86 CPU cores, 1-32 Cell Processors, and 1-32 NVIDIA GPUs. RAM: Tested on Problems requiring up to 4 GB per compute node. Classification: 12 External routines: MPI, CUDA, IBM Cell SDK Nature of problem: MPI-parallel simulation of Shallow Water equations using high-resolution 2D hyperbolic equation solver on regular Cartesian grids for x86 CPU, Cell Processor, and NVIDIA GPU using CUDA. Solution method: SWsolver provides 3 implementations of a high-resolution 2D Shallow Water equation solver on regular Cartesian grids, for CPU, Cell Processor, and NVIDIA GPU. Each implementation uses MPI to divide work across a parallel computing cluster. Additional comments: Sub-program numdiff is used for the test run.

  12. Computations of Unsteady Viscous Compressible Flows Using Adaptive Mesh Refinement in Curvilinear Body-fitted Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Modiano, David; Colella, Phillip

    1994-01-01

    A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.

  13. Parallel computation of transverse wakes in linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Xiaowei; Ko, Kwok

    1996-11-01

    SLAC has proposed the detuned structure (DS) as one possible design to control the emittance growth of long bunch trains due to transverse wakefields in the Next Linear Collider (NLC). The DS consists of 206 cells with tapering from cell to cell of the order of few microns to provide Gaussian detuning of the dipole modes. The decoherence of these modes leads to two orders of magnitude reduction in wakefield experienced by the trailing bunch. To model such a large heterogeneous structure realistically is impractical with finite-difference codes using structured grids. The authors have calculated the wakefield in the DSmore » on a parallel computer with a finite-element code using an unstructured grid. The parallel implementation issues are presented along with simulation results that include contributions from higher dipole bands and wall dissipation.« less

  14. MESH2D Grid generator design and use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G. P.

    Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].

  15. Efficient discretization in finite difference method

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.

  16. Effects of Grid Resolution on Modeled Air Pollutant Concentrations Due to Emissions from Large Point Sources: Case Study during KORUS-AQ 2016 Campaign

    NASA Astrophysics Data System (ADS)

    Ju, H.; Bae, C.; Kim, B. U.; Kim, H. C.; Kim, S.

    2017-12-01

    Large point sources in the Chungnam area received a nation-wide attention in South Korea because the area is located southwest of the Seoul Metropolitan Area whose population is over 22 million and the summertime prevalent winds in the area is northeastward. Therefore, emissions from the large point sources in the Chungnam area were one of the major observation targets during the KORUS-AQ 2016 including aircraft measurements. In general, horizontal grid resolutions of eulerian photochemical models have profound effects on estimated air pollutant concentrations. It is due to the formulation of grid models; that is, emissions in a grid cell will be assumed to be mixed well under planetary boundary layers regardless of grid cell sizes. In this study, we performed series of simulations with the Comprehensive Air Quality Model with eXetension (CAMx). For 9-km and 3-km simulations, we used meteorological fields obtained from the Weather Research and Forecast model while utilizing the "Flexi-nesting" option in the CAMx for the 1-km simulation. In "Flexi-nesting" mode, CAMx interpolates or assigns model inputs from the immediate parent grid. We compared modeled concentrations with ground observation data as well as aircraft measurements to quantify variations of model bias and error depending on horizontal grid resolutions.

  17. Effects of various freezing containers for vitrification freezing on mouse oogenesis.

    PubMed

    Kim, Ji Chul; Kim, Jae Myeoung; Seo, Byoung Boo

    2016-01-01

    In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated. EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos. It was found that recovery rate and survival rate were higher in the group of cryo-loop compared to those of EM-grid (p < 0.05). Embryonic development rate, two cell embryos to blastocyst, as well as hatching rate were higher in the control group compared to the EM-grid group and OPS group (p < 0.05), yet no difference was noted between the control group and cryo-loop group. Development rate and hatching rate of eight cell morulae and blastocysts were all lower in the treatment groups than the control group whilst hatching rate of blastocysts was higher in the control group compared to the groups of EM-grid and OPS (p < 0.05); although the cryo-loop group was shown to be slightly higher than other groups, it was not statistically significant. In the study, we investigate effects of freezing containers on vitrified embryos of respective developmental stages; it was demonstrated that higher developmental rate was shown in more progressed (or developed) embryos with more blastomeres. There was however, no difference in embryonic development rate was shown amongst containers. Taken together, further additional studies are warranted with regards to 1) manipulation techniques of embryos for various vitrification freezing containers and 2) preventive measures against contamination via liquid nitrogen.

  18. A tesselated probabilistic representation for spatial robot perception and navigation

    NASA Technical Reports Server (NTRS)

    Elfes, Alberto

    1989-01-01

    The ability to recover robust spatial descriptions from sensory information and to efficiently utilize these descriptions in appropriate planning and problem-solving activities are crucial requirements for the development of more powerful robotic systems. Traditional approaches to sensor interpretation, with their emphasis on geometric models, are of limited use for autonomous mobile robots operating in and exploring unknown and unstructured environments. Here, researchers present a new approach to robot perception that addresses such scenarios using a probabilistic tesselated representation of spatial information called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that maintains stochastic estimates of the occupancy state of each cell in the grid. The cell estimates are obtained by interpreting incoming range readings using probabilistic models that capture the uncertainty in the spatial information provided by the sensor. A Bayesian estimation procedure allows the incremental updating of the map using readings taken from several sensors over multiple points of view. An overview of the Occupancy Grid framework is given, and its application to a number of problems in mobile robot mapping and navigation are illustrated. It is argued that a number of robotic problem-solving activities can be performed directly on the Occupancy Grid representation. Some parallels are drawn between operations on Occupancy Grids and related image processing operations.

  19. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space vector PWM implementation (MSVPWM) and design of a closed-loop controller of the Z-source converter which utilizes L and C components and shoot-through zero vectors for the standalone AC power generation. The fuel cell system is modeled by an electrical R-C circuit in order to include slow dynamics of the fuel cells and a voltage-current characteristic of a cell is also considered. A discrete-time state space model is derived to implement digital control and a space vector pulse-width modulation (SVPWM) technique is modified to realize the shoot-through zero vectors that boost the DC-link voltage. Also, three discrete-time feedback controllers are designed: a discrete-time optimal voltage controller, a discrete-time sliding mode current controller, and a discrete-time PI DC-link voltage controller. Furthermore, an asymptotic observer is used to reduce the number of sensors and enhance the reliability of the system. To demonstrate the analyzed circuit model and proposed control strategy, various simulation results using Matlab/Simulink are presented under both light/heavy loads and linear/nonlinear loads for a three-phase AC 208 V (L-L)/60 Hz/10 kVA.

  20. Prospect of the high efficiency for the VEST (Via-hole Etching for the Separation of Thin films) cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deguchi, M.; Kawama, Y.; Matsuno, Y.

    1994-12-31

    The optimum design of the via-holes for the VEST cell was studied. Using a simple model, fill factors of the VEST cell were calculated. As for the via-hole distribution pattern, square grid pattern was found to be most suitable from the view points of the cell performance and the easiness of the electrode designing. It was found that the fill factor large enough (> 0.79) for the high efficiency can be obtained. A fabricated test cell showed the efficiency of 14.4%. Further improvement (efficiency over 18%) is possibly expected.

  1. Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching.

    PubMed

    Hauwiller, Matthew R; Ondry, Justin C; Alivisatos, A Paul

    2018-05-17

    Graphene liquid cell electron microscopy provides the ability to observe nanoscale chemical transformations and dynamics as the reactions are occurring in liquid environments. This manuscript describes the process for making graphene liquid cells through the example of graphene liquid cell transmission electron microscopy (TEM) experiments of gold nanocrystal etching. The protocol for making graphene liquid cells involves coating gold, holey-carbon TEM grids with chemical vapor deposition graphene and then using those graphene-coated grids to encapsulate liquid between two graphene surfaces. These pockets of liquid, with the nanomaterial of interest, are imaged in the electron microscope to see the dynamics of the nanoscale process, in this case the oxidative etching of gold nanorods. By controlling the electron beam dose rate, which modulates the etching species in the liquid cell, the underlying mechanisms of how atoms are removed from nanocrystals to form different facets and shapes can be better understood. Graphene liquid cell TEM has the advantages of high spatial resolution, compatibility with traditional TEM holders, and low start-up costs for research groups. Current limitations include delicate sample preparation, lack of flow capability, and reliance on electron beam-generated radiolysis products to induce reactions. With further development and control, graphene liquid cell may become a ubiquitous technique in nanomaterials and biology, and is already being used to study mechanisms governing growth, etching, and self-assembly processes of nanomaterials in liquid on the single particle level.

  2. --No Title--

    Science.gov Websites

    --------------------------------------------------------------------------------------------------*/ /* undo the min-height 100% trick used to fill the container's height */ .fc-time-grid { min-height: 0 !important; } /* don't display the side axis at all ("all-day" and time cells) */ .fc-agenda-view .fc-axis { display: none; } /* don't display the horizontal lines */ .fc-slats, .fc-time-grid hr

  3. Hydrogen Infrastructure Testing and Research Facility Video (Text Version)

    Science.gov Websites

    grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen stations. NRELs research on hydrogen safety provides guidance for safe operation, handling, and use of standards and testing fuel cell and hydrogen components for operation and safety. Building on NRELs Wind-to

  4. Webinar August 11: Analysis Using Fuel Cell MHE for Shaving Peak Building

    Science.gov Websites

    ;Analysis Using Fuel Cell Material Handling Equipment (MHE) for Shaving Peak Building Energy" on offset grid charges associated with peak facility demands. The analyzed scenarios will focus on how the alternative peak-shaving apparatus. View the past webinar. -Sara Havig

  5. Weekly Gridded Aquarius L-band Radiometer-scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 1: Product Description

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Koenig, Lora S.

    2014-01-01

    Passive and active observations at L band (frequency (is) approximately 1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50 degrees are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km×156 km and 74 km×122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html

  6. Technical and economic advantages of making lead-acid battery grids by continuous electroforming

    NASA Astrophysics Data System (ADS)

    Warlimont, H.; Hofmann, T.

    A new continuous electroforming process to manufacture lead grids for automotive and industrial lead-acid batteries has been developed. A galvanic cell comprising a drum cathode for electroforming and a subsequent series of galvanic cells which form a strip galvanizing line are operating in a single, fully continuous, automatic process. Virgin lead or lead scrap may be used as the anode material. The product is grid strip of any specified thickness and design which can be fed into existing strip-pasting equipment. The composition and microstructure of the grid material can be varied to provide increased corrosion resistance and increased paste adherence. A unique feature of the material is its inherent layered composite structure that allows optimization of the properties according to particular functional requirements. Thus, both the specific power and the specific energy of the battery can be increased by reducing weight. The material properties increase the calendar life of the battery by increasing the corrosion resistance of the grid, and increase the cycle-life of the battery by improved adherence of the positive active material. The technical and economic features and competitive advantages of this new technology and product are presented in quantitative terms.

  7. 3DGRAPE/AL User's Manual

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.; Alter, Stephen J.

    1995-01-01

    This document is a users' manual for a new three-dimensional structured multiple-block volume g generator called 3DGRAPE/AL. It is a significantly improved version of the previously-released a widely-distributed programs 3DGRAPE and 3DMAGGS. It generates volume grids by iteratively solving the Poisson Equations in three-dimensions. The right-hand-side terms are designed so that user-specific; grid cell heights and user-specified grid cell skewness near boundary surfaces result automatically, with little user intervention. The code is written in Fortran-77, and can be installed with or without a simple graphical user interface which allows the user to watch as the grid is generated. An introduction describing the improvements over the antecedent 3DGRAPE code is presented first. Then follows a chapter on the basic grid generator program itself, and comments on installing it. The input is then described in detail. After that is a description of the Graphical User Interface. Five example cases are shown next, with plots of the results. Following that is a chapter on two input filters which allow use of input data generated elsewhere. Last is a treatment of the theory embodied in the code.

  8. [Exploratory study on the micro-remodeling of dermal tissue].

    PubMed

    Jiang, Yu-zhi; Ding, Gui-fu; Lu, Shu-liang

    2009-10-01

    To explore the effect of three-dimensional structure of dermal matrix on biological behavior of fibroblasts (Fb) in the microcosmic perspective. The three-dimensional structure of dermal tissue was analyzed by plane geometric and trigonometric function. Microdots structure array with cell adhesion effect was designed by computer-assisted design software according to the adhesive and non-adhesive components of dermal tissue. Four sizes (8 microm x 3 microm, space 6 microm; 16 microm x 3 microm, space 6 microm; 16 microm x 5 microm, space 8 microm; 20 microm x 3 microm, space 2 microm) of micropier grid used for cell culture (MPGCC) with cell-adhesive microdots, built up with micro-pattern printing and molecule self-assembly method were used to culture dermal Fb. Fb cultured with cell culture matrix without micropier grid was set up as control. The expression of skeleton protein (alpha-SMA) of Fb, cell viability and cell secretion were detected with immunohistochemistry, fluorescent immunohistochemistry, MTT test and the hydroxyproline content assay. The three-dimensional structure of dermal tissue could be simulated by MPGCC as shown in arithmetic analysis. Compared with those of control group [(12 +/- 3)% and (0.53 +/- 0.03) microg/mg, (0.35 +/- 0.04)], the expression of alpha-SMA [(49 +/- 3)%, (61 +/- 3)%, (47 +/- 4)%, (51 +/- 3)%] and the content of hydroxyproline [(0.95 +/- 0.04), (0.87 +/- 0.03), (0.81 +/- 0.03), (0.77 +/- 0.03) microg/mg] were increased significantly (P < 0.05), the cell viability of Fb (0.12 +/- 0.03, 0.13 +/- 0.04, 0.14 +/- 0.03, 0.19 +/- 0.03) cultured in MPGCC was decreased significantly (P < 0.05). When the parameters of micropier grid were changed, the expression of alpha-SMA, the cell viability and the content of hydroxyproline of Fb cultured in four sizes of MPGCC were also significantly changed as compared with one another (P < 0.05). MPGCC may be the basic functional unit of dermal template, or unit of dermal template to call. Different three-dimensional circumstances for dermal tissue can result in different template effect and wound healing condition.

  9. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  10. Adaptive refinement tools for tetrahedral unstructured grids

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul (Inventor); Abdol-Hamid, Khaled S. (Inventor)

    2011-01-01

    An exemplary embodiment providing one or more improvements includes software which is robust, efficient, and has a very fast run time for user directed grid enrichment and flow solution adaptive grid refinement. All user selectable options (e.g., the choice of functions, the choice of thresholds, etc.), other than a pre-marked cell list, can be entered on the command line. The ease of application is an asset for flow physics research and preliminary design CFD analysis where fast grid modification is often needed to deal with unanticipated development of flow details.

  11. Enhanced osteogenic differentiation of MC3T3-E1 cells on grid-topographic surface and evidence for involvement of YAP mediator.

    PubMed

    Zhang, Yingying; Gong, He; Sun, Yan; Huang, Yan; Fan, Yubo

    2016-05-01

    Numerous studies have shown that surface topography can promote cell-substrate associations and deeply influence cell fate. The intracellular mechanism or how micro- or nano-patterned extracellular signal is ultimately linked to activity of nuclear transcription factors remains unknown. It has been reported that Yes-associated protein (YAP) can respond to extracellular matrix microenvironment signals, thus regulates stem cell differentiation process. We propose that YAP may play a role in mediating the topography induced cell differentiation. To this end, we fabricated polydimethylsiloxane (PDMS) micropatterns with grid topology (GT) (3 μm pattern width, 2 μm pattern interval length, 7 μm pattern height); nonpatterned PDMS substrates were used as the planar controls. The MC3T3-E1 cells were then cultured on these surfaces, respectively, in osteogenic inducing medium. Cell differentiation in terms of osteogenesis related gene expression, protein levels, alkaline phosphatase activity and extracellular matrix mineralization was assessed. It was shown that the cells on GT surfaces had stronger osteogenesis capacity. In addition, expression level of YAP was increased when MC3T3-E1 cells grew on GT substrates, which was similar to the levels of osteogenic differentiation markers. It was also shown that YAP knockdown attenuated GT substrates-induced MC3T3-E1 differentiation, which reduced the osteogenic differentiation effect of the GT substrates. Collectively, our findings indicate that GT substrates-induced MC3T3-E1 differentiation may be associated with YAP. This paper provides new target points for transcriptional mechanism research of microenvironment induced cell differentiation and a useful approach to obtain more biofunctionalization scaffolds for tissue engineering. © 2016 Wiley Periodicals, Inc.

  12. Preprocessing with Photoshop Software on Microscopic Images of A549 Cells in Epithelial-Mesenchymal Transition.

    PubMed

    Ren, Zhou-Xin; Yu, Hai-Bin; Shen, Jun-Ling; Li, Ya; Li, Jian-Sheng

    2015-06-01

    To establish a preprocessing method for cell morphometry in microscopic images of A549 cells in epithelial-mesenchymal transition (EMT). Adobe Photoshop CS2 (Adobe Systems, Inc.) was used for preprocessing the images. First, all images were processed for size uniformity and high distinguishability between the cell and background area. Then, a blank image with the same size and grids was established and cross points of the grids were added into a distinct color. The blank image was merged into a processed image. In the merged images, the cells with 1 or more cross points were chosen, and then the cell areas were enclosed and were replaced in a distinct color. Except for chosen cellular areas, all areas were changed into a unique hue. Three observers quantified roundness of cells in images with the image preprocess (IPP) or without the method (Controls), respectively. Furthermore, 1 observer measured the roundness 3 times with the 2 methods, respectively. The results between IPPs and Controls were compared for repeatability and reproducibility. As compared with the Control method, among 3 observers, use of the IPP method resulted in a higher number and a higher percentage of same-chosen cells in an image. The relative average deviation values of roundness, either for 3 observers or 1 observer, were significantly higher in Controls than in IPPs (p < 0.01 or 0.001). The values of intraclass correlation coefficient, both in Single Type or Average, were higher in IPPs than in Controls both for 3 observers and 1 observer. Processed with Adobe Photoshop, a chosen cell from an image was more objective, regular, and accurate, creating an increase of reproducibility and repeatability on morphometry of A549 cells in epithelial to mesenchymal transition.

  13. Integrated thin film cadmium sulfide solar cell module

    NASA Technical Reports Server (NTRS)

    Mickelsen, R. A.; Abbott, D. D.

    1971-01-01

    The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

  14. Business Case for Fuel Cells 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtin, Sandra; Gangi, Jennifer; Benjamin, Thomas G.

    The report provides an overview of recent private sector fuel cell installations at U.S. businesses as of December 31, 2016. This list is by no means exhaustive. Over the past few decades, hundreds of thousands of fuel cells have been installed around the world, for primary or backup power, as well as in various other applications including portable and emergency backup power. Fuel cells have also been deployed in other applications such as heat and electricity for homes and apartments, material handling, passenger vehicles, buses, and remote, off-grid sites.

  15. Emergence of multicellular organisms with dynamic differentiation and spatial pattern.

    PubMed

    Furusawa, C; Kaneko, K

    1998-01-01

    The origin of multicellular organisms and the mechanism of development in cell societies are studied by choosing a model with intracellular biochemical dynamics allowing for oscillations, cell-cell interaction through diffusive chemicals on a two-dimensional grid, and state-dependent cell adhesion. Cells differentiate due to a dynamical instability, as described by our "isologous diversification" theory. A fixed spatial pattern of differentiated cells emerges, where spatial information is sustained by cell-cell interactions. This pattern is robust against perturbations. With an adequate cell adhesion force, active cells are release that form the seed of a new generation of multicellular organisms, accompanied by death of the original multicellular unit as a halting state. It is shown that the emergence of multicellular organisms with differentiation, regulation, and life cycle is not an accidental event, but a natural consequence in a system of replicating cells with growth.

  16. Novel chemistries and materials for grid-scale energy storage: Quinones and halogen catalysis

    NASA Astrophysics Data System (ADS)

    Huskinson, Brian Thomas

    In this work I describe various approaches to electrochemical energy storage at the grid-scale. Chapter 1 provides an introduction to energy storage and an overview of the history and development of flow batteries. Chapter 2 describes work on the hydrogen-chlorine regenerative fuel cell, detailing its development and the record-breaking performance of the device. Chapter 3 dives into catalyst materials for such a fuel cell, focusing on ruthenium oxide based alloys to be used as chlorine redox catalysts. Chapter 4 introduces and details the development of a performance model for a hydrogen-bromine cell. Chapter 5 delves into the more recent work I have done, switching to applications of quinone chemistries in flow batteries. It focuses on the pairing of one particular quinone (2,7-anthraquinone disulfonic acid) with bromine, and highlights the promising performance characteristics of a device based on this type of chemistry.

  17. Modelling and control of solid oxide fuel cell generation system in microgrid

    NASA Astrophysics Data System (ADS)

    Zhou, Niancheng; Li, Chunyan; Sun, Fangqing; Wang, Qianggang

    2017-11-01

    Compared with other kinds of fuel cells, solid oxide fuel cell (SOFC) has been widely used in microgrids because of its higher efficiency and longer operation life. The weakness of SOFC lies in its slow response speed when grid disturbance occurs. This paper presents a control strategy that can promote the response speed and limit the fault current impulse for SOFC systems integrated into microgrids. First, the hysteretic control of the bidirectional DC-DC converter, which joins the SOFC and DC bus together, is explored. In addition, an improved droop control with limited current protection is applied in the DC-AC inverter, and the active synchronization control is applied to ensure a smooth transition of the microgrid between the grid-connected mode and the islanded mode. To validate the effectiveness of this control strategy, the control model was built and simulated in PSCAD/EMTDC.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Stephanie; Geisz, John F.; Steiner, Myles A.

    Dual-junction solar cells consisting of rear-heterojunction GaInP top cells and back-junction, back-contacted crystalline Si bottom cells were fabricated and characterized. Our calculations show that theoretical efficiencies up to 38.9% can be achieved with Si-based tandem devices. In our experiments, the two subcells were fabricated separately and stacked with an index matching fluid. In contrast to conventional mechanically stacked solar cells, that contain two metal grids at the interface, our concept includes a fully back contacted bottom cell which reduces the shadow losses in the device. A 1-sun AM1.5g cumulative efficiency of (26.2 +/- 0.6)% has been achieved with this novelmore » GaInP/Si 4-terminal tandem solar cell.« less

  19. InP concentrator solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Ward, J. S.; Wanlass, M. W.; Coutts, T. J.; Emery, K. A.

    1991-01-01

    The design, fabrication, and characterization of high-performance, n(+)/p InP shallow-homojunction (SHJ) concentrator solar cells is described. The InP device structures were grown by atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). A preliminary assessment of the effects of grid collection distance and emitter sheet resistance on cell performance is presented. At concentration ratios of over 100, cells with AM0 efficiencies in excess of 21 percent at 25 C and 19 percent at 80 C are reported. These results indicate that high-efficiency InP concentrator cells can be fabricated using existing technologies. The performance of these cells as a function of temperature is discussed, and areas for future improvement are outlined.

  20. The Business Case for Fuel Cells: Delivering Sustainable Value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtin, Sandra; Gangi, Jennifer

    This report, written and compiled by Argonne National Laboratory and the Fuel Cell and Hydrogen Energy Association with support from the Fuel Cell Technologies Office, provides an overview of private sector fuel cell installations at U.S. businesses as of December 31, 2016. Over the past few decades, hundreds of thousands of fuel cells have been installed around the world, for primary or backup power, as well as in various other applications including portable and emergency backup power. Fuel cells have also been deployed in other applications such as heat and electricity for homes and apartments, material handling, passenger vehicles, buses,more » and remote, off-grid sites.« less

  1. Battery Second Use Offsets Electric Vehicle Expenses, Improves Grid

    Science.gov Websites

    capable of offsetting vehicle expenses while improving utility grid stability. Photo by Dennis Schroeder John Ireland work on a cell calorimeter at the Battery Testing Laboratory. Photo by Dennis Schroeder retrofit Lithium-ion batteries for second use at relatively low costs. Photo by Dennis Schroeder

  2. Functional Equivalence Acceptance Testing of FUN3D for Entry Descent and Landing Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Wood, William A.; Kleb, William L.; Alter, Stephen J.; Glass, Christopher E.; Padilla, Jose F.; Hammond, Dana P.; White, Jeffery A.

    2013-01-01

    The functional equivalence of the unstructured grid code FUN3D to the the structured grid code LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is documented for applications of interest to the Entry, Descent, and Landing (EDL) community. Examples from an existing suite of regression tests are used to demonstrate the functional equivalence, encompassing various thermochemical models and vehicle configurations. Algorithm modifications required for the node-based unstructured grid code (FUN3D) to reproduce functionality of the cell-centered structured code (LAURA) are also documented. Challenges associated with computation on tetrahedral grids versus computation on structured-grid derived hexahedral systems are discussed.

  3. MISR Level 3 Imagery Overview

    Atmospheric Science Data Center

    2016-10-06

    ... is located at (90 N, 180 W) with the center of that grid cell being located at (89.75 N, 179.75 W). Conversely, the lower-right hand ... of the image is located at (90 S, 180 E) with that given cell being centered at (89.75 S, 179.75 E). In addition, select variances and ...

  4. A method to efficiently apply a biogeochemical model to a landscape.

    Treesearch

    Robert E. Kennedy; David P. Turner; Warren B. Cohen; Michael Guzy

    2006-01-01

    Biogeochemical models offer an important means of understanding carbon dynamics, but the computational complexity of many models means that modeling all grid cells on a large landscape is computationally burdensome. Because most biogeochemical models ignore adjacency effects between cells, however, a more efficient approach is possible. Recognizing that spatial...

  5. ELECTRIC POWER GENERATION USING A PHOSPHORIC ACID FUEL CELL ON A MUNICIPAL SOLID WASTE LANDFILL GAS STREAM

    EPA Science Inventory

    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phorsphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Th...

  6. Benefits of measuring half-cell potentials and rebar corrosion rates in condition surveys of concrete bridge decks.

    DOT National Transportation Integrated Search

    1992-01-01

    The practice of conducting a half-cell potential survey during the assessment of the condition of a concrete deck was reexamined with the objective of eliminating some of the doubts concerning its benefits. It was found that the survey grid size of 4...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Wentao; Vemuri, Rama Ses; Milshtein, Jarrod D.

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V andmore » shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. In conclusion, this study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.« less

  8. Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms.

    PubMed

    Mikhal, Julia; Geurts, Bernard J

    2013-12-01

    A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.

  9. Motor coordination in mice with hotfoot, Lurcher, and double mutations of the Grid2 gene encoding the delta-2 excitatory amino acid receptor.

    PubMed

    Lalonde, R; Hayzoun, K; Selimi, F; Mariani, J; Strazielle, C

    2003-11-01

    Grid2(ho/ho) is a loss of function gene mutation resulting in abnormal dendritic arborizations of Purkinje cells. These mutants were compared in a series of motor coordination tests requiring balance and equilibrium to nonataxic controls (Grid2(ho/+)) and to a double mutant (Grid2(ho/Lc)) with an inserted Lc mutation. The performance of Grid2(ho/ho) mutant mice was poorer than that of controls on stationary beam, coat hanger, unsteady platform, and rotorod tests. Grid2(ho/Lc) did not differ from Grid2(Lc/+) mice. However, the insertion of the Lc mutation in Grid2(ho/Lc) potentiated the deficits found in Grid2(ho/ho) in stationary beam, unsteady platform, and rotorod tests. These results indicate a deleterious effect of the Lc mutation on Grid2-deficient mice.

  10. A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon M.; Petersen, Mark R.; Reckinger, Scott J.

    2015-12-01

    MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are carried out using three of the vertical coordinate types available in MPAS-Ocean, including z-star with partial bottom cells, z-star with full cells, and sigma coordinates. The results are first benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model, which are used to set the base case used for this work. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Lastly, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates.

  11. A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids

    NASA Astrophysics Data System (ADS)

    Feng, Wenqiang; Guo, Zhenlin; Lowengrub, John S.; Wise, Steven M.

    2018-01-01

    We present a mass-conservative full approximation storage (FAS) multigrid solver for cell-centered finite difference methods on block-structured, locally cartesian grids. The algorithm is essentially a standard adaptive FAS (AFAS) scheme, but with a simple modification that comes in the form of a mass-conservative correction to the coarse-level force. This correction is facilitated by the creation of a zombie variable, analogous to a ghost variable, but defined on the coarse grid and lying under the fine grid refinement patch. We show that a number of different types of fine-level ghost cell interpolation strategies could be used in our framework, including low-order linear interpolation. In our approach, the smoother, prolongation, and restriction operations need never be aware of the mass conservation conditions at the coarse-fine interface. To maintain global mass conservation, we need only modify the usual FAS algorithm by correcting the coarse-level force function at points adjacent to the coarse-fine interface. We demonstrate through simulations that the solver converges geometrically, at a rate that is h-independent, and we show the generality of the solver, applying it to several nonlinear, time-dependent, and multi-dimensional problems. In several tests, we show that second-order asymptotic (h → 0) convergence is observed for the discretizations, provided that (1) at least linear interpolation of the ghost variables is employed, and (2) the mass conservation corrections are applied to the coarse-level force term.

  12. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    NASA Astrophysics Data System (ADS)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  13. Potential biases in evapotranspiration estimates from Earth system models due to spatial heterogeneity and lateral moisture redistribution

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.; Kirchner, J. W.

    2016-12-01

    Evapotranspiration (ET) is a key process in land-climate interactions and affects the dynamics of the atmosphere at local and regional scales. In estimating ET, most earth system models average over considerable sub-grid heterogeneity in land surface properties, precipitation (P), and potential evapotranspiration (PET). This spatial averaging could potentially bias ET estimates, due to the nonlinearities in the underlying relationships. In addition, most earth system models ignore lateral redistribution of water within and between grid cells, which could potentially alter both local and regional ET. Here we present a first attempt to quantify the effects of spatial heterogeneity and lateral redistribution on grid-cell-averaged ET as seen from the atmosphere over heterogeneous landscapes. Using a Budyko framework to express ET as a function of P and PET, we quantify how sub-grid heterogeneity affects average ET at the scale of typical earth system model grid cells. We show that averaging over sub-grid heterogeneity in P and PET, as typical earth system models do, leads to overestimates of average ET. We use a similar approach to quantify how lateral redistribution of water could affect average ET, as seen from the atmosphere. We show that where the aridity index P/PET increases with altitude, gravitationally driven lateral redistribution will increase average ET, implying that models that neglect lateral moisture redistribution will underestimate average ET. In contrast, where the aridity index P/PET decreases with altitude, gravitationally driven lateral redistribution will decrease average ET. This approach yields a simple conceptual framework and mathematical expressions for determining whether, and how much, spatial heterogeneity and lateral redistribution can affect regional ET fluxes as seen from the atmosphere. This analysis provides the basis for quantifying heterogeneity and redistribution effects on ET at regional and continental scales, which will be the focus of future work.

  14. A new Downscaling Approach for SMAP, SMOS and ASCAT by predicting sub-grid Soil Moisture Variability based on Soil Texture

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.

    2017-12-01

    Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.

  15. 3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr; Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr; Leblanc, F.

    2016-03-15

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order tomore » conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.« less

  16. Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions - Part 1: Product description

    NASA Astrophysics Data System (ADS)

    Brucker, L.; Dinnat, E. P.; Koenig, L. S.

    2014-05-01

    Passive and active observations at L band (frequency ~1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50° are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km × 156 km and 74 km × 122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html .

  17. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    Laser assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are investigated. The tasks comprising these investigations are summarized. Metal deposition experiments are carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metalloorganic inks spun onto silicon substrates. Laser decomposition of spun on silver neodecanoate ink yields very promising results. Solar cell comb metallization patterns are written using this technique.

  18. An adaptive grid to improve the efficiency and accuracy of modelling underwater noise from shipping

    NASA Astrophysics Data System (ADS)

    Trigg, Leah; Chen, Feng; Shapiro, Georgy; Ingram, Simon; Embling, Clare

    2017-04-01

    Underwater noise from shipping is becoming a significant concern and has been listed as a pollutant under Descriptor 11 of the Marine Strategy Framework Directive. Underwater noise models are an essential tool to assess and predict noise levels for regulatory procedures such as environmental impact assessments and ship noise monitoring. There are generally two approaches to noise modelling. The first is based on simplified energy flux models, assuming either spherical or cylindrical propagation of sound energy. These models are very quick but they ignore important water column and seabed properties, and produce significant errors in the areas subject to temperature stratification (Shapiro et al., 2014). The second type of model (e.g. ray-tracing and parabolic equation) is based on an advanced physical representation of sound propagation. However, these acoustic propagation models are computationally expensive to execute. Shipping noise modelling requires spatial discretization in order to group noise sources together using a grid. A uniform grid size is often selected to achieve either the greatest efficiency (i.e. speed of computations) or the greatest accuracy. In contrast, this work aims to produce efficient and accurate noise level predictions by presenting an adaptive grid where cell size varies with distance from the receiver. The spatial range over which a certain cell size is suitable was determined by calculating the distance from the receiver at which propagation loss becomes uniform across a grid cell. The computational efficiency and accuracy of the resulting adaptive grid was tested by comparing it to uniform 1 km and 5 km grids. These represent an accurate and computationally efficient grid respectively. For a case study of the Celtic Sea, an application of the adaptive grid over an area of 160×160 km reduced the number of model executions required from 25600 for a 1 km grid to 5356 in December and to between 5056 and 13132 in August, which represents a 2 to 5-fold increase in efficiency. The 5 km grid reduces the number of model executions further to 1024. However, over the first 25 km the 5 km grid produces errors of up to 13.8 dB when compared to the highly accurate but inefficient 1 km grid. The newly developed adaptive grid generates much smaller errors of less than 0.5 dB while demonstrating high computational efficiency. Our results show that the adaptive grid provides the ability to retain the accuracy of noise level predictions and improve the efficiency of the modelling process. This can help safeguard sensitive marine ecosystems from noise pollution by improving the underwater noise predictions that inform management activities. References Shapiro, G., Chen, F., Thain, R., 2014. The Effect of Ocean Fronts on Acoustic Wave Propagation in a Shallow Sea, Journal of Marine System, 139: 217 - 226. http://dx.doi.org/10.1016/j.jmarsys.2014.06.007.

  19. Sensitivity simulations of superparameterised convection in a general circulation model

    NASA Astrophysics Data System (ADS)

    Rybka, Harald; Tost, Holger

    2015-04-01

    Cloud Resolving Models (CRMs) covering a horizontal grid spacing from a few hundred meters up to a few kilometers have been used to explicitly resolve small-scale and mesoscale processes. Special attention has been paid to realistically represent cloud dynamics and cloud microphysics involving cloud droplets, ice crystals, graupel and aerosols. The entire variety of physical processes on the small-scale interacts with the larger-scale circulation and has to be parameterised on the coarse grid of a general circulation model (GCM). Since more than a decade an approach to connect these two types of models which act on different scales has been developed to resolve cloud processes and their interactions with the large-scale flow. The concept is to use an ensemble of CRM grid cells in a 2D or 3D configuration in each grid cell of the GCM to explicitly represent small-scale processes avoiding the use of convection and large-scale cloud parameterisations which are a major source for uncertainties regarding clouds. The idea is commonly known as superparameterisation or cloud-resolving convection parameterisation. This study presents different simulations of an adapted Earth System Model (ESM) connected to a CRM which acts as a superparameterisation. Simulations have been performed with the ECHAM/MESSy atmospheric chemistry (EMAC) model comparing conventional GCM runs (including convection and large-scale cloud parameterisations) with the improved superparameterised EMAC (SP-EMAC) modeling one year with prescribed sea surface temperatures and sea ice content. The sensitivity of atmospheric temperature, precipiation patterns, cloud amount and types is observed changing the embedded CRM represenation (orientation, width, no. of CRM cells, 2D vs. 3D). Additionally, we also evaluate the radiation balance with the new model configuration, and systematically analyse the impact of tunable parameters on the radiation budget and hydrological cycle. Furthermore, the subgrid variability (individual CRM cell output) is analysed in order to illustrate the importance of a highly varying atmospheric structure inside a single GCM grid box. Finally, the convective transport of Radon is observed comparing different transport procedures and their influence on the vertical tracer distribution.

  20. From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact

    PubMed Central

    Baron, Christian; Sultan, Benjamin; Balme, Maud; Sarr, Benoit; Traore, Seydou; Lebel, Thierry; Janicot, Serge; Dingkuhn, Michael

    2005-01-01

    General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level. PMID:16433096

  1. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Loubère, Raphaël

    2016-08-01

    In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree N is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time t n + 1 for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time tn is scattered onto small sub-cells (Ns = 2 N + 1 sub-cells per element edge), in order to obtain a set of sub-cell averages at time tn. Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time tn to time t n + 1. The new sub-grid data at time t n + 1 are finally gathered back into a valid cell-centered DG polynomial of degree N by using a classical conservative and higher order accurate finite volume reconstruction technique. Consequently, if the number Ns is sufficiently large (Ns ≥ N + 1), the subscale resolution capability of the DG scheme is fully maintained, while preserving at the same time an essentially non-oscillatory behavior of the solution at discontinuities. Many standard DG limiters only adjust the discrete solution in troubled cells, based on the limiting of higher order moments or by applying a nonlinear WENO/HWENO reconstruction on the data at the new time t n + 1. Instead, our new DG limiter entirely recomputes the troubled cells by solving the governing PDE system again starting from valid data at the old time level tn, but using this time a more robust scheme on the sub-grid level. In other words, the piecewise polynomials produced by the new limiter are the result of a more robust solution of the PDE system itself, while most standard DG limiters are simply based on a mere nonlinear data post-processing of the discrete solution. Technically speaking, the new method corresponds to an element-wise checkpointing and restarting of the solver, using a lower order scheme on the sub-grid. As a result, the present DG limiter is even able to cure floating point errors like NaN values that have occurred after divisions by zero or after the computation of roots from negative numbers. This is a unique feature of our new algorithm among existing DG limiters. The new a posteriori sub-cell stabilization approach is developed within a high order accurate one-step ADER-DG framework on multidimensional unstructured meshes for hyperbolic systems of conservation laws as well as for hyperbolic PDE with non-conservative products. The method is applied to the Euler equations of compressible gas dynamics, to the ideal magneto-hydrodynamics equations (MHD) as well as to the seven-equation Baer-Nunziato model of compressible multi-phase flows. A large set of standard test problems is solved in order to assess the accuracy and robustness of the new limiter.

  2. A Coastal Hazards Data Base for the U.S. Gulf Coast (1993) (NDP-04bB)

    DOE Data Explorer

    Gornitz, Vivien M. [National Aeronautics and Space Administration, Goddard Institute for Space Studies, New York, NY (USA); White, Tammy W. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA)

    2008-01-01

    This document describes the contents of a digital data base that may be used to identify coastlines along the U.S. Gulf Coast at risk to sea-level rise. The data base integrates point, line, and polygon data for the U.S. Gulf Coast into 0.25° latitude by 0.25° longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data base systems. Each coastal grid cell and line segment contains data on elevations, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights.

  3. Developments toward an 18% efficient silicon solar cell

    NASA Technical Reports Server (NTRS)

    Meulenberg, A., Jr.

    1983-01-01

    Limitations to increased open-circuit voltage were identified and experimentally verified for 0.1 ohm-cm solar cells with heavily doped emitters. After major reduction in the dark current contribution from the metal-silicon interface of the grid contacts, the surface recombination velocity of the oxide-silicon interface of shallow junction solar cells is the limiting factor. In deep junction solar cells, where the junction field does not aid surface collection, the emitter bulk is the limiting factor. Singly-diffused, shallow junction cells have been fabricated with open circuit voltages in excess of 645 mV. Double-diffusion shallow and deep junctions cells have displayed voltages above 650 mV. MIS solar cells formed on 0.1 ohm-cm substrates have exibited the lowest dark currents produced in the course of the contract work.

  4. Multi-Dimensional, Inviscid Flux Reconstruction for Simulation of Hypersonic Heating on Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2009-01-01

    The quality of simulated hypersonic stagnation region heating on tetrahedral meshes is investigated by using a three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. Two test problems are investigated: hypersonic flow over a three-dimensional cylinder with special attention to the uniformity of the solution in the spanwise direction and hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problem provides a sensitive test for algorithmic effects on heating. This investigation is believed to be unique in its focus on three-dimensional, rotated upwind schemes for the simulation of hypersonic heating on tetrahedral grids. This study attempts to fill the void left by the inability of conventional (quasi-one-dimensional) approaches to accurately simulate heating in a tetrahedral grid system. Results show significant improvement in spanwise uniformity of heating with some penalty of ringing at the captured shock. Issues with accuracy near the peak shear location are identified and require further study.

  5. Grid generation methodology and CFD simulations in sliding vane compressors and expanders

    NASA Astrophysics Data System (ADS)

    Bianchi, Giuseppe; Rane, Sham; Kovacevic, Ahmed; Cipollone, Roberto; Murgia, Stefano; Contaldi, Giulio

    2017-08-01

    The limiting factor for the employment of advanced 3D CFD tools in the analysis and design of rotary vane machines is the unavailability of methods for generation of computational grids suitable for fast and reliable numerical analysis. The paper addresses this challenge presenting the development of an analytical grid generation for vane machines that is based on the user defined nodal displacement. In particular, mesh boundaries are defined as parametric curves generated using trigonometrical modelling of the axial cross section of the machine while the distribution of computational nodes is performed using algebraic algorithms with transfinite interpolation, post orthogonalisation and smoothing. Algebraic control functions are introduced for distribution of nodes on the rotor and casing boundaries in order to achieve good grid quality in terms of cell size and expansion. In this way, the moving and deforming fluid domain of the sliding vane machine is discretized and the conservation of intrinsic quantities in ensured by maintaining the cell connectivity and structure. For validation of generated grids, a mid-size air compressor and a small-scale expander for Organic Rankine Cycle applications have been investigated in this paper. Remarks on implementation of the mesh motion algorithm, stability and robustness experienced with the ANSYS CFX solver as well as the obtained flow results are presented.

  6. 28 percent efficient GaAs concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Macmillan, H. F.; Hamaker, H. C.; Kaminar, N. R.; Kuryla, M. S.; Ladle Ristow, M.

    1988-01-01

    AlGaAs/GaAs heteroface solar concentrator cells which exhibit efficiencies in excess of 27 percent at high solar concentrations (over 400 suns, AM1.5D, 100 mW/sq cm) have been fabricated with both n/p and p/n configurations. The best n/p cell achieved an efficiency of 28.1 percent around 400 suns, and the best p/n cell achieved an efficiency of 27.5 percent around 1000 suns. The high performance of these GaAs concentrator cells compared to earlier high-efficiency cells was due to improved control of the metal-organic chemical vapor deposition growth conditions and improved cell fabrication procedures (gridline definition and edge passivation). The design parameters of the solar cell structures and optimized grid pattern were determined with a realistic computer modeling program. An evaluation of the device characteristics and a discussion of future GaAs concentrator cell development are presented.

  7. Recombination imaging of III-V solar cells

    NASA Technical Reports Server (NTRS)

    Virshup, G. F.

    1987-01-01

    An imaging technique based on the radiative recombination of minority carriers in forward-biased solar cells has been developed for characterization of III-V solar cells. When used in mapping whole wafers, it has helped identify three independent loss mechanisms (broken grid lines, shorting defects, and direct-to-indirect bandgap transitions), all of which resulted in lower efficiencies. The imaging has also led to improvements in processing techniques to reduce the occurrence of broken gridlines as well as surface defects. The ability to visualize current mechanisms in solar cells is an intuitive tool which is powerful in its simplicity.

  8. PROPAGATOR: a synchronous stochastic wildfire propagation model with distributed computation engine

    NASA Astrophysics Data System (ADS)

    D´Andrea, M.; Fiorucci, P.; Biondi, G.; Negro, D.

    2012-04-01

    PROPAGATOR is a stochastic model of forest fire spread, useful as a rapid method for fire risk assessment. The model is based on a 2D stochastic cellular automaton. The domain of simulation is discretized using a square regular grid with cell size of 20x20 meters. The model uses high-resolution information such as elevation and type of vegetation on the ground. Input parameters are wind direction, speed and the ignition point of fire. The simulation of fire propagation is done via a stochastic mechanism of propagation between a burning cell and a non-burning cell belonging to its neighbourhood, i.e. the 8 adjacent cells in the rectangular grid. The fire spreads from one cell to its neighbours with a certain base probability, defined using vegetation types of two adjacent cells, and modified by taking into account the slope between them, wind direction and speed. The simulation is synchronous, and takes into account the time needed by the burning fire to cross each cell. Vegetation cover, slope, wind speed and direction affect the fire-propagation speed from cell to cell. The model simulates several mutually independent realizations of the same stochastic fire propagation process. Each of them provides a map of the area burned at each simulation time step. Propagator simulates self-extinction of the fire, and the propagation process continues until at least one cell of the domain is burning in each realization. The output of the model is a series of maps representing the probability of each cell of the domain to be affected by the fire at each time-step: these probabilities are obtained by evaluating the relative frequency of ignition of each cell with respect to the complete set of simulations. Propagator is available as a module in the OWIS (Opera Web Interfaces) system. The model simulation runs on a dedicated server and it is remote controlled from the client program, NAZCA. Ignition points of the simulation can be selected directly in a high-resolution, three-dimensional graphical representation of the Italian territory within NAZCA. The other simulation parameters, namely wind speed and direction, number of simulations, computing grid size and temporal resolution, can be selected from within the program interface. The output of the simulation is showed in real-time during the simulation, and are also available off-line and on the DEWETRA system, a Web GIS-based system for environmental risk assessment, developed according to OGC-INSPIRE standards. The model execution is very fast, providing a full prevision for the scenario in few minutes, and can be useful for real-time active fire management and suppression.

  9. Random location of fuel treatments in wildland community interfaces: a percolation approach

    Treesearch

    Michael Bevers; Philip N. Omi; John G. Hof

    2004-01-01

    We explore the use of spatially correlated random treatments to reduce fuels in landscape patterns that appear somewhat natural while forming fully connected fuelbreaks between wildland forests and developed protection zones. From treatment zone maps partitioned into grids of hexagonal forest cells representing potential treatment sites, we selected cells to be treated...

  10. Numerically exploring habitat fragmentation effects on populations using cell-based coupled map lattices

    Treesearch

    Michael Bevers; Curtis H. Flather

    1999-01-01

    We examine habitat size, shape, and arrangement effects on populations using a discrete reaction-diffusion model. Diffusion is modeled passively and applied to a cellular grid of territories forming a coupled map lattice. Dispersal mortality is proportional to the amount of nonhabitat and fully occupied habitat surrounding a given cell, with distance decay. After...

  11. Documentation for the MODFLOW 6 Groundwater Flow Model

    USGS Publications Warehouse

    Langevin, Christian D.; Hughes, Joseph D.; Banta, Edward R.; Niswonger, Richard G.; Panday, Sorab; Provost, Alden M.

    2017-08-10

    This report documents the Groundwater Flow (GWF) Model for a new version of MODFLOW called MODFLOW 6. The GWF Model for MODFLOW 6 is based on a generalized control-volume finite-difference approach in which a cell can be hydraulically connected to any number of surrounding cells. Users can define the model grid using one of three discretization packages, including (1) a structured discretization package for defining regular MODFLOW grids consisting of layers, rows, and columns, (2) a discretization by ver­tices package for defining layered unstructured grids consisting of layers and cells, and (3) a general unstruc­tured discretization package for defining flexible grids comprised of cells and their connection properties. For layered grids, a new capability is available for removing thin cells and vertically connecting cells overlying and underlying the thin cells. For complex problems involving water-table conditions, an optional Newton-Raphson formulation, based on the formulations in MODFLOW-NWT and MODFLOW-USG, can be acti­vated. Use of the Newton-Raphson formulation will often improve model convergence and allow solutions to be obtained for difficult problems that cannot be solved using the traditional wetting and drying approach. The GWF Model is divided into “packages,” as was done in previous MODFLOW versions. A package is the part of the model that deals with a single aspect of simulation. Packages included with the GWF Model include those related to internal calculations of groundwater flow (discretization, initial conditions, hydraulic conduc­tance, and storage), stress packages (constant heads, wells, recharge, rivers, general head boundaries, drains, and evapotranspiration), and advanced stress packages (streamflow routing, lakes, multi-aquifer wells, and unsaturated zone flow). An additional package is also available for moving water available in one package into the individual features of the advanced stress packages. The GWF Model also has packages for obtaining and controlling output from the model. This report includes detailed explanations of physical and mathematical concepts on which the GWF Model and its packages are based.Like its predecessors, MODFLOW 6 is based on a highly modular structure; however, this structure has been extended into an object-oriented framework. The framework includes a robust and generalized numeri­cal solution object, which can be used to solve many different types of models. The numerical solution object has several different matrix preconditioning options as well as several methods for solving the linear system of equations. In this new framework, the GWF Model itself is an object as are each of the GWF Model packages. A benefit of the object-oriented structure is that multiple objects of the same type can be used in a single sim­ulation. Thus, a single forward run with MODFLOW 6 may contain multiple GWF Models. GWF Models can be hydraulically connected using GWF-GWF Exchange objects. Connecting GWF models in different ways permits the user to utilize a local grid refinement strategy consisting of parent and child models or to couple adjacent GWF Models. An advantage of the approach implemented in MODFLOW 6 is that multiple models and their exchanges can be incorporated into a single numerical solution object. With this design, models can be tightly coupled at the matrix level.

  12. Spatiotemporal modelling of viral infection dynamics

    NASA Astrophysics Data System (ADS)

    Beauchemin, Catherine

    Viral kinetics have been studied extensively in the past through the use of ordinary differential equations describing the time evolution of the diseased state in a spatially well-mixed medium. However, emerging spatial structures such as localized populations of dead cells might affect the spread of infection, similar to the manner in which a counter-fire can stop a forest fire from spreading. In the first phase of the project, a simple two-dimensional cellular automaton model of viral infections was developed. It was validated against clinical immunological data for uncomplicated influenza A infections and shown to be accurate enough to adequately model them. In the second phase of the project, the simple two-dimensional cellular automaton model was used to investigate the effects of relaxing the well-mixed assumption on viral infection dynamics. It was shown that grouping the initially infected cells into patches rather than distributing them uniformly on the grid reduced the infection rate as only cells on the perimeter of the patch have healthy neighbours to infect. Use of a local epithelial cell regeneration rule where dead cells are replaced by healthy cells when an immediate neighbour divides was found to result in more extensive damage of the epithelium and yielded a better fit to experimental influenza A infection data than a global regeneration rule based on division rate of healthy cell. Finally, the addition of immune cell at the site of infection was found to be a better strategy at low infection levels, while addition at random locations on the grid was the better strategy at high infection level. In the last project, the movement of T cells within lymph nodes in the absence of antigen, was investigated. Based on individual T cell track data captured by two-photon microscopy experiments in vivo, a simple model was proposed for the motion of T cells. This is the first step towards the implementation of a more realistic spatiotemporal model of HIV than those proposed thus far.

  13. A Cartesian cut cell method for rarefied flow simulations around moving obstacles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechristé, G., E-mail: Guillaume.Dechriste@math.u-bordeaux1.fr; CNRS, IMB, UMR 5251, F-33400 Talence; Mieussens, L., E-mail: Luc.Mieussens@math.u-bordeaux1.fr

    2016-06-01

    For accurate simulations of rarefied gas flows around moving obstacles, we propose a cut cell method on Cartesian grids: it allows exact conservation and accurate treatment of boundary conditions. Our approach is designed to treat Cartesian cells and various kinds of cut cells by the same algorithm, with no need to identify the specific shape of each cut cell. This makes the implementation quite simple, and allows a direct extension to 3D problems. Such simulations are also made possible by using an adaptive mesh refinement technique and a hybrid parallel implementation. This is illustrated by several test cases, including amore » 3D unsteady simulation of the Crookes radiometer.« less

  14. Economic competitiveness of fuel cell onsite integrated energy systems

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  15. Design study of large area 8 cm x 8 cm wrapthrough cells for space station

    NASA Technical Reports Server (NTRS)

    Garlick, George F. J.; Lillington, David R.

    1987-01-01

    The design of large area silicon solar cells for the projected NASA space station is discussed. It is based on the NASA specification for the cells which calls for an 8 cm by 8 cm cell of wrapthrough type with gridded back contacts. The beginning of life (BOL) power must be 1.039 watts per cell or larger and maximum end of life (EOL) after 10 years in the prescribed orbit under an equivalent 1MeV electron radiation damage fluence of 5 times 10 to the 13th power e/square cm. On orbit efficiency is to be optimized by a low thermal absorptance goal (thermal alpha) of .63.

  16. Using a Virtual Experiment to Analyze Infiltration Process from Point to Grid-cell Size Scale

    NASA Astrophysics Data System (ADS)

    Barrios, M. I.

    2013-12-01

    The hydrological science requires the emergence of a consistent theoretical corpus driving the relationships between dominant physical processes at different spatial and temporal scales. However, the strong spatial heterogeneities and non-linearities of these processes make difficult the development of multiscale conceptualizations. Therefore, scaling understanding is a key issue to advance this science. This work is focused on the use of virtual experiments to address the scaling of vertical infiltration from a physically based model at point scale to a simplified physically meaningful modeling approach at grid-cell scale. Numerical simulations have the advantage of deal with a wide range of boundary and initial conditions against field experimentation. The aim of the work was to show the utility of numerical simulations to discover relationships between the hydrological parameters at both scales, and to use this synthetic experience as a media to teach the complex nature of this hydrological process. The Green-Ampt model was used to represent vertical infiltration at point scale; and a conceptual storage model was employed to simulate the infiltration process at the grid-cell scale. Lognormal and beta probability distribution functions were assumed to represent the heterogeneity of soil hydraulic parameters at point scale. The linkages between point scale parameters and the grid-cell scale parameters were established by inverse simulations based on the mass balance equation and the averaging of the flow at the point scale. Results have shown numerical stability issues for particular conditions and have revealed the complex nature of the non-linear relationships between models' parameters at both scales and indicate that the parameterization of point scale processes at the coarser scale is governed by the amplification of non-linear effects. The findings of these simulations have been used by the students to identify potential research questions on scale issues. Moreover, the implementation of this virtual lab improved the ability to understand the rationale of these process and how to transfer the mathematical models to computational representations.

  17. Modification of the Highly Conductive PEDOT:PSS Layer for Use in Silver Nanogrid Electrodes for Flexible Inverted Polymer Solar Cells.

    PubMed

    Wang, Jie; Fei, Fei; Luo, Qun; Nie, Shuhong; Wu, Na; Chen, Xiaolian; Su, Wenming; Li, Yuanjie; Ma, Chang-Qi

    2017-03-01

    Silver nanogrid based flexible transparent electrode is recognized as the most promising alternative to ITO electrode for organic electronics, owing to its low production cost and excellent flexibility. Typically, a highly conductive thin film coating layer, such as highly conductive PEDOT:PSS (HC-PEDOT:PSS) is usually deposited onto the Ag-grid electrode to smooth the surface and to minimize the sheet resistance. In this paper, we found that inverted flexible polymer solar cells with structure of Ag-grid/HC-PEDOT:PSS/ZnO/photoactive layer/MoO 3 /Al generally exhibits strong S-shaped J-V curves, which could be eliminated by light-soaking treatment. Kelvin probe force microscope (KPFM) measurement proved that a large work function (WF) difference (0.70 eV) between HC-PEDOT:PSS and ZnO is the main reason for the formation of S-shape. White light soaking of the Ag-grid/HC-PEDOT:PSS gradually decreased the WF of HC-PEDOT:PSS from 5.10 to 4.60 eV, leading to a reduced WF difference between HC-PEDOT:PSS and ZnO from 0.70 to 0.38 eV. Such a WF difference decrease was believed to be the working mechanism for the light-soaking effect in this flexible device. Based on this finding, the HC-PEDOT:PSS solution was then modified by doping with polyethylenimine (PEI) and aqueous ammonia. The modified PEDOT:PSS film is characteristic of adjusting WF through varying PEI doping concentrations. By using such a modified PEDOT:PSS layer, light-soaking-free flexible inverted polymer solar cell with a power conversion efficiency of 6.58% was achieved for PTB7-Th:PC 71 BM cells. The current work provides a useful guideline for interfacial modification for Ag-grid based flexible electrode.

  18. Predicting the Occurrence of Cave-Inhabiting Fauna Based on Features of the Earth Surface Environment.

    PubMed

    Christman, Mary C; Doctor, Daniel H; Niemiller, Matthew L; Weary, David J; Young, John A; Zigler, Kirk S; Culver, David C

    2016-01-01

    One of the most challenging fauna to study in situ is the obligate cave fauna because of the difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management is more easily obtained. We examined the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative in the eastern United States (Illinois to Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. Models successfully predicted the presence of a group greater than 65% of the time (mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas.

  19. Data Rods: High Speed, Time-Series Analysis of Massive Cryospheric Data Sets Using Object-Oriented Database Methods

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Gallaher, D. W.; Grant, G.; Lv, Q.

    2011-12-01

    Change over time, is the central driver of climate change detection. The goal is to diagnose the underlying causes, and make projections into the future. In an effort to optimize this process we have developed the Data Rod model, an object-oriented approach that provides the ability to query grid cell changes and their relationships to neighboring grid cells through time. The time series data is organized in time-centric structures called "data rods." A single data rod can be pictured as the multi-spectral data history at one grid cell: a vertical column of data through time. This resolves the long-standing problem of managing time-series data and opens new possibilities for temporal data analysis. This structure enables rapid time- centric analysis at any grid cell across multiple sensors and satellite platforms. Collections of data rods can be spatially and temporally filtered, statistically analyzed, and aggregated for use with pattern matching algorithms. Likewise, individual image pixels can be extracted to generate multi-spectral imagery at any spatial and temporal location. The Data Rods project has created a series of prototype databases to store and analyze massive datasets containing multi-modality remote sensing data. Using object-oriented technology, this method overcomes the operational limitations of traditional relational databases. To demonstrate the speed and efficiency of time-centric analysis using the Data Rods model, we have developed a sea ice detection algorithm. This application determines the concentration of sea ice in a small spatial region across a long temporal window. If performed using traditional analytical techniques, this task would typically require extensive data downloads and spatial filtering. Using Data Rods databases, the exact spatio-temporal data set is immediately available No extraneous data is downloaded, and all selected data querying occurs transparently on the server side. Moreover, fundamental statistical calculations such as running averages are easily implemented against the time-centric columns of data.

  20. Calculation of three-dimensional (3-D) internal flow by means of the velocity-vorticity formulation on a staggered grid

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1995-01-01

    A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.

  1. Recent developments and assessment of a three-dimensional PBL parameterization for improved wind forecasting over complex terrain

    NASA Astrophysics Data System (ADS)

    Kosovic, B.; Jimenez, P. A.; Haupt, S. E.; Martilli, A.; Olson, J.; Bao, J. W.

    2017-12-01

    At present, the planetary boundary layer (PBL) parameterizations available in most numerical weather prediction (NWP) models are one-dimensional. One-dimensional parameterizations are based on the assumption of horizontal homogeneity. This homogeneity assumption is appropriate for grid cell sizes greater than 10 km. However, for mesoscale simulations of flows in complex terrain with grid cell sizes below 1 km, the assumption of horizontal homogeneity is violated. Applying a one-dimensional PBL parameterization to high-resolution mesoscale simulations in complex terrain could result in significant error. For high-resolution mesoscale simulations of flows in complex terrain, we have therefore developed and implemented a three-dimensional (3D) PBL parameterization in the Weather Research and Forecasting (WRF) model. The implementation of the 3D PBL scheme is based on the developments outlined by Mellor and Yamada (1974, 1982). Our implementation in the Weather Research and Forecasting (WRF) model uses a pure algebraic model (level 2) to diagnose the turbulent fluxes. To evaluate the performance of the 3D PBL model, we use observations from the Wind Forecast Improvement Project 2 (WFIP2). The WFIP2 field study took place in the Columbia River Gorge area from 2015-2017. We focus on selected cases when physical phenomena of significance for wind energy applications such as mountain waves, topographic wakes, and gap flows were observed. Our assessment of the 3D PBL parameterization also considers a large-eddy simulation (LES). We carried out a nested LES with grid cell sizes of 30 m and 10 m covering a large fraction of the WFIP2 study area. Both LES domains were discretized using 6000 x 3000 x 200 grid cells in zonal, meridional, and vertical direction, respectively. The LES results are used to assess the relative magnitude of horizontal gradients of turbulent stresses and fluxes in comparison to vertical gradients. The presentation will highlight the advantages of the 3D PBL scheme in regions of complex terrain.

  2. Predicting the Occurrence of Cave-Inhabiting Fauna Based on Features of the Earth Surface Environment

    PubMed Central

    Doctor, Daniel H.; Niemiller, Matthew L.; Weary, David J.; Young, John A.; Zigler, Kirk S.

    2016-01-01

    One of the most challenging fauna to study in situ is the obligate cave fauna because of the difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management is more easily obtained. We examined the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative in the eastern United States (Illinois to Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. Models successfully predicted the presence of a group greater than 65% of the time (mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas. PMID:27532611

  3. The influence of uncertainty and location-specific conditions on the environmental prioritisation of human pharmaceuticals in Europe.

    PubMed

    Oldenkamp, Rik; Huijbregts, Mark A J; Ragas, Ad M J

    2016-05-01

    The selection of priority APIs (Active Pharmaceutical Ingredients) can benefit from a spatially explicit approach, since an API might exceed the threshold of environmental concern in one location, while staying below that same threshold in another. However, such a spatially explicit approach is relatively data intensive and subject to parameter uncertainty due to limited data. This raises the question to what extent a spatially explicit approach for the environmental prioritisation of APIs remains worthwhile when accounting for uncertainty in parameter settings. We show here that the inclusion of spatially explicit information enables a more efficient environmental prioritisation of APIs in Europe, compared with a non-spatial EU-wide approach, also under uncertain conditions. In a case study with nine antibiotics, uncertainty distributions of the PAF (Potentially Affected Fraction) of aquatic species were calculated in 100∗100km(2) environmental grid cells throughout Europe, and used for the selection of priority APIs. Two APIs have median PAF values that exceed a threshold PAF of 1% in at least one environmental grid cell in Europe, i.e., oxytetracycline and erythromycin. At a tenfold lower threshold PAF (i.e., 0.1%), two additional APIs would be selected, i.e., cefuroxime and ciprofloxacin. However, in 94% of the environmental grid cells in Europe, no APIs exceed either of the thresholds. This illustrates the advantage of following a location-specific approach in the prioritisation of APIs. This added value remains when accounting for uncertainty in parameter settings, i.e., if the 95th percentile of the PAF instead of its median value is compared with the threshold. In 96% of the environmental grid cells, the location-specific approach still enables a reduction of the selection of priority APIs of at least 50%, compared with a EU-wide prioritisation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Predicting the occurrence of cave-inhabiting fauna based on features of the earth surface environment

    USGS Publications Warehouse

    Christman, Mary C.; Doctor, Daniel H.; Niemiller, Matthew L.; Weary, David J.; Young, John A.; Zigler, Kirk S.; Culver, David C.

    2016-01-01

    One of the most challenging fauna to study in situ is the obligate cave fauna because of the difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management is more easily obtained. We examined the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative in the eastern United States (Illinois to Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. Models successfully predicted the presence of a group greater than 65% of the time (mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas.

  5. Analytical Computation of Effective Grid Parameters for the Finite-Difference Seismic Waveform Modeling With the PREM, IASP91, SP6, and AK135

    NASA Astrophysics Data System (ADS)

    Toyokuni, G.; Takenaka, H.

    2007-12-01

    We propose a method to obtain effective grid parameters for the finite-difference (FD) method with standard Earth models using analytical ways. In spite of the broad use of the heterogeneous FD formulation for seismic waveform modeling, accurate treatment of material discontinuities inside the grid cells has been a serious problem for many years. One possible way to solve this problem is to introduce effective grid elastic moduli and densities (effective parameters) calculated by the volume harmonic averaging of elastic moduli and volume arithmetic averaging of density in grid cells. This scheme enables us to put a material discontinuity into an arbitrary position in the spatial grids. Most of the methods used for synthetic seismogram calculation today receives the blessing of the standard Earth models, such as the PREM, IASP91, SP6, and AK135, represented as functions of normalized radius. For the FD computation of seismic waveform with such models, we first need accurate treatment of material discontinuities in radius. This study provides a numerical scheme for analytical calculations of the effective parameters for an arbitrary spatial grids in radial direction as to these major four standard Earth models making the best use of their functional features. This scheme can analytically obtain the integral volume averages through partial fraction decompositions (PFDs) and integral formulae. We have developed a FORTRAN subroutine to perform the computations, which is opened to utilization in a large variety of FD schemes ranging from 1-D to 3-D, with conventional- and staggered-grids. In the presentation, we show some numerical examples displaying the accuracy of the FD synthetics simulated with the analytical effective parameters.

  6. Property Grids for the Kansas High Plains Aquifer from Water Well Drillers' Logs

    NASA Astrophysics Data System (ADS)

    Bohling, G.; Adkins-Heljeson, D.; Wilson, B. B.

    2017-12-01

    Like a number of state and provincial geological agencies, the Kansas Geological Survey hosts a database of water well drillers' logs, containing the records of sediments and lithologies characterized during drilling. At the moment, the KGS database contains records associated with over 90,000 wells statewide. Over 60,000 of these wells are within the High Plains aquifer (HPA) in Kansas, with the corresponding logs containing descriptions of over 500,000 individual depth intervals. We will present grids of hydrogeological properties for the Kansas HPA developed from this extensive, but highly qualitative, data resource. The process of converting the logs into quantitative form consists of first translating the vast number of unique (and often idiosyncratic) sediment descriptions into a fairly comprehensive set of standardized lithology codes and then mapping the standardized lithologies into a smaller number of property categories. A grid is superimposed on the region and the proportion of each property category is computed within each grid cell, with category proportions in empty grid cells computed by interpolation. Grids of properties such as hydraulic conductivity and specific yield are then computed based on the category proportion grids and category-specific property values. A two-dimensional grid is employed for this large-scale, regional application, with category proportions averaged between two surfaces, such as bedrock and the water table at a particular time (to estimate transmissivity at that time) or water tables at two different times (to estimate specific yield over the intervening time period). We have employed a sequence of water tables for different years, based on annual measurements from an extensive network of wells, providing an assessment of temporal variations in the vertically averaged aquifer properties resulting from water level variations (primarily declines) over time.

  7. Cosine Directional Tuning of Theta Cell Burst Frequencies: Evidence for Spatial Coding by Oscillatory Interference

    PubMed Central

    Welday, Adam C.; Shlifer, I. Gary; Bloom, Matthew L.; Zhang, Kechen

    2011-01-01

    The rodent septohippocampal system contains “theta cells,” which burst rhythmically at 4–12 Hz, but the functional significance of this rhythm remains poorly understood (Buzsáki, 2006). Theta rhythm commonly modulates the spike trains of spatially tuned neurons such as place (O'Keefe and Dostrovsky, 1971), head direction (Tsanov et al., 2011a), grid (Hafting et al., 2005), and border cells (Savelli et al., 2008; Solstad et al., 2008). An “oscillatory interference” theory has hypothesized that some of these spatially tuned neurons may derive their positional firing from phase interference among theta oscillations with frequencies that are modulated by the speed and direction of translational movements (Burgess et al., 2005, 2007). This theory is supported by studies reporting modulation of theta frequency by movement speed (Rivas et al., 1996; Geisler et al., 2007; Jeewajee et al., 2008a), but modulation of theta frequency by movement direction has never been observed. Here we recorded theta cells from hippocampus, medial septum, and anterior thalamus of freely behaving rats. Theta cell burst frequencies varied as the cosine of the rat's movement direction, and this directional tuning was influenced by landmark cues, in agreement with predictions of the oscillatory interference theory. Computer simulations and mathematical analysis demonstrated how a postsynaptic neuron can detect location-dependent synchrony among inputs from such theta cells, and thereby mimic the spatial tuning properties of place, grid, or border cells. These results suggest that theta cells may serve a high-level computational function by encoding a basis set of oscillatory signals that interfere with one another to synthesize spatial memory representations. PMID:22072668

  8. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip.

    PubMed

    Bonk, Sebastian M; Stubbe, Marco; Buehler, Sebastian M; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan

    2015-07-30

    We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  9. Cell Patterning Chip for Controlling the Stem Cell Microenvironment

    PubMed Central

    Rosenthal, Adam; Macdonald, Alice; Voldman, Joel

    2007-01-01

    Cell-cell signaling is an important component of the stem cell microenvironment, affecting both differentiation and self-renewal. However, traditional cell-culture techniques do not provide precise control over cell-cell interactions, while existing cell patterning technologies are limited when used with proliferating or motile cells. To address these limitations, we created the Bio Flip Chip (BFC), a microfabricated polymer chip containing thousands of microwells, each sized to trap down to a single stem cell. We have demonstrated the functionality of the BFC by patterning a 50×50 grid of murine embryonic stem cells (mESCs), with patterning efficiencies > 75%, onto a variety of substrates – a cell-culture dish patterned with gelatin, a 3-D substrate, and even another layer of cells. We also used the BFC to pattern small groups of cells, with and without cell-cell contact, allowing incremental and independent control of contact-mediated signaling. We present quantitative evidence that cell-cell contact plays an important role in depressing mESC colony formation, and show that E-cadherin is involved in this negative regulatory pathway. Thus, by allowing exquisite control of the cellular microenvironment, we provide a technology that enables new applications in tissue engineering and regenerative medicine. PMID:17434582

  10. Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality.

    PubMed

    Medford, Andrew J; Lilliedal, Mathilde R; Jørgensen, Mikkel; Aarø, Dennis; Pakalski, Heinz; Fyenbo, Jan; Krebs, Frederik C

    2010-09-13

    Large solar panels were constructed from polymer solar cell modules prepared using full roll-to-roll (R2R) manufacture based on the previously published ProcessOne. The individual flexible polymer solar modules comprising multiple serially connected single cell stripes were joined electrically and laminated between a 4 mm tempered glass window and black Tetlar foil using two sheets of 0.5 mm thick ethylene vinyl acetate (EVA). The panels produced up to 8 W with solar irradiance of ~960 Wm⁻², and had outer dimensions of 1 m x 1.7 m with active areas up to 9180 cm². Panels were mounted on a tracking station and their output was grid connected between testing. Several generations of polymer solar cells and panel constructions were tested in this context to optimize the production of polymer solar panels. Cells lacking a R2R barrier layer were found to degrade due to diffusion of oxygen after less than a month, while R2R encapsulated cells showed around 50% degradation after 6 months but suffered from poor performance due to de-lamination during panel production. A third generation of panels with various barrier layers was produced to optimize the choice of barrier foil and it was found that the inclusion of a thin protective foil between the cell and the barrier foil is critical. The findings provide a preliminary foundation for the production and optimization of large-area polymer solar panels and also enabled a cost analysis of solar panels based on polymer solar cells.

  11. Climate Simulations based on a different-grid nested and coupled model

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ji, Jinjun; Li, Yinpeng

    2002-05-01

    An atmosphere-vegetation interaction model (A VIM) has been coupled with a nine-layer General Cir-culation Model (GCM) of Institute of Atmospheic Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. A VIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon-gitude 7.5° and latitude 4.5°, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis. Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris-tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu-lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.

  12. Navigation Patterns and Scent Marking: Underappreciated Contributors to Hippocampal and Entorhinal Spatial Representations?

    PubMed

    Lebedev, Mikhail A; Pimashkin, Alexey; Ossadtchi, Alexei

    2018-01-01

    According to the currently prevailing theory, hippocampal formation constructs and maintains cognitive spatial maps. Most of the experimental evidence for this theory comes from the studies on navigation in laboratory rats and mice, typically male animals. While these animals exhibit a rich repertoire of behaviors associated with navigation, including locomotion, head movements, whisking, sniffing, raring and scent marking, the contribution of these behavioral patterns to the hippocampal spatially-selective activity has not been sufficiently studied. Instead, many publications have considered animal position in space as the major variable that affects the firing of hippocampal place cells and entorhinal grid cells. Here we argue that future work should focus on a more detailed examination of different behaviors exhibited during navigation to better understand the mechanism of spatial tuning in hippocampal neurons. As an inquiry in this direction, we have analyzed data from two datasets, shared online, containing recordings from rats navigating in square and round arenas. Our analyses revealed patchy navigation patterns, evident from the spatial maps of animal position, velocity and acceleration. Moreover, grid cells available in the datasets exhibited similar periodicity as the navigation parameters. These findings indicate that activity of grid cells could affect navigation parameters and/or vice versa. Additionally, we speculate that scent marks left by navigating animals could contribute to neuronal responses while rats and mice sniff their environment; the act of sniffing could modulate neuronal discharges even in virtual visual environments. Accordingly, we propose that future experiments should contain additional controls for navigation patterns, whisking, sniffing and maps composed of scent marks.

  13. Mapping Atmospheric Moisture Climatologies across the Conterminous United States

    PubMed Central

    Daly, Christopher; Smith, Joseph I.; Olson, Keith V.

    2015-01-01

    Spatial climate datasets of 1981–2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981–2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981–2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m and 4-km resolution data, images, metadata, pedigree information, and station inventory files. PMID:26485026

  14. Effect of elevation resolution on evapotranspiration simulations using MODFLOW.

    PubMed

    Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J

    2012-01-01

    Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  15. Development of an Automatic Grid Generator for Multi-Element High-Lift Wings

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Wibowo, Pratomo; Tu, Eugene

    1996-01-01

    The procedure to generate the grid around a complex wing configuration is presented in this report. The automatic grid generation utilizes the Modified Advancing Front Method as a predictor and an elliptic scheme as a corrector. The scheme will advance the surface grid one cell outward and the newly obtained grid is corrected using the Laplace equation. The predictor-corrector step ensures that the grid produced will be smooth for every configuration. The predictor-corrector scheme is extended for a complex wing configuration. A new technique is developed to deal with the grid generation in the wing-gaps and on the flaps. It will create the grids that fill the gap on the wing surface and the gap created by the flaps. The scheme recognizes these configurations automatically so that minimal user input is required. By utilizing an appropriate sequence in advancing the grid points on a wing surface, the automatic grid generation for complex wing configurations is achieved.

  16. Developing a Resilient Green Cellular Network

    DTIC Science & Technology

    2013-12-01

    to provide BS autonomy from grid power through alternative energy, such as: fuel cells and xiii renewable photovoltaic (PV), wind energy...stations with adequate backup power or utilizing alternative/renewable energy technology such as photovoltaic or wind power to allow them to...mitigating strategies with the consensus view on BSs migrating away from grid power , to renewable energy ( photovoltaic ), and alternative fuels. 40

  17. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source--Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2013-11-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).

  18. Observing eye movements and the influence of cognition during a symbol search task: a comparison across three age groups.

    PubMed

    Perrin, Maxine; Robillard, Manon; Roy-Charland, Annie

    2017-12-01

    This study examined eye movements during a visual search task as well as cognitive abilities within three age groups. The aim was to explore scanning patterns across symbol grids and to better understand the impact of symbol location in AAC displays on speed and accuracy of symbol selection. For the study, 60 students were asked to locate a series of symbols on 16 cell grids. The EyeLink 1000 was used to measure eye movements, accuracy, and response time. Accuracy was high across all cells. Participants had faster response times, longer fixations, and more frequent fixations on symbols located in the middle of the grid. Group comparisons revealed significant differences for accuracy and reaction times. The Leiter-R was used to evaluate cognitive abilities. Sustained attention and cognitive flexibility scores predicted the participants' reaction time and accuracy in symbol selection. Findings suggest that symbol location within AAC devices and individuals' cognitive abilities influence the speed and accuracy of retrieving symbols.

  19. A finite volume Fokker-Planck collision operator in constants-of-motion coordinates

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Xu, X. Q.; Cohen, B. I.; Cohen, R.; Dorr, M. R.; Hittinger, J. A.; Kerbel, G.; Nevins, W. M.; Rognlien, T.

    2006-04-01

    TEMPEST is a 5D gyrokinetic continuum code for edge plasmas. Constants of motion, namely, the total energy E and the magnetic moment μ, are chosen as coordinate s because of their advantage in minimizing numerical diffusion in advection operato rs. Most existing collision operators are written in other coordinates; using them by interpolating is shown to be less satisfactory in maintaining overall numerical accuracy and conservation. Here we develop a Fokker-Planck collision operator directly in (E,μ) space usin g a finite volume approach. The (E, μ) grid is Cartesian, and the turning point boundary represents a straight line cutting through the grid that separates the ph ysical and non-physical zones. The resulting cut-cells are treated by a cell-mergin g technique to ensure a complete particle conservation. A two dimensional fourth or der reconstruction scheme is devised to achieve good numerical accuracy with modest number of grid points. The new collision operator will be benchmarked by numerical examples.

  20. Adaptive mesh refinement for characteristic grids

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan

    2011-05-01

    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.

  1. Democracy-independence trade-off in oscillating dendrites and its implications for grid cells.

    PubMed

    Remme, Michiel W H; Lengyel, Máté; Gutkin, Boris S

    2010-05-13

    Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Spatial heterogeneity in the carrying capacity of sika deer in Japan.

    PubMed

    Iijima, Hayato; Ueno, Mayumi

    2016-06-09

    Carrying capacity is 1 driver of wildlife population dynamics. Although in previous studies carrying capacity was considered to be a fixed entity, it may differ among locations due to environmental variation. The factors underlying variability in carrying capacity, however, have rarely been examined. Here, we investigated spatial heterogeneity in the carrying capacity of Japanese sika deer ( Cervus nippon ) from 2005 to 2014 in Yamanashi Prefecture, central Japan (mesh with grid cells of 5.5×4.6 km) by state-space modeling. Both carrying capacity and density dependence differed greatly among cells. Estimated carrying capacities ranged from 1.34 to 98.4 deer/km 2 . According to estimated population dynamics, grid cells with larger proportions of artificial grassland and deciduous forest were subject to lower density dependence and higher carrying capacity. We conclude that population dynamics of ungulates may vary spatially through spatial variation in carrying capacity and that the density level for controlling ungulate abundance should be based on the current density level relative to the carrying capacity for each area.

  3. Efficient Creation of Overset Grid Hole Boundaries and Effects of Their Locations on Aerodynamic Loads

    NASA Technical Reports Server (NTRS)

    Chan, William Machado; Pandya, Shishir Ashok; Rogers, Stuart E.

    2013-01-01

    Recent developments on the automation of the X-rays approach to hole-cutting in over- set grids is further improved. A fast method to compute an auxiliary wall-distance function used in providing a rst estimate of the hole boundary location is introduced. Subsequent iterations lead to automatically-created hole boundaries with a spatially-variable o set from the minimum hole. For each hole boundary location, an averaged cell attribute measure over all fringe points is used to quantify the compatibility between the fringe points and their respective donor cells. The sensitivity of aerodynamic loads to di erent hole boundary locations and cell attribute compatibilities is investigated using four test cases: an isolated re-entry capsule, a two-rocket con guration, the AIAA 4th Drag Prediction Workshop Common Research Model (CRM), and the D8 \\Double Bubble" subsonic aircraft. When best practices in hole boundary treatment are followed, only small variations in integrated loads and convergence rates are observed for different hole boundary locations.

  4. AMTEC powered residential furnace and auxiliary power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1996-12-31

    Residential gas furnaces normally rely on utility grid electric power to operate the fans and/or the pumps used to circulate conditioned air or water and they are thus vulnerable to interruptions of utility grid service. Experience has shown that such interruptions can occur during the heating season, and can lead to serious consequences. A gas furnace coupled to an AMTEC conversion system retains the potential to produce heat and electricity (gas lines are seldom interrupted during power outages), and can save approximately $47/heating season compared to a conventional gas furnace. The key to designing a power system is understanding, andmore » predicting, the cell performance characteristics. The three main processes that must be understood and modeled to fully characterize an AMTEC cell are the electro-chemical, sodium vapor flow, and heat transfer. This paper will show the results of the most recent attempt to model the heat transfer in a multi-tube AMTEC cell and then discusses the conceptual design of a self-powered residential furnace.« less

  5. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    Bowman, D. E.

    1983-08-01

    Research programs on lead-acid batteries are reported that cover active materials utilization, active material integrity, and some technical support projects. Processing problems were encountered and corrected. Components and materials, a lead-plastic composite grid, cell designs, and deliverables are described. Cell testing is discussed, as well as battery subsystems, including fuel gage, thermal management, and electrolyte circulation.

  6. Field Model: An Object-Oriented Data Model for Fields

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.

    2001-01-01

    We present an extensible, object-oriented data model designed for field data entitled Field Model (FM). FM objects can represent a wide variety of fields, including fields of arbitrary dimension and node type. FM can also handle time-series data. FM achieves generality through carefully selected topological primitives and through an implementation that leverages the potential of templated C++. FM supports fields where the nodes values are paired with any cell type. Thus FM can represent data where the field nodes are paired with the vertices ("vertex-centered" data), fields where the nodes are paired with the D-dimensional cells in R(sup D) (often called "cell-centered" data), as well as fields where nodes are paired with edges or other cell types. FM is designed to effectively handle very large data sets; in particular FM employs a demand-driven evaluation strategy that works especially well with large field data. Finally, the interfaces developed for FM have the potential to effectively abstract field data based on adaptive meshes. We present initial results with a triangular adaptive grid in R(sup 2) and discuss how the same design abstractions would work equally well with other adaptive-grid variations, including meshes in R(sup 3).

  7. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuelmore » cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.« less

  8. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR

    DOE PAGES

    Duan, Wentao; Vemuri, Rama Ses; Milshtein, Jarrod D.; ...

    2016-03-10

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V andmore » shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. In conclusion, this study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.« less

  9. A Discrete Global Grid System Programming Language Using MapReduce

    NASA Astrophysics Data System (ADS)

    Peterson, P.; Shatz, I.

    2016-12-01

    A discrete global grid system (DGGS) is a powerful mechanism for storing and integrating geospatial information. As a "pixelization" of the Earth, many image processing techniques lend themselves to the transformation of data values referenced to the DGGS cells. It has been shown that image algebra, as an example, and advanced algebra, like Fast Fourier Transformation, can be used on the DGGS tiling structure for geoprocessing and spatial analysis. MapReduce has been shown to provide advantages for processing and generating large data sets within distributed and parallel computing. The DGGS structure is ideally suited for big distributed Earth data. We proposed that basic expressions could be created to form the atoms of a generalized DGGS language using the MapReduce programming model. We created three very efficient expressions: Selectors (aka filter) - A selection function that generate a set of cells, cell collections, or geometries; Calculators (aka map) - A computational function (including quantization of raw measurements and data sources) that generate values in a DGGS cell; and Aggregators (aka reduce) - A function that generate spatial statistics from cell values within a cell. We found that these three basic MapReduce operations along with a forth function, the Iterator, for horizontal and vertical traversing of any DGGS structure, provided simple building block resulting in very efficient operations and processes that could be used with any DGGS. We provide examples and a demonstration of their effectiveness using the ISEA3H DGGS on the PYXIS Studio.

  10. High resolution, low cost solar cell contact development

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1979-01-01

    The experimental work demonstrating the feasibility of the MIDFILM process as a low cost means of applying solar cell collector metallization as reported. Cell efficiencies of above 14% (AMl, 28 C) were achieved with fritted silver metallization. Environmental tests suggest that the metallization is slightly humidity sensitive and degradation is observed on cells with high series resistance. The major yield loss in the fabrication of cells was due to discontinuous grid lines, resulting in high series resitance. Standard lead-tin solder plated interconnections do not appear compatible with the MIDFILM contact. Copper, nickel and molybdemun base powder were investigated as low cost metallization systems. The copper based powder degraded the cell response. The nickel and molybdenum base powders oxidized when sintered in the oxidizing atmosphere necessary to ash the photoresin.

  11. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.

    1987-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  12. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.; Turk, Thomas R.

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  13. VERDE Analytic Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2008-01-15

    The Verde Analytic Modules permit the user to ingest openly available data feeds about phenomenology (storm tracks, wind, precipitation, earthquake, wildfires, and similar natural and manmade power grid disruptions and forecast power outages, restoration times, customers outaged, and key facilities that will lose power. Damage areas are predicted using historic damage criteria of the affected area. The modules use a cellular automata approach to estimating the distribution circuits assigned to geo-located substations. Population estimates served within the service areas are located within 1 km grid cells and converted to customer counts by conversion through demographic estimation of households and commercialmore » firms within the population cells. Restoration times are estimated by agent-based simulation of restoration crews working according to utility published prioritization calibrated by historic performance.« less

  14. Integrated Field Testing of Fuel Cells and Micro-Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome R. Temchin; Stephen J. Steffel

    A technical and economic evaluation of the prospects for the deployment of distributed generation on Long Beach Island, New Jersey concluded that properly sited DG would defer upgrading of the electric power grid for 10 years. This included the deployment of fuel cells or microturbines as well as reciprocating engines. The implementation phase of this project focused on the installation of a 120 kW CHP microturbine system at the Harvey Cedars Bible Conference in Harvey Cedars, NJ. A 1.1 MW generator powered by a gas-fired reciprocating engine for additional grid support was also installed at a local substation. This reportmore » contains installation and operation issues as well as the utility perspective on DG deployment.« less

  15. Method of making a unitized electrode assembly

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Solomon, Frank; Niksa, Andrew J.; Schue, Thomas J.; Genodman, Yury; Turk, Thomas R.; Hagel, Daniel P.

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  16. Method of making a unitized electrode assembly

    DOEpatents

    Niksa, M.J.; Pohto, G.R.; Lakatos, L.K.; Wheeler, D.J.; Solomon, F.; Niksa, A.J.; Schue, T.J.; Genodman, Y.; Turk, T.R.; Hagel, D.P.

    1988-12-06

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom. 6 figs.

  17. Recent progress in terrestrial photovoltaic collector technology

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1982-01-01

    The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.

  18. Analysis of lead-acid battery accelerated testing data

    NASA Astrophysics Data System (ADS)

    Clifford, J. E.; Thomas, R. E.

    1983-06-01

    Battelle conducted an independent review and analysis of the accelerated test procedures and test data obtained by Exide in the 3 year Phase 1 program to develop advanced lead acid batteries for utility load leveling. Of special importance is the extensive data obtained in deep discharge cycling tests on 60 cells at elevated temperatures over a 2-1/2 year period. The principal uncertainty in estimating cell life relates to projecting cycle life data at elevated temperature to the lower operating temperatures. The accelerated positive grid corrosion test involving continuous overcharge at 500C provided some indication of the degree of grid corrosion that might be tolerable before failure. The accelerated positive material shedding test was not examined in any detail. Recommendations are made for additional studies.

  19. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids

    NASA Technical Reports Server (NTRS)

    Madsen, Niel K.

    1992-01-01

    Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.

  20. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Xu; Ptasinska, Sylwia; Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  1. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Sharon Stack, M.; Ptasinska, Sylwia

    2013-06-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  2. A mobile sensor network to map carbon dioxide emissions in urban environments

    NASA Astrophysics Data System (ADS)

    Lee, Joseph K.; Christen, Andreas; Ketler, Rick; Nesic, Zoran

    2017-03-01

    A method for directly measuring carbon dioxide (CO2) emissions using a mobile sensor network in cities at fine spatial resolution was developed and tested. First, a compact, mobile system was built using an infrared gas analyzer combined with open-source hardware to control, georeference, and log measurements of CO2 mixing ratios on vehicles (car, bicycles). Second, two measurement campaigns, one in summer and one in winter (heating season) were carried out. Five mobile sensors were deployed within a 1 × 12. 7 km transect across the city of Vancouver, BC, Canada. The sensors were operated for 3.5 h on pre-defined routes to map CO2 mixing ratios at street level, which were then averaged to 100 × 100 m grid cells. The averaged CO2 mixing ratios of all grids in the study area were 417.9 ppm in summer and 442.5 ppm in winter. In both campaigns, mixing ratios were highest in the grid cells of the downtown core and along arterial roads and lowest in parks and well vegetated residential areas. Third, an aerodynamic resistance approach to calculating emissions was used to derive CO2 emissions from the gridded CO2 mixing ratio measurements in conjunction with mixing ratios and fluxes collected from a 28 m tall eddy-covariance tower located within the study area. These measured emissions showed a range of -12 to 226 CO2 ha-1 h-1 in summer and of -14 to 163 kg CO2 ha-1 h-1 in winter, with an average of 35.1 kg CO2 ha-1 h-1 (summer) and 25.9 kg CO2 ha-1 h-1 (winter). Fourth, an independent emissions inventory was developed for the study area using buildings energy simulations from a previous study and routinely available traffic counts. The emissions inventory for the same area averaged to 22.06 kg CO2 ha-1 h-1 (summer) and 28.76 kg CO2 ha-1 h-1 (winter) and was used to compare against the measured emissions from the mobile sensor network. The comparison on a grid-by-grid basis showed linearity between CO2 mixing ratios and the emissions inventory (R2 = 0. 53 in summer and R2 = 0. 47 in winter). Also, 87 % (summer) and 94 % (winter) of measured grid cells show a difference within ±1 order of magnitude, and 49 % (summer) and 69 % (winter) show an error of less than a factor 2. Although associated with considerable errors at the individual grid cell level, the study demonstrates a promising method of using a network of mobile sensors and an aerodynamic resistance approach to rapidly map greenhouse gases at high spatial resolution across cities. The method could be improved by longer measurements and a refined calculation of the aerodynamic resistance.

  3. Topography Modeling in Atmospheric Flows Using the Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Senocak, I.; Mansour, N. N.; Stevens, D. E.

    2004-01-01

    Numerical simulation of flow over complex geometry needs accurate and efficient computational methods. Different techniques are available to handle complex geometry. The unstructured grid and multi-block body-fitted grid techniques have been widely adopted for complex geometry in engineering applications. In atmospheric applications, terrain fitted single grid techniques have found common use. Although these are very effective techniques, their implementation, coupling with the flow algorithm, and efficient parallelization of the complete method are more involved than a Cartesian grid method. The grid generation can be tedious and one needs to pay special attention in numerics to handle skewed cells for conservation purposes. Researchers have long sought for alternative methods to ease the effort involved in simulating flow over complex geometry.

  4. Analysis of TRMM-LIS Lightning and Related Microphysics Using a Cell-Scale Database

    NASA Technical Reports Server (NTRS)

    Leroy, Anita; Petersen, Walter A.

    2010-01-01

    Previous studies of tropical lightning activity using Tropical Rainfall Measurement Mission (TRMM) Lightning Imaging Sensor (LIS) data performed analyses of lightning behavior over mesoscale "feature" scales or over uniform grids. In order to study lightning and the governing ice microphysics intrinsic to thunderstorms at a more process-specific scale (i.e., the scale over which electrification processes and lightning occur in a "unit" thunderstorm), a new convective cell-scale database was developed by analyzing and refining the University of Utah's Precipitation Features database and retaining precipitation data parameters computed from the TRMM precipitation radar (PR), microwave imager (TMI) and LIS instruments. The resulting data base was to conduct a limited four-year study of tropical continental convection occurring over the Amazon Basin, Congo, Maritime Continent and the western Pacific Ocean. The analysis reveals expected strong correlations between lightning flash counts per cell and ice proxies, such as ice water path, minimum and average 85GHz brightness temperatures, and 18dBz echo top heights above the freezing level in all regimes, as well as regime-specific relationships between lighting flash counts and PR-derived surface rainfall rates. Additionally, radar CFADs were used to partition the 3D structure of cells in each regime at different flash counts. The resulting cell-scale analyses are compared to previous mesoscale feature and gridded studies wherever possible.

  5. A grid matrix-based Raman spectroscopic method to characterize different cell milieu in biopsied axillary sentinel lymph nodes of breast cancer patients.

    PubMed

    Som, Dipasree; Tak, Megha; Setia, Mohit; Patil, Asawari; Sengupta, Amit; Chilakapati, C Murali Krishna; Srivastava, Anurag; Parmar, Vani; Nair, Nita; Sarin, Rajiv; Badwe, R

    2016-01-01

    Raman spectroscopy which is based upon inelastic scattering of photons has a potential to emerge as a noninvasive bedside in vivo or ex vivo molecular diagnostic tool. There is a need to improve the sensitivity and predictability of Raman spectroscopy. We developed a grid matrix-based tissue mapping protocol to acquire cellular-specific spectra that also involved digital microscopy for localizing malignant and lymphocytic cells in sentinel lymph node biopsy sample. Biosignals acquired from specific cellular milieu were subjected to an advanced supervised analytical method, i.e., cross-correlation and peak-to-peak ratio in addition to PCA and PC-LDA. We observed decreased spectral intensity as well as shift in the spectral peaks of amides and lipid bands in the completely metastatic (cancer cells) lymph nodes with high cellular density. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to create an automated smart diagnostic tool for bench side screening of sampled lymph nodes. Spectral library of normal lymphocytes and metastatic cancer cells created using the cellular specific mapping technique can be utilized to develop an automated smart diagnostic tool for bench side screening of sampled lymph nodes supported by ongoing global research in developing better technology and signal and big data processing algorithms.

  6. An Eulerian/Lagrangian method for computing blade/vortex impingement

    NASA Technical Reports Server (NTRS)

    Steinhoff, John; Senge, Heinrich; Yonghu, Wenren

    1991-01-01

    A combined Eulerian/Lagrangian approach to calculating helicopter rotor flows with concentrated vortices is described. The method computes a general evolving vorticity distribution without any significant numerical diffusion. Concentrated vortices can be accurately propagated over long distances on relatively coarse grids with cores only several grid cells wide. The method is demonstrated for a blade/vortex impingement case in 2D and 3D where a vortex is cut by a rotor blade, and the results are compared to previous 2D calculations involving a fifth-order Navier-Stokes solver on a finer grid.

  7. Femtosecond laser patterning of biological materials

    NASA Astrophysics Data System (ADS)

    Grigoropoulos, Costas P.; Jeon, Hojeong; Hidai, Hirofumi; Hwang, David J.

    2011-03-01

    This paper aims at presenting a review of work at the Laser Thermal Laboratory on the microscopic laser modification of biological materials using ultrafast laser pulses. We have devised a new method for fabricating high aspect ratio patterns of varying height by using two-photon polymerization process in order to study contact guidance and directed growth of biological cells. Studies using NIH-3T3 and MDCK cells indicate that cell morphology on fiber scaffolds is influenced by the pattern of actin microfilament bundles. Cells experienced different strength of contact guidance depending on the ridge height. Cell morphology and motility was investigated on micronscale anisotropic cross patterns and parallel line patterns having different aspect ratios. A significant effect on cell alignment and directionality of migration was observed. Cell morphology and motility were influenced by the aspect ratio of the cross pattern, the grid size, and the ridge height. Cell contractility was examined microscopically in order to measure contractile forces generated by individual cells on self-standing fiber scaffolds.

  8. Cell illustrator 4.0: a computational platform for systems biology.

    PubMed

    Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru

    2011-01-01

    Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.

  9. Cell Illustrator 4.0: a computational platform for systems biology.

    PubMed

    Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru

    2010-01-01

    Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bright, Edward A.; Rose, Amy N.; Urban, Marie L.

    The LandScan data set is a worldwide population database compiled on a 30" x 30" latitude/longitube grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  11. Using interviews and biological sign surveys to infer seasonal use of forested and agricultural portions of a human-dominated landscape by Asian elephants in Nepal

    USGS Publications Warehouse

    Lamichhane, Babu Ram; Subedi, Naresh; Pokheral, Chiranjibi Prasad; Dhakal, Maheshwar; Acharya, Krishna Prasad; Pradhan, Narendra Man Babu; Smith, James L. David; Malla, Sabita; Thakuri, Bishnu Singh; Yackulic, Charles B.

    2018-01-01

    Understanding how wide-ranging animals use landscapes in which human use is highly heterogeneous is important for determining patterns of human–wildlife conflict and designing mitigation strategies. Here, we show how biological sign surveys in forested components of a human-dominated landscape can be combined with human interviews in agricultural portions of a landscape to provide a full picture of seasonal use of different landscape components by wide-ranging animals and resulting human–wildlife conflict. We selected Asian elephants (Elephas maximus) in Nepal to illustrate this approach. Asian elephants are threatened throughout their geographic range, and there are large gaps in our understanding of their landscape-scale habitat use. We identified all potential elephant habitat in Nepal and divided the potential habitat into sampling units based on a 10 km by 10 km grid. Forested areas within grids were surveyed for signs of elephant use, and local villagers were interviewed regarding elephant use of agricultural areas and instances of conflict. Data were analyzed using single-season and multi-season (dynamic) occupancy models. A single-season occupancy model applied to data from 139 partially or wholly forested grid cells estimated that 0.57 of grid cells were used by elephants. Dynamic occupancy models fit to data from interviews across 158 grid cells estimated that monthly use of non-forested, human-dominated areas over the preceding year varied between 0.43 and 0.82 with a minimum in February and maximum in October. Seasonal patterns of crop raiding by elephants coincided with monthly elephant use of human-dominated areas, and serious instances of human–wildlife conflict were common. Efforts to mitigate human–elephant conflict in Nepal are likely to be most effective if they are concentrated during August through December when elephant use of human-dominated landscapes and human–elephant conflict are most common.

  12. Restorative effects of curcumin on sleep-deprivation induced memory impairments and structural changes of the hippocampus in a rat model.

    PubMed

    Noorafshan, Ali; Karimi, Fatemeh; Kamali, Ali-Mohammad; Karbalay-Doust, Saied; Nami, Mohammad

    2017-11-15

    The present study examined the consequences of rapid eye-movement sleep-deprivation (REM-SD) with or without curcumin treatment. The outcome measures comprised quantitative features in the three-dimensional reconstruction (3DR) CA1 and dentate gyrus in experimental and control animals using stereological procedures. Male rats were arbitrarily assigned to nine groups based on the intervention and treatment administered including: 1-cage control+distilled water, 2-cage control+curcumin (100mg/kg/day), 3-cage control+olive oil, 4-REM-SD+distilled water, 5-REM-SD+curcumin, 6-REM-SD+olive oil, 7-grid-floor control+distilled water, 8-grid-floor control+curcumin, and 9-grid-floor control+olive oil. Animals in the latter three groups were placed on wire-mesh grids in the sleep-deprivation box. REM-SD was induced by an apparatus comprising a water tank and multiple platforms. After a period of 21days, rats were submitted to the novel object-recognition task. Later, their brains were excised and evaluated using stereological methods. Our results indicated a respective 29% and 31% reduction in the total volume of CA1, and dentate gyrus in REM-SD+distilled water group as compared to the grid-floor control+distilled water group (p<0.05). Other than the above, the overall number of the pyramidal cells of CA1 and granular cells of dentate gyrus in the sleep-deprived group were found to be reduced by 48% and 25%, respectively. The REM-SD+distilled water group also exhibited impaired object recognition memory and deformed three-dimensional reconstructions of these regions. The volume, cell number, reconstruction, object recognition time, and body weight were however recovered in the REM-SD+curcumin compared to the REM-SD+distilled water group. This suggests the potential neuro-restorative effects of curcumin in our model. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Guided transect sampling - a new design combining prior information and field surveying

    Treesearch

    Anna Ringvall; Goran Stahl; Tomas Lamas

    2000-01-01

    Guided transect sampling is a two-stage sampling design in which prior information is used to guide the field survey in the second stage. In the first stage, broad strips are randomly selected and divided into grid-cells. For each cell a covariate value is estimated from remote sensing data, for example. The covariate is the basis for subsampling of a transect through...

  14. Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    2004-01-01

    A new, high-order, conservative, and efficient discontinuous spectral finite difference (SD) method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. Conventional unstructured finite-difference and finite-volume methods require data reconstruction based on the least-squares formulation using neighboring point or cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every point or cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In addition, the finite-difference method does not satisfy the integral conservation in general. By contrast, the DG and SV methods employ a local, universal reconstruction of a given order of accuracy in each cell in terms of internally defined conservative unknowns. Since the solution is discontinuous across cell boundaries, a Riemann solver is necessary to evaluate boundary flux terms and maintain conservation. In the DG method, a Galerkin finite-element method is employed to update the nodal unknowns within each cell. This requires the inversion of a mass matrix, and the use of quadratures of twice the order of accuracy of the reconstruction to evaluate the surface integrals and additional volume integrals for nonlinear flux functions. In the SV method, the integral conservation law is used to update volume averages over subcells defined by a geometrically similar partition of each grid cell. As the order of accuracy increases, the partitioning for 3D requires the introduction of a large number of parameters, whose optimization to achieve convergence becomes increasingly more difficult. Also, the number of interior facets required to subdivide non-planar faces, and the additional increase in the number of quadrature points for each facet, increases the computational cost greatly.

  15. An 11-Year Climatology of Storms in Which Most Cloud-to-Ground Flashes Lower Positive Charge

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.; Eddy, A.; Williams, E. R.; Calhoun, K. M.

    2017-12-01

    Previous studies have shown that storms which produce frequent cloud-to-ground (CG) lightning dominated by flashes lowering positive charge to ground (+CG flashes) tend to have a so called "inverted" vertical distribution of charge. Such storms have implications for our understanding of electrification processes. We have analyzed eleven years of National Lightning Detection Network data to count +CG and -CG flashes having peak currents ≥15 kA in grid cells with dimensions of 15 km x 15 km x 15 min, with overlapping grid boxes every 5 km along both x and y over the contiguous United States and grids every 5 min in time. These dimensions were chosen because 15 km corresponds roughly to the horizontal size of typical storm cells and 15 min is roughly half the typical duration of a cell. To focus on storms dominated by +CG flashes, we identified all grid cells satisfying one of four sets of thresholds: cells in which +CG flashes for 15 min constitute ≥80%, 90%, or 100% of ≥10 CG flashes or 100% of ≥20 CG flashes. These percentages are larger than those used in most previous studies of +CG flashes. Our primary goal is to investigate the environmental and storm characteristics conducive to +CG flashes and "inverted-polarity" charge distributions, but here we concentrate on the interannual and seasonal distributions of storms satisfying the above thresholds and examine also their relationship to severe weather. As in previous climatological studies of geographic variations in the +CG fraction of total CG flashes, most storms satisfying our thresholds were in a swath stretching from far eastern Colorado and western Kansas roughly northward through Nebraska, the Dakotas, and Minnesota. This region overlaps much of the region in which radar inferred that hail larger than 2.9 cm in diameter most often occurs, but is shifted westward and northward from maxima of observer reports of large-hail occurrence. Although the relationship with radar-inferred large-hail frequency suggests a common dependence on some storm characteristics, storms satisfying our thresholds for +CG flashes also occurred, although less frequently, in regions in which few storms were inferred to have produced large hail, such as east of mountain ranges in northwestern states, so relationships with severe weather will need to be examined on a storm-by-storm basis.

  16. Development and implementation of a geographical area categorisation method with targeted performance indicators for nationwide EMS in Finland.

    PubMed

    Pappinen, Jukka; Laukkanen-Nevala, Päivi; Mäntyselkä, Pekka; Kurola, Jouni

    2018-05-15

    In Finland, hospital districts (HD) are required by law to determine the level and availability of Emergency Medical Services (EMS) for each 1-km 2 sized area (cell) within their administrative area. The cells are currently categorised into five risk categories based on the predicted number of missions. Methodological defects and insufficient instructions have led to incomparability between EMS services. The aim of this study was to describe a new, nationwide method for categorising the cells, analyse EMS response time data and describe possible differences in mission profiles between the new risk category areas. National databases of EMS missions, population and buildings were combined with an existing nationwide 1-km 2 hexagon-shaped cell grid. The cells were categorised into four groups, based on the Finnish Environment Institute's (FEI) national definition of urban and rural areas, population and historical EMS mission density within each cell. The EMS mission profiles of the cell categories were compared using risk ratios with confidence intervals in 12 mission groups. In total, 87.3% of the population lives and 87.5% of missions took place in core or other urban areas, which covered only 4.7% of the HDs' surface area. Trauma mission incidence per 1000 inhabitants was higher in core urban areas (42.2) than in other urban (24.2) or dispersed settlement areas (24.6). The results were similar for non-trauma missions (134.8, 93.2 and 92.2, respectively). Each cell category had a characteristic mission profile. High-energy trauma missions and cardiac problems were more common in rural and uninhabited cells, while violence, intoxication and non-specific problems dominated in urban areas. The proposed area categories and grid-based data collection appear to be a useful method for evaluating EMS demand and availability in different parts of the country for statistical purposes. Due to a similar rural/urban area definition, the method might also be usable for comparison between the Nordic countries.

  17. The Status and Outlook for the Photovoltaics Industry

    NASA Astrophysics Data System (ADS)

    Carlson, David

    2006-03-01

    The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.

  18. A novel hybrid approach with multidimensional-like effects for compressible flow computations

    NASA Astrophysics Data System (ADS)

    Kalita, Paragmoni; Dass, Anoop K.

    2017-07-01

    A multidimensional scheme achieves good resolution of strong and weak shocks irrespective of whether the discontinuities are aligned with or inclined to the grid. However, these schemes are computationally expensive. This paper achieves similar effects by hybridizing two schemes, namely, AUSM and DRLLF and coupling them through a novel shock switch that operates - unlike existing switches - on the gradient of the Mach number across the cell-interface. The schemes that are hybridized have contrasting properties. The AUSM scheme captures grid-aligned (and strong) shocks crisply but it is not so good for non-grid-aligned weaker shocks, whereas the DRLLF scheme achieves sharp resolution of non-grid-aligned weaker shocks, but is not as good for grid-aligned strong shocks. It is our experience that if conventional shock switches based on variables like density, pressure or Mach number are used to combine the schemes, the desired effect of crisp resolution of grid-aligned and non-grid-aligned discontinuities are not obtained. To circumvent this problem we design a shock switch based - for the first time - on the gradient of the cell-interface Mach number with very impressive results. Thus the strategy of hybridizing two carefully selected schemes together with the innovative design of the shock switch that couples them, affords a method that produces the effects of a multidimensional scheme with a lower computational cost. It is further seen that hybridization of the AUSM scheme with the recently developed DRLLFV scheme using the present shock switch gives another scheme that provides crisp resolution for both shocks and boundary layers. Merits of the scheme are established through a carefully selected set of numerical experiments.

  19. On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models

    NASA Astrophysics Data System (ADS)

    Xu, S.; Wang, B.; Liu, J.

    2015-10-01

    In this article we propose two grid generation methods for global ocean general circulation models. Contrary to conventional dipolar or tripolar grids, the proposed methods are based on Schwarz-Christoffel conformal mappings that map areas with user-prescribed, irregular boundaries to those with regular boundaries (i.e., disks, slits, etc.). The first method aims at improving existing dipolar grids. Compared with existing grids, the sample grid achieves a better trade-off between the enlargement of the latitudinal-longitudinal portion and the overall smooth grid cell size transition. The second method addresses more modern and advanced grid design requirements arising from high-resolution and multi-scale ocean modeling. The generated grids could potentially achieve the alignment of grid lines to the large-scale coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the grids are orthogonal curvilinear, they can be easily utilized by the majority of ocean general circulation models that are based on finite difference and require grid orthogonality. The proposed grid generation algorithms can also be applied to the grid generation for regional ocean modeling where complex land-sea distribution is present.

  20. Automated analysis of siRNA screens of cells infected by hepatitis C and dengue viruses based on immunofluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl

    2008-03-01

    We present an image analysis approach as part of a high-throughput microscopy siRNA-based screening system using cell arrays for the identification of cellular genes involved in hepatitis C and dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in the neighborhood of segmented cell nuclei, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment and single images. In particular, we propose a novel approach for the localization of regions of transfected cells within cell array images, which combines model-based circle fitting and grid fitting. By this scheme we integrate information from single cell array images and knowledge from the complete cell arrays. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behaviour of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.

  1. Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex

    PubMed Central

    Naumann, Robert K.; Ray, Saikat; Prokop, Stefan; Las, Liora; Heppner, Frank L.

    2016-01-01

    ABSTRACT To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin‐positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin‐negative and calbindin‐positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin‐positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin‐positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10‐fold over a 20,000‐fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex. J. Comp. Neurol. 524:783–806, 2016. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26223342

  2. Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex.

    PubMed

    Naumann, Robert K; Ray, Saikat; Prokop, Stefan; Las, Liora; Heppner, Frank L; Brecht, Michael

    2016-03-01

    To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin-positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin-negative and calbindin-positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin-positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin-positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10-fold over a 20,000-fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  3. Photochemical grid model performance with varying horizontal grid resolution and sub-grid plume treatment for the Martins Creek near-field SO2 study

    NASA Astrophysics Data System (ADS)

    Baker, Kirk R.; Hawkins, Andy; Kelly, James T.

    2014-12-01

    Near source modeling is needed to assess primary and secondary pollutant impacts from single sources and single source complexes. Source-receptor relationships need to be resolved from tens of meters to tens of kilometers. Dispersion models are typically applied for near-source primary pollutant impacts but lack complex photochemistry. Photochemical models provide a realistic chemical environment but are typically applied using grid cell sizes that may be larger than the distance between sources and receptors. It is important to understand the impacts of grid resolution and sub-grid plume treatments on photochemical modeling of near-source primary pollution gradients. Here, the CAMx photochemical grid model is applied using multiple grid resolutions and sub-grid plume treatment for SO2 and compared with a receptor mesonet largely impacted by nearby sources approximately 3-17 km away in a complex terrain environment. Measurements are compared with model estimates of SO2 at 4- and 1-km resolution, both with and without sub-grid plume treatment and inclusion of finer two-way grid nests. Annual average estimated SO2 mixing ratios are highest nearest the sources and decrease as distance from the sources increase. In general, CAMx estimates of SO2 do not compare well with the near-source observations when paired in space and time. Given the proximity of these sources and receptors, accuracy in wind vector estimation is critical for applications that pair pollutant predictions and observations in time and space. In typical permit applications, predictions and observations are not paired in time and space and the entire distributions of each are directly compared. Using this approach, model estimates using 1-km grid resolution best match the distribution of observations and are most comparable to similar studies that used dispersion and Lagrangian modeling systems. Model-estimated SO2 increases as grid cell size decreases from 4 km to 250 m. However, it is notable that the 1-km model estimates using 1-km meteorological model input are higher than the 1-km model simulation that used interpolated 4-km meteorology. The inclusion of sub-grid plume treatment did not improve model skill in predicting SO2 in time and space and generally acts to keep emitted mass aloft.

  4. Closing the scale gap between land surface parameterizations and GCMs with a new scheme, SiB3-Bins: SOIL MOISTURE SCALE GAP

    DOE PAGES

    Baker, I. T.; Sellers, P. J.; Denning, A. S.; ...

    2017-03-01

    The interaction of land with the atmosphere is sensitive to soil moisture (W). Evapotranspiration (ET) reacts to soil moisture in a nonlinear way, f(W), as soils dry from saturation to wilt point. This nonlinear behavior and the fact that soil moisture varies on scales as small as 1–10 m in nature, while numerical general circulation models (GCMs) have grid cell sizes on the order of 1 to 100s of kilometers, makes the calculation of grid cell-average ET problematic. It is impractical to simulate the land in GCMs on the small scales seen in nature, so techniques have been developed tomore » represent subgrid scale heterogeneity, including: (1) statistical-dynamical representations of grid subelements of varying wetness, (2) relaxation of f(W), (3) moderating f(W) with approximations of catchment hydrology, (4) “tiling” the landscape into vegetation types, and (5) hyperresolution. Here we present an alternative method for representing subgrid variability in W, one proven in a conceptual framework where landscape-scale W is represented as a series of “Bins” of increasing wetness from dry to saturated. The grid cell-level f(W) is defined by the integral of the fractional area of the wetness bins and the value of f(W) associated with each. This approach accounts for the spatiotemporal dynamics of W. We implemented this approach in the SiB3 land surface parameterization and then evaluated its performance against a control, which assumes a horizontally uniform field of W. We demonstrate that the Bins method, with a physical basis, attenuates unrealistic jumps in model state and ET seen in the control runs.« less

  5. Influence of topographic heterogeneity on the abandance of larch forest in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Sato, H.; Kobayashi, H.

    2016-12-01

    In eastern Siberia, larches (Larix spp.) often exist in pure stands, constructing the world's largest coniferous forest, of which changes can significantly affect the earth's albedo and the global carbon balance. We have conducted simulation studies for this vegetation, aiming to forecast its structures and functions under changing climate (1, 2). In previous studies of simulating vegetation at large geographical scales, the examining area is divided into coarse grid cells such as 0.5 * 0.5 degree resolution, and topographical heterogeneities within each grid cell are just ignored. However, in Siberian larch area, which is located on the environmental edge of existence of forest ecosystem, abundance of larch trees largely depends on topographic condition at the scale of tens to hundreds meters. We, therefore, analyzed patterns of within-grid-scale heterogeneity of larch LAI as a function of topographic condition, and examined its underlying reason. For this analysis, larch LAI was estimated for each 1/112 degree from the SPOT-VEGETATION data, and topographic properties such as angularity and aspect direction were estimated form the ASTER-GDEM data. Through this analysis, we found that, for example, sign of correlation between angularity and larch LAI depends on hydrological condition on the grid cell. We then refined the hydrological sub-model of our vegetation model SEIB-DGVM, and validated whether the modified model can reconstruct these patterns, and examined its impact on the estimation of biomass and vegetation productivity of entire larch region. -- References --1. Sato, H., et al. (2010). "Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM." Forest Ecology and Management 259(3): 301-311.2. Sato, H., et al. (2016). "Endurance of larch forest ecosystems in eastern Siberia under warming trends." Ecology and Evolution

  6. Nested mesoscale-to-LES modeling of the atmospheric boundary layer in the presence of under-resolved convective structures

    DOE PAGES

    Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.; ...

    2017-07-06

    Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less

  7. Producing custom regional climate data sets for impact assessment with xarray

    NASA Astrophysics Data System (ADS)

    Simcock, J. G.; Delgado, M.; Greenstone, M.; Hsiang, S. M.; Kopp, R. E.; Carleton, T.; Hultgren, A.; Jina, A.; Nath, I.; Rising, J. A.; Rode, A.; Yuan, J.; Chong, T.; Dobbels, G.; Hussain, A.; Song, Y.; Wang, J.; Mohan, S.; Larsen, K.; Houser, T.

    2017-12-01

    Research in the field of climate impact assessment and valuation frequently requires the pairing of economic observations with historical or projected weather variables. Impact assessments with large geographic scope or spatially aggregated data frequently require climate variables to be prepared for use with administrative/political regions, economic districts such as utility service areas, physical regions such as watersheds, or other larger, non-gridded shapes. Approaches to preparing such data in the literature vary from methods developed out of convenience to more complex measures intended to account for spatial heterogeneity. But more sophisticated methods are difficult to implement, from both a theoretical and a technical standpoint. We present a new python package designed to assist researchers in the preparation of historical and projected climate data for arbitrary spatial definitions. Users specify transformations by providing (a) sets of regions in the form of shapefiles, (b) gridded data to be transformed, and, optionally, (c) gridded weights to use in the transformation. By default, aggregation to regions is conducted such that the resulting regional data draws from each grid cell according to the cell's share of total region area. However, researchers can provide alternative weighting schemes, such that the regional data is weighted by, for example, the population or planted agricultural area within each cell. An advantage of this method is that it enables easy preparation of nonlinear transformations of the climate data before aggregation to regions, allowing aggregated variables to more accurately capture the spatial heterogeneity within a region in the transformed data. At this session, we will allow attendees to view transformed climate projections, examining the effect of various weighting schemes and nonlinear transformations on aggregate regional values, highlighting the implications for climate impact assessment work.

  8. Closing the scale gap between land surface parameterizations and GCMs with a new scheme, SiB3-Bins: SOIL MOISTURE SCALE GAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, I. T.; Sellers, P. J.; Denning, A. S.

    The interaction of land with the atmosphere is sensitive to soil moisture (W). Evapotranspiration (ET) reacts to soil moisture in a nonlinear way, f(W), as soils dry from saturation to wilt point. This nonlinear behavior and the fact that soil moisture varies on scales as small as 1–10 m in nature, while numerical general circulation models (GCMs) have grid cell sizes on the order of 1 to 100s of kilometers, makes the calculation of grid cell-average ET problematic. It is impractical to simulate the land in GCMs on the small scales seen in nature, so techniques have been developed tomore » represent subgrid scale heterogeneity, including: (1) statistical-dynamical representations of grid subelements of varying wetness, (2) relaxation of f(W), (3) moderating f(W) with approximations of catchment hydrology, (4) “tiling” the landscape into vegetation types, and (5) hyperresolution. Here we present an alternative method for representing subgrid variability in W, one proven in a conceptual framework where landscape-scale W is represented as a series of “Bins” of increasing wetness from dry to saturated. The grid cell-level f(W) is defined by the integral of the fractional area of the wetness bins and the value of f(W) associated with each. This approach accounts for the spatiotemporal dynamics of W. We implemented this approach in the SiB3 land surface parameterization and then evaluated its performance against a control, which assumes a horizontally uniform field of W. We demonstrate that the Bins method, with a physical basis, attenuates unrealistic jumps in model state and ET seen in the control runs.« less

  9. Nested mesoscale-to-LES modeling of the atmospheric boundary layer in the presence of under-resolved convective structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.

    Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less

  10. Stacked vapor fed amtec modules

    DOEpatents

    Sievers, Robert K.

    1989-01-01

    The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.

  11. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE PAGES

    Huang, C. -K.; Zeng, Y.; Wang, Y.; ...

    2016-10-01

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  12. The construction of high-accuracy schemes for acoustic equations

    NASA Technical Reports Server (NTRS)

    Tang, Lei; Baeder, James D.

    1995-01-01

    An accuracy analysis of various high order schemes is performed from an interpolation point of view. The analysis indicates that classical high order finite difference schemes, which use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for time-dependent problems. Thus, some schemes improve their numerical accuracy within grid cells by the near-minimax approximation method, but their practical significance is degraded by maintaining the same stencil as classical schemes. One-step methods in space discretization, which use piecewise polynomial interpolation and involve data at only two points, can generate a uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedoparticle (CIP) scheme is recommended for computational acoustics.

  13. Light and dark matter in the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This simulation follows the growth of density perturbations in both gas and dark matter components in a volume 1 billion light years on a side beginning shortly after the Big Bang and evolved to half the present age of the universe. It calculates the gravitational clumping of intergalactic gas and dark matter modeled using a computational grid of 64 billion cells and 64 billion dark matter particles. The simulation uses a computational grid of 4096^3 cells and took over 4,000,000 CPU hours to complete. Read more: http://www.anl.gov/Media_Center/News/2010/news100104.html. Credits: Science: Michael L. Norman, Robert Harkness, Pascal Paschos and Rick Wagner Visualization:more » Mark Herald, Joseph A. Insley, Eric C. Olson and Michael E. Papka« less

  14. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C. -K.; Zeng, Y.; Wang, Y.

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  15. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system.

    PubMed

    Lee, Se-Hwan; Cho, Yong Sang; Hong, Myoung Wha; Lee, Bu-Kyu; Park, Yongdoo; Park, Sang-Hyug; Kim, Young Yul; Cho, Young-Sam

    2017-09-13

    To enhance the mechanical properties of three-dimensional (3D) scaffolds used for bone regeneration in tissue engineering, many researchers have studied their structure and chemistry. In the structural engineering field, the kagome structure has been known to have an excellent relative strength. In this study, to enhance the mechanical properties of a synthetic polymer scaffold used for tissue engineering, we applied the 3D kagome structure to a porous scaffold for bone regeneration. Prior to fabricating the biocompatible-polymer scaffold, the ideal kagome structure, which was manufactured by a 3D printer of the digital light processing type, was compared with a grid-structure, which was used as the control group, using a compressive experiment. A polycaprolactone (PCL) kagome-structure scaffold was successfully fabricated by additive manufacturing using a 3D printer with a precision extruding deposition head. To assess the physical characteristics of the fabricated PCL-kagome-structure scaffold, we analyzed its porosity, pore size, morphological structure, surface roughness, compressive stiffness, and mechanical bending properties. The results showed that, the mechanical properties of proposed kagome-structure scaffold were superior to those of a grid-structure scaffold. Moreover, Sarcoma osteogenic (Saos-2) cells were used to evaluate the characteristics of in vitro cell proliferation. We carried out cell counting kit-8 (CCK-8) and DNA contents assays. Consequently, the cell proliferation of the kagome-structure scaffold was increased; this could be because the surface roughness of the kagome-structure scaffold enhances initial cell attachment.

  16. Internal Passage Heat Transfer Prediction Using Multiblock Grids and a Kappa-Omega Turbulence Model

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Ameri, Ali A.; Steinthorsson, Erlendur

    1996-01-01

    Numerical simulations of the three-dimensional flow and heat transfer in a rectangular duct with a 180 C bend were performed. Results are presented for Reynolds numbers of 17,000 and 37,000 and for aspect ratios of 0.5 and I.O. A kappa-omega turbulence model with no reference to distance to a wall is used. Direct comparison between single block and multiblock grid calculations are made. Heat transfer and velocity distributions are compared to available literature with good agreement. The multi-block grid system is seen to produce more accurate results compared to a single-block grid with the same number of cells.

  17. A solution-adaptive hybrid-grid method for the unsteady analysis of turbomachinery

    NASA Technical Reports Server (NTRS)

    Mathur, Sanjay R.; Madavan, Nateri K.; Rajagopalan, R. G.

    1993-01-01

    A solution-adaptive method for the time-accurate analysis of two-dimensional flows in turbomachinery is described. The method employs a hybrid structured-unstructured zonal grid topology in conjunction with appropriate modeling equations and solution techniques in each zone. The viscous flow region in the immediate vicinity of the airfoils is resolved on structured O-type grids while the rest of the domain is discretized using an unstructured mesh of triangular cells. Implicit, third-order accurate, upwind solutions of the Navier-Stokes equations are obtained in the inner regions. In the outer regions, the Euler equations are solved using an explicit upwind scheme that incorporates a second-order reconstruction procedure. An efficient and robust grid adaptation strategy, including both grid refinement and coarsening capabilities, is developed for the unstructured grid regions. Grid adaptation is also employed to facilitate information transfer at the interfaces between unstructured grids in relative motion. Results for grid adaptation to various features pertinent to turbomachinery flows are presented. Good comparisons between the present results and experimental measurements and earlier structured-grid results are obtained.

  18. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  19. On the application of the PFEM to droplet dynamics modeling in fuel cells

    NASA Astrophysics Data System (ADS)

    Ryzhakov, Pavel B.; Jarauta, Alex; Secanell, Marc; Pons-Prats, Jordi

    2017-07-01

    The Particle Finite Element Method (PFEM) is used to develop a model to study two-phase flow in fuel cell gas channels. First, the PFEM is used to develop the model of free and sessile droplets. The droplet model is then coupled to an Eulerian, fixed-grid, model for the airflow. The resulting coupled PFEM-Eulerian algorithm is used to study droplet oscillations in an air flow and droplet growth in a low-temperature fuel cell gas channel. Numerical results show good agreement with predicted frequencies of oscillation, contact angle, and deformation of injected droplets in gas channels. The PFEM-based approach provides a novel strategy to study droplet dynamics in fuel cells.

  20. Free stream capturing in fluid conservation law for moving coordinates in three dimensions

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1991-01-01

    The free-stream capturing technique for both the finite-volume (FV) and finite-difference (FD) framework is summarized. For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all six surfaces of the cell have to be computed correctly. This means that the free-stream capturing time-metric terms should be calculated not only from a surface vector of a cell at a single time level, but also from a volume swept by the cell surface in space and time. The FV free-stream capturing formulation is applicable to the FD formulation by proper translation from an FV cell to an FD mesh.

  1. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces.

    PubMed

    Mwenifumbo, Steven; Li, Mingwei; Chen, Jianbo; Beye, Aboubaker; Soboyejo, Wolé

    2007-01-01

    This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.

  2. Solar cells and modules from dentritic web silicon

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.; Rohatgi, A.; Seman, E. J.; Davis, J. R.; Rai-Choudhury, P.; Gallagher, B. D.

    1980-01-01

    Some of the noteworthy features of the processes developed in the fabrication of solar cell modules are the handling of long lengths of web, the use of cost effective dip coating of photoresist and antireflection coatings, selective electroplating of the grid pattern and ultrasonic bonding of the cell interconnect. Data on the cells is obtained by means of dark I-V analysis and deep level transient spectroscopy. A histogram of over 100 dentritic web solar cells fabricated in a number of runs using different web crystals shows an average efficiency of over 13%, with some efficiencies running above 15%. Lower cell efficiency is generally associated with low minority carrier time due to recombination centers sometimes present in the bulk silicon. A cost analysis of the process sequence using a 25 MW production line indicates a selling price of $0.75/peak watt in 1986. It is concluded that the efficiency of dentritic web cells approaches that of float zone silicon cells, reduced somewhat by the lower bulk lifetime of the former.

  3. Shape functions for velocity interpolation in general hexahedral cells

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.

    2002-01-01

    Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.

  4. Separation of distinct adhesion complexes and associated cytoskeleton by a micro-stencil-printing method.

    PubMed

    Caballero, David; Osmani, Naël; Georges-Labouesse, Elisabeth; Labouesse, Michel; Riveline, Daniel

    2012-01-01

    Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with "stampcils" focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein-fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.

  5. Extensible Interest Management for Scalable Persistent Distributed Virtual Environments

    DTIC Science & Technology

    1999-12-01

    Calvin, Cebula et al. 1995; Morse, Bic et al. 2000) uses a two grid, with each grid cell having two multicast addresses. An entity expresses interest...Entity distribution for experimental runs 78 s I * • ...... ^..... * * a» Sis*«*»* 1 ***** Jj |r...Multiple Users and Shared Applications with VRML. VRML 97, Monterey, CA. pp. 33-40. Calvin, J. O., D. P. Cebula , et al. (1995). Data Subscription in

  6. Calendar aging of a 250 kW/500 kWh Li-ion battery deployed for the grid storage application

    NASA Astrophysics Data System (ADS)

    Kubiak, Pierre; Cen, Zhaohui; López, Carmen M.; Belharouak, Ilias

    2017-12-01

    The introduction of Li-ion batteries for grid applications has become evidence as the cost per kWh is continuously decreasing. Although the Li-ion battery is a mature technology for automotive applications and portable electronics, its use for stationary applications needs more validation. The Li-ion technology is considered safe enough for grid storage application, but its lifetime is generally evaluated to be around 10 years. Higher market penetration will be achieved if a longer lifespan could be demonstrated. Therefore, aging evaluation of the batteries becomes crucial. In this paper we investigated the effects of aging after a three years' standby field deployment of a 250 kW/500 kWh Li-ion battery integrated with the grid and solar farm under the harsh climate conditions of Qatar. The development of tools for acquisition and analysis of data from the battery management system (BMS) allows the assessment of the battery performance at the battery stack, string and cell levels. The analysis of the residual capacity after aging showed that the stack suffered from a low decrease of capacity, whereas some inconsistencies have been found between the strings. These inconsistencies are caused by misalignment of a small number of cells that underwent self-discharge during standby at high state of charge.

  7. Verification and Validation of the Coastal Modeling System. Report 2: CMS-Wave

    DTIC Science & Technology

    2011-12-01

    Figure 44. Offshore bathymetry showing NDBC and CDIP buoy locations. ........................................ 70 Figure 45. CMS-Wave modeling domain...the four measurement stations. During the same time intervals, offshore wave information was available from a Coastal Data Information Program ( CDIP ...were conducted with a grid of 236 × 398 cells with variable cell spacing of 30 to 200 m (see Figure 28). Directional wave spectra from CDIP 036 served

  8. Urban runoff (URO) process for MODFLOW 2005: simulation of sub-grid scale urban hydrologic processes in Broward County, FL

    USGS Publications Warehouse

    Decker, Jeremy D.; Hughes, J.D.

    2013-01-01

    Climate change and sea-level rise could cause substantial changes in urban runoff and flooding in low-lying coast landscapes. A major challenge for local government officials and decision makers is to translate the potential global effects of climate change into actionable and cost-effective adaptation and mitigation strategies at county and municipal scales. A MODFLOW process is used to represent sub-grid scale hydrology in urban settings to help address these issues. Coupled interception, surface water, depression, and unsaturated zone storage are represented. A two-dimensional diffusive wave approximation is used to represent overland flow. Three different options for representing infiltration and recharge are presented. Additional features include structure, barrier, and culvert flow between adjacent cells, specified stage boundaries, critical flow boundaries, source/sink surface-water terms, and the bi-directional runoff to MODFLOW Surface-Water Routing process. Some abilities of the Urban RunOff (URO) process are demonstrated with a synthetic problem using four land uses and varying cell coverages. Precipitation from a hypothetical storm was applied and cell by cell surface-water depth, groundwater level, infiltration rate, and groundwater recharge rate are shown. Results indicate the URO process has the ability to produce time-varying, water-content dependent infiltration and leakage, and successfully interacts with MODFLOW.

  9. Theory and applications for optimization of every part of a photovoltaic system

    NASA Technical Reports Server (NTRS)

    Redfield, D.

    1978-01-01

    A general method is presented for quantitatively optimizing the design of every part and fabrication step of an entire photovoltaic system, based on the criterion of minimum cost/Watt for the system output power. It is shown that no element or process step can be optimized properly by considering only its own cost and performance. Moreover, a fractional performance loss at any fabrication step within the cell or array produces the same fractional increase in the cost/Watt of the entire array, but not of the full system. One general equation is found to be capable of optimizing all parts of a system, although the cell and array steps are basically different from the power-handling elements. Applications of this analysis are given to show (1) when Si wafers should be cut to increase their packing fraction; and (2) what the optimum dimensions for solar cell metallizations are. The optimum shadow fraction of the fine grid is shown to be independent of metal cost and resistivity as well as cell size. The optimum thicknesses of both the fine grid and the bus bar are substantially greater than the values in general use, and the total array cost has a major effect on these values. By analogy, this analysis is adaptable to other solar energy systems.

  10. A Novel Nonparametric Approach for Neural Encoding and Decoding Models of Multimodal Receptive Fields.

    PubMed

    Agarwal, Rahul; Chen, Zhe; Kloosterman, Fabian; Wilson, Matthew A; Sarma, Sridevi V

    2016-07-01

    Pyramidal neurons recorded from the rat hippocampus and entorhinal cortex, such as place and grid cells, have diverse receptive fields, which are either unimodal or multimodal. Spiking activity from these cells encodes information about the spatial position of a freely foraging rat. At fine timescales, a neuron's spike activity also depends significantly on its own spike history. However, due to limitations of current parametric modeling approaches, it remains a challenge to estimate complex, multimodal neuronal receptive fields while incorporating spike history dependence. Furthermore, efforts to decode the rat's trajectory in one- or two-dimensional space from hippocampal ensemble spiking activity have mainly focused on spike history-independent neuronal encoding models. In this letter, we address these two important issues by extending a recently introduced nonparametric neural encoding framework that allows modeling both complex spatial receptive fields and spike history dependencies. Using this extended nonparametric approach, we develop novel algorithms for decoding a rat's trajectory based on recordings of hippocampal place cells and entorhinal grid cells. Results show that both encoding and decoding models derived from our new method performed significantly better than state-of-the-art encoding and decoding models on 6 minutes of test data. In addition, our model's performance remains invariant to the apparent modality of the neuron's receptive field.

  11. Environmental and economic assessment of a cracked ammonia fuelled alkaline fuel cell for off-grid power applications

    NASA Astrophysics Data System (ADS)

    Cox, Brian; Treyer, Karin

    2015-02-01

    Global mobile telecommunication is possible due to millions of Base Transceiver Stations (BTS). Nearly 1 million of these are operating off-grid, typically powered by diesel generators and therefore leading to significant CO2 emissions and other environmental burdens. A novel type of Alkaline Fuel Cell (AFC) powered by cracked ammonia is being developed for replacement of these generators. This study compares the environmental and economic performance of the two systems by means of Life Cycle Assessment (LCA) and Levelised Cost of Electricity (LCOE), respectively. Results show that the production of ammonia dominates the LCA results, and that renewable ammonia production pathways greatly improve environmental performance. Sensitivity analyses reveal that the fuel cell parameters that most affect system cost and environmental burdens are cell power density and lifetime and system efficiency. Recycling of anode catalyst and electrode substrate materials is found to have large impacts on environmental performance, though without large cost incentives. For a set of target parameter values and fossil sourced ammonia, the AFC is calculated to produce electricity with life cycle CO2 eq emissions of 1.08 kg kWh-1, which is 23% lower than a diesel generator with electricity costs that are 14% higher in the same application.

  12. The self-organization of grid cells in 3D

    PubMed Central

    Stella, Federico; Treves, Alessandro

    2015-01-01

    Do we expect periodic grid cells to emerge in bats, or perhaps dolphins, exploring a three-dimensional environment? How long will it take? Our self-organizing model, based on ring-rate adaptation, points at a complex answer. The mathematical analysis leads to asymptotic states resembling face centered cubic (FCC) and hexagonal close packed (HCP) crystal structures, which are calculated to be very close to each other in terms of cost function. The simulation of the full model, however, shows that the approach to such asymptotic states involves several sub-processes over distinct time scales. The smoothing of the initially irregular multiple fields of individual units and their arrangement into hexagonal grids over certain best planes are observed to occur relatively quickly, even in large 3D volumes. The correct mutual orientation of the planes, though, and the coordinated arrangement of different units, take a longer time, with the network showing no sign of convergence towards either a pure FCC or HCP ordering. DOI: http://dx.doi.org/10.7554/eLife.05913.001 PMID:25821989

  13. Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids II: Extension to Two Dimensional Scalar Equation

    NASA Technical Reports Server (NTRS)

    Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.

  14. Sinter of uniform, predictable, blemish-free nickel plaque for large aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Seiger, H. N.

    1975-01-01

    A series of nickel slurry compositions were tested. Important slurry parameters were found to be the nature of the binder, a pore former and the method of mixing. A slow roll mixing which is non-turbulent successfully eliminated entrapped air so that bubbles and pockets were avoided in the sinter. A slurry applicator was developed which enabled an equal quantity of slurry to be applied to both sides of the grid. Sintering in a furnace having a graded atmosphere characteristic, ranging from oxidizing to strongly reducing, improved adhesion of porous sinter to grid and resulted in a uniform welding of nickel particles to each other throughout the plaque. Sintering was carried out in a horizontal furnace having three heating zones and 16 heating control circuits. Tests used for plaque evaluation include (1) appearance, (2) grid location and adhesion, (3) mechanical strength, (4) thickness, (5) weight per unit area, (6) void volume per unit area, (7) surface area and (8) electrical resistance. Plaque material was impregnated using Heliotek proprietary processes and 100 AH cells were fabricated.

  15. 3D Radiative Transfer Code for Polarized Scattered Light with Aligned Grains

    NASA Astrophysics Data System (ADS)

    Pelkonen, V. M.; Penttilä, A.; Juvela, M.; Muinonen, K.

    2017-12-01

    Polarized scattered light has been observed in cometary comae and in circumstellar disks. It carries information about the grains from which the light scattered. However, modelling polarized scattered light is a complicated problem. We are working on a 3D Monte Carlo radiative transfer code which incorporates hierarchical grid structure (octree) and the full Stokes vector for both the incoming radiation and the radiation scattered by dust grains. In octree grid format an upper level cell can be divided into 8 subcells by halving the cell in each of the three axis. Levels of further refinement of the grid may be added, until the desired resolution is reached. The radiation field is calculated with Monte Carlo methods. The path of the model ray is traced in the cloud: absorbed intensity is counted in each cell, and from time to time, the model ray is scattered towards a new direction as determined by the dust model. Due to the non-spherical grains and the polarization, the scattering problem will be the main issue for the code and most time consuming. The scattering parameters will be taken from the models for individual grains. We can introduce populations of different grain shapes into the dust model, and randomly select, based on their amounts, from which shape the model ray scatters. Similarly, we can include aligned and non-aligned subpopulations of these grains, based on the grain alignment calculations, to see which grains should be oriented with the magnetic field, or, in the absence of a magnetic field close to the comet nucleus, with another axis of alignment (e.g., the radiation direction). The 3D nature of the grid allows us to assign these values, as well as density, for each computational cell, to model phenomena like e.g., cometary jets. The code will record polarized scattered light towards one or more observer directions within a single simulation run. These results can then be compared with the observations of comets at different phase angles, or, in the case of other star systems, of circumstellar disks, to help us study these objects. We will present tests of the code in development with simple models.

  16. DRACO development for 3D simulations

    NASA Astrophysics Data System (ADS)

    Fatenejad, Milad; Moses, Gregory

    2006-10-01

    The DRACO (r-z) lagrangian radiation-hydrodynamics laser fusion simulation code is being extended to model 3D hydrodynamics in (x-y-z) coordinates with hexahedral cells on a structured grid. The equation of motion is solved with a lagrangian update with optional rezoning. The fluid equations are solved using an explicit scheme based on (Schulz, 1964) while the SALE-3D algorithm (Amsden, 1981) is used as a template for computing cell volumes and other quantities. A second order rezoner has been added which uses linear interpolation of the underlying continuous functions to preserve accuracy (Van Leer, 1976). Artificial restoring force terms and smoothing algorithms are used to avoid grid distortion in high aspect ratio cells. These include alternate node couplers along with a rotational restoring force based on the Tensor Code (Maenchen, 1964). Electron and ion thermal conduction is modeled using an extension of Kershaw's method (Kershaw, 1981) to 3D geometry. Test problem simulations will be presented to demonstrate the applicability of this new version of DRACO to the study of fluid instabilities in three dimensions.

  17. The Array Automated Assembly Task for the Low Cost Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Campbell, R. B. (Editor); Farukhi, S. (Editor)

    1978-01-01

    During the program a process sequence was proposed and tested for the fabrication of dendritic welb silicon into solar modules. This sequence was analyzed as to yield and cost and these data suggest that the price goals of 1986 are attainable. Specifically, it was shown that a low cost POCL3 is a suitable replacement for the semiconductor grade, and that a suitable CVD oxide can be deposited from a silane/air mixture using a Silox reactor. A dip coating method was developed for depositing an antireflection coating from a metalorganic precursor. Application of photoresist to define contact grids was made cost effective through use of a dip coating technique. Electroplating of both Ag and Cu was shown feasible and cost effective for producing the conductive metal grids on the solar cells. Laser scribing was used to separate the cells from the dendrites without degradation. Ultrasonic welding methods were shown to be feasible for interconnecting the cells. A study of suitable low cost materials for encapsulation suggest that soda lime glass and phenolic filled board are preferred.

  18. Spatial heterogeneity in the carrying capacity of sika deer in Japan

    PubMed Central

    Iijima, Hayato; Ueno, Mayumi

    2016-01-01

    Abstract Carrying capacity is 1 driver of wildlife population dynamics. Although in previous studies carrying capacity was considered to be a fixed entity, it may differ among locations due to environmental variation. The factors underlying variability in carrying capacity, however, have rarely been examined. Here, we investigated spatial heterogeneity in the carrying capacity of Japanese sika deer ( Cervus nippon ) from 2005 to 2014 in Yamanashi Prefecture, central Japan (mesh with grid cells of 5.5×4.6 km) by state-space modeling. Both carrying capacity and density dependence differed greatly among cells. Estimated carrying capacities ranged from 1.34 to 98.4 deer/km 2 . According to estimated population dynamics, grid cells with larger proportions of artificial grassland and deciduous forest were subject to lower density dependence and higher carrying capacity. We conclude that population dynamics of ungulates may vary spatially through spatial variation in carrying capacity and that the density level for controlling ungulate abundance should be based on the current density level relative to the carrying capacity for each area. PMID:29692470

  19. Tetrahedral Finite-Volume Solutions to the Navier-Stokes Equations on Complex Configurations

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.

    1998-01-01

    A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used throughout the U.S. for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe's upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addressed for a flat-plate boundary layer, and a full F-16 aircraft with external stores at transonic speed.

  20. Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure

    NASA Astrophysics Data System (ADS)

    Bimo Prakoso, Ari; Rusli; Li, Zeyu; Lu, Chenjin; Jiang, Changyun

    2018-03-01

    We study the design of Si/organic hybrid (SOH) solar cells with interdigitated back contact (IBC) structure. SOH solar cells formed between n-Si and poly(3,4-ethylenedioxythiophene): polystyrenesulphonate (PEDOT:PSS) is a promising concept that combines the excellent electronic properties of Si with the solution-based processing advantage of an organic polymer. The IBC cell structure is employed to minimize parasitic absorption losses in the organic polymer, eliminate grid shadowing losses, and allow excellent passivation of the front Si surface in one step over a large area. The influence of Si thickness, doping concentration and contact geometry are simulated in this study to optimize the performance of the SOH-IBC solar cell. We found that a high power conversion efficiency of >20% can be achieved for optimized SOH-IBC cell based on a thin c-Si substrate of 40 μm thickness.

  1. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells

    PubMed Central

    Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong; Dillard, Rebecca S; Hammonds, Jason E; Alonas, Eric; Desai, Tanay M; Marin, Mariana; Storms, Rachel E; Leon, Fredrick; Melikyan, Gregory B; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R

    2016-01-01

    Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5–15 d for an individual experienced in cryo-EM. PMID:27977021

  2. Influences of the inner retinal sublayers and analytical areas in macular scans by spectral-domain OCT on the diagnostic ability of early glaucoma.

    PubMed

    Nakatani, Yusuke; Higashide, Tomomi; Ohkubo, Shinji; Sugiyama, Kazuhisa

    2014-10-23

    We investigated the influences of the inner retinal sublayers and analytical areas in macular scans by spectral-domain optical coherence tomography (OCT) on the diagnostic ability of early glaucoma. A total of 64 early (including 24 preperimetric) glaucomatous and 40 normal eyes underwent macular and peripapillary retinal nerve fiber layer (pRNFL) scans (3D-OCT-2000). The area under the receiver operating characteristics (AUC) for glaucoma diagnosis was determined from the average thickness of the total 100 grids (6 × 6 mm), central 44 grids (3.6 × 4.8 mm), and peripheral 56 grids (outside of the 44 grids), and for each macular sublayer: macular RNFL (mRNFL), ganglion cell layer plus inner plexiform layer (GCL/IPL), and mRNFL plus GCL/IPL (ganglion cell complex [GCC]). Correlation of OCT parameters with visual field parameters was evaluated by Spearman's rank correlation coefficients (rs). The GCC-related parameters had a significantly larger AUC (0.82-0.97) than GCL/IPL (0.81-0.91), mRNFL-related parameters (0.72-0.94), or average pRNFL (0.88) in more than half of all comparisons. The central 44 grids had a significantly lower AUC than other analytical areas in GCC and mRNFL thickness. Conversely, the peripheral 56 grids had a significantly lower AUC than the 100 grids in GCL/IPL inferior thickness. Inferior thickness of GCC (rs, 0.45-0.49) and mRNFL (rs, 0.43-0.51) showed comparably high correlations with central visual field parameters to average pRNFL thickness (rs, 0.41, 0.47) even in the central 44 grids. The diagnostic ability of macular OCT parameters for early glaucoma differed by inner retinal sublayers and also by the analytical areas studied. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  3. Impact of cell size on inventory and mapping errors in a cellular geographic information system

    NASA Technical Reports Server (NTRS)

    Wehde, M. E. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The effect of grid position was found insignificant for maps but highly significant for isolated mapping units. A modelable relationship between mapping error and cell size was observed for the map segment analyzed. Map data structure was also analyzed with an interboundary distance distribution approach. Map data structure and the impact of cell size on that structure were observed. The existence of a model allowing prediction of mapping error based on map structure was hypothesized and two generations of models were tested under simplifying assumptions.

  4. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    NASA Technical Reports Server (NTRS)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  5. Analyzing Spatial and Temporal Variation in Precipitation Estimates in a Coupled Model

    NASA Astrophysics Data System (ADS)

    Tomkins, C. D.; Springer, E. P.; Costigan, K. R.

    2001-12-01

    Integrated modeling efforts at the Los Alamos National Laboratory aim to simulate the hydrologic cycle and study the impacts of climate variability and land use changes on water resources and ecosystem function at the regional scale. The integrated model couples three existing models independently responsible for addressing the atmospheric, land surface, and ground water components: the Regional Atmospheric Model System (RAMS), the Los Alamos Distributed Hydrologic System (LADHS), and the Finite Element and Heat Mass (FEHM). The upper Rio Grande Basin, extending 92,000 km2 over northern New Mexico and southern Colorado, serves as the test site for this model. RAMS uses nested grids to simulate meteorological variables, with the smallest grid over the Rio Grande having 5-km horizontal grid spacing. As LADHS grid spacing is 100 m, a downscaling approach is needed to estimate meteorological variables from the 5km RAMS grid for input into LADHS. This study presents daily and cumulative precipitation predictions, in the month of October for water year 1993, and an approach to compare LADHS downscaled precipitation to RAMS-simulated precipitation. The downscaling algorithm is based on kriging, using topography as a covariate to distribute the precipitation and thereby incorporating the topographical resolution achieved at the 100m-grid resolution in LADHS. The results of the downscaling are analyzed in terms of the level of variance introduced into the model, mean simulated precipitation, and the correlation between the LADHS and RAMS estimates. Previous work presented a comparison of RAMS-simulated and observed precipitation recorded at COOP and SNOTEL sites. The effects of downscaling the RAMS precipitation were evaluated using Spearman and linear correlations and by examining the variance of both populations. The study focuses on determining how the downscaling changes the distribution of precipitation compared to the RAMS estimates. Spearman correlations computed for the LADHS and RAMS cumulative precipitation reveal a disassociation over time, with R equal to 0.74 at day eight and R equal to 0.52 at day 31. Linear correlation coefficients (Pearson) returned a stronger initial correlation of 0.97, decreasing to 0.68. The standard deviations for the 2500 LADHS cells underlying each 5km RAMS cell range from 8 mm to 695 mm in the Sangre de Cristo Mountains and 2 mm to 112 mm in the San Luis Valley. Comparatively, the standard deviations of the RAMS estimates in these regions are 247 mm and 30 mm respectively. The LADHS standard deviations provide a measure of the variability introduced through the downscaling routine, which exceeds RAMS regional variability by a factor of 2 to 4. The coefficient of variation for the average LADHS grid cell values and the RAMS cell values in the Sangre de Cristo Mountains are 0.66 and 0.27, respectively, and 0.79 and 0.75 in the San Luis Valley. The coefficients of variation evidence the uniformity of the higher precipitation estimates in the mountains, especially for RAMS, and also the lower means and variability found in the valley. Additionally, Kolmogorov-Smirnov tests indicate clear spatial and temporal differences in mean simulated precipitation across the grid.

  6. Improved single-cell culture achieved using micromolding in capillaries technology coupled with poly (HEMA).

    PubMed

    Ye, Fang; Jiang, Jin; Chang, Honglong; Xie, Li; Deng, Jinjun; Ma, Zhibo; Yuan, Weizheng

    2015-07-01

    Cell studies at the single-cell level are becoming more and more critical for understanding the complex biological processes. Here, we present an optimization study investigating the positioning of single cells using micromolding in capillaries technology coupled with the cytophobic biomaterial poly (2-hydroxyethyl methacrylate) (poly (HEMA)). As a cytophobic biomaterial, poly (HEMA) was used to inhibit cells, whereas the glass was used as the substrate to provide a cell adhesive background. The poly (HEMA) chemical barrier was obtained using micromolding in capillaries, and the microchannel networks used for capillarity were easily achieved by reversibly bonding the polydimethylsiloxane mold and the glass. Finally, discrete cell adhesion regions were presented on the glass surface. This method is facile and low cost, and the reagents are commercially available. We validated the cytophobic abilities of the poly (HEMA), optimized the channel parameters for higher quality and more stable poly (HEMA) patterns by investigating the effects of changing the aspect ratio and the width of the microchannel on the poly (HEMA) grid pattern, and improved the single-cell occupancy by optimizing the dimensions of the cell adhesion regions.

  7. Toward multidisciplinary use of LANDSAT: Interfacing computerized LANDSAT analysis systems with geographic information systems

    NASA Technical Reports Server (NTRS)

    Myers, W. L.

    1981-01-01

    The LANDSAT-geographic information system (GIS) interface must summarize the results of the LANDSAT classification over the same cells that serve as geographic referencing units for the GIS, and output these summaries on a cell-by-cell basis in a form that is readable by the input routines of the GIS. The ZONAL interface for cell-oriented systems consists of two primary programs. The PIXCEL program scans the grid of cells and outputs a channel of pixels. Each pixel contains not the reflectance values but the identifier of the cell in which the center of the pixel is located. This file of pixelized cells along with the results of a pixel-by-pixel classification of the scene produced by the LANDSAT analysis system are input to the CELSUM program which then outputs a cell-by-cell summary formatted according to the requirements of the host GIS. Cross-correlation of the LANDSAT layer with the other layers in the data base is accomplished with the analysis and display facilities of the GIS.

  8. Adaptive Grid Refinement for Atmospheric Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    van Hooft, Antoon; van Heerwaarden, Chiel; Popinet, Stephane; van der linden, Steven; de Roode, Stephan; van de Wiel, Bas

    2017-04-01

    We validate and benchmark an adaptive mesh refinement (AMR) algorithm for numerical simulations of the atmospheric boundary layer (ABL). The AMR technique aims to distribute the computational resources efficiently over a domain by refining and coarsening the numerical grid locally and in time. This can be beneficial for studying cases in which length scales vary significantly in time and space. We present the results for a case describing the growth and decay of a convective boundary layer. The AMR results are benchmarked against two runs using a fixed, fine meshed grid. First, with the same numerical formulation as the AMR-code and second, with a code dedicated to ABL studies. Compared to the fixed and isotropic grid runs, the AMR algorithm can coarsen and refine the grid such that accurate results are obtained whilst using only a fraction of the grid cells. Performance wise, the AMR run was cheaper than the fixed and isotropic grid run with similar numerical formulations. However, for this specific case, the dedicated code outperformed both aforementioned runs.

  9. A Research Program in Computer Technology

    DTIC Science & Technology

    1979-01-01

    barrier walls within the cell in a grid or "waffle" pattern, sepnrnting each pixel from its neighbors. The walls need not extend to the front surface...migration and degradation of display p(.rformanco. The grid can be made of photoresist film by standard photolithographic techniques. I xtruurrs. Using the EP...this variation is normally quite smooth, but significant. However, for use in a smart terminal, where visible cursor feedback is available or where

  10. 75 FR 57006 - Addressing Policy and Logistical Challenges to Smart Grid Implementation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... electric vehicles, photovoltaic cells, wind turbines, or inflexible nuclear plants? What approaches make... generation and electric vehicles into the electric system; detect and address equipment problems and outages...

  11. Effects of habitat map generalization in biodiversity assessment

    NASA Technical Reports Server (NTRS)

    Stoms, David M.

    1992-01-01

    Species richness is being mapped as part of an inventory of biological diversity in California (i.e., gap analysis). Species distributions are modeled with a GIS on the basis of maps of each species' preferred habitats. Species richness is then tallied in equal-area sampling units. A GIS sensitivity analysis examined the effects of the level of generalization of the habitat map on the predicted distribution of species richness in the southern Sierra Nevada. As the habitat map was generalized, the number of habitat types mapped within grid cells tended to decrease with a corresponding decline in numbers of species predicted. Further, the ranking of grid cells in order of predicted numbers of species changed dramatically between levels of generalization. Areas predicted to be of greatest conservation value on the basis of species richness may therefore be sensitive to GIS data resolution.

  12. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  13. Learning Optimized Local Difference Binaries for Scalable Augmented Reality on Mobile Devices.

    PubMed

    Xin Yang; Kwang-Ting Cheng

    2014-06-01

    The efficiency, robustness and distinctiveness of a feature descriptor are critical to the user experience and scalability of a mobile augmented reality (AR) system. However, existing descriptors are either too computationally expensive to achieve real-time performance on a mobile device such as a smartphone or tablet, or not sufficiently robust and distinctive to identify correct matches from a large database. As a result, current mobile AR systems still only have limited capabilities, which greatly restrict their deployment in practice. In this paper, we propose a highly efficient, robust and distinctive binary descriptor, called Learning-based Local Difference Binary (LLDB). LLDB directly computes a binary string for an image patch using simple intensity and gradient difference tests on pairwise grid cells within the patch. To select an optimized set of grid cell pairs, we densely sample grid cells from an image patch and then leverage a modified AdaBoost algorithm to automatically extract a small set of critical ones with the goal of maximizing the Hamming distance between mismatches while minimizing it between matches. Experimental results demonstrate that LLDB is extremely fast to compute and to match against a large database due to its high robustness and distinctiveness. Compared to the state-of-the-art binary descriptors, primarily designed for speed, LLDB has similar efficiency for descriptor construction, while achieving a greater accuracy and faster matching speed when matching over a large database with 2.3M descriptors on mobile devices.

  14. Downscaling global land-use/land-cover projections for use in region-level state-and-transition simulation modeling

    USGS Publications Warehouse

    Sherba, Jason T.; Sleeter, Benjamin M.; Davis, Adam W.; Parker, Owen P.

    2015-01-01

    Global land-use/land-cover (LULC) change projections and historical datasets are typically available at coarse grid resolutions and are often incompatible with modeling applications at local to regional scales. The difficulty of downscaling and reapportioning global gridded LULC change projections to regional boundaries is a barrier to the use of these datasets in a state-and-transition simulation model (STSM) framework. Here we compare three downscaling techniques to transform gridded LULC transitions into spatial scales and thematic LULC classes appropriate for use in a regional STSM. For each downscaling approach, Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) LULC projections, at the 0.5 × 0.5 cell resolution, were downscaled to seven Level III ecoregions in the Pacific Northwest, United States. RCP transition values at each cell were downscaled based on the proportional distribution between ecoregions of (1) cell area, (2) land-cover composition derived from remotely-sensed imagery, and (3) historic LULC transition values from a LULC history database. Resulting downscaled LULC transition values were aggregated according to their bounding ecoregion and “cross-walked” to relevant LULC classes. Ecoregion-level LULC transition values were applied in a STSM projecting LULC change between 2005 and 2100. While each downscaling methods had advantages and disadvantages, downscaling using the historical land-use history dataset consistently apportioned RCP LULC transitions in agreement with historical observations. Regardless of the downscaling method, some LULC projections remain improbable and require further investigation.

  15. Improved NLDAS-2 Noah-simulated Hydrometeorological Products with an Interim Run

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Youlong; Peter-Lidard, Christa; Huang, Maoyi

    2015-02-28

    In NLDAS-2 Noah simulation, the NLDAS team introduced an intermediate fix suggested by Slater et al. (2007) and Livneh et al. (2010) to reduce large sublimation. The fix is used to constraint surface exchange coefficient (CH) using CH =CHoriginal x max (1.0-RiB/0.5, 0.05) when atmospheric boundary layer is stable. RiB is Richardson number. In NLDAS-2 Noah version, this fix was used for all stable cases including snow-free grid cells. In this study, we simply applied this fix to the grid cells in which both stable atmospheric boundary layer and snow exist simultaneously excluding the snow-free grid cells as we recognizemore » that the fix constraint in NLDAS-2 is too strong. We make a 31-year (1979-2009) Noah NLDAS-2 interim (NoahI) run. We use observed streamflow, evapotranspiration, land surface temperature, soil temperature, and ground heat flux to evaluate the results simulated from NoahI and make the reasonable comparison with those simulated from NLDAS-2 Noah (Xia et al., 2012). The results show that NoahI has the same performance as Noah does for snow water equivalent simulation. However, NoahI significantly improved the other hydrometeorological products’ simulation as described above when compared to Noah and the observations. This simple modification is being installed to the next Noah version. The hydrometeorological products simulated from NoahI will be staged on NCEP public server for the public in future.« less

  16. Implementing Extreme Value Analysis in a Geospatial Workflow for Storm Surge Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Catelli, J.; Nong, S.

    2014-12-01

    Gridded data of 100-yr (1%) and 500-yr (0.2%) storm surge flood elevations for the United States, Gulf of Mexico, and East Coast are critical to understanding this natural hazard. Storm surge heights were calculated across the study area utilizing SLOSH (Sea, Lake, and Overland Surges from Hurricanes) model data for thousands of synthetic US landfalling hurricanes. Based on the results derived from SLOSH, a series of interpolations were performed using spatial analysis in a geographic information system (GIS) at both the SLOSH basin and the synthetic event levels. The result was a single grid of maximum flood elevations for each synthetic event. This project addresses the need to utilize extreme value theory in a geospatial environment to analyze coincident cells across multiple synthetic events. The results are 100-yr (1%) and 500-yr (0.2%) values for each grid cell in the study area. This talk details a geospatial approach to move raster data to SciPy's NumPy Array structure using the Python programming language. The data are then connected through a Python library to an outside statistical package like R to fit cell values to extreme value theory distributions and return values for specified recurrence intervals. While this is not a new process, the value behind this work is the ability to keep this process in a single geospatial environment and be able to easily replicate this process for other natural hazard applications and extreme event modeling.

  17. A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Santos-Filho, Osvaldo Andrade; Hopfinger, Anton J.

    2001-01-01

    A set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines were studied using four-dimensional quantitative structure-activity relationship (4D-QSAR) analysis. The corresponding biological activities of these compounds include IC50 inhibition constants for both the wild type, and a specific mutant type of Plasmodium falciparum dihydrofolate reductase (DHFR). Two thousand conformations of each analog were sampled to generate a conformational ensemble profile (CEP) from a molecular dynamics simulation (MDS) of 100,000 conformer trajectory states. Each sampled conformation was placed in a 1 Å cubic grid cell lattice for each of five trial alignments. The frequency of occupation of each grid cell was computed for each of six types of pharmacophore groups of atoms of each compound. These grid cell occupancy descriptors (GCODs) were then used as a descriptor pool to construct 4D-QSAR models. Models for inhibition of both the `wild' type and the mutant enzyme were generated which provide detailed spatial pharmacophore requirements for inhibition in terms of atom types and their corresponding relative locations in space. The 4D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the Plasmodium falciparum DHFR to current antimalarials. One feature identified is a slightly different binding alignment of the ligands to the mutant form of the enzyme as compared to the wild type.

  18. Colony mapping: A new technique for monitoring crevice-nesting seabirds

    USGS Publications Warehouse

    Renner, H.M.; Renner, M.; Reynolds, J.H.; Harping, A.M.A.; Jones, I.L.; Irons, D.B.; Byrd, G.V.

    2006-01-01

    Monitoring populations of auklets and other crevice-nesting seabirds remains problematic, although numerous methods have been attempted since the mid-1960s. Anecdotal evidence suggests several large auklet colonies have recently decreased in both abundance and extent, concurrently with vegetation encroachment and succession. Quantifying changes in the geographical extent of auklet colonies may be a useful alternative to monitoring population size directly. We propose a standardized method for colony mapping using a randomized systematic grid survey with two components: a simple presence/absence survey and an auklet evidence density survey. A quantitative auklet evidence density index was derived from the frequency of droppings and feathers. This new method was used to map the colony on St. George Island in the southeastern Bering Sea and results were compared to previous colony mapping efforts. Auklet presence was detected in 62 of 201 grid cells (each grid cell = 2500 m2) by sampling a randomly placed 16 m2 plot in each cell; estimated colony area = 155 000 m2. The auklet evidence density index varied by two orders of magnitude across the colony and was strongly correlated with means of replicated counts of birds socializing on the colony surface. Quantitatively mapping all large auklet colonies is logistically feasible using this method and would provide an important baseline for monitoring colony status. Regularly monitoring select colonies using this method may be the best means of detecting changes in distribution and population size of crevice-nesting seabirds. ?? The Cooper Ornithological Society 2006.

  19. Hawaii Energy and Environmental Technologies Initiative 2010 (HEET10)

    DTIC Science & Technology

    2016-09-30

    illustrated how local battery storage support of the lOMW Hawi wind farm can cause grid-wide issues. However, it was found that battery cycling can...capabilities pertaining to three different ex situ diagnostics were acquired and used under HEETlO. Focus was given to the catalyst (rotating ring ...cell. These capabilities are illustrated in Figure 9 1.1.1. Figure 1.1.1: (left) rotating ring /disc electrode; (middle) membrane conductivity cell

  20. Rapid Assemblers for Voxel-Based VLSI Robotics

    DTIC Science & Technology

    2014-02-12

    relied on coin- cell batteries with high energy density, but low power density. Each of the actuators presented requires relatively high power...The device consists of a low power DC- DC low to high voltage converter operated by 4A cell batteries and an assembler, which is a grid of electrodes...design, simulate and fabricate complex 3D machines, as well as to repair, adapt and recycle existing machines, and to perform rigorous design

Top