Science.gov

Sample records for cell groups reveal

  1. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem.

    PubMed

    Muzerelle, Aude; Scotto-Lomassese, Sophie; Bernard, Jean François; Soiza-Reilly, Mariano; Gaspar, Patricia

    2016-01-01

    Serotoninergic innervation of the central nervous system is provided by hindbrain raphe nuclei (B1-B9). The extent to which each raphe subdivision has distinct topographic organization of their projections is still unclear. We provide a comprehensive description of the main targets of the rostral serotonin (5-HT) raphe subgroups (B5-B9) in the mouse brain. Adeno-associated viruses that conditionally express GFP under the control of the 5-HT transporter promoter were used to label small groups of 5-HT neurons in the dorsal (B7d), ventral (B7v), lateral (B7l), and caudal (B6) subcomponents of the dorsal raphe (DR) nucleus as well as in the rostral and caudal parts of the median raphe (MR) nucleus (B8 and B5, respectively), and in the supralemniscal (B9) cell group. We illustrate the distinctive and largely non-overlapping projection areas of these cell groups: for instance, DR (B7) projects to basal parts of the forebrain, such as the amygdala, whereas MR (B8) is the main 5-HT source to the hippocampus, septum, and mesopontine tegmental nuclei. Distinct subsets of B7 have preferential brain targets: B7v is the main source of 5-HT for the cortex and amygdala while B7d innervates the hypothalamus. We reveal for the first time the target areas of the B9 cell group, demonstrating projections to the caudate, prefrontal cortex, substantia nigra, locus coeruleus and to the raphe cell groups. The broad topographic organization of the different raphe subnuclei is likely to underlie the different functional roles in which 5-HT has been implicated in the brain. The present mapping study could serve as the basis for genetically driven specific targeting of the different subcomponents of the mouse raphe system.

  2. Focus groups reveal consumer ambivalence.

    PubMed

    1983-01-01

    According to qualitative research, Salvadoreans are ambivalent about the use of contraceptives. Since complete responsibility for management of the CSM project was accepted by the Association Demografica Salvadorena (ADS), the agency which operates the contraceptive social marketing project in El Salvador, in November 1980, the need for decisions in such areas as product price increases, introduction of new condom brands, promotion of the vaginal foaming tablet, and assessment of product sales performance had arisen. The ICSMP funded market research, completed during 1983, was intended to provide the data on which such decisions by ADS could be based. The qualitative research involved 8 focus groups, comprised of men and women, aged 18-45, contraceptive users and nonusers, from the middle and lower socioeconomic strata of the city of San Salvador and other suburban areas. In each group a moderator led discussion of family planning and probed respondents for specific attitudes, knowledge, and behavior regarding the use of contraceptives. To assess attitudes at a more emotional level, moderators asked respondents to "draw" their ideas on certain issues. A marked discrepancy was revealed between respondents' intellectual responses to the issues raised in group discussion, as opposed to their feelings expressed in the drawings. Intellectually, participants responded very positively to family planning practice, but when they were asked to draw their perceptions, ambivalent feelings emerged. Drawings of both the user and the nonuser convey primarily negative aspects for either choice. The user is tense and moody toward her children; the nonuser loses her attractiveness and "dies." Figures also show drawings of some of the attitudes of single and married male participants. 1 drawing shows an incomplete and a complete circle, symbolizing a sterilized man (incomplete) and a nonsterilized man (complete). Another picture depicts a chained man who has lost his freedom

  3. Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion.

    PubMed

    Freeman, Brian T; Jung, Jangwook P; Ogle, Brenda M

    2016-01-01

    Fusion of donor mesenchymal stem cells with parenchymal cells of the recipient can occur in the brain, liver, intestine and heart following transplantation. The therapeutic benefit or detriment of resultant hybrids is unknown. Here we sought a global view of phenotypic diversification of mesenchymal stem cell-cardiomyocyte hybrids and associated time course. Using single-cell RNA-seq, we found hybrids consistently increase ribosome components and decrease genes associated with the cell cycle suggesting an increase in protein production and decrease in proliferation to accommodate the fused state. But in the case of most other gene groups, hybrids were individually distinct. In fact, though hybrids can express a transcriptome similar to individual fusion partners, approximately one-third acquired distinct expression profiles in a single day. Some hybrids underwent reprogramming, expressing pluripotency and cardiac precursor genes latent in parental cells and associated with developmental and morphogenic gene groups. Other hybrids expressed genes associated with ontologic cancer sets and two hybrids of separate experimental replicates clustered with breast cancer cells, expressing critical oncogenes and lacking tumor suppressor genes. Rapid transcriptional diversification of this type garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion. PMID:26997336

  4. Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion.

    PubMed

    Freeman, Brian T; Jung, Jangwook P; Ogle, Brenda M

    2016-03-21

    Fusion of donor mesenchymal stem cells with parenchymal cells of the recipient can occur in the brain, liver, intestine and heart following transplantation. The therapeutic benefit or detriment of resultant hybrids is unknown. Here we sought a global view of phenotypic diversification of mesenchymal stem cell-cardiomyocyte hybrids and associated time course. Using single-cell RNA-seq, we found hybrids consistently increase ribosome components and decrease genes associated with the cell cycle suggesting an increase in protein production and decrease in proliferation to accommodate the fused state. But in the case of most other gene groups, hybrids were individually distinct. In fact, though hybrids can express a transcriptome similar to individual fusion partners, approximately one-third acquired distinct expression profiles in a single day. Some hybrids underwent reprogramming, expressing pluripotency and cardiac precursor genes latent in parental cells and associated with developmental and morphogenic gene groups. Other hybrids expressed genes associated with ontologic cancer sets and two hybrids of separate experimental replicates clustered with breast cancer cells, expressing critical oncogenes and lacking tumor suppressor genes. Rapid transcriptional diversification of this type garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion.

  5. Group V secretory phospholipase A2 reveals its role in house dust mite-induced allergic pulmonary inflammation by regulation of dendritic cell function

    PubMed Central

    Giannattasio, Giorgio; Fujioka, Daisuke; Xing, Wei; Katz, Howard R.; Boyce, Joshua A.; Balestrieri, Barbara

    2010-01-01

    We have previously shown that group V secretory phospholipase A2 (sPLA2) regulates phagocytosis of zymosan and Candida albicans by a mechanism that depends on fusion of phagosomes with late endosomes in macrophages. Here we report that group V sPLA2 (Pla2g5)-null mice exposed to an extract of house dust mite Dermatophagoides farinae (Df) had markedly reduced pulmonary inflammation and goblet cell metaplasia compared to wild-type (WT) mice. Pla2g5-null mice had also impaired Th2-type adaptive immune responses to Df compared to WT mice. Pla2g5-null bone marrow-derived dendritic cells (BMDCs) activated by Df had delayed intracellular processing of allergen and impaired allergen-dependent maturation, a pattern recapitulated by the native lung DCs of Df-challenged mice. Adoptively transferred Df-loaded Pla2g5-null BMDCs were less able than Df-loaded WT BMDCs to induce pulmonary inflammation and Th2 polarization in WT mice. However, Pla2g5-null recipients transferred with WT or Pla2g5-null Df-loaded BMDCs exhibited significantly reduced local inflammatory responses to Df, even though the transfer of WT BMDCs still induced an intact Th2 cytokine response in regional lymph nodes. Thus, the expression of group V sPLA2 in APC regulates Ag processing and maturation of dendritic cells, and contributes to pulmonary inflammation and immune response against Df. Furthermore, an additional yet to be identified resident cell type is essential for the development of pulmonary inflammation, likely a cell in which group V sPLA2 is upregulated by Df and whose function is also regulated by group V sPLA2. PMID:20817863

  6. Analyses of Group III Secreted Phospholipase A2 Transgenic Mice Reveal Potential Participation of This Enzyme in Plasma Lipoprotein Modification, Macrophage Foam Cell Formation, and Atherosclerosis*S⃞

    PubMed Central

    Sato, Hiroyasu; Kato, Rina; Isogai, Yuki; Saka, Go-ichi; Ohtsuki, Mitsuhiro; Taketomi, Yoshitaka; Yamamoto, Kei; Tsutsumi, Kae; Yamada, Joe; Masuda, Seiko; Ishikawa, Yukio; Ishii, Toshiharu; Kobayashi, Tetsuyuki; Ikeda, Kazutaka; Taguchi, Ryo; Hatakeyama, Shinji; Hara, Shuntaro; Kudo, Ichiro; Itabe, Hiroyuki; Murakami, Makoto

    2008-01-01

    Among the many mammalian secreted phospholipase A2 (sPLA2) enzymes, PLA2G3 (group III secreted phospholipase A2) is unique in that it possesses unusual N- and C-terminal domains and in that its central sPLA2 domain is homologous to bee venom PLA2 rather than to other mammalian sPLA2s. To elucidate the in vivo actions of this atypical sPLA2, we generated transgenic (Tg) mice overexpressing human PLA2G3. Despite marked increases in PLA2 activity and mature 18-kDa PLA2G3 protein in the circulation and tissues, PLA2G3 Tg mice displayed no apparent abnormality up to 9 months of age. However, alterations in plasma lipoproteins were observed in PLA2G3 Tg mice compared with control mice. In vitro incubation of low density (LDL) and high density (HDL) lipoproteins with several sPLA2s showed that phosphatidylcholine was efficiently converted to lysophosphatidylcholine by PLA2G3 as well as by PLA2G5 and PLA2G10, to a lesser extent by PLA2G2F, and only minimally by PLA2G2A and PLA2G2E. PLA2G3-modified LDL, like PLA2G5- or PLA2G10-treated LDL, facilitated the formation of foam cells from macrophages ex vivo. Accumulation of PLA2G3 was detected in the atherosclerotic lesions of humans and apoE-deficient mice. Furthermore, following an atherogenic diet, aortic atherosclerotic lesions were more severe in PLA2G3 Tg mice than in control mice on the apoE-null background, in combination with elevated plasma lysophosphatidylcholine and thromboxane A2 levels. These results collectively suggest a potential functional link between PLA2G3 and atherosclerosis, as has recently been proposed for PLA2G5 and PLA2G10. PMID:18801741

  7. Nucleotide substitutions revealing specific functions of Polycomb group genes.

    PubMed

    Bajusz, Izabella; Sipos, László; Pirity, Melinda K

    2015-04-01

    POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of

  8. Nucleolar organization as revealed in cell spreads.

    PubMed

    Ghosh, S; Paweletz, N

    1996-07-01

    The nucleolar organization has been studied in spreads of cells either untreated or treated with hypotonic salt solution for different periods. A network corresponding to the nucleolonema becomes evident with progressive hypotonic treatment. The network reveals units comparable to the rDNA transcriptional units in length and is associated with tufts of fibrils and granules. Spread preparations from cycloheximide treated cells reveal a thread-like axis and often 'Christmas tree'-like configurations within these units. Spacers joining the units can also be detected. It is supposed that the transcriptional units move outwards with their transcriptional products where the processing takes place. In loose nucleoli, this network forms the nucleolonema, which remains associated with the granules, the processed transcriptional products. In compact nucleoli the network is obliterated by the granules and they form the major component of the nucleoli. Such organization represents all the events in the transcription and processing of ribosomal RNA.

  9. Dermatoglyphics from all Chinese ethnic groups reveal geographic patterning.

    PubMed

    Zhang, Hai-Guo; Chen, Yao-Fong; Ding, Ming; Jin, Li; Case, D Troy; Jiao, Yun-Ping; Wang, Xian-Ping; Bai, Chong-Xian; Jin, Gang; Yang, Jiang-Ming; Wang, Han; Yuan, Jian-Bing; Huang, Wei; Wang, Zhu-Gang; Chen, Ren-Biao

    2010-01-20

    Completion of a survey of dermatoglyphic variables for all ethnic groups in an ethnically diverse country like China is a huge research project, and an achievement that anthropological and dermatoglyphic scholars in the country could once only dream of. However, through the endeavors of scientists in China over the last 30 years, the dream has become reality. This paper reports the results of a comprehensive analysis of dermatoglyphics from all ethnic groups in China. Using cluster analysis and principal component analysis of dermatoglyphics, it has been found that Chinese populations can be generally divided into a southern group and a northern group. Furthermore, there has been considerable debate about the origins of many Chinese populations and about proper assignment of these peoples to larger ethnic groups. In this paper, we suggest that dermatoglyphic data can inform these debates by helping to classify a Chinese population as a northern or southern group, using selected reference populations and quantitative methods. This study is the first to assemble and investigate dermatoglyphics from all 56 Chinese ethnic groups. It is fortunate that data on population dermatoglyphics, a field of physical anthropology, have now been collected for all 56 Chinese ethnic groups, because intermarriage between individuals from different Chinese ethnic groups occurs more frequently in recent times, making population dermatoglyphic research an ever more challenging field of inquiry.

  10. Plastome data reveal multiple geographic origins of Quercus Group Ilex.

    PubMed

    Simeone, Marco Cosimo; Grimm, Guido W; Papini, Alessio; Vessella, Federico; Cardoni, Simone; Tordoni, Enrico; Piredda, Roberta; Franc, Alain; Denk, Thomas

    2016-01-01

    Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not

  11. Plastome data reveal multiple geographic origins of Quercus Group Ilex

    PubMed Central

    Grimm, Guido W.; Papini, Alessio; Vessella, Federico; Cardoni, Simone; Tordoni, Enrico; Piredda, Roberta; Franc, Alain; Denk, Thomas

    2016-01-01

    Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not

  12. ALBEDOS OF SMALL HILDA GROUP ASTEROIDS AS REVEALED BY SPITZER

    SciTech Connect

    Ryan, Erin Lee; Woodward, Charles E. E-mail: chelsea@astro.umn.edu

    2011-06-15

    We present thermal 24 {mu}m observations from the Spitzer Space Telescope of 62 Hilda asteroid group members with diameters ranging from 3 to 12 km. Measurements of the thermal emission, when combined with reported absolute magnitudes, allow us to constrain the albedo and diameter of each object. From our Spitzer sample, we find the mean geometric albedo, p{sub V} = 0.07 {+-} 0.05, for small (D < 10 km) Hilda group asteroids. This Spitzer-derived value of p{sub V} is greater than and spans a larger range in albedo space than the mean albedo of large (D {approx}> 10 km) Hilda group asteroids which is p{sub V} = 0.04 {+-} 0.01. Though this difference may be attributed to space weathering, the small Hilda group population reportedly displays greater taxonomic range from C-, D-, and X-type whose albedo distributions are commensurate with the range of determined albedos. We discuss the derived Hilda size-frequency distribution, color-color space, and geometric albedo for our survey sample in the context of the expected migration induced 'seeding' of the Hilda asteroid group with outer solar system proto-planetesimals as outlined in the 'Nice' formalism.

  13. Low Mass Members in Nearby Young Moving Groups Revealed

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua; Simon, Michal; Rice, Emily; Lepine, Sebastien

    2010-08-01

    We are now ready to expand our program that identifies highly probable low-mass members of the nearby young moving groups (NYMGs) to stars of mass ~ 0.1 Msun. This is important 1) To provide high priority targets for exoplanet searches by direct imaging, 2) To complete the census of the membership in the NYMGs, and 3) To provide a well-characterized sample of nearby young stars for detailed study of their physical properties and multiplicity (the median distances of the (beta) Pic and AB Dor groups are ~ 35 pc with ages ~ 12 and 50 Myr respectively). Our proven technique starts with a proper motion selection algorithm, proceeds to vet the sample for indicators of youth, and requires as its last step the measurement of candidate member radial velocities (RVs). So far, we have obtained all RV measurements with the high resolution IR spectrometer at the NASA-IRTF and have reached the limits of its applicability. To identify probable new members in the south, and also those of the lowest mass, we need the sensitivity of PHOENIX at Gemini-S and NIRSPEC at Keck-II.

  14. Distinct cytoskeletal domains revealed in sperm cells

    PubMed Central

    1984-01-01

    Antibodies against different cytoskeletal proteins were used to study the cytoskeletal organization of human spermatozoa. A positive staining with actin antibodies was seen in both the acrosomal cap region and the principal piece region of the tail. However, no staining was obtained with nitrobenzoxadiazol-phallacidin, suggesting that most of the actin was in the nonpolymerized form. Most of the myosin immunoreactivity was confirmed to a narrow band in the neck region of spermatozoa. Tubulin was located to the entire tail, whereas vimentin was only seen in a discrete band-like structure encircling the sperm head, apparently coinciding with the equatorial segment region. Surface staining of the spermatozoa with fluorochrome-coupled Helix pomatia agglutinin revealed a similar band-like structure that co-distributed with the vimentin- specific staining. Instead, other lectin conjugates used labeled either the acrosomal cap region (peanut and soybean agglutinins), both the acrosomal cap and the postacrosomal region of the head (concanavalin A), or the whole sperm cell surface membrane (wheat germ and lens culinaris agglutinins and ricinus communis agglutinin l). In lectin blotting experiments, the Helix pomatia agglutinin-binding was assigned to a 80,000-mol-wt polypeptide which, together with vimentin, also resisted treatment with Triton X-100. Only the acrosomal cap and the principal piece of the tail were decorated with rabbit and hydridoma antibodies against an immunoanalogue of erythrocyte alpha-spectrin (p230). p230 appeared to be the major calmodulin-binding polypeptide in spermatozoa, as shown by a direct overlay assay of electrophoretic blots of spermatozoa with 125I-calmodulin. The results indicate that spermatozoa have a highly specialized cytoskeletal organization and that the distribution of actin, spectrin, and vimentin can be correlated with distinct surface specializations of the sperm cells. This suggest that cytoskeleton may regulate the maintenance

  15. A fifth major genetic group among honeybees revealed in Syria

    PubMed Central

    2013-01-01

    Background Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Results Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. Conclusion This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria. PMID:24314104

  16. Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants.

    PubMed

    Persson, Staffan; Rosenquist, Magnus; Svensson, Karin; Galvão, Rafaelo; Boss, Wendy F; Sommarin, Marianne

    2003-11-01

    Calreticulin (CRT) is a multifunctional protein mainly localized to the endoplasmic reticulum in eukaryotic cells. Here, we present the first analysis, to our knowledge, of evolutionary diversity and expression profiling among different plant CRT isoforms. Phylogenetic studies and expression analysis show that higher plants contain two distinct groups of CRTs: a CRT1/CRT2 group and a CRT3 group. To corroborate the existence of these isoform groups, we cloned a putative CRT3 ortholog from Brassica rapa. The CRT3 gene appears to be most closely related to the ancestral CRT gene in higher plants. Distinct tissue-dependent expression patterns and stress-related regulation were observed for the isoform groups. Furthermore, analysis of posttranslational modifications revealed differences in the glycosylation status among members within the CRT1/CRT2 isoform group. Based on evolutionary relationship, a new nomenclature for plant CRTs is suggested. The presence of two distinct CRT isoform groups, with distinct expression patterns and posttranslational modifications, supports functional specificity among plant CRTs and could account for the multiple functional roles assigned to CRTs.

  17. Micropatterning of cells reveals chiral morphogenesis

    PubMed Central

    2013-01-01

    Invariant left-right (LR) patterning or chirality is critical for embryonic development. The loss or reversal of LR asymmetry is often associated with malformations and disease. Although several theories have been proposed, the exact mechanism of the initiation of the LR symmetry has not yet been fully elucidated. Recently, chirality has been detected within single cells as well as multicellular structures using several in vitro approaches. These studies demonstrated the universality of cell chirality, its dependence on cell phenotype, and the role of physical boundaries. In this review, we discuss the theories for developmental LR asymmetry, compare various in vitro cell chirality model systems, and highlight possible roles of cell chirality in stem cell differentiation. We emphasize that the in vitro cell chirality systems have great promise for helping unveil the nature of chiral morphogenesis in development. PMID:23672821

  18. Arc spot grouping: An entanglement of arc spot cells

    SciTech Connect

    Kajita, Shin; Hwangbo, Dogyun; Ohno, Noriyasu; Tsventoukh, Mikhail M.; Barengolts, Sergey A.

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  19. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    PubMed

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties.

  20. Single-cell chromatin accessibility reveals principles of regulatory variation

    PubMed Central

    Buenrostro, Jason D.; Wu, Beijing; Litzenburger, Ulrike M.; Ruff, Dave; Gonzales, Michael L.; Snyder, Michael P.; Chang, Howard Y.; Greenleaf, William J.

    2015-01-01

    Cell-to-cell variation is a universal feature of life that impacts a wide range of biological phenomena, from developmental plasticity1,2 to tumor heterogeneity3. While recent advances have improved our ability to document cellular phenotypic variation4–8 the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of cellular DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells via assay for transposase-accessible chromatin using sequencing (ATAC-seq). Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single-cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provides insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type specific accessibility variance across 8 cell types. Targeted perturbations of cell cycle or transcription factor signaling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome topological domains9 de novo, linking single-cell accessibility variation to three-dimensional genome organization. All together, single-cell analysis of DNA accessibility provides new insight into cellular variation of the “regulome.” PMID:26083756

  1. Single-cell chromatin accessibility reveals principles of regulatory variation.

    PubMed

    Buenrostro, Jason D; Wu, Beijing; Litzenburger, Ulrike M; Ruff, Dave; Gonzales, Michael L; Snyder, Michael P; Chang, Howard Y; Greenleaf, William J

    2015-07-23

    Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'.

  2. Macrophage characteristics of stem cells revealed by transcriptome profiling

    SciTech Connect

    Charriere, Guillaume M.; Cousin, Beatrice; Arnaud, Emmanuelle; Saillan-Barreau, Corinne; Andre, Mireille; Massoudi, Ali; Dani, Christian; Penicaud, Luc; Casteilla, Louis . E-mail: casteil@toulouse.inserm.fr

    2006-10-15

    We previously showed that the phenotypes of adipocyte progenitors and macrophages were close. Using functional analyses and microarray technology, we first tested whether this intriguing relationship was specific to adipocyte progenitors or could be shared with other progenitors. Measurements of phagocytic activity and gene profiling analysis of different progenitor cells revealed that the latter hypothesis should be retained. These results encouraged us to pursue and to confirm our analysis with a gold-standard stem cell population, embryonic stem cells or ESC. The transcriptomic profiles of ESC and macrophages were clustered together, unlike differentiated ESC. In addition, undifferentiated ESC displayed higher phagocytic activity than other progenitors, and they could phagocytoze apoptotic bodies. These data suggest that progenitors and stem cells share some characteristics of macrophages. This opens new perspectives on understanding stem cell phenotype and functionalities such as a putative role of stem cells in tissue remodeling by discarding dead cells but also their immunomodulation or fusion properties.

  3. Music-supported motor training after stroke reveals no superiority of synchronization in group therapy

    PubMed Central

    Van Vugt, Floris T.; Ritter, Juliane; Rollnik, Jens D.; Altenmüller, Eckart

    2014-01-01

    Background: Music-supported therapy has been shown to be an effective tool for rehabilitation of motor deficits after stroke. A unique feature of music performance is that it is inherently social: music can be played together in synchrony. Aim: The present study explored the potential of synchronized music playing during therapy, asking whether synchronized playing could improve fine motor rehabilitation and mood. Method: Twenty-eight patients in neurological early rehabilitation after stroke with no substantial previous musical training were included. Patients learned to play simple finger exercises and familiar children's songs on the piano for 10 sessions of half an hour. Patients first received three individual therapy sessions and then continued in pairs. The patient pairs were divided into two groups. Patients in one group played synchronously (together group) whereas the patients in the other group played one after the other (in-turn group). To assess fine motor skill recovery the patients performed standard clinical tests such as the nine-hole-pegboard test (9HPT) and index finger-tapping speed and regularity, and metronome-paced finger tapping. Patients' mood was established using the Profile of Mood States (POMS). Results: Both groups showed improvements in fine motor control. In metronome-paced finger tapping, patients in both groups improved significantly. Mood tests revealed reductions in depression and fatigue in both groups. During therapy, patients in the in-turn group rated their partner as more sympathetic than the together-group in a visual-analog scale. Conclusions: Our results suggest that music-supported stroke rehabilitation can improve fine motor control and mood not only individually but also in patient pairs. Patients who were playing in turn rather than simultaneously tended to reveal greater improvement in fine motor skill. We speculate that patients in the former group may benefit from the opportunity to learn from observation. PMID

  4. Synthetic protein interactions reveal a functional map of the cell

    PubMed Central

    Berry, Lisa K; Ólafsson, Guðjón; Ledesma-Fernández, Elena; Thorpe, Peter H

    2016-01-01

    To understand the function of eukaryotic cells, it is critical to understand the role of protein-protein interactions and protein localization. Currently, we do not know the importance of global protein localization nor do we understand to what extent the cell is permissive for new protein associations – a key requirement for the evolution of new protein functions. To answer this question, we fused every protein in the yeast Saccharomyces cerevisiae with a partner from each of the major cellular compartments and quantitatively assessed the effects upon growth. This analysis reveals that cells have a remarkable and unanticipated tolerance for forced protein associations, even if these associations lead to a proportion of the protein moving compartments within the cell. Furthermore, the interactions that do perturb growth provide a functional map of spatial protein regulation, identifying key regulatory complexes for the normal homeostasis of eukaryotic cells. DOI: http://dx.doi.org/10.7554/eLife.13053.001 PMID:27098839

  5. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony. PMID:23163969

  6. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content

    PubMed Central

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit; Saari, Heikki; Ibañez, Elisa Lazaro; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2015-01-01

    Current analysis of exosomes focuses primarily on bulk analysis, where exosome-to-exosome variability cannot be assessed. In this study, we used Raman spectroscopy to study the chemical composition of single exosomes. We measured spectra of individual exosomes from 8 cell lines. Cell-line-averaged spectra varied considerably, reflecting the variation in total exosomal protein, lipid, genetic, and cytosolic content. Unexpectedly, single exosomes isolated from the same cell type also exhibited high spectral variability. Subsequent spectral analysis revealed clustering of single exosomes into 4 distinct groups that were not cell-line specific. Each group contained exosomes from multiple cell lines, and most cell lines had exosomes in multiple groups. The differences between these groups are related to chemical differences primarily due to differing membrane composition. Through a principal components analysis, we identified that the major sources of spectral variation among the exosomes were in cholesterol content, relative expression of phospholipids to cholesterol, and surface protein expression. For example, exosomes derived from cancerous versus non-cancerous cell lines can be largely separated based on their relative expression of cholesterol and phospholipids. We are the first to indicate that exosome subpopulations are shared among cell types, suggesting distributed exosome functionality. The origins of these differences are likely related to the specific role of extracellular vesicle subpopulations in both normal cell function and carcinogenesis, and they may provide diagnostic potential at the single exosome level. PMID:26649679

  7. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions

    PubMed Central

    Bellas, Christopher M.; Anesio, Alexandre M.; Barker, Gary

    2015-01-01

    Microbial communities in glacial ecosystems are diverse, active, and subjected to strong viral pressures and infection rates. In this study we analyse putative virus genomes assembled from three dsDNA viromes from cryoconite hole ecosystems of Svalbard and the Greenland Ice Sheet to assess the potential hosts and functional role viruses play in these habitats. We assembled 208 million reads from the virus-size fraction and developed a procedure to select genuine virus scaffolds from cellular contamination. Our curated virus library contained 546 scaffolds up to 230 Kb in length, 54 of which were circular virus consensus genomes. Analysis of virus marker genes revealed a wide range of viruses had been assembled, including bacteriophages, cyanophages, nucleocytoplasmic large DNA viruses and a virophage, with putative hosts identified as Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, eukaryotic algae and amoebae. Whole genome comparisons revealed the majority of circular genome scaffolds (CGS) formed 12 novel groups, two of which contained multiple phage members with plasmid-like properties, including a group of phage-plasmids possessing plasmid-like partition genes and toxin-antitoxin addiction modules to ensure their replication and a satellite phage-plasmid group. Surprisingly we also assembled a phage that not only encoded plasmid partition genes, but a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas adaptive bacterial immune system. One of the spacers was an exact match for another phage in our virome, indicating that in a novel use of the system, the lysogen was potentially capable of conferring immunity on its bacterial host against other phage. Together these results suggest that highly novel and diverse groups of viruses are present in glacial environments, some of which utilize very unusual life strategies and genes to control their replication and maintain a long-term relationship with their hosts

  8. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease.

    PubMed

    Chernova, T; Sun, X M; Powley, I R; Galavotti, S; Grosso, S; Murphy, F A; Miles, G J; Cresswell, L; Antonov, A V; Bennett, J; Nakas, A; Dinsdale, D; Cain, K; Bushell, M; Willis, A E; MacFarlane, M

    2016-07-01

    Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the 'gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies.

  9. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease

    PubMed Central

    Chernova, T; Sun, X M; Powley, I R; Galavotti, S; Grosso, S; Murphy, F A; Miles, G J; Cresswell, L; Antonov, A V; Bennett, J; Nakas, A; Dinsdale, D; Cain, K; Bushell, M; Willis, A E; MacFarlane, M

    2016-01-01

    Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the ‘gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies. PMID:26891694

  10. Multisystem Langerhans Cell Histiocytosis in Adults Revealed by Skin Lesions.

    PubMed

    Atarguine, Hanane; Hocar, Ouafa; Oussmane, Samia; Mouafik, Sara Batoul; Hamdaoui, Abderrachid; Hafiane, Hanan; Belbaraka, Rhizlane; Akhdari, Nadia; Amal, Said

    2016-01-01

    A 37-year-old woman with no remarkable medical or family history presented with papules and vesicles on an erythematous background involving the neck, sacrum, and folds (postauricular, axillary, inguinal, and under the breasts) (Figure 1). During the previous year, she was treated with local and systemic antifungals without improvement. Her history included a secondary amenorrhea, polydipsia, and polyuria (6 L/d) that started 2 years prior. Physical examination revealed chronic bilateral purulent otorrhea with thick eardrums. Histologic examination of skin biopsy revealed a highly suggestive appearance of multisystem Langerhans cell histiocytosis (LCH) with immunohistochemistry (anti-PS100 and anti-CD1a), which were positive (Figure 2A and 2B). Pituitary magnetic resonance imaging showed a thickening of the pituitary stalk in relation to a location histiocytic (Figure 3). Bone gaps were objectified on two radiographic tibial diaphyseal. Results from computed tomography (CT) scan showed a magma coelio mesenteric, axillary, and inguinal lymph nodes. PMID:27319965

  11. Glucolytic fingerprinting reveals metabolic groups within the genus Bifidobacterium: an exploratory study.

    PubMed

    Rios-Covián, D; Sánchez, B; Cuesta, I; Cueto-Díaz, S; Hernández-Barranco, A M; Gueimonde, M; De los Reyes-Gavilán, C G

    2016-01-01

    Microorganisms of the genus Bifidobacterium are inhabitants of diverse niches including the digestive tract of humans and animals. The species Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve and Bifidobacterium longum have qualified presumption of safety status granted by EFSA and several strains are considered probiotic, and are being included in functional dairy fermented products. In the present work we carried out a preliminary exploration of general metabolic characteristics and organic acid production profiles of a reduced number of strains selected from these and other species of the genus Bifidobacterium. The use of resting cells allowed obtaining metabolic fingerprints without interference of metabolites accumulated during growth in culture media. Acetic acid was the most abundant organic acid formed per mol of glucose consumed (from 1.07 ± 0.03 to 1.71 ± 0.22 mol) followed by lactic acid (from 0.34 ± 0.06 to 0.90 ± 0.12 mol), with moderate differences in production among strains; pyruvic, succinic and formic acids were also produced at considerably lower proportions, with variability among strains. The acetic to lactic acid ratio showed lower values in stationary phase as regard to the exponential phase for most, but not all, the microorganisms; this was due to a decrease in acetic acid molar proportions together with increases of lactic acid proportions in stationary phase. A linear discriminant analysis allowed to cluster strains into species with 51-100% probability, evidencing different metabolic profiles, according to the relative production of organic acids from glucose by resting cells, of microorganisms collected at the exponential phase of growth. Looking for a single metabolic marker that could adequately discriminate metabolic groups, we found that groups established by the acetic to lactic acid ratio fit well with differences previously evidenced by the discriminant analysis. The

  12. Glucolytic fingerprinting reveals metabolic groups within the genus Bifidobacterium: an exploratory study.

    PubMed

    Rios-Covián, D; Sánchez, B; Cuesta, I; Cueto-Díaz, S; Hernández-Barranco, A M; Gueimonde, M; De los Reyes-Gavilán, C G

    2016-01-01

    Microorganisms of the genus Bifidobacterium are inhabitants of diverse niches including the digestive tract of humans and animals. The species Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve and Bifidobacterium longum have qualified presumption of safety status granted by EFSA and several strains are considered probiotic, and are being included in functional dairy fermented products. In the present work we carried out a preliminary exploration of general metabolic characteristics and organic acid production profiles of a reduced number of strains selected from these and other species of the genus Bifidobacterium. The use of resting cells allowed obtaining metabolic fingerprints without interference of metabolites accumulated during growth in culture media. Acetic acid was the most abundant organic acid formed per mol of glucose consumed (from 1.07 ± 0.03 to 1.71 ± 0.22 mol) followed by lactic acid (from 0.34 ± 0.06 to 0.90 ± 0.12 mol), with moderate differences in production among strains; pyruvic, succinic and formic acids were also produced at considerably lower proportions, with variability among strains. The acetic to lactic acid ratio showed lower values in stationary phase as regard to the exponential phase for most, but not all, the microorganisms; this was due to a decrease in acetic acid molar proportions together with increases of lactic acid proportions in stationary phase. A linear discriminant analysis allowed to cluster strains into species with 51-100% probability, evidencing different metabolic profiles, according to the relative production of organic acids from glucose by resting cells, of microorganisms collected at the exponential phase of growth. Looking for a single metabolic marker that could adequately discriminate metabolic groups, we found that groups established by the acetic to lactic acid ratio fit well with differences previously evidenced by the discriminant analysis. The

  13. The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing.

    PubMed

    Björklund, Åsa K; Forkel, Marianne; Picelli, Simone; Konya, Viktoria; Theorell, Jakob; Friberg, Danielle; Sandberg, Rickard; Mjösberg, Jenny

    2016-04-01

    Innate lymphoid cells (ILCs) are increasingly appreciated as important participants in homeostasis and inflammation. Substantial plasticity and heterogeneity among ILC populations have been reported. Here we have delineated the heterogeneity of human ILCs through single-cell RNA sequencing of several hundreds of individual tonsil CD127(+) ILCs and natural killer (NK) cells. Unbiased transcriptional clustering revealed four distinct populations, corresponding to ILC1 cells, ILC2 cells, ILC3 cells and NK cells, with their respective transcriptomes recapitulating known as well as unknown transcriptional profiles. The single-cell resolution additionally divulged three transcriptionally and functionally diverse subpopulations of ILC3 cells. Our systematic comparison of single-cell transcriptional variation within and between ILC populations provides new insight into ILC biology during homeostasis, with additional implications for dysregulation of the immune system.

  14. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    PubMed Central

    Macaulay, Iain C.; Svensson, Valentine; Labalette, Charlotte; Ferreira, Lauren; Hamey, Fiona; Voet, Thierry; Teichmann, Sarah A.; Cvejic, Ana

    2016-01-01

    Summary The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment. PMID:26804912

  15. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state

    PubMed Central

    Rotem, Assaf; Ram, Oren; Shoresh, Noam; Sperling, Ralph A.; Goren, Alon; Weitz, David A.; Bernstein, Bradley E.

    2015-01-01

    Chromatin profiling provides a versatile means to investigate functional genomic elements and their regulation. However, current methods yield ensemble profiles that are insensitive to cell-to-cell variation. Here we combine microfluidics, DNA barcoding and sequencing to collect chromatin data at single-cell resolution. We demonstrate the utility of the technology by assaying thousands of individual cells, and using the data to deconvolute a mixture of ES cells, fibroblasts and hematopoietic progenitors into high-quality chromatin state maps for each cell type. The data from each single cell is sparse, comprising on the order of 1000 unique reads. However, by assaying thousands of ES cells, we identify a spectrum of sub-populations defined by differences in chromatin signatures of pluripotency and differentiation priming. We corroborate these findings by comparison to orthogonal single-cell gene expression data. Our method for single-cell analysis reveals aspects of epigenetic heterogeneity not captured by transcriptional analysis alone. PMID:26458175

  16. Short latency activation of pyramidal tract cells by Group I afferent volleys in the cat

    PubMed Central

    Swett, John E.; Bourassa, Charles M.

    1967-01-01

    1. The contralateral bulbar pyramids were explored with low impedance micro-electrodes in cats anaesthetized with chloralose to reveal the effect of Group I afferent volleys (deep radial nerve of the forelimb) on pyramidal tract (Pt) cells. 2. Low rate (0·5/sec) stimulation of Group I afferents produced small responses (5-30 μV) in the bulbar pyramid which could be detected only with response averaging methods. The responses appeared with an initial latency of 7·0-11·2 msec and reached peak amplitude in 15·7 msec (mean latency). The pyramidal tract origin of the potential was demonstrated by its depression at stimulus rates above 1-2 sec and its disappearance at rates above 4/sec. 3. Recordings of neurones in the Group I cortical projection zone of the posterior sigmoid gyrus revealed that several types of cells, including Pt cells, were activated by Group I afferent volleys. 4. Pt cells responding to Group I afferent volleys frequently received convergent actions from low threshold cutaneous nerve volleys. 5. Averaged response recordings from electrodes positioned in the medial portions of the lateral funiculus of the spinal cord at the level of C2, revealed a response to Group I afferent volleys as early as 7·4 msec which possessed the same characteristics as the relayed response to Group I in the bulbar pyramids. Some Pt cells, activated by Group I volleys orthodromically, could also be antidromically activated by stimulation of the recording site in C2. 6. It was concluded that group I afferent volleys can influence, after short latencies, Pt and non-Pt cells and that some of these Pt cells gave rise to axons incorporated in the corticospinal tract. PMID:16992239

  17. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses.

    PubMed

    Halim, Timotheus Y F; Hwang, You Yi; Scanlon, Seth T; Zaghouani, Habib; Garbi, Natalio; Fallon, Padraic G; McKenzie, Andrew N J

    2016-01-01

    Rapid activation of memory CD4(+) T helper 2 (TH2) cells during allergic inflammation requires their recruitment into the affected tissue. Here we demonstrate that group 2 innate lymphoid (ILC2) cells have a crucial role in memory TH2 cell responses, with targeted depletion of ILC2 cells profoundly impairing TH2 cell localization to the lungs and skin of sensitized mice after allergen re-challenge. ILC2-derived interleukin 13 (IL-13) is critical for eliciting production of the TH2 cell-attracting chemokine CCL17 by IRF4(+)CD11b(+)CD103(-) dendritic cells (DCs). Consequently, the sentinel function of DCs is contingent on ILC2 cells for the generation of an efficient memory TH2 cell response. These results elucidate a key innate mechanism in the regulation of the immune memory response to allergens.

  18. Nitro group as a new anchoring group for organic dyes in dye-sensitized solar cells.

    PubMed

    Cong, Jiayan; Yang, Xichuan; Liu, Jing; Zhao, Jinxia; Hao, Yan; Wang, Yu; Sun, Licheng

    2012-07-01

    An organic dye JY1 bearing a nitro group was designed, synthesized and applied in DSCs. An unusual colour change was observed when the voltage applied to the device was reversed which was accompanied by a five-fold increase in the cell efficiency. We propose that applying a bias enabled the attachment of nitro groups to the TiO(2) surface.

  19. Immunoprofiling reveals unique cell-specific patterns of wall epitopes in the expanding Arabidopsis stem.

    PubMed

    Hall, Hardy C; Cheung, Jingling; Ellis, Brian E

    2013-04-01

    The Arabidopsis inflorescence stem undergoes rapid directional growth, requiring massive axial cell-wall extension in all its tissues, but, at maturity, these tissues are composed of cell types that exhibit markedly different cell-wall structures. It is not clear whether the cell-wall compositions of these cell types diverge rapidly following axial growth cessation, or whether compositional divergence occurs at earlier stages in differentiation, despite the common requirement for cell-wall extensibility. To examine this question, seven cell types were assayed for the abundance and distribution of 18 major cell-wall glycan classes at three developmental stages along the developing inflorescence stem, using a high-throughput immunolabelling strategy. These stages represent a phase of juvenile growth, a phase displaying the maximum rate of stem extension, and a phase in which extension growth is ceasing. The immunolabelling patterns detected demonstrate that the cell-wall composition of most stem tissues undergoes pronounced changes both during and after rapid extension growth. Hierarchical clustering of the immunolabelling signals identified cell-specific binding patterns for some antibodies, including a sub-group of arabinogalactan side chain-directed antibodies whose epitope targets are specifically associated with the inter-fascicular fibre region during the rapid cell expansion phase. The data reveal dynamic, cell type-specific changes in cell-wall chemistry across diverse cell types during cell-wall expansion and maturation in the Arabidopsis inflorescence stem, and highlight the paradox between this structural diversity and the uniform anisotropic cell expansion taking place across all tissues during stem growth.

  20. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development

    PubMed Central

    Chen, Jinmiao; Schlitzer, Andreas; Chakarov, Svetoslav; Ginhoux, Florent; Poidinger, Michael

    2016-01-01

    Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state transition during cell differentiation and development. However, tools for constructing multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an algorithm that derives multi-branching developmental trajectories using neighborhood-based cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath constructs multi-branching trajectories spanning from macrophage/DC progenitors through common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories detect a branching event at the preDC stage revealing preDC subsets that are exclusively committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals sequential waves of gene regulation and temporal coupling between cell cycle and cDC differentiation. Applied to human myoblasts, Mpath recapitulates the time course of myoblast differentiation and isolates a branch of non-muscle cells involved in the differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from single-cell data. PMID:27356503

  1. Biochemical and molecular tools reveal two diverse Xanthomonas groups in bananas.

    PubMed

    Adriko, J; Aritua, V; Mortensen, C N; Tushemereirwe, W K; Mulondo, A L; Kubiriba, J; Lund, O S

    2016-02-01

    Xanthomonas campestris pv. musacearum (Xcm) causing the banana Xanthomonas wilt (BXW) disease has been the main xanthomonad associated with bananas in East and Central Africa based on phenotypic and biochemical characteristics. However, biochemical methods cannot effectively distinguish between pathogenic and non-pathogenic xanthomonads. In this study, gram-negative and yellow-pigmented mucoid bacteria were isolated from BXW symptomatic and symptomless bananas collected from different parts of Uganda. Biolog, Xcm-specific (GspDm), Xanthomonas vasicola species-specific (NZ085) and Xanthomonas genus-specific (X1623) primers in PCR, and sequencing of ITS region were used to identify and characterize the isolates. Biolog tests revealed several isolates as xanthomonads. The GspDm and NZ085 primers accurately identified three isolates from diseased bananas as Xcm and these were pathogenic when re-inoculated into bananas. DNA from more isolates than those amplified by GspDm and NZ085 primers were amplified by the X1623 primers implying they are xanthomonads, these were however non-pathogenic on bananas. In the 16-23 ITS sequence based phylogeny, the pathogenic bacteria clustered together with the Xcm reference strain, while the non-pathogenic xanthomonads isolated from both BXW symptomatic and symptomless bananas clustered with group I xanthomonads. The findings reveal dynamic Xanthomonas populations in bananas, which can easily be misrepresented by only using phenotyping and biochemical tests. A combination of tools provides the most accurate identity and characterization of these plant associated bacteria. The interactions between the pathogenic and non-pathogenic xanthomonads in bananas may pave way to understanding effect of microbial interactions on BXW disease development and offer clues to biocontrol of Xcm.

  2. Biochemical and molecular tools reveal two diverse Xanthomonas groups in bananas.

    PubMed

    Adriko, J; Aritua, V; Mortensen, C N; Tushemereirwe, W K; Mulondo, A L; Kubiriba, J; Lund, O S

    2016-02-01

    Xanthomonas campestris pv. musacearum (Xcm) causing the banana Xanthomonas wilt (BXW) disease has been the main xanthomonad associated with bananas in East and Central Africa based on phenotypic and biochemical characteristics. However, biochemical methods cannot effectively distinguish between pathogenic and non-pathogenic xanthomonads. In this study, gram-negative and yellow-pigmented mucoid bacteria were isolated from BXW symptomatic and symptomless bananas collected from different parts of Uganda. Biolog, Xcm-specific (GspDm), Xanthomonas vasicola species-specific (NZ085) and Xanthomonas genus-specific (X1623) primers in PCR, and sequencing of ITS region were used to identify and characterize the isolates. Biolog tests revealed several isolates as xanthomonads. The GspDm and NZ085 primers accurately identified three isolates from diseased bananas as Xcm and these were pathogenic when re-inoculated into bananas. DNA from more isolates than those amplified by GspDm and NZ085 primers were amplified by the X1623 primers implying they are xanthomonads, these were however non-pathogenic on bananas. In the 16-23 ITS sequence based phylogeny, the pathogenic bacteria clustered together with the Xcm reference strain, while the non-pathogenic xanthomonads isolated from both BXW symptomatic and symptomless bananas clustered with group I xanthomonads. The findings reveal dynamic Xanthomonas populations in bananas, which can easily be misrepresented by only using phenotyping and biochemical tests. A combination of tools provides the most accurate identity and characterization of these plant associated bacteria. The interactions between the pathogenic and non-pathogenic xanthomonads in bananas may pave way to understanding effect of microbial interactions on BXW disease development and offer clues to biocontrol of Xcm. PMID:26805624

  3. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion.

    PubMed

    Rosenthal, Sara Brin; Twomey, Colin R; Hartnett, Andrew T; Wu, Hai Shan; Couzin, Iain D

    2015-04-14

    Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion. PMID:25825752

  4. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion

    PubMed Central

    Rosenthal, Sara Brin; Twomey, Colin R.; Hartnett, Andrew T.; Wu, Hai Shan; Couzin, Iain D.

    2015-01-01

    Coordination among social animals requires rapid and efficient transfer of information among individuals, which may depend crucially on the underlying structure of the communication network. Establishing the decision-making circuits and networks that give rise to individual behavior has been a central goal of neuroscience. However, the analogous problem of determining the structure of the communication network among organisms that gives rise to coordinated collective behavior, such as is exhibited by schooling fish and flocking birds, has remained almost entirely neglected. Here, we study collective evasion maneuvers, manifested through rapid waves, or cascades, of behavioral change (a ubiquitous behavior among taxa) in schooling fish (Notemigonus crysoleucas). We automatically track the positions and body postures, calculate visual fields of all individuals in schools of ∼150 fish, and determine the functional mapping between socially generated sensory input and motor response during collective evasion. We find that individuals use simple, robust measures to assess behavioral changes in neighbors, and that the resulting networks by which behavior propagates throughout groups are complex, being weighted, directed, and heterogeneous. By studying these interaction networks, we reveal the (complex, fractional) nature of social contagion and establish that individuals with relatively few, but strongly connected, neighbors are both most socially influential and most susceptible to social influence. Furthermore, we demonstrate that we can predict complex cascades of behavioral change at their moment of initiation, before they actually occur. Consequently, despite the intrinsic stochasticity of individual behavior, establishing the hidden communication networks in large self-organized groups facilitates a quantitative understanding of behavioral contagion. PMID:25825752

  5. Genomic analysis reveals the molecular basis for capsule loss in the group B Streptococcus population.

    PubMed

    Rosini, Roberto; Campisi, Edmondo; De Chiara, Matteo; Tettelin, Hervé; Rinaudo, Daniela; Toniolo, Chiara; Metruccio, Matteo; Guidotti, Silvia; Sørensen, Uffe B Skov; Kilian, Mogens; Ramirez, Mario; Janulczyk, Robert; Donati, Claudio; Grandi, Guido; Margarit, Immaculada

    2015-01-01

    The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS) expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl transferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity.

  6. Phylogenomic analyses reveal subclass Scuticociliatia as the sister group of subclass Hymenostomatia within class Oligohymenophorea.

    PubMed

    Feng, Jin-Mei; Jiang, Chuan-Qi; Warren, Alan; Tian, Miao; Cheng, Jun; Liu, Guang-Long; Xiong, Jie; Miao, Wei

    2015-09-01

    Scuticociliates and hymenostomes are two groups of the ciliate class Oligohymenophorea, a diverse clade that includes two model genera, Tetrahymena and Paramecium, which have been intensively studied due to their ease of culture and their amenability to a wide range of biochemical and genetic investigations. However, phylogenetic relationships among the subclasses of the Oligohymenophorea, and especially between the Scuticociliatia and Hymenostomatia, are not clearly resolved. Here, we investigate the phylogenetic relationship between the subclasses Scuticociliatia and Hymenostomatia based on omics data. The transcriptomes of five species, comprising four oligohymenophoreans and one colpodean, were sequenced. A supermatrix was constructed for phylogenomic analyses based on 113 genes encoding 43,528 amino acid residues from 26 taxa, including ten representatives of the class Oligohymenophorea. Our phylogenomic analyses revealed that the monophyletic Scuticociliatia is sister to the monophyletic Hymenostomatia, which together form the terminal branch within the monophyletic class Oligohymenophorea. Competing hypotheses for this relationship were rejected by topological tests. Our results provide corroborative evidence for the close relationship between the subclasses Scuticociliatia and Hymenostomatia, justifying the possible use of the model hymenostome T. thermophila as an effective experimental system to study the molecular and cellular biology of the scuticociliates. PMID:25999054

  7. Genomic Analysis Reveals the Molecular Basis for Capsule Loss in the Group B Streptococcus Population

    PubMed Central

    Rosini, Roberto; Campisi, Edmondo; De Chiara, Matteo; Tettelin, Hervé; Rinaudo, Daniela; Toniolo, Chiara; Metruccio, Matteo; Guidotti, Silvia; Sørensen, Uffe B. Skov; Kilian, Mogens; Ramirez, Mario; Janulczyk, Robert; Donati, Claudio; Grandi, Guido; Margarit, Immaculada

    2015-01-01

    The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS) expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl trasferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity. PMID:25946017

  8. Natural grouping of neural responses reveals spatially segregated clusters in prearcuate cortex

    PubMed Central

    Kiani, Roozbeh; Cueva, Christopher J.; Reppas, John B.; Peixoto, Diogo; Ryu, Stephen I.; Newsome, William T.

    2015-01-01

    Summary A fundamental challenge in studying the frontal lobe is to parcellate this cortex into ‘natural’ functional modules despite the absence of topographic maps, which are so helpful in primary sensory areas. Here we show that unsupervised clustering algorithms, applied to 96-channel array recordings from prearcuate gyrus, reveal spatially segregated sub-networks that remain stable across behavioral contexts. Looking for natural groupings of neurons based on response similarities, we discovered that the recorded area includes at least two spatially segregated sub-networks that differentially represent behavioral choice and reaction time. Importantly, these sub-networks are detectable during different behavioral states, and surprisingly, are defined better by ‘common noise’ than task-evoked responses. Our parcellation process works well on ‘spontaneous’ neural activity, and thus bears strong resemblance to the identification of ‘resting state’ networks in fMRI datasets. Our results demonstrate a powerful new tool for identifying cortical sub-networks by objective classification of simultaneously recorded electrophysiological activity. PMID:25728571

  9. Phylogeny of a Genomically Diverse Group of Elymus (Poaceae) Allopolyploids Reveals Multiple Levels of Reticulation

    PubMed Central

    Mason-Gamer, Roberta J.

    2013-01-01

    The grass tribe Triticeae (=Hordeeae) comprises only about 300 species, but it is well known for the economically important crop plants wheat, barley, and rye. The group is also recognized as a fascinating example of evolutionary complexity, with a history shaped by numerous events of auto- and allopolyploidy and apparent introgression involving diploids and polyploids. The genus Elymus comprises a heterogeneous collection of allopolyploid genome combinations, all of which include at least one set of homoeologs, designated St, derived from Pseudoroegneria. The current analysis includes a geographically and genomically diverse collection of 21 tetraploid Elymus species, and a single hexaploid species. Diploid and polyploid relationships were estimated using four molecular data sets, including one that combines two regions of the chloroplast genome, and three from unlinked nuclear genes: phosphoenolpyruvate carboxylase, β-amylase, and granule-bound starch synthase I. Four gene trees were generated using maximum likelihood, and the phylogenetic placement of the polyploid sequences reveals extensive reticulation beyond allopolyploidy alone. The trees were interpreted with reference to numerous phenomena known to complicate allopolyploid phylogenies, and introgression was identified as a major factor in their history. The work illustrates the interpretation of complicated phylogenetic results through the sequential consideration of numerous possible explanations, and the results highlight the value of careful inspection of multiple independent molecular phylogenetic estimates, with particular focus on the differences among them. PMID:24302986

  10. Genomic analysis reveals the molecular basis for capsule loss in the group B Streptococcus population.

    PubMed

    Rosini, Roberto; Campisi, Edmondo; De Chiara, Matteo; Tettelin, Hervé; Rinaudo, Daniela; Toniolo, Chiara; Metruccio, Matteo; Guidotti, Silvia; Sørensen, Uffe B Skov; Kilian, Mogens; Ramirez, Mario; Janulczyk, Robert; Donati, Claudio; Grandi, Guido; Margarit, Immaculada

    2015-01-01

    The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS) expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl transferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity. PMID:25946017

  11. Mechanism of cell alignment in groups of Myxococcus xanthus bacteria

    NASA Astrophysics Data System (ADS)

    Balgam, Rajesh; Igoshin, Oleg

    2015-03-01

    Myxococcus xanthus is a model for studying self-organization in bacteria. These flexible cylindrical bacteria move along. In groups, M. xanthus cells align themselves into dynamic cell clusters but the mechanism underlying their formation is unknown. It has been shown that steric interactions can cause alignment in self-propelled hard rods but it is not clear how flexibility and reversals affect the alignment and cluster formation. We have investigated cell alignment process using our biophysical model of M. xanthus cell in an agent-based simulation framework under realistic cell flexibility values. We observed that flexible model cells can form aligned cell clusters when reversals are suppressed but these clusters disappeared when reversals frequency becomes similar to the observed value. However, M. xanthus cells follow slime (polysaccharide gel like material) trails left by other cells and we show that implementing this into our model rescues cell clustering for reversing cells. Our results show that slime following along with periodic cell reversals act as positive feedback to reinforce existing slime trails and recruit more cells. Furthermore, we have observed that mechanical cell alignment combined with slime following is sufficient to explain the distinct clustering patterns of reversing and non-reversing cells as observed in recent experiments. This work is supported by NSF MCB 0845919 and 1411780.

  12. Group A streptococci efficiently invade human respiratory epithelial cells.

    PubMed

    LaPenta, D; Rubens, C; Chi, E; Cleary, P P

    1994-12-01

    Although infection by group A streptococci is a model of extracellular mucosal pathogenesis, these organisms can be associated with highly invasive infections resulting in sepsis and shock. Over the last 6 yr this species has renewed its reputation as a significant cause of sepsis and has piqued interest in the mechanism by which some strains are better able to breach mucosal barriers to gain access to the bloodstream than are others. An internalization assay was developed on the basis of resistance of intracellular streptococci to penicillin and gentamicin. Experiments showed that stationary-phase, as opposed to logarithmic-phase, bacteria are efficiently internalized and can persist in cultured human cells. Electron microscopy confirmed that streptococci were contained within intracellular vacuoles. Various strains of streptococci revealed significant differences in their capacity to be internalized. Two type M1 streptococci isolated from blood infections were internalized at frequencies equal to those reported for Salmonella and Listeria monocytogenes and greater than the frequency of a clonal variant from a case of pharyngitis.

  13. Single-Cell Transcript Profiles Reveal Multilineage Priming in Early Progenitors Derived from Lgr5(+) Intestinal Stem Cells.

    PubMed

    Kim, Tae-Hee; Saadatpour, Assieh; Guo, Guoji; Saxena, Madhurima; Cavazza, Alessia; Desai, Niyati; Jadhav, Unmesh; Jiang, Lan; Rivera, Miguel N; Orkin, Stuart H; Yuan, Guo-Cheng; Shivdasani, Ramesh A

    2016-08-23

    Lgr5(+) intestinal stem cells (ISCs) drive epithelial self-renewal, and their immediate progeny-intestinal bipotential progenitors-produce absorptive and secretory lineages via lateral inhibition. To define features of early transit from the ISC compartment, we used a microfluidics approach to measure selected stem- and lineage-specific transcripts in single Lgr5(+) cells. We identified two distinct cell populations, one that expresses known ISC markers and a second, abundant population that simultaneously expresses markers of stem and mature absorptive and secretory cells. Single-molecule mRNA in situ hybridization and immunofluorescence verified expression of lineage-restricted genes in a subset of Lgr5(+) cells in vivo. Transcriptional network analysis revealed that one group of Lgr5(+) cells arises from the other and displays characteristics expected of bipotential progenitors, including activation of Notch ligand and cell-cycle-inhibitor genes. These findings define the earliest steps in ISC differentiation and reveal multilineage gene priming as a fundamental property of the process. PMID:27524622

  14. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions.

    PubMed

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-07-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  15. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions

    PubMed Central

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-01-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  16. Analysis of the full genome of human group C rotaviruses reveals lineage diversification and reassortment.

    PubMed

    Medici, Maria Cristina; Tummolo, Fabio; Martella, Vito; Arcangeletti, Maria Cristina; De Conto, Flora; Chezzi, Carlo; Fehér, Enikő; Marton, Szilvia; Calderaro, Adriana; Bányai, Krisztián

    2016-08-01

    Group C rotaviruses (RVC) are enteric pathogens of humans and animals. Whole-genome sequences are available only for few RVCs, leaving gaps in our knowledge about their genetic diversity. We determined the full-length genome sequence of two human RVCs (PR2593/2004 and PR713/2012), detected in Italy from hospital-based surveillance for rotavirus infection in 2004 and 2012. In the 11 RNA genomic segments, the two Italian RVCs segregated within separate intra-genotypic lineages showed variation ranging from 1.9 % (VP6) to 15.9 % (VP3) at the nucleotide level. Comprehensive analysis of human RVC sequences available in the databases allowed us to reveal the existence of at least two major genome configurations, defined as type I and type II. Human RVCs of type I were all associated with the M3 VP3 genotype, including the Italian strain PR2593/2004. Conversely, human RVCs of type II were all associated with the M2 VP3 genotype, including the Italian strain PR713/2012. Reassortant RVC strains between these major genome configurations were identified. Although only a few full-genome sequences of human RVCs, mostly of Asian origin, are available, the analysis of human RVC sequences retrieved from the databases indicates that at least two intra-genotypic RVC lineages circulate in European countries. Gathering more sequence data is necessary to develop a standardized genotype and intra-genotypic lineage classification system useful for epidemiological investigations and avoiding confusion in the literature.

  17. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  18. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin.

    PubMed

    Oh, Jaeho; Edwards, Erin E; McClatchey, P Mason; Thomas, Susan N

    2015-10-15

    Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell-cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner.

  19. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  20. [A survey on distribution of red cell blood group systems in naxi and primi ethnic groups].

    PubMed

    Xiao, C; Hao, L; Zhang, W; Tao, Y; Zhou, Z; Du, R

    1995-01-01

    A survey of distribution of red cell blood group systems, including ABO, MNSs, Rh and P, was carried out on the Naxi and Primi ethnic groups in Yunnan province. The results based on 104 cases in each of the two ethnic groups showed that both Naxi and Primi possessed a high gene frequency r of 0.6082 and 0.6882, respectively, with gene frequency p = q. The gene frequency m of Naxi (0.8509) was found to be very high among the populations studied in China until now, only next to that of Lizu (0.8709). The most common phenotype of Rh system was CcDE- in both Naxi and Primi, with a quite high cDE frequency. No case of Rh negative was observed in the two ethnic groups. The P1 in Naxi approximated to that in Primi. The red cell blood group systems and their genetic distances suggested that the Naxi and Primi was genetically close to ethnic groups of North China, but different from those of South China. This fact suggests that these two ethnics groups originated from the North China.

  1. Revealing the structural and functional diversity of plant cell walls.

    PubMed

    Knox, J Paul

    2008-06-01

    The extensive knowledge of the chemistry of isolated cell wall polymers, and that relating to the identification and partial annotation of gene families involved in their synthesis and modification, is not yet matched by a sophisticated understanding of the occurrence of the polymers within cell walls of the diverse cell types within a growing organ. Currently, the main sets of tools that are used to determine cell-type-specific configurations of cell wall polymers and aspects of cell wall microstructures are antibodies, carbohydrate-binding modules (CBMs) and microspectroscopies. As these tools are applied we see that cell wall polymers are extensively developmentally regulated and that there is a range of structurally distinct primary and secondary cell walls within organs and across species. The challenge now is to document cell wall structures in relation to diverse cell biological events and to integrate this knowledge with the emerging understanding of polymer functions.

  2. Retrohoming of a Mobile Group II Intron in Human Cells Suggests How Eukaryotes Limit Group II Intron Proliferation.

    PubMed

    Truong, David M; Hewitt, F Curtis; Hanson, Joseph H; Cui, Xiaoxia; Lambowitz, Alan M

    2015-08-01

    Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a "ribozyme") and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed "retrohoming". Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the

  3. Retrohoming of a Mobile Group II Intron in Human Cells Suggests How Eukaryotes Limit Group II Intron Proliferation

    PubMed Central

    Truong, David M.; Hewitt, F. Curtis; Hanson, Joseph H.; Cui, Xiaoxia; Lambowitz, Alan M.

    2015-01-01

    Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a “ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed “retrohoming”. Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the

  4. Vancomycin Tolerant, Methicillin-Resistant Staphylococcus aureus Reveals the Effects of Vancomycin on Cell Wall Thickening

    PubMed Central

    Cázares-Domínguez, Vicenta; Cruz-Córdova, Ariadnna; Ochoa, Sara A.; Escalona, Gerardo; Arellano-Galindo, José; Rodríguez-Leviz, Alejandra; Hernández-Castro, Rigoberto; López-Villegas, Edgar O.; Xicohtencatl-Cortes, Juan

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important opportunistic pathogen that causes both healthcare- and community-acquired infections. An increase in the incidence of these infections may lead to a substantial change in the rate of vancomycin usage. Incidence of reduced susceptibility to vancomycin has been increasing worldwide for the last few years, conferring different levels of resistance to vancomycin as well as producing changes in the cell wall structure. The aim of the present study was to determine the effect of vancomycin on cell wall thickening in clinical isolates of vancomycin-tolerant (VT) MRSA obtained from pediatric patients. From a collection of 100 MRSA clinical isolates from pediatric patients, 12% (12/100) were characterized as VT-MRSA, and from them, 41.66% (5/12) exhibited the heterogeneous vancomycin-intermediate S. aureus (hVISA) phenotype. Multiplex-PCR assays revealed 66.66% (8/12), 25% (3/12), and 8.33% (1/12) of the VT-MRSA isolates were associated with agr group II, I, and III polymorphisms, respectively; the II-mec gene was amplified from 83.3% (10/12) of the isolates, and the mecIVa gene was amplified from 16.66% (2/12) of the isolates. Pulsed field electrophoresis (PFGE) fingerprint analysis showed 62% similarity among the VT-MRSA isolates. Thin transverse sections analyzed by transmission electron microscopy (TEM) revealed an average increase of 24 nm (105.55%) in the cell wall thickness of VT-MRSA compared with untreated VT-MRSA isolates. In summary, these data revealed that the thickened cell walls of VT-MRSA clinical isolates with agr type II and SCCmec group II polymorphisms are associated with an adaptive resistance to vancomycin. PMID:25793280

  5. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment.

    PubMed

    van Wolfswinkel, Josien C; Wagner, Daniel E; Reddien, Peter W

    2014-09-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage, including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings indicate that planarian neoblasts comprise two major and functionally distinct cellular compartments.

  6. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment

    PubMed Central

    van Wolfswinkel, Josien C.; Wagner, Daniel E.; Reddien, Peter W.

    2014-01-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings present a new view of planarian neoblasts, in which the population is comprised of two major and functionally distinct cellular compartments. PMID:25017721

  7. Metabolic Differences in Microbial Cell Populations Revealed by Nanophotonic Ionization

    SciTech Connect

    Walker, Bennett; Antonakos, Cory; Retterer, Scott T; Vertes, Akos

    2013-01-01

    ellular differences are linked to cell differentiation, the proliferation of cancer and to the development of drug resistance in microbial infections. Due to sensitivity limitations, however, large- scale metabolic analysis at the single cell level is only available for cells significantly larger in volume than Saccharomyces cerevisiae (~30 fL). Here we demonstrate that by a nanophotonic ionization platform and mass spectrometry, over one hundred up to 108 metabolites, or up to 18% of the known S. cerevisiae metabolome, can be identified in very small cell populations (n < 100). Under ideal conditions, r Relative quantitation of up to 4% of the metabolites is achieved at the single cell level.

  8. Two sexually dimorphic cell groups in the human brain.

    PubMed

    Allen, L S; Hines, M; Shryne, J E; Gorski, R A

    1989-02-01

    A quantitative analysis of the volume of 4 cell groups in the preoptic-anterior hypothalamic area (PO-AHA) and of the supraoptic nucleus (SON) of the human brain was performed in 22 age-matched male and female individuals. We suggest the term Interstitial Nuclei of the Anterior Hypothalamus (INAH 1-4) to identify these 4 previously undescribed cell groups in the PO-AHA. While 2 INAH and the SON were not sexually dimorphic, gender-related differences were found in the other 2 cell groups. One nucleus (INAH-3) was 2.8 times larger in the male brain than in the female brain irrespective of age. The other cell group (INAH-2) was twice as large in the male brain, but also appeared to be related in women to circulating steroid hormone levels. Since the PO-AHA influences gonadotropin secretion, maternal behavior, and sexual behavior in several mammalian species, these results suggest that functional sex differences in the hypothalamus may be related to sex differences in neural structure.

  9. Advances in cell surface glycoengineering reveal biological function.

    PubMed

    Nischan, Nicole; Kohler, Jennifer J

    2016-08-01

    Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.

  10. Ultrastructural observations reveal the presence of channels between cork cells.

    PubMed

    Teixeira, Rita Teresa; Pereira, Helena

    2009-12-01

    The ultrastructure of phellem cells of Quercus suber L. (cork oak) and Calotropis procera (Ait) R. Br. were analyzed using electron transmission microscopy to determine the presence or absence of plasmodesmata (PD). Different types of Q. suber cork samples were studied: one year shoots; virgin cork (first periderm), reproduction cork (traumatic periderm), and wet cork. The channel structures of PD were found in all the samples crossing adjacent cell walls through the suberin layer of the secondary wall. Calotropis phellem also showed PD crossing the cell walls of adjacent cells but in fewer numbers compared to Q. suber. In one year stems of cork oak, it was possible to follow the physiologically active PD with ribosomic accumulation next to the aperture of the channel seen in the phellogen cells to the completely obstructed channels in the dead cells that characterize the phellem tissue.

  11. How shamanism and group selection may reveal the origins of schizophrenia.

    PubMed

    Polimeni, J; Reiss, J P

    2002-03-01

    Schizophrenia, with its apparent genetic basis, persists despite demonstrating impaired fecundity. Although this has been considered paradoxical, a similar paradigm is observed elsewhere in nature. Honey bee colonies possess sterile task specialists whose presence can best be understood by the evolutionary principle of group selection. Group selection may be pertinent to human history and consequently schizophrenia could represent an ancient form of behavioral specialization. Shamanism and religion demonstrate some similarities to psychosis and may provide clues regarding the origins of schizophrenia.

  12. Recognition Strategies of Group 3 Innate Lymphoid Cells

    PubMed Central

    Killig, Monica; Glatzer, Timor; Romagnani, Chiara

    2014-01-01

    During the early phase of an inflammatory response, innate cells can use different strategies to sense environmental danger. These include the direct interaction of specific activating receptors with pathogen-encoded/danger molecules or the engagement of cytokine receptors by pro-inflammatory mediators produced by antigen presenting cells in the course of the infection. These general recognition strategies, which have been extensively described for innate myeloid cells, are shared by innate lymphoid cells (ILC), such as Natural Killer (NK) cells. The family of ILC has recently expanded with the discovery of group 2 (ILC2) and group 3 ILC (ILC3), which play an important role in the defense against extracellular pathogens. Although ILC3 and NK cells share some phenotypic characteristics, the recognition strategies employed by the various ILC3 subsets have been only partially characterized. In this review, we will describe and comparatively discuss how ILC3 sense environmental cues and how the triggering of different receptors may regulate their functional behavior during an immune response. PMID:24744763

  13. Recognition strategies of group 3 innate lymphoid cells.

    PubMed

    Killig, Monica; Glatzer, Timor; Romagnani, Chiara

    2014-01-01

    During the early phase of an inflammatory response, innate cells can use different strategies to sense environmental danger. These include the direct interaction of specific activating receptors with pathogen-encoded/danger molecules or the engagement of cytokine receptors by pro-inflammatory mediators produced by antigen presenting cells in the course of the infection. These general recognition strategies, which have been extensively described for innate myeloid cells, are shared by innate lymphoid cells (ILC), such as Natural Killer (NK) cells. The family of ILC has recently expanded with the discovery of group 2 (ILC2) and group 3 ILC (ILC3), which play an important role in the defense against extracellular pathogens. Although ILC3 and NK cells share some phenotypic characteristics, the recognition strategies employed by the various ILC3 subsets have been only partially characterized. In this review, we will describe and comparatively discuss how ILC3 sense environmental cues and how the triggering of different receptors may regulate their functional behavior during an immune response.

  14. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells.

    PubMed

    Lawson, Devon A; Bhakta, Nirav R; Kessenbrock, Kai; Prummel, Karin D; Yu, Ying; Takai, Ken; Zhou, Alicia; Eyob, Henok; Balakrishnan, Sanjeev; Wang, Chih-Yang; Yaswen, Paul; Goga, Andrei; Werb, Zena

    2015-10-01

    Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated

  15. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells

    PubMed Central

    Lawson, Devon A.; Bhakta, Nirav R.; Kessenbrock, Kai; Prummel, Karin D.; Yu, Ying; Takai, Ken; Zhou, Alicia; Eyob, Henok; Balakrishnan, Sanjeev; Wang, Chih-Yang; Yaswen, Paul; Goga, Andrei; Werb, Zena

    2015-01-01

    Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality1. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours2–5. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown2. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are

  16. Phylogenetic Diversity of the Bacillus pumilus Group and the Marine Ecotype Revealed by Multilocus Sequence Analysis

    PubMed Central

    Dong, Chunming; Sun, Fengqin; Wang, Liping; Li, Guangyu; Shao, Zongze

    2013-01-01

    Bacteria closely related to Bacillus pumilus cannot be distinguished from such other species as B. safensis, B. stratosphericus, B. altitudinis and B. aerophilus simply by 16S rRNA gene sequence. In this report, 76 marine strains were subjected to phylogenetic analysis based on 7 housekeeping genes to understand the phylogeny and biogeography in comparison with other origins. A phylogenetic tree based on the 7 housekeeping genes concatenated in the order of gyrB-rpoB-pycA-pyrE-mutL-aroE-trpB was constructed and compared with trees based on the single genes. All these trees exhibited a similar topology structure with small variations. Our 79 strains were divided into 6 groups from A to F; Group A was the largest and contained 49 strains close to B. altitudinis. Additional two large groups were presented by B. safensis and B. pumilus respectively. Among the housekeeping genes, gyrB and pyrE showed comparatively better resolution power and may serve as molecular markers to distinguish these closely related strains. Furthermore, a recombinant phylogenetic tree based on the gyrB gene and containing 73 terrestrial and our isolates was constructed to detect the relationship between marine and other sources. The tree clearly showed that the bacteria of marine origin were clustered together in all the large groups. In contrast, the cluster belonging to B. safensis was mainly composed of bacteria of terrestrial origin. Interestingly, nearly all the marine isolates were at the top of the tree, indicating the possibility of the recent divergence of this bacterial group in marine environments. We conclude that B. altitudinis bacteria are the most widely spread of the B. pumilus group in marine environments. In summary, this report provides the first evidence regarding the systematic evolution of this bacterial group, and knowledge of their phylogenetic diversity will help in the understanding of their ecological role and distribution in marine environments. PMID:24244618

  17. Severe immune haemolysis in a group A recipient of a group O red blood cell unit.

    PubMed

    Barjas-Castro, M L; Locatelli, M F; Carvalho, M A; Gilli, S O; Castro, V

    2003-08-01

    Haemolysis caused by passive ABO antibodies is a rare transfusional complication. We report a case of severe haemolytic reaction in a 38-year-old man (blood group A) with lymphoma who had received one red blood cell (RBC) unit group O. After transfusion of 270 mL, the patient experienced fever, dyspnoea, chills and back pain. On the following morning he was icteric and pale. Haptoglobin was inferior to 5.8 mgdL(-1), haemoglobin was not increased and lactate dehydrogenase was elevated. Haemolysis was evident on observation of the patient's post-transfusion samples. The recipient's red cells developed a positive direct antiglobulin test and Lui elution showed anti-A coated the cells. Fresh donor serum had an anti-A titre of 1024, which was not reduced by treating the serum with dithiothreitol. Donor isoagglutinin screening has been determined by microplate automated analyser and showed titre higher than 100. Physicians should be aware of the risk of haemolysis associated with ABO-passive antibodies. There is generally no agreement justifying the isoagglutinin investigation prior to transfusion. However, automated quantitative isoagglutinin determination could be part of the modern donor testing process, mainly in blood banks where identical ABO group units (platelets or phenotyped RBCs) are not available owing to limited supply.

  18. Blockade of maitotoxin-induced oncotic cell death reveals zeiosis

    PubMed Central

    Estacion, Mark; Schilling, William P

    2002-01-01

    Background Maitotoxin (MTX) initiates cell death by sequentially activating 1) Ca2+ influx via non-selective cation channels, 2) uptake of vital dyes via formation of large pores, and 3) release of lactate dehydrogenase, an indication of cell lysis. MTX also causes formation of membrane blebs, which dramatically dilate during the cytolysis phase. To determine the role of phospholipase C (PLC) in the cell death cascade, U73122, a specific inhibitor of PLC, and U73343, an inactive analog, were examined on MTX-induced responses in bovine aortic endothelial cells. Results Addition of either U73122 or U73343, prior to MTX, produced a concentration-dependent inhibition of the cell death cascade (IC50 ≈ 1.9 and 0.66 μM, respectively) suggesting that the effect of these agents was independent of PLC. Addition of U73343 shortly after MTX, prevented or attenuated the effects of the toxin, but addition at later times had little or no effect. Time-lapse videomicroscopy showed that U73343 dramatically altered the blebbing profile of MTX-treated cells. Specifically, U73343 blocked bleb dilation and converted the initial blebbing event into "zeiosis", a type of membrane blebbing commonly associated with apoptosis. Cells challenged with MTX and rescued by subsequent addition of U73343, showed enhanced caspase-3 activity 48 hr after the initial insult, consistent with activation of the apoptotic program. Conclusions Within minutes of MTX addition, endothelial cells die by oncosis. Rescue by addition of U73343 shortly after MTX showed that a small percentage of cells are destined to die by oncosis, but that a larger percentage survive; cells that survive the initial insult exhibit zeiosis and may ultimately die by apoptotic mechanisms. PMID:11825342

  19. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities

    PubMed Central

    2010-01-01

    Background The term endothelial progenitor cells (EPCs) is currently used to refer to cell populations which are quite dissimilar in terms of biological properties. This study provides a detailed molecular fingerprint for two EPC subtypes: early EPCs (eEPCs) and outgrowth endothelial cells (OECs). Methods Human blood-derived eEPCs and OECs were characterised by using genome-wide transcriptional profiling, 2D protein electrophoresis, and electron microscopy. Comparative analysis at the transcript and protein level included monocytes and mature endothelial cells as reference cell types. Results Our data show that eEPCs and OECs have strikingly different gene expression signatures. Many highly expressed transcripts in eEPCs are haematopoietic specific (RUNX1, WAS, LYN) with links to immunity and inflammation (TLRs, CD14, HLAs), whereas many transcripts involved in vascular development and angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins) are highly expressed in OECs. Comparative analysis with monocytes and mature endothelial cells clusters eEPCs with monocytes, while OECs segment with endothelial cells. Similarly, proteomic analysis revealed that 90% of spots identified by 2-D gel analysis are common between OECs and endothelial cells while eEPCs share 77% with monocytes. In line with the expression pattern of caveolins and cadherins identified by microarray analysis, ultrastructural evaluation highlighted the presence of caveolae and adherens junctions only in OECs. Conclusions This study provides evidence that eEPCs are haematopoietic cells with a molecular phenotype linked to monocytes; whereas OECs exhibit commitment to the endothelial lineage. These findings indicate that OECs might be an attractive cell candidate for inducing therapeutic angiogenesis, while eEPC should be used with caution because of their monocytic nature. PMID:20465783

  20. Revealed: The spy who regulates neuroblastoma stem cells.

    PubMed

    Vora, Parvez; Venugopal, Chitra; Singh, Sheila K

    2014-11-30

    Neuroblastoma (NB), an embryonal tumour of the sympathetic nervous system, is thought to originate from undifferentiated neural crest cells and is known to exhibit extremely heterogeneous biological and clinical behaviors. Occurring in very young children, the median age at diagnosis is 17 months and it accounts for 10% of all pediatric cancer mortalities. The standard treatment regimen for patients with high-risk NB includes induction and surgery followed by isotretinoin or Accutane (13-cis retinoic acid) treatment, which is shown to induce terminal differentiation of NB cells. However, molecular regulators that maintain an undifferentiated phenotype in NB cells are still poorly understood. PMID:25483101

  1. Revealing of Biological Activity in Crude Extracts, Seperated Fractions, Groups of Chemical Substance and Individual Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crude extracts, separated fractions, groups of chemical substances, and individual compounds from natural sources are all evaluated stepwise while performing purifications in in-house bioassays. In a stepwise fashion proceeding from crude extracts to fractions and on to pure compounds, decisions ar...

  2. Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    PubMed Central

    Baskerville, Edward B.; Dobson, Andy P.; Bedford, Trevor; Allesina, Stefano; Anderson, T. Michael; Pascual, Mercedes

    2011-01-01

    Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. PMID:22219719

  3. Spatial guilds in the Serengeti food web revealed by a Bayesian group model.

    PubMed

    Baskerville, Edward B; Dobson, Andy P; Bedford, Trevor; Allesina, Stefano; Anderson, T Michael; Pascual, Mercedes

    2011-12-01

    Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. PMID:22219719

  4. Single-cell dynamics reveals sustained growth during diauxic shifts.

    PubMed

    Boulineau, Sarah; Tostevin, Filipe; Kiviet, Daniel J; ten Wolde, Pieter Rein; Nghe, Philippe; Tans, Sander J

    2013-01-01

    Stochasticity in gene regulation has been characterized extensively, but how it affects cellular growth and fitness is less clear. We study the growth of E. coli cells as they shift from glucose to lactose metabolism, which is characterized by an obligatory growth arrest in bulk experiments that is termed the lag phase. Here, we follow the growth dynamics of individual cells at minute-resolution using a single-cell assay in a microfluidic device during this shift, while also monitoring lac expression. Mirroring the bulk results, the majority of cells displays a growth arrest upon glucose exhaustion, and resume when triggered by stochastic lac expression events. However, a significant fraction of cells maintains a high rate of elongation and displays no detectable growth lag during the shift. This ability to suppress the growth lag should provide important selective advantages when nutrients are scarce. Trajectories of individual cells display a highly non-linear relation between lac expression and growth, with only a fraction of fully induced levels being sufficient for achieving near maximal growth. A stochastic molecular model together with measured dependencies between nutrient concentration, lac expression level, and growth accurately reproduces the observed switching distributions. The results show that a growth arrest is not obligatory in the classic diauxic shift, and underscore that regulatory stochasticity ought to be considered in terms of its impact on growth and survival. PMID:23637881

  5. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo

    PubMed Central

    Onjiko, Rosemary M.; Moody, Sally A.; Nemes, Peter

    2015-01-01

    Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo. PMID:25941375

  6. Crystal structure of group II intron domain 1 reveals a template for RNA assembly.

    PubMed

    Zhao, Chen; Rajashankar, Kanagalaghatta R; Marcia, Marco; Pyle, Anna Marie

    2015-12-01

    Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. Here, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed and the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. The open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures. PMID:26502156

  7. Genetic Diversity within Schistosoma haematobium: DNA Barcoding Reveals Two Distinct Groups

    PubMed Central

    Webster, Bonnie L.; Emery, Aiden M.; Webster, Joanne P.; Gouvras, Anouk; Garba, Amadou; Diaw, Oumar; Seye, Mohmoudane M.; Tchuente, Louis Albert Tchuem; Simoonga, Christopher; Mwanga, Joseph; Lange, Charles; Kariuki, Curtis; Mohammed, Khalfan A.; Stothard, J. Russell; Rollinson, David

    2012-01-01

    Background Schistosomiasis in one of the most prevalent parasitic diseases, affecting millions of people and animals in developing countries. Amongst the human-infective species S. haematobium is one of the most widespread causing urogenital schistosomiasis, a major human health problem across Africa, however in terms of research this human pathogen has been severely neglected. Methodology/Principal Findings To elucidate the genetic diversity of Schistosoma haematobium, a DNA ‘barcoding’ study was performed on parasite material collected from 41 localities representing 18 countries across Africa and the Indian Ocean Islands. Surprisingly low sequence variation was found within the mitochondrial cytochrome oxidase subunit I (cox1) and the NADH-dehydrogenase subunit 1 snad1). The 61 haplotypes found within 1978 individual samples split into two distinct groups; one (Group 1) that is predominately made up of parasites from the African mainland and the other (Group 2) that is made up of samples exclusively from the Indian Ocean Islands and the neighbouring African coastal regions. Within Group 1 there was a dominance of one particular haplotype (H1) representing 1574 (80%) of the samples analyzed. Population genetic diversity increased in samples collected from the East African coastal regions and the data suggest that there has been movement of parasites between these areas and the Indian Ocean Islands. Conclusions/Significance The high occurrence of the haplotype (H1) suggests that at some point in the recent evolutionary history of S. haematobium in Africa the population may have passed through a genetic ‘bottleneck’ followed by a population expansion. This study provides novel and extremely interesting insights into the population genetics of S. haematobium on a large geographic scale, which may have consequence for control and monitoring of urogenital schistosomiasis. PMID:23145200

  8. Cell-to-Cell Diversity in a Synchronized Chlamydomonas Culture As Revealed by Single-Cell Analyses

    PubMed Central

    Garz, Andreas; Sandmann, Michael; Rading, Michael; Ramm, Sascha; Menzel, Ralf; Steup, Martin

    2012-01-01

    In a synchronized photoautotrophic culture of Chlamydomonas reinhardtii, cell size, cell number, and the averaged starch content were determined throughout the light-dark cycle. For single-cell analyses, the relative cellular starch was quantified by measuring the second harmonic generation (SHG). In destained cells, amylopectin essentially represents the only biophotonic structure. As revealed by various validation procedures, SHG signal intensities are a reliable relative measure of the cellular starch content. During photosynthesis-driven starch biosynthesis, synchronized Chlamydomonas cells possess an unexpected cell-to-cell diversity both in size and starch content, but the starch-related heterogeneity largely exceeds that of size. The cellular volume, starch content, and amount of starch/cell volume obey lognormal distributions. Starch degradation was initiated by inhibiting the photosynthetic electron transport in illuminated cells or by darkening. Under both conditions, the averaged rate of starch degradation is almost constant, but it is higher in illuminated than in darkened cells. At the single-cell level, rates of starch degradation largely differ but are unrelated to the initial cellular starch content. A rate equation describing the cellular starch degradation is presented. SHG-based three-dimensional reconstructions of Chlamydomonas cells containing starch granules are shown. PMID:23009858

  9. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade

    PubMed Central

    2013-01-01

    Background The SAR11 group of Alphaproteobacteria is highly abundant in the oceans. It contains a recently diverged freshwater clade, which offers the opportunity to compare adaptations to salt- and freshwaters in a monophyletic bacterial group. However, there are no cultivated members of the freshwater SAR11 group and no genomes have been sequenced yet. Results We isolated ten single SAR11 cells from three freshwater lakes and sequenced and assembled their genomes. A phylogeny based on 57 proteins indicates that the cells are organized into distinct microclusters. We show that the freshwater genomes have evolved primarily by the accumulation of nucleotide substitutions and that they have among the lowest ratio of recombination to mutation estimated for bacteria. In contrast, members of the marine SAR11 clade have one of the highest ratios. Additional metagenome reads from six lakes confirm low recombination frequencies for the genome overall and reveal lake-specific variations in microcluster abundances. We identify hypervariable regions with gene contents broadly similar to those in the hypervariable regions of the marine isolates, containing genes putatively coding for cell surface molecules. Conclusions We conclude that recombination rates differ dramatically in phylogenetic sister groups of the SAR11 clade adapted to freshwater and marine ecosystems. The results suggest that the transition from marine to freshwater systems has purged diversity and resulted in reduced opportunities for recombination with divergent members of the clade. The low recombination frequencies of the LD12 clade resemble the low genetic divergence of host-restricted pathogens that have recently shifted to a new host. PMID:24286338

  10. Focus Groups Reveal Differences in Career Experiences Between Male and Female Geoscientists

    NASA Astrophysics Data System (ADS)

    Oconnell, S.; Frey, C. D.; Holmes, M.

    2003-12-01

    We conducted twelve telephone focus groups of geoscientists to discover what motivates geoscientists to enter our field and stay in our field. There were separate male and female groups from six different professional categories: administrators, full and associate professors, non-tenure track personnel, assistant professors, post-docs and PhD candidates, Bachelor's and Master's candidates. A total of 96 geoscientists participated. Specifically, respondents were asked what initially brought them into the geosciences. Three dominant themes emerged: the subject matter itself, undergraduate experiences, and relationships. A total of 51 responses to this question related to the subject matter itself. Approximately 61 percent (31) of those responses were given by male focus group participants. Across all focus groups, participants brought up issues such as a general appreciation of the outdoors, weather, rocks, and dinosaurs. Following closely behind the general subject matter is undergraduate events. Fifty-one responses mentioned something about undergraduate experiences such as an introductory class, a laboratory experience, or field experiences. While both female and male participants discussed the role of interpersonal relationships in their decision to become a geoscientist, females were slightly more likely to bring up relevant relationships (26 times for females compared to 21 for males). These relationships varied in both groups from a parent or grandparents influence to camping trips with professors. When respondents were asked whether they had ever considered leaving the geosciences and under what circumstances, there was a striking difference between males and females: males were far less likely to have ever considered leaving. Younger males were more likely to consider leaving than older geoscientists. They feel challenged by the financial constraints of graduate school and the time constraints of academic vs. family life. Many females considered leaving at

  11. New patterns in human biogeography revealed by networks of contacts between linguistic groups

    PubMed Central

    Capitán, José A.; Bock Axelsen, Jacob; Manrubia, Susanna

    2015-01-01

    Human languages differ broadly in abundance and are distributed highly unevenly on the Earth. In many qualitative and quantitative aspects, they strongly resemble biodiversity distributions. An intriguing and previously unexplored issue is the architecture of the neighbouring relationships between human linguistic groups. Here we construct and characterize these networks of contacts and show that they represent a new kind of spatial network with uncommon structural properties. Remarkably, language networks share a meaningful property with food webs: both are quasi-interval graphs. In food webs, intervality is linked to the existence of a niche space of low dimensionality; in language networks, we show that the unique relevant variable is the area occupied by the speakers of a language. By means of a range model analogous to niche models in ecology, we show that a geometric restriction of perimeter covering by neighbouring linguistic domains explains the structural patterns observed. Our findings may be of interest in the development of models for language dynamics or regarding the propagation of cultural innovations. In relation to species distribution, they pose the question of whether the spatial features of species ranges share architecture, and eventually generating mechanism, with the distribution of human linguistic groups. PMID:25632000

  12. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways.

    PubMed

    Chéry, Lisly; Lam, Hung-Ming; Coleman, Ilsa; Lakely, Bryce; Coleman, Roger; Larson, Sandy; Aguirre-Ghiso, Julio A; Xia, Jing; Gulati, Roman; Nelson, Peter S; Montgomery, Bruce; Lange, Paul; Snyder, Linda A; Vessella, Robert L; Morrissey, Colm

    2014-10-30

    Cancer dormancy refers to the prolonged clinical disease-free time between removal of the primary tumor and recurrence, which is common in prostate cancer (PCa), breast cancer, esophageal cancer, and other cancers. PCa disseminated tumor cells (DTC) are detected in both patients with no evidence of disease (NED) and advanced disease (ADV). However, the molecular and cellular nature of DTC is unknown. We performed a first-in-field study of single DTC transcriptomic analyses in cancer patients to identify a molecular signature associated with cancer dormancy. We profiled eighty-five individual EpCAM⁺/CD45⁻ cells from the bone marrow of PCa patients with NED or ADV. We analyzed 44 DTC with high prostate-epithelial signatures, and eliminated 41 cells with high erythroid signatures and low prostate epithelial signatures. DTC were clustered into 3 groups: NED, ADV_1, and ADV_2, in which the ADV_1 group presented a distinct gene expression pattern associated with the p38 stress activated kinase pathway. Additionally, DTC from the NED group were enriched for a tumor dormancy signature associated with head and neck squamous carcinoma and breast cancer. This study provides the first clinical evidence of the p38 pathway as a potential biomarker for early recurrence and an attractive target for therapeutic intervention.

  13. Up-regulated expression of Ran reveals its potential role to deltamethrin stress in Kc cells.

    PubMed

    Liu, Wei; Xu, Qin; Chi, Qingping; Hu, Junli; Li, Fengliang; Cheng, Luogen

    2016-05-25

    The GTP-binding nuclear protein Ran has mostly been reported to be an essential player in nuclear transport, chromosome alignment, microtubule dynamics, centrosome duplication, kinetochore attachment of microtubules, nuclear-envelope dynamics, and phagocytosis. However, until now, there has been no report showing the involvement of Ran in DM stress. In this paper, two-dimensional electrophoresis analysis showed that the expression level of Ran in Kc cells in response to DM was higher than that in the control group. In addition, quantitative analysis using real-time PCR revealed that the expression of Ran was obviously up-regulated at various concentrations of DM. Western blot analysis showed that Ran was up-regulated 2.27-fold over the control at 48h. Because we still could not pinpoint whether Ran was actually involved in DM stress reaction, to further verify the role of Ran in stress reaction, RNA interference and cell transfection were utilized. Overexpression of Ran in cells conferred a degree of protection against DM after 72h. Furthermore, interference with Ran significantly decrease cell viability. All of the above findings strongly imply that Ran may participate in the development of stress reaction to DM. Therefore, investigating the possible role of Ran in DM stress will broaden our limited knowledge regarding DM stress inducible genes. PMID:26924245

  14. Whole genome sequencing reveals extensive community-level transmission of group A Streptococcus in remote communities.

    PubMed

    Bowen, A C; Harris, T; Holt, D C; Giffard, P M; Carapetis, J R; Campbell, P T; McVERNON, J; Tong, S Y C

    2016-07-01

    Impetigo is common in remote Indigenous children of northern Australia, with the primary driver in this context being Streptococcus pyogenes [or group A Streptococcus (GAS)]. To reduce the high burden of impetigo, the transmission dynamics of GAS must be more clearly elucidated. We performed whole genome sequencing on 31 GAS isolates collected in a single community from children in 11 households with ⩾2 GAS-infected children. We aimed to determine whether transmission was occurring principally within households or across the community. The 31 isolates were represented by nine multilocus sequence types and isolates within each sequence type differed from one another by only 0-3 single nucleotide polymorphisms. There was evidence of extensive transmission both within households and across the community. Our findings suggest that strategies to reduce the burden of impetigo in this setting will need to extend beyond individual households, and incorporate multi-faceted, community-wide approaches. PMID:26833141

  15. Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates.

    PubMed

    Mason, Victor C; Li, Gang; Minx, Patrick; Schmitz, Jürgen; Churakov, Gennady; Doronina, Liliya; Melin, Amanda D; Dominy, Nathaniel J; Lim, Norman T-L; Springer, Mark S; Wilson, Richard K; Warren, Wesley C; Helgen, Kristofer M; Murphy, William J

    2016-08-01

    Colugos are among the most poorly studied mammals despite their centrality to resolving supraordinal primate relationships. Two described species of these gliding mammals are the sole living members of the order Dermoptera, distributed throughout Southeast Asia. We generated a draft genome sequence for a Sunda colugo and a Philippine colugo reference alignment, and used these to identify colugo-specific genetic changes that were enriched in sensory and musculoskeletal-related genes that likely underlie their nocturnal and gliding adaptations. Phylogenomic analysis and catalogs of rare genomic changes overwhelmingly support the contested hypothesis that colugos are the sister group to primates (Primatomorpha), to the exclusion of treeshrews. We captured ~140 kb of orthologous sequence data from colugo museum specimens sampled across their range and identified large genetic differences between many geographically isolated populations that may result in a >300% increase in the number of recognized colugo species. Our results identify conservation units to mitigate future losses of this enigmatic mammalian order. PMID:27532052

  16. Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates

    PubMed Central

    Mason, Victor C.; Li, Gang; Minx, Patrick; Schmitz, Jürgen; Churakov, Gennady; Doronina, Liliya; Melin, Amanda D.; Dominy, Nathaniel J.; Lim, Norman T-L.; Springer, Mark S.; Wilson, Richard K.; Warren, Wesley C.; Helgen, Kristofer M.; Murphy, William J.

    2016-01-01

    Colugos are among the most poorly studied mammals despite their centrality to resolving supraordinal primate relationships. Two described species of these gliding mammals are the sole living members of the order Dermoptera, distributed throughout Southeast Asia. We generated a draft genome sequence for a Sunda colugo and a Philippine colugo reference alignment, and used these to identify colugo-specific genetic changes that were enriched in sensory and musculoskeletal-related genes that likely underlie their nocturnal and gliding adaptations. Phylogenomic analysis and catalogs of rare genomic changes overwhelmingly support the contested hypothesis that colugos are the sister group to primates (Primatomorpha), to the exclusion of treeshrews. We captured ~140 kb of orthologous sequence data from colugo museum specimens sampled across their range and identified large genetic differences between many geographically isolated populations that may result in a >300% increase in the number of recognized colugo species. Our results identify conservation units to mitigate future losses of this enigmatic mammalian order. PMID:27532052

  17. Whole genome sequencing reveals extensive community-level transmission of group A Streptococcus in remote communities.

    PubMed

    Bowen, A C; Harris, T; Holt, D C; Giffard, P M; Carapetis, J R; Campbell, P T; McVERNON, J; Tong, S Y C

    2016-07-01

    Impetigo is common in remote Indigenous children of northern Australia, with the primary driver in this context being Streptococcus pyogenes [or group A Streptococcus (GAS)]. To reduce the high burden of impetigo, the transmission dynamics of GAS must be more clearly elucidated. We performed whole genome sequencing on 31 GAS isolates collected in a single community from children in 11 households with ⩾2 GAS-infected children. We aimed to determine whether transmission was occurring principally within households or across the community. The 31 isolates were represented by nine multilocus sequence types and isolates within each sequence type differed from one another by only 0-3 single nucleotide polymorphisms. There was evidence of extensive transmission both within households and across the community. Our findings suggest that strategies to reduce the burden of impetigo in this setting will need to extend beyond individual households, and incorporate multi-faceted, community-wide approaches.

  18. Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity.

    PubMed Central

    Andries, K; Dewindt, B; Snoeks, J; Wouters, L; Moereels, H; Lewi, P J; Janssen, P A

    1990-01-01

    A variety of chemically different compounds inhibit the replication of several serotypes of rhinoviruses (common-cold viruses). We noticed that one of these antiviral compounds, WIN 51711, had an antiviral spectrum clearly distinctive from a consensus spectrum or other capsid-binding compounds, although all of them were shown to share the same binding site. A systematic evaluation of all known rhinovirus capsid-binding compounds against all serotyped rhinoviruses was therefore initiated. Multivariate analysis of the results revealed the existence of two groups of rhinoviruses, which we will call antiviral groups A and B. The differential sensitivity of members of these groups to antiviral compounds suggests the existence of a dimorphic binding site. The antiviral groups turned out to be a reflection of a divergence of rhinovirus serotypes on a much broader level. Similarities in antiviral spectra were highly correlated with sequence similarities, not only of amino acids lining the antiviral compound-binding-site, but also of amino acids of the whole VP1 protein. Furthermore, analysis of epidemiological data indicated that group B rhinoviruses produced more than twice as many clinical infections per serotype than group A rhinoviruses did. Rhinoviruses belonging to the minor receptor group were without exception all computed to lie in the same region of antiviral group B. PMID:2154596

  19. Atomic force microscopy measurements reveal multiple bonds between Helicobacter pylori blood group antigen binding adhesin and Lewis b ligand.

    PubMed

    Parreira, P; Shi, Q; Magalhaes, A; Reis, C A; Bugaytsova, J; Borén, T; Leckband, D; Martins, M C L

    2014-12-01

    The strength of binding between the Helicobacter pylori blood group antigen-binding adhesin (BabA) and its cognate glycan receptor, the Lewis b blood group antigen (Le(b)), was measured by means of atomic force microscopy. High-resolution measurements of rupture forces between single receptor-ligand pairs were performed between the purified BabA and immobilized Le(b) structures on self-assembled monolayers. Dynamic force spectroscopy revealed two similar but statistically different bond populations. These findings suggest that the BabA may form different adhesive attachments to the gastric mucosa in ways that enhance the efficiency and stability of bacterial adhesion.

  20. Footprints reveal direct evidence of group behavior and locomotion in Homo erectus.

    PubMed

    Hatala, Kevin G; Roach, Neil T; Ostrofsky, Kelly R; Wunderlich, Roshna E; Dingwall, Heather L; Villmoare, Brian A; Green, David J; Harris, John W K; Braun, David R; Richmond, Brian G

    2016-01-01

    Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6-7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus. PMID:27403790

  1. Footprints reveal direct evidence of group behavior and locomotion in Homo erectus

    PubMed Central

    Hatala, Kevin G.; Roach, Neil T.; Ostrofsky, Kelly R.; Wunderlich, Roshna E.; Dingwall, Heather L.; Villmoare, Brian A.; Green, David J.; Harris, John W. K.; Braun, David R.; Richmond, Brian G.

    2016-01-01

    Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6–7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus. PMID:27403790

  2. A new dynamo pattern revealed by the tilt angle of bipolar sunspot groups

    NASA Astrophysics Data System (ADS)

    Tlatov, A.; Illarionov, E.; Sokoloff, D.; Pipin, V.

    2013-07-01

    We obtain the latitude-time distribution of the averaged tilt angle of solar bipoles. For large bipoles, which are mainly bipolar sunspot groups, the spatially averaged tilt angle is positive in the Northern solar hemisphere and negative in the Southern, with modest variations during the course of the solar cycle. We consider the averaged tilt angle to be a tracer for a crucial element of the solar dynamo, i.e. the regeneration rate of poloidal large-scale magnetic field from toroidal. The value of the tilt obtained crudely corresponds to a regeneration factor corresponding to about 10 per cent of rms velocity of solar convection. These results develop findings of Stenflo & Kosovichev concerning Joy's law, and agree with the usual expectations of solar dynamo theory. Quite surprisingly, we find a pronounced deviation from these properties for smaller bipoles, which are mainly solar ephemeral regions. They possess tilt angles of approximately the same absolute value, but of opposite sign compared to that of the large bipoles. Of course, the tilt data for small bipoles are less well determined than those for large bipoles; however, they remain robust under various modifications of the data processing.

  3. Molecular gas in the x-ray bright group NGC 5044 as revealed by ALMA

    SciTech Connect

    David, Laurence P.; Forman, William; Vrtilek, Jan; Jones, Christine; O'Sullivan, Ewan; Lim, Jeremy; Combes, Francoise; Salome, Philippe; Edge, Alastair; Hamer, Stephen; Sun, Ming; Gastaldello, Fabio; Bardelli, Sandro; Temi, Pasquale; Ohyama, Youichi; Mathews, William; Giacintucci, Simona; Trung, Dinh-V

    2014-09-10

    An ALMA observation of the early-type galaxy NGC 5044, which resides at the center of an X-ray bright group with a moderate cooling flow, detected 24 molecular structures within the central 2.5 kpc. The masses of the molecular structures vary from 3 × 10{sup 5} M {sub ☉} to 10{sup 7} M {sub ☉} and the CO(2-1) linewidths vary from 15 to 65 km s{sup –1}. Given the large CO(2-1) linewidths, the observed structures are likely giant molecular associations (GMAs) and not individual giant molecular clouds (GMCs). Only a few of the GMAs are spatially resolved and the average density of these GMAs yields a GMC volume filling factor of about 15%. The masses of the resolved GMAs are insufficient for them to be gravitationally bound, however, the most massive GMA does contain a less massive component with a linewidth of 5.5 km s{sup –1} (typical of an individual virialized GMC). We also show that the GMAs cannot be pressure confined by the hot gas. Given the CO(2-1) linewidths of the GMAs (i.e., the velocity dispersion of the embedded GMCs) they should disperse on a timescale of about 12 Myr. No disk-like molecular structures are detected and all indications suggest that the molecular gas follows ballistic trajectories after condensing out of the thermally unstable hot gas. The 230 GHz luminosity of the central continuum source is 500 times greater than its low frequency radio luminosity and probably reflects a recent accretion event. The spectrum of the central continuum source also exhibits an absorption feature with a linewidth typical of an individual GMC and an infalling velocity of 250 km s{sup –1}.

  4. Metabolomic profiling reveals severe skeletal muscle group-specific perturbations of metabolism in aged FBN rats.

    PubMed

    Garvey, Sean M; Dugle, Janis E; Kennedy, Adam D; McDunn, Jonathan E; Kline, William; Guo, Lining; Guttridge, Denis C; Pereira, Suzette L; Edens, Neile K

    2014-06-01

    Mammalian skeletal muscles exhibit age-related adaptive and pathological remodeling. Several muscles in particular undergo progressive atrophy and degeneration beyond median lifespan. To better understand myocellular responses to aging, we used semi-quantitative global metabolomic profiling to characterize trends in metabolic changes between 15-month-old adult and 32-month-old aged Fischer 344 × Brown Norway (FBN) male rats. The FBN rat gastrocnemius muscle exhibits age-dependent atrophy, whereas the soleus muscle, up until 32 months, exhibits markedly fewer signs of atrophy. Both gastrocnemius and soleus muscles were analyzed, as well as plasma and urine. Compared to adult gastrocnemius, aged gastrocnemius showed evidence of reduced glycolytic metabolism, including accumulation of glycolytic, glycogenolytic, and pentose phosphate pathway intermediates. Pyruvate was elevated with age, yet levels of citrate and nicotinamide adenine dinucleotide were reduced, consistent with mitochondrial abnormalities. Indicative of muscle atrophy, 3-methylhistidine and free amino acids were elevated in aged gastrocnemius. The monounsaturated fatty acids oleate, cis-vaccenate, and palmitoleate also increased in aged gastrocnemius, suggesting altered lipid metabolism. Compared to gastrocnemius, aged soleus exhibited far fewer changes in carbohydrate metabolism, but did show reductions in several glycolytic intermediates, fumarate, malate, and flavin adenine dinucleotide. Plasma biochemicals showing the largest age-related increases included glycocholate, heme, 1,5-anhydroglucitol, 1-palmitoleoyl-glycerophosphocholine, palmitoleate, and creatine. These changes suggest reduced insulin sensitivity in aged FBN rats. Altogether, these data highlight skeletal muscle group-specific perturbations of glucose and lipid metabolism consistent with mitochondrial dysfunction in aged FBN rats. PMID:24652515

  5. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  6. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    DOE PAGES

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-21

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolutionmore » inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. We find our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. Lastly, these observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.« less

  7. Single cell activity reveals direct electron transfer in methanotrophic consortia

    NASA Astrophysics Data System (ADS)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  8. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    PubMed Central

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture. PMID:26790980

  9. Single cell activity reveals direct electron transfer in methanotrophic consortia.

    PubMed

    McGlynn, Shawn E; Chadwick, Grayson L; Kempes, Christopher P; Orphan, Victoria J

    2015-10-22

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer. PMID:26375009

  10. Polycomb group proteins in hematopoietic stem cell aging and malignancies.

    PubMed

    Klauke, Karin; de Haan, Gerald

    2011-07-01

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.

  11. Red blood cell phenotype matching for various ethnic groups.

    PubMed

    Badjie, Karafa S W; Tauscher, Craig D; van Buskirk, Camille M; Wong, Clare; Jenkins, Sarah M; Smith, Carin Y; Stubbs, James R

    2011-01-01

    Patients requiring chronic transfusion support are at risk of alloimmunization after red blood cell (RBC) transfusion because of a disparity between donor and recipient antigen profiles. This research explored the probability of obtaining an exact extended phenotype match between blood donors randomly selected from our institution and patients randomly selected from particular ethnic groups. Blood samples from 1,000 blood donors tested by molecular method were evaluated for the predicted phenotype distribution of Rh, Kell, Kidd, Duffy, and MNS. A random subsample of 800 donor phenotypes was then evaluated for the probability of obtaining an exact match with respect to phenotype with a randomly selected patient from a particular ethnic group. Overall, there was a greater than 80 percent probability of finding an exact donor-recipient match for the K/k alleles in the Kell system. The probability ranged from 3 percent to 38 percent, depending on the ethnicity and disparities in phenotypic profiles, for the Rh, Kidd, Duffy, and MNS systems. A significant donor-recipient phenotype mismatch ratio exists with certain blood group antigens such that, with current routine ABO and D matching practices, recipients of certain ethnic groups are predisposed to alloimmunization. PMID:22356481

  12. Red blood cell phenotype matching for various ethnic groups.

    PubMed

    Badjie, Karafa S W; Tauscher, Craig D; van Buskirk, Camille M; Wong, Clare; Jenkins, Sarah M; Smith, Carin Y; Stubbs, James R

    2011-01-01

    Patients requiring chronic transfusion support are at risk of alloimmunization after red blood cell (RBC) transfusion because of a disparity between donor and recipient antigen profiles. This research explored the probability of obtaining an exact extended phenotype match between blood donors randomly selected from our institution and patients randomly selected from particular ethnic groups. Blood samples from 1,000 blood donors tested by molecular method were evaluated for the predicted phenotype distribution of Rh, Kell, Kidd, Duffy, and MNS. A random subsample of 800 donor phenotypes was then evaluated for the probability of obtaining an exact match with respect to phenotype with a randomly selected patient from a particular ethnic group. Overall, there was a greater than 80 percent probability of finding an exact donor-recipient match for the K/k alleles in the Kell system. The probability ranged from 3 percent to 38 percent, depending on the ethnicity and disparities in phenotypic profiles, for the Rh, Kidd, Duffy, and MNS systems. A significant donor-recipient phenotype mismatch ratio exists with certain blood group antigens such that, with current routine ABO and D matching practices, recipients of certain ethnic groups are predisposed to alloimmunization.

  13. Critical genes in head and neck squamous cell carcinoma revealed by bioinformatic analysis of gene expression data.

    PubMed

    Wang, B; Wang, T; Cao, X L; Li, Y

    2015-12-21

    In this study, bioinformatic analysis of gene expression data of head and neck squamous cell carcinoma (HNSCC) was performed to identify critical genes. Gene expression data of HNSCC were downloaded from the Cancer Genome Atlas (TCGA) and differentially expressed genes were determined through significance analysis of microarrays. Protein-protein interaction networks were constructed and used to identify hub genes. Functional enrichment analysis was performed with DAVID. Relevant microRNAs, transcription factors, and small molecule drugs were predicted by the Fisher exact test. Survival analysis was performed with the Kaplan-Meier plot from a package for survival analysis in R. In the five groups of HNSCC patients, a total of 5946 DEGs were identified in group 1, 4575 DEGs in group 2, 5580 DEGs in group 3, 8017 DEGs in group 4, and 5469 DEGs in group 5. DEGs in the cell cycle and immune response were significantly over-represented. Five PPI networks were constructed from which hub genes were acquired, such as minichromosome maintenance complex component 7 (MCM7), MCM2, decorin (DCN), retinoblastoma 1 (RB1), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG). No significant difference in survival was observed among the 5 groups; however, a significant difference existed between two combined groups (groups 1, 3, and 5 vs groups 2 and 4). Our study revealed critical genes in HNSCC, which could supplement the knowledge about the pathogenesis of HNSCC and provide clues for future therapy development.

  14. Critical genes in head and neck squamous cell carcinoma revealed by bioinformatic analysis of gene expression data.

    PubMed

    Wang, B; Wang, T; Cao, X L; Li, Y

    2015-01-01

    In this study, bioinformatic analysis of gene expression data of head and neck squamous cell carcinoma (HNSCC) was performed to identify critical genes. Gene expression data of HNSCC were downloaded from the Cancer Genome Atlas (TCGA) and differentially expressed genes were determined through significance analysis of microarrays. Protein-protein interaction networks were constructed and used to identify hub genes. Functional enrichment analysis was performed with DAVID. Relevant microRNAs, transcription factors, and small molecule drugs were predicted by the Fisher exact test. Survival analysis was performed with the Kaplan-Meier plot from a package for survival analysis in R. In the five groups of HNSCC patients, a total of 5946 DEGs were identified in group 1, 4575 DEGs in group 2, 5580 DEGs in group 3, 8017 DEGs in group 4, and 5469 DEGs in group 5. DEGs in the cell cycle and immune response were significantly over-represented. Five PPI networks were constructed from which hub genes were acquired, such as minichromosome maintenance complex component 7 (MCM7), MCM2, decorin (DCN), retinoblastoma 1 (RB1), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG). No significant difference in survival was observed among the 5 groups; however, a significant difference existed between two combined groups (groups 1, 3, and 5 vs groups 2 and 4). Our study revealed critical genes in HNSCC, which could supplement the knowledge about the pathogenesis of HNSCC and provide clues for future therapy development. PMID:26782382

  15. Proteogenomic analysis reveals unanticipated adaptations of colorectal tumor cells to deficiencies in DNA mismatch repair

    PubMed Central

    Halvey, Patrick J.; Wang, Xiaojing; Wang, Jing; Bhat, Ajaz A.; Dhawan, Punita; Li, Ming; Zhang, Bing; Liebler, Daniel C.; Slebos, Robbert J.C.

    2014-01-01

    Summary A growing body of genomic data on human cancers poses the critical question of how genomic variations translate to cancer phenotypes. We employed standardized shotgun proteomics and targeted protein quantitation platforms to analyze a panel of 10 colon cancer cell lines differing by mutations in DNA mismatch repair (MMR) genes. In addition, we performed transcriptome sequencing (RNA-seq) to enable detection of protein sequence variants from the proteomic data. Biological replicate cultures yielded highly consistent proteomic inventories with a cumulative total of 6,513 protein groups with a protein FDR of 3.17% across all cell lines. Networks of co-expressed proteins with differential expression based on MMR status revealed impact on protein folding, turnover and transport, on cellular metabolism and on DNA and RNA synthesis and repair. Analysis of variant amino acid sequences suggested higher stability of proteins affected by naturally occurring germline polymorphisms than of proteins affected by somatic protein sequence changes. The data provide evidence for multi-system adaptation to MMR deficiency with a stress response that targets misfolded proteins for degradation through the ubiquitin-dependent proteasome pathway. Enrichment analysis suggested epithelial-to-mesenchymal transition (EMT) in RKO cells, as evidenced by increased mobility and invasion properties compared to SW480. The observed proteomic profiles demonstrate previously unknown consequences of altered DNA repair and provide an expanded basis for mechanistic interpretation of MMR phenotypes. PMID:24247723

  16. An integrative approach to phylogeny reveals patterns of environmental distribution and novel evolutionary relationships in a major group of ciliates

    PubMed Central

    Sun, Ping; Clamp, John; Xu, Dapeng; Huang, Bangqin; Shin, Mann Kyoon

    2016-01-01

    Peritrichs are a major group of ciliates with worldwide distribution. Yet, its internal phylogeny remains unresolved owing to limited sampling. Additionally, ecological distributions of peritrichs are poorly known. We performed substantially expanded phylogenetic analyses of peritrichs that incorporated SSU rDNA sequences of samples collected from three continents, revealing a number of new relationships between and within major lineages that greatly challenged the classic view of the group. Interrogation of a dataset comprising new environmental sequences from an estuary and the open ocean generated with high throughput sequencing and clone libraries plus putative environmental peritrich sequences at Genbank, produced a comprehensive tree of peritrichs from a variety of habitats and revealed unique ecological distribution patterns of several lineages for the first time. Also, evidence of adaptation to extreme environments in the Astylozoidae clade greatly broadened the phylogenetic range of peritrichs capable of living in extreme environments. Reconstruction of ancestral states revealed that peritrichs may have transitioned repeatedly from freshwater to brackish/marine/hypersaline environments. This work establishes a phylogenetic framework for more mature investigations of peritrichs in the future, and the approach used here provides a model of how to elucidate evolution in the context of ecological niches in any lineage of microbial eukaryotes. PMID:26880590

  17. BOLD delay times using group delay in sickle cell disease

    NASA Astrophysics Data System (ADS)

    Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John

    2016-03-01

    Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.

  18. Expression of blood group genes by mesenchymal stem cells

    PubMed Central

    Schäfer, Richard; Schnaidt, Martina; Klaffschenkel, Roland A.; Siegel, Georg; Schüle, Michael; Rädlein, Maria Anna; Hermanutz-Klein, Ursula; Ayturan, Miriam; Buadze, Marine; Gassner, Christoph; Danielyan, Lusine; Kluba, Torsten; Northoff, Hinnak; Flegel, Willy A.

    2011-01-01

    Incompatible blood group antigens are highly immunogenic and can cause graft rejections. Focusing on distinct carbohydrate- and protein-based membrane structures, defined by blood group antigens, we investigated human bone marrow-derived mesenchymal stem cells (MSCs) cultured in human serum. The presence of H (CD173), ABO, RhD, RhCE, RhAG, Kell, urea transporter type B (SLC14A1, previously known as JK), and Duffy antigen receptor of chemokines (DARC) was evaluated at the levels of genome, transcriptome and antigen. Fucosyltransferase-1 (FUT1), RHCE, KEL, SLC14A1 (JK) and DARC mRNA were transcribed in MSCs. FUT1 mRNA transcription was lost during differentiation. The mRNA transcription of SLC14A1 (JK) decreased during chondrogenic differentiation, while that of DARC increased during adipogenic differentiation. All MSCs synthesized SLC14A1 (JK) but no DARC protein. However, none of the protein antigens tested occurred on the surface, indicating a lack of associated protein function in the membrane. As A and B antigens are neither expressed nor adsorbed, concerns of ABO compatibility with human serum supplements during culture are alleviated. The H antigen expression by GD2dim+ MSCs identified two distinct MSC subpopulations and enabled their isolation. We hypothesize that GD2dim+H+ MSCs retain a better “stemness”. Because immunogenic blood group antigens are lacking, they cannot affect MSC engraftment in vivo, which is promising for clinical applications. PMID:21418181

  19. Growth conditions of 0-group plaice Pleuronectes platessa in the western Wadden Sea as revealed by otolith microstructure analysis

    NASA Astrophysics Data System (ADS)

    Cardoso, Joana F. M. F.; Freitas, Vânia; de Paoli, Hélène; Witte, Johannes IJ.; van der Veer, Henk W.

    2016-05-01

    Growth studies based on population-based growth estimates are limited by the fact that they do not take into account differences in age/size structure within the population. To overcome these problems, otolith microstructure analysis is often used to estimate individual growth. Here, we analyse growth of 0-group plaice in the western Wadden Sea in two years: a year preceded by a mild winter (1995) and a year preceded by a severe winter (1996). Growth was analysed by combining information on individual growth based on otolith analysis with predictions of maximum growth (= under optimal food conditions) based on a Dynamic Energy Budget model. Otolith analysis revealed that settlement occurred earlier in 1995 than in 1996. In both years, one main cohort was found, followed by a group of late settlers. No differences in mean length-at-age were found between these groups. DEB modelling suggested that growth was not maximal during the whole growing season: realized growth (the fraction of maximum growth realized by 0-group plaice) declined in the summer, although this decline was relatively small. In addition, late settling individuals exhibited lower realized growth than individuals from the main cohort. This study confirms that growth conditions for 0-group plaice are not optimal and that a growth reduction occurs in summer, as suggested in previous studies.

  20. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells.

    PubMed

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris; Kiessling, Ann A

    2016-01-15

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  1. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells

    PubMed Central

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris

    2016-01-01

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  2. Identification in human lymphoid tissues of cells that produce group 1 or group 2 gamma-globulins

    PubMed Central

    Pernis, B.; Chiappino, G.

    1964-01-01

    The cells that produce group 1 and group 2 γ-globulins have been localized in human lymphoid tissues. This has been done with the use of antisera specific for group 1 or group 2 γ-globulins prepared by immunizing rabbits with purified Bence-Jones proteins of the corresponding group and subsequently conjugated with different fluorochromes. The immunofluorescence observations have shown that in the red pulp of the spleen of adult humans two populations of plasma cells, present in approximately equal numbers, can be differentiated on the basis of the type of γ-globulin produced. The cells in the germinal centres of lymphoid follicles in the spleen and lymph nodes appear, instead, to contain both group 1 and group 2 γ-globulins. ImagesFIG. 1FIGS. 2-5 PMID:14210761

  3. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis.

    PubMed

    Mohapatra, A; Van Dyken, S J; Schneider, C; Nussbaum, J C; Liang, H-E; Locksley, R M

    2016-01-01

    Group 2 innate lymphoid cells (ILC2s) have an important role in acute allergic lung inflammation. Given their distribution and function, lung ILC2s are hypothesized to coordinate epithelial responses to the external environment; however, how barrier surveillance is linked to ILC2 activation remains unclear. Here, we demonstrate that alveolar type II cells are the main source of interleukin (IL)-33 and thymic stromal lymphopoietin (TSLP) generated in response to chitin or migratory helminths. IL-33 and TSLP synergistically induce an interferon regulatory factor 4 (IRF4)-IL-9 program in ILC2s, and autocrine IL-9 promotes rapid IL-5 and IL-13 production required for optimal epithelial responses in the conducting airways. Thus, ILC2s link alveolar function to regulation of airway flow, revealing a key interaction between resident lymphoid and structural cells that might underlie similar organizational hierarchies in other organs.

  4. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation

    NASA Astrophysics Data System (ADS)

    Shalek, Alex K.; Satija, Rahul; Shuga, Joe; Trombetta, John J.; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S.; Gaublomme, Jellert T.; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P.; Regev, Aviv

    2014-06-01

    High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a `core' module of antiviral genes is expressed very early by a few `precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced `peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.

  5. Quantitative measures to reveal coordinated cytoskeleton-nucleus reorganization during in vitro invasion of cancer cells

    NASA Astrophysics Data System (ADS)

    Dvir, Liron; Nissim, Ronen; Alvarez-Elizondo, Martha B.; Weihs, Daphne

    2015-04-01

    Metastasis formation is a major cause of mortality in cancer patients and includes tumor cell relocation to distant organs. A metastatic cell invades through other cells and extracellular matrix by biochemical attachment and mechanical force application. Force is used to move on or through a 2- or 3-dimensional (3D) environment, respectively, or to penetrate a 2D substrate. We have previously shown that even when a gel substrate is impenetrable, metastatic breast cancer cells can still indent it by applying force. Cells typically apply force through the acto-myosin network, which is mechanically connected to the nucleus. We develop a 3D image-analysis to reveal relative locations of the cell elements, and show that as cells apply force to the gel, a coordinated process occurs that involves cytoskeletal remodeling and repositioning of the nucleus. Our approach shows that the actin and microtubules reorganize in the cell, bringing the actin to the leading edge of the cell. In parallel, the nucleus is transported behind the actin, likely by the cytoskeleton, into the indentation dimple formed in the gel. The nucleus volume below the gel surface correlates with indentation depth, when metastatic breast cancer cells indent gels deeply. However, the nucleus always remains above the gel in benign cells, even when small indentations are observed. Determining mechanical processes during metastatic cell invasion can reveal how cells disseminate in the body and can uncover targets for diagnosis and treatment.

  6. Morphological and molecular characterization of three Agaricus species from tropical Asia (Pakistan, Thailand) reveals a new group in section Xanthodermatei.

    PubMed

    Thongklang, Naritsada; Nawaz, Rizwana; Khalid, Abdul N; Chen, Jie; Hyde, Kevin D; Zhao, Ruilin; Parra, Luis A; Hanif, Muhammad; Moinard, Magalie; Callac, Philippe

    2014-01-01

    The genus Agaricus is known for its medicinal and edible species but also includes toxic species that belong to section Xanthodermatei. Previous phylogenetic reconstruction for temperate species, based on sequence data of nuc rRNA gene (rDNA) internal transcribed spacers (ITS), has revealed two major groups in this section and a possible third lineage for A. pseudopratensis. Recent research in Agaricus has shown that classifications need improving with the addition of tropical taxa. In this study we add new tropical collections to section Xanthodermatei. We describe three species from collections made in Pakistan and Thailand and include them in a larger analysis using all available ITS data for section Xanthodermatei. Agaricus bisporiticus sp. nov. and A. fuscopunctatus sp. nov. are introduced based on molecular and morphological studies, whereas A. microvolvatulus is recorded for the first time in Asia. Specimens from Thailand however have a much larger pileus than the type specimens from Congo. In maximum likelihood (ML) and maximum parsimony (MP) phylogenetic analyses these three species cluster with A. pseudopratensis from the Mediterranean area and A. murinocephalus recently described from Thailand. In Agaricus section Xanthodermatei this new group is monophyletic and receives low bootstrap support whereas the two previously known groups receive strong support. Within the new group, the most closely related species share some traits, but we did not find any unifying morphological character; however the five species of the group share a unique short nucleotide sequence. Two putatively toxic species of section Xanthodermatei are now recognized in Pakistan and six in Thailand.

  7. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis.

    PubMed

    Shin, Jaehoon; Berg, Daniel A; Zhu, Yunhua; Shin, Joseph Y; Song, Juan; Bonaguidi, Michael A; Enikolopov, Grigori; Nauen, David W; Christian, Kimberly M; Ming, Guo-li; Song, Hongjun

    2015-09-01

    Somatic stem cells contribute to tissue ontogenesis, homeostasis, and regeneration through sequential processes. Systematic molecular analysis of stem cell behavior is challenging because classic approaches cannot resolve cellular heterogeneity or capture developmental dynamics. Here we provide a comprehensive resource of single-cell transcriptomes of adult hippocampal quiescent neural stem cells (qNSCs) and their immediate progeny. We further developed Waterfall, a bioinformatic pipeline, to statistically quantify singe-cell gene expression along a de novo reconstructed continuous developmental trajectory. Our study reveals molecular signatures of adult qNSCs, characterized by active niche signaling integration and low protein translation capacity. Our analyses further delineate molecular cascades underlying qNSC activation and neurogenesis initiation, exemplified by decreased extrinsic signaling capacity, primed translational machinery, and regulatory switches in transcription factors, metabolism, and energy sources. Our study reveals the molecular continuum underlying adult neurogenesis and illustrates how Waterfall can be used for single-cell omics analyses of various continuous biological processes.

  8. Trespassing cancer cells: ‘fingerprinting’ invasive protrusions reveals metastatic culprits

    PubMed Central

    Klemke, Richard L.

    2012-01-01

    Metastatic cancer cells produce invasive membrane protrusions called invadopodia and pseudopodia, which play a central role in driving cancer cell dissemination in the body. Malignant cells use these structures to attach to and degrade extracellular matrix proteins, generate force for cell locomotion, and to penetrate the vasculature. Recent work using unique subcellular fractionation methodologies combined with spatial genomic, proteomic, and phosphoproteomic profiling has provided insight into the invadopodiome and pseudopodiome signaling networks that control the protrusion of invasive membranes. Here I highlight how these powerful spatial “omics” approaches reveal important signatures of metastatic cancer cells and possible new therapeutic targets aimed at treating metastatic disease. PMID:22980730

  9. Global detection of molecular changes reveals concurrent alteration of several biological pathways in nonsmall cell lung cancer cells

    PubMed Central

    Ju, Z.; Kapoor, M.; Newton, K; Cheon, K.; Ramaswamy, A.; Lotan, R.; Strong, L. C.; Koo, J. S.

    2006-01-01

    To identify the molecular changes that occur in non-small cell lung carcinoma (NSCLC), we compared the gene expression profile of the NCI-H292 (H292) NSCLC cell line with that of normal human tracheobronchial epithelial (NHTBE) cells. The NHTBE cells were grown in a three-dimensional organotypic culture system that permits maintenance of the normal pseudostratified mucociliary phenotype characteristic of bronchial epithelium in vivo. Microarray analysis using the Affymetrix oligonucleotide chip U95Av2 revealed that 1,683 genes showed a > 1.5-fold change in expression in the H292 cell line relative to the NHTBE cells. Specifically, 418 genes were downregulated and 1,265 were upregulated in the H292 cells. The expression data for selected genes were validated in several different NSCLC cell lines using quantitative real-time PCR and Western analysis. Further analysis of the differentially expressed genes indicated that WNT responses, apoptosis, cell cycle regulation and cell proliferation were significantly altered in the H292 cells. Functional analysis using fluorescence-activated cell sorting confirmed concurrent changes in the activity of these pathways in the H292 line. These findings show that (1) NSCLC cells display deregulation of the WNT, apoptosis, proliferation and cell cycle pathways, as has been found in many other types of cancer cells, and (2) that organotypically cultured NHTBE cells can be used as a reference to identify genes and pathways that are differentially expressed in tumor cells derived from bronchogenic epithelium. PMID:16049682

  10. Distribution of anionic groups at the cell surface of different Sporothrix schenckii cell types.

    PubMed

    Benchimol, M; de Souza, W; Travassos, L R

    1979-06-01

    The distribution of anionic groups at the cell surface of yeastlike forms, hyphae, and conidia of Sporothrix schenckii was studied by staining with colloidal iron hydroxide and cationized ferritin. By using colloidal iron hydroxide it was shown that the external cell wall layer of one strain (strain 1099.18) could be resolved into two reactive sublayers and that these layers were present in many but not all cells of the same population. In contrast, most cells of another strain (strain 1099.12) were stained by colloidal iron hydroxide, but only one reactive layer was seen. Acidic layers of the yeastlike forms of the two strains were much thicker than those of conidia and hyphae. By the cationized ferritin staining procedure it was observed that the acidic layers of yeast forms sloughed off of cells, probably due to cell-cell or cell-medium attrition in shaken submerged cultures or to a process by which the outer layers detach from cells as they are replaced by newly synthesized ones. The colloidal iron hydroxide- and cationized ferritin-reactive cell surface layers of S. schenckii correspond to the previously described (L. R. Travassos et al., Exp. Mycol. 1:293-305, 1977) concanavalin A-reactive peptidorhamnomannan complexes, and their reactivity is probably due to the presence of acidic amino acids of low pK values rather than to glucuronic acid units.

  11. Distribution of Anionic Groups at the Cell Surface of Different Sporothrix schenckii Cell Types

    PubMed Central

    Benchimol, Marlene; de Souza, W.; Travassos, L. R.

    1979-01-01

    The distribution of anionic groups at the cell surface of yeastlike forms, hyphae, and conidia of Sporothrix schenckii was studied by staining with colloidal iron hydroxide and cationized ferritin. By using colloidal iron hydroxide it was shown that the external cell wall layer of one strain (strain 1099.18) could be resolved into two reactive sublayers and that these layers were present in many but not all cells of the same population. In contrast, most cells of another strain (strain 1099.12) were stained by colloidal iron hydroxide, but only one reactive layer was seen. Acidic layers of the yeastlike forms of the two strains were much thicker than those of conidia and hyphae. By the cationized ferritin staining procedure it was observed that the acidic layers of yeast forms sloughed off of cells, probably due to cell-cell or cell-medium attrition in shaken submerged cultures or to a process by which the outer layers detach from cells as they are replaced by newly synthesized ones. The colloidal iron hydroxide- and cationized ferritin-reactive cell surface layers of S. schenckii correspond to the previously described (L. R. Travassos et al., Exp. Mycol. 1:293-305, 1977) concanavalin A-reactive peptidorhamnomannan complexes, and their reactivity is probably due to the presence of acidic amino acids of low pK values rather than to glucuronic acid units. Images PMID:89092

  12. The early chemical enrichment histories of two Sculptor group dwarf galaxies as revealed by RR lyrae variables

    SciTech Connect

    Yang, Soung-Chul; Kim, Sang Chul; Kyeong, Jaemann; Wagner-Kaiser, Rachel; Sarajedini, Ata

    2014-03-20

    We present the results of our analysis of the RR Lyrae (RRL) variable stars detected in two transition-type dwarf galaxies (dTrans), ESO294-G010 and ESO410-G005 in the Sculptor group, which is known to be one of the closest neighboring galaxy groups to our Local Group. Using deep archival images from the Advanced Camera for Surveys on board the Hubble Space Telescope, we have identified a sample of RRL candidates in both dTrans galaxies (219 RRab (RR0) and 13 RRc (RR1) variables in ESO294-G010; 225 RRab and 44 RRc stars in ESO410-G005). The metallicities of the individual RRab stars are calculated via the period-amplitude-[Fe/H] relation derived by Alcock et al. This yields mean metallicities of ([Fe/H]){sub ESO294} = –1.77 ± 0.03 and ([Fe/H]){sub ESO410} = –1.64 ± 0.03. The RRL metallicity distribution functions (MDFs) are investigated further via simple chemical evolution models; these reveal the relics of the early chemical enrichment processes for these two dTrans galaxies. In the case of both galaxies, the shapes of the RRL MDFs are well described by pre-enrichment models. This suggests two possible channels for the early chemical evolution for these Sculptor group dTrans galaxies: (1) the ancient stellar populations of our target dwarf galaxies might have formed from the star forming gas which was already enriched through 'prompt initial enrichment' or an 'initial nucleosynthetic spike' from the very first massive stars, or (2) this pre-enrichment state might have been achieved by the end products from more evolved systems of their nearest neighbor, NGC 55. We also study the environmental effects of the formation and evolution of our target dTrans galaxies by comparing their properties with those of 79 volume limited (D {sub ☉} < 2 Mpc) dwarf galaxy samples in terms of the luminosity-metallicity relation and the H I gas content. The presence of these RRL stars strongly supports the idea that although the Sculptor Group galaxies have a considerably

  13. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

    PubMed Central

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  14. The renal (myo-)fibroblast: a heterogeneous group of cells.

    PubMed

    Boor, Peter; Floege, Jürgen

    2012-08-01

    Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. PMID:22851626

  15. Networks of Food Sharing Reveal the Functional Significance of Multilevel Sociality in Two Hunter-Gatherer Groups.

    PubMed

    Dyble, Mark; Thompson, James; Smith, Daniel; Salali, Gul Deniz; Chaudhary, Nikhil; Page, Abigail E; Vinicuis, Lucio; Mace, Ruth; Migliano, Andrea Bamberg

    2016-08-01

    Like many other mammalian and primate societies [1-4], humans are said to live in multilevel social groups, with individuals situated in a series of hierarchically structured sub-groups [5, 6]. Although this multilevel social organization has been described among contemporary hunter-gatherers [5], questions remain as to the benefits that individuals derive from living in such groups. Here, we show that food sharing among two populations of contemporary hunter-gatherers-the Palanan Agta (Philippines) and Mbendjele BaYaka (Republic of Congo)-reveals similar multilevel social structures, with individuals situated in households, within sharing clusters of 3-4 households, within the wider residential camps, which vary in size. We suggest that these groupings serve to facilitate inter-sexual provisioning, kin provisioning, and risk reduction reciprocity, three levels of cooperation argued to be fundamental in human societies [7, 8]. Humans have a suite of derived life history characteristics including a long childhood and short inter-birth intervals that make offspring energetically demanding [9] and have moved to a dietary niche that often involves the exploitation of difficult to acquire foods with highly variable return rates [10-12]. This means that human foragers face both day-to-day and more long-term energetic deficits that conspire to make humans energetically interdependent. We suggest that a multilevel social organization allows individuals access to both the food sharing partners required to buffer themselves against energetic shortfalls and the cooperative partners required for skill-based tasks such as cooperative foraging.

  16. Networks of Food Sharing Reveal the Functional Significance of Multilevel Sociality in Two Hunter-Gatherer Groups.

    PubMed

    Dyble, Mark; Thompson, James; Smith, Daniel; Salali, Gul Deniz; Chaudhary, Nikhil; Page, Abigail E; Vinicuis, Lucio; Mace, Ruth; Migliano, Andrea Bamberg

    2016-08-01

    Like many other mammalian and primate societies [1-4], humans are said to live in multilevel social groups, with individuals situated in a series of hierarchically structured sub-groups [5, 6]. Although this multilevel social organization has been described among contemporary hunter-gatherers [5], questions remain as to the benefits that individuals derive from living in such groups. Here, we show that food sharing among two populations of contemporary hunter-gatherers-the Palanan Agta (Philippines) and Mbendjele BaYaka (Republic of Congo)-reveals similar multilevel social structures, with individuals situated in households, within sharing clusters of 3-4 households, within the wider residential camps, which vary in size. We suggest that these groupings serve to facilitate inter-sexual provisioning, kin provisioning, and risk reduction reciprocity, three levels of cooperation argued to be fundamental in human societies [7, 8]. Humans have a suite of derived life history characteristics including a long childhood and short inter-birth intervals that make offspring energetically demanding [9] and have moved to a dietary niche that often involves the exploitation of difficult to acquire foods with highly variable return rates [10-12]. This means that human foragers face both day-to-day and more long-term energetic deficits that conspire to make humans energetically interdependent. We suggest that a multilevel social organization allows individuals access to both the food sharing partners required to buffer themselves against energetic shortfalls and the cooperative partners required for skill-based tasks such as cooperative foraging. PMID:27451900

  17. Genetic and Biochemical Assays Reveal a Key Role for Replication Restart Proteins in Group II Intron Retrohoming

    PubMed Central

    Yao, Jun; Truong, David M.; Lambowitz, Alan M.

    2013-01-01

    Mobile group II introns retrohome by an RNP-based mechanism in which the intron RNA reverse splices into a DNA site and is reverse transcribed by the associated intron-encoded protein. The resulting intron cDNA is then integrated into the genome by cellular mechanisms that have remained unclear. Here, we used an Escherichia coli genetic screen and Taqman qPCR assay that mitigate indirect effects to identify host factors that function in retrohoming. We then analyzed mutants identified in these and previous genetic screens by using a new biochemical assay that combines group II intron RNPs with cellular extracts to reconstitute the complete retrohoming reaction in vitro. The genetic and biochemical analyses indicate a retrohoming pathway involving degradation of the intron RNA template by a host RNase H and second-strand DNA synthesis by the host replicative DNA polymerase. Our results reveal ATP-dependent steps in both cDNA and second-strand synthesis and a surprising role for replication restart proteins in initiating second-strand synthesis in the absence of DNA replication. We also find an unsuspected requirement for host factors in initiating reverse transcription and a new RNA degradation pathway that suppresses retrohoming. Key features of the retrohoming mechanism may be used by human LINEs and other non-LTR-retrotransposons, which are related evolutionarily to mobile group II introns. Our findings highlight a new role for replication restart proteins, which function not only to repair DNA damage caused by mobile element insertion, but have also been co-opted to become an integral part of the group II intron retrohoming mechanism. PMID:23637634

  18. Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production.

    PubMed

    Leoncikas, Vytautas; Wu, Huihai; Ward, Lara T; Kierzek, Andrzej M; Plant, Nick J

    2016-01-01

    A major roadblock in the effective treatment of cancers is their heterogeneity, whereby multiple molecular landscapes are classified as a single disease. To explore the contribution of cellular metabolism to cancer heterogeneity, we analyse the Metabric dataset, a landmark genomic and transcriptomic study of 2,000 individual breast tumours, in the context of the human genome-scale metabolic network. We create personalized metabolic landscapes for each tumour by exploring sets of active reactions that satisfy constraints derived from human biochemistry and maximize congruency with the Metabric transcriptome data. Classification of the personalized landscapes derived from 997 tumour samples within the Metabric discovery dataset reveals a novel poor prognosis cluster, reproducible in the 995-sample validation dataset. We experimentally follow mechanistic hypotheses resulting from the computational study and establish that active serotonin production is a major metabolic feature of the poor prognosis group. These data support the reconsideration of concomitant serotonin-specific uptake inhibitors treatment during breast cancer chemotherapy. PMID:26813959

  19. Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production

    PubMed Central

    Leoncikas, Vytautas; Wu, Huihai; Ward, Lara T.; Kierzek, Andrzej M.; Plant, Nick J.

    2016-01-01

    A major roadblock in the effective treatment of cancers is their heterogeneity, whereby multiple molecular landscapes are classified as a single disease. To explore the contribution of cellular metabolism to cancer heterogeneity, we analyse the Metabric dataset, a landmark genomic and transcriptomic study of 2,000 individual breast tumours, in the context of the human genome-scale metabolic network. We create personalized metabolic landscapes for each tumour by exploring sets of active reactions that satisfy constraints derived from human biochemistry and maximize congruency with the Metabric transcriptome data. Classification of the personalized landscapes derived from 997 tumour samples within the Metabric discovery dataset reveals a novel poor prognosis cluster, reproducible in the 995-sample validation dataset. We experimentally follow mechanistic hypotheses resulting from the computational study and establish that active serotonin production is a major metabolic feature of the poor prognosis group. These data support the reconsideration of concomitant serotonin-specific uptake inhibitors treatment during breast cancer chemotherapy. PMID:26813959

  20. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  1. A simple engineered platform reveals different modes of tumor-microenvironmental cell interaction

    PubMed Central

    Zhang, Chentian; Shenk, Elizabeth M; Blaha, Laura C; Ryu, Byungwoo; Alani, Rhoda M; Cabodi, Mario; Wong, Joyce Y

    2016-01-01

    How metastatic cancer lesions survive and grow in secondary locations is not fully understood. There is a growing appreciation for the importance of tumor components, i.e. microenvironmental cells, in this process. Here, we used a simple microfabricated dual cell culture platform with a 500 μm gap to assess interactions between two different metastatic melanoma cell lines (1205Lu isolated from a lung lesion established through a mouse xenograft; and WM852 derived from a stage III metastatic lesion of skin) and microenvironmental cells derived from either skin (fibroblasts), lung (epithelial cells) or liver (hepatocytes). We observed differential bi-directional migration between microenvironmental cells and melanoma, depending on the melanoma cell line. Lung epithelial cells and skin fibroblasts, but not hepatocytes, stimulated higher 1205Lu migration than without microenvironmental cells; in the opposite direction, 1205Lu cells induced hepatocytes to migrate, but had no effect on skin fibroblasts and slightly inhibited lung epithelial cells. In contrast, none of the microenvironments had a significant effect on WM852; in this case, skin fibroblasts and hepatocytes—but not lung epithelial cells—exhibited directed migration toward WM852. These observations reveal significant effects a given microenvironmental cell line has on the two different melanoma lines, as well as how melanoma effects different microenvironmental cell lines. Our simple platform thus has potential to provide complex insights into different strategies used by cancerous cells to survive in and colonize metastatic sites. PMID:26716792

  2. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group.

    PubMed

    Nunoura, Takuro; Takaki, Yoshihiro; Kakuta, Jungo; Nishi, Shinro; Sugahara, Junichi; Kazama, Hiromi; Chee, Gab-Joo; Hattori, Masahira; Kanai, Akio; Atomi, Haruyuki; Takai, Ken; Takami, Hideto

    2011-04-01

    The domain Archaea has historically been divided into two phyla, the Crenarchaeota and Euryarchaeota. Although regarded as members of the Crenarchaeota based on small subunit rRNA phylogeny, environmental genomics and efforts for cultivation have recently revealed two novel phyla/divisions in the Archaea; the 'Thaumarchaeota' and 'Korarchaeota'. Here, we show the genome sequence of Candidatus 'Caldiarchaeum subterraneum' that represents an uncultivated crenarchaeotic group. A composite genome was reconstructed from a metagenomic library previously prepared from a microbial mat at a geothermal water stream of a sub-surface gold mine. The genome was found to be clearly distinct from those of the known phyla/divisions, Crenarchaeota (hyperthermophiles), Euryarchaeota, Thaumarchaeota and Korarchaeota. The unique traits suggest that this crenarchaeotic group can be considered as a novel archaeal phylum/division. Moreover, C. subterraneum harbors an ubiquitin-like protein modifier system consisting of Ub, E1, E2 and small Zn RING finger family protein with structural motifs specific to eukaryotic system proteins, a system clearly distinct from the prokaryote-type system recently identified in Haloferax and Mycobacterium. The presence of such a eukaryote-type system is unprecedented in prokaryotes, and indicates that a prototype of the eukaryotic protein modifier system is present in the Archaea. PMID:21169198

  3. Molecular characterization reveals similar virulence gene content in unrelated clonal groups of Escherichia coli of serogroup O174 (OX3).

    PubMed

    Tarr, Cheryl L; Nelson, Adam M; Beutin, Lothar; Olsen, Katharina E P; Whittam, Thomas S

    2008-02-01

    Most severe illnesses that are attributed to Shiga toxin-producing Escherichia coli are caused by isolates that also carry a pathogenicity island called the locus of enterocyte effacement (LEE). However, many cases of severe disease are associated with LEE-negative strains. We characterized the virulence gene content and the evolutionary relationships of Escherichia coli isolates of serogroup O174 (formerly OX3), strains of which have been implicated in cases of hemorrhagic colitis and hemolytic uremic syndrome. A total of 56 isolates from humans, farm animals, and food were subjected to multilocus virulence gene profiling (MVGP), and a subset of 16 isolates was subjected to multilocus sequence analysis (MLSA). The MLSA revealed that the O174 isolates fall into four separate evolutionary clusters within the E. coli phylogeny and are related to a diverse array of clonal groups, including enteropathogenic E. coli 2 (EPEC 2), enterohemorrhagic E. coli 2 (EHEC 2), and EHEC-O121. Of the 15 genes that we surveyed with MVGP, only 6 are common in the O174 strains. The different clonal groups within the O174 serogroup appear to have independently acquired and maintained similar sets of genes that include the Shiga toxins (stx1 and stx2) and two adhesins (saa and iha). The absence of certain O island (OI) genes, such as those found on OI-122, is consistent with the notion that certain pathogenicity islands act cooperatively with the LEE island.

  4. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group

    PubMed Central

    Nunoura, Takuro; Takaki, Yoshihiro; Kakuta, Jungo; Nishi, Shinro; Sugahara, Junichi; Kazama, Hiromi; Chee, Gab-Joo; Hattori, Masahira; Kanai, Akio; Atomi, Haruyuki; Takai, Ken; Takami, Hideto

    2011-01-01

    The domain Archaea has historically been divided into two phyla, the Crenarchaeota and Euryarchaeota. Although regarded as members of the Crenarchaeota based on small subunit rRNA phylogeny, environmental genomics and efforts for cultivation have recently revealed two novel phyla/divisions in the Archaea; the ‘Thaumarchaeota’ and ‘Korarchaeota’. Here, we show the genome sequence of Candidatus ‘Caldiarchaeum subterraneum’ that represents an uncultivated crenarchaeotic group. A composite genome was reconstructed from a metagenomic library previously prepared from a microbial mat at a geothermal water stream of a sub-surface gold mine. The genome was found to be clearly distinct from those of the known phyla/divisions, Crenarchaeota (hyperthermophiles), Euryarchaeota, Thaumarchaeota and Korarchaeota. The unique traits suggest that this crenarchaeotic group can be considered as a novel archaeal phylum/division. Moreover, C. subterraneum harbors an ubiquitin-like protein modifier system consisting of Ub, E1, E2 and small Zn RING finger family protein with structural motifs specific to eukaryotic system proteins, a system clearly distinct from the prokaryote-type system recently identified in Haloferax and Mycobacterium. The presence of such a eukaryote-type system is unprecedented in prokaryotes, and indicates that a prototype of the eukaryotic protein modifier system is present in the Archaea. PMID:21169198

  5. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival

    PubMed Central

    Singh, Anurag; Greninger, Patricia; Rhodes, Daniel; Koopman, Louise; Violette, Sheila; Bardeesy, Nabeel; Settleman, Jeff

    2009-01-01

    SUMMARY K-Ras mutations occur frequently in epithelial cancers. Using shRNAs to deplete K-Ras in lung and pancreatic cancer cell lines harboring K-Ras mutations, two classes were identified—lines that do or do not require K-Ras to maintain viability. Comparing these two classes of cancer cells revealed a gene expression signature in K-Ras-dependent cells, associated with a well-differentiated epithelial phenotype, which was also seen in primary tumors. Several of these genes encode pharmacologically tractable proteins, such as Syk and Ron kinases and integrin beta6, depletion of which induces epithelial-mesenchymal transformation (EMT) and apoptosis specifically in K-Ras-dependent cells. These findings indicate that epithelial differentiation and tumor cell viability are associated, and that EMT regulators in “K-Ras-addicted” cancers represent candidate therapeutic targets. SIGNIFICANCE K-Ras is the most frequently mutated oncogene in solid tumors and when aberrantly activated, is a potent tumor initiator. However, the identification of the critical effectors of K-Ras-mediated tumorigenesis and the development of clinically effective therapeutic strategies in this setting remain challenging. We have found that cancer cell lines harboring K-Ras mutations can be broadly classified into K-Ras-dependent and K-Ras-independent groups. By establishing a gene expression signature that can distinguish these two groups, we identified genes that are specifically up-regulated in K-Ras-dependent cells and are required for their viability. Therefore, the K-Ras dependency signature has revealed several potential therapeutic targets in a subset of otherwise pharmacologically intractable human cancers. PMID:19477428

  6. Complex interactions of the Eastern and Western Slavic populations with other European groups as revealed by mitochondrial DNA analysis.

    PubMed

    Grzybowski, Tomasz; Malyarchuk, Boris A; Derenko, Miroslava V; Perkova, Maria A; Bednarek, Jarosław; Woźniak, Marcin

    2007-06-01

    Mitochondrial DNA sequence variation was examined by the control region sequencing (HVS I and HVS II) and RFLP analysis of haplogroup-diagnostic coding region sites in 570 individuals from four regional populations of Poles and two Russian groups from northwestern part of the country. Additionally, sequences of complete mitochondrial genomes representing K1a1b1a subclade in Polish and Polish Roma populations have been determined. Haplogroup frequency patterns revealed in Poles and Russians are similar to those characteristic of other Europeans. However, there are several features of Slavic mtDNA pools seen on the level of regional populations which are helpful in the understanding of complex interactions of the Eastern and Western Slavic populations with other European groups. One of the most important is the presence of subhaplogroups U5b1b1, D5, Z1 and U8a with simultaneous scarcity of haplogroup K in populations of northwestern Russia suggesting the participation of Finno-Ugrian tribes in the formation of mtDNA pools of Russians from this region. The results of genetic structure analyses suggest that Russians from Velikii Novgorod area (northwestern Russia) and Poles from Suwalszczyzna (northeastern Poland) differ from all remaining Polish and Russian samples. Simultaneously, northwestern Russians and northeastern Poles bear some similarities to Baltic (Latvians) and Finno-Ugrian groups (Estonians) of northeastern Europe, especially on the level of U5 haplogroup frequencies. The occurrence of K1a1b1a subcluster in Poles and Polish Roma is one of the first direct proofs of the presence of Ashkenazi-specific mtDNA lineages in non-Jewish European populations.

  7. Crustal S-wave structure beneath Eastern Black Sea Region revealed by Rayleigh-wave group velocities

    NASA Astrophysics Data System (ADS)

    Çınar, Hakan; Alkan, Hamdi

    2016-01-01

    In this study, the crustal S-wave structure beneath the Eastern Black Sea Region (including the Eastern Black Sea Basin (EBSB) and Eastern Pontides (EP)) has been revealed using inversion of single-station, fundamental-mode Rayleigh-wave group velocities in the period range of 4-40 seconds. We used digital broadband recordings of 13 regional earthquakes that recently occurred in the easternmost EBSB recorded at stations of the Kandilli Observatory and Earthquake Research Institute (KOERI). The average group-velocity-dispersion curves were generated from 26 paths for the EBSB, and 16 paths for the EP, and they were inverted to determine the average 1-D shear-wave structure of the region. We have created a pseudo-section, roughly depicting the crustal structure of the region based on the group velocity inversion results of all station-earthquake paths. The thickness of the sedimentary layer reaches 12 km in the center of EBSB (Vs = 2.5-3.1 km/s) and decreases 4 km in the EP. There is a thin sedimentary layer in the EP (Vs = 2.7 km/s). A consolidated thin crust that exists in the EBSB possesses a high seismic velocity (Vs = 3.8 km/s). While a thin (∼26 km) and transitional crust exists beneath the EBSB, a thick (about 42 km) continental crust exists beneath the EP where the Conrad is clearly seen at about a 24 km depth. Thick continental crust in the EP region is clearly distinguished from a gradational velocity change (Vs = 3.4-3.8 km/s). The Moho dips approximately southwards, and the Vs velocity (4.25-4.15 km/s) beneath the Moho discontinuity decreases from the EBSB to the EP in the N-S direction. This may be an indication of a southward subduction.

  8. High density genotyping of STAT4 gene reveals multiple haplotypic associations with Systemic Lupus Erythematosus in different racial groups

    PubMed Central

    Namjou, Bahram; Sestak, Andrea L.; Armstrong, Don L.; Zidovetzki, Raphael; Kelly, Jennifer A.; Jacob, Noam; Ciobanu, Voicu; Kaufman, Kenneth M.; Ojwang, Joshua O.; Ziegler, Julie; Quismorio, Francesco; Reiff, Andreas; Myones, Barry L.; Guthridge, Joel M.; Nath, Swapan K.; Bruner, Gail R.; Mehrian-Shai, Ruth; Silverman, Earl; Klein-Gitelman, Marisa; McCurdy, Deborah; Wagner-Weiner, Linda; Nocton, James J.; Putterman, Chaim; Bae, Sang-Cheol; Kim, Yun Jung; Petri, Michelle; Reveille, John D.; Vyse, Timothy J.; Gilkeson, Gary S.; Kamen, Diane L.; Alarcón-Riquelme, Marta E.; Gaffney, Patrick M.; Moser, Kathy L; Merrill, Joan T.; Scofield, R. Hal; James, Judith A.; Langefeld, Carl D.; Harley, John B.; Jacob, Chaim O.

    2009-01-01

    Objective Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disorder with complex etiology and a strong genetic component. Recently, gene products involved in the interferon pathway have been under intense investigation in SLE pathogenesis. STAT1 and STAT4 are transcription factors that play key roles in the interferon and Th1 signaling pathways, making them attractive candidates for SLE susceptibility. Methods Fifty-six single-nucleotide polymorphisms (SNPs) across STAT1 and STAT4 genes on chromosome 2 were genotyped using Illumina platform as a part of extensive association study in a large collection of 9923 lupus cases and controls from different racial groups. DNA from patients and controls was obtained from peripheral blood. Principal component analyses and population based case-control association analyses were performed and the p values, FDR q values and Odds ratios with 95% confidence intervals (95% CIs) were calculated. Results We observed strong genetic associations with SLE and multiple SNPs located within the STAT4 gene in different ethnicities (Fisher combined p= 7.02×10−25). In addition to strong confirmation of the association in the 3rd intronic region of this gene reported previously, we identified additional haplotypic association across STAT4 gene and in particular a common risk haplotype that is found in multiple racial groups. In contrast, only a relatively weak suggestive association was observed with STAT1, probably due to the proximity to STAT4. Conclusion Our findings indicate that the STAT4 gene is likely to be a crucial component in SLE pathogenesis among multiple racial groups. The functional effects of this association, when revealed, might improve our understanding of the disease and provide new therapeutic targets. PMID:19333953

  9. Controlled One-on-One Encounters between Immune Cells and Microbes Reveal Mechanisms of Phagocytosis.

    PubMed

    Heinrich, Volkmar

    2015-08-01

    Among many challenges facing the battle against infectious disease, one quandary stands out. On the one hand, it is often unclear how well animal models and cell lines mimic human immune behavior. On the other hand, many core methods of cell and molecular biology cannot be applied to human subjects. For example, the profound susceptibility of neutropenic patients to infection marks neutrophils (the most abundant white blood cells in humans) as vital immune defenders. Yet because these cells cannot be cultured or genetically manipulated, there are gaps in our understanding of the behavior of human neutrophils. Here, we discuss an alternative, interdisciplinary strategy to dissect fundamental mechanisms of immune-cell interactions with bacteria and fungi. We show how biophysical analyses of single-live-cell/single-target encounters are revealing universal principles of immune-cell phagocytosis, while also dispelling misconceptions about the minimum required mechanistic determinants of this process.

  10. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.

    PubMed

    Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2016-06-01

    Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells.

  11. Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types.

    PubMed

    Dacey, Dennis M; Peterson, Beth B; Robinson, Farrel R; Gamlin, Paul D

    2003-01-01

    Diverse cell types and parallel pathways are characteristic of the vertebrate nervous system, yet it remains a challenge to define the basic components of most neural structures. We describe a process termed retrograde photodynamics that allowed us to rapidly make the link between morphology, physiology, and connectivity for ganglion cells in the macaque retina that project to the lateral geniculate nucleus (LGN). Rhodamine dextran injected into the LGN was transported retrogradely and sequestered within the cytoplasm of ganglion cell bodies. Exposure of the retina to light in vitro liberated the tracer and allowed it to diffuse throughout the dendrites, revealing the cell's complete morphology. Eight previously unknown LGN-projecting cell types were identified. Cells could also be targeted in vitro for intracellular recording and physiological analysis. The photodynamic process was also observed in pyramidal cells in a rat neocortical slice.

  12. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage.

    PubMed

    Jackson, Steven A; Olufs, Zachariah P G; Tran, Khoa A; Zaidan, Nur Zafirah; Sridharan, Rupa

    2016-03-01

    During the reprogramming of mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells, the activation of pluripotency genes such as NANOG occurs after the mesenchymal to epithelial transition. Here we report that both adult stem cells (neural stem cells) and differentiated cells (astrocytes) of the neural lineage can activate NANOG in the absence of cadherin expression during reprogramming. Gene expression analysis revealed that only the NANOG+E-cadherin+ populations expressed stabilization markers, had upregulated several cell cycle genes; and were transgene independent. Inhibition of DOT1L activity enhanced both the numbers of NANOG+ and NANOG+E-cadherin+ colonies in neural stem cells. Expressing SOX2 in MEFs prior to reprogramming did not alter the ratio of NANOG colonies that express E-cadherin. Taken together these results provide a unique pathway for reprogramming taken by cells of the neural lineage. PMID:26905202

  13. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    PubMed Central

    Welker, Alessandra M.; Jaros, Brian D.; Puduvalli, Vinay K.; Imitola, Jaime; Kaur, Balveen; Beattie, Christine E.

    2016-01-01

    ABSTRACT Glioblastoma (GBM) is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP) or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a platform for

  14. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells.

    PubMed

    Curto, Pedro; Simões, Isaura; Riley, Sean P; Martinez, Juan J

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated

  15. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells

    PubMed Central

    Curto, Pedro; Simões, Isaura; Riley, Sean P.; Martinez, Juan J.

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated

  16. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette

    2015-01-01

    Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308

  17. A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis

    PubMed Central

    Golé, Laurent; Rivière, Charlotte; Hayakawa, Yoshinori; Rieu, Jean-Paul

    2011-01-01

    Background Many cells communicate through the production of diffusible signaling molecules that accumulate and once a critical concentration has been reached, can activate or repress a number of target genes in a process termed quorum sensing (QS). In the social amoeba Dictyostelium discoideum, QS plays an important role during development. However little is known about its effect on cell migration especially in the growth phase. Methods and Findings To investigate the role of cell density on cell migration in the growth phase, we use multisite timelapse microscopy and automated cell tracking. This analysis reveals a high heterogeneity within a given cell population, and the necessity to use large data sets to draw reliable conclusions on cell motion. In average, motion is persistent for short periods of time (), but normal diffusive behavior is recovered over longer time periods. The persistence times are positively correlated with the migrated distances. Interestingly, the migrated distance decreases as well with cell density. The adaptation of cell migration to cell density highlights the role of a secreted quorum sensing factor (QSF) on cell migration. Using a simple model describing the balance between the rate of QSF generation and the rate of QSF dilution, we were able to gather all experimental results into a single master curve, showing a sharp cell transition between high and low motile behaviors with increasing QSF. Conclusion This study unambiguously demonstrates the central role played by QSF on amoeboid motion in the growth phase. PMID:22073217

  18. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.

    PubMed

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-05-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  19. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves

    PubMed Central

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-01-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  20. Optomechanical properties of cancer cells revealed by light-induced deformation and quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen

    2015-05-01

    There is a growing interest in cell biology and clinical diagnostics in label-free, optical techniques as the interaction with the sample is minimized and substances like dyes or fixatives do not affect the investigated cells. Such techniques include digital holographic microscopy (DHM) and the optical stretching by fiber optical two beam traps. DHM enables quantitative phase contrast imaging and thereby the determination of the cellular refractive index, dry mass and the volume, whereas optical cell stretching reveals the deformability of cells. Since optical stretching strongly depends on the optical properties and the shape of the investigated material we combined the usage of fiber optical stretching and DHM for the characterization of pancreatic tumor cells. The risk of tumors is their potential to metastasize, spread through the bloodstream and build distal tumors/metastases. The grade of dedifferentiation in which the cells lose their cell type specific properties is a measure for this metastatic potential. The less differentiated the cells are, the higher is their risk to metastasize. Our results demonstrate that pancreatic tumor cells, which are from the same tumor but vary in their grade of differentiation, show significant differences in their deformability. The retrieved data show that differentiated cells have a higher stiffness than less differentiated cells of the same tumor. Even cells that differ only in the expression of a single tumor suppressor gene which is responsible for cell-cell adhesions can be distinguished by their mechanical properties. Additionally, results from DHM measurements yield that the refractive index shows only few variations, indicating that it does not significantly influence optical cell stretching. The obtained results show a promising new approach for the phenotyping of different cell types, especially in tumor cell characterization and cancer diagnostics.

  1. Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways

    PubMed Central

    Owens, Kelly N.; Coffin, Allison B.; Hong, Lisa S.; Bennett, Keri O’Connell; Rubel, Edwin W; Raible, David W.

    2011-01-01

    We report a series of experiments investigating the kinetics of hair cell loss in lateral line neuromasts of zebrafish larvae following exposure to aminoglycoside antibiotics. Comparisons of the rate of hair cell loss and the differential effects of acute versus chronic exposure to gentamicin and neomycin revealed markedly different results. Neomycin induced rapid and dramatic concentration-dependent hair cell loss that is essentially complete within 90 minutes, regardless of concentration or exposure time. Gentamicin induced loss of half of the hair cells within 90 minutes and substantial additional loss, which was prolonged and cumulative over exposure times up to at least 24 hr. Small molecules and genetic mutations that inhibit neomycin-induced hair cell loss were ineffective against prolonged gentamicin exposure supporting the hypothesis that these two drugs are revealing at least two cellular pathways. The mechanosensory channel blocker amiloride blocked both neomycin and gentamicin-induced hair cell death acutely and chronically indicating that these aminoglycosides share a common entry route. Further tests with additional aminoglycosides revealed a spectrum of differential responses to acute and chronic exposure. The distinctions between the times of action of these aminoglycosides indicate that these drugs induce multiple cell death pathways. PMID:19285126

  2. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity

    PubMed Central

    Flood, Beverly E.; Fliss, Palmer; Jones, Daniel S.; Dick, Gregory J.; Jain, Sunit; Kaster, Anne-Kristin; Winkel, Matthias; Mußmann, Marc; Bailey, Jake

    2016-01-01

    The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group

  3. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity.

    PubMed

    Flood, Beverly E; Fliss, Palmer; Jones, Daniel S; Dick, Gregory J; Jain, Sunit; Kaster, Anne-Kristin; Winkel, Matthias; Mußmann, Marc; Bailey, Jake

    2016-01-01

    The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group

  4. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity.

    PubMed

    Flood, Beverly E; Fliss, Palmer; Jones, Daniel S; Dick, Gregory J; Jain, Sunit; Kaster, Anne-Kristin; Winkel, Matthias; Mußmann, Marc; Bailey, Jake

    2016-01-01

    The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group

  5. Single-molecule kinetics reveal microscopic mechanism by which High-Mobility Group B proteins alter DNA flexibility

    PubMed Central

    McCauley, Micah J.; Rueter, Emily M.; Rouzina, Ioulia; Maher, L. James; Williams, Mark C.

    2013-01-01

    Eukaryotic High-Mobility Group B (HMGB) proteins alter DNA elasticity while facilitating transcription, replication and DNA repair. We developed a new single-molecule method to probe non-specific DNA interactions for two HMGB homologs: the human HMGB2 box A domain and yeast Nhp6Ap, along with chimeric mutants replacing neutral N-terminal residues of the HMGB2 protein with cationic sequences from Nhp6Ap. Surprisingly, HMGB proteins constrain DNA winding, and this torsional constraint is released over short timescales. These measurements reveal the microscopic dissociation rates of HMGB from DNA. Separate microscopic and macroscopic (or local and non-local) unbinding rates have been previously proposed, but never independently observed. Microscopic dissociation rates for the chimeric mutants (∼10 s−1) are higher than those observed for wild-type proteins (∼0.1–1.0 s−1), reflecting their reduced ability to bend DNA through short-range interactions, despite their increased DNA-binding affinity. Therefore, transient local HMGB–DNA contacts dominate the DNA-bending mechanism used by these important architectural proteins to increase DNA flexibility. PMID:23143110

  6. A microfluidic platform reveals differential response of regulatory T cells to micropatterned costimulation arrays.

    PubMed

    Lee, Joung-Hyun; Dustin, Michael L; Kam, Lance C

    2015-11-01

    T cells are key mediators of adaptive immunity. However, the overall immune response is often directed by minor subpopulations of this heterogeneous family of cells, owing to specificity of activation and amplification of functional response. Knowledge of differences in signaling and function between T cell subtypes is far from complete, but is clearly needed for understanding and ultimately leveraging this branch of the adaptive immune response. This report investigates differences in cell response to micropatterned surfaces by conventional and regulatory T cells. Specifically, the ability of cells to respond to the microscale geometry of TCR/CD3 and CD28 engagement is made possible using a magnetic-microfluidic device that overcomes limitations in imaging efficiency associated with conventional microscopy equipment. This device can be readily assembled onto micropatterned surfaces while maintaining the activity of proteins and other biomolecules necessary for such studies. In operation, a target population of cells is tagged using paramagnetic beads, and then trapped in a divergent magnetic field within the chamber. Following washing, the target cells are released to interact with a designated surface. Characterization of this system with mouse CD4(+) T cells demonstrated a 50-fold increase in target-to-background cell purity, with an 80% collection efficiency. Applying this approach to CD4(+)CD25(+) regulatory T cells, it is then demonstrated that these rare cells respond less selectively to micro-scale features of anti-CD3 antibodies than CD4(+)CD25(-) conventional T cells, revealing a difference in balance between TCR/CD3 and LFA-1-based adhesion. PKC-θ localized to the distal pole of regulatory T cells, away from the cell-substrate interface, suggests a mechanism for differential regulation of TCR/LFA-1-based adhesion. Moreover, specificity of cell adhesion to anti-CD3 features was dependent on the relative position of anti-CD28 signaling within the cell

  7. A microfluidic platform reveals differential response of regulatory T cells to micropatterned costimulation arrays.

    PubMed

    Lee, Joung-Hyun; Dustin, Michael L; Kam, Lance C

    2015-11-01

    T cells are key mediators of adaptive immunity. However, the overall immune response is often directed by minor subpopulations of this heterogeneous family of cells, owing to specificity of activation and amplification of functional response. Knowledge of differences in signaling and function between T cell subtypes is far from complete, but is clearly needed for understanding and ultimately leveraging this branch of the adaptive immune response. This report investigates differences in cell response to micropatterned surfaces by conventional and regulatory T cells. Specifically, the ability of cells to respond to the microscale geometry of TCR/CD3 and CD28 engagement is made possible using a magnetic-microfluidic device that overcomes limitations in imaging efficiency associated with conventional microscopy equipment. This device can be readily assembled onto micropatterned surfaces while maintaining the activity of proteins and other biomolecules necessary for such studies. In operation, a target population of cells is tagged using paramagnetic beads, and then trapped in a divergent magnetic field within the chamber. Following washing, the target cells are released to interact with a designated surface. Characterization of this system with mouse CD4(+) T cells demonstrated a 50-fold increase in target-to-background cell purity, with an 80% collection efficiency. Applying this approach to CD4(+)CD25(+) regulatory T cells, it is then demonstrated that these rare cells respond less selectively to micro-scale features of anti-CD3 antibodies than CD4(+)CD25(-) conventional T cells, revealing a difference in balance between TCR/CD3 and LFA-1-based adhesion. PKC-θ localized to the distal pole of regulatory T cells, away from the cell-substrate interface, suggests a mechanism for differential regulation of TCR/LFA-1-based adhesion. Moreover, specificity of cell adhesion to anti-CD3 features was dependent on the relative position of anti-CD28 signaling within the cell

  8. Lysis of cells infected with typhus group rickettsiae by a human cytotoxic T cell clone

    SciTech Connect

    Carl, M.; Robbins, F.; Hartzman, R.J.; Dasch, G.A.

    1987-12-15

    Cytolytic human T cells clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii, as measured by /sup 51/Cr-release from target cells. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes.

  9. Maturation of adult beta-cells revealed using a Pdx1/insulin dual-reporter lentivirus.

    PubMed

    Szabat, Marta; Luciani, Dan S; Piret, James M; Johnson, James D

    2009-04-01

    The enigmatic process of beta-cell maturation has significant implications for diabetes pathogenesis, and potential diabetes therapies. This study examined the dynamics and heterogeneity of insulin and pancreatic duodenal homeobox (Pdx)-1 gene expression in adult beta-cells. Insulin and Pdx1 expression were monitored in human and mouse islet cells and MIN6 cells using a Pdx1-monomeric red fluorescent protein/insulin-enhanced green fluorescent protein dual-reporter lentivirus. The majority of fluorescent cells were highly positive for both Pdx1 and insulin. Cells expressing Pdx1 but little or no insulin (Pdx1(+)/Ins(low)) comprised 15-25% of the total population. Time-lapse imaging demonstrated that Pdx1(+)/Ins(low) primary beta-cells and MIN6 cells could convert to Pdx1(+)/Ins(+) cells without cell division. Genes involved in the mature beta-cell phenotype (Glut2, MafA) were expressed at higher levels in Pdx1(+)/Ins(+) cells relative to Pdx1(+)/Ins(low) cells. Conversely, genes implicated in early beta-cell development (MafB, Nkx2.2) were enriched in Pdx1(+)/Ins(low) cells. Sorted Pdx1(+)/Ins(low) MIN6 cells had a higher replication rate and secreted less insulin relative to double-positive cells. Long-term phenotype tracking of Pdx1(+)/Ins(low) cells showed two groups, one that matured into Pdx1(+)/Ins(+) cells and one that remained immature. These results demonstrate that adult beta-cells pass through distinct maturation states, which is consistent with previously observed heterogeneity in insulin and Pdx1 expression in adult beta-cells. At a given time, a proportion of adult beta-cells share similar characteristics to functionally immature embryonic beta-cell progenitors. The maturation of adult beta-cells recapitulates development in that Pdx1 expression precedes the robust expression of insulin and other mature beta-cell genes. These results have implications for harnessing the maturation process for therapeutic purposes. PMID:19095744

  10. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    SciTech Connect

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  11. Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells

    PubMed Central

    Lee, Timothy K.; Meng, Kevin; Shi, Handuo; Huang, Kerwyn Casey

    2016-01-01

    The peptidoglycan cell wall is an integral organelle critical for bacterial cell shape and stability. Proper cell wall construction requires the interaction of synthesis enzymes and the cytoskeleton, but it is unclear how the activities of individual proteins are coordinated to preserve the morphology and integrity of the cell wall during growth. To elucidate this coordination, we used single-molecule imaging to follow the behaviours of the two major peptidoglycan synthases in live, elongating Escherichia coli cells and after perturbation. We observed heterogeneous localization dynamics of penicillin-binding protein (PBP) 1A, the synthase predominantly associated with cell wall elongation, with individual PBP1A molecules distributed between mobile and immobile populations. Perturbations to PBP1A activity, either directly through antibiotics or indirectly through PBP1A's interaction with its lipoprotein activator or other synthases, shifted the fraction of mobile molecules. Our results suggest that multiple levels of regulation control the activity of enzymes to coordinate peptidoglycan synthesis. PMID:27774981

  12. Whole population cell analysis of a landmark-rich mammalian epithelium reveals multiple elongation mechanisms

    PubMed Central

    Economou, Andrew D.; Brock, Lara J.; Cobourne, Martyn T.; Green, Jeremy B. A.

    2013-01-01

    Tissue elongation is a fundamental component of developing and regenerating systems. Although localised proliferation is an important mechanism for tissue elongation, potentially important contributions of other elongation mechanisms, specifically cell shape change, orientated cell division and cell rearrangement, are rarely considered or quantified, particularly in mammalian systems. Their quantification, together with proliferation, provides a rigorous framework for the analysis of elongation. The mammalian palatal epithelium is a landmark-rich tissue, marked by regularly spaced ridges (rugae), making it an excellent model in which to analyse the contributions of cellular processes to directional tissue growth. We captured confocal stacks of entire fixed mouse palate epithelia throughout the mid-gestation growth period, labelled with membrane, nuclear and cell proliferation markers and segmented all cells (up to ∼20,000 per palate), allowing the quantification of cell shape and proliferation. Using the rugae as landmarks, these measures revealed that the so-called growth zone is a region of proliferation that is intermittently elevated at ruga initiation. The distribution of oriented cell division suggests that it is not a driver of tissue elongation, whereas cell shape analysis revealed that both elongation of cells leaving the growth zone and apico-basal cell rearrangements do contribute significantly to directional growth. Quantitative comparison of elongation processes indicated that proliferation contributes most to elongation at the growth zone, but cell shape change and rearrangement contribute as much as 40% of total elongation. We have demonstrated the utility of an approach to analysing the cellular mechanisms underlying tissue elongation in mammalian tissues. It should be broadly applied to higher-resolution analysis of links between genotypes and malformation phenotypes. PMID:24173805

  13. Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter

    PubMed Central

    Le, Anne; Stine, Zachary E.; Nguyen, Christopher; Afzal, Junaid; Sun, Peng; Hamaker, Max; Siegel, Nicholas M.; Gouw, Arvin M.; Kang, Byung-hak; Yu, Shu-Han; Cochran, Rory L.; Sailor, Kurt A.; Song, Hongjun; Dang, Chi V.

    2014-01-01

    Although aerobic glycolysis provides an advantage in the hypoxic tumor microenvironment, some cancer cells can also respire via oxidative phosphorylation. These respiring (“non-Warburg”) cells were previously thought not to play a key role in tumorigenesis and thus fell from favor in the literature. We sought to determine whether subpopulations of hypoxic cancer cells have different metabolic phenotypes and gene-expression profiles that could influence tumorigenicity and therapeutic response, and we therefore developed a dual fluorescent protein reporter, HypoxCR, that detects hypoxic [hypoxia-inducible factor (HIF) active] and/or cycling cells. Using HEK293T cells as a model, we identified four distinct hypoxic cell populations by flow cytometry. The non-HIF/noncycling cell population expressed a unique set of genes involved in mitochondrial function. Relative to the other subpopulations, these hypoxic “non-Warburg” cells had highest oxygen consumption rates and mitochondrial capacity consistent with increased mitochondrial respiration. We found that these respiring cells were unexpectedly tumorigenic, suggesting that continued respiration under limiting oxygen conditions may be required for tumorigenicity. PMID:25114222

  14. Genome-wide analysis of Musashi-2 targets reveals novel functions in governing epithelial cell migration

    PubMed Central

    Bennett, Christopher G.; Riemondy, Kent; Chapnick, Douglas A.; Bunker, Eric; Liu, Xuedong; Kuersten, Scott; Yi, Rui

    2016-01-01

    The Musashi-2 (Msi2) RNA-binding protein maintains stem cell self-renewal and promotes oncogenesis by enhancing cell proliferation in hematopoietic and gastrointestinal tissues. However, it is unclear how Msi2 recognizes and regulates mRNA targets in vivo and whether Msi2 primarily controls cell growth in all cell types. Here we identified Msi2 targets with HITS-CLIP and revealed that Msi2 primarily recognizes mRNA 3′UTRs at sites enriched in multiple copies of UAG motifs in epithelial progenitor cells. RNA-seq and ribosome profiling demonstrated that Msi2 promotes targeted mRNA decay without affecting translation efficiency. Unexpectedly, the most prominent Msi2 targets identified are key regulators that govern cell motility with a high enrichment in focal adhesion and extracellular matrix-receptor interaction, in addition to regulators of cell growth and survival. Loss of Msi2 stimulates epithelial cell migration, increases the number of focal adhesions and also compromises cell growth. These findings provide new insights into the molecular mechanisms of Msi2's recognition and repression of targets and uncover a key function of Msi2 in restricting epithelial cell migration. PMID:27034466

  15. Genome-wide analysis of Musashi-2 targets reveals novel functions in governing epithelial cell migration.

    PubMed

    Bennett, Christopher G; Riemondy, Kent; Chapnick, Douglas A; Bunker, Eric; Liu, Xuedong; Kuersten, Scott; Yi, Rui

    2016-05-01

    The Musashi-2 (Msi2) RNA-binding protein maintains stem cell self-renewal and promotes oncogenesis by enhancing cell proliferation in hematopoietic and gastrointestinal tissues. However, it is unclear how Msi2 recognizes and regulates mRNA targets in vivo and whether Msi2 primarily controls cell growth in all cell types. Here we identified Msi2 targets with HITS-CLIP and revealed that Msi2 primarily recognizes mRNA 3'UTRs at sites enriched in multiple copies of UAG motifs in epithelial progenitor cells. RNA-seq and ribosome profiling demonstrated that Msi2 promotes targeted mRNA decay without affecting translation efficiency. Unexpectedly, the most prominent Msi2 targets identified are key regulators that govern cell motility with a high enrichment in focal adhesion and extracellular matrix-receptor interaction, in addition to regulators of cell growth and survival. Loss of Msi2 stimulates epithelial cell migration, increases the number of focal adhesions and also compromises cell growth. These findings provide new insights into the molecular mechanisms of Msi2's recognition and repression of targets and uncover a key function of Msi2 in restricting epithelial cell migration. PMID:27034466

  16. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers

    PubMed Central

    Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C.; Beekman, Renée; Rodríguez-Madoz, Juan R.; José-Enériz, Edurne San; Fang, Fang; Gutiérrez, Norma C.; García-Verdugo, José M.; Robson, Michael I.; Schirmer, Eric C.; Guruceaga, Elisabeth; Martens, Joost H.A.; Gut, Marta; Calasanz, Maria J.; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F. San; Melnick, Ari; Stunnenberg, Hendrik G.; Gut, Ivo G.

    2015-01-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM. PMID:25644835

  17. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging

    PubMed Central

    Yaginuma, Hideyuki; Kawai, Shinnosuke; Tabata, Kazuhito V.; Tomiyama, Keisuke; Kakizuka, Akira; Komatsuzaki, Tamiki; Noji, Hiroyuki; Imamura, Hiromi

    2014-01-01

    Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions. Quantitative measurement of the absolute ATP concentration in individual cells has not been achieved because of the lack of reliable methods. In this study, we developed a new genetically-encoded ratiometric fluorescent ATP indicator “QUEEN”, which is composed of a single circularly-permuted fluorescent protein and a bacterial ATP binding protein. Unlike previous FRET-based indicators, QUEEN was apparently insensitive to bacteria growth rate changes. Importantly, intracellular ATP concentrations of numbers of bacterial cells calculated from QUEEN fluorescence were almost equal to those from firefly luciferase assay. Thus, QUEEN is suitable for quantifying the absolute ATP concentration inside bacteria cells. Finally, we found that, even for a genetically-identical Escherichia coli cell population, absolute concentrations of intracellular ATP were significantly diverse between individual cells from the same culture, by imaging QUEEN signals from single cells. PMID:25283467

  18. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response

    PubMed Central

    Feinerman, Ofer; Jentsch, Garrit; Tkach, Karen E; Coward, Jesse W; Hathorn, Matthew M; Sneddon, Michael W; Emonet, Thierry; Smith, Kendall A; Altan-Bonnet, Grégoire

    2010-01-01

    Understanding how the immune system decides between tolerance and activation by antigens requires addressing cytokine regulation as a highly dynamic process. We quantified the dynamics of interleukin-2 (IL-2) signaling in a population of T cells during an immune response by combining in silico modeling and single-cell measurements in vitro. We demonstrate that IL-2 receptor expression levels vary widely among T cells creating a large variability in the ability of the individual cells to consume, produce and participate in IL-2 signaling within the population. Our model reveals that at the population level, these heterogeneous cells are engaged in a tug-of-war for IL-2 between regulatory (Treg) and effector (Teff) T cells, whereby access to IL-2 can either increase the survival of Teff cells or the suppressive capacity of Treg cells. This tug-of-war is the mechanism enforcing, at the systems level, a core function of Treg cells, namely the specific suppression of survival signals for weakly activated Teff cells but not for strongly activated cells. Our integrated model yields quantitative, experimentally validated predictions for the manipulation of Treg suppression. PMID:21119631

  19. Role of group 3 innate lymphoid cells in antibody production

    PubMed Central

    Magri, Giuliana; Cerutti, Andrea

    2015-01-01

    Innate lymphoid cells (ILCs) constitute a heterogeneous family of effector lymphocytes of the innate immune system that mediate lymphoid organogenesis, tissue repair, immunity and inflammation. The initial view that ILCs exert their protective functions solely during the innate phase of an immune response has been recently challenged by evidence indicating that ILCs shape adaptive immunity by establishing both contact-dependent and contact-independent interactions with multiple hematopoietic and non-hematopoietic cells, including B cells. Some of these interactions enhance antibody responses both systemically and at mucosal sites of entry. PMID:25621842

  20. An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy.

    PubMed

    Bohórquez, Diego V; Samsa, Leigh A; Roholt, Andrew; Medicetty, Satish; Chandra, Rashmi; Liddle, Rodger A

    2014-01-01

    The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells. PMID:24587096

  1. An Enteroendocrine Cell – Enteric Glia Connection Revealed by 3D Electron Microscopy

    PubMed Central

    Bohórquez, Diego V.; Samsa, Leigh A.; Roholt, Andrew; Medicetty, Satish; Chandra, Rashmi; Liddle, Rodger A.

    2014-01-01

    The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY – both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia – the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells. PMID:24587096

  2. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis.

    PubMed

    Sampathkumar, Arun; Lindeboom, Jelmer J; Debolt, Seth; Gutierrez, Ryan; Ehrhardt, David W; Ketelaar, Tijs; Persson, Staffan

    2011-06-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. PMID:21693695

  3. Live Cell Imaging Reveals Structural Associations between the Actin and Microtubule Cytoskeleton in Arabidopsis [W] [OA

    PubMed Central

    Sampathkumar, Arun; Lindeboom, Jelmer J.; Debolt, Seth; Gutierrez, Ryan; Ehrhardt, David W.; Ketelaar, Tijs; Persson, Staffan

    2011-01-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. PMID:21693695

  4. Single-cell genomics reveals organismal interactions in uncultivated marine protists.

    PubMed

    Yoon, Hwan Su; Price, Dana C; Stepanauskas, Ramunas; Rajah, Veeran D; Sieracki, Michael E; Wilson, William H; Yang, Eun Chan; Duffy, Siobain; Bhattacharya, Debashish

    2011-05-01

    Whole-genome shotgun sequence data from three individual cells isolated from seawater, followed by analysis of ribosomal DNA, indicated that the cells represented three divergent clades of picobiliphytes. In contrast with the recent description of this phylum, we found no evidence of plastid DNA nor of nuclear-encoded plastid-targeted proteins, which suggests that these picobiliphytes are heterotrophs. Genome data from one cell were dominated by sequences from a widespread single-stranded DNA virus. This virus was absent from the other two cells, both of which contained non-eukaryote DNA derived from marine Bacteroidetes and large DNA viruses. By using shotgun sequencing of uncultured marine picobiliphytes, we revealed the distinct interactions of individual cells.

  5. Necrotic enlargement of cone photoreceptor cells and the release of high-mobility group box-1 in retinitis pigmentosa

    PubMed Central

    Murakami, Y; Ikeda, Y; Nakatake, S; Tachibana, T; Fujiwara, K; Yoshida, N; Notomi, S; Nakao, S; Hisatomi, T; Miller, J W; Vavvas, DG; Sonoda, KH; Ishibashi, T

    2015-01-01

    Retinitis pigmentosa (RP) refers to a group of inherited retinal degenerations resulting form rod and cone photoreceptor cell death. The rod cell death due to deleterious genetic mutations has been shown to occur mainly through apoptosis, whereas the mechanisms and features of the secondary cone cell death have not been fully elucidated. Our previous study showed that the cone cell death in rd10 mice, an animal model of RP, involves necrotic features and is partly mediated by the receptor interacting protein kinase. However, the relevancy of necrotic cone cell death in human RP patients remains unknown. In the present study, we showed that dying cone cells in rd10 mice exhibited cellular enlargement, along with necrotic changes such as cellular swelling and mitochondrial rupture. In human eyes, live imaging of cone cells by adaptive optics scanning laser ophthalmoscopy revealed significantly increased percentages of enlarged cone cells in the RP patients compared with the control subjects. The vitreous of the RP patients contained significantly higher levels of high-mobility group box-1, which is released extracellularly associated with necrotic cell death. These findings suggest that necrotic enlargement of cone cells is involved in the process of cone degeneration, and that necrosis may be a novel target to prevent or delay the loss of cone-mediated central vision in RP. PMID:27551484

  6. Genetically induced cell death in bulge stem cells reveals their redundancy for hair and epidermal regeneration.

    PubMed

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-03-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent.

  7. Cancer cell(s) cycle sequencing reveals universal mechanisms of apoptosis.

    PubMed

    Marretta, R M Ardito; Ales, F

    2010-12-01

    In this paper, cell cycle in higher eukaryotes and their molecular networks signals both in G1/S and G2/M transitions are replicated in silico. Biochemical kinetics, converted into a set of differential equations, and system control theory are employed to design multi-nested digital layers to simulate protein-to-protein activation and inhibition for cell cycle dynamics in the presence of damaged genomes. Sequencing and controlling the digital process of four micro-scale species networks (p53/Mdm2/DNA damage, p21mRNA/cyclin-CDK complex, CDK/CDC25/weel/SKP2/APC/CKI and apoptosis target genes system) not only allows the comprehension of the mechanisms of these molecule interactions but paves the way for unraveling the participants and their by-products, until now quite unclear, which have the task of carrying out (or not) cell death. Whatever the running simulations (e.g., different species signals, mutant cells and different DNA damage levels), the results of the proposed cell digital multi-layers give reason to believe in the existence of a universal apoptotic mechanism. As a consequence, we identified and selected cell check points, sizers, timers and specific target genes dynamic both for influencing mitotic process and avoiding cancer proliferation as much as for leading the cancer cell(s) to collapse into a steady stable apoptosis phase. PMID:21141676

  8. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells.

    PubMed

    Polo, Jose M; Dell'Oso, Tania; Ranuncolo, Stella Maris; Cerchietti, Leandro; Beck, David; Da Silva, Gustavo F; Prive, Gilbert G; Licht, Jonathan D; Melnick, Ari

    2004-12-01

    The BTB/POZ transcriptional repressor and candidate oncogene BCL6 is frequently misregulated in B-cell lymphomas. The interface through which the BCL6 BTB domain mediates recruitment of the SMRT, NCoR and BCoR corepressors was recently identified. To determine the contribution of this interface to BCL6 transcriptional and biological properties, we generated a peptide that specifically binds BCL6 and blocks corepressor recruitment in vivo. This inhibitor disrupts BCL6-mediated repression and establishment of silenced chromatin, reactivates natural BCL6 target genes, and abrogates BCL6 biological function in B cells. In BCL6-positive lymphoma cells, peptide blockade caused apoptosis and cell cycle arrest. BTB domain peptide inhibitors may constitute a novel therapeutic agent for B-cell lymphomas. PMID:15531890

  9. Donor-specific indirect pathway analysis reveals a B-cell-independent signature which reflects outcomes in kidney transplant recipients.

    PubMed

    Haynes, L D; Jankowska-Gan, E; Sheka, A; Keller, M R; Hernandez-Fuentes, M P; Lechler, R I; Seyfert-Margolis, V; Turka, L A; Newell, K A; Burlingham, W J

    2012-03-01

    To investigate the role of donor-specific indirect pathway T cells in renal transplant tolerance, we analyzed responses in peripheral blood of 45 patients using the trans-vivo delayed-type hypersensitivity assay. Subjects were enrolled into five groups-identical twin, clinically tolerant (TOL), steroid monotherapy (MONO), standard immunosuppression (SI) and chronic rejection (CR)-based on transplant type, posttransplant immunosuppression and graft function. The indirect pathway was active in all groups except twins but distinct intergroup differences were evident, corresponding to clinical status. The antidonor indirect pathway T effector response increased across patient groups (TOL < MONO < SI < CR; p < 0.0001) whereas antidonor indirect pathway T regulatory response decreased (TOL > MONO = SI > CR; p < 0.005). This pattern differed from that seen in circulating naïve B-cell numbers and in a cross-platform biomarker analysis, where patients on monotherapy were not ranked closest to TOL patients, but rather were indistinguishable from chronically rejecting patients. Cross-sectional analysis of the indirect pathway revealed a spectrum in T-regulatory:T-effector balance, ranging from TOL patients having predominantly regulatory responses to CR patients having predominantly effector responses. Therefore, the indirect pathway measurements reflect a distinct aspect of tolerance from the recently reported elevation of circulating naïve B cells, which was apparent only in recipients off immunosuppression. PMID:22151236

  10. Group I PAK Inhibitor IPA-3 Induces Cell Death and Affects Cell Adhesivity to Fibronectin in Human Hematopoietic Cells

    PubMed Central

    Kuželová, Kateřina; Grebeňová, Dana; Holoubek, Aleš; Röselová, Pavla; Obr, Adam

    2014-01-01

    P21-activated kinases (PAKs) are involved in the regulation of multiple processes including cell proliferation, adhesion and migration. However, the current knowledge about their function is mainly based on results obtained in adherent cell types. We investigated the effect of group I PAK inhibition using the compound IPA-3 in a variety of human leukemic cell lines (JURL-MK1, MOLM-7, K562, CML-T1, HL-60, Karpas-299, Jurkat, HEL) as well as in primary blood cells. IPA-3 induced cell death with EC50 ranging from 5 to more than 20 μM. Similar range was found for IPA-3-mediated dephosphorylation of a known PAK downstream effector, cofilin. The cell death was associated with caspase-3 activation, PARP cleavage and apoptotic DNA fragmentation. In parallel, 20 μM IPA-3 treatment induced rapid and marked decrease of the cell adhesivity to fibronectin. Per contra, partial reduction of PAK activity using lower dose IPA-3 or siRNA resulted in a slight increase in the cell adhesivity. The changes in the cell adhesivity were also studied using real-time microimpedance measurement and by interference reflection microscopy. Significant differences in the intracellular IPA-3 level among various cell lines were observed indicating that an active mechanism is involved in IPA-3 transport. PMID:24664099

  11. Single neuron transcriptome analysis can reveal more than cell type classification

    PubMed Central

    Harbom, Lise J.; Chronister, William D.

    2016-01-01

    A recent single cell mRNA sequencing study by Dueck et al. compares neuronal transcriptomes to the transcriptomes of adipocytes and cardiomyocytes. Single cell ‘omic approaches such as those used by the authors are at the leading edge of molecular and biophysical measurement. Many groups are currently employing single cell sequencing approaches to understand cellular heterogeneity in cancer and during normal development. These single cell approaches also are beginning to address long‐standing questions regarding nervous system diversity. Beyond an innate interest in cataloging cell type diversity in the brain, single cell neuronal diversity has important implications for neurotypic neural circuit function and for neurological disease. Herein, we review the authors’ methods and findings, which most notably include evidence of unique expression profiles in some single neurons. PMID:26749010

  12. Effect of ABO blood group mismatching on corneal epithelial cells: an in vitro study

    PubMed Central

    Chan, J.; Dua, H.; Powell-Richards, A.; Jones, D; Harris, I.

    2001-01-01

    AIM—To determine, in vitro, the effects of blood group ABO mismatching on corneal epithelial cells.
METHODS—Corneal epithelial cell cultures were established from 32 human cadaver donor eyes. Epithelial cells (100 µl of 4 × 102 cells per µl) were incubated for 4 hours with antibodies against blood group antigens A, B, and AB, with and without complement. Cell lysis was assayed by a chemiluminescent assay using Cytolite reagent. Live cells, remaining after incubation, were counted in a scintillation counter. The blood group of the donors was determined retrospectively, in a blinded manner.
RESULTS—Retrospective tracing of donor blood groups was possible for 20 donors. In all cases the blood group corresponded with that suggested by the cell lysis assay. Significant cell lysis was observed when known A group cells were incubated with anti-A and anti-AB antibody, B group cells were incubated with anti-B and AB antibody, and AB group cells were incubated with anti-AB antibody. Lysis occurred only in the presence of complement. No lysis of O group cells was observed with any of the antibodies. In all cases, lysis was observed only with neat (serum) antibody concentrations.
CONCLUSIONS—Blood group ABO mismatching results in significant lysis of corneal epithelial cells. The antibody concentration required for lysis equals that found in serum. Such levels of antibody are unlikely to be achieved in tears and/or aqueous. This may offer an explanation for the conflicting reports of the studies on the effect of blood group matching on corneal grafts. The variability in the outcome may reflect the levels of antibodies gaining access to the corneal cells and not the mismatching alone.

 PMID:11520765

  13. Enantiodivergent Fluorination of Allylic Alcohols: Data Set Design Reveals Structural Interplay between Achiral Directing Group and Chiral Anion.

    PubMed

    Neel, Andrew J; Milo, Anat; Sigman, Matthew S; Toste, F Dean

    2016-03-23

    Enantioselectivity values represent relative rate measurements that are sensitive to the structural features of the substrates and catalysts interacting to produce them. Therefore, well-designed enantioselectivity data sets are information rich and can provide key insights regarding specific molecular interactions. However, if the mechanism for enantioselection varies throughout a data set, these values cannot be easily compared. This premise, which is the crux of free energy relationships, exposes a challenging issue of identifying mechanistic breaks within multivariate correlations. Herein, we describe an approach to addressing this problem in the context of a chiral phosphoric acid catalyzed fluorination of allylic alcohols using aryl boronic acids as transient directing groups. By designing a data set in which both the phosphoric and boronic acid structures were systematically varied, key enantioselectivity outliers were identified and analyzed. A mechanistic study was executed to reveal the structural origins of these outliers, which was consistent with the presence of several mechanistic regimes within the data set. While 2- and 4-substituted aryl boronic acids favored the (R)-enantiomer with most of the studied catalysts, meta-alkoxy substituted aryl boronic acids resulted in the (S)-enantiomer when used in combination with certain (R)-phosphoric acids. We propose that this selectivity reversal is the result of a lone pair-π interaction between the substrate ligated boronic acid and the phosphate. On the basis of this proposal, a catalyst system was identified, capable of producing either enantiomer in high enantioselectivity (77% (R)-2 to 92% (S)-2) using the same chiral catalyst by subtly changing the structure of the achiral boronic acid.

  14. Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum.

    PubMed

    Mei, Jiaqin; Ding, Yijuan; Li, Yuehua; Tong, Chaobo; Du, Hai; Yu, Yang; Wan, Huafan; Xiong, Qing; Yu, Jingyin; Liu, Shengyi; Li, Jiana; Qian, Wei

    2016-01-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops, but not in rice. The leaves of a rice line, a partial resistant (R) and a susceptible (S) Brassica oleracea pool that bulked from a resistance-segregating F2 population were employed for transcriptome sequencing before and after inoculation by S. sclerotiorum for 6 and 12 h. Distinct transcriptome profiles were revealed between B. oleracea and rice in response to S. sclerotiorum. Enrichment analyses of GO and KEGG indicated an enhancement of antioxidant activity in the R B. oleracea and rice, and histochemical staining exhibited obvious lighter reactive oxygen species (ROS) accumulation and cell death in rice and the R B. oleracea as compared to that in the S B. oleracea. Significant enhancement of Ca(2+) signalling, a positive regulator of ROS and cell death, were detected in S B. oleracea after inoculation, while it was significantly repressed in the R B. oleracea group. Obvious difference was detected between two B. oleracea groups for WRKY transcription factors, particularly for those regulating cell death. These findings suggest diverse modulations on cell death in host in response to S. sclerotiorum. Our study provides useful insight into the resistant mechanism to S. sclerotiorum. PMID:27647523

  15. Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum

    PubMed Central

    Mei, Jiaqin; Ding, Yijuan; Li, Yuehua; Tong, Chaobo; Du, Hai; Yu, Yang; Wan, Huafan; Xiong, Qing; Yu, Jingyin; Liu, Shengyi; Li, Jiana; Qian, Wei

    2016-01-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops, but not in rice. The leaves of a rice line, a partial resistant (R) and a susceptible (S) Brassica oleracea pool that bulked from a resistance-segregating F2 population were employed for transcriptome sequencing before and after inoculation by S. sclerotiorum for 6 and 12 h. Distinct transcriptome profiles were revealed between B. oleracea and rice in response to S. sclerotiorum. Enrichment analyses of GO and KEGG indicated an enhancement of antioxidant activity in the R B. oleracea and rice, and histochemical staining exhibited obvious lighter reactive oxygen species (ROS) accumulation and cell death in rice and the R B. oleracea as compared to that in the S B. oleracea. Significant enhancement of Ca2+ signalling, a positive regulator of ROS and cell death, were detected in S B. oleracea after inoculation, while it was significantly repressed in the R B. oleracea group. Obvious difference was detected between two B. oleracea groups for WRKY transcription factors, particularly for those regulating cell death. These findings suggest diverse modulations on cell death in host in response to S. sclerotiorum. Our study provides useful insight into the resistant mechanism to S. sclerotiorum. PMID:27647523

  16. Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms.

    PubMed

    Fuccillo, Marc V; Földy, Csaba; Gökce, Özgün; Rothwell, Patrick E; Sun, Gordon L; Malenka, Robert C; Südhof, Thomas C

    2015-07-15

    Neurexins are considered central organizers of synapse architecture that are implicated in neuropsychiatric disorders. Expression of neurexins in hundreds of alternatively spliced isoforms suggested that individual neurons might exhibit a cell-type-specific neurexin expression pattern (a neurexin code). To test this hypothesis, we quantified the single-cell levels of neurexin isoforms and other trans-synaptic cell-adhesion molecules by microfluidics-based RT-PCR. We show that the neurexin repertoire displays pronounced cell-type specificity that is remarkably consistent within each type of neuron. Furthermore, we uncovered region-specific regulation of neurexin transcription and splice-site usage. Finally, we demonstrate that the transcriptional profiles of neurexins can be altered in an experience-dependent fashion by exposure to a drug of abuse. Our data provide evidence of cell-type-specific expression patterns of multiple neurexins at the single-cell level and suggest that expression of synaptic cell-adhesion molecules overlaps with other key features of cellular identity and diversity.

  17. Single-Cell mRNA Profiling Reveals Cell-Type Specific Expression of Neurexin Isoforms

    PubMed Central

    Fuccillo, Marc V.; Földy, Csaba; Gökce, Özgün; Rothwell, Patrick E.; Sun, Gordon L.; Malenka, Robert C.; Südhof, Thomas C.

    2016-01-01

    Summary Neurexins are considered central organizers of synapse architecture that are implicated in neuropsychiatric disorders. Expression of neurexins in hundreds of alternatively spliced isoforms suggested that individual neurons might exhibit a cell type-specific neurexin expression pattern (a neurexin code). To test this hypothesis, we quantified the single-cell levels of neurexin isoforms and other trans-synaptic cell-adhesion molecules by microfluidics-based RT-PCR. We show that the neurexin repertoire displays pronounced cell-type specificity that is remarkably consistent within each type of neuron. Furthermore, we uncovered region-specific regulation of neurexin transcription and splice-site usage. Finally, we demonstrate that the transcriptional profiles of neurexins can be altered in an experience-dependent fashion by exposure to a drug of abuse. Our data provide evidence of cell type-specific expression patterns of multiple neurexins at the single-cell level, and suggest that expression of synaptic cell-adhesion molecules overlaps with other key features of cellular identity and diversity. PMID:26182417

  18. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry

    PubMed Central

    Horowitz, Amir; Strauss-Albee, Dara M.; Leipold, Michael; Kubo, Jessica; Nemat-Gorgani, Neda; Dogan, Ozge C.; Dekker, Cornelia L.; Mackey, Sally; Maecker, Holden; Swan, Gary E.; Davis, Mark M.; Norman, Paul J.; Guethlein, Lisbeth A.; Desai, Manisha; Parham, Peter; Blish, Catherine A.

    2013-01-01

    Natural Killer (NK) cells play critical roles in immune defense and reproduction, yet remain the most poorly understood major lymphocyte population. Because their activation is controlled by a variety of combinatorially expressed activating and inhibitory receptors, NK cell diversity and function are closely linked. To provide an unprecedented understanding of NK cell repertoire diversity, we used mass cytometry to simultaneously analyze 35 parameters, including 28 NK cell receptors, on peripheral blood NK cells from five sets of monozygotic twins and twelve unrelated donors of defined HLA and killer cell immunoglobulin-like receptor (KIR) genotype. This analysis revealed a remarkable degree of NK cell diversity, with an estimated 6,000-30,000 phenotypic populations within an individual and >100,000 phenotypes in this population. Genetics largely determined inhibitory receptor expression, whereas activation receptor expression was heavily environmentally influenced. Therefore, NK cells may maintain self-tolerance through strictly regulated expression of inhibitory receptors, while using adaptable expression patterns of activating and costimulatory receptors to respond to pathogens and tumors. These findings further suggest the possibility that discrete NK cell subpopulations could be harnessed for immunotherapeutic strategies in the settings of infection, reproduction, and transplantation. PMID:24154599

  19. Power-Law Modeling of Cancer Cell Fates Driven by Signaling Data to Reveal Drug Effects

    PubMed Central

    Zhang, Fan; Wu, Min; Kwoh, Chee Keong; Zheng, Jie

    2016-01-01

    Extracellular signals are captured and transmitted by signaling proteins inside a cell. An important type of cellular responses to the signals is the cell fate decision, e.g., apoptosis. However, the underlying mechanisms of cell fate regulation are still unclear, thus comprehensive and detailed kinetic models are not yet available. Alternatively, data-driven models are promising to bridge signaling data with the phenotypic measurements of cell fates. The traditional linear model for data-driven modeling of signaling pathways has its limitations because it assumes that the a cell fate is proportional to the activities of signaling proteins, which is unlikely in the complex biological systems. Therefore, we propose a power-law model to relate the activities of all the measured signaling proteins to the probabilities of cell fates. In our experiments, we compared our nonlinear power-law model with the linear model on three cancer datasets with phosphoproteomics and cell fate measurements, which demonstrated that the nonlinear model has superior performance on cell fates prediction. By in silico simulation of virtual protein knock-down, the proposed model is able to reveal drug effects which can complement traditional approaches such as binding affinity analysis. Moreover, our model is able to capture cell line specific information to distinguish one cell line from another in cell fate prediction. Our results show that the power-law data-driven model is able to perform better in cell fate prediction and provide more insights into the signaling pathways for cancer cell fates than the linear model. PMID:27764199

  20. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    PubMed Central

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  1. Polycomb Group Protein Pcgf6 Acts as a Master Regulator to Maintain Embryonic Stem Cell Identity

    PubMed Central

    Yang, Chao-Shun; Chang, Kung-Yen; Dang, Jason; Rana, Tariq M.

    2016-01-01

    The polycomb repressive complex 1 (PRC1) is a multi-subunit complex that plays critical roles in the epigenetic modulation of gene expression. Here, we show that the PRC1 component polycomb group ring finger 6 (Pcgf6) is required to maintain embryonic stem cell (ESC) identity. In contrast to canonical PRC1, Pcgf6 acts as a positive regulator of transcription and binds predominantly to promoters bearing active chromatin marks. Pcgf6 is expressed at high levels in ESCs, and knockdown reduces the expression of the core ESC regulators Oct4, Sox2, and Nanog. Conversely, Pcgf6 overexpression prevents downregulation of these factors and impairs differentiation. In addition, Pcgf6 enhanced reprogramming in both mouse and human somatic cells. The genomic binding profile of Pcgf6 is highly similar to that of trithorax group proteins, but not of PRC1 or PRC2 complexes, suggesting that Pcgf6 functions atypically in ESCs. Our data reveal novel roles for Pcgf6 in directly regulating Oct4, Nanog, Sox2, and Lin28 expression to maintain ESC identity. PMID:27247273

  2. An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development

    PubMed Central

    Benitez, Cecil M.; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T.; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H. Efsun; Zhang, Jiajing; Dekker, Joseph D.; Tucker, Haley O.; Chang, Howard Y.; Kim, Seung K.

    2014-01-01

    The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. PMID:25330008

  3. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis.

    PubMed

    Shin, Jaehoon; Berg, Daniel A; Zhu, Yunhua; Shin, Joseph Y; Song, Juan; Bonaguidi, Michael A; Enikolopov, Grigori; Nauen, David W; Christian, Kimberly M; Ming, Guo-li; Song, Hongjun

    2015-09-01

    Somatic stem cells contribute to tissue ontogenesis, homeostasis, and regeneration through sequential processes. Systematic molecular analysis of stem cell behavior is challenging because classic approaches cannot resolve cellular heterogeneity or capture developmental dynamics. Here we provide a comprehensive resource of single-cell transcriptomes of adult hippocampal quiescent neural stem cells (qNSCs) and their immediate progeny. We further developed Waterfall, a bioinformatic pipeline, to statistically quantify singe-cell gene expression along a de novo reconstructed continuous developmental trajectory. Our study reveals molecular signatures of adult qNSCs, characterized by active niche signaling integration and low protein translation capacity. Our analyses further delineate molecular cascades underlying qNSC activation and neurogenesis initiation, exemplified by decreased extrinsic signaling capacity, primed translational machinery, and regulatory switches in transcription factors, metabolism, and energy sources. Our study reveals the molecular continuum underlying adult neurogenesis and illustrates how Waterfall can be used for single-cell omics analyses of various continuous biological processes. PMID:26299571

  4. Single cell lineage tracing reveals that oriented cell division contributes to trabecular morphogenesis and regional specification

    PubMed Central

    Li, Jingjing; Miao, Lianjie; Shieh, David; Spiotto, Ernest; Li, Jian; Zhou, Bin; Paul, Antoni; Schwartz, Robert J.; Firulli, Anthony B.; Singer, Harold A.; Huang, Guoying; Wu, Mingfu

    2016-01-01

    Summary The cardiac trabeculae are sheet-like structures extending from the myocardium that function to increase surface area. A lack of trabeculation causes embryonic lethality due to compromised cardiac function. To understand the cellular and molecular mechanisms of trabecular formation, we genetically labeled individual cardiomyocytes prior to trabeculation via the brainbow multicolor system, and traced and analyzed the labeled cells during trabeculation by whole-embryo clearing and imaging. The clones derived from labeled single cells displayed four different geometric patterns that are derived from different patterns of oriented cell division (OCD) and migration. Of the four types of clones, the inner, transmural, and mixed clones contributed to trabecular cardiomyocytes. Further studies showed that perpendicular OCD is an extrinsic asymmetric cell division that putatively contributes to trabecular regional specification. Furthermore, N-Cadherin deletion in labeled clones disrupted the clonal patterns. In summary, our data demonstrate that OCD contributes to trabecular morphogenesis and specification. PMID:27052172

  5. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells

    PubMed Central

    Grover, Amit; Sanjuan-Pla, Alejandra; Thongjuea, Supat; Carrelha, Joana; Giustacchini, Alice; Gambardella, Adriana; Macaulay, Iain; Mancini, Elena; Luis, Tiago C.; Mead, Adam; Jacobsen, Sten Eirik W.; Nerlov, Claus

    2016-01-01

    Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis. PMID:27009448

  6. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells.

    PubMed

    Grover, Amit; Sanjuan-Pla, Alejandra; Thongjuea, Supat; Carrelha, Joana; Giustacchini, Alice; Gambardella, Adriana; Macaulay, Iain; Mancini, Elena; Luis, Tiago C; Mead, Adam; Jacobsen, Sten Eirik W; Nerlov, Claus

    2016-01-01

    Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis. PMID:27009448

  7. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells.

    PubMed

    Watson, Bonnie S; Bedair, Mohamed F; Urbanczyk-Wochniak, Ewa; Huhman, David V; Yang, Dong Sik; Allen, Stacy N; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W

    2015-04-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4'-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4'-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously.

  8. Integrated Metabolomics and Transcriptomics Reveal Enhanced Specialized Metabolism in Medicago truncatula Root Border Cells1[OPEN

    PubMed Central

    Watson, Bonnie S.; Bedair, Mohamed F.; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Yang, Dong Sik; Allen, Stacy N.; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W.

    2015-01-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4′-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4′-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously. PMID:25667316

  9. Physical Forces Shape Group Identity of Swimming Pseudomonas putida Cells

    PubMed Central

    Espeso, David R.; Martínez-García, Esteban; de Lorenzo, Víctor; Goñi-Moreno, Ángel

    2016-01-01

    The often striking macroscopic patterns developed by motile bacterial populations on agar plates are a consequence of the environmental conditions where the cells grow and spread. Parameters such as medium stiffness and nutrient concentration have been reported to alter cell swimming behavior, while mutual interactions among populations shape collective patterns. One commonly observed occurrence is the mutual inhibition of clonal bacteria when moving toward each other, which results in a distinct halt at a finite distance on the agar matrix before having direct contact. The dynamics behind this phenomenon (i.e., intolerance to mix in time and space with otherwise identical others) has been traditionally explained in terms of cell-to-cell competition/cooperation regarding nutrient availability. In this work, the same scenario has been revisited from an alternative perspective: the effect of the physical mechanics that frame the process, in particular the consequences of collisions between moving bacteria and the semi-solid matrix of the swimming medium. To this end, we set up a simple experimental system in which the swimming patterns of Pseudomonas putida were tested with different geometries and agar concentrations. A computational analysis framework that highlights cell-to-medium interactions was developed to fit experimental observations. Simulated outputs suggested that the medium is compressed in the direction of the bacterial front motion. This phenomenon generates what was termed a compression wave that goes through the medium preceding the swimming population and that determines the visible high-level pattern. Taken together, the data suggested that the mechanical effects of the bacteria moving through the medium created a factual barrier that impedes to merge with neighboring cells swimming from a different site. The resulting divide between otherwise clonal bacteria is thus brought about by physical forces—not genetic or metabolic programs. PMID

  10. Physical Forces Shape Group Identity of Swimming Pseudomonas putida Cells

    PubMed Central

    Espeso, David R.; Martínez-García, Esteban; de Lorenzo, Víctor; Goñi-Moreno, Ángel

    2016-01-01

    The often striking macroscopic patterns developed by motile bacterial populations on agar plates are a consequence of the environmental conditions where the cells grow and spread. Parameters such as medium stiffness and nutrient concentration have been reported to alter cell swimming behavior, while mutual interactions among populations shape collective patterns. One commonly observed occurrence is the mutual inhibition of clonal bacteria when moving toward each other, which results in a distinct halt at a finite distance on the agar matrix before having direct contact. The dynamics behind this phenomenon (i.e., intolerance to mix in time and space with otherwise identical others) has been traditionally explained in terms of cell-to-cell competition/cooperation regarding nutrient availability. In this work, the same scenario has been revisited from an alternative perspective: the effect of the physical mechanics that frame the process, in particular the consequences of collisions between moving bacteria and the semi-solid matrix of the swimming medium. To this end, we set up a simple experimental system in which the swimming patterns of Pseudomonas putida were tested with different geometries and agar concentrations. A computational analysis framework that highlights cell-to-medium interactions was developed to fit experimental observations. Simulated outputs suggested that the medium is compressed in the direction of the bacterial front motion. This phenomenon generates what was termed a compression wave that goes through the medium preceding the swimming population and that determines the visible high-level pattern. Taken together, the data suggested that the mechanical effects of the bacteria moving through the medium created a factual barrier that impedes to merge with neighboring cells swimming from a different site. The resulting divide between otherwise clonal bacteria is thus brought about by physical forces—not genetic or metabolic programs.

  11. RNAi Screen Reveals an Abl Kinase-Dependent Host Cell Pathway Involved in Pseudomonas aeruginosa Internalization

    PubMed Central

    Pielage, Julia F.; Powell, Kimberly R.; Kalman, Daniel; Engel, Joanne N.

    2008-01-01

    Internalization of the pathogenic bacterium Pseudomonas aeruginosa by non-phagocytic cells is promoted by rearrangements of the actin cytoskeleton, but the host pathways usurped by this bacterium are not clearly understood. We used RNAi-mediated gene inactivation of ∼80 genes known to regulate the actin cytoskeleton in Drosophila S2 cells to identify host molecules essential for entry of P. aeruginosa. This work revealed Abl tyrosine kinase, the adaptor protein Crk, the small GTPases Rac1 and Cdc42, and p21-activated kinase as components of a host signaling pathway that leads to internalization of P. aeruginosa. Using a variety of complementary approaches, we validated the role of this pathway in mammalian cells. Remarkably, ExoS and ExoT, type III secreted toxins of P. aeruginosa, target this pathway by interfering with GTPase function and, in the case of ExoT, by abrogating P. aeruginosa–induced Abl-dependent Crk phosphorylation. Altogether, this work reveals that P. aeruginosa utilizes the Abl pathway for entering host cells and reveals unexpected complexity by which the P. aeruginosa type III secretion system modulates this internalization pathway. Our results furthermore demonstrate the applicability of using RNAi screens to identify host signaling cascades usurped by microbial pathogens that may be potential targets for novel therapies directed against treatment of antibiotic-resistant infections. PMID:18369477

  12. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices

    SciTech Connect

    Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.

    2009-02-01

    The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observed increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress.

  13. African American Adolescents with Sickle Cell Disease: Support Groups and Psychological Well-Being.

    ERIC Educational Resources Information Center

    Gardner, Marilyn M.; Telfair, Joseph

    1999-01-01

    Studied the impact of support groups on the psychological well-being of adolescents with sickle cell disease (SCD). Response of 79 adolescent SCD group members show that psychological well-being was best predicted by fewer physical symptoms and greater satisfaction with the group. Findings suggest the beneficial effects of SCD support groups. (SLD)

  14. Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb Group proteins

    PubMed Central

    Peng, Jamy C.; Valouev, Anton; Liu, Na; Lin, Haifan

    2015-01-01

    The Drosophila Piwi protein regulates both niche and intrinsic mechanisms to maintain germline stem cells, but its underlying mechanism remains unclear. Here we report that Piwi cooperates with Polycomb Group complexes PRC1 and PRC2 in niche and germline cells to regulate ovarian germline stem cells and oogenesis. Piwi physically interacts with PRC2 subunits Su(z)12 and Esc in the ovary and in vitro. Chromatin co-immunoprecipitation of Piwi, the PRC2 enzymatic subunit E(z), lysine-27-tri-methylated histone 3 (H3K27m3), and RNA polymerase II in wild-type and piwi mutant ovaries reveals that Piwi binds a conserved DNA motif at ~72 genomic sites, and inhibits PRC2 binding to many non-Piwi-binding genomic targets and H3K27 tri-methylation. Moreover, Piwi influences RNA Polymerase II activities in Drosophila ovaries likely via inhibiting PRC2. We hypothesize that Piwi negatively regulates PRC2 binding by sequestering PRC2 in the nucleoplasm, thus reducing PRC2 binding to many targets and influences transcription during oogenesis. PMID:26780607

  15. Identification of essential Alphaproteobacterial genes reveals operational variability in conserved developmental and cell cycle systems

    PubMed Central

    Curtis, Patrick D.; Brun, Yves V.

    2014-01-01

    Summary The cell cycle of Caulobacter crescentus is controlled by a complex signaling network that coordinates events. Genome sequencing has revealed many C. crescentus cell cycle genes are conserved in other Alphaproteobacteria, but it is not clear to what extent their function is conserved. As many cell cycle regulatory genes are essential in C. crescentus, the essential genes of two Alphaproteobacteria, Agrobacterium tumefaciens (Rhizobiales) and Brevundimonas subvibrioides (Caulobacterales), were elucidated to identify changes in cell cycle protein function over different phylogenetic distances as demonstrated by changes in essentiality. The results show the majority of conserved essential genes are involved in critical cell cycle processes. Changes in component essentiality reflect major changes in lifestyle, such as divisome components in A. tumefaciens resulting from that organism’s different growth pattern. Larger variability of essentiality was observed in cell cycle regulators, suggesting regulatory mechanisms are more customizable than the processes they regulate. Examples include variability in the essentiality of divJ and divK spatial cell cycle regulators, and non-essentiality of the highly conserved and usually essential DNA methyltransferase CcrM. These results show that while essential cell functions are conserved across varying genetic distance, much of a given organism’s essential gene pool is specific to that organism. PMID:24975755

  16. Revealing the dependence of cell spreading kinetics on its spreading morphology using microcontact printed fibronectin patterns

    PubMed Central

    Huang, Cheng-Kuang; Donald, Athene

    2015-01-01

    Since the dawn of in vitro cell cultures, how cells interact and proliferate within a given external environment has always been an important issue in the study of cell biology. It is now well known that mammalian cells typically exhibit a three-phase sigmoid spreading on encountering a substrate. To further this understanding, we examined the influence of cell shape towards the second rapid expansion phase of spreading. Specifically, 3T3 fibroblasts were seeded onto silicon elastomer films made from polydimethylsiloxane (PDMS), and micro-contact printed with fibronectin stripes of various dimensions. PDMS is adopted in our study for its biocompatibility, its ease in producing very smooth surfaces, and in the fabrication of micro-contact printing stamps. The substrate patterns are compared with respect to their influence on cell spreading over time. Our studies reveal, during the early rapid expansion phase, 3T3 fibroblasts are found to spread radially following a law; meanwhile, they proliferated in a lengthwise fashion on the striped patterns, following a law. We account for the observed differences in kinetics through a simple geometric analysis which predicted similar trends. In particular, a t2 law for radial spreading cells, and a t1 law for lengthwise spreading cells. PMID:25551146

  17. Functional plant cell wall design revealed by the Raman imaging approach.

    PubMed

    Richter, Stephan; Müssig, Jörg; Gierlinger, Notburga

    2011-04-01

    Using the Raman imaging approach, the optimization of the plant cell wall design was investigated on the micron level within different tissue types at different positions of a Phormium tenax leaf. Pectin and lignin distribution were visualized and the cellulose microfibril angle (MFA) of the cell walls was determined. A detailed analysis of the Raman spectra extracted from the selected regions, allowed a semi-quantitative comparison of the chemical composition of the investigated tissue types on the micron level. The cell corners of the parenchyma revealed almost pure pectin and the cell wall an amount of 38-49% thereof. Slight lignification was observed in the parenchyma and collenchyma in the top of the leaf and a high variability (7-44%) in the sclerenchyma. In the cell corners and in the cell wall of the sclerenchymatic fibres surrounding the vascular tissue, the highest lignification was observed, which can act as a barrier and protection of the vascular tissue. In the sclerenchyma high variable MFA (4°-40°) was detected, which was related with lignin variability. In the primary cell walls a constant high MFA (57°-58°) was found together with pectin. The different plant cell wall designs on the tissue and microlevel involve changes in chemical composition as well as cellulose microfibril alignment and are discussed and related according to the development and function.

  18. Live Cell Imaging Reveals the Dynamics of Telomerase Recruitment to Telomeres.

    PubMed

    Schmidt, Jens C; Zaug, Arthur J; Cech, Thomas R

    2016-08-25

    Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood. Here, we use CRISPR genome editing and single-molecule imaging to track telomerase trafficking in nuclei of living human cells. We demonstrate that telomerase uses three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depend on the direct interaction of the telomerase protein TERT with the telomeric protein TPP1. Our results reveal that telomerase recruitment to telomeres is driven by dynamic interactions between the rapidly diffusing telomerase and the chromosome end. PMID:27523609

  19. An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability

    PubMed Central

    Schütte, Judith; Wang, Huange; Antoniou, Stella; Jarratt, Andrew; Wilson, Nicola K; Riepsaame, Joey; Calero-Nieto, Fernando J; Moignard, Victoria; Basilico, Silvia; Kinston, Sarah J; Hannah, Rebecca L; Chan, Mun Chiang; Nürnberg, Sylvia T; Ouwehand, Willem H; Bonzanni, Nicola; de Bruijn, Marella FTR; Göttgens, Berthold

    2016-01-01

    Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes. DOI: http://dx.doi.org/10.7554/eLife.11469.001 PMID:26901438

  20. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis

    PubMed Central

    Vogel, Robert M.; Erez, Amir; Altan-Bonnet, Grégoire

    2016-01-01

    Despite progress in drug development, a quantitative and physiological understanding of how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and proliferative response of individual primary T-lymphocytes to a combination of antigen, cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition (the activated fraction of cells diminishes upon drug treatment, but active cells appear unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas activation response is diminished). We introduce a computational model of the signalling cascade that accounts for such inhibition dichotomy, and test the model predictions for the phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue dichotomy of cellular response as revealed on short (signal transduction) timescales, translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis of drug action illustrates the strength of quantitative approaches to translate in vitro pharmacology into functionally relevant cellular settings. PMID:27687249

  1. The expression of nitrate transporter genes reveals different nitrogen statuses of dominant diatom groups in the southern East China Sea.

    PubMed

    Kang, Lee-Kuo; Gong, Gwo-Ching; Wu, Yi-Hsuan; Chang, Jeng

    2015-03-01

    In this study, the mRNA levels of the Nrt2 nitrate transporter gene were used as a molecular indicator of nitrogen status in two dominant diatom groups, Skeletonema and Chaetoceros, which inhabit the southern East China Sea (ECS). To accurately interpret the abundance of Nrt2 transcripts in situ, maximum and minimum expression levels were determined under conditions of nitrogen deprivation and ammonium addition, respectively. In August 2010, Nrt2 transcript levels in Skeletonema at the inner shelf region exhibited a mean of 111 mmole/(mole EFL); at the mid-shelf region, the mean Nrt2 mRNA levels were 298 mmole/(mole EFL), which was very close to the maximum levels observed under nitrogen starvation. By contrast, the Nrt2 transcript levels in Chaetoceros were low at all of the shelf locations, except at one station in the mid-shelf region. The cross-shelf mean was 2.86 mmole/(mole EFL), which was similar to the expression levels observed in cultured Chaetoceros under conditions of sufficient ammonium. Similar expression patterns were observed in diatoms in the southern ECS in June 2011, but the Nrt2 transcript levels in Skeletonema at the inner shelf region were reduced to a mean of 28.6 mmole/(mole EFL). Regression analysis indicated that cell abundance and Nrt2 expression were closely related to the nutricline depth in the coastward half of the southern ECS for Skeletonema but not for Chaetoceros. These results indicate that the evaluated species differ in nitrogen status, which may reflect their evolutionary strategies to survive in a fluctuating marine environment.

  2. The expression of nitrate transporter genes reveals different nitrogen statuses of dominant diatom groups in the southern East China Sea.

    PubMed

    Kang, Lee-Kuo; Gong, Gwo-Ching; Wu, Yi-Hsuan; Chang, Jeng

    2015-03-01

    In this study, the mRNA levels of the Nrt2 nitrate transporter gene were used as a molecular indicator of nitrogen status in two dominant diatom groups, Skeletonema and Chaetoceros, which inhabit the southern East China Sea (ECS). To accurately interpret the abundance of Nrt2 transcripts in situ, maximum and minimum expression levels were determined under conditions of nitrogen deprivation and ammonium addition, respectively. In August 2010, Nrt2 transcript levels in Skeletonema at the inner shelf region exhibited a mean of 111 mmole/(mole EFL); at the mid-shelf region, the mean Nrt2 mRNA levels were 298 mmole/(mole EFL), which was very close to the maximum levels observed under nitrogen starvation. By contrast, the Nrt2 transcript levels in Chaetoceros were low at all of the shelf locations, except at one station in the mid-shelf region. The cross-shelf mean was 2.86 mmole/(mole EFL), which was similar to the expression levels observed in cultured Chaetoceros under conditions of sufficient ammonium. Similar expression patterns were observed in diatoms in the southern ECS in June 2011, but the Nrt2 transcript levels in Skeletonema at the inner shelf region were reduced to a mean of 28.6 mmole/(mole EFL). Regression analysis indicated that cell abundance and Nrt2 expression were closely related to the nutricline depth in the coastward half of the southern ECS for Skeletonema but not for Chaetoceros. These results indicate that the evaluated species differ in nitrogen status, which may reflect their evolutionary strategies to survive in a fluctuating marine environment. PMID:25689485

  3. Astrocytes grown in oculo: Expression of cell morphologies on the iris as revealed by GFA immunohistochemistry.

    PubMed

    Björklund, H

    1984-01-01

    Using two experimental approaches, the morphology of central astrocytes growing in vivo with the iris as a substratum were studied. When irides with mature intraocular grafts of cortex cerebri or locus coeruleus were stretch-prepared as whole mounts and processed for immunohistochemistry with antiserum against glial fibrillary acidic protein (GFA), a restricted halo of fluorescent cells and fibers was seen surrounding the grafts. Similarly, injection into the anterior eye chamber of adult rats, of a cell suspension prepared from cortex cerebri of 10-day-old rat pups gave rise to both multiple GFA-positive astrocytic islets of different sizes and cell densities as well as scattered individual cells on the anterior surface of the host iris. In contrast, astrocytes from similar cell suspensions prepared from young adult animals survived very poorly. In both types of experiments, a large variation in cell morphology ranging from immature epitheloid, via large flat cells with few thick processes, to typical mature star-shaped astrocytes was observed. This morphological variation is in agreement with that reported for similar cells in tissue culture. Immature-looking cells always had a strong perinuclear fluorescence; an inverse correlation was observed between cell body size and development of cell processes. Likewise, the fluorescence intensity was higher in well-developed cells as compared to more immature ones. The morphology of individual cells did not seem to be dependent upon the time in oculo, since no difference was observed between GFA-positive cells on irides examined 10 days and 6 weeks after injection of a cell suspension. Similarly, a high number of immature-looking cells was seen in irides with locus coeruleus transplants grafted more than 6 months earlier. Instead, the cell density seemed to be the crucial factor. Thus, star-shaped, well-developed cells were seen growing singly or in less dense groups whereas denser areas contained mainly immature

  4. Astrocytes grown in oculo: Expression of cell morphologies on the iris as revealed by GFA immunohistochemistry.

    PubMed

    Björklund, H

    1984-01-01

    Using two experimental approaches, the morphology of central astrocytes growing in vivo with the iris as a substratum were studied. When irides with mature intraocular grafts of cortex cerebri or locus coeruleus were stretch-prepared as whole mounts and processed for immunohistochemistry with antiserum against glial fibrillary acidic protein (GFA), a restricted halo of fluorescent cells and fibers was seen surrounding the grafts. Similarly, injection into the anterior eye chamber of adult rats, of a cell suspension prepared from cortex cerebri of 10-day-old rat pups gave rise to both multiple GFA-positive astrocytic islets of different sizes and cell densities as well as scattered individual cells on the anterior surface of the host iris. In contrast, astrocytes from similar cell suspensions prepared from young adult animals survived very poorly. In both types of experiments, a large variation in cell morphology ranging from immature epitheloid, via large flat cells with few thick processes, to typical mature star-shaped astrocytes was observed. This morphological variation is in agreement with that reported for similar cells in tissue culture. Immature-looking cells always had a strong perinuclear fluorescence; an inverse correlation was observed between cell body size and development of cell processes. Likewise, the fluorescence intensity was higher in well-developed cells as compared to more immature ones. The morphology of individual cells did not seem to be dependent upon the time in oculo, since no difference was observed between GFA-positive cells on irides examined 10 days and 6 weeks after injection of a cell suspension. Similarly, a high number of immature-looking cells was seen in irides with locus coeruleus transplants grafted more than 6 months earlier. Instead, the cell density seemed to be the crucial factor. Thus, star-shaped, well-developed cells were seen growing singly or in less dense groups whereas denser areas contained mainly immature

  5. Single-cell transcriptome analysis reveals coordinated ectopic gene expression patterns in medullary thymic epithelial cells

    PubMed Central

    Brennecke, Philip; Reyes, Alejandro; Pinto, Sheena; Rattay, Kristin; Nguyen, Michelle; Küchler, Rita; Huber, Wolfgang; Kyewski, Bruno; Steinmetz, Lars M.

    2015-01-01

    Expression of tissue-restricted self-antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for self-tolerance induction and prevents autoimmunity, with each TRA being expressed in only a few mTECs. How this process is regulated in single mTECs and coordinated at the population level, such that the varied single-cell patterns add up to faithfully represent TRAs, is poorly understood. Here we used single-cell RNA-sequencing and provide evidence for numerous recurring TRA co-expression patterns, each present in only a subset of mTECs. Co-expressed genes clustered in the genome and showed enhanced chromatin accessibility. Our findings characterize TRA expression in mTECs as a coordinated process, which might involve local re-modeling of chromatin and thus ensures a comprehensive representation of the immunological self. PMID:26237553

  6. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system

    PubMed Central

    Nern, Aljoscha; Pfeiffer, Barret D.; Rubin, Gerald M.

    2015-01-01

    We describe the development and application of methods for high-throughput neuroanatomy in Drosophila using light microscopy. These tools enable efficient multicolor stochastic labeling of neurons at both low and high densities. Expression of multiple membrane-targeted and distinct epitope-tagged proteins is controlled both by a transcriptional driver and by stochastic, recombinase-mediated excision of transcription-terminating cassettes. This MultiColor FlpOut (MCFO) approach can be used to reveal cell shapes and relative cell positions and to track the progeny of precursor cells through development. Using two different recombinases, the number of cells labeled and the number of color combinations observed in those cells can be controlled separately. We demonstrate the utility of MCFO in a detailed study of diversity and variability of Distal medulla (Dm) neurons, multicolumnar local interneurons in the adult visual system. Similar to many brain regions, the medulla has a repetitive columnar structure that supports parallel information processing together with orthogonal layers of cell processes that enable communication between columns. We find that, within a medulla layer, processes of the cells of a given Dm neuron type form distinct patterns that reflect both the morphology of individual cells and the relative positions of their arbors. These stereotyped cell arrangements differ between cell types and can even differ for the processes of the same cell type in different medulla layers. This unexpected diversity of coverage patterns provides multiple independent ways of integrating visual information across the retinotopic columns and implies the existence of multiple developmental mechanisms that generate these distinct patterns. PMID:25964354

  7. Single-Cell Tracking Reveals Antibiotic-Induced Changes in Mycobacterial Energy Metabolism

    PubMed Central

    Özdemir, Emre; McKinney, John D.

    2015-01-01

    ABSTRACT ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. PMID:25691591

  8. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy

    PubMed Central

    Buetti-Dinh, Antoine; O’Hare, Thomas

    2016-01-01

    A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance. PMID:27669408

  9. Remodeling of the Z-Ring Nanostructure during the Streptococcus pneumoniae Cell Cycle Revealed by Photoactivated Localization Microscopy

    PubMed Central

    Jacq, Maxime; Bourgeois, Dominique; Moriscot, Christine; Di Guilmi, Anne-Marie; Vernet, Thierry

    2015-01-01

    ABSTRACT Ovococci form a morphological group that includes several human pathogens (enterococci and streptococci). Their shape results from two modes of cell wall insertion, one allowing division and one allowing elongation. Both cell wall synthesis modes rely on a single cytoskeletal protein, FtsZ. Despite the central role of FtsZ in ovococci, a detailed view of the in vivo nanostructure of ovococcal Z-rings has been lacking thus far, limiting our understanding of their assembly and architecture. We have developed the use of photoactivated localization microscopy (PALM) in the ovococcus human pathogen Streptococcus pneumoniae by engineering spDendra2, a photoconvertible fluorescent protein optimized for this bacterium. Labeling of endogenously expressed FtsZ with spDendra2 revealed the remodeling of the Z-ring’s morphology during the division cycle at the nanoscale level. We show that changes in the ring’s axial thickness and in the clustering propensity of FtsZ correlate with the advancement of the cell cycle. In addition, we observe double-ring substructures suggestive of short-lived intermediates that may form upon initiation of septal cell wall synthesis. These data are integrated into a model describing the architecture and the remodeling of the Z-ring during the cell cycle of ovococci. PMID:26286692

  10. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression

    PubMed Central

    Lucas, Morghan C.; Timpson, Paul

    2016-01-01

    Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression. PMID:27239290

  11. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript.

    PubMed

    Canham, Maurice A; Sharov, Alexei A; Ko, Minoru S H; Brickman, Joshua M

    2010-05-01

    ES cells are defined as self-renewing, pluripotent cell lines derived from early embryos. Cultures of ES cells are also characterized by the expression of certain markers thought to represent the pluripotent state. However, despite the widespread expression of key markers such as Oct4 and the appearance of a characteristic undifferentiated morphology, functional ES cells may represent only a small fraction of the cultures grown under self-renewing conditions. Thus phenotypically "undifferentiated" cells may consist of a heterogeneous population of functionally distinct cell types. Here we use a transgenic allele designed to detect low level transcription in the primitive endoderm lineage as a tool to identify an immediate early endoderm-like ES cell state. This reporter employs a tandem array of internal ribosomal entry sites to drive translation of an enhanced Yellow Fluorescent Protein (Venus) from the transcript that normally encodes for the early endodermal marker Hex. Expression of this Venus transgene reports on single cells with low Hex transcript levels and reveals the existence of distinct populations of Oct4 positive undifferentiated ES cells. One of these cells types, characterized by both the expression of the Venus transgene and the ES cells marker SSEA-1 (V(+)S(+)), appears to represent an early step in primitive endoderm specification. We show that the fraction of cells present within this state is influenced by factors that both promote and suppress primitive endoderm differentiation, but conditions that support ES cell self-renewal prevent their progression into differentiation and support an equilibrium between this state and at least one other that resembles the Nanog positive inner cell mass of the mammalian blastocysts. Interestingly, while these subpopulations are equivalently and clonally interconvertible under self-renewing conditions, when induced to differentiate both in vivo and in vitro they exhibit different behaviours. Most strikingly

  12. Microfluidic Platform for Studying Chemotaxis of Adhesive Cells Revealed a Gradient-Dependent Migration and Acceleration of Cancer Stem Cells.

    PubMed

    Zou, Heng; Yue, Wanqing; Yu, Wai-Kin; Liu, Dandan; Fong, Chi-Chun; Zhao, Jianlong; Yang, Mengsu

    2015-07-21

    Recent studies reveal that solid tumors consist of heterogeneous cells with distinct phenotypes and functions. However, it is unclear how different subtypes of cancer cells migrate under chemotaxis. Here, we developed a microfluidic device capable of generating multiple stable gradients, culturing cells on-chip, and monitoring single cell migratory behavior. The microfluidic platform was used to study gradient-induced chemotaxis of lung cancer stem cell (LCSC) and differentiated LCSC (dLCSC) in real time. Our results showed the dynamic and differential response of both LCSC and dLCSC to chemotaxis, which was regulated by the β-catenin dependent Wnt signaling pathway. The microfluidic analysis showed that LCSC and dLCSC from the same origin behaved differently in the same external stimuli, suggesting the importance of cancer cell heterogeneity. We also observed for the first time the acceleration of both LCSC and dLCSC during chemotaxis caused by increasing local concentration in different gradients, which could only be realized through the microfluidic approach. The capability to analyze single cell chemotaxis under spatially controlled conditions provides a novel analytical platform for the study of cellular microenvironments and cancer cell metastasis.

  13. Nonaqueous titration of amino groups in polymeric matrix of plant cell walls.

    PubMed

    Meychik, N R; Nikolaeva, Yu I; Ermakov, I P

    2009-08-01

    Nonaqueous titration was used for detection of free amino groups in the polymeric matrix of plant cell walls. The content of amino groups varied in the range 0.54-0.91 and total nitrogen in the range 1.0-4.2 mmol per gram dry mass of cell walls depending on the plant species. However, these data on the high content of free amino groups do not correlate with the present day concept that the nitrogen fraction in charged amino groups in plant cell wall proteins, which are assumed to be mainly amino groups of lysine and arginine residues, is about 10%. It is supposed that most detected free amino groups belong to the hydroxy-amino acids hydroxyproline and tyrosine that can be bound at the hydroxyl group with the carbohydrate part of glycoprotein or another structural cell wall polymer.

  14. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells.

    PubMed

    Chang, Hsin-Yi; Li, Ming-Hua; Huang, Tsui-Chin; Hsu, Chia-Lang; Tsai, Shang-Ru; Lee, Si-Chen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-02-01

    Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy.

  15. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  16. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    PubMed

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli. PMID:27555592

  17. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells.

    PubMed

    Chang, Hsin-Yi; Li, Ming-Hua; Huang, Tsui-Chin; Hsu, Chia-Lang; Tsai, Shang-Ru; Lee, Si-Chen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-02-01

    Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy. PMID:25556991

  18. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    PubMed

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli.

  19. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane.

    PubMed

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-01-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction. PMID:27641076

  20. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    PubMed Central

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-01-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction. PMID:27641076

  1. DiOC6 staining reveals organelle structure and dynamics in living yeast cells.

    PubMed

    Koning, A J; Lum, P Y; Williams, J M; Wright, R

    1993-01-01

    When present at low concentrations, the fluorescent lipophilic dye, DiOC6, stains mitochondria in living yeast cells [Pringle et al.: Methods in Cell Biol. 31:357-435, 1989; Weisman et al.: Proc. Natl. Acad. Sci. U.S.A. 87:1076-1080, 1990]. However, we found that the nuclear envelope and endoplasmic reticulum were specifically stained if the dye concentration was increased or if certain respiratory-deficient yeast strains were examined. The quality of nuclear envelope staining with DiOC6 was sufficiently sensitive to reveal alterations in the nuclear envelope known as karmellae. These membranes were previously apparent only by electron microscopy. At the high dye concentrations required to stain the nuclear envelope, wild-type cells could no longer grow on non-fermentable carbon sources. In spite of this effect on mitochondrial function, the presence of high dye concentration did not adversely affect cell viability or general growth characteristics when strains were grown under standard conditions on glucose. Consequently, time-lapse confocal microscopy was used to examine organelle dynamics in living yeast cells stained with DiOC6. These in vivo observations correlated very well with previous electron microscopic studies, including analyses of mitochondria, karmellae, and mitosis. For example, cycles of mitochondrial fusion and division, as well as the changes in nuclear shape and position that occur during mitosis, were readily imaged in time-lapse studies of living DiOC6-stained cells. This technique also revealed new aspects of nuclear disposition and interactions with other organelles. For example, the nucleus and vacuole appeared to form a structurally coupled unit that could undergo coordinated movements. Furthermore, unlike the general view that nuclear movements occur only in association with division, the nucleus/vacuole underwent dramatic migrations around the cell periphery as cells exited from stationary phase. In addition to the large migrations or

  2. Genetic relationship of 32 cell lines of Euplotes octocarinatus species complex revealed by random amplified polymorphic DNA (RAPD) fingerprinting.

    PubMed

    Möllenbeck, M

    1999-12-01

    Random amplified polymorphic DNA (RAPD) fingerprinting was used in this study to determine the genetic relationship of different cell lines of the hypotrichous ciliate Euplotes octocarinatus. Stocks isolated from different habitats in the USA, and from a group of genetically recombined laboratory strains, were characterized. Band-sharing indices (D) for all possible pairwise comparisons revealed a remarkable genetic diversity between the different cell lines. Investigation of the genetic structure in natural populations found diversity--although to a different extent--in all populations investigated. No clonal structure could be observed, as proposed for several protozoa and recently shown for E. daidaleos. These findings suggest frequent conjugation in the population of E. octocarinatus. No correlation between the genetic relationship of cell lines from different habitats and the distance between the corresponding sampling locations was found. Once separated geographically, the exchange of genetic material between populations appears to be nearly impossible. Therefore, these groups tend to separate into sibling species. The data generally support the occurrence of different syngens in the E. octocarinatus species complex. This finding is in accordance with our observation that the morphological 'species' of E. octocarinatus consists of several syngens or sibling species, similar to findings for the Paramecium aurelia-, Tetrahymena pyriformis- and E. vannus- species complexes. PMID:10722304

  3. A cross-reactive antigen of thymus and skin epithelial cells common with the polysaccharide of group A streptococci.

    PubMed Central

    Lyampert, I M; Beletskaya, L V; Borodiyuk, N A; Gnezditskaya, E V; Rassokhina, I I; Danilova, T A

    1976-01-01

    Investigation of antibodies to the specific determinant of streptococcal group A polysaccharide in indirect immunofluorescence experiments has revealed the existence of a cross-reactive antigen in the epithelial cells of the thymus and skin. This CR antigen is contained by the epithelial cells of man and animals of different species. It has been demonstrated in all the individuals studied including animals producing antibodies to the polysaccharide of Group A streptococci. The principal cause of autoimmune thymitis characteristic of rheumatic fever and other autoimmune processes is probably damage done to the thymus by autoantibodies resulting from immunization with microbial cross-reactive antigens shared by the thymus. Reaction of the autoantibodies with thymic antigens may affect the immunosuppressive function of the thymus and the maturation process of suppressor T cells. These events probably constitute the basic stage in the development of an autoimmune process. Images Figure 1 Figure 2 Figures 3-6 PMID:800402

  4. Reproductive isolation revealed in preliminary crossbreeding experiments using field collected Triatoma dimidiata (Hemiptera: Reduviidae) from three ITS–2 defined groups

    PubMed Central

    García, Mauricio; Menes, Marianela; Dorn, Patricia L.; Monroy, Carlota; Richards, Bethany; Panzera, Francisco; Bustamante, Dulce María

    2013-01-01

    Triatoma dimidiata, a Chagas disease vector distributed in Mexico, Central America, Colombia, Venezuela, Peru and Ecuador, has been studied using genetic markers and four groups have been defined by ITS–2 sequences: 1A, 1B, 2 and 3. To gather evidence on the divergence and reproductive isolation among T. dimidiata ITS–2 groups, we carried out 15 crossbreeding experiments with field–collected sylvan and domestic T. dimidiata from Guatemala where three groups are found: 1A, 2 and 3. Reciprocal crosses between individuals from groups 1A and 2, and a cross between group 2 individuals from different habitats, produced an average 129.78±42.29 eggs with hatching success ranging from 31.6% to 90.1%. The offspring of these crosses reached the adult stage, and crosses between F1 insects produced eggs. These results suggest that there are no pre– or post– zygotic reproductive barriers between groups 1A and 2, or within group 2. Crosses between group 3 females and males from groups 1A or 2 produced on average 85.67±30.26 eggs and none of them hatched. These results support the existence of pre– zygotic barriers between T. dimidiata group 3 and groups 1A and 2. The group 3 individuals were collected in sylvatic environments in Yaxha, Peten, Guatemala. Previously, distinct chromosomal characteristics (cytotype 3) were described in individuals from this population. Based on this evidence we suggest that this population is divergent at the species level from other T. dimidiata populations. PMID:24041592

  5. Mammary Stem Cell Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation

    PubMed Central

    Zhang, Zheng; Christin, John R.; Wang, Chunhui; Ge, Kai; Oktay, Maja H.; Guo, Wenjun

    2016-01-01

    SUMMARY Cancer genomics have provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC) organoid-based approach for rapid generation of somatic GEMMs (genetically engineered mouse models). By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study established a robust in vivo platform for functional cancer genomics and discovered functional breast cancer mutations. PMID:27653681

  6. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation.

    PubMed

    Zhang, Zheng; Christin, John R; Wang, Chunhui; Ge, Kai; Oktay, Maja H; Guo, Wenjun

    2016-09-20

    Cancer genomics has provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC) organoid-based approach for rapid generation of somatic genetically engineered mouse models (GEMMs). By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study has established a robust in vivo platform for functional cancer genomics and has discovered functional breast cancer mutations. PMID:27653681

  7. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death.

    PubMed

    Darshan, N; Manonmani, H K

    2016-12-01

    The antimicrobial activity of prodigiosin from Serratia nematodiphila darsh1, a bacterial pigment was tested against few food borne bacterial pathogens Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The mode of action of prodigiosin was studied. Prodigiosin induced bactericidal activity indicating a stereotypical set of biochemical and morphological feature of Programmed cell death (PCD). PCD involves DNA fragmentation, generation of ROS, and expression of a protein with caspase-like substrate specificity in bacterial cells. Prodigiosin was observed to be internalized into bacterial cells and was localized predominantly in the membrane and the nuclear fraction, thus, facilitating intracellular trafficking and then binding of prodigiosin to the bacterial DNA. Corresponding to an increasing concentration of prodigiosin, the level of certain proteases were observed to increase in bacteria studied, thus initiating the onset of PCD. Prodigiosin at a sub-inhibitory concentration inhibits motility of pathogens. Our observations indicated that prodigiosin could be a promising antibacterial agent and could be used in the prevention of bacterial infections. PMID:27460563

  8. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death.

    PubMed

    Darshan, N; Manonmani, H K

    2016-12-01

    The antimicrobial activity of prodigiosin from Serratia nematodiphila darsh1, a bacterial pigment was tested against few food borne bacterial pathogens Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The mode of action of prodigiosin was studied. Prodigiosin induced bactericidal activity indicating a stereotypical set of biochemical and morphological feature of Programmed cell death (PCD). PCD involves DNA fragmentation, generation of ROS, and expression of a protein with caspase-like substrate specificity in bacterial cells. Prodigiosin was observed to be internalized into bacterial cells and was localized predominantly in the membrane and the nuclear fraction, thus, facilitating intracellular trafficking and then binding of prodigiosin to the bacterial DNA. Corresponding to an increasing concentration of prodigiosin, the level of certain proteases were observed to increase in bacteria studied, thus initiating the onset of PCD. Prodigiosin at a sub-inhibitory concentration inhibits motility of pathogens. Our observations indicated that prodigiosin could be a promising antibacterial agent and could be used in the prevention of bacterial infections.

  9. Plasmacytoid dendritic cells promote HIV-1-induced group 3 innate lymphoid cell depletion.

    PubMed

    Zhang, Zheng; Cheng, Liang; Zhao, Juanjuan; Li, Guangming; Zhang, Liguo; Chen, Weiwei; Nie, Weiming; Reszka-Blanco, Natalia J; Wang, Fu-Sheng; Su, Lishan

    2015-09-01

    Group 3 innate lymphoid cells (ILC3s) have demonstrated roles in promoting antibacterial immunity, maintaining epithelial barrier function, and supporting tissue repair. ILC3 alterations are associated with chronic inflammation and inflammatory disease; however, the characteristics and relevant regulatory mechanisms of this cell population in HIV-1 infection are poorly understood due in part to a lack of a robust model. Here, we determined that functional human ILC3s develop in lymphoid organs of humanized mice and that persistent HIV-1 infection in this model depletes ILC3s, as observed in chronic HIV-1-infected patients. In HIV-1-infected mice, effective antiretroviral therapy reversed the loss of ILC3s. HIV-1-dependent reduction of ILC3s required plasmacytoid dendritic cells (pDCs), IFN-I, and the CD95/FasL pathway, as targeted depletion or blockade of these prevented HIV-1-induced ILC3 depletion in vivo and in vitro, respectively. Finally, we determined that HIV-1 infection induces CD95 expression on ILC3s via a pDC- and IFN-I-dependent mechanism that sensitizes ILC3s to undergo CD95/FasL-mediated apoptosis. We conclude that chronic HIV-1 infection depletes ILC3s through pDC activation, induction of IFN-I, and CD95-mediated apoptosis.

  10. Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets

    PubMed Central

    Chen, Ying-Bei; Xu, Jianing; Skanderup, Anders Jacobsen; Dong, Yiyu; Brannon, A. Rose; Wang, Lu; Won, Helen H.; Wang, Patricia I.; Nanjangud, Gouri J.; Jungbluth, Achim A.; Li, Wei; Ojeda, Virginia; Hakimi, A. Ari; Voss, Martin H.; Schultz, Nikolaus; Motzer, Robert J.; Russo, Paul; Cheng, Emily H.; Giancotti, Filippo G.; Lee, William; Berger, Michael F.; Tickoo, Satish K.; Reuter, Victor E.; Hsieh, James J.

    2016-01-01

    Renal cell carcinomas with unclassified histology (uRCC) constitute a significant portion of aggressive non-clear cell renal cell carcinomas that have no standard therapy. The oncogenic drivers in these tumours are unknown. Here we perform a molecular analysis of 62 high-grade primary uRCC, incorporating targeted cancer gene sequencing, RNA sequencing, single-nucleotide polymorphism array, fluorescence in situ hybridization, immunohistochemistry and cell-based assays. We identify recurrent somatic mutations in 29 genes, including NF2 (18%), SETD2 (18%), BAP1 (13%), KMT2C (10%) and MTOR (8%). Integrated analysis reveals a subset of 26% uRCC characterized by NF2 loss, dysregulated Hippo–YAP pathway and worse survival, whereas 21% uRCC with mutations of MTOR, TSC1, TSC2 or PTEN and hyperactive mTORC1 signalling are associated with better clinical outcome. FH deficiency (6%), chromatin/DNA damage regulator mutations (21%) and ALK translocation (2%) distinguish additional cases. Altogether, this study reveals distinct molecular subsets for 76% of our uRCC cohort, which could have diagnostic and therapeutic implications. PMID:27713405

  11. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    PubMed Central

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  12. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism.

    PubMed

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong; Gao, Hongchang

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  13. Dendritic Cell (DC)-Specific Targeting Reveals Stat3 as a Negative Regulator of DC Function

    PubMed Central

    Melillo, Jessica A.; Song, Li; Bhagat, Govind; Blazquez, Ana Belen; Plumlee, Courtney R.; Lee, Carolyn; Berin, Cecilia; Reizis, Boris; Schindler, Christian

    2011-01-01

    Dendritic cells (DCs) must achieve a critical balance between activation and tolerance, a process influenced by cytokines and growth factors. IL-10, which transduces signals through Stat3, has emerged as one important negative regulator of DC activation. To directly examine the role Stat3 plays in regulating DC activity, the Stat3 gene was targeted for deletion with a CD11c-cre transgene. Stat3 CKO mice developed cervical lymphadenopathy as well as a mild ileocolitis that persisted throughout life and was associated with impaired weight gain. Consistent with this, Stat3-deficient DCs demonstrated enhanced immune activity, including increased cytokine production, Ag-dependent T-cell activation and resistance to IL-10–mediated suppression. These results reveal a cell-intrinsic negative regulatory role of Stat3 in DCs and link increased DC activation with perturbed immune homeostasis and chronic mucosal inflammation. PMID:20124100

  14. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state.

    PubMed

    Verfaillie, Annelien; Imrichova, Hana; Atak, Zeynep Kalender; Dewaele, Michael; Rambow, Florian; Hulselmans, Gert; Christiaens, Valerie; Svetlichnyy, Dmitry; Luciani, Flavie; Van den Mooter, Laura; Claerhout, Sofie; Fiers, Mark; Journe, Fabrice; Ghanem, Ghanem-Elias; Herrmann, Carl; Halder, Georg; Marine, Jean-Christophe; Aerts, Stein

    2015-04-09

    Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance.

  15. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state

    PubMed Central

    Verfaillie, Annelien; Imrichova, Hana; Atak, Zeynep Kalender; Dewaele, Michael; Rambow, Florian; Hulselmans, Gert; Christiaens, Valerie; Svetlichnyy, Dmitry; Luciani, Flavie; Van den Mooter, Laura; Claerhout, Sofie; Fiers, Mark; Journe, Fabrice; Ghanem, Ghanem-Elias; Herrmann, Carl; Halder, Georg; Marine, Jean-Christophe; Aerts, Stein

    2015-01-01

    Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance. PMID:25865119

  16. Knockout Mice Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance.

    PubMed

    Flodby, Per; Kim, Yong Ho; Beard, LaMonta L; Gao, Danping; Ji, Yanbin; Kage, Hidenori; Liebler, Janice M; Minoo, Parviz; Kim, Kwang-Jin; Borok, Zea; Crandall, Edward D

    2016-09-01

    Active ion transport by basolateral Na-K-ATPase (Na pump) creates an Na(+) gradient that drives fluid absorption across lung alveolar epithelium. The α1 and β1 subunits are the most highly expressed Na pump subunits in alveolar epithelial cells (AEC). The specific contribution of the β1 subunit and the relative contributions of alveolar epithelial type II (AT2) versus type I (AT1) cells to alveolar fluid clearance (AFC) were investigated using two cell type-specific mouse knockout lines in which the β1 subunit was knocked out in either AT1 cells or both AT1 and AT2 cells. AFC was markedly decreased in both knockout lines, revealing, we believe for the first time, that AT1 cells play a major role in AFC and providing insights into AEC-specific roles in alveolar homeostasis. AEC monolayers derived from knockout mice demonstrated decreased short-circuit current and active Na(+) absorption, consistent with in vivo observations. Neither hyperoxia nor ventilator-induced lung injury increased wet-to-dry lung weight ratios in knockout lungs relative to control lungs. Knockout mice showed increases in Na pump β3 subunit expression and β2-adrenergic receptor expression. These results demonstrate a crucial role for the Na pump β1 subunit in alveolar ion and fluid transport and indicate that both AT1 and AT2 cells make major contributions to these processes and to AFC. Furthermore, they support the feasibility of a general approach to altering alveolar epithelial function in a cell-specific manner that allows direct insights into AT1 versus AT2 cell-specific roles in the lung. PMID:27064541

  17. Revealing Dynamic Processes of Materials in Liquids Using Liquid Cell Transmission Electron Microscopy

    PubMed Central

    Niu, Kai-Yang; Liao, Hong-Gang; Zheng, Haimei

    2012-01-01

    The recent development for in situ transmission electron microscopy, which allows imaging through liquids with high spatial resolution, has attracted significant interests across the research fields of materials science, physics, chemistry and biology. The key enabling technology is a liquid cell. We fabricate liquid cells with thin viewing windows through a sequential microfabrication process, including silicon nitride membrane deposition, photolithographic patterning, wafer etching, cell bonding, etc. A liquid cell with the dimensions of a regular TEM grid can fit in any standard TEM sample holder. About 100 nanoliters reaction solution is loaded into the reservoirs and about 30 picoliters liquid is drawn into the viewing windows by capillary force. Subsequently, the cell is sealed and loaded into a microscope for in situ imaging. Inside the TEM, the electron beam goes through the thin liquid layer sandwiched between two silicon nitride membranes. Dynamic processes of nanoparticles in liquids, such as nucleation and growth of nanocrystals, diffusion and assembly of nanoparticles, etc., have been imaged in real time with sub-nanometer resolution. We have also applied this method to other research areas, e.g., imaging proteins in water. Liquid cell TEM is poised to play a major role in revealing dynamic processes of materials in their working environments. It may also bring high impact in the study of biological processes in their native environment. PMID:23287885

  18. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells.

    PubMed

    Doyon, Jeffrey B; Zeitler, Bryan; Cheng, Jackie; Cheng, Aaron T; Cherone, Jennifer M; Santiago, Yolanda; Lee, Andrew H; Vo, Thuy D; Doyon, Yannick; Miller, Jeffrey C; Paschon, David E; Zhang, Lei; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Drubin, David G

    2011-03-01

    Clathrin-mediated endocytosis (CME) is the best-studied pathway by which cells selectively internalize molecules from the plasma membrane and surrounding environment. Previous live-cell imaging studies using ectopically overexpressed fluorescent fusions of endocytic proteins indicated that mammalian CME is a highly dynamic but inefficient and heterogeneous process. In contrast, studies of endocytosis in budding yeast using fluorescent protein fusions expressed at physiological levels from native genomic loci have revealed a process that is very regular and efficient. To analyse endocytic dynamics in mammalian cells in which endogenous protein stoichiometry is preserved, we targeted zinc finger nucleases (ZFNs) to the clathrin light chain A and dynamin-2 genomic loci and generated cell lines expressing fluorescent protein fusions from each locus. The genome-edited cells exhibited enhanced endocytic function, dynamics and efficiency when compared with previously studied cells, indicating that CME is highly sensitive to the levels of its protein components. Our study establishes that ZFN-mediated genome editing is a robust tool for expressing protein fusions at endogenous levels to faithfully report subcellular localization and dynamics.

  19. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells

    NASA Technical Reports Server (NTRS)

    Hu, Shaohua; Chen, Jianxin; Fabry, Ben; Numaguchi, Yasushi; Gouldstone, Andrew; Ingber, Donald E.; Fredberg, Jeffrey J.; Butler, James P.; Wang, Ning

    2003-01-01

    We describe a novel synchronous detection approach to map the transmission of mechanical stresses within the cytoplasm of an adherent cell. Using fluorescent protein-labeled mitochondria or cytoskeletal components as fiducial markers, we measured displacements and computed stresses in the cytoskeleton of a living cell plated on extracellular matrix molecules that arise in response to a small, external localized oscillatory load applied to transmembrane receptors on the apical cell surface. Induced synchronous displacements, stresses, and phase lags were found to be concentrated at sites quite remote from the localized load and were modulated by the preexisting tensile stress (prestress) in the cytoskeleton. Stresses applied at the apical surface also resulted in displacements of focal adhesion sites at the cell base. Cytoskeletal anisotropy was revealed by differential phase lags in X vs. Y directions. Displacements and stresses in the cytoskeleton of a cell plated on poly-L-lysine decayed quickly and were not concentrated at remote sites. These data indicate that mechanical forces are transferred across discrete cytoskeletal elements over long distances through the cytoplasm in the living adherent cell.

  20. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification

    PubMed Central

    Zdravkovic, Tamara; Nazor, Kristopher L.; Larocque, Nicholas; Gormley, Matthew; Donne, Matthew; Hunkapillar, Nathan; Giritharan, Gnanaratnam; Bernstein, Harold S.; Wei, Grace; Hebrok, Matthias; Zeng, Xianmin; Genbacev, Olga; Mattis, Aras; McMaster, Michael T.; Krtolica, Ana; Valbuena, Diana; Simón, Carlos; Laurent, Louise C.; Loring, Jeanne F.; Fisher, Susan J.

    2015-01-01

    Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines. PMID:26483210

  1. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification.

    PubMed

    Zdravkovic, Tamara; Nazor, Kristopher L; Larocque, Nicholas; Gormley, Matthew; Donne, Matthew; Hunkapillar, Nathan; Giritharan, Gnanaratnam; Bernstein, Harold S; Wei, Grace; Hebrok, Matthias; Zeng, Xianmin; Genbacev, Olga; Mattis, Aras; McMaster, Michael T; Krtolica, Ana; Valbuena, Diana; Simón, Carlos; Laurent, Louise C; Loring, Jeanne F; Fisher, Susan J

    2015-12-01

    Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines.

  2. Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics.

    PubMed

    Nikoo, Shohreh; Ebtekar, Massoumeh; Jeddi-Tehrani, Mahmood; Shervin, Adel; Bozorgmehr, Mahmood; Vafaei, Sedigheh; Kazemnejad, Somayeh; Zarnani, Amir-Hassan

    2014-09-01

    Retrograde flow of menstrual blood cells during menstruation is considered as the dominant theory for the development of endometriosis. Moreover, current evidence suggests that endometrial-derived stem cells are key players in the pathogenesis of endometriosis. In particular, endometrial stromal stem cells have been suggested to be involved in the pathogenesis of this disease. Here, we aimed to use menstrual blood, as a novel source of endometrial stem cells, to investigate whether stromal stem cells from endometriosis (E-MenSCs) and non-endometriosis (NE-MenSCs) women differed regarding their morphology, CD marker expression pattern, proliferation, invasion and adhesion capacities and their ability to express certain immunomodulatory molecules. E-MenSCs were morphologically different from NE-MenSCs and showed higher expression of CD9, CD10 and CD29. Furthermore, E-MenSCs had higher proliferation and invasion potentials compared with NE-MenSCs. The amount of indoleamine 2,3-dioxygenase-1 (IDO1) and cyclooxygenase-2 (COX-2) in E-MenSCs co-cultured with allogenic peripheral blood mononuclear cells (PBMCs) was shown to be higher both at the gene and protein levels, and higher IDO1 activity was detected in the endometriosis group. However, NE-MenSCs revealed increased concentrations of forkhead transcription factor-3 (FOXP3) when compared with E-MenSCs. Nonetheless, interferon (IFN)-γ, Interleukin (IL)-10 and monocyte chemoattractant protein-1 (MCP-1) levels were higher in the supernatant of E-MenSCs-PBMC co-cultures. Here, we showed that there are inherent differences between E-MenSCs and NE-MenSCs. These findings propose the key role MenSCs could play in the pathogenesis of endometriosis and further support the retrograde and stem cell theories of endometriosis. Hence, considering its renewable and easily available nature, menstrual blood could be viewed as a reliable and inexpensive material for studies addressing the cellular and molecular aspects of endometriosis.

  3. Transcriptomic changes in human renal proximal tubular cells revealed under hypoxic conditions by RNA sequencing.

    PubMed

    Yu, Wenmin; Li, Yiping; Wang, Zhi; Liu, Lei; Liu, Jing; Ding, Fengan; Zhang, Xiaoyi; Cheng, Zhengyuan; Chen, Pingsheng; Dou, Jun

    2016-09-01

    Chronic hypoxia often occurs among patients with chronic kidney disease (CKD). Renal proximal tubular cells may be the primary target of a hypoxic insult. However, the underlying transcriptional mechanisms remain undefined. In this study, we revealed the global changes in gene expression in HK‑2 human renal proximal tubular cells under hypoxic and normoxic conditions. We analyzed the transcriptome of HK‑2 cells exposed to hypoxia for 24 h using RNA sequencing. A total of 279 differentially expressed genes was examined, as these genes could potentially explain the differences in HK‑2 cells between hypoxic and normoxic conditions. Moreover, 17 genes were validated by qPCR, and the results were highly concordant with the RNA seqencing results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to better understand the functions of these differentially expressed genes. The upregulated genes appeared to be significantly enriched in the pathyway of extracellular matrix (ECM)-receptor interaction, and in paticular, the pathway of renal cell carcinoma was upregulated under hypoxic conditions. The downregulated genes were enriched in the signaling pathway related to antigen processing and presentation; however, the pathway of glutathione metabolism was downregulated. Our analysis revealed numerous novel transcripts and alternative splicing events. Simultaneously, we also identified a large number of single nucleotide polymorphisms, which will be a rich resource for future marker development. On the whole, our data indicate that transcriptome analysis provides valuable information for a more in depth understanding of the molecular mechanisms in CKD and renal cell carcinoma. PMID:27432315

  4. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.

    PubMed

    Huang, Jiun-Yan; Huang, Chi-Wei; Kao, Kuo-Ching; Lai, Pik-Yin

    2013-04-10

    Biological systems are often organized spatially and temporally by multi-scale functional subsystems (modules). A specific subcellular process often corresponds to a subsystem composed of some of these interconnected modules. Accurate identification of system-level modularity organization from the large scale networks can provide valuable information on subsystem models of subcellular processes or physiological phenomena. Computational identification of functional modules from the large scale network is the key approach to solve the complexity of modularity in the past decade, but the overlapping and multi-scale nature of modules often renders unsatisfactory results in these methods. Most current methods for modularity detection are optimization-based and suffered from the drawback of size resolution limit. It is difficult to trace the origin of the unsatisfactory results, which may be due to poor data, inappropriate objective function selection or simply resulted from natural evolution, and hence no system-level accurate modular models for subcellular processes can be offered. Motivated by the idea of evolution with robustness and adaption as guiding principles, we propose a novel approach that can identify significant multi-scale overlapping modules that are sufficiently accurate at the system and subsystem levels, giving biological insights for subcellular processes. The success of our evolution strategy method is demonstrated by applying to the yeast protein-protein interaction network. Functional subsystems of important physiological phenomena can be revealed. In particular, the cell cycle controlling network is selected for detailed discussion. The cell cycle subcellular processes in yeast can be successfully dissected into functional modules of cell cycle control, cell size check point, spindle assembly checkpoint, and DNA damage check point in G2/M and S phases. The interconnections between check points and cell cycle control modules provide clues on the

  5. Spatial Intensity Distribution Analysis Reveals Abnormal Oligomerization of Proteins in Single Cells.

    PubMed

    Godin, Antoine G; Rappaz, Benjamin; Potvin-Trottier, Laurent; Kennedy, Timothy E; De Koninck, Yves; Wiseman, Paul W

    2015-08-18

    Knowledge of membrane receptor organization is essential for understanding the initial steps in cell signaling and trafficking mechanisms, but quantitative analysis of receptor interactions at the single-cell level and in different cellular compartments has remained highly challenging. To achieve this, we apply a quantitative image analysis technique-spatial intensity distribution analysis (SpIDA)-that can measure fluorescent particle concentrations and oligomerization states within different subcellular compartments in live cells. An important technical challenge faced by fluorescence microscopy-based measurement of oligomerization is the fidelity of receptor labeling. In practice, imperfect labeling biases the distribution of oligomeric states measured within an aggregated system. We extend SpIDA to enable analysis of high-order oligomers from fluorescence microscopy images, by including a probability weighted correction algorithm for nonemitting labels. We demonstrated that this fraction of nonemitting probes could be estimated in single cells using SpIDA measurements on model systems with known oligomerization state. Previously, this artifact was measured using single-step photobleaching. This approach was validated using computer-simulated data and the imperfect labeling was quantified in cells with ion channels of known oligomer subunit count. It was then applied to quantify the oligomerization states in different cell compartments of the proteolipid protein (PLP) expressed in COS-7 cells. Expression of a mutant PLP linked to impaired trafficking resulted in the detection of PLP tetramers that persist in the endoplasmic reticulum, while no difference was measured at the membrane between the distributions of wild-type and mutated PLPs. Our results demonstrate that SpIDA allows measurement of protein oligomerization in different compartments of intact cells, even when fractional mislabeling occurs as well as photobleaching during the imaging process, and

  6. Multiparameter screening reveals a role for Na+ channels in cytokine-induced β-cell death.

    PubMed

    Yang, Yu Hsuan Carol; Vilin, Yury Y; Roberge, Michel; Kurata, Harley T; Johnson, James D

    2014-03-01

    Pancreatic β-cell death plays a role in both type 1 and type 2 diabetes, but clinical treatments that specifically target β-cell survival have not yet been developed. We have recently developed live-cell imaging-based, high-throughput screening methods capable of identifying factors that modulate pancreatic β-cell death, with the hope of finding drugs that can intervene in this process. In the present study, we used a high-content screen and the Prestwick Chemical Library of small molecules to identify drugs that block cell death resulting from exposure to a cocktail of cytotoxic cytokines (25 ng/mL TNF-α, 10 ng/mL IL-1β, and 10 ng/mL IFN-γ). Data analysis with self-organizing maps revealed that 19 drugs had profiles similar to that of the no cytokine condition, indicating protection. Carbamazepine, an antiepileptic Na(+) channel inhibitor, was particularly interesting because Na(+) channels are not generally considered targets for antiapoptotic therapy in diabetes and because the function of these channels in β-cells has not been well studied. We analyzed the expression and characteristics of Na(+) currents in mature β-cells from MIP-GFP mice. We confirmed the dose-dependent protective effects of carbamazepine and another use-dependent Na(+) channel blocker in cytokine-treated mouse islet cells. Carbamazepine down-regulated the proapoptotic and endoplasmic reticulum stress signaling induced by cytokines. Together, these studies point to Na(+) channels as a novel therapeutic target in diabetes. PMID:24438339

  7. Plasma membrane-cell wall connections: roles in mitosis and cytokinesis revealed by plasmolysis of Tradescantia virginiana leaf epidermal cells.

    PubMed

    Cleary, A L

    2001-01-01

    Tradescantia virginiana leaf epidermal cells were plasmolysed by sequential treatment with 0.8 M and 0.3 M sucrose. Plasmolysis revealed adhesion of the plasma membrane to the cell wall at sites coinciding with cytoskeletal arrays involved in the polarisation of cells undergoing asymmetric divisions--cortical actin patch--and in the establishment and maintenance of the division site--preprophase band of microtubules and filamentous (F) actin. The majority of cells retained adhesions at the actin patch throughout mitosis. However, only approximately 13% of cells formed or retained attachments at the site of the preprophase band. After the breakdown of the nuclear envelope, plasmolysis had a dramatic effect on spindle orientation, cell plate formation, and the plane of cytokinesis. Spindles were rotated at abnormal angles including tilted into the plane of the epidermis. Cell plates formed but were quickly replaced by vacuole-like intercellular compartments containing no Tinopal-stainable cell wall material. This compartment usually opened to the apoplast at one side, and cytokinesis was completed by the furrow extending across the protoplast. This atypical cytokinesis was facilitated by a phragmoplast containing microtubules and F-actin. Progression of the furrow was unaffected by 25 micrograms of cytochalasin B per ml but inhibited by 10 microM oryzalin. Phragmoplasts were contorted and misguided and cytokinesis prolonged, indicating severe disruption to the guidance mechanisms controlling phragmoplast expansion. These results are discussed in terms of cytoskeleton-plasma membrane-cell wall connections that could be important to the localisation of plasma membrane molecules defining the cortical division site and hence providing positional information to the cytokinetic apparatus, and/or for providing an anchor for cytoplasmic F-actin necessary to generate tension on the phragmoplast and facilitate its directed, planar expansion.

  8. Metabolomics Analysis Reveals that AICAR Affects Glycerolipid, Ceramide and Nucleotide Synthesis Pathways in INS-1 Cells.

    PubMed

    ElAzzouny, Mahmoud A; Evans, Charles R; Burant, Charles F; Kennedy, Robert T

    2015-01-01

    AMPK regulates many metabolic pathways including fatty acid and glucose metabolism, both of which are closely associated with insulin secretion in pancreatic β-cells. Insulin secretion is regulated by metabolic coupling factors such as ATP/ADP ratio and other metabolites generated by the metabolism of nutrients such as glucose, fatty acid and amino acids. However, the connection between AMPK activation and insulin secretion in β-cells has not yet been fully elucidated at a metabolic level. To study the effect of AMPK activation on glucose stimulated insulin secretion, we applied the pharmacological activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to an INS-1 (832/13) β-cell line. We measured the change in 66 metabolites in the presence or absence of AICAR using different stable isotopic labeled nutrients to probe selected pathways. AMPK activation by AICAR increased basal insulin secretion and reduced the glucose stimulation index. Although ATP/ADP ratios were not strongly affected by AICAR, several other metabolites and pathways important for insulin secretion were affected by AICAR treatment including long-chain CoAs, malonyl-CoA, 3-hydroxy-3 methylglutaryl CoA, diacylglycerol, and farnesyl pyrophosphate. Tracer studies using 13C-glucose revealed lower glucose flux in the purine and pyrimidine pathway and in the glycerolipid synthesis pathway. Untargeted metabolomics revealed reduction in ceramides caused by AICAR that may explain the beneficial role of AMPK in protecting β-cells from lipotoxicity. Taken together, the results provide an overall picture of the metabolic changes associated with AICAR treatment and how it modulates insulin secretion and β-cell survival.

  9. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation

    PubMed Central

    Wang, Maojun; Wang, Pengcheng; Tu, Lili; Zhu, Sitao; Zhang, Lin; Li, Zhonghua; Zhang, Qinghua; Yuan, Daojun; Zhang, Xianlong

    2016-01-01

    Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal. PMID:27067544

  10. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation.

    PubMed

    Wang, Maojun; Wang, Pengcheng; Tu, Lili; Zhu, Sitao; Zhang, Lin; Li, Zhonghua; Zhang, Qinghua; Yuan, Daojun; Zhang, Xianlong

    2016-05-19

    Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal.

  11. Revealing Glycoproteins in the Secretome of MCF-7 Human Breast Cancer Cells

    PubMed Central

    Tan, Aik-Aun; Phang, Wai-Mei; Gopinath, Subash C. B.; Hashim, Onn H.; Kiew, Lik Voon; Chen, Yeng

    2015-01-01

    Breast cancer is one of the major issues in the field of oncology, reported with a higher prevalence rate in women worldwide. In attempt to reveal the potential biomarkers for breast cancer, the findings of differentially glycosylated haptoglobin and osteonectin in previous study have drawn our attention towards glycoproteins of secretome from the MCF-7 cancer cell line. In the present study, further analyses were performed on the medium of MCF-7 cells by subjecting it to two-dimensional analyses followed by image analysis in contrast to the medium of human mammary epithelial cells (HMEpC) as a negative control. Carboxypeptidase A4 (CPA4), alpha-1-antitrypsin (AAT), haptoglobin (HP), and HSC70 were detected in the medium of MCF-7, while only CPA4 and osteonectin (ON) were detected in HMEpC medium. In addition, CPA4 was detected as upregulated in the MCF-7 medium. Further analysis by lectin showed that CPA4, AAT, HP, and HSC70 were secreted as N-glycan in the medium of MCF-7, with HP also showing differentially N-glycosylated isoforms. For the HMEpC, only CPA4 was detected as N-glycan. No O-glycan was detected in the medium of HMEpC but MCF-7 expressed O-glycosylated CPA4 and HSC70. All these revealed that glycoproteins could be used as glycan-based biomarkers for the prognosis of breast cancer. PMID:26167486

  12. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  13. Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell-wall structure and assembly

    PubMed Central

    Desmarais, Samantha M.; De Pedro, Miguel A.; Cava, Felipe; Huang, Kerwyn Casey

    2013-01-01

    The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation, and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell-wall synthesis and cell growth. High Performance Liquid Chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition. Here, we present a primer on the basic chemical features of wall structure that can be revealed through HPLC, along with a description of the applications of HPLC PG analyses for interpreting the effects of genetic and chemical perturbations to a variety of bacterial species in different environments. We describe the physical consequences of different PG compositions on cell shape, and review complementary experimental and computational methodologies for PG analysis. Finally, we present a partial list of future targets of development for HPLC and related techniques. PMID:23679048

  14. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis

    PubMed Central

    Malmstrom, Rex R; Rodrigue, Sébastien; Huang, Katherine H; Kelly, Libusha; Kern, Suzanne E; Thompson, Anne; Roggensack, Sara; Berube, Paul M; Henn, Matthew R; Chisholm, Sallie W

    2013-01-01

    Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world's oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome—that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome. PMID:22895163

  15. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells.

    PubMed

    Reichel, Jonathan; Chadburn, Amy; Rubinstein, Paul G; Giulino-Roth, Lisa; Tam, Wayne; Liu, Yifang; Gaiolla, Rafael; Eng, Kenneth; Brody, Joshua; Inghirami, Giorgio; Carlo-Stella, Carmelo; Santoro, Armando; Rahal, Daoud; Totonchy, Jennifer; Elemento, Olivier; Cesarman, Ethel; Roshal, Mikhail

    2015-02-12

    Classical Hodgkin lymphoma (cHL) is characterized by sparsely distributed Hodgkin and Reed-Sternberg (HRS) cells amid reactive host background, complicating the acquisition of neoplastic DNA without extensive background contamination. We overcame this limitation by using flow-sorted HRS and intratumor T cells and optimized low-input exome sequencing of 10 patient samples to reveal alterations in genes involved in antigen presentation, chromosome integrity, transcriptional regulation, and ubiquitination. β-2-microglobulin (B2M) is the most commonly altered gene in HRS cells, with 7 of 10 cases having inactivating mutations that lead to loss of major histocompatibility complex class I (MHC-I) expression. Enforced wild-type B2M expression in a cHL cell line restored MHC-I expression. In an extended cohort of 145 patients, the absence of B2M protein in the HRS cells was associated with lower stage of disease, younger age at diagnosis, and better overall and progression-free survival. B2M-deficient cases encompassed most of the nodular sclerosis subtype cases and only a minority of mixed cellularity cases, suggesting that B2M deficiency determines the tumor microenvironment and may define a major subset of cHL that has more uniform clinical and morphologic features. In addition, we report previously unknown genetic alterations that may render selected patients sensitive to specific targeted therapies. PMID:25488972

  16. Evaluation of a 7-Methoxycoumarin-3-carboxylic Acid Ester Derivative as a Fluorescent, Cell-Cleavable, Phosphonate Protecting Group.

    PubMed

    Wiemer, Andrew J; Shippy, Rebekah R; Kilcollins, Ashley M; Li, Jin; Hsiao, Chia-Hung Christine; Barney, Rocky J; Geng, M Lei; Wiemer, David F

    2016-01-01

    Cell-cleavable protecting groups often enhance cellular delivery of species that are charged at physiological pH. Although several phosphonate protecting groups have achieved clinical success, it remains difficult to use these prodrugs in live cells to clarify biological mechanisms. Here, we present a strategy that uses a 7-methoxycoumarin-3-carboxylic acid ester as a fluorescent protecting group. This strategy was applied to synthesis of an (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) analogue to assess cellular uptake and human Vγ9Vδ2 T cell activation. The fluorescent ester displayed low cellular toxicity (IC50 >100 μm) and strong T cell activation (EC50 =0.018 μm) relative to the unprotected anion (EC50 =23 μm). The coumarin-derived analogue allowed no-wash analysis of biological deprotection, which revealed rapid internalization of the prodrug. These results demonstrate that fluorescent groups can be applied both as functional drug delivery tools and useful biological probes of drug uptake. PMID:26503489

  17. [Acute intestinal obstruction revealing enteropathy associated t-cell lymphoma, about a case].

    PubMed

    Garba, Abdoul Aziz; Adamou, Harissou; Magagi, Ibrahim Amadou; Brah, Souleymane; Habou, Oumarou

    2016-01-01

    Enteropathy associated T-cell lymphoma (EATL) is a rare complication of celiac disease (CD). We report a case of EATL associated with CD revealed by acute intestinal obstruction. A North African woman of 38 years old with a history of infertility and chronic abdominal pain was admitted in emergency with acute intestinal obstruction. During the surgery, we found a tumor on the small intestine with mesenteric lymphadenopathy. Histology and immunohistochemistry of the specimen objectified a digestive T lymphoma CD3+ and immunological assessment of celiac disease was positive. The diagnosis of EATL was thus retained. Chemotherapy (CHOEP protocol) was established as well as gluten-free diet with a complete response to treatment. The EATL is a rare complication of CD that can be revealed by intestinal obstruction. The prognosis can be improved by early treatment involving surgery and chemotherapy. Its prevention requires early diagnosis of celiac and gluten-free diets. PMID:27217874

  18. Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure.

    PubMed

    Grand, Ralph S; Pichugina, Tatyana; Gehlen, Lutz R; Jones, M Beatrix; Tsai, Peter; Allison, Jane R; Martienssen, Robert; O'Sullivan, Justin M

    2014-11-10

    Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking.

  19. Mathematical model for cell competition: Predator-prey interactions at the interface between two groups of cells in monolayer tissue.

    PubMed

    Nishikawa, Seiya; Takamatsu, Atsuko; Ohsawa, Shizue; Igaki, Tatsushi

    2016-09-01

    The phenomenon of 'cell competition' has been implicated in the normal development and maintenance of organs, such as in the regulation of organ size and suppression of neoplastic development. In cell competition, one group of cells competes with another group through an interaction at their interface. Which cell group "wins" is governed by a certain relative fitness within the cells. However, this idea of cellular fitness has not been clearly defined. We construct two types of mathematical models to describe this phenomenon of cell competition by considering the interaction at the interface as a predator-prey type interaction in a monolayer tissue such as epithelium. Both of these models can reproduce several typical experimental observations involving systems of mutant cells (losers) and normal cells (winners). By analyzing one of the model and defining an index for the degree of fitness in groups of cells, we show that the fate of each group mainly depends on the relative carrying capacities of certain resources and the strength of the predator-prey interaction at the interface. This contradicts the classical hypothesis in which the relative proliferation rate determines the winner.

  20. Genetic Characterization of Turkish Snake Melon (Cucumis melo L. subsp. melo flexuosus Group) Accessions Revealed by SSR Markers.

    PubMed

    Solmaz, Ilknur; Kacar, Yildiz Aka; Simsek, Ozhan; Sari, Nebahat

    2016-08-01

    Snake melon is an important cucurbit crop especially in the Southeastern and the Mediterranean region of Turkey. It is consumed as fresh or pickled. The production is mainly done with the local landraces in the country. Turkey is one of the secondary diversification centers of melon and possesses valuable genetic resources which have different morphological characteristics in case of snake melon. Genetic diversity of snake melon genotypes collected from different regions of Turkey and reference genotypes obtained from World Melon Gene Bank in Avignon-France was examined using 13 simple sequence repeat (SSR) markers. A total of 69 alleles were detected, with an average of 5.31 alleles per locus. The polymorphism information content of SSR markers ranged from 0.19 to 0.57 (average 0.38). Based on cluster analysis, two major groups were defined. The first major group included only one accession (61), while the rest of all accessions grouped in the second major group and separated into different sub-clusters. Based on SSR markers, cluster analysis indicated that considerably high genetic variability exists among the examined accessions; however, Turkish snake melon accessions were grouped together with the reference snake melon accessions.

  1. Communication is key: Reducing DEK1 activity reveals a link between cell-cell contacts and epidermal cell differentiation status.

    PubMed

    Galletti, Roberta; Ingram, Gwyneth C

    2015-01-01

    Plant epidermis development requires not only the initial acquisition of tissue identity, but also the ability to differentiate specific cell types over time and to maintain these differentiated states throughout the plant life. To set-up and maintain differentiation, plants activate specific transcriptional programs. Interfering with these programs can prevent differentiation and/or force differentiated cells to lose their identity and re-enter a proliferative state. We have recently shown that the Arabidopsis Defective Kernel 1 (DEK1) protein is required both for the differentiation of epidermal cells and for the maintenance of their fully differentiated state. Defects in DEK1 activity lead to a deregulation of the expression of epidermis-specific differentiation-promoting HD-ZIP IV transcription factors. Here we propose a working model in which DEK1, by maintaining cell-cell contacts, and thus communication between neighboring cells, influences HD-ZIP IV gene expression and epidermis differentiation. PMID:27064205

  2. Molecular analysis of T-cell receptor beta genes in cutaneous T-cell lymphoma reveals Jbeta1 bias.

    PubMed

    Morgan, Suzanne M; Hodges, Elizabeth; Mitchell, Tracey J; Harris, Susan; Whittaker, Sean J; Smith, John L

    2006-08-01

    Molecular characterization of T-cell receptor junctional region sequences in cutaneous T-cell lymphoma had not been previously reported. We have examined in detail the features of the T-cell receptor beta (TCRB) gene rearrangements in 20 individuals with well-defined stages of cutaneous T-cell lymphoma (CTCL) comprising 10 cases with early-stage mycosis fungoides (MF) and 10 cases with late-stage MF or Sezary syndrome. Using BIOMED-2 PCR primers, we detected a high frequency of clonally rearranged TCR gamma and TCRB genes (17/20 and 15/20 cases, respectively). We carried out sequencing analysis of each complete clonal variable (V)beta-diversity (D)beta-joining(J)beta fingerprint generated by PCR amplification, and determined the primary structure of the Vbeta-Dbeta-Jbeta junctional regions. We observed considerable diversity in the T-cell receptor Vbeta gene usage and complementarity-determining region 3 loops. Although we found that TCRB gene usage in CTCL and normal individuals share common features, our analysis also revealed preferential usage of Jbeta1 genes in all cases with advanced stages of disease.

  3. Photobleaching reveals complex effects of inhibitors on transcribing RNA polymerase II in living cells

    SciTech Connect

    Fromaget, Maud; Cook, Peter R. . E-mail: peter.cook@path.ox.ac.uk

    2007-08-15

    RNA polymerase II transcribes most eukaryotic genes. Photobleaching studies have revealed that living Chinese hamster ovary cells expressing the catalytic subunit of the polymerase tagged with the green fluorescent protein contain a large rapidly exchanging pool of enzyme, plus a smaller engaged fraction; genetic complementation shows this tagged polymerase to be fully functional. We investigated how transcriptional inhibitors - some of which are used therapeutically - affect the engaged fraction in living cells using fluorescence loss in photobleaching; all were used at concentrations that have reversible effects. Various kinase inhibitors (roscovitine, DRB, KM05283, alsterpaullone, isoquinolinesulfonamide derivatives H-7, H-8, H-89, H-9), proteasomal inhibitors (lactacystin, MG132), and an anti-tumour agent (cisplatin) all reduced the engaged fraction; an intercalator (actinomycin D), two histone deacetylase inhibitors (trichostatin A, sodium butyrate), and irradiation with ultra-violet light all increased it. The polymerase proves to be both a sensitive sensor and effector of the response to these inhibitors.

  4. Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    PubMed Central

    Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew

    2011-01-01

    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. PMID:22125496

  5. Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers

    PubMed Central

    Hendrix, Jelle; Baumgärtel, Viola; Schrimpf, Waldemar; Ivanchenko, Sergey; Digman, Michelle A.; Gratton, Enrico; Kräusslich, Hans-Georg; Müller, Barbara

    2015-01-01

    Assembly of the Gag polyprotein into new viral particles in infected cells is a crucial step in the retroviral replication cycle. Currently, little is known about the onset of assembly in the cytosol. In this paper, we analyzed the cytosolic HIV-1 Gag fraction in real time in live cells using advanced fluctuation imaging methods and thereby provide detailed insights into the complex relationship between cytosolic Gag mobility, stoichiometry, and interactions. We show that Gag diffuses as a monomer on the subsecond timescale with severely reduced mobility. Reduction of mobility is associated with basic residues in its nucleocapsid (NC) domain, whereas capsid (CA) and matrix (MA) domains do not contribute significantly. Strikingly, another diffusive Gag species was observed on the seconds timescale that oligomerized in a concentration-dependent manner. Both NC- and CA-mediated interactions strongly assist this process. Our results reveal potential nucleation steps of cytosolic Gag fractions before membrane-assisted Gag assembly. PMID:26283800

  6. Retrieval of the Vacuolar H+-ATPase from Phagosomes Revealed by Live Cell Imaging

    PubMed Central

    Clarke, Margaret; Maddera, Lucinda; Engel, Ulrike; Gerisch, Günther

    2010-01-01

    Background The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized. Methodology To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins. Principal Findings We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved. Conclusions/Signficance Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway. PMID:20052281

  7. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    SciTech Connect

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  8. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.

    PubMed

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas; Lyon, David; Mullari, Meeli; Madsen, Maria V; Daniel, Jeremy A; Jensen, Lars J; Nielsen, Michael L

    2016-01-01

    The posttranslational modification of proteins by arginine methylation is functionally important, yet the breadth of this modification is not well characterized. Using high-resolution mass spectrometry, we identified 8030 arginine methylation sites within 3300 human proteins in human embryonic kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified by methylation. Through quantitative proteomics and RNA interference to examine arginine methylation stoichiometry, we unexpectedly found that the protein arginine methyltransferase (PRMT) family of arginine methyltransferases catalyzed methylation independently of arginine sequence context. In contrast to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially regulated the functions of the pre-mRNA splicing factor SRSF2 (serine/arginine-rich splicing factor 2) and the RNA transport ribonucleoprotein HNRNPUL1 (heterogeneous nuclear ribonucleoprotein U-like 1). Knocking down PRMT5 impaired the RNA binding function of SRSF2, whereas knocking down PRMT4 [also known as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human arginine methylome provides a missing piece in the global and integrative view of cellular physiology and protein regulation. PMID:27577262

  9. Comparison of Sewage and Animal Fecal Microbiomes by using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups

    EPA Science Inventory

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but human and other animal gut microbiota contain an array of other taxonomic groups that might serve as indicators for sources of fecal pollution. High thr...

  10. DNA fingerprinting and anastomosis grouping reveal similar genetic diversity in Rhizoctonia species infecting turfgrasses in the transition zone of USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia blight (sensu lato) is a common and serious disease of many turfgrass species. The most widespread causal agent, R. solani, consists of several genetically different subpopulations. Though hyphal anastomosis reactions have been used to group Rhizoctonia species, they are time consuming a...

  11. Comprehensive phylogenetic analysis of bacterial group II intron-encoded ORFs lacking the DNA endonuclease domain reveals new varieties.

    PubMed

    Toro, Nicolás; Martínez-Abarca, Francisco

    2013-01-01

    Group II introns are self-splicing RNAs that act as mobile retroelements in the organelles of plants, fungi and protists. They are also widely distributed in bacteria, and are generally assumed to be the ancestors of nuclear spliceosomal introns. Most bacterial group II introns have a multifunctional intron-encoded protein (IEP) ORF within the ribozyme domain IV (DIV). This ORF encodes an N-terminal reverse transcriptase (RT) domain, followed by a putative RNA-binding domain with RNA splicing or maturase activity and, in some cases, a C-terminal DNA-binding (D) region followed by a DNA endonuclease (En) domain. In this study, we focused on bacterial group II intron ORF phylogenetic classes containing only reverse transcriptase/maturase open reading frames, with no recognizable D/En region (classes A, C, D, E, F and unclassified introns). On the basis of phylogenetic analyses of the maturase domain and its C-terminal extension, which appears to be a signature characteristic of ORF phylogenetic class, with support from the phylogeny inferred from the RT domain, we have revised the proposed new class F, defining new intron ORF varieties. Our results increase knowledge of the lineage of group II introns encoding proteins lacking the En-domain.

  12. Phylogeny of replication initiator protein TrfA reveals a highly divergent clade of incompatibility group P1 plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incompatibility group P-1 (incP-1) includes broad host range plasmids of Gram negative bacteria and are classified into five subgroups (alpha, beta, gamma, delta, and epsilon). The incP-1 replication module consists of the trfA gene, encoding the replication initiator protein TrfA, and the origin o...

  13. Extensive introgressive hybridization within the northern oriole group (Genus Icterus) revealed by three-species isolation with migration analysis

    PubMed Central

    Jacobsen, Frode; Omland, Kevin E

    2012-01-01

    Until recently, studies of divergence and gene flow among closely-related taxa were generally limited to pairs of sister taxa. However, organisms frequently exchange genes with other non-sister taxa. The “northern oriole” group within genus Icterus exemplifies this problem. This group involves the extensively studied hybrid zone between Baltimore oriole (Icterus galbula) and Bullock's oriole (I. bullockii), an alleged hybrid zone between I. bullockii and black-backed oriole (I. abeillei), and likely mtDNA introgression between I. galbula and I. abeillei. Here, we examine the divergence population genetics of the entire northern oriole group using a multipopulation Isolation-with-Migration (IM) model. In accordance with Haldane's rule, nuclear loci introgress extensively beyond the I. galbula–I. bullockii hybrid zone, while mtDNA does not. We found no evidence of introgression between I. bullockii and I. abeillei or between I. galbula and I. abeillei when all three species were analyzed together in a three-population model. However, traditional pairwise analysis suggested some nuclear introgression from I. abeillei into I. galbula, probably reflecting genetic contributions from I. bullockii unaccounted for in a two-population model. Thus, only by including all members of this group in the analysis was it possible to rigorously estimate the level of gene flow among these three closely related species. PMID:23145328

  14. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    NASA Astrophysics Data System (ADS)

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-02-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.

  15. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    PubMed Central

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy. PMID:26893143

  16. sdf1 Expression Reveals a Source of Perivascular-Derived Mesenchymal Stem Cells in Zebrafish

    PubMed Central

    Lund, Troy C.; Patrinostro, Xiaobai; Kramer, Ashley C.; Stadem, Paul; Higgins, LeeAnn; Markowski, Todd W.; Wroblewski, Matt S.; Lidke, Diane S.; Tolar, Jakub; Blazar, Bruce R.

    2014-01-01

    There is accumulating evidence that mesenchymal stem cells (MSC) have their origin as perivascular cells (PVC) in vivo, but precisely identifying them has been a challenge, as they have no single definitive marker and are rare. We have developed a fluorescent transgenic vertebrate model in which PVC can be visualized in vivo based upon sdf1 expression in the zebrafish. Prospective isolation and culture of sdf1DsRed PVC demonstrated properties consistent with MSC including prototypical cell surface marker expression; mesodermal differentiation into adipogenic, osteogenic and chondrogenic lineages; and the ability to support hematopoietic cells. Global proteomic studies performed by 2-dimensional liquid chromatography and tandem mass spectrometry revealed a high degree of similarity to human MSC and discovery of novel markers (CD99, CD151 and MYOF) that were previously unknown to be expressed by hMSC. Dynamic in vivo imaging during fin regeneration showed that PVC may arise from undifferentiated mesenchyme providing evidence of a PVC – MSC relationship. This is the first model, established in zebrafish, in which MSC can be visualized in vivo and will allow us to better understand their function in a native environment. PMID:24905975

  17. The transcriptomic architecture of mouse Sertoli cell clone embryos reveals temporal–spatial-specific reprogramming.

    PubMed

    Cao, Feng; Fukuda, Atsushi; Watanabe, Hiroshi; Kono, Tomohiro

    2013-03-01

    Somatic cell nuclear transfer, a technique used to generate clone embryos by transferring the nucleus of a somatic cell into an enucleated oocyte, is an excellent approach to study the reprogramming of the nuclei of differentiated cells. Here, we conducted a transcriptomic study by performing microarray analysis on single Sertoli cell nuclear transfer (SeCNT) embryos throughout preimplantation development. The extensive data collected from the oocyte to the blastocyst stage helped to identify specific genes that were incorrectly reprogrammed at each stage, thereby providing a novel perspective for understanding reprogramming progression in SeCNT embryos.This attempt provided an opportunity to discuss the possibility that ectopic gene expression could be involved in the developmental failure of SeCNT embryos. Network analysis at each stage suggested that in total, 127 networks were involved in developmental and functional disorders in SeCNT embryos. Furthermore, chromosome mapping using our time-lapse expression data highlighted temporal–spatial changes of the abnormal expression, showing the characteristic distribution of the genes on each chromosome.Thus, the present study revealed that the preimplantation development of SeCNT embryos appears normal; however, the progression of incorrect reprogramming is concealed throughout development.

  18. Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus.

    PubMed

    Munks, Michael W; Gold, Marielle C; Zajac, Allison L; Doom, Carmen M; Morello, Christopher S; Spector, Deborah H; Hill, Ann B

    2006-03-15

    Human CMV establishes a lifelong latent infection in the majority of people worldwide. Although most infections are asymptomatic, immunocompetent hosts devote an extraordinary amount of immune resources to virus control. To increase our understanding of CMV immunobiology in an animal model, we used a genomic approach to comprehensively map the C57BL/6 CD8 T cell response to murine CMV (MCMV). Responses to 27 viral proteins were detectable directly ex vivo, the most diverse CD8 T cell response yet described within an individual animal. Twenty-four peptide epitopes were mapped from 18 Ags, which together account for most of the MCMV-specific response. Most Ags were from genes expressed at early times, after viral genes that interfere with Ag presentation are expressed, consistent with the hypothesis that the CD8 T cell response to MCMV is largely driven by cross-presented Ag. Titration of peptide epitopes in a direct ex vivo intracellular cytokine staining assay revealed a wide range of functional avidities, with no obvious correlation between functional avidity and the strength of the response. The immunodominance hierarchy varied only slightly between mice and between experiments. However, H-2(b)-expressing mice with different genetic backgrounds responded preferentially to different epitopes, indicating that non-MHC-encoded factors contribute to immunodominance in the CD8 T cell response to MCMV.

  19. Next-Generation Sequencing of Pulmonary Large Cell Neuroendocrine Carcinoma Reveals Small Cell Carcinoma–like and Non–Small Cell Carcinoma–like Subsets

    PubMed Central

    Rekhtman, Natasha; Pietanza, Maria C.; Hellmann, Matthew D.; Naidoo, Jarushka; Arora, Arshi; Won, Helen; Halpenny, Darragh F.; Wang, Hangjun; Tian, Shaozhou K.; Litvak, Anya M.; Paik, Paul K.; Drilon, Alexander E.; Socci, Nicholas; Poirier, John T.; Shen, Ronglai; Berger, Michael F.; Moreira, Andre L.; Travis, William D.; Rudin, Charles M.; Ladanyi, Marc

    2016-01-01

    Purpose Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a highly aggressive neoplasm, whose biologic relationship to small cell lung carcinoma (SCLC) versus non-SCLC (NSCLC) remains unclear, contributing to uncertainty regarding optimal clinical management. To clarify these relationships, we analyzed genomic alterations in LCNEC compared with other major lung carcinoma types. Experimental Design LCNEC (n = 45) tumor/normal pairs underwent targeted next-generation sequencing of 241 cancer genes by Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) platform and comprehensive histologic, immunohistochemical, and clinical analysis. Genomic data were compared with MSK-IMPACT analysis of other lung carcinoma histologies (n = 242). Results Commonly altered genes in LCNEC included TP53 (78%), RB1 (38%), STK11 (33%), KEAP1 (31%), and KRAS (22%). Genomic profiles segregated LCNEC into 2 major and 1 minor subsets: SCLC-like (n = 18), characterized by TP53+RB1 co-mutation/loss and other SCLC-type alterations, including MYCL amplification; NSCLC-like (n = 25), characterized by the lack of coaltered TP53+RB1 and nearly universal occurrence of NSCLC-type mutations (STK11, KRAS, and KEAP1); and carcinoid-like (n = 2), characterized by MEN1 mutations and low mutation burden. SCLC-like and NSCLC-like subsets revealed several clinicopathologic differences, including higher proliferative activity in SCLC-like tumors (P < 0.0001) and exclusive adenocarcinoma-type differentiation marker expression in NSCLC-like tumors (P = 0.005). While exhibiting predominant similarity with lung adenocarcinoma, NSCLC-like LCNEC harbored several distinctive genomic alterations, including more frequent mutations in NOTCH family genes (28%), implicated as key regulators of neuroendocrine differentiation. Conclusions LCNEC is a biologically heterogeneous group of tumors, comprising distinct subsets with genomic signatures of SCLC, NSCLC (predominantly

  20. A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve.

    PubMed

    Fu, Ying; Zhang, Zhen; Sheehan, Jared; Avnir, Yuval; Ridenour, Callie; Sachnik, Thomas; Sun, Jiusong; Hossain, M Jaber; Chen, Li-Mei; Zhu, Quan; Donis, Ruben O; Marasco, Wayne A

    2016-01-01

    Understanding the natural evolution and structural changes involved in broadly neutralizing antibody (bnAb) development holds great promise for improving the design of prophylactic influenza vaccines. Here we report an haemagglutinin (HA) stem-directed bnAb, 3I14, isolated from human memory B cells, that utilizes a heavy chain encoded by the IGHV3-30 germline gene. MAb 3I14 binds and neutralizes groups 1 and 2 influenza A viruses and protects mice from lethal challenge. Analysis of VH and VL germline back-mutants reveals binding to H3 and H1 but not H5, which supports the critical role of somatic hypermutation in broadening the bnAb response. Moreover, a single VLD94N mutation improves the affinity of 3I14 to H5 by nearly 10-fold. These data provide evidence that memory B cell evolution can expand the HA subtype specificity. Our results further suggest that establishing an optimized memory B cell pool should be an aim of 'universal' influenza vaccine strategies.

  1. A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve

    PubMed Central

    Fu, Ying; Zhang, Zhen; Sheehan, Jared; Avnir, Yuval; Ridenour, Callie; Sachnik, Thomas; Sun, Jiusong; Hossain, M. Jaber; Chen, Li-Mei; Zhu, Quan; Donis, Ruben O.; Marasco, Wayne A.

    2016-01-01

    Understanding the natural evolution and structural changes involved in broadly neutralizing antibody (bnAb) development holds great promise for improving the design of prophylactic influenza vaccines. Here we report an haemagglutinin (HA) stem-directed bnAb, 3I14, isolated from human memory B cells, that utilizes a heavy chain encoded by the IGHV3-30 germline gene. MAb 3I14 binds and neutralizes groups 1 and 2 influenza A viruses and protects mice from lethal challenge. Analysis of VH and VL germline back-mutants reveals binding to H3 and H1 but not H5, which supports the critical role of somatic hypermutation in broadening the bnAb response. Moreover, a single VLD94N mutation improves the affinity of 3I14 to H5 by nearly 10-fold. These data provide evidence that memory B cell evolution can expand the HA subtype specificity. Our results further suggest that establishing an optimized memory B cell pool should be an aim of ‘universal' influenza vaccine strategies. PMID:27619409

  2. Chemometric Analysis of Bacterial Peptidoglycan Reveals Atypical Modifications That Empower the Cell Wall against Predatory Enzymes and Fly Innate Immunity.

    PubMed

    Espaillat, Akbar; Forsmo, Oskar; El Biari, Khouzaima; Björk, Rafael; Lemaitre, Bruno; Trygg, Johan; Cañada, Francisco Javier; de Pedro, Miguel A; Cava, Felipe

    2016-07-27

    Peptidoglycan is a fundamental structure for most bacteria. It contributes to the cell morphology and provides cell wall integrity against environmental insults. While several studies have reported a significant degree of variability in the chemical composition and organization of peptidoglycan in the domain Bacteria, the real diversity of this polymer is far from fully explored. This work exploits rapid ultraperformance liquid chromatography and multivariate data analysis to uncover peptidoglycan chemical diversity in the Class Alphaproteobacteria, a group of Gram negative bacteria that are highly heterogeneous in terms of metabolism, morphology and life-styles. Indeed, chemometric analyses revealed novel peptidoglycan structures conserved in Acetobacteria: amidation at the α-(l)-carboxyl of meso-diaminopimelic acid and the presence of muropeptides cross-linked by (1-3) l-Ala-d-(meso)-diaminopimelate cross-links. Both structures are growth-controlled modifications that influence sensitivity to Type VI secretion system peptidoglycan endopeptidases and recognition by the Drosophila innate immune system, suggesting relevant roles in the environmental adaptability of these bacteria. Collectively our findings demonstrate the discriminative power of chemometric tools on large cell wall-chromatographic data sets to discover novel peptidoglycan structural properties in bacteria. PMID:27337563

  3. A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve.

    PubMed

    Fu, Ying; Zhang, Zhen; Sheehan, Jared; Avnir, Yuval; Ridenour, Callie; Sachnik, Thomas; Sun, Jiusong; Hossain, M Jaber; Chen, Li-Mei; Zhu, Quan; Donis, Ruben O; Marasco, Wayne A

    2016-01-01

    Understanding the natural evolution and structural changes involved in broadly neutralizing antibody (bnAb) development holds great promise for improving the design of prophylactic influenza vaccines. Here we report an haemagglutinin (HA) stem-directed bnAb, 3I14, isolated from human memory B cells, that utilizes a heavy chain encoded by the IGHV3-30 germline gene. MAb 3I14 binds and neutralizes groups 1 and 2 influenza A viruses and protects mice from lethal challenge. Analysis of VH and VL germline back-mutants reveals binding to H3 and H1 but not H5, which supports the critical role of somatic hypermutation in broadening the bnAb response. Moreover, a single VLD94N mutation improves the affinity of 3I14 to H5 by nearly 10-fold. These data provide evidence that memory B cell evolution can expand the HA subtype specificity. Our results further suggest that establishing an optimized memory B cell pool should be an aim of 'universal' influenza vaccine strategies. PMID:27619409

  4. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment.

    PubMed Central

    Liesack, W; Stackebrandt, E

    1992-01-01

    A molecular ecological study was performed on an Australian soil sample to unravel a substantial portion of the bacterial diversity. A large fragment of the 16S rRNA gene was amplified, using DNA isolated by lysing the microorganisms directly within the soil matrix, and a clone library was generated. Comparative sequence analysis of 30 clones and dot blot hybridization of 83 additional clones with defined oligonucleotide probes revealed the presence of three major groups of prokaryotes of the domain Bacteria. The first one comprises 57 clones that indicate relatives of nitrogen-fixing bacteria of the alpha-2 subclass of the class Proteobacteria; the second group of 7 clones originates from members of the order Planctomycetales that, however, reveal no close relationship to any of the described Planctomycetales species; 22 clones of the third group are indicative of members of a novel main line of descent, sharing a common ancestry with members of planctomycetes and chlamydiae. Images PMID:1629164

  5. Stabilization of Transfected Cells Expressing Low-Incidence Blood Group Antigens: Novel Methods Facilitating Their Use as Reagent-Cells

    PubMed Central

    González, Cecilia; Esteban, Rosa; Canals, Carme; Muñiz-Díaz, Eduardo; Nogués, Núria

    2016-01-01

    Background The identification of erythrocyte antibodies in the serum of patients rely on panels of human red blood cells (RBCs), which coexpress many antigens and are not easily available for low-incidence blood group phenotypes. These problems have been addressed by generating cell lines expressing unique blood group antigens, which may be used as an alternative to human RBCs. However, the use of cell lines implies several drawbacks, like the requirement of cell culture facilities and the high cost of cryopreservation. The application of cell stabilization methods could facilitate their use as reagent cells in clinical laboratories. Methods We generated stably-transfected cells expressing low-incidence blood group antigens (Dia and Lua). High-expresser clones were used to assess the effect of TransFix® treatment and lyophilization as cell preservation methods. Cells were kept at 4°C and cell morphology, membrane permeability and antigenic properties were evaluated at several time-points after treatment. Results TransFix® addition to cell suspensions allows cell stabilization and proper antigen detection for at least 120 days, despite an increase in membrane permeability and a reduction in antigen expression levels. Lyophilized cells showed minor morphological changes and antigen expression levels were rather conserved at days 1, 15 and 120, indicating a high stability of the freeze-dried product. These stabilized cells have been proved to react specifically with human sera containing alloantibodies. Conclusions Both stabilization methods allow long-term preservation of the transfected cells antigenic properties and may facilitate their distribution and use as reagent-cells expressing low-incidence antigens, overcoming the limited availability of such rare RBCs. PMID:27603310

  6. Ultrasound-mediated structural changes in cells revealed by FTIR spectroscopy: A contribution to the optimization of gene and drug delivery

    NASA Astrophysics Data System (ADS)

    Grimaldi, Paola; Di Giambattista, Lucia; Giordani, Serena; Udroiu, Ion; Pozzi, Deleana; Gaudenzi, Silvia; Bedini, Angelico; Giliberti, Claudia; Palomba, Raffaele; Congiu Castellano, Agostina

    2011-12-01

    Ultrasound effects on biological samples are gaining a growing interest concerning in particular, the intracellular delivery of drugs and genes in a safe and in a efficient way. Future progress in this field will require a better understanding of how ultrasound and acoustic cavitation affect the biological system properties. The morphological changes of cells due to ultrasound (US) exposure have been extensively studied, while little attention has been given to the cells structural changes. We have exposed two different cell lines to 1 MHz frequency ultrasound currently used in therapy, Jurkat T-lymphocytes and NIH-3T3 fibroblasts, both employed as models respectively in the apoptosis and in the gene therapy studies. The Fourier Transform Infrared (FTIR) Spectroscopy was used as probe to reveal the structural changes in particular molecular groups belonging to the main biological systems. The genotoxic damage of cells exposed to ultrasound was ascertained by the Cytokinesis-Block Micronucleus (CBMN) assay. The FTIR spectroscopy results, combined with multivariate statistical analysis, regarding all cellular components (lipids, proteins, nucleic acids) of the two cell lines, show that Jurkat cells are more sensitive to therapeutic ultrasound in the lipid and protein regions, whereas the NIH-3T3 cells are more sensitive in the nucleic acids region; a meaningful genotoxic effect is present in both cell lines only for long sonication times while in the Jurkat cells also a significant cytotoxic effect is revealed for long times of exposure to ultrasound.

  7. DNA-based digital tension probes reveal integrin forces during early cell adhesion

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Ge, Chenghao; Zhu, Cheng; Salaita, Khalid

    2014-10-01

    Mechanical stimuli profoundly alter cell fate, yet the mechanisms underlying mechanotransduction remain obscure because of a lack of methods for molecular force imaging. Here to address this need, we develop a new class of molecular tension probes that function as a switch to generate a 20- to 30-fold increase in fluorescence upon experiencing a threshold piconewton force. The probes employ immobilized DNA hairpins with tunable force response thresholds, ligands and fluorescence reporters. Quantitative imaging reveals that integrin tension is highly dynamic and increases with an increasing integrin density during adhesion formation. Mixtures of fluorophore-encoded probes show integrin mechanical preference for cyclized RGD over linear RGD peptides. Multiplexed probes with variable guanine-cytosine content within their hairpins reveal integrin preference for the more stable probes at the leading tip of growing adhesions near the cell edge. DNA-based tension probes are among the most sensitive optical force reporters to date, overcoming the force and spatial resolution limitations of traction force microscopy.

  8. Efficient and balanced charge transport revealed in planar perovskite solar cells.

    PubMed

    Chen, Yani; Peng, Jiajun; Su, Diqing; Chen, Xiaoqing; Liang, Ziqi

    2015-03-01

    Hybrid organic-inorganic perovskites have emerged as novel photovoltaic materials and hold great promise for realization of high-efficiency thin film solar modules. In this study, we unveil the ambipolar characteristics of perovskites by employing the transport measurement techniques of charge extraction by linearly increasing voltage (CELIV) and time-of-flight (TOF). These two complementary methods are combined to quantitatively determine the mobilities of hole and electron of CH3NH3PbI3 perovskite while revealing the recombination process and trap states. It is revealed that efficient and balanced transport is achieved in both CH3NH3PbI3 neat film and CH3NH3PbI3/PC61BM bilayer solar cells. Moreover, with the insertion of PC61BM, both hole and electron mobilities of CH3NH3PbI3 are doubled. This study offers a dynamic understanding of the operation of perovskite solar cells. PMID:25695862

  9. Using the group of non-linear cells design metamaterial bar

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Song, Xin; Hu, Xiaolei; Gu, Jinliang

    2016-04-01

    The paper presents the wave propagation in one-dimensional metamaterial bar with attached group of non-linear local oscillators by using analytical and numerical models. The focus is on the influence of group of non-linear cells on the filtering properties of the bar in the 1000Hz to 2000Hz range. Group of Periodic cells with alternating properties exhibit interesting dynamic characteristics that enable them to act as filters. Waves can propagate along bars within specific bands of frequencies called pass bands, and attenuate within bands of frequencies called gaps. Gaps in structures with group of periodic cells are located according on the frequency of cells. From the cell, we can yield the effect negative stiffness and effect negative mass. We can also design the gaps from attached oscillators or cells. In the uniform case the gap is located around the resonant frequency of the oscillators, and thus a stop band can be created in the lower frequency range. In the case with group of non-linear cells the results show that the position of the gap can be designed, and the design depends on the amplitude and the degree of non-linear cells.

  10. DNA fingerprinting and anastomosis grouping reveal similar genetic diversity in Rhizoctonia species infecting turfgrasses in the transition zone of USA.

    PubMed

    Amaradasa, B S; Horvath, B J; Lakshman, D K; Warnke, S E

    2013-01-01

    Rhizoctonia blight is a common and serious disease of many turfgrass species. The most widespread causal agent, Thanatephorus cucumeris (anamorph: R. solani), consists of several genetically different subpopulations. In addition, Waitea circinata varieties zeae, oryzae and circinata (anamorph: Rhizoctonia spp.) also can cause the disease. Accurate identification of the causal pathogen is important for effective management of the disease. It is challenging to distinguish the specific causal pathogen based on disease symptoms or macroscopic and microscopic morphology. Traditional methods such as anastomosis reactions with tester isolates are time consuming and sometimes difficult to interpret. In the present study universally primed PCR (UP-PCR) fingerprinting was used to assess genetic diversity of Rhizoctonia spp. infecting turfgrasses. Eighty-four Rhizoctonia isolates were sampled from diseased turfgrass leaves from seven distinct geographic areas in Virginia and Maryland. Rhizoctonia isolates were characterized by ribosomal DNA internal transcribed spacer (rDNA-ITS) region and UP-PCR. The isolates formed seven clusters based on ITS sequences analysis and unweighted pair group method with arithmetic mean (UPGMA) clustering of UP-PCR markers, which corresponded well with anastomosis groups (AGs) of the isolates. Isolates of R. solani AG 1-IB (n = 18), AG 2-2IIIB (n = 30) and AG 5 (n = 1) clustered separately. Waitea circinata var. zeae (n = 9) and var. circinata (n = 4) grouped separately. A cluster of six isolates of Waitea (UWC) did not fall into any known Waitea variety. The binucleate Rhizoctonia-like fungi (BNR) (n = 16) clustered into two groups. Rhizoctonia solani AG 2-2IIIB was the most dominant pathogen in this study, followed by AG 1-IB. There was no relationship between the geographic origin of the isolates and clustering of isolates based on the genetic associations. To our knowledge this is the first time UP-PCR was used to characterize Rhizoctonia

  11. The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister-group to protostomes

    SciTech Connect

    Helfenbein, Kevin G.; Fourcade, H. Matthew; Vanjani, Rohit G.; Boore, Jeffrey L.

    2004-05-01

    We report the first complete mitochondrial (mt) DNA sequence from a member of the phylum Chaetognatha (arrow worms). The Paraspadella gotoi mtDNA is highly unusual, missing 23 of the genes commonly found in animal mtDNAs, including atp6, which has otherwise been found universally to be present. Its 14 genes are unusually arranged into two groups, one on each strand. One group is punctuated by numerous non-coding intergenic nucleotides, while the other group is tightly packed, having no non-coding nucleotides, leading to speculation that there are two transcription units with differing modes of expression. The phylogenetic position of the Chaetognatha within the Metazoa has long been uncertain, with conflicting or equivocal results from various morphological analyses and rRNA sequence comparisons. Comparisons here of amino acid sequences from mitochondrially encoded proteins gives a single most parsimonious tree that supports a position of Chaetognatha as sister to the protostomes studied here. From this, one can more clearly interpret the patterns of evolution of various developmental features, especially regarding the embryological fate of the blastopore.

  12. Structure of Pneumococcal Peptidoglycan Hydrolase LytB Reveals Insights into the Bacterial Cell Wall Remodeling and Pathogenesis*

    PubMed Central

    Bai, Xiao-Hui; Chen, Hui-Jie; Jiang, Yong-Liang; Wen, Zhensong; Huang, Yubin; Cheng, Wang; Li, Qiong; Qi, Lei; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375–Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a “T-shaped” pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases. PMID:25002590

  13. Unique cellular effect of the herbicide bromoxynil revealed by electrophysiological studies using characean cells.

    PubMed

    Shimmen, Teruo

    2010-09-01

    In a previous paper, we proposed that the primary action of the herbicide bromoxynil (BX; 3,5-dibromo-4-hydroxybenzonitrile) is cytosol acidification, based on the fact that bromoxynil induced the inhibition of cytoplasmic streaming and cell death of Chara corallina in acidic external medium (Morimoto and Shimmen in J Plant Res 121:227-233, 2008). In the present study, electrophysiological analysis of the BX effect was carried out in internodal cells of C. corallina. Upon addition of BX, a large and rapid pH-dependent depolarization was induced, supporting our hypothesis. Ioxynil, which belongs to the same group as bromoxynil, also induced a large and rapid membrane depolarization in a pH-dependent manner. On the other hand, four herbicides belonging to other groups of herbicides did not induce such a membrane depolarization. Thus, BX has a unique cellular effect. The decrease in the electro-chemical potential gradient for H(+) across the plasma membrane appears to result in inhibition of cell growth and disturbance of intracellular homeostasis in the presence of BX.

  14. Profiling of microRNA in human and mouse ES and iPS cells reveals overlapping but distinct microRNA expression patterns.

    PubMed

    Razak, Siti Razila Abdul; Ueno, Kazuko; Takayama, Naoya; Nariai, Naoki; Nagasaki, Masao; Saito, Rika; Koso, Hideto; Lai, Chen-Yi; Murakami, Miyako; Tsuji, Koichiro; Michiue, Tatsuo; Nakauchi, Hiromitsu; Otsu, Makoto; Watanabe, Sumiko

    2013-01-01

    Using quantitative PCR-based miRNA arrays, we comprehensively analyzed the expression profiles of miRNAs in human and mouse embryonic stem (ES), induced pluripotent stem (iPS), and somatic cells. Immature pluripotent cells were purified using SSEA-1 or SSEA-4 and were used for miRNA profiling. Hierarchical clustering and consensus clustering by nonnegative matrix factorization showed two major clusters, human ES/iPS cells and other cell groups, as previously reported. Principal components analysis (PCA) to identify miRNAs that segregate in these two groups identified miR-187, 299-3p, 499-5p, 628-5p, and 888 as new miRNAs that specifically characterize human ES/iPS cells. Detailed direct comparisons of miRNA expression levels in human ES and iPS cells showed that several miRNAs included in the chromosome 19 miRNA cluster were more strongly expressed in iPS cells than in ES cells. Similar analysis was conducted with mouse ES/iPS cells and somatic cells, and several miRNAs that had not been reported to be expressed in mouse ES/iPS cells were suggested to be ES/iPS cell-specific miRNAs by PCA. Comparison of the average expression levels of miRNAs in ES/iPS cells in humans and mice showed quite similar expression patterns of human/mouse miRNAs. However, several mouse- or human-specific miRNAs are ranked as high expressers. Time course tracing of miRNA levels during embryoid body formation revealed drastic and different patterns of changes in their levels. In summary, our miRNA expression profiling encompassing human and mouse ES and iPS cells gave various perspectives in understanding the miRNA core regulatory networks regulating pluripotent cells characteristics.

  15. Poly(ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery.

    PubMed

    Kar, Mrityunjoy; Vernon Shih, Yu-Ru; Velez, Daniel Ortiz; Cabrales, Pedro; Varghese, Shyni

    2016-01-01

    Cell-responsive hydrogels hold tremendous potential as cell delivery devices in regenerative medicine. In this study, we developed a hydrogel-based cell delivery vehicle, in which the encapsulated cell cargo control its own release from the vehicle in a protease-independent manner. Specifically, we have synthesized a modified poly(ethylene glycol) (PEG) hydrogel that undergoes degradation responding to cell-secreted molecules by incorporating disulfide moieties onto the backbone of the hydrogel precursor. Our results show the disulfide-modified PEG hydrogels disintegrate seamlessly into solution in presence of cells without any external stimuli. The rate of hydrogel degradation, which ranges from hours to months, is found to be dependent upon the type of encapsulated cells, cell number, and fraction of disulfide moieties present in the hydrogel backbone. The differentiation potential of human mesenchymal stem cells released from the hydrogels is maintained in vitro. The in vivo analysis of these cell-laden hydrogels, through a dorsal window chamber and intramuscular implantation, demonstrated autonomous release of cells to the host environment. The hydrogel-mediated implantation of cells resulted in higher cell retention within the host tissue when compared to that without a biomaterial support. Biomaterials that function as a shield to protect cell cargos and assist their delivery in response to signals from the encapsulated cells could have a wide utility in cell transplantation and could improve the therapeutic outcomes of cell-based therapies. PMID:26606444

  16. In situ hybridization of oxytocin messenger RNA: macroscopic distribution and quantitation in rat hypothalamic cell groups

    SciTech Connect

    Burbach, J.P.; Voorhuis, T.A.; van Tol, H.H.; Ivell, R.

    1987-05-29

    Oxytocin mRNA was detected in the rat hypothalamus by in situ hybridization to a single stranded /sup 35/S-labelled DNA probe and the distribution of oxytocin mRNA-containing cell groups was studied at the macroscopic level. Specificity of hybridization was confirmed by comparison to vasopressin mRNA hybridization in parallel tissue sections. Cell groups containing oxytocin mRNA were confined to a set of hypothalamic cell groups, i.c. the supraoptic, paraventricular, anterior commissural nuclei, nucleus circularis and scattered hypothalamic islets. These cell groups displayed similar densities of autoradiographic signals indicating that the oxytocin gene is expressed at approximately the same average level at these various sites.

  17. Inhibition of proliferation of normal and transformed neural cells by blood group-related oligosaccharides

    PubMed Central

    1992-01-01

    A synthetic tetrasaccharide structurally related to blood groups and selectin ligands inhibited division of astrocytes, gliomas, and neuroblastomas at micromolar concentrations. The compound was cytostatic for primary astrocytes in culture, but cytotoxic for fast proliferating cell lines. PMID:1512552

  18. Cadmium-transformed cells in the in vitro cell transformation assay reveal different proliferative behaviours and activated pathways.

    PubMed

    Forcella, M; Callegaro, G; Melchioretto, P; Gribaldo, L; Frattini, M; Stefanini, F M; Fusi, P; Urani, C

    2016-10-01

    The in vitro Cell Transformation Assay (CTA) is a powerful tool for mechanistic studies of carcinogenesis. The endpoint is the classification of transformed colonies (foci) by means of standard morphological features. To increase throughput and reliability of CTAs, one of the suggested follow-up activities is to exploit the comprehension of the mechanisms underlying cell transformation. To this end, we have performed CTAs testing CdCl2, a widespread environmental contaminant classified as a human carcinogen with the underlying mechanisms of action not completely understood. We have isolated and re-seeded the cells at the end (6weeks) of in vitro CTAs to further identify the biochemical pathways underlying the transformed phenotype of foci. Morphological evaluations and proliferative assays confirmed the loss of contact-inhibition and the higher proliferative rate of transformed clones. The biochemical analysis of EGFR pathway revealed that, despite the same initial carcinogenic stimulus (1μM CdCl2 for 24h), transformed clones are characterized by the activation of two different molecular pathways: proliferation (Erk activation) or survival (Akt activation). Our preliminary results on molecular characterization of cell clones from different foci could be exploited for CTAs improvement, supporting the comprehension of the in vivo process and complementing the morphological evaluation of foci. PMID:27432484

  19. Cadmium-transformed cells in the in vitro cell transformation assay reveal different proliferative behaviours and activated pathways.

    PubMed

    Forcella, M; Callegaro, G; Melchioretto, P; Gribaldo, L; Frattini, M; Stefanini, F M; Fusi, P; Urani, C

    2016-10-01

    The in vitro Cell Transformation Assay (CTA) is a powerful tool for mechanistic studies of carcinogenesis. The endpoint is the classification of transformed colonies (foci) by means of standard morphological features. To increase throughput and reliability of CTAs, one of the suggested follow-up activities is to exploit the comprehension of the mechanisms underlying cell transformation. To this end, we have performed CTAs testing CdCl2, a widespread environmental contaminant classified as a human carcinogen with the underlying mechanisms of action not completely understood. We have isolated and re-seeded the cells at the end (6weeks) of in vitro CTAs to further identify the biochemical pathways underlying the transformed phenotype of foci. Morphological evaluations and proliferative assays confirmed the loss of contact-inhibition and the higher proliferative rate of transformed clones. The biochemical analysis of EGFR pathway revealed that, despite the same initial carcinogenic stimulus (1μM CdCl2 for 24h), transformed clones are characterized by the activation of two different molecular pathways: proliferation (Erk activation) or survival (Akt activation). Our preliminary results on molecular characterization of cell clones from different foci could be exploited for CTAs improvement, supporting the comprehension of the in vivo process and complementing the morphological evaluation of foci.

  20. Group IVA phospholipase A(2) deficiency prevents CCl4-induced hepatic cell death through the enhancement of autophagy.

    PubMed

    Ishihara, Keiichi; Kanai, Shiho; Tanaka, Kikuko; Kawashita, Eri; Akiba, Satoshi

    2016-02-26

    Group IVA phospholipase A2 (IVA-PLA2), which generates arachidonate, plays a role in inflammation. IVA-PLA2-deficiency reduced hepatotoxicity and hepatocyte cell death in mice that received a single dose of carbon tetrachloride (CCl4) without any inhibitory effects on CCl4-induced lipid peroxidation. An immunoblot analysis of extracts from wild-type mouse- and IVA-PLA2 KO mouse-derived primary hepatocytes that transiently expressed microtubule-associated protein 1 light chain 3B (LC3) revealed a higher amount of LC3-II, a typical index of autophagosome formation, in IVA-PLA2-deficient cells, suggesting the enhancement of constitutive autophagy. IVA-PLA2 may promote CCl4-induced cell death through the suppression of constitutive autophagy in hepatocytes.

  1. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form

    PubMed Central

    Sandoz, Kelsi M.; Popham, David L.; Beare, Paul A.; Sturdevant, Daniel E.; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A.

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3–3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3–3 cross-links as opposed to 16% 3–3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella’s environmental resistance. PMID:26909555

  2. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form.

    PubMed

    Sandoz, Kelsi M; Popham, David L; Beare, Paul A; Sturdevant, Daniel E; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance. PMID:26909555

  3. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    SciTech Connect

    Vanderslice, P.; Ballinger, S.M., Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H. )

    1990-05-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the {approx}1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5{prime} regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family.

  4. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD

    PubMed Central

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K.; Miyazaki, Hideki; Michael, Iacovos P.; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-01-01

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis. PMID:26831065

  5. Validation of the Reveal(®) 2.0 Group D1 Salmonella Test for Detection of Salmonella Enteritidis in Raw Shell Eggs and Poultry-Associated Matrixes.

    PubMed

    Mozola, Mark; Biswas, Preetha; Viator, Ryan; Feldpausch, Emily; Foti, Debra; Li, Lin; Le, Quynh-Nhi; Alles, Susan; Rice, Jennifer

    2016-07-01

    A study was conducted to assess the performance of the Reveal(®) 2.0 Group D1 Salmonella lateral flow immunoassay for use in detection of Salmonella Enteritidis (SE) in raw shell eggs and poultry-associated matrixes, including chicken carcass rinse and poultry feed. In inclusivity testing, the Reveal 2.0 test detected all 37 strains of SE tested. The test also detected all but one of 18 non-Enteritidis somatic group D1 Salmonella serovars examined. In exclusivity testing, none of 42 strains tested was detected. The exclusivity panel included Salmonella strains of somatic groups other than D1, as well as strains of other genera of Gram-negative bacteria. In matrix testing, performance of the Reveal 2.0 test was compared to that of the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook reference culture procedure for chicken carcass rinse and to that of the U.S. Food and Drug Administration Bacteriological Analytical Manual for raw shell eggs and poultry feed. For all matrixes evaluated, there were no significant differences in the ability to detect SE when comparing the Reveal 2.0 method and the appropriate reference culture procedure as determined by probability of detection statistical analysis. The ability of the Reveal 2.0 test to withstand modest perturbations to normal operating parameters was examined in robustness experiments. Results showed that the test can withstand deviations in up to three operating parameters simultaneously without significantly affecting performance. Real-time stability testing of multiple lots of Reveal 2.0 devices established the shelf life of the test device at 16 months postmanufacture. PMID:27214854

  6. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo

    PubMed Central

    Kokkinopoulos, Ioannis; Ishida, Hidekazu; Saba, Rie; Ruchaya, Prashant; Cabrera, Claudia; Struebig, Monika; Barnes, Michael; Terry, Anna; Kaneko, Masahiro; Shintani, Yasunori; Coppen, Steven; Shiratori, Hidetaka; Ameen, Torath; Mein, Charles; Hamada, Hiroshi; Suzuki, Ken; Yashiro, Kenta

    2015-01-01

    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study. PMID:26469858

  7. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo.

    PubMed

    Kokkinopoulos, Ioannis; Ishida, Hidekazu; Saba, Rie; Ruchaya, Prashant; Cabrera, Claudia; Struebig, Monika; Barnes, Michael; Terry, Anna; Kaneko, Masahiro; Shintani, Yasunori; Coppen, Steven; Shiratori, Hidetaka; Ameen, Torath; Mein, Charles; Hamada, Hiroshi; Suzuki, Ken; Yashiro, Kenta

    2015-01-01

    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.

  8. Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry.

    PubMed

    Silva-Ayala, Daniela; López, Tomás; Gutiérrez, Michelle; Perrimon, Norbert; López, Susana; Arias, Carlos F

    2013-06-18

    Rotavirus (RV) is the major cause of childhood gastroenteritis worldwide. This study presents a functional genome-scale analysis of cellular proteins and pathways relevant for RV infection using RNAi. Among the 522 proteins selected in the screen for their ability to affect viral infectivity, an enriched group that participates in endocytic processes was identified. Within these proteins, subunits of the vacuolar ATPase, small GTPases, actinin 4, and, of special interest, components of the endosomal sorting complex required for transport (ESCRT) machinery were found. Here we provide evidence for a role of the ESCRT complex in the entry of simian and human RV strains in both monkey and human epithelial cells. In addition, the ESCRT-associated ATPase VPS4A and phospholipid lysobisphosphatidic acid, both crucial for the formation of intralumenal vesicles in multivesicular bodies, were also found to be required for cell entry. Interestingly, it seems that regardless of the molecules that rhesus RV and human RV strains use for cell-surface attachment and the distinct endocytic pathway used, all these viruses converge in early endosomes and use multivesicular bodies for cell entry. Furthermore, the small GTPases RHOA and CDC42, which regulate different types of clathrin-independent endocytosis, as well as early endosomal antigen 1 (EEA1), were found to be involved in this process. This work reports the direct involvement of the ESCRT machinery in the life cycle of a nonenveloped virus and highlights the complex mechanism that these viruses use to enter cells. It also illustrates the efficiency of high-throughput RNAi screenings as genetic tools for comprehensively studying the interaction between viruses and their host cells.

  9. A Discrete Model of Drosophila Eggshell Patterning Reveals Cell-Autonomous and Juxtacrine Effects

    PubMed Central

    Fauré, Adrien; Vreede, Barbara M. I.; Sucena, Élio; Chaouiya, Claudine

    2014-01-01

    The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems. PMID:24675973

  10. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea.

    PubMed

    Zhalnina, Kateryna V; Dias, Raquel; Leonard, Michael T; Dorr de Quadros, Patricia; Camargo, Flavio A O; Drew, Jennifer C; Farmerie, William G; Daroub, Samira H; Triplett, Eric W

    2014-01-01

    The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.

  11. Genome Sequence of Candidatus Nitrososphaera evergladensis from Group I.1b Enriched from Everglades Soil Reveals Novel Genomic Features of the Ammonia-Oxidizing Archaea

    PubMed Central

    Zhalnina, Kateryna V.; Dias, Raquel; Leonard, Michael T.; Dorr de Quadros, Patricia; Camargo, Flavio A. O.; Drew, Jennifer C.; Farmerie, William G.; Daroub, Samira H.; Triplett, Eric W.

    2014-01-01

    The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group. PMID:24999826

  12. A mutant screen reveals RNase E as a silencer of group II intron retromobility in Escherichia coli

    PubMed Central

    Coros, Colin J.; Piazza, Carol Lyn; Chalamcharla, Venkata R.; Belfort, Marlene

    2008-01-01

    Group II introns are mobile retroelements that invade their hosts. The Lactococcus lactis group II intron recruits cellular polymerases, nucleases, and DNA ligase to complete the retromobility process in Escherichia coli. Here we describe a genetic screen with a Tn5 transposon library to identify other E. coli functions involved in retromobility of the L. lactis LtrB intron. Thirteen disruptions that reproducibly resulted in increased or decreased retrohoming levels into the E. coli chromosome were isolated. These functions were classified as factors involved in RNA processing, DNA replication, energy metabolism, and global regulation. Here we characterize a novel mutant in the rne promoter region, which regulates RNase E expression. Retrohoming and retrotransposition levels are elevated in the rne∷Tn5 mutant. The stimulatory effect of the mutation on retromobility results from intron RNA accumulation in the RNase E mutant. These results suggest that RNase E, which is the central component of the RNA degradosome, could regulate retrohoming levels in response to cellular physiology. PMID:18945808

  13. Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells.

    PubMed

    Oikawa, Tsunekazu; Wauthier, Eliane; Dinh, Timothy A; Selitsky, Sara R; Reyna-Neyra, Andrea; Carpino, Guido; Levine, Ronald; Cardinale, Vincenzo; Klimstra, David; Gaudio, Eugenio; Alvaro, Domenico; Carrasco, Nancy; Sethupathy, Praveen; Reid, Lola M

    2015-01-01

    The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells--newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies.

  14. Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells.

    PubMed

    Oikawa, Tsunekazu; Wauthier, Eliane; Dinh, Timothy A; Selitsky, Sara R; Reyna-Neyra, Andrea; Carpino, Guido; Levine, Ronald; Cardinale, Vincenzo; Klimstra, David; Gaudio, Eugenio; Alvaro, Domenico; Carrasco, Nancy; Sethupathy, Praveen; Reid, Lola M

    2015-01-01

    The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells--newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies. PMID:26437858

  15. Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling

    PubMed Central

    Calcagnì, Alessia; kors, Lotte; Verschuren, Eric; De Cegli, Rossella; Zampelli, Nicolina; Nusco, Edoardo; Confalonieri, Stefano; Bertalot, Giovanni; Pece, Salvatore; Settembre, Carmine; Malouf, Gabriel G; Leemans, Jaklien C; de Heer, Emile; Salvatore, Marco; Peters, Dorien JM; Di Fiore, Pier Paolo; Ballabio, Andrea

    2016-01-01

    TFE-fusion renal cell carcinomas (TFE-fusion RCCs) are caused by chromosomal translocations that lead to overexpression of the TFEB and TFE3 genes (Kauffman et al., 2014). The mechanisms leading to kidney tumor development remain uncharacterized and effective therapies are yet to be identified. Hence, the need to model these diseases in an experimental animal system (Kauffman et al., 2014). Here, we show that kidney-specific TFEB overexpression in transgenic mice, resulted in renal clear cells, multi-layered basement membranes, severe cystic pathology, and ultimately papillary carcinomas with hepatic metastases. These features closely recapitulate those observed in both TFEB- and TFE3-mediated human kidney tumors. Analysis of kidney samples revealed transcriptional induction and enhanced signaling of the WNT β-catenin pathway. WNT signaling inhibitors normalized the proliferation rate of primary kidney cells and significantly rescued the disease phenotype in vivo. These data shed new light on the mechanisms underlying TFE-fusion RCCs and suggest a possible therapeutic strategy based on the inhibition of the WNT pathway. DOI: http://dx.doi.org/10.7554/eLife.17047.001

  16. Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling

    PubMed Central

    Calcagnì, Alessia; kors, Lotte; Verschuren, Eric; De Cegli, Rossella; Zampelli, Nicolina; Nusco, Edoardo; Confalonieri, Stefano; Bertalot, Giovanni; Pece, Salvatore; Settembre, Carmine; Malouf, Gabriel G; Leemans, Jaklien C; de Heer, Emile; Salvatore, Marco; Peters, Dorien JM; Di Fiore, Pier Paolo; Ballabio, Andrea

    2016-01-01

    TFE-fusion renal cell carcinomas (TFE-fusion RCCs) are caused by chromosomal translocations that lead to overexpression of the TFEB and TFE3 genes (Kauffman et al., 2014). The mechanisms leading to kidney tumor development remain uncharacterized and effective therapies are yet to be identified. Hence, the need to model these diseases in an experimental animal system (Kauffman et al., 2014). Here, we show that kidney-specific TFEB overexpression in transgenic mice, resulted in renal clear cells, multi-layered basement membranes, severe cystic pathology, and ultimately papillary carcinomas with hepatic metastases. These features closely recapitulate those observed in both TFEB- and TFE3-mediated human kidney tumors. Analysis of kidney samples revealed transcriptional induction and enhanced signaling of the WNT β-catenin pathway. WNT signaling inhibitors normalized the proliferation rate of primary kidney cells and significantly rescued the disease phenotype in vivo. These data shed new light on the mechanisms underlying TFE-fusion RCCs and suggest a possible therapeutic strategy based on the inhibition of the WNT pathway. DOI: http://dx.doi.org/10.7554/eLife.17047.001 PMID:27668431

  17. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells.

    PubMed

    Nguyen, Long V; Pellacani, Davide; Lefort, Sylvain; Kannan, Nagarajan; Osako, Tomo; Makarem, Maisam; Cox, Claire L; Kennedy, William; Beer, Philip; Carles, Annaick; Moksa, Michelle; Bilenky, Misha; Balani, Sneha; Babovic, Sonja; Sun, Ivan; Rosin, Miriam; Aparicio, Samuel; Hirst, Martin; Eaves, Connie J

    2015-12-10

    Most human breast cancers have diversified genomically and biologically by the time they become clinically evident. Early events involved in their genesis and the cellular context in which these events occur have thus been difficult to characterize. Here we present the first formal evidence of the shared and independent ability of basal cells and luminal progenitors, isolated from normal human mammary tissue and transduced with a single oncogene (KRAS(G12D)), to produce serially transplantable, polyclonal, invasive ductal carcinomas within 8 weeks of being introduced either subrenally or subcutaneously into immunodeficient mice. DNA barcoding of the initial cells revealed a dramatic change in the numbers and sizes of clones generated from them within 2 weeks, and the first appearance of many 'new' clones in tumours passaged into secondary recipients. Both primary and secondary tumours were phenotypically heterogeneous and primary tumours were categorized transcriptionally as 'normal-like'. This system challenges previous concepts that carcinogenesis in normal human epithelia is necessarily a slow process requiring the acquisition of multiple driver mutations. It also presents the first description of initial events that accompany the genesis and evolution of malignant human mammary cell populations, thereby contributing new understanding of the rapidity with which heterogeneity in their properties can develop. PMID:26633636

  18. Morphology-based mammalian stem cell tests reveal potential developmental toxicity of donepezil.

    PubMed

    Lau, Caroline G Y; Marikawa, Yusuke

    2014-11-01

    Various compounds, including therapeutic drugs, can adversely impact the survival and development of embryos in the uterus. Identification of such development-interfering agents is a challenging task, although multi-angle approaches--including the use of in vitro toxicology studies involving embryonic stem cells--should alleviate some of the current difficulties. In the present study, we utilized the in vitro elongation of embryoid bodies (EBs) derived from mouse embryonal carcinoma stem cell line P19C5 as a model of early embryological events, specifically that of gastrulation and axial patterning. From our study, we identified donepezil, a medication indicated for the management of Alzheimer's disease, as a potential developmental toxicant. The extent of P19C5 EB axial elongation was diminished by donepezil in a dose-dependent manner. Although donepezil is a known inhibitor of acetylcholinesterase, interference of elongation was not mediated through this enzyme. Quantitative reverse-transcriptase PCR revealed that donepezil altered the expression pattern of a specific set of developmental regulator genes involved in patterning along the anterior-posterior body axis. When tested in mouse whole embryo culture, donepezil caused morphological abnormalities including impaired somitogenesis. Donepezil also diminished elongation morphogenesis of EBs generated from human embryonic stem cells. These results suggest that donepezil interferes with axial elongation morphogenesis of early embryos by altering the expression pattern of regulators of axial development.

  19. Functions of an Adult Sickle Cell Group: Education, Task Orientation, and Support.

    ERIC Educational Resources Information Center

    Butler, Dennis J.; Beltran, Lou R.

    1993-01-01

    Reports on development of adult sickle cell support group and provides description of psychosocial factors most prevalent in patients' lives (anxiety about death, disruption of social support network, disability, dependence on pain medication, conflicts with health care providers). Notes that support group enhanced participants' knowledge about…

  20. The Dynamic Conformational Cycle of the Group I Chaperonin C-Termini Revealed via Molecular Dynamics Simulation

    PubMed Central

    Dalton, Kevin M.; Frydman, Judith; Pande, Vijay S.

    2015-01-01

    Chaperonins are large ring shaped oligomers that facilitate protein folding by encapsulation within a central cavity. All chaperonins possess flexible C-termini which protrude from the equatorial domain of each subunit into the central cavity. Biochemical evidence suggests that the termini play an important role in the allosteric regulation of the ATPase cycle, in substrate folding and in complex assembly and stability. Despite the tremendous wealth of structural data available for numerous orthologous chaperonins, little structural information is available regarding the residues within the C-terminus. Herein, molecular dynamics simulations are presented which localize the termini throughout the nucleotide cycle of the group I chaperonin, GroE, from Escherichia coli. The simulation results predict that the termini undergo a heretofore unappreciated conformational cycle which is coupled to the nucleotide state of the enzyme. As such, these results have profound implications for the mechanism by which GroE utilizes nucleotide and folds client proteins. PMID:25822285

  1. The dynamic conformational cycle of the group I chaperonin C-termini revealed via molecular dynamics simulation.

    PubMed

    Dalton, Kevin M; Frydman, Judith; Pande, Vijay S

    2015-01-01

    Chaperonins are large ring shaped oligomers that facilitate protein folding by encapsulation within a central cavity. All chaperonins possess flexible C-termini which protrude from the equatorial domain of each subunit into the central cavity. Biochemical evidence suggests that the termini play an important role in the allosteric regulation of the ATPase cycle, in substrate folding and in complex assembly and stability. Despite the tremendous wealth of structural data available for numerous orthologous chaperonins, little structural information is available regarding the residues within the C-terminus. Herein, molecular dynamics simulations are presented which localize the termini throughout the nucleotide cycle of the group I chaperonin, GroE, from Escherichia coli. The simulation results predict that the termini undergo a heretofore unappreciated conformational cycle which is coupled to the nucleotide state of the enzyme. As such, these results have profound implications for the mechanism by which GroE utilizes nucleotide and folds client proteins. PMID:25822285

  2. Phylogenetic relationships and protein modelling revealed two distinct subfamilies of group II HKT genes between crop and model grasses.

    PubMed

    Ariyarathna, H A Chandima K; Francki, Michael G

    2016-07-01

    Molecular evolution of large protein families in closely related species can provide useful insights on structural functional relationships. Phylogenetic analysis of the grass-specific group II HKT genes identified two distinct subfamilies, I and II. Subfamily II was represented in all species, whereas subfamily I was identified only in the small grain cereals and possibly originated from an ancestral gene duplication post divergence from the coarse grain cereal lineage. The core protein structures were highly analogous despite there being no more than 58% amino acid identity between members of the two subfamilies. Distinctly variable regions in known functional domains, however, indicated functional divergence of the two subfamilies. The subsets of codons residing external to known functional domains predicted signatures of positive Darwinian selection potentially identifying new domains of functional divergence and providing new insights on the structural function and relationships between protein members of the two subfamilies. PMID:27203707

  3. Netrin-1-Regulated Distribution of UNC5B and DCC in Live Cells Revealed by TICCS.

    PubMed

    Gopal, Angelica A; Rappaz, Benjamin; Rouger, Vincent; Martyn, Iain B; Dahlberg, Peter D; Meland, Rachel J; Beamish, Ian V; Kennedy, Timothy E; Wiseman, Paul W

    2016-02-01

    Netrins are secreted proteins that direct cell migration and adhesion during development. Netrin-1 binds its receptors deleted in colorectal cancer (DCC) and the UNC5 homologs (UNC5A-D) to activate downstream signaling that ultimately directs cytoskeletal reorganization. To investigate how netrin-1 regulates the dynamic distribution of DCC and UNC5 homologs, we applied fluorescence confocal and total internal reflection fluorescence microscopy, and sliding window temporal image cross correlation spectroscopy, to measure time profiles of the plasma membrane distribution, aggregation state, and interaction fractions of fluorescently tagged netrin receptors expressed in HEK293T cells. Our measurements reveal changes in receptor aggregation that are consistent with netrin-1-induced recruitment of DCC-enhanced green fluorescent protein (EGFP) from intracellular vesicles to the plasma membrane. Netrin-1 also induced colocalization of coexpressed full-length DCC-EGFP with DCC-T-mCherry, a putative DCC dominant negative that replaces the DCC intracellular domain with mCherry, consistent with netrin-1-induced receptor oligomerization, but with no change in aggregation state with time, providing evidence that signaling via the DCC intracellular domain triggers DCC recruitment to the plasma membrane. UNC5B expressed alone was also recruited by netrin-1 to the plasma membrane. Coexpressed DCC and UNC5 homologs are proposed to form a heteromeric netrin-receptor complex to mediate a chemorepellent response. Application of temporal image cross correlation spectroscopy to image series of cells coexpressing UNC5B-mCherry and DCC-EGFP revealed a netrin-1-induced increase in colocalization, with both receptors recruited to the plasma membrane from preexisting clusters, consistent with vesicular recruitment and receptor heterooligomerization. Plasma membrane recruitment of DCC or UNC5B was blocked by application of the netrin-1 VI-V peptide, which fails to activate chemoattraction, or

  4. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake

    NASA Astrophysics Data System (ADS)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D.; Otero, Carolina

    2016-02-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  5. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    PubMed

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes. PMID:26847692

  6. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    PubMed

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  7. Connectivity-based whole brain dual parcellation by group ICA reveals tract structures and decreased connectivity in schizophrenia.

    PubMed

    Wu, Lei; Calhoun, Vince D; Jung, Rex E; Caprihan, Arvind

    2015-11-01

    Mapping brain connectivity based on neuroimaging data is a promising new tool for understanding brain structure and function. In this methods paper, we demonstrate that group independent component analysis (GICA) can be used to perform a dual parcellation of the brain based on its connectivity matrix (cmICA). This dual parcellation consists of a set of spatially independent source maps, and a corresponding set of paired dual maps that define the connectivity of each source map to the brain. These dual maps are called the connectivity profiles of the source maps. Traditional analysis of connectivity matrices has been used previously for brain parcellation, but the present method provides additional information on the connectivity of these segmented regions. In this paper, the whole brain structural connectivity matrices were calculated on a 5 mm(3) voxel scale from diffusion imaging data based on the probabilistic tractography method. The effect of the choice of the number of components (30 and 100) and their stability were examined. This method generated a set of spatially independent components that are consistent with the canonical brain tracts provided by previous anatomic descriptions, with the high order model yielding finer segmentations. The corpus-callosum example shows how this method leads to a robust parcellation of a brain structure based on its connectivity properties. We applied cmICA to study structural connectivity differences between a group of schizophrenia subjects and healthy controls. The connectivity profiles at both model orders showed similar regions with reduced connectivity in schizophrenia patients. These regions included forceps major, right inferior fronto-occipital fasciculus, uncinate fasciculus, thalamic radiation, and corticospinal tract. This paper provides a novel unsupervised data-driven framework that summarizes the information in a large global connectivity matrix and tests for brain connectivity differences. It has the

  8. Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins.

    PubMed

    Ellington, Allison A; Berhow, Mark; Singletary, Keith W

    2005-01-01

    The impact of triterpenoid saponins isolated from soybeans on suppression of colon cancer cell proliferation was evaluated. Experiments were conducted to determine the effects of a purified soybean B-group saponin extract on cell proliferation, cell-cycle distribution and programmed cell death in cultures of human HCT-15 colon adenocarcinoma cells. Treatment of cells with the soyasaponins at concentrations of 25-500 p.p.m. significantly reduced viable cell numbers after 24 and 48 h of exposure. Treatment of cells with 25 and 100 p.p.m. of saponins also resulted in a transient accumulation of cells in the S-phase of the cell cycle that was associated with a significant reduction of cyclin-dependant kinase-2 (CDK-2) activity. More striking was that, when examined by transmission electron microscopy, soyasaponin-treated cells exhibited an approximately 4.5-fold increase in cell morphologies characteristic of Type II non-apoptotic programmed cell death (PCD) including numerous autophagic vacuoles, changes that collectively suggest autophagic cell death. In addition, the protein levels of microtubule-associated protein light chain 3 (LC-3), a specific marker of macroautophagy, increased substantially following soyasaponin treatment. Taken together these results thus indicate that soybean saponins, at physiologically relevant doses, can suppress HCT-15 colon cancer cell proliferation through S-phase cell-cycle delay, and can induce macroautophagy, the hallmark of Type II PCD. These findings suggest that B-group soyasaponins may be another colon-cancer suppressive component of soy that warrants further examination as a potential chemopreventive phytochemical. PMID:15471899

  9. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    SciTech Connect

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. S.; Qian, Weijun

    2009-08-01

    Protein tyrosine phosphorylation is a central regulatory mechanism in cell signaling. To extensively characterize the site-specific tyrosine phosphorylation in human cells, we present here a global survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying anti-phosphotyrosine (pTyr) peptide immunoaffinity purification (IP) coupled with high sensitivity LC-MS/MS. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and an acute stimulated condition with epidermal growth factor (EGF). The estimated false discovery rate is 1.0% as measured by comparison against a scrambled database search. Comparison of these data to the literature showed significant agreement in site matches. Additionally 281 sites were not previously observed in HMEC culture were found. Twenty-nine of these sites have not been reported in any human cell or tissue system. The global profiling also allowed us to examine the phosphorylation stoichiometry differences based on spectral count information. Comparison of the data to a previous global proteome profiling study illustrates that most of the highly phoshorylated proteins are of relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed for many of the identified proteins, suggesting potentially more important functional roles for those highly phosphorylated pTyr sites within a given protein. By mapping to major signaling networks such as EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which should allow us to select interesting targeted involved in a given pathway for more directed studies. This extensive HMEC tyrosine phosphorylation dataset represents an important database

  10. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages.

    PubMed

    Casero, David; Sandoval, Salemiz; Seet, Christopher S; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M

    2015-12-01

    To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus.

  11. Whole exome sequencing reveals the mutational spectrum of testicular germ cell tumours

    PubMed Central

    Litchfield, Kevin; Summersgill, Brenda; Yost, Shawn; Sultana, Razvan; Labreche, Karim; Dudakia, Darshna; Renwick, Anthony; Seal, Sheila; Al-Saadi, Reem; Broderick, Peter; Turner, Nicholas C.; Houlston, Richard S; Huddart, Robert; Shipley, Janet; Turnbull, Clare

    2014-01-01

    Testicular germ cell tumours (TGCTs) are the most common cancer in young men. Here we perform whole exome sequencing of 42 TGCTs to comprehensively study the mutational profile of TGCT. The mutation rate is uniformly low in all of the tumours (mean 0.5 mutations per megabase [Mb]) as compared to the common cancers, consistent with the embryological origin of TGCT. In addition to expected copy number gain of chromosome 12p and mutation of KIT we identify recurrent mutations in the tumour suppressor gene CDC27 (11.9%). Copy number analysis reveals recurring amplification of the spermatocyte development gene FSIP2 (15.3%) and a 0.4Mb region at Xq28 (15.3%). Two treatment-refractory patients are shown to harbour XRCC2 mutations, a gene strongly implicated in defining cisplatin resistance. Our findings provide further insights into genes involved in the development and progression of TGCT. PMID:25609015

  12. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours.

    PubMed

    Litchfield, Kevin; Summersgill, Brenda; Yost, Shawn; Sultana, Razvan; Labreche, Karim; Dudakia, Darshna; Renwick, Anthony; Seal, Sheila; Al-Saadi, Reem; Broderick, Peter; Turner, Nicholas C; Houlston, Richard S; Huddart, Robert; Shipley, Janet; Turnbull, Clare

    2015-01-01

    Testicular germ cell tumours (TGCTs) are the most common cancer in young men. Here we perform whole-exome sequencing (WES) of 42 TGCTs to comprehensively study the cancer's mutational profile. The mutation rate is uniformly low in all of the tumours (mean 0.5 mutations per Mb) as compared with common cancers, consistent with the embryological origin of TGCT. In addition to expected copy number gain of chromosome 12p and mutation of KIT, we identify recurrent mutations in the tumour suppressor gene CDC27 (11.9%). Copy number analysis reveals recurring amplification of the spermatocyte development gene FSIP2 (15.3%) and a 0.4 Mb region at Xq28 (15.3%). Two treatment-refractory patients are shown to harbour XRCC2 mutations, a gene strongly implicated in defining cisplatin resistance. Our findings provide further insights into genes involved in the development and progression of TGCT.

  13. Analysis of Group B Streptococcal Isolates from Infants and Pregnant Women in Portugal Revealing Two Lineages with Enhanced Invasiveness▿

    PubMed Central

    Martins, E. R.; Pessanha, M. A.; Ramirez, M.; Melo-Cristino, J.

    2007-01-01

    The populations of group B streptococcus (GBS) associated with vaginal carriage in pregnant women and invasive neonatal infections in Portugal were compared. GBS isolates were characterized by serotyping, pulsed-field gel electrophoresis (PFGE) profiling, and multilocus sequence typing (MLST). Serotypes III and V accounted for 44% of all colonization isolates (n = 269), whereas serotypes III and Ia amounted to 69% of all invasive isolates (n = 64). Whereas serotype Ia was associated with early-onset disease (EOD), serotype III was associated with late-onset disease (LOD). Characterization by PFGE and MLST identified very diverse populations in carriage and invasive disease. Serotype Ia was represented mainly by a single PFGE cluster defined by sequence type 23 (ST23) and the infrequent ST24. In contrast, serotype III was found in a large number of PFGE clusters and STs, but a single PFGE cluster defined by ST17 was found to be associated with invasive disease. Although serotype III was associated only with LOD, ST17 showed an enhanced capacity to cause both EOD and LOD. Our data reinforce the evidence for enhanced invasiveness of ST17 and identify a lineage expressing serotype Ia capsule and represented by ST23 and ST24 as having enhanced potential to cause EOD. PMID:17699641

  14. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential.

    PubMed

    Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-01-01

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic. PMID:27021558

  15. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential

    PubMed Central

    Bolton, Helen; Graham, Sarah J. L.; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-01-01

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic. PMID:27021558

  16. Revealing nonergodic dynamics in living cells from a single particle trajectory.

    PubMed

    Lanoiselée, Yann; Grebenkov, Denis S

    2016-05-01

    We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.

  17. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm.

    PubMed

    Menezes, J; Acquadro, F; Wiseman, M; Gómez-López, G; Salgado, R N; Talavera-Casañas, J G; Buño, I; Cervera, J V; Montes-Moreno, S; Hernández-Rivas, J M; Ayala, R; Calasanz, M J; Larrayoz, M J; Brichs, L F; Gonzalez-Vicent, M; Pisano, D G; Piris, M A; Álvarez, S; Cigudosa, J C

    2014-04-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a very rare disease that currently lacks genomic and genetic biomarkers to assist in its clinical management. We performed whole-exome sequencing (WES) of three BPDCN cases. Based on these data, we designed a resequencing approach to identify mutations in 38 selected genes in 25 BPDCN samples. WES revealed 37-99 deleterious gene mutations per exome with no common affected genes between patients, but with clear overlap in terms of molecular and disease pathways (hematological and dermatological disease). We identified for the first time deleterious mutations in IKZF3, HOXB9, UBE2G2 and ZEB2 in human leukemia. Target sequencing identified 29 recurring genes, ranging in prevalence from 36% for previously known genes, such as TET2, to 12-16% for newly identified genes, such as IKZF3 or ZEB2. Half of the tumors had mutations affecting either the DNA methylation or chromatin remodeling pathways. The clinical analysis revealed that patients with mutations in DNA methylation pathway had a significantly reduced overall survival (P=0.047). We provide the first mutational profiling of BPDCN. The data support the current WHO classification of the disease as a myeloid disorder and provide a biological rationale for the incorporation of epigenetic therapies for its treatment.

  18. Revealing nonergodic dynamics in living cells from a single particle trajectory

    NASA Astrophysics Data System (ADS)

    Lanoiselée, Yann; Grebenkov, Denis S.

    2016-05-01

    We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.

  19. Distinct subclonal tumour responses to therapy revealed by circulating cell-free DNA

    PubMed Central

    Gremel, G.; Lee, R. J.; Girotti, M. R.; Mandal, A. K.; Valpione, S.; Garner, G.; Ayub, M.; Wood, S.; Rothwell, D. G.; Fusi, A.; Wallace, A.; Brady, G.; Dive, C.; Dhomen, N.; Lorigan, P.; Marais, R.

    2016-01-01

    Background The application of precision medicine in oncology requires in-depth characterisation of a patient's tumours and the dynamics of their responses to treatment. Patients and methods We used next-generation sequencing of circulating cell-free DNA (cfDNA) to monitor the response of a KIT p.L576P-mutant metastatic vaginal mucosal melanoma to sequential targeted, immuno- and chemotherapy. Results Despite a KIT mutation, the response to imatinib was mixed. Unfortunately, tumours were not accessible for molecular analysis. To study the mechanism underlying the mixed clinical response, we carried out whole-exome sequencing and targeted longitudinal analysis of cfDNA. This revealed two tumour subclones; one with a KIT mutation that responded to imatinib and a second KIT-wild-type subclone that did not respond to imatinib. Notably, the subclones also responded differently to immunotherapy. However, both subclones responded to carboplatin/paclitaxel, and although the KIT-wild-type subclone progressed after chemotherapy, it responded to subsequent re-administration of paclitaxel. Conclusion We show that cfDNA can reveal tumour evolution and subclonal responses to therapy even when biopsies are not available. PMID:27502704

  20. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells.

    PubMed

    Carlile, Thomas M; Rojas-Duran, Maria F; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M; Gilbert, Wendy V

    2014-11-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function--it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1-4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.

  1. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    PubMed Central

    Carlile, Thomas M.; Rojas-Duran, Maria F.; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M.; Gilbert, Wendy V.

    2014-01-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs1, enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure2–8. mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center9,10. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease11–13. PMID:25192136

  2. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy

    2015-01-01

    Plant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces. The molecular origin of these interactions is carbohydrate-π and π-π stacking forces, whose strengths are dependent on the lignin chemical composition. Methoxy substituents in the phenyl groups of lignin promote substantial entropic stabilization of the ligno-hemicellulosic matrix. Our results provide a detailed molecular view of the fundamental interactions within the secondary plant cell walls that lead to recalcitrance.

  3. Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy

    2015-01-01

    Plant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces. The molecular origin of these interactions is carbohydrate-π and π-π stacking forces, whose strengths are dependent on the lignin chemical composition. Methoxy substituents in the phenyl groups of lignin promote substantial entropic stabilization of the ligno-hemicellulosic matrix. Our results provide a detailed molecular view of the fundamental interactions within the secondary plant cell walls that lead to recalcitrance. PMID:26263115

  4. New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases.

    PubMed

    Choi, C J; Berges, J A

    2013-01-01

    Metacaspases are evolutionarily distant homologs of caspases that are found outside the metazoan and are known to have key roles in programmed cell death (PCD). Two types of metacaspases (types I and II) have been defined in plants based on their domain structures; these have similarities to metazoan 'initiator' and 'executioner' caspases. However, we know little about metacaspases in unicellular organisms and even less about their roles in cell death. We identified a novel group of metacaspases in sequenced phytoplanktonic protists that show domain architectures distinct from either type I or II enzymes; we designate them as type III. Type III metacaspases exhibit a rearrangement of domain structures between N- and C-terminus. In addition, we found a group of metacaspase-like proteases in phytoplankton that show sequence homology with other metacaspases, but defy classification in conventional schemes. These metacaspase-like proteases exist in bacteria alongside a variant of type I metacaspases and we propose these bacterial metacaspases are the origins of eukaryotic metacaspases. Type II and III metacaspases were not detected in bacteria and they might be variants of bacterial type I metacaspases that evolved in plants and phytoplanktonic protists, respectively, during the establishment of plastids through the primary and secondary endosymbiotic events. A complete absence of metacaspases in protists that lost plastids, such as oömycetes and ciliates indicates the gene loss during the plastid-to-nucleus gene transfer. Taken together, our findings suggest endosymbiotic gene transfer (EGT) is a key mechanism resulting in the evolutionary diversity of cell death proteases.

  5. "Spider"-shaped porphyrins with conjugated pyridyl anchoring groups as efficient sensitizers for dye-sensitized solar cells.

    PubMed

    Stangel, Christina; Bagaki, Anthi; Angaridis, Panagiotis A; Charalambidis, Georgios; Sharma, Ganesh D; Coutsolelos, Athanasios G

    2014-11-17

    Two novel "spider-shaped" porphyrins, meso-tetraaryl-substituted 1PV-Por and zinc-metalated 1PV-Zn-Por, bearing four oligo(p-phenylenevinylene) (oPPV) pyridyl groups with long dodecyloxy chains on the phenyl groups, have been synthesized. The presence of four pyridyl groups in both porphyrins, which allow them to act as anchoring groups upon coordination to various Lewis acid sites, the conjugated oPPV bridges, which offer the possibility of electronic communication between the porphyrin core and the pyridyl groups, and the dodecyloxy groups, which offer the advantage of high solubility in a variety of organic solvents of different polarities and could prevent porphyrin aggregation, renders porphyrins 1PV-Por and 1PV-Zn-Por very promising sensitizers for dye-sensitized solar cells (DSSCs). Photophysical measurements, together with electrochemistry experiments and density functional theory calculations, suggest that both porphyrins have frontier molecular orbital energy levels that favor electron injection and dye regeneration in DSSCs. Solar cells sensitized by 1PV-Por and 1PV-Zn-Por were fabricated, and it was found that they show power conversion efficiencies (PCEs) of 3.28 and 5.12%, respectively. Photovoltaic measurements (J-V curves) together with incident photon-to-electron conversion efficiency spectra of the two cells reveal that the higher PCE value of the DSSC based on 1PV-Zn-Por is ascribed to higher short-circuit current (Jsc), open-circuit voltage (Voc), and dye loading values. Emission spectra and electrochemistry experiments suggest a greater driving force for injection of the photogenerated electrons into the TiO2 conduction band for 1PV-Zn-Por rather than its free-base analogue. Furthermore, electrochemical impedance spectroscopy measurements prove that the utilization of 1PV-Zn-Por as a sensitizer offers a high charge recombination resistance and, therefore, leads to a longer electron lifetime.

  6. Analysis of core-periphery organization in protein contact networks reveals groups of structurally and functionally critical residues.

    PubMed

    Isaac, Arnold Emerson; Sinha, Sitabhra

    2015-10-01

    The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core-periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers - having higher core order - with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core-periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/ ~sitabhra/proteinKcore/index.html.

  7. Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups

    PubMed Central

    Fisher, Jenny C.; Eren, A. Murat; Green, Hyatt C.; Shanks, Orin C.; Morrison, Hilary G.; Vineis, Joseph H.; Sogin, Mitchell L.

    2015-01-01

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts. PMID:26231648

  8. Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups.

    PubMed

    Fisher, Jenny C; Eren, A Murat; Green, Hyatt C; Shanks, Orin C; Morrison, Hilary G; Vineis, Joseph H; Sogin, Mitchell L; McLellan, Sandra L

    2015-10-01

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts.

  9. The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians.

    PubMed

    Boyer, B C; Henry, J J; Martindale, M Q

    1998-12-01

    Recent molecular evidence suggests the turbellarian Platyhelminthes may represent the extant basal members of the Spiralia and therefore probably exhibit ancient features of the spiralian developmental program. The stereotypic quartet spiral cleavage pattern of the polyclad turbellarian embryo, among other features, indicates that this group may be closely related to the ancestral flatworm; however, polyclad embryos have been the subject of few experimental studies. Here we report the results of a cell lineage analysis of the embryo of the polyclad Hoploplana inquilina based on microinjection of DiI into cleavage-stage blastomeres following formation of each of the four quartets of micromeres. The first quartet gives rise to most of the lateral and anterior ectoderm of the Müller's larva; the second quartet forms largely dorsal and ventral ectoderm as well as the circular muscles; the third quartet forms only small clones of ectoderm; and only the 4d cell of the fourth quartet contributes to larval structure, forming the longitudinal muscles, mesenchyme, and probably endoderm. Our results demonstrate a striking similarity between the cell lineages of polyclad and higher spiralian embryos, in which the four quadrants also bear the same relationships to the larval axes and give rise to comparable larval structures, including derivation of mesoderm from both ectodermal (2b) and endodermal precursors (4d).

  10. The functional importance of blood group-active molecules in human red blood cells.

    PubMed

    Anstee, D J

    2011-01-01

    Antigens of 23 of the 30 human blood group systems are defined by the amino acid sequence of red cell membrane proteins. The antigens of DI, RH, RHAG, MNS, GE and CO systems are carried on blood group-active proteins (Band 3, D and CE polypeptides, RhAG, Glycophorins A and B, Glycophorins C and D and Aquaporin 1, respectively) which are expressed at high levels (>200,000 copies/red cell). These major proteins contribute to essential red cell functions either directly as membrane transporters and by providing linkage to the underlying red cell skeleton or by facilitating the membrane assembly of the protein complexes involved in these processes. The proteins expressing antigens of the remaining 17 blood group systems are much less abundant (<20,000 copies/red cell) and their functional importance for the circulating red cell is largely unknown. Human gene knock-outs (null phenotypes) have been described for many of these minor blood group-active proteins, but only absence of Kx glycoprotein has been clearly linked with pathology directly related to the function of circulating red cells. Recent evidence suggesting the normal quality control system for glycoprotein synthesis is altered during the latter stages of red cell production raises the possibility that many of these low abundance blood group-active proteins are vestigial. In sickle cell disease and polycythaemia vera, elevated Lutheran glycoprotein expression may contribute to pathology. Dyserythropoiesis with reduced antigen expression can result from mutations in the erythroid transcription factors GATA-1 and EKLF.

  11. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells.

    PubMed

    Balajee, A S; May, A; Dianov, G L; Friedberg, E C; Bohr, V A

    1997-04-29

    Cockayne syndrome (CS) is characterized by increased photosensitivity, growth retardation, and neurological and skeletal abnormalities. The recovery of RNA synthesis is abnormally delayed in CS cells after exposure to UV radiation. Gene-specific repair studies have shown a defect in the transcription-coupled repair (TCR) of active genes in CS cells from genetic complementation groups A and B (CS-A and CS-B). We have analyzed transcription in vivo in intact and permeabilized CS-B cells. Uridine pulse labeling in intact CS-B fibroblasts and lymphoblasts shows a reduction of approximately 50% compared with various normal cells and with cells from a patient with xeroderma pigmentosum (XP) group A. In permeabilized CS-B cells transcription in chromatin isolated under physiological conditions is reduced to about 50% of that in normal chromatin and there is a marked reduction in fluorescence intensity in transcription sites in interphase nuclei. Transcription in CS-B cells is sensitive to alpha-amanitin, suggesting that it is RNA polymerase II-dependent. The reduced transcription in CS-B cells is complemented in chromatin by the addition of normal cell extract, and in intact cells by transfection with the CSB gene. CS-B may be a primary transcription deficiency. PMID:9113985

  12. Involvement of protein tyrosine phosphorylation and reduction of cellular sulfhydryl groups in cell death induced by 1' -acetoxychavicol acetate in Ehrlich ascites tumor cells.

    PubMed

    Moffatt, Jerry; Kennedy, David Opare; Kojima, Akiko; Hasuma, Tadayoshi; Yano, Yoshihisa; Otani, Shuzo; Murakami, Akira; Koshimizu, Koichi; Ohigashi, Hajime; Matsui-Yuasa, Isao

    2002-02-20

    Elucidation of the mechanisms underlying potential anticancer drugs continues and unraveling these mechanisms would not only provide a conceptual framework for drug design but also promote use of natural products for chemotherapy. To further evaluate the efficacy of the anticancer activity of 1'-acetoxychavicol acetate (ACA), this study investigates the underlying mechanisms by which ACA induces death of Ehrlich ascites tumor cells. ACA treatment induced loss of cell viability, and Western blotting analysis revealed that the compound stimulated tyrosine phosphorylation of several proteins with 27 and 70 kDa proteins being regulated in both dose- and time-dependent manner prior to loss of viability. Protein tyrosine kinase inhibitor herbimycin A moderately protected cells from ACA-induced toxicity. In addition, cellular glutathione and protein sulfydryl groups were also significantly reduced both dose- and time-dependently during evidence of cell death. Replenishing thiol levels by antioxidant, N-acetylcysteine (NAC), an excellent supplier of glutathione and precursor of glutathione, substantially recovered the viability loss, but the recovery being time-dependent, as late addition of NAC (at least 30 min after ACA addition to cultures) was, however, ineffective. Addition of NAC to ACA treated cultures also abolished tyrosine phosphorylation of the 27 kDa protein. These results, at least partly, identify cellular sulfhydryl groups and protein tyrosine phosphorylation as targets of ACA cytotoxicity in tumor cells.

  13. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells.

    PubMed

    Robijns, J; Molenberghs, F; Sieprath, T; Corne, T D J; Verschuuren, M; De Vos, W H

    2016-01-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development.

  14. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    PubMed Central

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; De Vos, W. H.

    2016-01-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development. PMID:27461848

  15. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus

    PubMed Central

    Byrska-Bishop, Marta; VanDorn, Daniel; Campbell, Amy E.; Betensky, Marisol; Arca, Philip R.; Yao, Yu; Gadue, Paul; Costa, Fernando F.; Nemiroff, Richard L.; Blobel, Gerd A.; French, Deborah L.; Hardison, Ross C.; Weiss, Mitchell J.; Chou, Stella T.

    2015-01-01

    Germline GATA1 mutations that result in the production of an amino-truncated protein termed GATA1s (where s indicates short) cause congenital hypoplastic anemia. In patients with trisomy 21, similar somatic GATA1s-producing mutations promote transient myeloproliferative disease and acute megakaryoblastic leukemia. Here, we demonstrate that induced pluripotent stem cells (iPSCs) from patients with GATA1-truncating mutations exhibit impaired erythroid potential, but enhanced megakaryopoiesis and myelopoiesis, recapitulating the major phenotypes of the associated diseases. Similarly, in developmentally arrested GATA1-deficient murine megakaryocyte-erythroid progenitors derived from murine embryonic stem cells (ESCs), expression of GATA1s promoted megakaryopoiesis, but not erythropoiesis. Transcriptome analysis revealed a selective deficiency in the ability of GATA1s to activate erythroid-specific genes within populations of hematopoietic progenitors. Although its DNA-binding domain was intact, chromatin immunoprecipitation studies showed that GATA1s binding at specific erythroid regulatory regions was impaired, while binding at many nonerythroid sites, including megakaryocytic and myeloid target genes, was normal. Together, these observations indicate that lineage-specific GATA1 cofactor associations are essential for normal chromatin occupancy and provide mechanistic insights into how GATA1s mutations cause human disease. More broadly, our studies underscore the value of ESCs and iPSCs to recapitulate and study disease phenotypes. PMID:25621499

  16. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    NASA Astrophysics Data System (ADS)

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; de Vos, W. H.

    2016-07-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development.

  17. Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells

    PubMed Central

    Oikawa, Tsunekazu; Wauthier, Eliane; Dinh, Timothy A.; Selitsky, Sara R.; Reyna-Neyra, Andrea; Carpino, Guido; Levine, Ronald; Cardinale, Vincenzo; Klimstra, David; Gaudio, Eugenio; Alvaro, Domenico; Carrasco, Nancy; Sethupathy, Praveen; Reid, Lola M.

    2015-01-01

    The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells—newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies. PMID:26437858

  18. Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks

    PubMed Central

    Michaelides, Michael; Anderson, Sarah Ann R.; Ananth, Mala; Smirnov, Denis; Thanos, Panayotis K.; Neumaier, John F.; Wang, Gene-Jack; Volkow, Nora D.; Hurd, Yasmin L.

    2013-01-01

    The ability to map the functional connectivity of discrete cell types in the intact mammalian brain during behavior is crucial for advancing our understanding of brain function in normal and disease states. We combined designer receptor exclusively activated by designer drug (DREADD) technology and behavioral imaging with μPET and [18F]fluorodeoxyglucose (FDG) to generate whole-brain metabolic maps of cell-specific functional circuits during the awake, freely moving state. We have termed this approach DREADD-assisted metabolic mapping (DREAMM) and documented its ability in rats to map whole-brain functional anatomy. We applied this strategy to evaluating changes in the brain associated with inhibition of prodynorphin-expressing (Pdyn-expressing) and of proenkephalin-expressing (Penk-expressing) medium spiny neurons (MSNs) of the nucleus accumbens shell (NAcSh), which have been implicated in neuropsychiatric disorders. DREAMM revealed discrete behavioral manifestations and concurrent engagement of distinct corticolimbic networks associated with dysregulation of Pdyn and Penk in MSNs of the NAcSh. Furthermore, distinct neuronal networks were recruited in awake versus anesthetized conditions. These data demonstrate that DREAMM is a highly sensitive, molecular, high-resolution quantitative imaging approach. PMID:24231358

  19. High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics

    PubMed Central

    Schmid, Benjamin; Shah, Gopi; Scherf, Nico; Weber, Michael; Thierbach, Konstantin; Campos, Citlali Pérez; Roeder, Ingo; Aanstad, Pia; Huisken, Jan

    2013-01-01

    The ever-increasing speed and resolution of modern microscopes make the storage and post-processing of images challenging and prevent thorough statistical analyses in developmental biology. Here, instead of deploying massive storage and computing power, we exploit the spherical geometry of zebrafish embryos by computing a radial maximum intensity projection in real time with a 240-fold reduction in data rate. In our four-lens selective plane illumination microscope (SPIM) setup the development of multiple embryos is recorded in parallel and a map of all labelled cells is obtained for each embryo in <10 s. In these panoramic projections, cell segmentation and flow analysis reveal characteristic migration patterns and global tissue remodelling in the early endoderm. Merging data from many samples uncover stereotypic patterns that are fundamental to endoderm development in every embryo. We demonstrate that processing and compressing raw image data in real time is not only efficient but indispensable for image-based systems biology. PMID:23884240

  20. Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells.

    PubMed

    Pichon, Xavier; Bastide, Amandine; Safieddine, Adham; Chouaib, Racha; Samacoits, Aubin; Basyuk, Eugenia; Peter, Marion; Mueller, Florian; Bertrand, Edouard

    2016-09-12

    Translation is an essential step in gene expression. In this study, we used an improved SunTag system to label nascent proteins and image translation of single messenger ribonucleoproteins (mRNPs) in human cells. Using a dedicated reporter RNA, we observe that translation of single mRNPs stochastically turns on and off while they diffuse through the cytoplasm. We further measure a ribosome density of 1.3 per kilobase and an elongation rate of 13-18 amino acids per second. Tagging the endogenous POLR2A gene revealed similar elongation rates and ribosomal densities and that nearly all messenger RNAs (mRNAs) are engaged in translation. Remarkably, tagging of the heavy chain of dynein 1 (DYNC1H1) shows this mRNA accumulates in foci containing three to seven RNA molecules. These foci are translation sites and thus represent specialized translation factories. We also observe that DYNC1H1 polysomes are actively transported by motors, which may deliver the mature protein at appropriate cellular locations. The SunTag should be broadly applicable to study translational regulation in live single cells. PMID:27597760

  1. Oxidation of cell surface thiol groups by contact sensitizers triggers the maturation of dendritic cells.

    PubMed

    Kagatani, Saori; Sasaki, Yoshinori; Hirota, Morihiko; Mizuashi, Masato; Suzuki, Mie; Ohtani, Tomoyuki; Itagaki, Hiroshi; Aiba, Setsuya

    2010-01-01

    p38 mitogen-activated protein kinase (MAPK) has a crucial role in the maturation of dendritic cells (DCs) by sensitizers. Recently, it has been reported that the oxidation of cell surface thiols by an exogenous impermeant thiol oxidizer can phosphorylate p38 MAPK. In this study, we examined whether sensitizers oxidize cell surface thiols of monocyte-derived DCs (MoDCs). When cell surface thiols were quantified by flow cytometry using Alexa fluor maleimide, all the sensitizers that we examined decreased cell surface thiols on MoDCs. To examine the effects of decreased cell surface thiols by sensitizers on DC maturation, we analyzed the effects of an impermeant thiol oxidizer, o-phenanthroline copper complex (CuPhen). The treatment of MoDCs with CuPhen decreased cell surface thiols, phosphorylated p38 MAPK, and induced MoDC maturation, that is, the augmentation of CD83, CD86, HLA-DR, and IL-8 mRNA, as well as the downregulation of aquaporin-3 mRNA. The augmentation of CD86 was significantly suppressed when MoDCs were pretreated with N-acetyl-L-cystein or treated with SB203580. Finally, we showed that epicutaneous application of 2,4-dinitrochlorobenzene on mouse skin significantly decreased cell surface thiols of Langerhans cells in vivo. These data suggest that the oxidation of cell surface thiols has some role in triggering DC maturation by sensitizers. PMID:19641517

  2. Single cell genomics reveals activation signatures of endogenous SCAR's networks in aneuploid human embryos and clinically intractable malignant tumors.

    PubMed

    Glinsky, Gennadi V

    2016-10-10

    Somatic mutations and chromosome instability are hallmarks of genomic aberrations in cancer cells. Aneuploidies represent common manifestations of chromosome instability, which is frequently observed in human embryos and malignant solid tumors. Activation of human endogenous retroviruses (HERV)-derived loci is documented in preimplantation human embryos, hESC, and multiple types of human malignancies. It remains unknown whether the HERV activation may highlight a common molecular pathway contributing to the frequent occurrence of chromosome instability in the early stages of human embryonic development and the emergence of genomic aberrations in cancer. Single cell RNA sequencing analysis of human preimplantation embryos reveals activation of specific LTR7/HERVH loci during the transition from the oocytes to zygotes and identifies HERVH network signatures associated with the aneuploidy in human embryos. The correlation patterns' analysis links transcriptome signatures of the HERVH network activation of the in vivo matured human oocytes with gene expression profiles of clinical samples of prostate tumors supporting the existence of a cancer progression pathway from putative precursor lesions (prostatic intraepithelial neoplasia) to localized and metastatic prostate cancers. Tracking signatures of HERVH networks' activation in tumor samples from cancer patients with known long-term therapy outcomes enabled patients' stratification into sub-groups with markedly distinct likelihoods of therapy failure and death from cancer. Genome-wide analyses of human-specific genetic elements of stem cell-associated retroviruses (SCARs)-regulated networks in 12,093 clinical tumor samples across 29 cancer types revealed pan-cancer genomic signatures of clinically-lethal therapy resistant disease defined by the presence of somatic non-silent mutations (SNMs), gene-level copy number changes, and transcripts and proteins' expression of SCARs-regulated host genes. More than 73% of all

  3. Phenotypic diversity of diploid and haploid Emiliania huxleyi cells and of cells in different growth phases revealed by comparative metabolomics.

    PubMed

    Mausz, Michaela A; Pohnert, Georg

    2015-01-01

    In phytoplankton a high species diversity of microalgae co-exists at a given time. But diversity is not only reflected by the species composition. Within these species different life phases as well as different metabolic states can cause additional diversity. One important example is the coccolithophore Emiliania huxleyi. Diploid cells play an important role in marine ecosystems since they can form massively abundant algal blooms but in addition the less abundant haploid life phase of E. huxleyi occurs in lower quantities. Both life phases may fulfill different functions in the plankton. We hypothesize that in addition to the functional diversity caused by this life phase transition the growth stage of cells can also influence the metabolic composition and thus the ecological impact of E. huxleyi. Here we introduce a metabolomic survey in dependence of life phases as well as different growth phases to reveal such changes. The comparative metabolomic approach is based on the extraction of intracellular metabolites from intact microalgae, derivatization and analysis by gas chromatography coupled to mass spectrometry (GC-MS). Automated data processing and statistical analysis using canonical analysis of principal coordinates (CAP) revealed unique metabolic profiles for each life phase. Concerning the correlations of metabolites to growth phases, complex patterns were observed. As for example the saccharide mannitol showed its highest concentration in the exponential phase, whereas fatty acids were correlated to stationary and sterols to declining phase. These results are indicative for specific ecological roles of these stages of E. huxleyi and are discussed in the context of previous physiological and ecological studies.

  4. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    PubMed

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production. PMID:26820137

  5. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    PubMed

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production.

  6. Group I-III-VI.sub.2 semiconductor films for solar cell application

    DOEpatents

    Basol, Bulent M.; Kapur, Vijay K.

    1991-01-01

    This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.

  7. Redefining the Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines.

    PubMed Central

    Schaefer, B C; Strominger, J L; Speck, S H

    1995-01-01

    The Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter for the restricted Epstein-Barr virus (EBV) latency program operating in group I Burkitt lymphoma (BL) cell lines was previously identified incorrectly. Here we present evidence from RACE (rapid amplification of cDNA ends) cloning, reverse transcription-PCR, and S1 nuclease analyses, which demonstrates that the EBNA-1 gene promoter in group I BL cell lines is located in the viral BamHI Q fragment, immediately upstream of two low-affinity EBNA-1 binding sites. Transcripts initiated from this promoter, referred to as Qp, have the previously reported Q/U/K exon splicing pattern. Qp is active in group I BL cell lines but not in group III BL cell lines or in EBV immortalized B-lymphoblastoid cell lines. In addition, transient transfection of Qp-driven reporter constructs into both an EBV-negative BL cell line and a group I BL cell line gave rise to correctly initiated transcripts. Inspection of Qp revealed that it is a TATA-less promoter whose architecture is similar to the promoters of housekeeping genes, suggesting that Qp may be a default promoter which ensures EBNA-1 expression in cells that cannot run the full viral latency program. Elucidation of the genetic mechanism responsible for the EBNA-1-restricted program of EBV latency is an essential step in understanding control of viral latency in EBV-associated tumors. Images Fig. 1 Fig. 3 Fig. 4 PMID:7479841

  8. Epidermal CD8+ T cells reactive with group A streptococcal antigens in chronic plaque psoriasis.

    PubMed

    Ovigne, J-M; Baker, B S; Davison, S C; Powles, A V; Fry, L

    2002-08-01

    Chronic plaque psoriasis is a T cell mediated disease associated with group A streptococci (GAS). We have previously shown the presence of a psoriasis-specific dermal Th1 subset that recognizes GAS antigens. To assess whether GAS-reactive T cells are also present in lesional epidermis, fresh cell suspensions or T cell lines isolated from lesional epidermis of 33 psoriasis patients were stained for intracellular interferon-gamma after stimulation with GAS antigens. The patients were typed by PCR for HLA-DR7 and HLA-Cw6 expression. A subset of GAS-reactive CD8+ T cells (2.4% +/- 2.4) was found in 14/21 (67%) fresh cell suspensions. A smaller subset of GAS-reactive CD4+ T cells (0.9% +/- 0.9) was found in 13/21 (62%) fresh cell suspensions, which was expanded in the T cell lines. There was a significant inverse correlation between the proportions of GAS-reactive CD4+ and CD8+ T cells in the fresh suspensions (r = -0.48, P = 0.0277). The presence of GAS-reactive CD4+ or CD8+ T cells did not correlate with HLA-DR7 or HLA-Cw6 expression, respectively. This study has demonstrated GAS-reactive CD8+, and to a lesser extent CD4+, T cell subsets in psoriatic epidermis and provides further evidence that GAS antigens may play a role in the pathogenesis of chronic plaque psoriasis.

  9. Characterization of a New Vaccinia virus Isolate Reveals the C23L Gene as a Putative Genetic Marker for Autochthonous Group 1 Brazilian Vaccinia virus

    PubMed Central

    Oliveira, Danilo B.; Franco-Luiz, Ana P. M.; Campos, Rafael K.; Guedes, Maria I. M.; Fonseca, Flávio G.; Trindade, Giliane S.; Drumond, Betânia P.; Kroon, Erna G.; Abrahão, Jônatas S.

    2012-01-01

    Since 1999, several Vaccinia virus (VACV) isolates, the etiological agents of bovine vaccinia (BV), have been frequently isolated and characterized with various biological and molecular methods. The results from these approaches have grouped these VACV isolates into two different clusters. This dichotomy has elicited debates surrounding the origin of the Brazilian VACV and its epidemiological significance. To ascertain vital information to settle these debates, we and other research groups have made efforts to identify molecular markers to discriminate VACV from other viruses of the genus Orthopoxvirus (OPV) and other VACV-BR groups. In this way, some genes have been identified as useful markers to discriminate between the VACV-BR groups. However, new markers are needed to infer ancestry and to correlate each sample or group with its unique epidemiological and biological features. The aims of this work were to characterize a new VACV isolate (VACV DMTV-2005) molecularly and biologically using conserved and non-conserved gene analyses for phylogenetic inference and to search for new genes that would elucidate the VACV-BR dichotomy. The VACV DMTV-2005 isolate reported in this study is biologically and phylogenetically clustered with other strains of Group 1 VACV-BR, the most prevalent VACV group that was isolated during the bovine vaccinia outbreaks in Brazil. Sequence analysis of C23L, the gene that encodes for the CC-chemokine-binding protein, revealed a ten-nucleotide deletion, which is a new Group 1 Brazilian VACV genetic marker. This deletion in the C23L open reading frame produces a premature stop-codon that is shared by all Group 1 VACV-BR strains and may also reflect the VACV-BR dichotomy; the deletion can also be considered to be a putative genetic marker for non-virulent Brazilian VACV isolates and may be used for the detection and molecular characterization of new isolates. PMID:23189200

  10. Characterization of a new Vaccinia virus isolate reveals the C23L gene as a putative genetic marker for autochthonous Group 1 Brazilian Vaccinia virus.

    PubMed

    Assis, Felipe L; Almeida, Gabriel M F; Oliveira, Danilo B; Franco-Luiz, Ana P M; Campos, Rafael K; Guedes, Maria I M; Fonseca, Flávio G; Trindade, Giliane S; Drumond, Betânia P; Kroon, Erna G; Abrahão, Jônatas S

    2012-01-01

    Since 1999, several Vaccinia virus (VACV) isolates, the etiological agents of bovine vaccinia (BV), have been frequently isolated and characterized with various biological and molecular methods. The results from these approaches have grouped these VACV isolates into two different clusters. This dichotomy has elicited debates surrounding the origin of the Brazilian VACV and its epidemiological significance. To ascertain vital information to settle these debates, we and other research groups have made efforts to identify molecular markers to discriminate VACV from other viruses of the genus Orthopoxvirus (OPV) and other VACV-BR groups. In this way, some genes have been identified as useful markers to discriminate between the VACV-BR groups. However, new markers are needed to infer ancestry and to correlate each sample or group with its unique epidemiological and biological features. The aims of this work were to characterize a new VACV isolate (VACV DMTV-2005) molecularly and biologically using conserved and non-conserved gene analyses for phylogenetic inference and to search for new genes that would elucidate the VACV-BR dichotomy. The VACV DMTV-2005 isolate reported in this study is biologically and phylogenetically clustered with other strains of Group 1 VACV-BR, the most prevalent VACV group that was isolated during the bovine vaccinia outbreaks in Brazil. Sequence analysis of C23L, the gene that encodes for the CC-chemokine-binding protein, revealed a ten-nucleotide deletion, which is a new Group 1 Brazilian VACV genetic marker. This deletion in the C23L open reading frame produces a premature stop-codon that is shared by all Group 1 VACV-BR strains and may also reflect the VACV-BR dichotomy; the deletion can also be considered to be a putative genetic marker for non-virulent Brazilian VACV isolates and may be used for the detection and molecular characterization of new isolates.

  11. Peripheral Foxp3+ regulatory T cells and natural killer group 2, member D expression levels in natural killer cells of patients with colorectal cancer.

    PubMed

    Shen, Yajuan; Wang, Qian; Qi, Yuanying; Cui, Bin; Zhang, Zhifen; Su, Jingran; Liu, Xiaowen; Lu, Chao; Ye, Hui; Ju, Ying; Lu, Zhiming

    2014-08-01

    Foxp3+ regulatory T cells (Tregs) and natural killer group 2, member D (NKG2D)-positive natural killer (NK) cells are considered to be important in the immune escape of colorectal cancer (CRC). However, the association between these two variables remains obscure. Therefore, in the present study, the levels of peripheral Tregs and NKG2D expression in NK cells and the associations in CRC patients were investigated. A total of 35 CRC patients and 16 healthy controls were enrolled in this study. Flow cytometry was performed to assay Treg numbers and NKG2D expression levels in NK cells in peripheral blood samples. Serum carcino-embryonic antigen (CEA) protein was assayed by electrochemiluminescence. Peripheral Treg numbers were significantly increased (P<0.05), while NKG2D expression levels in NK cells were significantly reduced (P<0.01) in CRC patients compared with healthy controls. However, no significant differences were identified in Treg numbers between CRC patients with and without lymph node metastases and between CRC patients with different clinical stages of CRC. Similarly, no significant differences were detected in NKG2D expression levels in NK cells between the different patient groups. Statistical analysis revealed that increased Treg numbers were not correlated with reduced NKG2D expression levels in NK cells from CRC patients. In addition, no statistical correlation was observed between Treg numbers and serum CEA protein in CRC patients. In conclusion, the upregulation of Tregs was not significantly correlated with the downregulation of NKG2D expression in NK cells in peripheral blood from CRC patients.

  12. RELATION BETWEEN WATER PERMEABILITY AND INTEGRITY OF SULFHYDRYL GROUPS IN MALIGNANT AND NORMAL CELLS

    PubMed Central

    Belkin, Morris; Hardy, Walter G.

    1961-01-01

    When malignant cells, animal and human, were exposed in vitro to solutions of heavy metals or other selected compounds, three types of cell blebs were produced: (1) acentric blebs, arising from one side of the cell, e. g., by chlormerodrin, meralluride sodium, mercuric chloride; (2) symmetrical blebs; which completely enveloped the cell, e. g., by strong silver protein, auric chloride, p-chloromercuribenzoate; (3) scallop blebs, numerous small spherical elevations which completely covered the cell, e.g., by N-ethyl-maleimide, trivalent arsenicals, iodoacetamide. As indicated by vital stains and morphologic appearance, the blebs arose in healthy cells. They also can be made to appear in vivo in ascites tumor cells by intraperitoneal administration of a blebbing agent. All the bleb-producing chemicals have the property of reacting with protein-sulfhydryl groups by alkylation, oxidation or mercaptide formation. The three bleb types have been induced in 8 mouse and 2 rat ascites tumor cells; in 4 human and 1 mouse malignant cell lines; and in 3 normal cell lines grown in tissue culture. In contrast, cells from normal solid tissues of liver, lung, spleen, kidney, testis and brain from mouse, rat and rabbit failed to produce blebs. A possible interpretation for these observations is presented. PMID:19866586

  13. Implementing a New Group of TPW Cells as National Standard: Impact on Calibration Services

    NASA Astrophysics Data System (ADS)

    Dobre, Miruna

    2008-06-01

    The definition of the kelvin is based on the triple-point temperature of highly pure water having the isotopic composition of ocean water (more specifically, the isotopic composition is equivalent to that of VSMOW). Belgian national metrology realizes the triple point of water (TPW) as the mean of temperatures measured in three sealed cells. In order to take into account the isotopic composition effect on TPW temperature, the ensemble of cells was replaced in 2006. Three new cells, with isotopic analysis of the contained water, were bought from different manufacturers. The new group of cells was compared to the old TPW national realization in order to quantify the effect of moving towards a new reference. Two different standard thermometers were used in all the cells to take 10 daily measurements on two different ice mantles. The measured resistances were corrected for hydrostatic head, self-heating, and isotopic composition (when available) before calculating the difference. A difference of about 87 μK was found between the old and the new national references. This difference is transferred to customers’ thermometers and cells through calibrations, and the change has to be documented in each new calibration certificate. An additional consequence of the new ensemble cell implementation is the significant reduction in the spread of deviations of individual cells from the mean temperature. The maximum difference between two cells of the ensemble is 96 μK for the old reference cells and 46 μK for the new reference cells corrected for isotopic composition effects.

  14. Report: Stem cell applications in neurological practice, an expert group consensus appraisal

    PubMed Central

    Devi, M. Gourie; Sharma, Alka; Mohanty, Sujata; Jain, Neeraj; Verma, Kusum; Padma, M. Vasantha; Pal, Pramod; Chabbra, H. S.; Khadilkar, Satish; Prabhakar, Sudesh; Singh, Gagandeep

    2016-01-01

    Introduction: Neurologists in their clinical practice are faced with inquiries about the suitability of stem cell approaches by patients with a variety of acute and chronic (namely neurodegenerative) disorders. The challenge is to provide these patients with accurate information about the scope of stem cell use as well as at the same time, empowering patients with the capacity to make an autonomous decision regarding the use of stem cells. Methods: The Indian Academy of Neurology commissioned an Expert Group Meeting to formulate an advisory to practicing neurologists to counsel patients seeking information and advice about stem cell approaches. Results and Conclusions: In the course of such counselling, it should be emphasized that the information provided by many lay websites might be unsubstantiated. Besides, standard recommendations for the stem cell research, in particular, the application of several layers of oversight should be strictly adhered in order to ensure safety and ethical use of stem cells in neurological disorders. PMID:27570390

  15. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair

    PubMed Central

    Pipalia, Tapan G.; Koth, Jana; Roy, Shukolpa D.; Hammond, Christina L.; Kawakami, Koichi

    2016-01-01

    ABSTRACT Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7+ cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to repair of damaged fibres. pax7b-marked cells are more often present in rows of aligned cells that are observed to fuse into a single fibre, but more rarely contribute to nascent regenerated fibres. Ablation of a substantial portion of nitroreductase-expressing pax7b cells with metronidazole prior to wounding triggered rapid pax7a-only cell accumulation, but this neither inhibited nor augmented pax7a-only cell-derived myogenesis and thus altered the cellular repair dynamics during wound healing. Moreover, pax7a-only cells did not regenerate pax7b cells, suggesting a lineage distinction. We propose a modified founder cell and fusion-competent cell model in which pax7a-only cells initiate fibre formation and pax7b cells contribute to fibre growth. This newly discovered cellular

  16. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    SciTech Connect

    Resch, M.

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution imaging techniques. Also, translating findings between model substrates to intact biomass is critical for evaluating enzyme performance. Here we employ a fungal free enzyme cocktail, a complexed cellulosomal system, and a combination of the two to investigate saccharification mechanisms on cellulose I, II and III along with corn stover from Clean Fractionation (CF), which is an Organosolv pretreatment. The insoluble Cellulose Enriched Fraction (CEF) from CF contains mainly cellulose with minor amounts of residual hemicellulose and lignin, the amount of which depends on the CF pretreatment severity. Enzymatic digestions at both low and high-solids loadings demonstrate that CF reduces the amount of enzyme required to depolymerize polysaccharides relative to deacetylated, dilute acid pretreated corn stover. Transmission and scanning electron microscopy of the biomass provides evidence for the different mechanisms of enzymatic deconstruction between free and complexed enzyme systems, and reveals the basis for the synergistic relationship between the two enzyme paradigms on a process-relevant substrate for the first time. These results also demonstrate that the presence of lignin, rather than cellulose morphology, is more detrimental to cellulosome action than to free cellulases. As enzyme costs are a major economic driver for biorefineries, this study provides key inputs for the evaluation of CF as a pretreatment method for biomass conversion.

  17. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma.

    PubMed

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-02-01

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs. PMID:26833333

  18. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-01-01

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs. PMID:26833333

  19. Drawings of Blood Cells Reveal People’s Perception of Their Blood Disorder: A Pilot Study

    PubMed Central

    Ramondt, Steven; Cameron, Linda D.; Broadbent, Elizabeth; Kaptein, Adrian A.

    2016-01-01

    Context Sickle cell disease (SCD) and thalassemia are rare but chronic blood disorders. Recent literature showed impaired quality of life (QOL) in people with these blood disorders. Assessing one of the determinants of QOL (i.e. illness perceptions) therefore, is an important next research area. Objective We aimed to explore illness perceptions of people with a blood disorder with drawings in addition to the Brief Illness Perception Questionnaire (Brief IPQ). Drawings are a novel method to assess illness perceptions and the free-range answers drawings offer can add additional insight into how people perceive their illness. Method We conducted a cross-sectional study including 17 participants with a blood disorder. Participants’ illness perceptions were assessed by the Brief IPQ and drawings. Brief IPQ scores were compared with reference groups from the literature (i.e. people with asthma or lupus erythematosus). Results Participants with SCD or thalassemia perceived their blood disorder as being more chronic and reported more severe symptoms than people with either asthma or lupus erythematosus. In the drawings of these participants with a blood disorder, a greater number of blood cells drawn was negatively correlated with perceived personal control (P<0.05), indicating that a greater quantity in the drawing is associated with more negative or distressing beliefs. Conclusion Participants with a blood disorder perceive their disease as fairly threatening compared with people with other chronic illnesses. Drawings can add additional insight into how people perceive their illness by offering free-range answers. PMID:27123580

  20. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges

    PubMed Central

    Kamke, Janine; Sczyrba, Alexander; Ivanova, Natalia; Schwientek, Patrick; Rinke, Christian; Mavromatis, Kostas; Woyke, Tanja; Hentschel, Ute

    2013-01-01

    Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems. PMID:23842652

  1. Group V and X secretory phospholipase A2 prevents adenoviral infection in mammalian cells

    PubMed Central

    Mitsuishi, Michiko; Masuda, Seiko; Kudo, Ichiro; Murakami, Makoto

    2005-01-01

    sPLA2 (secretory phospholipase A2) enzymes have been implicated in various biological events, yet their precise physiological functions remain largely unresolved. In the present study we show that group V and X sPLA2s, which are two potent plasma membrane-acting sPLA2s, are capable of preventing host cells from being infected with an adenovirus. Bronchial epithelial cells and lung fibroblasts pre-expressing group V and X sPLA2s showed marked resistance to adenovirus-mediated gene delivery in a manner dependent on their catalytic activity. Although adenovirus particles were insensitive to recombinant group V and X sPLA2s, direct addition of these enzymes to 293A cells suppressed both number and size of adenovirus plaque formation. Group V and X sPLA2s retarded the entry of adenovirus into endosomes. Moreover, adenoviral infection was suppressed by LPC (lysophosphatidylcholine), a membrane-hydrolytic product of these sPLA2s. Thus hydrolysis of the plasma membrane by these sPLA2s may eventually lead to the protection of host cells from adenovirus entry. Given that group V and X sPLA2s are expressed in human airway epithelium and macrophages and that the expression of endogenous group V sPLA2 is upregulated by virus-related stimuli in these cells, our present results raise the possibility that group V and X sPLA2s may play a role in innate immunity against adenoviral infection in the respiratory tract. PMID:16146426

  2. Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat.

    PubMed

    Vanderhorst, V G; Holstege, G

    1997-05-26

    In a study on descending pathways from the nucleus retroambiguus (NRA) to hindlimb motoneurons (see accompanying paper), it appeared impossible, using data from the literature, to precisely determine which muscles were innervated by the motoneurons receiving the NRA fibers. This lack of data made it necessary to produce a detailed map of the lumbosacral motoneuronal cell groups in the cat. Therefore, 50 different muscles or muscle compartments of hindlimb, pelvic floor and lower back were injected with horseradish peroxidase (HRP) in 135 cases. The respective muscles were divided into ten groups: I, sartorius and iliopsoas; II, quadriceps; III, adductors; IV, hamstrings; V, gluteal and other proximal muscles of the hip; VI, posterior compartment of the distal hindlimb; VII, anterior compartment of the distal hindlimb; VIII, long flexors and intrinsic muscles of the foot; IX, pelvic floor muscles; and X, extensors of the lower back and tail. The L4-S2 segments were cut and incubated, and labeled motoneurons were counted and plotted. A new method was developed that made it possible, despite variations in size and segmental organization between the different cases, to compare the results of different cases. The results show that the spatial interrelationship between the hindlimb and pelvic floor lumbosacral motoneuronal cell groups remains constant. This finding enabled the authors to compose an accurate overall map of the location of lumbosacral motoneuronal cell groups. The general distribution of the motoneuronal cell groups is also discussed in respect to their dorsoventral, mediolateral, and rostrocaudal position within the lumbosacral ventral horn. PMID:9136811

  3. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding.

    PubMed

    Ailte, Ieva; Lingelem, Anne Berit Dyve; Kavaliauskiene, Simona; Bergan, Jonas; Kvalvaag, Audun Sverre; Myrann, Anne-Grethe; Skotland, Tore; Sandvig, Kirsten

    2016-01-01

    Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-β-cyclodextrin (mβCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3. PMID:27458147

  4. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding

    PubMed Central

    Ailte, Ieva; Lingelem, Anne Berit Dyve; Kavaliauskiene, Simona; Bergan, Jonas; Kvalvaag, Audun Sverre; Myrann, Anne-Grethe; Skotland, Tore; Sandvig, Kirsten

    2016-01-01

    Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-β-cyclodextrin (mβCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3. PMID:27458147

  5. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction.

    PubMed

    Mooijman, Dylan; Dey, Siddharth S; Boisset, Jean-Charles; Crosetto, Nicola; van Oudenaarden, Alexander

    2016-08-01

    The epigenetic DNA modification 5-hydroxymethylcytosine (5hmC) has crucial roles in development and gene regulation. Quantifying the abundance of this epigenetic mark at the single-cell level could enable us to understand its roles. We present a single-cell, genome-wide and strand-specific 5hmC sequencing technology, based on 5hmC glucosylation and glucosylation-dependent digestion of DNA, that reveals pronounced cell-to-cell variability in the abundance of 5hmC on the two DNA strands of a given chromosome. We develop a mathematical model that reproduces the strand bias and use this model to make two predictions. First, the variation in strand bias should decrease when 5hmC turnover increases. Second, the strand bias of two sister cells should be strongly anti-correlated. We validate these predictions experimentally, and use our model to reconstruct lineages of two- and four-cell mouse embryos, showing that single-cell 5hmC sequencing can be used as a lineage reconstruction tool.

  6. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions.

    PubMed

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N; Flood, Beverly E; Bailey, Jake V; Mußmann, Marc

    2016-01-01

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming "Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. "Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that "Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, "Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na(+)-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae "Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of "Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur

  7. Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells.

    PubMed

    Krischek, B; Kasuya, H; Tajima, A; Akagawa, H; Sasaki, T; Yoneyama, T; Ujiie, H; Kubo, O; Bonin, M; Takakura, K; Hori, T; Inoue, I

    2008-07-17

    Little is known about the pathology and pathogenesis of the rupture of intracranial aneurysms. For a better understanding of the molecular processes involved in intracranial aneurysm (IA) formation we performed a gene expression analysis comparing ruptured and unruptured aneurysm tissue to a control artery. Tissue samples of six ruptured and four unruptured aneurysms, and four cerebral arteries serving as controls, were profiled using oligonucleotide microarrays. Gene ontology classification of the differentially expressed genes was analyzed and regulatory functional networks and canonical pathways were identified with a network-based computational pathway analysis tool. Real time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical staining were performed as confirmation. Analysis of aneurysmal and control tissue revealed 521 differentially expressed genes. The most significantly associated gene ontology term was antigen processing (P=1.64E-16). Further network-based analysis showed the top scoring regulatory functional network to be built around overexpressed major histocompatibility class (MHC) I and II complex related genes and confirmed the canonical pathway "Antigen Presentation" to have the highest upregulation in IA tissue (P=7.3E-10). Real time RT-PCR showed significant overexpression of MHC class II genes. Immunohistochemical staining showed strong positivity for MHC II molecule specific antibody (HLA II), for CD68 (macrophages, monocytes), for CD45RO (T-cells) and HLA I antibody. Our results offer strong evidence for MHC class II gene overexpression in human IA tissue and that antigen presenting cells (macrophages, monocytes) play a key role in IA formation. PMID:18538937

  8. Electrochemical Investigation of a Microbial Solar Cell Reveals a Nonphotosynthetic Biocathode Catalyst

    PubMed Central

    Glaven, Richard H.; Wang, Zheng; Zhou, Jing; Vora, Gary J.; Tender, Leonard M.

    2013-01-01

    Microbial solar cells (MSCs) are microbial fuel cells (MFCs) that generate their own oxidant and/or fuel through photosynthetic reactions. Here, we present electrochemical analyses and biofilm 16S rRNA gene profiling of biocathodes of sediment/seawater-based MSCs inoculated from the biocathode of a previously described sediment/seawater-based MSC. Electrochemical analyses indicate that for these second-generation MSC biocathodes, catalytic activity diminishes over time if illumination is provided during growth, whereas it remains relatively stable if growth occurs in the dark. For both illuminated and dark MSC biocathodes, cyclic voltammetry reveals a catalytic-current–potential dependency consistent with heterogeneous electron transfer mediated by an insoluble microbial redox cofactor, which was conserved following enrichment of the dark MSC biocathode using a three-electrode configuration. 16S rRNA gene profiling showed Gammaproteobacteria, most closely related to Marinobacter spp., predominated in the enriched biocathode. The enriched biocathode biofilm is easily cultured on graphite cathodes, forms a multimicrobe-thick biofilm (up to 8.2 μm), and does not lose catalytic activity after exchanges of the reactor medium. Moreover, the consortium can be grown on cathodes with only inorganic carbon provided as the carbon source, which may be exploited for proposed bioelectrochemical systems for electrosynthesis of organic carbon from carbon dioxide. These results support a scheme where two distinct communities of organisms develop within MSC biocathodes: one that is photosynthetically active and one that catalyzes reduction of O2 by the cathode, where the former partially inhibits the latter. The relationship between the two communities must be further explored to fully realize the potential for MSC applications. PMID:23603672

  9. Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst.

    PubMed

    Strycharz-Glaven, Sarah M; Glaven, Richard H; Wang, Zheng; Zhou, Jing; Vora, Gary J; Tender, Leonard M

    2013-07-01

    Microbial solar cells (MSCs) are microbial fuel cells (MFCs) that generate their own oxidant and/or fuel through photosynthetic reactions. Here, we present electrochemical analyses and biofilm 16S rRNA gene profiling of biocathodes of sediment/seawater-based MSCs inoculated from the biocathode of a previously described sediment/seawater-based MSC. Electrochemical analyses indicate that for these second-generation MSC biocathodes, catalytic activity diminishes over time if illumination is provided during growth, whereas it remains relatively stable if growth occurs in the dark. For both illuminated and dark MSC biocathodes, cyclic voltammetry reveals a catalytic-current-potential dependency consistent with heterogeneous electron transfer mediated by an insoluble microbial redox cofactor, which was conserved following enrichment of the dark MSC biocathode using a three-electrode configuration. 16S rRNA gene profiling showed Gammaproteobacteria, most closely related to Marinobacter spp., predominated in the enriched biocathode. The enriched biocathode biofilm is easily cultured on graphite cathodes, forms a multimicrobe-thick biofilm (up to 8.2 μm), and does not lose catalytic activity after exchanges of the reactor medium. Moreover, the consortium can be grown on cathodes with only inorganic carbon provided as the carbon source, which may be exploited for proposed bioelectrochemical systems for electrosynthesis of organic carbon from carbon dioxide. These results support a scheme where two distinct communities of organisms develop within MSC biocathodes: one that is photosynthetically active and one that catalyzes reduction of O2 by the cathode, where the former partially inhibits the latter. The relationship between the two communities must be further explored to fully realize the potential for MSC applications. PMID:23603672

  10. An Integrative Genomic and Transcriptomic Analysis Reveals Potential Targets Associated with Cell Proliferation in Uterine Leiomyomas

    PubMed Central

    Cirilo, Priscila Daniele Ramos; Marchi, Fábio Albuquerque; Barros Filho, Mateus de Camargo; Rocha, Rafael Malagoli; Domingues, Maria Aparecida Custódio; Jurisica, Igor; Pontes, Anagloria; Rogatto, Silvia Regina

    2013-01-01

    Background Uterine Leiomyomas (ULs) are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40–50% of ULs have non-random cytogenetic abnormalities, and half of ULs may have copy number alterations (CNAs). Gene expression microarrays studies have demonstrated that cell proliferation genes act in response to growth factors and steroids. However, only a few genes mapping to CNAs regions were found to be associated with ULs. Methodology We applied an integrative analysis using genomic and transcriptomic data to identify the pathways and molecular markers associated with ULs. Fifty-one fresh frozen specimens were evaluated by array CGH (JISTIC) and gene expression microarrays (SAM). The CONEXIC algorithm was applied to integrate the data. Principal Findings The integrated analysis identified the top 30 significant genes (P<0.01), which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell proliferation, including FGFR1 and IGFBP5. Transcriptional and protein analyses showed that FGFR1 (P = 0.006 and P<0.01, respectively) and IGFBP5 (P = 0.0002 and P = 0.006, respectively) were up-regulated in the tumours when compared with the adjacent normal myometrium. Conclusions The integrative genomic and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs. PMID:23483937

  11. Patterns of inter- and intra-group genetic diversity in the Vlax Roma as revealed by Y chromosome and mitochondrial DNA lineages.

    PubMed

    Kalaydjieva, L; Calafell, F; Jobling, M A; Angelicheva, D; de Knijff, P; Rosser, Z H; Hurles, M E; Underhill, P; Tournev, I; Marushiakova, E; Popov, V

    2001-02-01

    Previous genetic studies, supported by linguistic and historical data, suggest that the European Roma, comprising a large number of socially divergent endogamous groups, may be a complex conglomerate of founder populations. The boundaries and characteristics of such founder populations and their relationship to the currently existing social stratification of the Roma have not been investigated. This study is an attempt to address the issues of common vs independent origins and the history of population fissioning in three Romani groups that are well defined and strictly endogamous relative to each other. According to linguistic classifications, these groups belong to the Vlax Roma, who account for a large proportion of the European Romani population. The analysis of mtDNA sequence variation has shown that a large proportion of maternal lineages are common to the three groups. The study of a set of Y chromosome markers of different mutability has revealed that over 70% of males belong to a single lineage that appears unique to the Roma and presents with closely related microsatellite haplotypes and MSY1 codes. The study unambiguously points to the common origins of the three Vlax groups and the recent nature of the population fissions, and provides preliminary evidence of limited genetic diversity in this young founder population.

  12. NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells

    PubMed Central

    2014-01-01

    Background Nitric oxide (NO) is a signaling molecule regulating numerous cellular functions in development and disease. In the brain, neuronal injury or neuroinflammation can lead to microglial activation, which induces NO production. NO can react with critical cysteine thiols of target proteins forming S-nitroso-proteins. This modification, known as S-nitrosylation, is an evolutionarily conserved redox-based post-translational modification (PTM) of specific proteins analogous to phosphorylation. In this study, we describe a protocol for analyzing S-nitrosylation of proteins using a gel-based proteomic approach and use it to investigate the modes of action of a botanical compound found in green tea, epigallocatechin-3-gallate (EGCG), on protein S-nitrosylation after microglial activation. Methods/Results To globally and quantitatively analyze NO-induced protein S-nitrosylation, the sensitive gel-based proteomic method, termed NitroDIGE, was developed by combining two-dimensional differential in-gel electrophoresis (2-D DIGE) with the modified biotin switch technique (BST) using fluorescence-tagged CyDye™ thiol reactive agents to label S-nitrosothiols. The NitroDIGE method showed high specificity and sensitivity in detecting S-nitrosylated proteins (SNO-proteins). Using this approach, we identified a subset of SNO-proteins ex vivo by exposing immortalized murine BV-2 microglial cells to a physiological NO donor, or in vivo by exposing BV-2 cells to endotoxin lipopolysaccharides (LPS) to induce a proinflammatory response. Moreover, EGCG was shown to attenuate S-nitrosylation of proteins after LPS-induced activation of microglial cells primarily by modulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response. Conclusions These results demonstrate that NitroDIGE is an effective proteomic strategy for “top-down” quantitative analysis of protein S-nitrosylation in multi-group samples in response to nitrosative stress due

  13. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation.

    PubMed

    Sun, Jing; Cheng, Jun; Yang, Zongbo; Li, Ke; Zhou, Junhu; Cen, Kefa

    2015-10-01

    The pore structures and surface morphological characteristics of Nannochloropsis sp. cells with arsenic adsorption were initially investigated by N2-adsorption analysis and scanning electronic microscopy. Functional groups of cells were analysed by Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy. Total surface area of microalgal cells increased from 0.54 m(2)/g to 1.80 m(2)/g upon arsenic adsorption. The external cell surface area increased. More wrinkles and measles-like granules formed on the surfaces as a result of arsenic toxicity. Arsenic ions blocked cell pores and decreased the average pore diameter and total pore volume. Ether cross-linked structures in the algaenan layer of cell walls were disrupted as the percentage of C-O functional groups decreased. These functional groups underwent complexation reactions with arsenic ions. Accumulation of polyunsaturated fatty acids decreased because of oxidative stresses induced by arsenic. The increase in generation of short-chain saturated fatty acids was favourable for the production of quality biodiesel. PMID:26210144

  14. Streptolysin S Promotes Programmed Cell Death and Enhances Inflammatory Signaling in Epithelial Keratinocytes during Group A Streptococcus Infection

    PubMed Central

    Flaherty, Rebecca A.; Puricelli, Jessica M.; Higashi, Dustin L.; Park, Claudia J.

    2015-01-01

    Streptococcus pyogenes, or group A Streptococcus (GAS), is a pathogen that causes a multitude of human diseases from pharyngitis to severe infections such as toxic shock syndrome and necrotizing fasciitis. One of the primary virulence factors produced by GAS is the peptide toxin streptolysin S (SLS). In addition to its well-recognized role as a cytolysin, recent evidence has indicated that SLS may influence host cell signaling pathways at sublytic concentrations during infection. We employed an antibody array-based approach to comprehensively identify global host cell changes in human epithelial keratinocytes in response to the SLS toxin. We identified key SLS-dependent host responses, including the initiation of specific programmed cell death and inflammatory cascades with concomitant downregulation of Akt-mediated cytoprotection. Significant signaling responses identified by our array analysis were confirmed using biochemical and protein identification methods. To further demonstrate that the observed SLS-dependent host signaling changes were mediated primarily by the secreted toxin, we designed a Transwell infection system in which direct bacterial attachment to host cells was prevented, while secreted factors were allowed access to host cells. The results using this approach were consistent with our direct infection studies and reveal that SLS is a bacterial toxin that does not require bacterial attachment to host cells for activity. In light of these findings, we propose that the production of SLS by GAS during skin infection promotes invasive outcomes by triggering programmed cell death and inflammatory cascades in host cells to breach the keratinocyte barrier for dissemination into deeper tissues. PMID:26238711

  15. Interstitial flows promote an amoeboid over mesenchymal motility of breast cancer cells revealed by a three dimensional microfluidic model

    PubMed Central

    Huang, Yu Ling; Tung, Chih-kuan; Zheng, Anqi; Kim, Beum Jun; Wu, Mingming

    2015-01-01

    Malignant tumors are often associated with an elevated fluid pressure due to the abnormal growth of vascular vessels, and thus an increased interstitial flow out of the tumor. Recent in vitro work revealed that interstitial flows critically regulated tumor cell migration within a three dimensional biomatrix, and breast cancer cell migration behavior depended sensitively on the cell seeding density, chemokine availability and flow rates. In this paper, we focus on roles of interstitial flows in modulating heterogeneity of cancer cell motility phenotype within a three dimensional biomatrix. Using a newly developed microfluidic model, we show that breast cancer cells (MDA-MB-231) embedded in a 3D type I collagen matrix exhibit both an amoeboid and a mesenchymal motility, and interstitial flows promote the cell population towards the amoeboid motility phenotype. Furthermore, the addition of exogenous adhesion molecules (fibronectin) within the extracellular matrix (type I collagen) partially rescues the mesenchymal phenotype in the presence of the flow. Quantitative analysis of cell tracks and cell shape shows distinct differential migration characteristics of amoeboid and mesenchymal cells. Notably, the fastest moving cells belong to the subpopulation of amoeboid cells. Together, these findings highlight the important roles of biophysical forces in modulating tumor cell migration heterogeneity and plasticity, as well as the suitability of microfluidic models in interrogating tumor cell dynamics at single-cell and subpopulation level. PMID:26235230

  16. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis.

    PubMed

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-09-27

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  17. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    PubMed Central

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification. PMID:21952135

  18. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    SciTech Connect

    Klopffleisch, Karsten; Phan, Nguyen; Chen, Jay; Panstruga, Ralph; Uhrig, Joachim; Jones, Alan M

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of G{alpha}, G{beta}, and G{gamma} subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  19. Mutations at the Subunit Interface of Yeast Proliferating Cell Nuclear Antigen Reveal a Versatile Regulatory Domain

    PubMed Central

    Halmai, Miklos; Frittmann, Orsolya; Szabo, Zoltan; Daraba, Andreea; Gali, Vamsi K.; Balint, Eva; Unk, Ildiko

    2016-01-01

    Proliferating cell nuclear antigen (PCNA) plays a key role in many cellular processes and due to that it interacts with a plethora of proteins. The main interacting surfaces of Saccharomyces cerevisiae PCNA have been mapped to the interdomain connecting loop and to the carboxy-terminal domain. Here we report that the subunit interface of yeast PCNA also has regulatory roles in the function of several DNA damage response pathways. Using site-directed mutagenesis we engineered mutations at both sides of the interface and investigated the effect of these alleles on DNA damage response. Genetic experiments with strains bearing the mutant alleles revealed that mutagenic translesion synthesis, nucleotide excision repair, and homologous recombination are all regulated through residues at the subunit interface. Moreover, genetic characterization of one of our mutants identifies a new sub-branch of nucleotide excision repair. Based on these results we conclude that residues at the subunit boundary of PCNA are not only important for the formation of the trimer structure of PCNA, but they constitute a regulatory protein domain that mediates different DNA damage response pathways, as well. PMID:27537501

  20. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.

    PubMed

    Kim, Daesik; Kim, Jungeun; Hur, Junho K; Been, Kyung Wook; Yoon, Sun-Heui; Kim, Jin-Soo

    2016-08-01

    Programmable clustered regularly interspaced short palindromic repeats (CRISPR) Cpf1 endonucleases are single-RNA-guided (crRNA) enzymes that recognize thymidine-rich protospacer-adjacent motif (PAM) sequences and produce cohesive double-stranded breaks (DSBs). Genome editing with CRISPR-Cpf1 endonucleases could provide an alternative to CRISPR-Cas9 endonucleases, but the determinants of targeting specificity are not well understood. Using mismatched crRNAs we found that Cpf1 could tolerate single or double mismatches in the 3' PAM-distal region, but not in the 5' PAM-proximal region. Genome-wide analysis of cleavage sites in vitro for eight Cpf1 nucleases using Digenome-seq revealed that there were 6 (LbCpf1) and 12 (AsCpf1) cleavage sites per crRNA in the human genome, fewer than are present for Cas9 nucleases (>90). Most Cpf1 off-target cleavage sites did not produce mutations in cells. We found mismatches in either the 3' PAM-distal region or in the PAM sequence of 12 off-target sites that were validated in vivo. Off-target effects were completely abrogated by using preassembled, recombinant Cpf1 ribonucleoproteins.

  1. A novel sigma factor reveals a unique regulon controlling cell-specific recombination in Mycoplasma genitalium

    PubMed Central

    Torres-Puig, Sergi; Broto, Alicia; Querol, Enrique; Piñol, Jaume; Pich, Oscar Q.

    2015-01-01

    The Mycoplasma genitalium MG428 protein shows homology to members of the sigma-70 family of sigma factors. Herein, we found that MG428 activates transcription of recA, ruvA and ruvB as well as several genes with unknown function. Deletion of MG_428 or some of the up-regulated unknown genes led to severe recombination defects. Single cell analyses revealed that activation of the MG428-regulon is a rare event under laboratory growth conditions. A conserved sequence with sigma-70 promoter architecture (TTGTCA-N18/19-ATTWAT) was identified in the upstream region of all of the MG428-regulated genes or operons. Primer extension analyses demonstrated that transcription initiates immediately downstream of this sigma70-type promoter in a MG428-dependent manner. Furthermore, mutagenesis of the conserved −10 and −35 elements corroborated the requirement of these regions for promoter function. Therefore, a new mycoplasma promoter directs transcription of a unique recombination regulon. Additionally, MG428 was found to interact with the RNAP core enzyme, reinforcing the predicted role of this protein as an alternative sigma factor. Finally, our results indicate that MG428 contributes to the generation of genetic diversity in this model organism. Since recombination is an important mechanism to generate antigenic variation, MG428 emerges as a novel factor contributing to M. genitalium virulence. PMID:25925568

  2. Single-cell genomics reveal metabolic strategies for microbial growth and survival in an oligotrophic aquifer

    SciTech Connect

    Wilkins, Michael J.; Kennedy, David W.; Castelle, Cindy; Field, Erin; Stepanauskas, Ramunas; Fredrickson, Jim K.; Konopka, Allan

    2014-02-09

    Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site and have been shown to significantly change in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single cell genomics techniques to shed light on the physiological niche of these microorganisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3­-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide-range of both intra-and extra­-cellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors (TBDRs), which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. CRISPR-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic microorganisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area subsurface and biogeochemical shifts associated with Columbia River water intrusion.

  3. A novel sigma factor reveals a unique regulon controlling cell-specific recombination in Mycoplasma genitalium.

    PubMed

    Torres-Puig, Sergi; Broto, Alicia; Querol, Enrique; Piñol, Jaume; Pich, Oscar Q

    2015-05-26

    The Mycoplasma genitalium MG428 protein shows homology to members of the sigma-70 family of sigma factors. Herein, we found that MG428 activates transcription of recA, ruvA and ruvB as well as several genes with unknown function. Deletion of MG_428 or some of the up-regulated unknown genes led to severe recombination defects. Single cell analyses revealed that activation of the MG428-regulon is a rare event under laboratory growth conditions. A conserved sequence with sigma-70 promoter architecture (TTGTCA-N(18/19)-ATTWAT) was identified in the upstream region of all of the MG428-regulated genes or operons. Primer extension analyses demonstrated that transcription initiates immediately downstream of this sigma70-type promoter in a MG428-dependent manner. Furthermore, mutagenesis of the conserved -10 and -35 elements corroborated the requirement of these regions for promoter function. Therefore, a new mycoplasma promoter directs transcription of a unique recombination regulon. Additionally, MG428 was found to interact with the RNAP core enzyme, reinforcing the predicted role of this protein as an alternative sigma factor. Finally, our results indicate that MG428 contributes to the generation of genetic diversity in this model organism. Since recombination is an important mechanism to generate antigenic variation, MG428 emerges as a novel factor contributing to M. genitalium virulence. PMID:25925568

  4. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    PubMed Central

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  5. Impact of Nanotopography and/or Functional Groups on Periodontal Ligament Cell Growth

    NASA Astrophysics Data System (ADS)

    Şaşmazel, Hilal Türkoğlu; Manolache, S.; Gümüşderelİoğlu, M.

    The main purpose of this contribution was to obtain COOH functionalities and/or nanotopographic changes on the surface of 3D, non-woven polyester fabric (NWPF) discs (12.5 mm in diameter) by using low pressure water/O2 plasma assisted treatments. The prepared discs were characterized by various methods after the plasma treatment. Periodontal ligament (PDL) fibroblasts were used in cell culture studies. The cell culture results showed that plasma treated 3D NWPF discs are favorable for PDL cell spreading, growth and viability due to the presence of functional groups and/or the nanotopography of their surfaces.

  6. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells.

    PubMed

    Cautivo, Kelly M; Molofsky, Ari B

    2016-06-01

    Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus. In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy AT, including those associated with type 2 or "allergic" immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, AT "browning," and systemic insulin sensitivity, protecting against obesity-induced metabolic dysfunction and type 2 diabetes mellitus. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines interleukin-5 and IL-13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of group 2 innate lymphoid cell cells and type 2 immunity in AT metabolism and homeostasis.

  7. DISTINCTIVE LOCALIZATION OF GROUP 3 LATE EMBRYOGENESIS ABUNDANT SYNTHESIZING CELLS DURING BRINE SHRIMP DEVELOPMENT.

    PubMed

    Kim, Bo Yong; Song, Hwa Young; Kim, Mi Young; Lee, Bong Hee; Kim, Kyung Joo; Jo, Kyung Jin; Kim, Suhng Wook; Lee, Seung Gwan; Lee, Boo Hyung

    2015-07-01

    Despite numerous studies on late embryogenesis abundant (LEA) proteins, their functions, roles, and localizations during developmental stages in arthropods remain unknown. LEA proteins protect crucial proteins against osmotic stress during the development and growth of various organisms. Thus, in this study, fluorescence in situ hybridization was used to determine the crucial regions protected against osmotic stress as well as the distinctive localization of group 3 (G3) LEA(+) cells during brine shrimp development. Several cell types were found to synthesize G3 LEA RNA, including neurons, muscular cells, APH-1(+) cells, and renal cells. The G3 LEA(+) neuronal cell bodies outside of the mushroom body projected their axonal bundles to the central body, but those inside the mushroom body projected their axonal bundles toward the deutocerebrum without innervating the central body. The cell bodies inside the mushroom body received axons of the G3 LEA(+) sensory cells at the medial ventral cup of the nauplius eye. Several glands were found to synthesize G3 LEA RNA during the nauplius stages of brine shrimp, including the sinus, antennal I and II, salt, and three ectodermal glands. This study provides the first demonstration of the formation of G3 LEA(+) sinus glands at the emergence stages of brine shrimp. These results suggest that G3 LEA protein is synthesized in several cell types. In particular, specific glands play crucial roles during the emergence and nauplius stages of brine shrimp. PMID:25781424

  8. Seasonal variations of group-specific phytoplankton cell death in Xiamen Bay, China

    NASA Astrophysics Data System (ADS)

    Huang, Xiaozhou; Liu, Xin; Chen, Jixin; Xiao, Wupeng; Cao, Zhen; Huang, Bangqin

    2016-05-01

    The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December 2012 to December 2013, using a cell digestion assay, which is an eff ective method to analyze dead/ living cells in complex natural phytoplankton communities. The percentages of dead cells (% DC) in the total phytoplankton in summer (16%±6%) were lower than those in winter (27%±16%). Six groups of phytoplankton (G1-G6) were categorized by flow cytometry. These phytoplankton communities with diverse seasonal variations in % DC had different responses to environmental constraints. The main factors aff ecting mortality were temperature and salinity, while nutrient concentration showed little influence on phytoplankton death. Additionally, our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton % DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters (such as Chl a ). Moreover, the lowest mean % DC in total phytoplankton was 16%±6% at our sample site, which is in a subtropical area with high water temperatures, full solar radiation, and rich nutrients. This indicates that phytoplankton cell death is a process that cannot be ignored. In summary, phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the functioning of subtropical ecosystems.

  9. Distinct pathogenic effects of group B coxsackieviruses on human glomerular and tubular kidney cells.

    PubMed Central

    Conaldi, P G; Biancone, L; Bottelli, A; De Martino, A; Camussi, G; Toniolo, A

    1997-01-01

    The six group B coxsackieviruses (CVBs) are highly prevalent human pathogens that cause viremia followed by involvement of different organs. Clinical and experimental evidence suggests that CVBs can induce kidney injury, but the susceptibility of human renal cells to these viruses is unknown. By using pure cultures of human glomerular and tubular cells, we demonstrated that all CVBs are capable of productively infecting renal cells of three different histotypes. Distinct pathogenic effects were observed. Proximal tubular epithelial cells and, to a lesser extent, glomerular podocytes were highly susceptible to CVBs; in both cases, infection led to cytolysis. In contrast, glomerular mesangial cells supported the replication of the six CVBs but failed to develop overt cytopathologic changes. Mesangial cells continued to produce infectious progeny for numerous serial subcultures (i.e., more than 50 days), especially with type 1, 3, 4, and 5 viruses. In the above cells, persistent infection induced the de novo synthesis of platelet-derived growth factor A/B and enhanced the release of transforming growth factor beta1/2. These two factors are important mediators of progression from glomerular inflammation to glomerulosclerosis. CVB replication appeared also to impair the phagocytic and contractile activity of mesangial cells. Loss of these properties--which are important in glomerular physiopathology--may contribute to the development of progressive nephropathy. The results show that CVBs induce distinct effects in different types of cultured renal cells and suggest that CVB infections may be associated with both acute and progressive renal injury. PMID:9371576

  10. Conditional Disruption of Raptor Reveals an Essential Role for mTORC1 in B Cell Development, Survival, and Metabolism

    PubMed Central

    Iwata, Terri N.; Ramírez, Julita A.; Tsang, Mark; Park, Heon; Margineantu, Daciana H.; Hockenbery, David M.

    2016-01-01

    Mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that coordinates nutrient and growth factor availability with cellular growth, division, and differentiation. Studies examining the roles of mTOR signaling in immune function revealed critical roles for mTOR in regulating T cell differentiation and function. However, few studies have investigated the roles of mTOR in early B cell development. In this study, we found that mTOR is highly activated during the pro- and pre-B stages of mouse B cell development. Conditional disruption of the mTOR coactivating protein Raptor in developing mouse B cells resulted in a developmental block at the pre-B cell stage, with a corresponding lack of peripheral B cells and loss of Ag-specific Ab production. Pre-B cell survival and proliferation were significantly reduced in Raptor-deficient mice. Forced expression of a transgenic BCR or a BclxL transgene on Raptor-deficient B cells failed to rescue B cell development, suggesting that pre-BCR signaling and B cell survival are impaired in a BclxL-independent manner. Raptor-deficient pre-B cells exhibited significant decreases in oxidative phosphorylation and glycolysis, indicating that loss of mTOR signaling in B cells significantly impairs cellular metabolic capacity. Treatment of mice with rapamycin, an allosteric inhibitor of mTOR, recapitulated the early B cell developmental block. Collectively, our data reveal a previously uncharacterized role for mTOR signaling in early B cell development, survival, and metabolism. PMID:27521345

  11. Cross-species amplification of microsatellites reveals incongruence in the molecular variation and taxonomic limits of the Pilosocereus aurisetus group (Cactaceae).

    PubMed

    Moraes, Evandro M; Perez, Manolo F; Téo, Mariana F; Zappi, Daniela C; Taylor, Nigel P; Machado, Marlon C

    2012-09-01

    The Pilosocereus aurisetus group contains eight cactus species restricted to xeric habitats in eastern and central Brazil that have an archipelago-like distribution. In this study, 5-11 microsatellite markers previously designed for Pilosocereus machrisii were evaluated for cross-amplification and polymorphisms in ten populations from six species of the P. aurisetus group. The genotypic information was subsequently used to investigate the genetic relationships between the individuals, populations, and species analyzed. Only the Pmac101 locus failed to amplify in all of the six analyzed species, resulting in an 88 % success rate. The number of alleles per polymorphic locus ranged from 2 to 12, and the most successfully amplified loci showed at least one population with a larger number of alleles than were reported in the source species. The population relationships revealed clear genetic clustering in a neighbor-joining tree that was partially incongruent with the taxonomic limits between the P. aurisetus and P. machrisii species, a fact which parallels the problematic taxonomy of the P. aurisetus group. A Bayesian clustering analysis of the individual genotypes confirmed the observed taxonomic incongruence. These microsatellite markers provide a valuable resource for facilitating large-scale genetic studies on population structures, systematics and evolutionary history in this group.

  12. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells

    PubMed Central

    Armitage, Emily G.; Kotze, Helen L.; Allwood, J. William; Dunn, Warwick B.; Goodacre, Royston; Williams, Kaye J.

    2015-01-01

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments. PMID:26508589

  13. Alkenyl group is responsible for the disruption of microtubule network formation in human colon cancer cell line HT-29 cells

    PubMed Central

    Hosono, Takashi; Hosono-Fukao, Tomomi; Inada, Kahoru; Tanaka, Rie; Yamada, Haruhisa; Iitsuka, Yuji; Seki, Taiichiro; Hasegawa, Isao; Ariga, Toyohiko

    2008-01-01

    Alk(en)yl trisulfides (R-SSS-R′) are organosulfur compounds produced by crushed garlic and other Allium vegetables. We found that these compounds exhibit potent anticancer effects through the reaction with microtubules, causing cell cycle arrest. Nine alk(en)yl trisulfides including dimethyl trisulfide, diethyl trisulfide, dipropyl trisulfide (DPTS), dibutyl trisulfide, dipentyl trisulfide, diallyl trisulfide (DATS), dibutenyl trisulfide, dipentenyl trisulfide and allyl methyl trisulfide were synthesized and added to cultures of HT-29 human colon cancer cells at a concentration of 10 μM. The trisulfides with alkenyl groups such as DATS, but not those with alkyl groups, induced rapid microtubule disassembly at 30–60 min as well as cell cycle arrest during the mitotic phase approximately at 4 h after the treatment. Both DATS-induced microtubule disassembly and the cell cycle arrest were cancelled by the simultaneous treatment of the cancer cells with 2 mM L-cysteine, glutathione (GSH) or N-acetyl-L-cysteine. Reciprocally, L-buthionine-(S,R)-sulfoximine (500 μM), an inhibitor of GSH synthesis, enhanced the power of DATS in inducing the cell cycle arrest. These results indicate that alk(en)yl trisulfide react with sulfhydryl groups in cysteine residues of cellular proteins such as microtubule proteins. Thus, the present study provides evidence that trisulfides with alkenyl groups have potent anticancer activities, at least in part, directed toward microtubules. These findings suggest that alkenyl trisulfides and their structurally related compounds may provide novel and effective anticancer agents. PMID:18515280

  14. Expression profiling of constitutive mast cells reveals a unique identity within the immune system

    PubMed Central

    Dwyer, Daniel F.; Barrett, Nora A.; Austen, K. Frank

    2016-01-01

    Mast cells are evolutionarily ancient sentinel cells. Like basophils, mast cells express the high-affinity IgE receptor and are implicated in host defense and diverse immune-mediated diseases. To better characterize the function of these cells, we assessed the transcriptional profiles of mast cells isolated from peripheral connective tissues and basophils isolated from spleen and blood. We found that mast cells were transcriptionally distinct, clustering independently from all other profiled cells, and that mast cells demonstrated considerably greater heterogeneity across tissues than previously appreciated. We observed minimal homology between mast cells and basophils, wh