Science.gov

Sample records for cell growth inhibitory

  1. Growth inhibitory activity of indapamide on vascular smooth muscle cells.

    PubMed

    Ganado, P; Ruiz, E; Del Rio, M; Larcher, F; Sanz, M; Steinert, J R; Tejerina, T

    2001-09-28

    Abnormal vascular smooth muscle cell proliferation has a fundamental role in the pathogenesis of vascular diseases. Indapamide is an oral diuretic antihypertensive drug effective for patients with mild or moderate essential hypertension. We now investigated the effects of indapamide on the growth of aortic vascular smooth muscle cells (A10 cell line). Indapamide inhibited cell proliferation as measured by the tetrazolium salt XTT (sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate) test. The increase in cell number was significantly reduced in the presence of indapamide 10(-6) and 5 x 10(-4) M (P < 0.05 n = 3 and P < 0.01, n = 3, respectively). Serum-induced DNA synthesis, determined as the incorporation of 5-bromo-2'-deoxyuridine (BrdU), was concentration-dependently inhibited by indapamide. BrdU incorporation was 47.2+/-1.6% (10% foetal calf serum). Indapamide treatment markedly prevented BrdU incorporation (37.2+/-2.1%, 29.2+/-4.8%, 15.0+/-1.8%, 8.7+/-2.1%) indapamide 10(-6), 10(-5), 5 x 10(-5) and 5 x 10(-4) M, respectively. Cell-cycle progression was also evaluated. Flow cytometry analysis of DNA content in synchronised cells revealed blocking of the serum-inducible cell-cycle progression by indapamide. This inhibition was abolished when the drug was added 2 h after serum repletion, indicating that indapamide must act at the early events of a cell cycle to be fully effective against DNA synthesis. In addition, serum-induced intracellular Ca2+ movements and also p44/p42 mitogen-activated protein kinase (MAPK) phosphorylation were studied in the presence or absence of indapamide. Indapamide 10(-5) and 5 x 10(-5) M decreased significantly cytosolic free calcium, and the p44/p42 mitogen-activated protein kinase phosphorylation (5 x 10(-5) M) stimulated by 10% foetal calf serum. In accordance with this finding, indapamide (5 x 10(-4) M) caused a 95% to 99% decrease in the early elevation of c-fos expression as

  2. Inhibitory effect of DNA topoisomerase inhibitor isoliquiritigenin on the growth of glioma cells

    PubMed Central

    Zhao, Shupeng; Chang, Haigang; Ma, Pengju; Gao, Guojun; Jin, Cailing; Zhao, Xinli; Zhou, Wenke; Jin, Baozhe

    2015-01-01

    Objective: To investigate the effect of isoliquiritigenin on the activity of DNA topoisomerase (TOP I) and its inhibitory effect on the growth of U87 glioma cells. Methods: This study investigated the inhibitory effect of isoliquiritigenin on the growth of U87 glioma cells and its cytotoxicity by MTT method and determined the effect of isoliquiritigenin on TOP I activity by agarose gel electrophoresis. On this basis, we studied the interaction between isoliquiritigenin and TOP I and DNA. Finally, we further discussed the effect of isoliquiritigenin on the activity of Caspase 3, the apoptosis protein of U87 glioma cells. Results: Isoliquiritigenin could inhibit the growth of U87 glioma cells (half inhibitory concentration IC50: 0.221 mM) and is of low cytotoxicity to normal cells. Agarose gel electrophoresis showed that isoliquiritigenin had significant inhibitory effect on TOP I activity. Molecular simulation results indicated that isoliquiritigenin took priority of binding to the active center of TOP I, and formed hydrogen bonds with the catalytic site Try723. Finally, Caspase 3 activity detection results suggested that isoliquiritigenin could significantly increase the activity of Caspase 3 (P < 0.05). Conclusion: Isoliquiritigenin had a reversible inhibitory effect on TOP I activity, reduced the rate of single strand DNA unwinding in tumor cells, and thus played an important role in inducing the apoptosis of U87 glioma cells. PMID:26722447

  3. Growth-inhibitory activity of lymphoid cell plasma membranes. II. Partial characterization of the inhibitor

    PubMed Central

    1984-01-01

    We have shown that plasma membranes from lymphoid cells have inhibitory activity for the growth of normal lymphocytes and lymphoid tumor cells (Stallcup, K. C., A. Dawson, and M. F. Mescher, J. Cell Biol. 99:1221- 1226). This growth-inhibitory activity has been found to co-purify with major histocompatibility complex class I antigens (H-2K and D) when these cell surface glycoproteins are isolated from detergent lysates of cells by affinity chromatography on monoclonal antibody columns. When incorporated into liposomes, the affinity-purified H-2 antigens inhibited the growth of both normal lymphocytes and tumor cells at concentrations of 1-3 micrograms/ml. Inhibition was readily reversed upon removal of the liposomes from the cell cultures, even after several days of exposure of cells to the inhibitor. Inhibitory activity was insensitive to protease digestion or heat treatment, indicating that it was not due to the H-2 glycoproteins. This was confirmed by the demonstration that inhibitory activity could be separated from the H-2 protein by gel filtration in the presence of deoxycholate and could be extracted from membranes or H-2 antigen preparations with organic solvents. The results demonstrate that the growth-inhibitory component(s) of the plasma membrane is a minor lipid or lipid-like molecule which retains activity in the absence of other membrane components. The findings reported here and in the preceding article suggest that this novel membrane component may have a role in control of lymphoid cell growth, possibly mediated by cell contacts. PMID:6332814

  4. Growth-inhibitory glycopeptides obtained from the cell surface of cultured chick embryo fibroblasts.

    PubMed

    Yaoi, Y

    1984-09-01

    Cell surface glycopeptides were obtained from cultured chick embryo fibroblasts (CEF) by digestion with Pronase E, and a fraction exerting growth-inhibitory activity on CEF was isolated by high performance gel permeation chromatography. The active fraction, tentatively termed cell surface glycopeptide-2 (CSGP-2), was soluble in 5% trichloroacetic acid (TCA) or 75% ethanol. It inhibited the growth of CEF reversibly at 10-20 micrograms sugar/ml, but did not inhibit BALB/c mouse 3T3, SV40-transformed 3T3, and human diploid cells at similar concentration. The growth-inhibitory activity of CSGP-2 was reduced or lost after digestion with neuraminidase or oxidation with sodium metaperiodate. Cellulose acetate electrophoresis revealed that CSGP-2 was a mixture of sialoglycopeptides. A similar growth inhibitor was also isolated from chicken embryonic tissues.

  5. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    PubMed Central

    Turk, Seyhan; Malkan, Umit Yavuz; Ghasemi, Mehdi; Hocaoglu, Helin; Mutlu, Duygu; Gunes, Gursel; Aksu, Salih; Haznedaroglu, Ibrahim Celalettin

    2017-01-01

    Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells. PMID:28293423

  6. Growth inhibitory effects of sodium phenylacetate (NSC 3039) on ovarian carcinoma cells in vitro.

    PubMed

    Ferrandina, G; Melichar, B; Loercher, A; Verschraegen, C F; Kudelka, A P; Edwards, C L; Scambia, G; Kavanagh, J J; Abbruzzese, J L; Freedman, R S

    1997-10-01

    The aim of this study was to determine the antiproliferative activity of sodium phenylacetate (NaPa) against ovarian carcinoma cell lines. NaPa induced a dose-dependent inhibition (IC50 from 12 mM to >20 mM) of all ovarian carcinoma cell lines, although the sensitivity of individual lines to NaPa varied. Both cisplatin-sensitive and -resistant cell lines responded to NaPa, and growth-inhibitory activity was also detected against cells freshly isolated from malignant ascites of previously treated patients. The growth inhibitory effects that were produced by NaPa were time dependent, showing a maximum effect at 72 h, and were not associated with cytotoxic action. Growth inhibitory effects of NaPa were also reversible. After 48- and 72-h exposures to NaPa, a reduction in the percentage of cells in the S-phase was detected, with a concomitant recruitment of cells in the G0-G1 phase. Treatment with NaPa after different exposure times did not significantly increase the proportion of cells undergoing apoptosis. NaPa also produced a significant reduction in the percentage of cyclin-D1- and p21/ras-positive cells and in the percentage of cells positive for bcl-2, whereas the percentages of bax/p21-positive cells increased. NaPa produced minimal, if any, alterations of expression of HLA class I and transforming growth factor beta1 antigens. In contrast, the percentage of transforming growth factor beta2-positive cells decreased after exposure to NaPa. The combination of NaPa with cisplatin resulted in an additive inhibitory effect. Our results show, for the first time, that NaPa inhibits the growth of ovarian carcinoma cell lines and the cells from malignant ascites of chemotherapy-treated patients with ovarian carcinoma. The growth-inhibitory properties of NaPa suggest that this molecule could represent a prototype of a new class of compounds with possible therapeutic potential in patients with ovarian carcinoma.

  7. Inhibitory effect of substituted dextrans on MCF7 human breast cancer cell growth in vitro.

    PubMed

    Morere, J F; Letourneur, D; Planchon, P; Avramoglou, T; Jozefonvicz, J; Israel, L; Crepin, M

    1992-12-01

    Substituted dextrans can reproduce some of the properties of heparin and can thus be used to alter cellular growth. We studied the effect of heparin (H108), dextran (D), carboxymethylbenzylamide dextran (CMDB) and carboxymethylbenzylamide sulfonate dextran (CMDBS) on the growth of human mammary cells of the MCF7 tumor line. The cells were cultured in minimum Eagle's medium containing 2% fetal calf serum without biopolymer, or with increasing concentrations of H108, D, CMDB or CMDBS. Growth curves were accurately based on cell counting using a Coulter counter. Cell distribution in the various phases of the cycle was analyzed by flow cytometry. Dose-dependent growth inhibitory effects (400-4000 micrograms/ml) were observed. The effect on MCF7 tumor cells was most apparent with CMDBS. The percentage of cells in the S phase decreased with preferential blocking in the G0/G1 phase. Pre-clinical studies can be anticipated as there is an absence of in vivo toxicity.

  8. Regulation of apoptotic and growth inhibitory activities of C/EBP{alpha} in different cell lines

    SciTech Connect

    Wang Guoli; Shi Xiurong; Salisbury, Elizabeth; Timchenko, Nikolai A.

    2008-04-15

    C/EBP{alpha} is expressed in many tissues and inhibits cell growth. In this paper, we have examined mechanisms which regulate activities of C/EBP{alpha} in cell lines derived from different tissues. We found that C/EBP{alpha} possesses strong pro-apoptotic activity in NIH3T3 cells, while this activity is not detected in 3T3-L1, Hep3B2 and HEK293 cells. Micro-array data show that C/EBP{alpha} activates many genes of apoptosis signaling in NIH3T3 cells. One of these genes, ARL6IP5, is a direct target of C/EBP{alpha} and is a key mediator of the apoptosis. Using C/EBP{alpha} mutants which do not cause cell death; we have found that C/EBP{alpha} does not arrest proliferation of NIH3T3 cells. The lack of growth arrest in NIH3T3 cells correlates with the inhibition of p16INK4 and with low levels of cyclin D3. The limited growth inhibitory activity of C/EBP{alpha} is also observed in Hep3B2 cells which express low levels of cyclin D3. Elevation of cyclin D3 restores growth inhibitory activity of C/EBP{alpha} in NIH3T3 and in Hep3B2 cells. These data show that apoptotic and growth inhibitory activities of C/EBP{alpha} are differentially regulated in different cells and that cooperation of cyclin D3 and C/EBP{alpha} is required for the inhibition of proliferation.

  9. Metabolism and growth inhibitory activity of cranberry derived flavonoids in bladder cancer cells.

    PubMed

    Prasain, Jeevan K; Rajbhandari, Rajani; Keeton, Adam B; Piazza, Gary A; Barnes, Stephen

    2016-09-14

    In the present study, anti-proliferative activities of cranberry derived flavonoids and some of their in vivo metabolites were evaluated using a panel of human bladder tumor cell lines (RT4, SCABER, and SW-780) and non-tumorigenic immortalized human uroepithelial cells (SV-HUC). Among the compounds tested, quercetin 3-O-glucoside, isorhamnetin (3'-O-methylquercetin), myricetin and quercetin showed strong concentration-dependent cell growth inhibitory activities in bladder cancer cells with IC50 values in a range of 8-92 μM. Furthermore, isorhamnetin and myricetin had very low inhibitory activity against SV-HUC even at very high concentrations (>200 μM) compared to bladder cancer cells, indicating that their cytotoxicity is selective for cancer cells. To determine whether the differential cell growth inhibitory effects of isomeric flavonoids quercetin 3-O-glucoside (active) and hyperoside (quercetin 3-O-galactoside) (inactive) are related to their metabolism by the cancer cells, SW-780 cells were incubated with these compounds and their metabolism was examined by LC-MS/MS. Compared to quercetin 3-O-glucoside, hyperoside undergoes relatively less metabolic biotransformation (methylation, glucuronidation and quinone formation). These data suggest that isorhamnetin and quercetin 3-O-glucoside may be the active forms of quercetin in prevention of bladder cancer in vivo and emphasize the importance of metabolism for the prevention of bladder cancer by diets rich in cranberries.

  10. Growth inhibitory activity of extracts and compounds from Cimicifuga species on human breast cancer cells.

    PubMed

    Einbond, Linda Saxe; Wen-Cai, Ye; He, Kan; Wu, Hsan-au; Cruz, Erica; Roller, Marc; Kronenberg, Fredi

    2008-06-01

    The purpose of this report is to explore the growth inhibitory effect of extracts and compounds from black cohosh and related Cimicifuga species on human breast cancer cells and to determine the nature of the active components. Black cohosh fractions enriched for triterpene glycosides and purified components from black cohosh and related Asian species were tested for growth inhibition of the ER(-) Her2 overexpressing human breast cancer cell line MDA-MB-453. Growth inhibitory activity was assayed using the Coulter Counter, MTT and colony formation assays. Results suggested that the growth inhibitory activity of black cohosh extracts appears to be related to their triterpene glycoside composition. The most potent Cimicifuga component tested was 25-acetyl-7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside, which has an acetyl group at position C-25. It had an IC(50) of 3.2microg/ml (5microM) compared to 7.2microg/ml (12.1microM) for the parent compound 7,8-didehydrocimigenol 3-O-beta-d-xylopyranoside. Thus, the acetyl group at position C-25 enhances growth inhibitory activity. The purified triterpene glycoside actein (beta-d-xylopyranoside), with an IC(50) equal to 5.7microg/ml (8.4microM), exhibited activity comparable to cimigenol 3-O-beta-d-xyloside. MCF7 (ER(+)Her2 low) cells transfected for Her2 are more sensitive than the parental MCF7 cells to the growth inhibitory effects of actein from black cohosh, indicating that Her2 plays a role in the action of actein. The effect of actein on Her2 overexpressing MDA-MB-453 and MCF7 (ER(+)Her2 low) human breast cancer cells was examined by fluorescent microscopy. Treatment with actein altered the distribution of actin filaments and induced apoptosis in these cells. These findings, coupled with our previous evidence that treatment with the triterpene glycoside actein induced a stress response and apoptosis in human breast cancer cells, suggest that compounds from Cimicifuga species may be useful in the prevention and

  11. Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells

    SciTech Connect

    Yu, Hong-Nu; Noh, Eun-Mi; Lee, Young-Rae; Roh, Si-Gyun; Song, Eun-Kyung; Han, Myung-Kwan; Lee, Yong-Chul; Shim, In Kyong; Lee, Seung Jin; Jung, Sung Hoo; Kim, Jong-Suk Youn, Hyun Jo

    2008-12-05

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands have been identified as a potential source of therapy for human cancers. However, PPAR{gamma} ligands have a limitation for breast cancer therapy, since estrogen receptor {alpha} (ER{sub {alpha}}) negatively interferes with PPAR{gamma} signaling in breast cancer cells. Here we show that ER{sub {alpha}} inhihits PPAR{gamma} transactivity and ER{sub {alpha}}-mediated inhibition of PPAR{gamma} transactivity is blocked by tamoxifen, an estrogen receptor blocker. The activation of ER{sub {alpha}} with 17-{beta}-estradiol blocked PPRE transactivity induced by troglitazone, a PPAR{gamma} ligand, indicating the resistance of ER{sub {alpha}}-positive breast cancer cells to troglitazone. Indeed, troglitazone inhibited the growth of ER{sub {alpha}}-negative MDA-MB-231 cells more than that of ER{sub {alpha}}-positive MCF-7 cells. Combination of troglitazone with tamoxifen led to a marked increase in growth inhibition of ER{sub {alpha}}-positive MCF-7 cells compared to either agent alone. Our data indicates that troglitazone enhances the growth inhibitory activity of tamoxifen in ER{sub {alpha}}-positive MCF-7 cells.

  12. In vitro growth inhibitory effects of cytochalasins and derivatives in cancer cells.

    PubMed

    Van Goietsenoven, Gwendoline; Mathieu, Véronique; Andolfi, Anna; Cimmino, Alessio; Lefranc, Florence; Kiss, Robert; Evidente, Antonio

    2011-05-01

    The in vitro anticancer activity of eight natural cytochalasins and three hemisynthetic derivatives of cytochalasin B on six cancer cell lines was evaluated. The IC (50) in vitro growth inhibitory concentrations, as determined by an MTT colorimetric assay, ranged between 3 and 90 µM and did not relate to the intrinsic sensitivity of the cancer cell lines to proapoptotic stimuli. Structure activity relationship (SAR) analyses revealed that the presence of an unmodified hydroxyl group at C-7 of the perhydroisoinsolyl-1-one residue as well as the functionalities and the conformational freedom of the macrocycle are all important features for cytochalasin-mediated anticancer activities in vitro. Computer-assisted phase-contrast microscopy revealed two groups of cytochalasins, i.e., cytotoxic versus cytostatic ones. Our data open new possibilities for tuning cytochalasin targets and developing nontoxic, cytostatic cytochalasins to combat cancers associated with poor prognoses, such as those that display intrinsic resistance to proapoptotic stimuli.

  13. [Progress of study on inhibitory effects of traditional Chinese herbs on growth factor induced proliferation of vascular smooth muscle cells].

    PubMed

    Yang, Guang; Zhang, Min-zhou; Jiang, Wei

    2005-10-01

    This paper sums up some studies in the last decade regarding the inhibitory effects of traditional Chinese herbs on growth factor induced proliferation of vascular smooth muscle cell (VSMC) via directly measuring the mRNA expression of its growth factors and the related receptors by electron microscope, immunohistochemistry, blot and hybridization in situ.

  14. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    PubMed

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-03

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  15. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study

    PubMed Central

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966

  16. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    PubMed

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  17. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells

    PubMed Central

    YAMAMOTO, TETSUSHI; UEMURA, KENTARO; MORIYAMA, KAHO; MITAMURA, KUNIKO; TAGA, ATSUSHI

    2015-01-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy. PMID:25647359

  18. Pretreatment with anti-oxidants sensitizes oxidatively stressed human cancer cells to growth inhibitory effect of suberoylanilide hydroxamic acid (SAHA)

    PubMed Central

    Mahlum, Amy; Mehraein-Ghomi, Farideh; Kegel, Stacy J.; Guo, Song; Peters, Noel R.; Wilding, George

    2013-01-01

    Purpose Most prostate, colon and breast cancer cells are resistant to growth inhibitory effects of suberoylanilide hydroxamic acid (SAHA). We have examined whether the high oxidative stress in these cells causes a loss of SAHA activity and if so, whether pretreatment with an anti-oxidant can sensitize these cells to SAHA. Methods A DNA-Hoechst dye fluorescence measured cell growth and dichlorfluorescein-diacetate (DCF-DA) dye fluorescence measured reactive oxygen species (ROS). Growth inhibitory and ROS-generating activities of SAHA in androgen-treated or untreated LNCaP cells and PC-3 prostate cancer cells, HT-29 and HCT-115 colon cancer cells, MDA-MB231 breast cancer cells and A549 and NCI-H460 lung cancer cells with or without pretreatment with an anti-oxidant Vitamin E was determined. SAHA activity against LNCaP cells treated with another anti-oxidant N-acetyl cysteine (NAC) was also determined. Liquid chromatography–mass spectrometry (LC–MS) was used to determine intracellular SAHA level. Results SAHA treatment markedly inhibits LNCaP cell growth, when the cells are at a low ROS level. SAHA is, however, inactive against the same cell line, when the cells are at a high ROS level. A significant decrease in SAHA level was observed in LNCaP cells with high ROS after 24-and 72-h treatment when compared to cells with low ROS. Vitamin E pretreatment that reduces cellular ROS, synergistically sensitizes oxidatively stressed LNCaP, PC-3, HT-29, HCT-115 and MDA-MB231 cells, but not the A-549 and NCI-H460 cells with low ROS to SAHA. NAC treatment also sensitized androgen-treated LNCaP cells to the growth inhibitory effects of SAHA. Conclusion Response to SAHA could be improved by combining anti-oxidants such as Vitamin E with SAHA for the treatment of oxidatively stressed human malignancies that are otherwise resistant to SAHA. PMID:20512578

  19. Transcript profiling identifies novel key players mediating the growth inhibitory effect of NS-398 on human pancreatic cancer cells.

    PubMed

    Youns, Mahmoud; Efferth, Thomas; Hoheisel, Jörg D

    2011-01-10

    Pancreatic cancer is one of the most aggressive human malignancies with an increasing incidence worldwide. Despite an increase in the number of systemic treatments available for pancreatic cancer, the impact of therapy on the clinical course of the disease has been modest, underscoring an urgent need for new therapeutic options. Although selective cyclooxygenase-2 inhibitors have been demonstrated to have cancer-preventive effects, the mechanism of their effects is not clearly known. Moreover, there have been no unbiased studies to identify novel molecular targets of NS-398 regarding pancreatic cancer. Here we undertook a gene expression profiling study to identify novel molecular targets modulating the growth inhibitory effects of NS-398 on pancreatic cancer cell lines. Our mRNA-based gene expression results showed that the growth inhibitory effect of NS-398 was accompanied with an activation of G1/S and G2/M cell cycle regulation, P53 signalling, apoptotic, aryl hydrocarbon receptor and death receptor signalling pathways. Moreover, we reported, for the first time, that the growth inhibitory effect of NS-398 is mediated by down-regulation of RRM2, CTGF, MCM2 and PCNA and up-regulation of NAG-1 in all cell lines.

  20. Inhibitory effects of different forms of tocopherols, tocopherol phosphates, and tocopherol quinones on growth of colon cancer cells.

    PubMed

    Dolfi, Sonia C; Yang, Zhihong; Lee, Mao-Jung; Guan, Fei; Hong, Jungil; Yang, Chung S

    2013-09-11

    Tocopherols are the major source of dietary vitamin E. In this study, the growth inhibitory effects of different forms of tocopherols (T), tocopheryl phosphates (TP), and tocopherol quinones (TQ) on human colon cancer HCT116 and HT29 cells were investigated. δ-T was more active than γ-T in inhibiting colon cancer cell growth, decreasing cancer cell colony formation, and inducing apoptosis; however, α-T was rather ineffective. Similarly, the rate of cellular uptake also followed the ranking order δ-T > γ-T ≫ α-T. TP and TQ generally had higher inhibitory activities than their parent compounds. Interestingly, the γ forms of TP and TQ were more active than the δ forms in inhibiting cancer cell growth, whereas the α forms were the least effective. The potencies of γ-TQ and δ-TQ (showing IC50 values of ∼0.8 and ∼2 μM on HCT116 cells after a 72 h incubation, respectively) were greater than 100-fold and greater than 20-fold higher, respectively, than those of their parent tocopherols. Induction of cancer cell apoptosis by δ-T, γ-TP, and γ-TQ was characterized by the cleavage of caspase 3 and PARP1 and DNA fragmentation. These studies demonstrated the higher growth inhibitory activity of δ-T than γ-T, the even higher activities of the γ forms of TP and TQ, and the ineffectiveness of the α forms of tocopherol and their metabolites against colon cancer cells.

  1. Inhibitory effects of different forms of tocopherols, tocopherol phosphates and tocopherol quinones on growth of colon cancer cells

    PubMed Central

    Dolfi, Sonia C.; Yang, Zhihong; Lee, Mao-Jung; Guan, Fei; Hong, Jungil; Yang, Chung S.

    2013-01-01

    Tocopherols are the major source of dietary vitamin E. In this study, the growth inhibitory effects of different forms of tocopherols, tocopheryl phosphates (TP) and tocopherol quinones (TQ) on human colon cancer HCT116 and HT29 cells were investigated. δ-T was more active than γ-T in inhibiting colon cancer cell growth, decreasing cancer cell colony formation and inducing apoptosis; however α-T was rather ineffective. Similarly, the rate of cellular uptake also followed the ranking order δ-T > γ-T ≫ α-T. TP and TQ generally had higher inhibitory activities than their parent compounds. Interestingly, the γ-forms of TP and TQ were more active than the δ-forms in inhibiting cancer cell growth; whereas the α-forms were the least effective. The potencies of γ-TQ and δ-TQ (showing IC50 of ~0.8 and ~2 μM on HCT116 cells after a 72-h incubation, respectively) were >100 and >20 fold higher, respectively, than those of their parent tocopherols. Induction of cancer cell apoptosis by δ-T, γ-TP and γ-TQ was characterized by the cleavage of caspase 3 and PARP1 and DNA fragmentation. These studies demonstrated the higher growth inhibitory activity of δ-T than γ-T, the even higher activities of the γ-forms of TP and TQ, and the ineffectiveness of the α-forms of tocopherol and their metabolites against colon cancer cells. PMID:23898832

  2. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth.

    PubMed

    Wang, Zhujun; Zhang, Xuewu

    2016-02-01

    In this study, the whole proteins of Spirulina (Arthrospira) platensis were extracted, hydrolysis with three proteases (trypsin, alcalase and papain) was performed, and gel filtration chromatography was employed to separate hydrolysates. Totally, 15 polypeptides were isolated, which showed anti-proliferation activities on five cancer cells (HepG-2, MCF-7, SGC-7901, A549 and HT-29), with the IC50 values between <31.25 and 336.57 μg mL(-1). Moreover, a new peptide YGFVMPRSGLWFR was identified from papain-digested hydrolysates. It also exhibited inhibitory activities on cancer cells, and the best activity was observed on A549 cancer cells (IC50 values 104.05 μg mL(-1)). In other words, these polypeptides exhibited anti-proliferation activities on cancer cells, and low toxicity or stimulatory activity on normal cells, suggesting that they are promising ingredients in food and pharmaceutical applications.

  3. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation.

    PubMed

    Yoshinaga, Ayana; Kajiya, Natsuki; Oishi, Kazuki; Kamada, Yuko; Ikeda, Asami; Chigwechokha, Petros Kingstone; Kibe, Toshiro; Kishida, Michiko; Kishida, Shosei; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2016-07-05

    Naringin, which is one of the flavonoids contained in citrus fruits, is well known to possess various healthy functions to humans. It has been reported that naringin suppresses cancer cell growth in vitro and in vivo, although the underlying mechanisms are not fully understood. Recently, the roles of glycoconjugates, such as gangliosides, in cancer cells have been focused because of their regulatory effects of malignant phenotypes. Here, to clarify the roles of naringin in the negative-regulation of cancer cell growth, the alteration of glycoconjugates induced by naringin exposure and its significance on cell signaling were investigated. Human cancer cells, HeLa and A549, were exposed to various concentrations of naringin. Naringin treatment induced the suppression of cell growth toward HeLa and A549 cells accompanied with an increase of apoptotic cells. In naringin-exposed cells, GM3 ganglioside was drastically increased compared to the GM3 content prior to the treatment. Furthermore, naringin inhibited NEU3 sialidase, a GM3 degrading glycosidase. Similarly, NEU3 inhibition activities were also detected by other flavanone, such as hesperidin and neohesperidin dihydrocalcone, but their aglycones showed less inhibitions. Naringin-treated cancer cells showed suppressed EGFR and ERK phosphorylation levels. These results suggest a novel mechanism of naringin in the suppression of cancer cell growth through the alteration of glycolipids. NEU3 inhibitory effect of naringin induced GM3 accumulation in HeLa and A549 cells, leading the attenuation of EGFR/ERK signaling accompanied with a decrease in cell growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Growth inhibitory in vitro effects of glycyrrhizic acid in U251 glioblastoma cell line.

    PubMed

    Li, Song; Zhu, Jian-Hong; Cao, Li-Ping; Sun, Qing; Liu, Huan-Dong; Li, Wei-De; Li, Jin-Song; Hang, Chun-Hua

    2014-07-01

    Despite dramatic advances in cancer therapy, the overall prognosis of glioblastoma (GBM) remains dismal. Nuclear factor kappa-B (NF-κB) has been previously demonstrated to be constitutively activated in glioblastoma, and it was suggested as a potential therapeutic target. Glycyrrhizic acid (GA) has been proved to have cytotoxic effects in many cancer cell lines. However, its role in glioblastoma has not yet been addressed. Therefore, this study aimed to investigate the effects of GA on human glioblastoma U251 cell line. The effects of GA on proliferation of U251 cells were measured by CCK-8 assay and plate colony-forming test. Cellular apoptosis was detected by Hoechst 33258 fluorescent staining and flow cytometry with annexin V-FITC/PI dual staining. The expression of nuclear p65 protein, the active subunit of NF-κB, was determined by Western blot and immunofluorescence. Our results demonstrated that the survival rate and colony formation of U251 cells significantly decreased in a time- and dose-dependent manner after GA addition, and the apoptotic ratio of GA-treated groups was significantly higher than that of control groups. Furthermore, the expression of NF-κB-p65 in the nucleus was remarkably reduced after GA treatment. In conclusion, our findings suggest that GA treatment can confer inhibitory effects on human glioblastoma U251 cell line including inhibiting proliferation and inducing apoptosis, which is possibly related to the NF-κB mediated pathway.

  5. An Investigation of the Growth Inhibitory Capacity of Several Medicinal Plants From Iran on Tumor Cell Lines

    PubMed Central

    Esmaeilbeig, Maryam; Kouhpayeh, Seyed Amin; Amirghofran, Zahra

    2015-01-01

    Background: Traditional herbal medicine is a valuable resource that provides new drugs for cancer treatment. Objectives: In this study we aim to screen and investigate the in vitro anti-tumor activities of ten species of plants commonly grown in Southern Iran. Materials and Methods: We used the MTT colorimetric assay to evaluate the cytotoxic activities of the methanol extracts of these plants on various tumor cell lines. The IC50 was calculated as a scale for this evaluation. Results: Satureja bachtiarica, Satureja hortensis, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed the inhibitoriest effects on Jurkat cells with > 80% inhibition at 200 µg/mL. Satureja hortensis (IC50: 66.7 µg/mL) was the most effective. These plants also strongly inhibited K562 cell growth; Satureja bachtiarica (IC50: 28.3 µg/mL), Satureja hortensis (IC50: 52 µg/mL) and Thymus vulgaris (IC50: 87 µg/mL) were the most effective extracts. Cichorium intybus, Rheum ribes, Alhagi pseudalhagi and Glycyrrihza glabra also showed notable effects on the leukemia cell lines. The Raji cell line was mostly inhibited by Satureja bachtiarica and Thymus vulgaris with approximately 40% inhibition at 200µg/ml. The influence of these extracts on solid tumor cell lines was not strong. Fen cells were mostly affected by Glycyrrihza glabra (IC50: 182 µg/mL) and HeLa cells by Satureja hortensis (31.6% growth inhibitory effect at 200 µg/mL). Conclusions: Leukemic cell lines were more sensitive to the extracts than the solid tumor cell lines; Satureja hortensis, Satureja bachtiarica, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed remarkable inhibitory potential. PMID:26634114

  6. Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells.

    PubMed

    Kwak, Youngeun; Ju, Jihyeung

    2015-02-01

    Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and 350 µg/ml) and completely abolished the colony formation in soft agar (at the concentration of 350 µg/ml). Treatment with PLE at the 350 µg/ml concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to 350 µg/ml was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo.

  7. Liposomal delivery improves the growth-inhibitory and apoptotic activity of low doses of gemcitabine in multiple myeloma cancer cells.

    PubMed

    Celia, Christian; Malara, Natalia; Terracciano, Rosa; Cosco, Donato; Paolino, Donatella; Fresta, Massimo; Savino, Rocco

    2008-06-01

    Gemcitabine-loaded pegylated unilamellar liposomes (200 nm) were proposed for the treatment of multiple myeloma cancer disease. Physicochemical and technological parameters of liposomes were evaluated by using laser light scattering and gel permeation chromatography. The growth-inhibitory activity of gemcitabine-loaded liposomes compared to the free drug was assayed in vitro on U266 (autocrine, interleukin-6-independent) and INA-6 (IL-6-dependent) multiple myeloma cell lines. Liposomes noticeably improved the growth-inhibitory activity of gemcitabine in terms of both dose-dependent and incubation-time effects. Liposomal delivery of gemcitabine consistently and significantly increased induction of apoptosis and caused a complete inhibition of proliferation. Liposomes were able to interact with multiple myeloma cells as demonstrated by confocal laser scanning microscopy and hence to improve the intracellular gemcitabine delivery. Gemcitabine-loaded liposomes were much more effective in vitro than the free drug. This formulation may offer even more in vivo advantages both in terms of drug pharmacokinetic and biodistribution.

  8. Isolation of human cancer cell growth inhibitory, antimicrobial lateritin from a mixed fungal culture.

    PubMed

    Pettit, Robin K; Pettit, George R; Xu, Jung-Ping; Weber, Christine A; Richert, Linda A

    2010-03-01

    The purpose of this study was to attempt the reproducible coculture of more than two fungi for biosynthesis of potential antineoplastic substances. Five different fungi were simultaneously inoculated into broth cultures and grown for two weeks. Cancer cell line bioassay-guided fractionation, NMR, and mass spectroscopy led to the isolation and characterization of lateritin. Lateritin inhibited the growth of a mini-panel of human cancer cell lines, gram-positive bacteria, and Candida albicans. Individually, the five fungi did not synthesize detectable levels of lateritin. This study adds to the small but growing body of evidence that mixed fermentation is a viable avenue for natural product drug discovery. In addition, this is the first report of the reproducible coculture of more than two microbes for natural product biosynthesis, and the first report of the human solid tumor cell line and antimicrobial activities of lateritin. (c) Georg Thieme Verlag KG Stuttgart . New York.

  9. [Inhibitory effect of angiotensin II receptor antagonist on the contraction and growth of hepatic stellate cells].

    PubMed

    Baik, Soon Koo; Jo, Ho Sung; Suk, Ki Tae; Kim, Jung Min; Lee, Byong Jun; Choi, Yeun Jong; Kim, Hyun Soo; Lee, Dong Ki; Kwon, Sang Ok; Lee, Keon Il; Cha, Seung Kyu; Park, Kyu Sang; Kong, In Deok

    2003-08-01

    This study aimed to investigate the effects of angiotensin II (ANG II) and its receptor antagonist (losartan) on the contraction and growth of HSCs. HSCs were isolated from Sprague Dawley rat and cultured at various conditions as follows: control, pretreatment of 10(-5) M ANG II, pretreatment of 10(-5) M endothelin, and pretreatment of 10(-5) M ANG II and 10(-6) M losartan. We conducted morphologic analysis with cellular area and length by image analysis system to estimate cell growth in each group. In addition, we measured the change of intracellular calcium currents via electrophysiological methods to evaluate the contractile effect of ANG II and losartan on HSCs. At the fifth day of incubation, the mean cellular area of ANG II-pretreated group and ANG II with losartan-pretreated group were 704.68+/-22.6 micro m2 and 332.90+/-32.6 micro m2, respectively. This difference was statistically significant (p<0.05). ANG II induced an increase in the intracellular calcium current by 22.0+/-3.0% compared with basal current level (p<0.05). However, when losartan was pretreated, ANG II did not cause a significant increase in calcium current (3.1+/-0.8%, p>0.05). ANG II accelerates the contraction and growth of HSCs, while its receptor blocker, losartan, inhibits the contraction and growth of HSCs.

  10. Sodium phenylacetate enhances the inhibitory effect of dextran derivative on breast cancer cell growth in vitro and in nude mice.

    PubMed

    Di Benedetto, M; Kourbali, Y; Starzec, A; Vassy, R; Jozefonvicz, J; Perret, G; Crepin, M; Kraemer, M

    2001-09-14

    Sodium phenylacetate (NaPa) and carboxymethyl benzylamide dextran derivative (CMDB(LS4)) are able to inhibit growth of breast tumour cells. In this study, we explored whether the combination of NaPa and CMDB(LS4)may enhance their respective inhibitory effects on the MCF-7ras cell growth in vitro and in vivo. NaPa inhibited MCF-7ras cell proliferation by reducing the DNA replication concomitantly with a recruitment of cells in G0/G1 phase and by inducing apoptosis in a dose- and time-dependent manner. The addition of CMDB(LS4)potentiated the NaPa antiproliferative effect in the manner dependent on the ratio of CMDB(LS4)and NaPa concentrations. In nude mice, CMDB(LS4)(150 mg kg(-1)) or NaPa (40 mg kg(-1)) administrated twice a week, for 7 weeks inhibited MCF-7ras xenograft growth by 40% and 60%, respectively. The treatment by both, CMDB(LS4)and NaPa, decreased tumour growth by 83% without any toxicity. To better understand the mechanism of NaPa and CMDB(LS4)action we assessed their effect on mitogenic activity of MCF-7ras conditioned medium (CM) on BALBC/3T3 fibroblasts. CMDB(LS4)added to the CM, inhibited its mitogenic activity whereas NaPa had an anti-mitogenic effect when CM was prepared from MCF-7ras cells pretreated with NaPa. Thus, the antiproliferative effects of NaPa and CMDB(LS4)involve 2 different mechanisms explaining, at least in part, the possible synergism between them. Overall, this study points to the potential use of a combination of dextran derivatives with NaPa to inhibit the breast tumour growth.

  11. Sodium phenylacetate enhances the inhibitory effect of dextran derivative on breast cancer cell growth in vitro and in nude mice

    PubMed Central

    Benedetto, M Di; Kourbali, Y; Starzec, A; Vassy, R; Jozefonvicz, J; Perret, G; Crepin, M; Kraemer, M

    2001-01-01

    Sodium phenylacetate (NaPa) and carboxymethyl benzylamide dextran derivative (CMDBLS4) are able to inhibit growth of breast tumour cells. In this study, we explored whether the combination of NaPa and CMDBLS4 may enhance their respective inhibitory effects on the MCF-7ras cell growth in vitro and in vivo. NaPa inhibited MCF-7ras cell proliferation by reducing the DNA replication concomitantly with a recruitment of cells in G0/G1 phase and by inducing apoptosis in a dose- and time-dependent manner. The addition of CMDBLS4 potentiated the NaPa antiproliferative effect in the manner dependent on the ratio of CMDBLS4 and NaPa concentrations. In nude mice, CMDBLS4 (150 mg kg−1) or NaPa (40 mg kg−1) administrated twice a week, for 7 weeks inhibited MCF-7ras xenograft growth by 40% and 60%, respectively. The treatment by both, CMDBLS4 and NaPa, decreased tumour growth by 83% without any toxicity. To better understand the mechanism of NaPa and CMDBLS4 action we assessed their effect on mitogenic activity of MCF-7ras conditioned medium (CM) on BALBC/3T3 fibroblasts. CMDBLS4 added to the CM, inhibited its mitogenic activity whereas NaPa had an anti-mitogenic effect when CM was prepared from MCF-7ras cells pretreated with NaPa. Thus, the antiproliferative effects of NaPa and CMDBLS4 involve 2 different mechanisms explaining, at least in part, the possible synergism between them. Overall, this study points to the potential use of a combination of dextran derivatives with NaPa to inhibit the breast tumour growth. © 2001 Cancer Research Campaignhttp://www.bjcancer.com PMID:11556846

  12. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    PubMed Central

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  13. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    PubMed

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  14. Growth inhibitory effects and molecular mechanisms of crotoxin treatment in esophageal Eca-109 cells and transplanted tumors in nude mice

    PubMed Central

    He, Jing-kang; Wu, Xiang-sheng; Wang, Yan; Han, Rong; Qin, Zheng-hong; Xie, Yan

    2013-01-01

    Aim: To investigate the antitumor actions of the Crotalus durissus neurotoxin (crotoxin) on human esophageal carcinoma (Eca-109) cells in vitro and transplanted esophageal Eca-109 tumors in nude mice. Methods: The growth-inhibitory effect was analyzed in Eca-109 cells using MTT assay. Cell morphology changes in nuclei were observed using Hoechst 33342 staining, while apoptosis and cell cycle distribution were examined by flow cytometry. RT-PCR was used to measure the Bcl-2, p15, and caspase-3 p17 gene expression levels. A tumor transplantation model was established by inoculation of Eca-109 cells were into female Balb/c nude mice. Crotoxin (25, 50, and 100 mg/kg) was subcutaneously injected into the transplanted tumors every 2 d for a total of 10 injections. Tumor size and weight were measured. Bcl-2, p15, and caspase-3 p17 protein expression in transplanted tumors was analyzed using Western blotting. Results: Crotoxin (25, 50, and 100 μg/mL) inhibited the growth of Eca-109 cells in a dose-dependent manner with inhibition rates of 22.9%, 35.8%, and 57.2%, respectively. Hoechst 33342 staining revealed apoptotic cells with pyknotic nuclear chromatin after crotoxin treatment. In Eca-109 cells, crotoxin induced apoptosis and G1 block, significantly upregulated the expression of p15 and caspase-3 p17 genes and downregulated the expression of Bcl-2 gene. Furthermore, crotoxin inhibited the growth of Eca-109 tumors in nude mice in a dose-dependent manner. Western blotting showed that crotoxin increased p15 and caspase-3 p17 protein levels and reduced Bcl-2 protein level in tumor specimens. Conclusion: Crotoxin inhibits the growth of Eca-109 cells in vitro via apoptosis induction and G1 block. Local administration of crotoxin inhibits the growth of subcutaneously transplanted Eca-109 cells in nude mice, possibly via increasing p15 and caspase-3 p17 protein expression and reducing Bcl-2 protein expression. PMID:23202800

  15. Polyphenols bearing cinnamaldehyde scaffold showing cell growth inhibitory effects on the cisplatin-resistant A2780/Cis ovarian cancer cells.

    PubMed

    Shin, Soon Young; Jung, Hyeryoung; Ahn, Seunghyun; Hwang, Doseok; Yoon, Hyuk; Hyun, Jiye; Yong, Yeonjoong; Cho, Hi Jae; Koh, Dongsoo; Lee, Young Han; Lim, Yoongho

    2014-03-15

    Ovarian carcinoma remains the most lethal among gynecological cancers. Chemoresistance is a clinical problem that severely limits treatment success. To identify potent anticancer agents against the cisplatin-resistant human ovarian cancer cell line A2780/Cis, 26 polyphenols bearing a cinnamaldehyde scaffold were synthesized. Structural differences in their inhibitory effect on clonogenicity of A2780/Cis cells were elucidated using comparative molecular field analysis and comparative molecular similarity indices analysis. Structural conditions required for increased inhibitory activity can be derived based on the analysis of their contour maps. The two most active compounds (16 and 19) were selected and further characterized their biological activities. We found that compounds 16 and 19 trigger cell cycle arrest at the G2/M phase and apoptotic cell death in cisplatin-resistant A2780/Cis human ovarian cancer cells. The molecular mechanism of compound 16 was elucidated using in vitro aurora A kinase assay, and the binding mode between the compound 16 and aurora A kinase was interpreted using in silico docking experiments. The findings obtained here may help us develop novel plant-derived polyphenols used for potent chemotherapeutic agents. In conclusion, compounds 16 and 19 could be used as promising lead compounds for the development of novel anticancer therapies in the treatment of cisplatin-resistant ovarian cancers.

  16. Examination of pathways involved in leukemia inhibitory factor (LIF)-induced cell growth arrest using label-free proteomics approach.

    PubMed

    Ali, Syed Azmal; Kaur, Gurjeet; Kaushik, Jai Kumar; Malakar, Dhruba; Mohanty, Ashok Kumar; Kumar, Sudarshan

    2017-09-25

    Leukemia inhibitory factor (LIF) is a multifunctional highly glycosylated protein, synthesized and secreted in various body tissues. Besides the abundance in multiple organs, the molecular mechanism underlying the LIF interactions for cell survival and polarity is poorly understood. In the present study, high-resolution LC-MS/MS based LFQ approach identified 2083 proteins with the overall PSM as 16,032. This proteomics data reviles that LIF promotes the AKT-mTOR signaling pathway. It induces cell growth arrest by an intracellular pathways loop to increase the half-life of the cell. Bioinformatics-based enrichment analysis revealed the involvement of LIF interacting partners in cell survival through increasing the cell cycle length. The anti-proliferative effect of LIF was confirmed by BrdU, MTT and Caspase 3/7 assays and further validated by RT-qPCR. Till date to the best of our knowledge, this is the first study that elucidates LIF-mediated cascade of activation of MEK/ERK, Ras, mTOR, Hippo, and RAP1 pathways. This study further expands the repertoire of signaling pathways known to be subject to activation by LIF. These multiple involvements of pathways through autocrine-paracrine mediated cell cycle arrest additionally suggests a novel means for amplification of a growth arrest stimulus from LIF and its homolog's receptors. Leukemia inhibitory factor (LIF) is the polyfunctional cytokine and highly pleiotropic member of the interleukin-6 family. It utilizes a receptor that consists of the LIF receptor b and gp130 and displays diverse effects on target cells. Despite well-known signal transduction mechanisms (JAK/STAT, MAPK, and PI3K) LIF also contains paradoxically opposing influences in several cell types which includes cellular stimulation, inhibition, proliferation, differentiation, and survival. LIF1 is also undergoing clinical trials as a driving force for the embryo implantation in the uterus in women who fail to become pregnant. As LIF can act on the broad

  17. Cyclosporine A decreases the fluconazole minimum inhibitory concentration of Candida albicans clinical isolates but not biofilm formation and cell growth.

    PubMed

    Wibawa, T; Nurrokhman; Baly, I; Daeli, P R; Kartasasmita, G; Wijayanti, N

    2015-03-01

    Among the genus Candida, Candida albicans is the most abundant species in humans. One of the virulent factors of C. albicans is its ability to develop biofilm. Biofilm forming microbes are characterized by decreasing of its susceptibility to antibiotics and antifungal. The fungicidal effect of fluconazole may be enhanced by cyclosporine A in laboratory engineered C. albicans strains. The aim of this work is to analyze the synergistic effect of cyclosporine A with fluconazole in C. albicans clinical isolates and the effect of cycolsporine A alone in the biofilm formation. Six fluconazole resistant and six sensitive C. albicans clinical isolates were analyzed for its minimum inhibitory concentration (MICs), biofilm formation, and cell growths. A semi-quantitative XTT [2,3-bis(2-methoxy-4-nitro-5- sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay was conducted to measure the biofilm formation. Cyclosporine A has synergistic effect with fluconazole that was shown by decreasing MICs of both fluconazole resistant and sensitive C. albicans clinical isolates. However, cyclosporine A alone did not influence the biofilm formation and cell growth of both fluconazole resistant and sensitive C. albicans clinical isolates. These results indicated that cyclosporine A might be a promising candidate of adjuvant therapy for fluconazole against both fluconazole resistant and sensitive C. albicans clinical isolates.

  18. Cancer Cell Growth Inhibitory Effect of Bee Venom via Increase of Death Receptor 3 Expression and Inactivation of NF-kappa B in NSCLC Cells

    PubMed Central

    Choi, Kyung Eun; Hwang, Chul Ju; Gu, Sun Mi; Park, Mi Hee; Kim, Joo Hwan; Park, Joo Ho; Ahn, Young Jin; Kim, Ji Young; Song, Min Jong; Song, Ho Sueb; Han, Sang-Bae; Hong, Jin Tae

    2014-01-01

    Our previous findings have demonstrated that bee venom (BV) has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB) activity assay. BV (1–5 μg/mL) inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax) was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF)-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway. PMID:25068924

  19. Growth inhibitory effect of KYKZL-1 on Hep G{sub 2} cells via inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest

    SciTech Connect

    Cheng, Jing; Du, Yi-Fang; Xiao, Zhi-Yi; Pan, Li-Li; Li, Wei; Huan, Lin; Gong, Zhu-Nan; Wei, Shao-Hua; Huang, Shi-Qian; Xun, Wei; Zhang, Yi; Chang, Lei-Lei; Xie, Meng-Yu; Ao, Gui-Zhen; Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting; Xu, Guang-Lin

    2014-01-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G{sub 2} growth. We found that KYKZL-1 inhibited the growth of Hep G{sub 2} cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE{sub 2} and LTB{sub 4} production in Hep G{sub 2} cells. Accordingly, exogenous addition of PGE{sub 2} or LTB{sub 4} reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S–G{sub 2} checkpoint via the activation of p21{sup CIP1} protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 resulted in apoptosis of Hep G{sub 2} cells. • KYKZL-1 activated caspase-3 through cytochrome c and bcl-2/bax ratio. • KYKZL-1 caused cell cycle arrest via modulation of p21{sup CIP1} and cyclin A level.

  20. Establishment of a murine leukaemia cell line resistant to the growth-inhibitory effect of bryostatin 1.

    PubMed Central

    Prendiville, J.; McGown, A. T.; Gescher, A.; Dickson, A. J.; Courage, C.; Pettit, G. R.; Crowther, D.; Fox, B. W.

    1994-01-01

    Bryostatin 1 is a novel macrocyclic lactone activator of protein kinase C (PKC) which has clinical potential as an anti-cancer agent. The mechanism of action of this agent is unknown, but protein kinase C has been implicated. In order to investigate this possibility, we have developed P388 sublines resistant to bryostatin 1, by continuous challenge of the parent cell line with increasing incremental concentrations of the drug over 4 months. Cell lines were established at monthly intervals yielding four sublines: P388/BR/A, which were removed at 1 month; P388/BR/B, obtained after 2 months; P388/BR/C, obtained after 3 months; and P388/BR/D, which were established after 4 months. All four P388/BR sublines show an equal degree of resistance to the growth inhibitory effects of bryostatin 1, with a relative resistance ratio (RR) IC50 of approximately 4,000. The ability of the cytosol of cells to phosphorylate PKC-specific substrate is decreased by 41% for BR/A, 57% for BR/B 80% for BR/C and 94% for BR/D compared with the parental cell line, even when grown in the absence of bryostatin 1 for up to 4 weeks. Similar decreases are seen for cytosolic phorbol ester binding and whole-cell PKC isoenzyme expression. All four P388/BR sublines show high and equal levels of cross-resistance to the PKC activatory phorbol ester, phorbol 12-myristate 13-acetate (PMA). There is no loss of resistance to either bryostatin 1 or PMA up to 3 months after termination of exposure of the sublines to bryostatin 1. There was no significant degree of cross-resistance to daunorubicin in the bryosatin 1-resistant cell lines, P388/BR/A, B, C or D, when compared with the parent cell line, P388. Images Figure 8 PMID:7917900

  1. Ophiobolin A, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity.

    PubMed

    Bury, Marina; Novo-Uzal, Esther; Andolfi, Anna; Cimini, Sara; Wauthoz, Nathalie; Heffeter, Petra; Lallemand, Benjamin; Avolio, Fabiana; Delporte, Cédric; Cimmino, Alessio; Dubois, Jacques; Van Antwerpen, Pierre; Zonno, Maria Chiara; Vurro, Maurizio; Poumay, Yves; Berger, Walter; Evidente, Antonio; De Gara, Laura; Kiss, Robert; Locato, Vittoria

    2013-08-01

    Ophiobolin A, a sesterterpenoid produced by plant pathogenic fungi, was purified from the culture extract of Drechslera gigantea and tested for its growth-inhibitory activity in both plant and mammalian cells. Ophiobolin A induced cell death in Nicotiana tabacum L. cv. Bright Yellow 2 (TBY-2) cells at concentrations ≥10 µM, with the TBY-2 cells showing typical features of apoptosis-like cell death. At a concentration of 5 µM, ophiobolin A did not affect plant cell viability but prevented cell proliferation. When tested on eight cancer cell lines, concentrations <1 µM of ophiobolin A inhibited growth by 50% after 3 days of culture irrespective of their multidrug resistance (MDR) phenotypes and their resistance levels to pro-apoptotic stimuli. It is, thus, unlikely that ophiobolin A exerts these in vitro growth-inhibitory effects in cancer cells by activating pro-apoptotic processes. Highly proliferative human keratinocytes appeared more sensitive to the growth-inhibitory effects of ophiobolin A than slowly proliferating ones. Ophiobolin A also displayed significant antitumor activity at the level of mouse survival when assayed at 10 mg/kg in the B16F10 mouse melanoma model with lung pseudometastases. Ophiobolin A could, thus, represent a novel scaffold to combat cancer types that display various levels of resistance to pro-apoptotic stimuli and/or various MDR phenotypes.

  2. Growth inhibitory effects of Phyllanthus niruri extracts in combination with cisplatin on cancer cell lines

    PubMed Central

    Araújo Júnior, Raimundo Fernandes; Soares, Luiz Alberto Lira; da Costa Porto, Cínthia Raquel; de Aquino, Ranniere Gurgel Furtado; Guedes, Hugo Gonçalo; Petrovick, Pedro Ros; de Souza, Tatiane Pereira; Araújo, Aurigena Antunes; Guerra, Gerlane Coelho Bernardo

    2012-01-01

    AIM:To investigate the cytotoxic effects of spray-dried extracts of Phyllanthus niruri in combination with cisplatin on two cancer cell lines. METHODS: Colorectal carcinoma (HT29) and human hepatocellular carcinoma (HepG2) cells were treated with spray-dried extracts of Phyllanthus niruri (SDEPN) either alone or in combination with cisplatin at different concentrations (0.5 mg/mL and 1 mg/mL) for 4 h and 24 h. To verify and quantify cancer cells treated with these products as well as identify the cell cycle stage and cell viability, we stained the cells with propidium iodide and assessed them by flow cytometry. The percentage of cells in different cell cycle phases was quantified and data were expressed as histograms. Significant differences between groups were determined using analysis of variance and Bonferroni’s test, as indicated. A value of P < 0.05 was considered to be statistically significant. RESULTS: SDEPN had significantly different cytotoxic effects on HT29 (2.81 ± 0.11 vs 3.51 ± 1.13, P > 0.05) and HepG2 (5.07 ± 0.3 vs 15.9 ± 1.04, P < 0.001) cells when compared to control cells for 4 h. SDEPN also had significantly different cytotoxic effects on HT29 (1.91 ± 0.57 vs 4.53 ± 1.22, P > 0.05) and HepG2 (14.56 ± 1.6 vs 35.67 ± 3.94, P < 0.001) cells when compared to control cells for 24 h. Both cell lines were killed by cisplatin in a dose-dependent manner compared to control cells (HepG2 cells for 4 h: 10.78 ± 1.58 vs 53.89 ± 1.53, P < 0.001; 24 h: 8.9 ± 1.43 vs 62.78 ± 1.87, P < 0.001 and HT29 cells for 4 h: 9.52 ± 0.913 vs 49.86 ± 2.89, P < 0.001; 24 h: 11.78 ± 1.05 vs 53.34 ± 2.65, P < 0.001). In HT29 cells, pretreatment with SDEPN and subsequent treatment with cisplatin resulted in a greater number of cells being killed (12.78 ± 1.01 vs 93.76 ± 1.6, P < 0.001). HepG2 cells showed significant cell killing with treatment with SDEPN when combined with cisplatin (12.87 ± 2.78 vs 78.8 ± 3.02, P < 0.001). CONCLUSION: SDEPN is

  3. Inhibitory effects of water caltrop pericarps on the growth of human gastric cancer cells in vitro.

    PubMed

    Lin, Qiusheng; Shen, Junhui; Ning, Ying; Shen, Shengrong; Das, Undurti N

    2013-01-01

    Water caltrop is a popular traditional vegetable in China, and its pericarps are always wasted. In the present work reported here, pericarps from three different Chinese water caltrop cultivars were collected and extracted using 70% methanol and hot water. All the extracts contained significant amounts of polyphenols (183.7-201.7 mg GAE/g), flavonoids (34.3-54.6 mg RE/g) and saponins (23.2- 36.3 mg GRE/g). These extracts exhibited strong antioxidant capacity as assessed by DPPH, ABTS and FRAP methods. High correlations were found in DPPH, ABTS and polyphenols, FRAP and saponins. All the three extracts inhibited proliferation of SGC7901 human gastric cancer cells and HepG2 human hepatocarcinoma cells in a dose dependent manner without detectable cytotoxicity on HUVEC normal cells. Flow cytometry showed that apoptosis of SGC7901 and HepG2 cells was induced by water caltrop extracts while HUVEC cells were relatively resistant to apoptosis. Hot water extracts showed similar bioactivities as methanol extracts, which indicated that hot water could be used to extract bioactive compounds instead of organic solvents. These results suggest that water caltrop pericarps could be explored for their potential as anti-cancer drugs in future studies.

  4. CB-19PID1, A NEW GROWTH-INHIBITORY GENE, SENSITIZES MEDULLOBLASTOMA AND GLIOMA CELL LINES TO CHEMOTHERAPY

    PubMed Central

    Xu, Jingying; Ren, Xiuhai; Tran, Anthony; Erdreich-Epstein, Anat

    2014-01-01

    BACKGROUND: Phosphotyrosine Interaction Domain containing protein-1 (PID1) was discovered in 2006. We recently showed that PID1 inhibits growth of brain tumor cell lines and its mRNA level is directly correlated with survival in glioma and medulloblastoma patients (Erdreich-Epstein et al, Clin Cancer Res). The growth-inhibitory effect of PID1 was due to decreased proliferation and increased cell death. METHODS/RESULTS: We hypothesized that PID1 sensitizes brain tumors to therapy, thus accounting for the longer survival in patients with higher PID1 mRNA. Indeed, while cisplatin (10 µg/ml) or transient PID1 overexpression each increased apoptosis of glioma and medulloblastoma cell lines, combining cisplatin with PID1 resulted in markedly higher apoptosis. Moreover, knockdown of PID1 by siRNA inhibited the cisplatin-induced mitochondrial membrane depolarization and apoptosis, suggesting that PID1 is partially required for cisplatin-induced apoptosis. Taken together, this suggests that PID1 sensitizes both glioma and medulloblastoma cell lines to cisplatin. Intriguingly, PID1 mRNA increased in response to chemotherapy in a time- and dose-dependent manner in brain tumor cell lines. The chemotherapy-induced increase in PID1 mRNA was blocked by inhibitors of NFkB, suggesting that regulation of PID1 mRNA increase may be an NF-kB-dependent process. Consistent with this, cisplatin increased activity of an NF-kB promoter reporter. Surprisingly, despite the chemotherapy-induced increase in PID1 mRNA, PID1 protein decreased in response to cisplatin, suggesting post-translational modification(s) of PID1 induced by cisplatin. Ongoing work is focusing on the mechanism and role of PID1 in response to chemotherapy, and examining the effect of PID1 on the response of tumors to chemotherapy in vivo. CONCLUSIONS: Our data show that PID1 sensitizes glioma and medulloblastoma cell lines to chemotherapy, possibly explaining the correlation between higher PID1 mRNA and longer patient

  5. Chemical constituents of Rhododendron formosanum show pronounced growth inhibitory effect on non-small-cell lung carcinoma cells.

    PubMed

    Way, Tzong-Der; Tsai, Shang-Jie; Wang, Chao-Min; Ho, Chi-Tang; Chou, Chang-Hung

    2014-01-29

    The aim of the present study was to investigate whether Rhododendron formosanum Hemsl. (Ericaceae), an endemic species in Taiwan, exhibits antineoplastic potential against non-small-cell lung carcinoma (NSCLC). R. formosanum was successively extracted with methanol and then separated into dichloromethane (RFL-DCM), ethyl acetate (RFL-EA), n-butanol (RFL-BuOH), and water (RFL-H2O) fractions. Among these extracts, RFL-EA exhibited the most effective antineoplastic effect. This study also demonstrated that fractions 2 and 3 from the RFL-EA extract (RFL-EA-2, RFL-EA-3) possessed the strongest antineoplastic potential against NSCLC cells. The major phytochemical constituents of RFL-EA-2 and RFL-EA-3 were ursolic acid, oleanolic acid, and betulinic acid. This study indicated that ursolic acid demonstrated the most efficient antineoplastic effects on NSCLC cells. Ursolic acid inhibited growth of NSCLC cells in a dose- and time-dependent manner and stimulated apoptosis. Apoptosis was substantiated by activation of caspase-3 and -9, and a decrease in Bcl-2 and an elevation of the Bax were also observed following ursolic acid treatment. Ursolic acid activated AMP-activated protein kinase (AMPK) and then inhibited the mammalian target of rapamycin (mTOR), which controls protein synthesis and cell growth. Moreover, ursolic acid decreased the expression and/or activity of lipogenic enzymes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN) via AMPK activation. Collectively, these data provide insight into the chemical constituents and anticancer activity of R. formosanum against NSCLC cells, which are worthy of continued study.

  6. Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human breast cancer cells (MCF-7Ca) in vivo.

    PubMed

    Ju, Young H; Doerge, Daniel R; Woodling, Kellie A; Hartman, James A; Kwak, Jieun; Helferich, William G

    2008-11-01

    Genistein (GEN), a soy isoflavone, stimulates growth of estrogen-dependent human tumor cells (MCF-7) in a preclinical mouse model for postmenopausal breast cancer. Antiestrogens and aromatase inhibitors are frontline therapies for estrogen-dependent breast cancer. We have demonstrated that dietary GEN can negate the inhibitory effect of tamoxifen. In this study, we evaluated the interaction of dietary GEN (at 250-1000 p.p.m. in the American Institute of Nutrition 93 growth diet) and an aromatase inhibitor, letrozole (LET), on the growth of tumors in an aromatase-expressing breast cancer xenograft model (MCF-7Ca) in the presence and absence of the substrate androstenedione (AD). Dietary GEN (250 and 500 p.p.m.) or implanted AD stimulated MCF-7Ca tumor growth. Implanted LET inhibited AD-stimulated MCF-7Ca tumor growth. In the presence of AD and LET, dietary GEN (250, 500 and 1000 p.p.m.) reversed the inhibitory effect of LET in a dose-dependent manner. Uterine wet weight, plasma estradiol (E(2)) levels (enzyme-linked immunosorbent assay) and total plasma GEN and LET levels (liquid chromatography-electrospray/tandem mass spectrometry) were measured. Ki-67 (cellular proliferation), aromatase and pS2 protein expression in tumors were evaluated using immunohistochemical (IHC) analysis. In conclusion, dietary GEN increased the growth of MCF-7Ca tumors implanted in ovariectomized mice and could also negate the inhibitory effect of LET on MCF-7Ca tumor growth. These findings are significant because tumors, which express aromatase and synthesize estrogen, are good candidates for aromatase therapy dietary and GEN can reverse the inhibitory effect of LET on tumor growth and adversely impact breast cancer therapy. Caution is warranted for consumption of dietary GEN by postmenopausal women with estrogen-dependent breast cancer taking LET treatment.

  7. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  8. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with

  9. The inhibitory effects of a new cobalt-based polyoxometalate on the growth of human cancer cells.

    PubMed

    Wang, Lu; Yu, Kai; Zhou, Bai-Bin; Su, Zhan-Hua; Gao, Song; Chu, Li-Li; Liu, Jia-Ren

    2014-04-28

    A new cobalt-based polyoxometalate, (Himi)2[Bi(2)W2(0)O(66)(OH)(4)Co2(H2O)(6)Na(4) (H2O)14] · 17H2O (imi = iminazole) (BWCN) has been synthesized and structurally characterized. The inhibitory activities against selected human cancer lines were also determined in this study. The cell viability and chemoresistance of BWCN on human colon carcinoma HT-29 cells were assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide), cell morphology changes, a comet assay and western blot analysis. The typical morphologic changes of apoptosis and DNA damage indicated that BWCN could have a distinct proliferation inhibitory effect on cancer cells. BWCN as a chemotherapeutic agent also induced apoptosis on HT-29 cells and showed a significant expression of cleaved-caspase-3. These results suggested that the active site of BWCN is the polymeric anion based on the basic tectonic block {BiW(9)}, and the possible mechanism is related to the interference of DNA synthesis in cancer cells.

  10. MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells

    PubMed Central

    Liu, Lucy; Gaboriaud, Nicolas; Vougogianopoulou, Konstantina; Tian, Yan; Wu, Jun; Wen, Wei; Skaltsounis, Leandros; Jove, Richard

    2014-01-01

    Janus kinase (JAK) and Src kinase are the two major tyrosine kinase families upstream of signal transducer and activator of transcription (STAT). Among the seven STAT family proteins, STAT3 is constitutively activated in many diverse cancers. Upon activation, JAK and Src kinases phosphorylate STAT3, and thereby promote cell growth and survival. MLS-2384 is a novel 6-bromoindirubin derivative with a bromo-group at the 6-position on one indole ring and a hydrophilic group at the 3′-position on the other indole ring. In this study, we investigated the kinase inhibitory activity and anticancer activity of MLS-2384. Our data from in vitro kinase assays, cell viability analyses, western blotting analyses, and animal model studies, demonstrate that MLS-2384 is a dual JAK/Src kinase inhibitor, and suppresses growth of various human cancer cells, such as prostate, breast, skin, ovarian, lung, and liver. Consistent with the inactivation of JAK and Src kinases, phosphorylation of STAT3 was inhibited in a dose-dependent manner in the cancer cells treated with MLS-2384. STAT3 downstream proteins involved in cell proliferation and survival, such as c-Myc and Mcl-1, are downregulated by MLS-2384 in prostate cancer cells, whereas survivin is downregulated in A2058 cells. In these two cancer cell lines, PARP is cleaved, indicating that MLS-2384 induces apoptosis in human melanoma and prostate cancer cells. Importantly, MLS-2384 suppresses tumor growth with low toxicity in a mouse xenograft model of human melanoma. Taken together, MLS-2384 demonstrates dual JAK/Src inhibitory activity and suppresses tumor cell growth both in vitro and in vivo. Our findings support further development of MLS-2384 as a potential small-molecule therapeutic agent that targets JAK, Src, and STAT3 signaling in multiple human cancer cells. PMID:24100507

  11. MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells.

    PubMed

    Liu, Lucy; Gaboriaud, Nicolas; Vougogianopoulou, Konstantina; Tian, Yan; Wu, Jun; Wen, Wei; Skaltsounis, Leandros; Jove, Richard

    2014-02-01

    Janus kinase (JAK) and Src kinase are the two major tyrosine kinase families upstream of signal transducer and activator of transcription (STAT). Among the seven STAT family proteins, STAT3 is constitutively activated in many diverse cancers. Upon activation, JAK and Src kinases phosphorylate STAT3, and thereby promote cell growth and survival. MLS-2384 is a novel 6-bromoindirubin derivative with a bromo-group at the 6-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. In this study, we investigated the kinase inhibitory activity and anticancer activity of MLS-2384. Our data from in vitro kinase assays, cell viability analyses, western blotting analyses, and animal model studies, demonstrate that MLS-2384 is a dual JAK/Src kinase inhibitor, and suppresses growth of various human cancer cells, such as prostate, breast, skin, ovarian, lung, and liver. Consistent with the inactivation of JAK and Src kinases, phosphorylation of STAT3 was inhibited in a dose-dependent manner in the cancer cells treated with MLS-2384. STAT3 downstream proteins involved in cell proliferation and survival, such as c-Myc and Mcl-1, are downregulated by MLS-2384 in prostate cancer cells, whereas survivin is downregulated in A2058 cells. In these two cancer cell lines, PARP is cleaved, indicating that MLS-2384 induces apoptosis in human melanoma and prostate cancer cells. Importantly, MLS-2384 suppresses tumor growth with low toxicity in a mouse xenograft model of human melanoma. Taken together, MLS-2384 demonstrates dual JAK/Src inhibitory activity and suppresses tumor cell growth both in vitro and in vivo. Our findings support further development of MLS-2384 as a potential small-molecule therapeutic agent that targets JAK, Src, and STAT3 signaling in multiple human cancer cells.

  12. Loss of growth inhibitory effects of retinoic acid in human breast cancer cells following long-term exposure to retinoic acid

    PubMed Central

    Stephen, R; Darbre, P D

    2000-01-01

    Although retinoids are known to be inhibitory to breast cancer cell growth, a key remaining question is whether they would remain effective if administered long-term. We describe here the long-term effects of all-trans retinoic acid on two oestrogen-dependent human breast cancer cell lines MCF7 and ZR-75-1. Although both cell lines were growth inhibited by retinoic acid in the short-term in either the absence or the presence of oestradiol, prolonged culture with 1 μM all-trans retinoic acid resulted in the cells acquiring resistance to the growth inhibitory effects of retinoic acid. Time courses showed that oestrogen deprivation of the cell lines resulted in upregulation of the basal non-oestrogen stimulated growth rate such that cells learned to grow at the same rate without as with oestradiol, but the cells remained growth inhibited by retinoic acid throughout. Addition of 1 μM all-trans retinoic acid to steroid deprivation conditions resulted in reproducible loss of growth response to both retinoic acid and oestradiol, although the time courses were separable in that loss of growth response to retinoic acid preceded that of oestradiol. Loss of growth response to retinoic acid did not involve loss of receptors, ER as measured by steroid binding assay or RARα as measured by Northern blotting. Function of the receptors was retained in terms of the ability of both oestradiol and retinoic acid to upregulate pS2 gene expression, but there was reduced ability to upregulate transiently transfected ERE- and RRE-linked reporter genes. Despite the accepted role of IGFBP3 in retinoic acid-mediated growth inhibition, progression to retinoic acid resistance occurred irrespective of level of IGFBP3, which remained high in the resistant MCF7 cells. Measurement of AP1 activity showed that the two cell lines had markedly different basal AP1 activities, but that progression to resistance was accompanied in both cases by a lost ability of retinoic acid to reduce AP1 activity

  13. Generation of leukemia inhibitory factor and basic fibroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells.

    PubMed

    Luo, Jiesi; Suhr, Steven T; Chang, Eun Ah; Wang, Kai; Ross, Pablo J; Nelson, Laura L; Venta, Patrick J; Knott, Jason G; Cibelli, Jose B

    2011-10-01

    For more than thirty years, the dog has been used as a model for human diseases. Despite efforts made to develop canine embryonic stem cells, success has been elusive. Here, we report the generation of canine induced pluripotent stem cells (ciPSCs) from canine adult fibroblasts, which we accomplished by introducing human OCT4, SOX2, c-MYC, and KLF4. The ciPSCs expressed critical pluripotency markers and showed evidence of silencing the viral vectors and normal karyotypes. Microsatellite analysis indicated that the ciPSCs showed the same profile as the donor fibroblasts but differed from cells taken from other dogs. Under culture conditions favoring differentiation, the ciPSCs could form cell derivatives from the ectoderm, mesoderm, and endoderm. Further, the ciPSCs required leukemia inhibitory factor and basic fibroblast growth factor to survive, proliferate, and maintain pluripotency. Our results demonstrate an efficient method for deriving canine pluripotent stem cells, providing a powerful platform for the development of new models for regenerative medicine, as well as for the study of the onset, progression, and treatment of human and canine genetic diseases.

  14. Generation of Leukemia Inhibitory Factor and Basic Fibroblast Growth Factor-Dependent Induced Pluripotent Stem Cells from Canine Adult Somatic Cells

    PubMed Central

    Luo, Jiesi; Suhr, Steven T.; Chang, Eun Ah; Wang, Kai; Ross, Pablo J.; Nelson, Laura L.; Venta, Patrick J.; Knott, Jason G.

    2011-01-01

    For more than thirty years, the dog has been used as a model for human diseases. Despite efforts made to develop canine embryonic stem cells, success has been elusive. Here, we report the generation of canine induced pluripotent stem cells (ciPSCs) from canine adult fibroblasts, which we accomplished by introducing human OCT4, SOX2, c-MYC, and KLF4. The ciPSCs expressed critical pluripotency markers and showed evidence of silencing the viral vectors and normal karyotypes. Microsatellite analysis indicated that the ciPSCs showed the same profile as the donor fibroblasts but differed from cells taken from other dogs. Under culture conditions favoring differentiation, the ciPSCs could form cell derivatives from the ectoderm, mesoderm, and endoderm. Further, the ciPSCs required leukemia inhibitory factor and basic fibroblast growth factor to survive, proliferate, and maintain pluripotency. Our results demonstrate an efficient method for deriving canine pluripotent stem cells, providing a powerful platform for the development of new models for regenerative medicine, as well as for the study of the onset, progression, and treatment of human and canine genetic diseases. PMID:21495906

  15. Growth inhibitory properties of endothelin-1 in human hepatic myofibroblastic Ito cells. An endothelin B receptor-mediated pathway.

    PubMed Central

    Mallat, A; Fouassier, L; Préaux, A M; Gal, C S; Raufaste, D; Rosenbaum, J; Dhumeaux, D; Jouneaux, C; Mavier, P; Lotersztajn, S

    1995-01-01

    Ito cells play a pivotal role in the development of liver fibrosis associated with chronic liver diseases. During this process, Ito cells acquire myofibroblastic features, proliferate, and synthesize fibrosis components. Considering the reported mitogenic properties of endothelin-1 (ET-1), we investigated its effects on the proliferation of human Ito cells in their myofibroblastic phenotype. Both ET receptor A (ETA: 20%) and ET receptor B (ETB: 80%) binding sites were identified, using a selective ETA antagonist, BQ 123, and a selective ETB agonist, sarafotoxin S6C (SRTX-C). ET-1 did not stimulate proliferation of myofibroblastic Ito cells. In contrast, ET-1 inhibited by 60% DNA synthesis and proliferation of cells stimulated with either human serum or platelet-derived growth factor -BB (PDGF-BB). PD 142893, a nonselective ETA/ETB antagonist totally blunted this effect. SRTX-C was as potent as ET-1, while BQ 123 did not affect ET-1-induced growth inhibition. Analysis of the intermediate steps leading to growth-inhibition by ET-1 revealed that activation of mitogen-activated protein kinase by serum or PDGF-BB was decreased by 50% in the presence of SRTX-C. In serum-stimulated cells, SRTX-C reduced c-jun mRNA expression by 50% whereas c-fos or krox 24 mRNA expression were not affected. We conclude that ET-1 binding to ETB receptors causes a potent growth inhibition of human myofibroblastic Ito cells, which suggests that this peptide could play a key role in the negative control of liver fibrogenesis. Our results also point out that, in addition to its well known promitogenic effects, ET-1 may also exert negative control of growth on specific cells. Images PMID:7615814

  16. Inhibitory effects of simvastatin on platelet-derived growth factor signaling in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension.

    PubMed

    Ikeda, Tetsuya; Nakamura, Kazufumi; Akagi, Satoshi; Kusano, Kengo Fukushima; Matsubara, Hiromi; Fujio, Hideki; Ogawa, Aiko; Miura, Aya; Miura, Daiji; Oto, Takahiro; Yamanaka, Ryutaro; Otsuka, Fumio; Date, Hiroshi; Ohe, Tohru; Ito, Hiroshi

    2010-01-01

    Idiopathic pulmonary arterial hypertension (IPAH) is a progressive disease characterized by inappropriate increase of pulmonary artery smooth muscle cells (PASMCs) leading to occlusion of pulmonary arterioles. Inhibition of platelet-derived growth factor (PDGF) signaling is starting to garner attention as a targeted therapy for IPAH. We assessed the inhibitory effects of simvastatin, a 3-hydroxy-3-methylglutanyl coenzyme A reductase inhibitor, on PDGF-induced proliferation and migration of PASMCs obtained from 6 patients with IPAH who underwent lung transplantation. PDGF stimulation caused a significantly higher growth rate of PASMCs from patients with IPAH than that of normal control PASMCs as assessed by (3)H-thymidine incorporation. Simvastatin (0.1 micromol/L) significantly inhibited PDGF-induced cell proliferation of PASMCs from patients with IPAH but did not inhibit proliferation of normal control cells at the same concentration. Western blot analysis revealed that simvastatin significantly increased the expression of cell cycle inhibitor p27. PDGF significantly increased the migration distance of IPAH-PASMCs compared with that of normal PASMCs, and simvastatin (1 micromol/L) significantly inhibited PDGF-induced migration. Immunofluorescence staining revealed that simvastatin (1 micromol/L) inhibited translocation of Rho A from the cytoplasm to membrane and disorganized actin fibers in PASMCs from patients with IPAH. In conclusion, simvastatin had inhibitory effects on inappropriate PDGF signaling in PASMCs from patients with IPAH.

  17. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth.

    PubMed

    Chen, You-Shuang; Peng, Yin-Bo; Yao, Min; Teng, Ji-Ping; Ni, Da; Zhu, Zhi-Jun; Zhuang, Bu-Feng; Yang, Zhi-Yin

    2017-06-03

    Lung cancer is the leading cause of cancer death worldwide. Small-cell lung cancer (SCLC) is an aggressive type of lung cancer that shows an overall 5-year survival rate below 10%. Although chemotherapy using cisplatin has been proven effective in SCLC treatment, conventional dose of cisplatin causes adverse side effects. Photodynamic therapy, a form of non-ionizing radiation therapy, is increasingly used alone or in combination with other therapeutics in cancer treatment. Herein, we aimed to address whether low dose cisplatin combination with PDT can effectively induce SCLC cell death by using in vitro cultured human SCLC NCI-H446 cells and in vivo tumor xenograft model. We found that both cisplatin and PDT showed dose-dependent cytotoxic effects in NCI-H446 cells. Importantly, co-treatment with low dose cisplatin (1 μM) and PDT (1.25 J/cm(2)) synergistically inhibited cell viability and cell migration. We further showed that the combined therapy induced a higher level of intracellular ROS in cultured NCI-H446 cells. Moreover, the synergistic effect by cisplatin and PDT was recapitulated in tumor xenograft as revealed by a more robust increase in the staining of TUNEL (a marker of cell death) and decrease in tumor volume. Taken together, our findings suggest that low dose cisplatin combination with PDT can be an effective therapeutic modality in the treatment of SCLC patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Colon tumor cell growth inhibitory activity of sulindac sulfide and other NSAIDs is associated with PDE5 inhibition

    PubMed Central

    Tinsley, Heather N.; Gary, Bernard D.; Thaiparambil, Jose; Li, Nan; Lu, Wenyan; Li, Yonghe; Maxuitenko, Yulia Y.; Keeton, Adam B.; Piazza, Gary A.

    2010-01-01

    In experimental studies, nonsteroidal anti-inflammatory drugs (NSAIDs) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here we show that the NSAID, sulindac sulfide (SS) inhibits cGMP phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit colon tumor cell growth in vitro and in vivo. A series of chemically diverse NSAIDs inhibited cGMP hydrolysis at concentrations that correlate with their potency to inhibit colon tumor cell growth, while no correlation was observed with COX-2 inhibition. Consistent with its selectivity for inhibiting cGMP hydrolysis compared with cAMP hydrolysis, SS inhibited the cGMP specific PDE5 isozyme and increased cGMP levels in colon tumor cells. Of numerous PDE isozyme specific inhibitors evaluated, only the PDE5 selective inhibitor MY5445 inhibited colon tumor cell growth. The effects of SS and MY5445 on cell growth were associated with inhibition of β-catenin mediated transcriptional activity to suppress the synthesis of cyclin D and survivin, which regulate tumor cell proliferation and apoptosis, respectively. SS had minimal effects on cGMP PDE activity in normal colonocytes, which displayed reduced sensitivity to SS and did not express PDE5. PDE5 was found to be overexpressed in colon tumor cell lines as well as in colon adenomas and adenocarcinomas compared to normal colonic mucosa. These results suggest that PDE5 inhibition, cGMP elevation, and inhibition of β-catenin transcriptional activity may contribute to the chemopreventive properties of certain NSAIDs. PMID:20876730

  19. The inhibitory effects of extracellular ATP on the growth of nasopharyngeal carcinoma cells via P2Y2 receptor and osteopontin

    PubMed Central

    2014-01-01

    Background Nasopharyngeal carcinoma (NPC) is a common malignant tumor observed in the populations of southern China and Southeast Asia. However, little is known about the effects of purinergic signal on the behavior of NPC cells. This study analyzed the effects of ATP on the growth and migration of NPC cells, and further investigated the potential mechanisms during the effects. Methods Cell viability was estimated by MTT assay. Transwell assay was utilized to assess the motility of NPC cells. Cell cycle and apoptosis were detected by flow cytometry analysis. Changes in OPN, P2Y2 and p65 expression were assessed by western blotting analysis or immunofluorescence. The effects of ATP and P2Y2 on promoter activity of OPN were analyzed by luciferase activity assay. The binding of p65 to the promoter region of OPN was examined by ChIP assay. Results An MTT assay indicated that ATP inhibited the proliferation of NPC cells in time- and dose-dependent manners, and a Transwell assay showed that extracellular ATP inhibited the motility of NPC cells. We further investigated the potential mechanisms involved in the inhibitory effect of extracellular ATP on the growth of NPC cells and found that extracellular ATP could reduce Bcl-2 and p-AKT levels while elevating Bax and cleaved caspase-3 levels in NPC cells. Decreased levels of p65 and osteopontin were also detected in the ATP-treated NPC cells. We demonstrated that extracellular ATP inhibited the growth of NPC cells via p65 and osteopontin and verified that P2Y2 overexpression elevated the inhibitory effect of extracellular ATP on the proliferation of NPC cells. Moreover, a dual luciferase reporter assay showed that the level of osteopontin transcription was inhibited by extracellular ATP and P2Y2. ATP decreased the binding of p65 to potential sites in the OPN promoter region in NPC cells. Conclusion This study indicated that extracellular ATP inhibited the growth of NPC cells via P2Y2, p65 and OPN. ATP could be a promising

  20. The inhibitory effects of extracellular ATP on the growth of nasopharyngeal carcinoma cells via P2Y2 receptor and osteopontin.

    PubMed

    Yang, Guang; Zhang, Shenghong; Zhang, Yanling; Zhou, Qiming; Peng, Sheng; Zhang, Tao; Yang, Changfu; Zhu, Zhenyu; Zhang, Fujun

    2014-06-24

    Nasopharyngeal carcinoma (NPC) is a common malignant tumor observed in the populations of southern China and Southeast Asia. However, little is known about the effects of purinergic signal on the behavior of NPC cells. This study analyzed the effects of ATP on the growth and migration of NPC cells, and further investigated the potential mechanisms during the effects. Cell viability was estimated by MTT assay. Transwell assay was utilized to assess the motility of NPC cells. Cell cycle and apoptosis were detected by flow cytometry analysis. Changes in OPN, P2Y2 and p65 expression were assessed by western blotting analysis or immunofluorescence. The effects of ATP and P2Y2 on promoter activity of OPN were analyzed by luciferase activity assay. The binding of p65 to the promoter region of OPN was examined by ChIP assay. An MTT assay indicated that ATP inhibited the proliferation of NPC cells in time- and dose-dependent manners, and a Transwell assay showed that extracellular ATP inhibited the motility of NPC cells. We further investigated the potential mechanisms involved in the inhibitory effect of extracellular ATP on the growth of NPC cells and found that extracellular ATP could reduce Bcl-2 and p-AKT levels while elevating Bax and cleaved caspase-3 levels in NPC cells. Decreased levels of p65 and osteopontin were also detected in the ATP-treated NPC cells. We demonstrated that extracellular ATP inhibited the growth of NPC cells via p65 and osteopontin and verified that P2Y2 overexpression elevated the inhibitory effect of extracellular ATP on the proliferation of NPC cells. Moreover, a dual luciferase reporter assay showed that the level of osteopontin transcription was inhibited by extracellular ATP and P2Y2. ATP decreased the binding of p65 to potential sites in the OPN promoter region in NPC cells. This study indicated that extracellular ATP inhibited the growth of NPC cells via P2Y2, p65 and OPN. ATP could be a promising agent serving as an adjuvant in the

  1. Inhibitory effects of nisin and potassium sorbate alone or in combination on vegetative cells growth and spore germination of Bacillus sporothermodurans in milk.

    PubMed

    Aouadhi, Chedia; Mejri, Slah; Maaroufi, Abderrazak

    2015-04-01

    The inhibitory activities of nisin or/and potassium sorbate on spores and vegetative cells of Bacillus sporothermodurans LTIS27, which are known to be a contaminant of dairy products and to be extremely heat-resistant, were investigated. First, the tested concentrations of nisin or potassium sorbate inhibited vegetative cell growth; with the minimum inhibitory concentrations were 5 × 10(3) IU/ml and 2% (w/v), respectively. Then, the behaviour of vegetative cells and spores in presence of sub-lethal concentrations of nisin (50 UI/ml) or/and potassium sorbate (0.2%), in milk at 37 °C for 5 days, were evaluated. In the absence of inhibitors, strain grew and sporulated at the end of the exponential phase. Nisin (50 UI/ml) was able to inhibit spore outgrowth but didn't affect their germination. It induced an immediate and transitory reduction (1.6log(10) after 1 h and 2.8log(10) after 6 h of incubation) of vegetative cell growth which reappeared between 10 h and 24 h. Potassium sorbate (0.2%) had a durable bacteriostatic effect (1.1log(10) after 6 h), on vegetative cells, followed by a slower regrowth. It was able to inhibit both germination and outgrowth of spores. Association of nisin and potassium sorbate, at sub-lethal concentrations, showed a synergistic effect and resulted in a total inhibition of cells growth after 5 days. The results illustrate the efficacy of nisin and potassium sorbate in combination, and the commercial potential of applying such treatment to decontaminate any product that has a problem with persistence of bacterial spores.

  2. Melatonin downregulates nuclear receptor RZR/RORγ expression causing growth-inhibitory and anti-angiogenesis activity in human gastric cancer cells in vitro and in vivo

    PubMed Central

    Wang, Ri-Xiong; Liu, Hui; Xu, Li; Zhang, Hui; Zhou, Rui-Xiang

    2016-01-01

    An adequate supply of oxygen and nutrients, derived from the formation of novel blood vessels, is critical for the growth and expansion of tumor cells. It has been demonstrated that melatonin (MLT) exhibits marked in vitro and in vivo oncostatic activities. The primary purpose of the present study was to evaluate the in vitro and in vivo antitumor activity of MLT on the growth and angiogenesis of gastric cancer cells, and explore the underlying molecular mechanisms. The present results revealed that MLT inhibited the growth of gastric cancer SGC-7901 cells in a dose- and time-dependent manner. In addition, the present study demonstrated that low concentrations (0.01, 0.1 and 1 mM) of MLT had no clear effect on vascular endothelial growth factor (VEGF) secretion, whereas a high concentration (3 mM) of MLT suppressed VEGF secretion in SGC-7901 cells. Notably, administration of MLT caused suppression of gastric cancer growth and blockade of tumor angiogenesis in tumor-bearing nude mice. Furthermore, MLT treatment reduced the expression of the MLT nuclear receptor RZR/RORγ, SUMO-specific protease 1, hypoxia-inducible factor-1α and VEGF at transcriptional and translational levels within gastric cancer cells during tumorigenesis. In conclusion, MLT nuclear receptor RZR/RORγ may be of great importance in the MLT mediated anti-angiogenesis and growth-inhibitory effect in gastric cancer cells. Since RZR/RORγ is overexpressed in multiple human cancers, MLT may be a promising agent for the treatment of cancers. PMID:27446366

  3. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae.

    PubMed

    Park, Seong-Eon; Koo, Hyun Min; Park, Young Kyoung; Park, Sung Min; Park, Jae Chan; Lee, Oh-Kyu; Park, Yong-Cheol; Seo, Jin-Ho

    2011-05-01

    Yeast dehydrogenases and reductases were overexpressed in Saccharomyces cerevisiae D452-2 to detoxify 2-furaldehyde (furfural) and 5-hydroxymethyl furaldehyde (HMF), two potent toxic chemicals present in acid-hydrolyzed cellulosic biomass, and hence improve cell growth and ethanol production. Among those enzymes, aldehyde dehydrogenase 6 (ALD6) played the dual roles of direct oxidation of furan derivatives and supply of NADPH cofactor to their reduction reactions. Batch fermentation of S. cerevisiae D452-2/pH-ALD6 in the presence of 2g/L furfural and 0.5 g/L HMF resulted in 20-30% increases in specific growth rate, ethanol concentration and ethanol productivity, compared with those of the wild type strain. It was proposed that overexpression of ALD6 could recover the yeast cell metabolism and hence increase ethanol production from lignocellulosic biomass containing furan-derived inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer.

    PubMed

    Jiang, Weiliang; Zhao, Senlin; Xu, Ling; Lu, Yingying; Lu, Zhanjun; Chen, Congying; Ni, Jianbo; Wan, Rong; Yang, Lijuan

    2015-07-01

    Pancreatic cancer (PC) is one of the most lethal human malignancies worldwide. Here, we demonstrated that xanthohumol (XN), the most abundant prenylated chalcone isolated from hops, inhibited the growth of cultured PC cells and their subcutaneous xenograft tumors. XN treatment was found to induce cell cycle arrest and apoptosis of PC cells (PANC-1, BxPC-3) by inhibiting phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expression of its downstream targeted genes cyclinD1, survivin, and Bcl-xL at the messenger RNA level, which involved in regulation of apoptosis and the cell cycle. Overall, our results suggested that XN presents a promising candidate therapeutic agent against human PC and the STAT3 signaling pathway is its key molecular target.

  5. The growth inhibitory effect of conjugated linoleic acid on a human hepatoma cell line, HepG2, is induced by a change in fatty acid metabolism, but not the facilitation of lipid peroxidation in the cells.

    PubMed

    Igarashi, M; Miyazawa, T

    2001-02-26

    We investigated the growth inhibitory effect of conjugated linoleic acid (CLA) on HepG2 (human hepatoma cell line), exploring whether the inhibitory action occurs via lipid peroxidation in the cells. When the cells were incubated up to 72 h with 5-40 microM of CLA (a mixture of 9c,11t-18:2 and 10t,12c-18:2), cell proliferation was clearly inhibited in a dose and time dependent manner but such an inhibition was not confirmed with linoleic acid (LA). In order to evaluate the possible contribution of lipid peroxidation exerted by CLA to cell growth inhibition, alpha-tocopherol (5-20 microM) and BHT (1-10 microM) as potent antioxidants were added to the medium with CLA (20 microM), which did not restore cell growth at all. Furthermore, after 72 h incubation, the membranous phospholipid hydroperoxide formation in the CLA-supplemented cells was suppressed respectively to 25% and 50% of that in LA-supplemented cells and control cells. No difference was observed by a conventional lipid peroxide assay, the TBA test, between CLA-supplemented cells and LA-supplemented cells. Although the cellular lipid peroxidation was not stimulated, lipid contents (triacylglycerol, total cholesterol and free cholesterol) and fatty acid contents (palmitic acid, palmitoleic acid and stearic acid) markedly increased in CLA-supplemented cells compared with LA-supplemented and control cells. Moreover, supplementation with 20 microM LA and 20 microM arachidonic acid profoundly interfered with the inhibitory effect of CLA in HepG2. These results suggest that the growth inhibitory effect of CLA on HepG2 is due to changes in fatty acid metabolism but not to lipid peroxidation.

  6. Metabolic and growth inhibitory effects of conjugated fatty acids in the cell line HT-29 with special regard to the conversion of t11,t13-CLA.

    PubMed

    Degen, Christian; Ecker, Josef; Piegholdt, Stefanie; Liebisch, Gerhard; Schmitz, Gerd; Jahreis, Gerhard

    2011-12-01

    Conjugated fatty acids (CFAs) exhibit growth inhibitory effects on colon cancer in vitro and in vivo. To investigate whether the anticancerogenic potency depends on number or configuration of the conjugated double bonds, the effect of conjugated linoleic acid (CLA; C18:2) isomers and conjugated linolenic acid (CLnA; C18:3) isomers on viability and growth of HT-29 cells were compared. Low concentrations of CLnAs (<10μM) yielded a higher degree of inhibitory effects compared to CLAs (40μM). All trans-CFAs were more effective compared to cis/trans-CFAs as follows: t9,t11,t13-CLnA≥c9,t11,t13-CLnA>t11,t13-CLA≥t9,t11-CLA>c9,t11-CLA. The mRNA expression analysis of important genes associated with fatty acid metabolism showed an absence of ∆5-/∆6-desaturases and elongases in HT-29 cells, which was confirmed by fatty acid analysis. Using time- and dose-dependent stimulation experiments several metabolites were determined. Low concentrations of all trans-CFAs (5-20μM) led to dose-dependent increase of conjugated t/t-C16:2 formed by β-oxidation of C18 CFAs, ranging from 1-5% of total FAME. Importantly, it was found that CLnA is converted to CLA and that CLA is inter-converted (t11,t13-CLA is metabolized to c9,t11-CLA) by HT-29 cells. In summary, our study shows that growth inhibition of human cancer cells is associated with a specific cellular transcriptomic and metabolic profile of fatty acid metabolism, which might contribute to the diversified ability of CFAs as anti-cancer compounds.

  7. Growth inhibitory activities of crude extracts obtained from herbal plants in the Ryukyu Islands on several human colon carcinoma cell lines.

    PubMed

    Kaneshiro, Tatsuya; Suzui, Masumi; Takamatsu, Reika; Murakami, Akira; Ohigashi, Hajime; Fujino, Tetsuya; Yoshimi, Naoki

    2005-01-01

    There is increasing interest in the use of herbs for the treatment of human diseases including cancer. Therefore, the purpose of this study was to determine whether crude extracts obtained from 44 herbal plants in the Ryukyu Islands might contain components capable of inhibiting the growth of a variety of human colon carcinoma cell lines. Leaves, roots and other parts of the plants were extracted with chloroform, and the crude extracts were dissolved in dimethylsulfoxide and used for the experiments. Extracts of Hemerocallis fulva, Ipomoea batatas, Curcuma longa, and Nasturium officinale caused marked dose-dependent growth inhibition, with IC(50) values in the range of 10-80 mug/ml. With the HCT116 cell line, the extracts of Hemerocallis fulva and Ipomoea batatas induced G1 cell cycle arrest after 48 h of treatment. In addition, we found that extracts of Curcuma longa, and Nasturium officinale induced apoptosis in these cells after 48 h of treatment. The present studies are the first systematic examination of the growth inhibitory effects of crude extracts obtained from herbal plants in the Ryukyu Islands. The findings provide evidence that several plants in the Ryukyu Islands contain components that may have anticancer activity.

  8. Synergistic growth inhibitory effects of the dual endothelin-1 receptor antagonist bosentan on pancreatic stellate and cancer cells.

    PubMed

    Fitzner, Brit; Brock, Peter; Holzhüter, Stephanie-Anna; Nizze, Horst; Sparmann, Gisela; Emmrich, Jörg; Liebe, Stefan; Jaster, Robert

    2009-02-01

    Pancreatic stellate cells (PSC) play a key role in pancreatic fibrosis. Activation of PSC occurs in response to pro-fibrogenic stimuli and is maintained by autocrine loops of mediators, such as endothelin (ET)-1. Here, we have evaluated effects of the dual ET receptor antagonist bosentan in models of pancreatic fibrogenesis and cancer. Cell culture studies revealed that PSC and DSL6A pancreatic cancer cells expressed both ET-1 and ET receptors. Bosentan efficiently inhibited proliferation of both cell types and collagen synthesis in PSC. Expression of the myofibroblastic marker alpha-smooth muscle actin, connective tissue growth factor, and ET-1 itself in PSC was reduced, while expression of matrix metalloproteinase-9 was enhanced. Like PSC, DSL6A cells secrete less ET-1 when cultured with bosentan. In a rat model of pancreatic fibrosis, chronic pancreatitis induced by dibutyltin dichloride, a tendency towards a diminished disease progression was observed in a subgroup of rats with less severe disease. Together, our results indicate that bosentan exerts antifibrotic and antitumor effects in vitro. Its efficiency in vivo warrants further investigation.

  9. Inhibitory effects of retinoic acid metabolism blocking agents (RAMBAs) on the growth of human prostate cancer cells and LNCaP prostate tumour xenografts in SCID mice

    PubMed Central

    Huynh, C K; Brodie, A M H; Njar, V C O

    2006-01-01

    In recent studies, we have identified several highly potent all-trans-retinoic acid (ATRA) metabolism blocking agents (RAMBAs). On the basis of previous effects of liarozole (a first-generation RAMBA) on the catabolism of ATRA and on growth of rat Dunning R3227G prostate tumours, we assessed the effects of our novel RAMBAs on human prostate tumour (PCA) cell lines. We examined three different PCA cell lines to determine their capacity to induce P450-mediated oxidation of ATRA. Among the three different cell lines, enhanced catabolism was detected in LNCaP, whereas it was not found in PC-3 and DU-145. This catabolism was strongly inhibited by our RAMBAs, the most potent being VN/14-1, VN/50-1, VN/66-1, and VN/69-1 with IC50 values of 6.5, 90.0, 62.5, and 90.0 nM, respectively. The RAMBAs inhibited the growth of LNCaP cells with IC50 values in the μM-range. In LNCaP cell proliferation assays, VN/14-1, VN/50-1, VN/66-1, and VN/69-1 also enhanced by 47-, 60-, 70-, and 65-fold, respectively, the ATRA-mediated antiproliferative activity. We then examined the molecular mechanism underlying the growth inhibitory properties of ATRA alone and in combination with RAMBAs. The mechanism appeared to involve the induction of differentiation, cell-cycle arrest, and induction of apoptosis (TUNEL), involving increase in Bad expression and decrease in Bcl-2 expression. Treatment of LNCaP tumours growing in SCID mice with VN/66-1 and VN/69-1 resulted in modest but statistically significant tumour growth inhibition of 44 and 47%, respectively, while treatment with VN/14-1 was unexpectedly ineffective. These results suggest that some of our novel RAMBAs may be useful agents for the treatment of prostate cancer. PMID:16449997

  10. A dominant inhibitory mutant of the type II transforming growth factor beta receptor in the malignant progression of a cutaneous T-cell lymphoma.

    PubMed Central

    Knaus, P I; Lindemann, D; DeCoteau, J F; Perlman, R; Yankelev, H; Hille, M; Kadin, M E; Lodish, H F

    1996-01-01

    In many cancers, inactivating mutations in both alleles of the transforming growth factor beta (TGF-beta) type 11 receptor (TbetaRII) gene occur and correlate with loss of sensitivity to TGF-beta. Here we describe a novel mechanism for loss of sensitivity to growth inhibition by TGF-beta in tumor development. Mac-1 cells, isolated from the blood of a patient with an indolent form of cutaneous T-cell lymphoma, express wild-type TbetaRII and are sensitive to TGF-beta. Mac-2A cells, clonally related to Mac-1 and isolated from a skin nodule of the same patient at a later, clinically aggressive stage of lymphoma, are resistant to TGF-beta. They express both the wild-type TbetaRII and a receptor with a single point mutation (Asp-404-Gly [D404G]) in the kinase domain (D404G-->TbetaRII); no TbetaRI or TbetaRII is found on the plasma membrane, suggesting that D404G-TbetaRII dominantly inhibits the function of the wild-type receptor by inhibiting its appearance on the plasma membrane. Indeed, inducible expression, under control of a tetracycline-regulated promoter, of D404G-TbetaRII in TGF-beta- sensitive Mac-1 cells as well as in Hep3B hepatoma cells results in resistance to TGF-beta and disappearance of cell surface TbetaRI and TbetaRII. Overexpression of wild-type TbetaRII in Mac-2A cells restores cell surface TbetaRI and TbetaRH and sensitivity to TGF-beta. The ability of the D404G-TbetaRH to dominantly inhibit function of wild-type TGF-beta receptors represents a new mechanism for loss of sensitivity to the growth-inhibitory functions of TGF-beta in tumor development. PMID:8668164

  11. Inhibitory effect of STAT3 gene combined with CDDP on growth of human Wilms tumour SK-NEP-1 cells

    PubMed Central

    Wang, Junrong; Zhang, Nina; Qu, Haijiang; You, Guangxian; Yuan, Junhui; Chen, Caie; Li, Wenyi; Pan, Feng

    2016-01-01

    To investigate the effects of signal transducer and activator of transcription 3 (STAT3) combined with cisplatin (CDDP) on the growth of human Wilms tumour (WT) SK-NEP-1 cell subcutaneous xenografts in nude mice and the possible mechanisms. Human WT SK-NEP-1 cells were subcutaneously transplanted to establish the BALB/c nude mice xenograft model. Mice were randomly divided into five groups: blank control group, adenovirus control group (NC group), STAT3 group, CDDP group and STAT3 plus CDDP group (combination group). Tumour volume and tumour weight were observed during the therapeutic process. The expression levels of STAT3, glucose regulatory protein 78 (GRP78) and BCL2-associated X protein (BAX) were evaluated by immunohistochemical analysis. Compared with the STAT3 group or CDDP group, the tumour weight and volume was significantly reduced in the combination group (P<0.05). No statistical significance was found in NC group compared with the blank control group (P > 0.05). Immunohistochemical analysis showed that STAT3, GRP78 and BAX protein levels in the combination group were significantly higher than those in STAT3 group and CDDP group (P<0.05). Exogenous STAT3 and CDDP may synergistically inhibit the xenograft tumour growth through up-regulation of BAX protein via GRP78. PMID:27129294

  12. Inhibitory effect of atorvastatin on the cell growth of cardiac myxomas via the PTEN and PHLPP2 phosphatase signaling pathway.

    PubMed

    Wu, Xing-Li; Yang, Ding-You; Tan, Duan-Jun; Yao, Heng-Chen; Chai, Wenhui; Peng, Li

    2013-08-01

    Insulin-like growth factor 1 (IGF-1) is a molecule with strong proliferative effects, and statins have been reported to exhibit antitumor effects based on clinical and experimental studies. However, their effects on cardiac myxoma (CM) cells and the underlying signaling mechanism(s) are largely unknown. Therefore, we investigated whether the protein/lipid phosphatases and tensin homolog deleted on chromosome ten (PTEN) and pleckstrin homology domain leucine-rich repeat phosphatase 1 and 2 (PHLPP1 and 2) are involved in the proliferative effect of IGF-1 on CM cells and the pharmacological impact of atorvastatin. The activity of PTEN and PHLPPs was determined using specific substrate diC16PIP3 and pNPP. We found that IGF-1 enhanced CM cell proliferation and inhibited both PTEN and PHLPP2 activity in a concentration- and time-dependent manner. Atorvastatin acted counter to IGF-1 and reversed the above effects mediated by IGF-1. Both IGF-1 and atorvastatin did not affect the activity of PHLPP1 and the protein expression of the three phosphatases. The results suggest that IGF-1 may exert its proliferative effects by negatively regulating the PTEN/PHLPP2 signaling pathway in CM cells, and atorvastatin may be a potential drug for the treatment of CM by enhancing the activity of PTEN and PHLPP2.

  13. Estrogen receptor beta growth-inhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells.

    PubMed

    Cotrim, C Z; Fabris, V; Doria, M L; Lindberg, K; Gustafsson, J-Å; Amado, F; Lanari, C; Helguero, L A

    2013-05-09

    Two thirds of breast cancers express estrogen receptors (ER). ER alpha (ERα) mediates breast cancer cell proliferation, and expression of ERα is the standard choice to indicate adjuvant endocrine therapy. ERbeta (ERβ) inhibits growth in vitro; its effects in vivo have been incompletely investigated and its role in breast cancer and potential as alternative target in endocrine therapy needs further study. In this work, mammary epithelial (EpH4 and HC11) and breast cancer (MC4-L2) cells with endogenous ERα and ERβ expression and T47-D human breast cancer cells with recombinant ERβ (T47-DERβ) were used to explore effects exerted in vitro and in vivo by the ERβ agonists 2,3-bis (4-hydroxy-phenyl)-propionitrile (DPN) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY). In vivo, ERβ agonists induced mammary gland hyperplasia and MC4-L2 tumour growth to a similar extent as the ERα agonist 4,4',4''-(4-propyl-(1H)-pyrazole-1,3,5-triyl) trisphenol (PPT) or 17β-estradiol (E2) and correlated with higher number of mitotic and lower number of apoptotic features. In vitro, in MC4-L2, EpH4 or HC11 cells incubated under basal conditions, ERβ agonists induced apoptosis measured as upregulation of p53 and apoptosis-inducible factor protein levels and increased caspase 3 activity, whereas PPT and E2 stimulated proliferation. However, when extracellular signal-regulated kinase 1 and 2 (ERK ½) were activated by co-incubation with basement membrane extract or epidermal growth factor, induction of apoptosis by ERβ agonists was repressed and DPN induced proliferation in a similar way as E2 or PPT. In a context of active ERK ½, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/RAC-alpha serine/threonine-protein kinase (AKT) signalling was necessary to allow proliferation stimulated by ER agonists. Inhibition of MEK ½ with UO126 completely restored ERβ growth-inhibitory effects, whereas inhibition of PI3K by LY294002 inhibited ERβ-induced proliferation. These

  14. Cellular response to micropatterned growth promoting and inhibitory substrates

    PubMed Central

    2013-01-01

    Background Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment. Results To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively. We show that micropatterning of PLL can be used to direct adherence and axonal outgrowth of hippocampal and cortical neurons as well as other cells with diverse morphologies like Oli-neu oligodendrocyte progenitor cell lines and fibroblast-like COS7 cells in culture. Surprisingly, COS7 cells exhibited a preference for low concentration (1 pg/mL) PLL zones over adjacent zones printed with high concentrations (1 mg/mL). We demonstrate that micropatterning is also useful for studying factors that inhibit growth as it can direct cells to grow along straight lines that are easy to quantify. Furthermore, we provide the first demonstration of microcontact printing of myelin-associated proteins and show that they impair process outgrowth from Oli-neu oligodendrocyte precursor cells. Conclusion We conclude that microcontact printing is an efficient and reproducible method for patterning proteins and brain-derived myelin on glass surfaces in order to study the effects of the microenvironment on cell growth and morphogenesis. PMID:24119185

  15. Ciliary neurotropic factor, interleukin 11, leukemia inhibitory factor, and oncostatin M are growth factors for human myeloma cell lines using the interleukin 6 signal transducer gp130

    PubMed Central

    1994-01-01

    Interleukin 6 (IL-6) is a major growth factor for tumor plasma cells involved in human multiple myeloma (MM). In particular, human myeloma cell lines (HMCL), whose growth is completely dependent on addition of exogenous IL-6, can be obtained reproducibly from every patient with terminal disease. Four cytokines, ciliary neurotropic factor (CNTF), IL- 11, leukemia inhibitory factor (LIF), and oncostatin M (OM), use the same transducer chain (signal transducer gp130) as IL-6 and share numerous biological activities with this IL. We found that these four cytokines stimulated proliferation and supported the long-term growth of two out of four IL-6-dependent HMCL obtained in our laboratory. Half- maximal proliferation was obtained with cytokine concentrations ranging from 0.4 to 1.2 ng/ml for IL-11, LIF, and OM. CNTF worked at high concentrations only (90 ng/ml), but addition of soluble CNTF receptor increased sensitivity to CNTF 30-fold. The growth-promoting effect of these four cytokines was abrogated by anti-gp130 antibodies, contrary to results for anti-IL-6 receptor or anti-IL-6 antibodies. No detectable changes in the morphology and phenotype were found when myeloma cells were cultured with one of these four cytokines instead of IL-6. Concordant with their IL-6-dependent growth, the four HMCL expressed membrane IL-6R and gp130 detected by FACS analysis. LIF- binding chain gene (LIFR) was expressed only in the two HMCL responsive to LIF and OM. PMID:8145045

  16. Inhibitory Effects of PEI-RGD/125I-(αV) ASODN on Growth and Invasion of HepG2 Cells

    PubMed Central

    Cai, Haidong; Qiao, Yu; Sun, Ming; Yuan, Xueyu; Luo, Qiong; Yang, Yuehua; Yuan, Shidong; Lv, Zhongwei

    2015-01-01

    Background To investigate the in vitro inhibitory effects of PEI-RGD/125I-(αV)ASODN (PEI, polyethylenimine; RGD, Arg-Gly-Asp; ASODN, antisense oligodeoxynucleotide) on the growth and invasion of HepG2 cells. Material/Methods ASODN of the integrin αV-subunit was marked with 125I and underwent complexation with PEI-RGD, a PEI derivative. Next, PEI-RGD/125I-(αV) ASODN was introduced into HepG2 cells via receptor-mediated transfection, and its inhibition rate on HepG2 cell growth was tested using the methyl thiazolyl tetrazolium (MTT) method. The effects of PEI-RGD/125I-(αV) ASODN on HepG2 cell invasion ability were evaluated using the Boyden chamber assay. Results 1) The 125I marking rate of (αV) ASODN was 73.78±4.09%, and the radiochemical purity was 96.68±1.38% (greater than 90% even after a 48-h incubation period at 37°C), indicating high stability. 2) The cytotoxicity assays showed that the cell inhibition rates did not differ significantly between the PEI-RGD/125I-(αV)ASODN group and the PEI-RGD/(αV) ASODN group, but they were both significantly higher than in the other groups and were positively correlated (r=0.879) with the dosage within a certain range. 3) The invasion assays showed that the inhibition rate was significantly greater in the PEI-RGD/125I-(αV) ASODN group compared to the other groups. Conclusions PEI-RGD/125I-(αV) ASODN can efficiently inhibit the growth and proliferation of HepG2 cells and can also weaken their invasive ability. PMID:26258995

  17. INHIBITORY ACTION OF CoCl2-INDUCED MCF-7 CELL HYPOXIA MODEL OF BREAST CANCER AND ITS INFLUENCE ON VASCULAR ENDOTHELIAL GROWTH FACTOR.

    PubMed

    Zhang, M; Ma, R; Li, Q

    2015-01-01

    Breast cancer, a malignant tumor frequently occurring in females, is traditionally treated with excision. In the search for a new treatment, we analyzed the influence of CoCl2 on MCF-7 cell proliferation of breast cancer and tumor angiogenesis factor and discussed the results. Having applied CoCl2 as chemical hypoxia-induced agent, in-vitro MCF-7 cell hypoxia model of breast cancer was established, after which methyl thiazolyl tetrazolium (MTT) staining was performed in detecting inhibitory action of CoCl2 to proliferation of MCF-7 cells cultured in-vitro, and inverted phase contrast microscope was adopted to observe morphological changes of MCF-7 cell in hypoxia model. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) was made to determine how CoCl2 influences mRNA expression changes of hypoxia inducible factor-1α (HIF-1α), chemokine receptor-4 (CXCR4) and vascular endothelial growth factor (VEGF) in MCF-7 cells. Western blot was designed to study and record data on the influence of CoCl2 on protein expression changes of HIF-1α, CXCR4 and VEGF. As a result, CoCl2 was proved to control MCF-7 cell proliferation and increase expression of HIF-1α, CXCR4 and VEGF.

  18. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway.

    PubMed

    Su, Ke; Wang, Chun-Fang; Zhang, Ying; Cai, Yu-Jie; Zhang, Yan-Yan; Zhao, Qian

    2016-08-01

    Cervical cancer has been the fourth most common cancer killing many women across the world. Carnosic acid (CA), as a phenolic diterpene, has been suggested to against cancer, exerting protective effects associated with inflammatory cytokines. It is aimed to demonstrate the therapeutic role of carnosic acid against cervical cancer and indicate its underlying molecular mechanisms. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was performed to assess the possible anti-proliferative effects of carnosic acid. And also, colony formation was used to further estimate carnosic acid's ability in suppressing cervical cancer cells proliferation. Flow cytometry assays were performed here to indicate the alterations of cervical cancer cells cycle and the development of apoptosis. Western blot assays and RT-PCR were also applied to clarify the apoptosis-associated signaling pathways affected by reactive oxygen species (ROS) generation. And immunofluorescence was used to detect ROS-positive cells. In vivo experiments, CaSki xenograft model samples of nude mice were involved to further elucidate the effects of carnosic acid. In our results, we found that carnosic acid exerted anti-tumor ability in vitro supported by up-regulation of apoptosis and ROS production in cervical cancer cells. Also, acceleration of ROS led to the phospharylation of (c-Jun N-terminal kinase (JNK) and its-related signals, as well as activation of Endoplasmic Reticulum (ER) stress, promoting the progression of apoptosis via stimulating Caspase3 expression. The development and growth of xenograft tumors in nude mice were found to be inhibited by the administration of carnosic acid for five weeks. And the suppressed role of carnosic acid in proliferation of cervical cancer cells and apoptosis of nude mice with tumor tissues were observed in our study. Taken together, our data indicated that carnosic acid resulted in apoptosis both in vitro and vivo experiments via promoting ROS and

  19. Preparation of Black Hoof medicinal mushroom Phellinus linteus (Berk. et M.A. Curt.) Teng (Aphyllophoromycetideae) beta-glucan sulfate and in vitro tumor cell growth inhibitory activity.

    PubMed

    Bae, In Young; Shin, Ji-Yoon; Lee, Hyeon Gyu

    2011-01-01

    Polysaccharide beta-glucans were extracted from the medicinal mushroom Phellinus linteus (Hymenochaetaceae, Aphyllophoromycetideae) and subjected to sulfation. Chemical modification of the beta-glucan was confirmed by structural analysis, and its biological properties were compared with those of native beta-glucan. The results of Fourier transform infrared spectroscopy and elemental analysis indicated that successive preparation of the sulfated derivative yielded a degree of substitution of 0.47. Nitric oxide production measured by the bronchoalveolar lavage (BAL) experiments increased 1.5-fold after sulfation. In addition, the introduction of sulfate groups into the beta-glucan chains improved in vitro growth inhibitory activity against SNU-C2A cells. Therefore, sulfated beta-glucan extracted from Ph. linteus may be beneficial for immune support due to its incorporation of functional groups into its polymer structure.

  20. Identification of Estrogen Receptor Dimer Selective Ligands Reveals Growth-Inhibitory Effects on Cells That Co-Express ERα and ERβ

    PubMed Central

    Powell, Emily; Shanle, Erin; Brinkman, Ashley; Li, Jun; Keles, Sunduz; Wisinski, Kari B.; Huang, Wei; Xu, Wei

    2012-01-01

    Estrogens play essential roles in the progression of mammary and prostatic diseases. The transcriptional effects of estrogens are transduced by two estrogen receptors, ERα and ERβ, which elicit opposing roles in regulating proliferation: ERα is proliferative while ERβ is anti-proliferative. Exogenous expression of ERβ in ERα-positive cancer cell lines inhibits cell proliferation in response to estrogen and reduces xenografted tumor growth in vivo, suggesting that ERβ might oppose ERα's proliferative effects via formation of ERα/β heterodimers. Despite biochemical and cellular evidence of ERα/β heterodimer formation in cells co-expressing both receptors, the biological roles of the ERα/β heterodimer remain to be elucidated. Here we report the identification of two phytoestrogens that selectively activate ERα/β heterodimers at specific concentrations using a cell-based, two-step high throughput small molecule screen for ER transcriptional activity and ER dimer selectivity. Using ERα/β heterodimer-selective ligands at defined concentrations, we demonstrate that ERα/β heterodimers are growth inhibitory in breast and prostate cells which co-express the two ER isoforms. Furthermore, using Automated Quantitative Analysis (AQUA) to examine nuclear expression of ERα and ERβ in human breast tissue microarrays, we demonstrate that ERα and ERβ are co-expressed in the same cells in breast tumors. The co-expression of ERα and ERβ in the same cells supports the possibility of ERα/β heterodimer formation at physio- and pathological conditions, further suggesting that targeting ERα/β heterodimers might be a novel therapeutic approach to the treatment of cancers which co-express ERα and ERβ. PMID:22347418

  1. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: a potential local regulator of IGF action.

    PubMed

    Mohan, S; Bautista, C M; Wergedal, J; Baylink, D J

    1989-11-01

    Inhibitory insulin-like growth factor binding protein (In-IGF-BP) has been purified to homogeneity from medium conditioned by TE89 human osteosarcoma cells by two different methods using Sephadex G-100 gel filtration, FPLC Mono Q ion-exchange, HPLC C4 reverse-phase, HPLC CN reverse-phase, and affinity chromatographies. In-IGF-BP thus purified appeared to be homogeneous and unique by the following criteria. (i) N-terminal sequence analysis yielded a unique sequence (Asp-Glu-Ala-Ile-His-Cys-Pro-Pro-Glu-Ser-Glu-Ala-Lys-Leu-Ala). (ii) Amino acid composition of In-IGF-BP revealed marked differences with the amino acid compositions of other known BPs. (iii) In-IGF-BP exhibited a single band with a molecular mass of 25 kDa under reducing conditions on sodium dodecyl sulfate/polyacrylamide gels. IGF-I and IGF-II but not insulin displaced the binding of 125I-labeled IGF-I or 125I-labeled IGF-II binding to In-IGF-BP. In-IGF-BP inhibited basal, IGF-stimulated bone cell proliferation and serum-stimulated bone cell proliferation. Forskolin increased synthesis of In-IGF-BP in TE85 human osteosarcoma cells in a dose-dependent manner. Based on these findings, we conclude that In-IGF-BP is a protein that has a unique sequence and significant biological actions on bone cells.

  2. Comparative study of the growth-inhibitory and apoptosis-inducing activities of black tea theaflavins and green tea catechin on murine myeloid leukemia cells.

    PubMed

    Lung, Hong-Lok; Ip, Wai-Ki; Chen, Zhen-Yu; Mak, Nai-Ki; Leung, Kwok-Nam

    2004-03-01

    Among the black tea polyphenols, theaflavins are generally considered to be the more effective components for the inhibition of carcinogenesis. In this study, we attempted to compare the growth-inhibitory and apoptosis-inducing activities of the four black tea theaflavins (TF-1, TF-2A, TF-2B and TF-3) with the major green tea catechin epigallocatechin-3-gallate (EGCG) on the murine myeloid leukemia WEHI-3B JCS cells. All the four black tea theaflavins were shown to exert potent anti-proliferative and cytotoxic effects on the leukemia WEHI-3B JCS cells in a dose-dependent manner. The observed anti-proliferative and cytotoxic effects were in the following order of potency: EGCG > TF-2B > TF-3 > TF-2A > TF-1. In addition, all theaflavins were capable of inducing apoptosis in the leukemia WEHI-3B JCS cells. Among the four theaflavins tested, TF-2B and TF-3 were found to be slightly more potent in inducing apoptosis of the WEHI-3B JCS cells than that of TF-2A and TF-1 but were comparable to the major green tea epicatechin EGCG. More interestingly, both TF-2B and TF-3 were found to be much more effective than TF-1 and TF-2B in reducing both the in vitro clonogenicity and in vivo tumorigenicity of the WEHI-3B JCS cells, suggesting that these two black tea theaflavins might represent potential candidates for the treatment of some forms of leukemia.

  3. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: A potential local regulator of IGF action

    SciTech Connect

    Mohan, S.; Bautista, C.M.; Wergedal, J.; Baylink, D.J. )

    1989-11-01

    Inhibitory insulin-like growth factor binding protein (In-IGF-BP) has been purified to homogeneity from medium conditioned by TE89 human osteosarcoma cells by two different methods using Sephadex G-100 gel filtration, FPLC Mono Q ion-exchange, HPLC C{sub 4} reverse-phase, HPLC CN reverse-phase and affinity chromatographies. In-IGF-BP thus purified appeared to be homogeneous and unique by the following criteria. (i) N-terminal sequence analysis yielded a unique sequence (Asp-Glu-Ala-Ile-His-Cys-Pro-Pro-Glu-Ser-Glu-Ala-Lys-Leu-Ala). (ii) Amino acid composition of In-IGF-BP revealed marked differences with the amino acid compositions of other known PBs. (iii) In-IGF-BP exhibited a single band with molecular mass of 25 kDa under reducing conditions on sodium dodecyl sulfate/polyacrylamide gels. IGF-I and IGF-II but not insulin displaced the binding of {sup 125}I-labeled IGF-I or {sup 125}I-labeled IGF-II binding to In-IGF-BP. In-IGF-BP inhibited basal, IGF-stimulated bone cell proliferation and serum-stimulated bone cell proliferation. Forskolin increases synthesis of In-IGF-BP in TE85 human osteosarcoma cells in a dose-dependent manner. Based on these findings, the authors conclude that In-IGF-BP is a protein that has a unique sequence and significant biological actions on bone cells.

  4. Inhibitory effect of BCG cell-wall skeletons (BCG-CWS) emulsified in squalane on tumor growth and metastasis in mice.

    PubMed

    Yoo, Yung Choon; Hata, Katsusuke; Lee, Kyung Bok; Azuma, Ichiro

    2002-08-01

    The antimetastatic effect of BCG-CWS, which was emulsified in an oil-in-water form with either Drakeol 6VR mineral oil (BCG-CWS/DK) or squalane (BCG-CWS/SQA), on lung metastasis produced by highly metastatic murine tumor cells, Colon26-M3.1 carcinoma cells and B16-BL6 melanoma cells, was investigated in syngeneic mice. An intravenous (i.v.) administration of BCG-CWS (100 mg/mouse) 1 day after tumor inoculation significantly inhibited tumor metastasis of both Colon26-M3.1 carcinoma and B16-BL6 melanoma cells in experimental lung metastasis models. No differences in the antitumor activity of the two oil-based formulations (BCG-CWS/DK and BCG-CWS/SQA) were obverved. However, BCG-CWS/SQA administered through subcutaneous (s.c.) route was shown to be effective only when it was consecutively injected (3 times) after tumor inoculation. An in vivo analysis for tumor-induced angiogenesis showed that a single i.v. administration of BCG-CWS/SQA inhibited the number of tumor-induced blood vessels and suppressed tumor growth. Furthermore, the multiple administration of BCG-CWS/SQA given at on week intervals led to a significant reduction in spontaneous lung metastasis of B16-BL6 melanoma cells in a spontaneous metastasis model. These results suggest that BCG-CWS emulsified with squalane is a potent inhibitory agent of lung metastasis, and that the antimetastatic effect of BCG-CWS is related to the suppression of tumor growth and the inhibition of tumor-induced angiogenesis.

  5. Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor-positive and HER2-overexpressing human breast cancer cells.

    PubMed

    Mai, Zhiming; Blackburn, George L; Zhou, Jin-Rong

    2007-07-01

    Although tamoxifen (TAM) is used for the front-line treatment and prevention of estrogen receptor-positive (ER+) breast tumors, nearly 40% of estrogen-dependent breast tumors do not respond to TAM treatment. Moreover, the positive response is usually of short duration, and most tumors eventually develop TAM-resistance. Overexpression of HER2 gene is associated with TAM-resistance of breast tumor, and suppression of HER2 expression enhances the TAM activity. Soy isoflavone genistein has been shown to have anti-cancer activities and suppress expression of HER2 and ERalpha. The objective of this study was to test the hypothesis that genistein may sensitize the response of ER+ and HER2-overexpressing breast cancer cells to TAM treatment. The combination treatment of TAM and genistein inhibited the growth of ER+/HER2-overexpressing BT-474 human breast cancer cells in a synergistic manner in vitro. Determination of cellular markers indicated that this synergistic inhibitory effect might be contributed in part from combined effects on cell-cycle arrest at G(1) phase and on induction of apoptosis. Further determination of the molecular markers showed that TAM and genistein combination synergistically induced BT-474 cell apoptosis in part by synergistic downregulation of the expression of survivin, one of the apoptotic effectors, and downregulation of EGFR, HER2, and ERalpha expression. Our research may provide a novel approach for the prevention and/or treatment of TAM insensitive/resistant human breast cancer, and warrants further in vivo studies to verify the efficacy of genistein and TAM combination on the growth of ER+/HER2-overexpressing breast tumors and to elucidate the in vivo mechanisms of synergistic actions. (c) 2007 Wiley-Liss, Inc.

  6. Genistein Sensitizes Inhibitory Effect of Tamoxifen on the Growth of Estrogen Receptor-Positive and HER2-Overexpressing Human Breast Cancer Cells

    PubMed Central

    Mai, Zhiming; Blackburn, George L.; Zhou, Jin-Rong

    2009-01-01

    Although tamoxifen (TAM) is used for the front-line treatment and prevention of estrogen receptor-positive (ER+) breast tumors, nearly 40% of estrogen-dependent breast tumors do not respond to TAM treatment. Moreover, the positive response is usually of short duration, and most tumors eventually develop TAM-resistance. Overexpression of HER2 gene is associated with TAM-resistance of breast tumor, and suppression of HER2 expression enhances the TAM activity. Soy isoflavone genistein has been shown to have anti-cancer activities and suppress expression of HER2 and ERα. The objective of this study was to test the hypothesis that genistein may sensitize the response of ER+ and HER2-overexpressing breast cancer cells to TAM treatment. The combination treatment of TAM and genistein inhibited the growth of ER+/HER2-overexpressing BT-474 human breast cancer cells in a synergistic manner in vitro. Determination of cellular markers indicated that this synergistic inhibitory effect might be contributed in part from combined effects on cell-cycle arrest at G1 phase and on induction of apoptosis. Further determination of the molecular markers showed that TAM and genistein combination synergistically induced BT-474 cell apoptosis in part by synergistic downregulation of the expression of survivin, one of the apoptotic effectors, and downregulation of EGFR, HER2, and ERα expression. Our research may provide a novel approach for the prevention and/or treatment of TAM insensitive/resistant human breast cancer, and warrants further in vivo studies to verify the efficacy of genistein and TAM combination on the growth of ER+/HER2-overexpressing breast tumors and to elucidate the in vivo mechanisms of synergistic actions. PMID:17295235

  7. Predictors of Longitudinal Growth in Inhibitory Control in Early Childhood

    ERIC Educational Resources Information Center

    Moilanen, Kristin L.; Shaw, Daniel S.; Dishion, Thomas J.; Gardner, Frances; Wilson, Melvin

    2010-01-01

    In the current study, we examined latent growth in 731 young children's inhibitory control from the ages of two to four years, and whether demographic characteristics or parenting behaviors were related to initial levels and growth in inhibitory control. As part of an ongoing longitudinal evaluation of the family check-up, children's inhibitory…

  8. Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27

    PubMed Central

    BAKIREL, Tülay; ALKAN, Fulya Üstün; ÜSTÜNER, Oya; ÇINAR, Suzan; YILDIRIM, Funda; ERTEN, Gaye; BAKIREL, Utku

    2016-01-01

    Cyclooxygenase (COX) inhibitors have been shown to exert anti-angiogenic and anti-tumor activities on many types of malignant tumors. These anticancer properties make it worthwhile to examine the possible benefit of combining COX inhibitors with other anti-cancer agents. In the present study, we evaluated the potential of deracoxib (DER) in potentiating antitumor activity of doxorubicin (DOX) in canine mammary carcinoma cells (CMT-U27). DER (50–250 µM) enhanced the antiproliferative activity of DOX by reducing the IC50 (approximately 3- to 3.5 fold). Interaction analysis of the data showed that combinations of DOX at 0.9 µM with DER (100–250 µM) produced synergism in the CMT-U27 cell line, with a ratio index ranging from 1.98 to 2.33. In additional studies identifying the mechanism of observed synergistic effect, we found that DER strongly potentiated DOX-caused G0/G1 arrest in cell cycle progression. Also, DER (100–250 µM) augmented apoptosis induction with approximately 1.35- and 1.37- fold increases in apoptotic response caused by DOX in the cells. DER enhanced the antiproliferative effect of DOX in conjunction with induction of apoptosis by modulation of Bcl-2 expression and changes in the cell cycle of the CMT-U27 cell line. Although the exact molecular mechanism of the alterations in the cell cycle and apoptosis observed with DER and DOX combinations require further investigations, the results suggest that the synergistic effect of DOX and DER combinations in CMT therapy may be achieved at relatively lower doses of DOX with lesser side effects. Therefore, combining DER with DOX may prove beneficial in the clinical treatment of canine mammary cancer. PMID:26822118

  9. Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27.

    PubMed

    Bakirel, Tülay; Alkan, Fulya Üstün; Üstüner, Oya; Çinar, Suzan; Yildirim, Funda; Erten, Gaye; Bakirel, Utku

    2016-05-03

    Cyclooxygenase (COX) inhibitors have been shown to exert anti-angiogenic and anti-tumor activities on many types of malignant tumors. These anticancer properties make it worthwhile to examine the possible benefit of combining COX inhibitors with other anti-cancer agents. In the present study, we evaluated the potential of deracoxib (DER) in potentiating antitumor activity of doxorubicin (DOX) in canine mammary carcinoma cells (CMT-U27). DER (50-250 µM) enhanced the antiproliferative activity of DOX by reducing the IC50 (approximately 3- to 3.5 fold). Interaction analysis of the data showed that combinations of DOX at 0.9 µM with DER (100-250 µM) produced synergism in the CMT-U27 cell line, with a ratio index ranging from 1.98 to 2.33. In additional studies identifying the mechanism of observed synergistic effect, we found that DER strongly potentiated DOX-caused G0/G1 arrest in cell cycle progression. Also, DER (100-250 µM) augmented apoptosis induction with approximately 1.35- and 1.37- fold increases in apoptotic response caused by DOX in the cells. DER enhanced the antiproliferative effect of DOX in conjunction with induction of apoptosis by modulation of Bcl-2 expression and changes in the cell cycle of the CMT-U27 cell line. Although the exact molecular mechanism of the alterations in the cell cycle and apoptosis observed with DER and DOX combinations require further investigations, the results suggest that the synergistic effect of DOX and DER combinations in CMT therapy may be achieved at relatively lower doses of DOX with lesser side effects. Therefore, combining DER with DOX may prove beneficial in the clinical treatment of canine mammary cancer.

  10. Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells

    PubMed Central

    Yamashita, Ryo; Sato, Mitsuo; Kakumu, Tomohiko; Hase, Tetsunari; Yogo, Naoyuki; Maruyama, Eiichi; Sekido, Yoshitaka; Kondo, Masashi; Hasegawa, Yoshinori

    2015-01-01

    Both pro- and anti-oncogenic roles of miR-221 and miR-222 microRNAs are reported in several types of human cancers. A previous study suggested their oncogenic role in invasiveness in lung cancer, albeit only one cell line (H460) was used. To further evaluate involvement of miR-221 and miR-222 in lung cancer, we investigated the effects of miR-221 and miR-222 overexpression on six lung cancer cell lines, including H460, as well as one immortalized normal human bronchial epithelial cell line, HBEC4. miR-221 and miR-222 induced epithelial-to-mesenchymal transition (EMT)-like changes in a minority of HBEC4 cells but, unexpectedly, both the microRNAs rather suppressed their invasiveness. Consistent with the prior report, miR-221 and miR-222 promoted growth in H460; however, miR-221 suppressed growth in four other cell lines with no effects in one, and miR-222 suppressed growth in three cell lines but promoted growth in two. These are the first results to show tumor-suppressive effects of miR-221 and miR-222 in lung cancer cells, and we focused on clarifying the mechanisms. Cell cycle and apoptosis analyses revealed that growth suppression by miR-221 and miR-222 occurred through intra-S-phase arrest and/or apoptosis. Finally, lung cancer cell lines transfected with miR-221 or miR-222 became more sensitive to the S-phase targeting drugs, possibly due to an increased S-phase population. In conclusion, our data are the first to show tumor-suppressive effects of miR-221 and miR-222 on lung cancer, warranting testing their potential as therapeutics for the disease. PMID:25641933

  11. Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells.

    PubMed

    Yamashita, Ryo; Sato, Mitsuo; Kakumu, Tomohiko; Hase, Tetsunari; Yogo, Naoyuki; Maruyama, Eiichi; Sekido, Yoshitaka; Kondo, Masashi; Hasegawa, Yoshinori

    2015-04-01

    Both pro- and anti-oncogenic roles of miR-221 and miR-222 microRNAs are reported in several types of human cancers. A previous study suggested their oncogenic role in invasiveness in lung cancer, albeit only one cell line (H460) was used. To further evaluate involvement of miR-221 and miR-222 in lung cancer, we investigated the effects of miR-221 and miR-222 overexpression on six lung cancer cell lines, including H460, as well as one immortalized normal human bronchial epithelial cell line, HBEC4. miR-221 and miR-222 induced epithelial-to-mesenchymal transition (EMT)-like changes in a minority of HBEC4 cells but, unexpectedly, both the microRNAs rather suppressed their invasiveness. Consistent with the prior report, miR-221 and miR-222 promoted growth in H460; however, miR-221 suppressed growth in four other cell lines with no effects in one, and miR-222 suppressed growth in three cell lines but promoted growth in two. These are the first results to show tumor-suppressive effects of miR-221 and miR-222 in lung cancer cells, and we focused on clarifying the mechanisms. Cell cycle and apoptosis analyses revealed that growth suppression by miR-221 and miR-222 occurred through intra-S-phase arrest and/or apoptosis. Finally, lung cancer cell lines transfected with miR-221 or miR-222 became more sensitive to the S-phase targeting drugs, possibly due to an increased S-phase population. In conclusion, our data are the first to show tumor-suppressive effects of miR-221 and miR-222 on lung cancer, warranting testing their potential as therapeutics for the disease.

  12. Predictors of Longitudinal Growth in Inhibitory Control in Early Childhood.

    PubMed

    Moilanen, Kristin L; Shaw, Daniel S; Dishion, Thomas J; Gardner, Frances; Wilson, Melvin

    2009-02-18

    In the current study, we examined latent growth in 731 young children's inhibitory control from ages 2 to 4, and whether demographic characteristics or parenting behaviors were related to initial levels and growth in inhibitory control. As part of an ongoing longitudinal evaluation of the Family Check-Up (FCU), children's inhibitory control was assessed yearly at ages 2, 3, and 4. Inhibitory control was initially low and increased linearly to age 4. High levels of harsh parenting and male gender were associated with low initial status in inhibitory control. High levels of supportive parenting were associated with faster growth. Extreme family poverty and African American ethnicity were also associated with slower growth. The results highlight parenting as a target for early interventions in contexts of high socioeconomic risk.

  13. Purine analogs sensitize the multidrug resistant cell line (NCI-H460/R) to doxorubicin and stimulate the cell growth inhibitory effect of verapamil.

    PubMed

    Pesić, Milica; Podolski, Ana; Rakić, Ljubisa; Ruzdijić, Sabera

    2010-08-01

    The resistant cell line NCI-H460/R and its counterpart NCI-H460 were used to investigate the ability of purine analogs to overcome multidrug resistance (MDR) that seriously limit the efficacy of lung cancer regimens with chemotherapeutic agents. Two purine analogs, sulfinosine (SF) and 8-Cl-cAMP, exerted dose-dependent effects on cell growth in both parental and resistant cell lines. They significantly decreased mdr1 expression in NCI-H460/R cells. Low concentrations (1 microM) of SF and 8-Cl-cAMP in combination with doxorubicin (DOX) exerted synergistic growth inhibition in both cell lines. Pretreatment with SF and 8-Cl-cAMP improved the sensitivity to DOX more than verapamil (VER), the standard modulator of MDR. The increased accumulation of DOX observed after the treatment with SF and 8-Cl-cAMP was consistent with the results obtained with VER. VER stimulated the effect of 8-Cl-cAMP on DOX cytotoxicity and mdr1 expression. Combinations of either SF or 8-Cl-cAMP with VER at clinically acceptable concentrations exhibited synergistic effects on cell growth inhibition in the resistant cell line. SF and 8-Cl-cAMP modulated MDR in NCI-H460/R cells, especially when applied before DOX administration. This feature, together with their ability to reverse MDR, renders the purine analogs (in combination with VER) as potential candidates for improving the clinical activity of existing lung cancer therapeutics.

  14. Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells

    PubMed Central

    Sarkar, Shayan; Jain, Sumeet; Rai, Vineeta; Sahoo, Dipak K.; Raha, Sumita; Suklabaidya, Sujit; Senapati, Shantibhusan; Rangnekar, Vivek M.; Maiti, Indu B.; Dey, Nrisingha

    2015-01-01

    The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5′ AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-κB suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era. PMID:26500666

  15. Inhibitory effect of six green tea catechins and caffeine on the growth of four selected human tumor cell lines.

    PubMed

    Valcic, S; Timmermann, B N; Alberts, D S; Wächter, G A; Krutzsch, M; Wymer, J; Guillén, J M

    1996-06-01

    Green tea is an aqueous infusion of dried unfermented leaves of Camellia sinensis (family Theaceae) from which numerous biological activities have been reported including antimutagenic, antibacterial, hypocholesterolemic, antioxidant, antitumor and cancer preventive activities. From the aqueous-alcoholic extract of green tea leaves, six compounds (+)-gallocatechin (GC), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG) and caffeine, were isolated and purified. Together with (+)-catechin, these compounds were tested against each of four human tumor cells lines (MCF-7 breast carcinoma, HT-29 colon carcinoma, A-427 lung carcinoma and UACC-375 melanoma). The three most potent green tea components against all four tumor cell lines were EGCG, GC and EGC. EGCG was the most potent of the seven green tea components against three out of the four cell lines (i.e. MCF-7 breast cancer, HT-29 colon cancer and UACC-375 melanoma). On the basis of these extensive in vitro studies, it would be of considerable interest to evaluate all three of these components in comparative preclinical in vivo animal tumor model systems before final decisions are made concerning which of these potential chemopreventive drugs should be taken into broad clinical trials.

  16. Characterization, Purification of Poncirin from Edible Citrus Ougan (Citrus reticulate cv. Suavissima) and Its Growth Inhibitory Effect on Human Gastric Cancer Cells SGC-7901

    PubMed Central

    Zhu, Xiaoyan; Luo, Fenglei; Zheng, Yixiong; Zhang, Jiukai; Huang, Jianzhen; Sun, Chongde; Li, Xian; Chen, Kunsong

    2013-01-01

    Poncirin is a bitter flavanone glycoside with various biological activities. Poncirin was isolated from four different tissues (flavedo, albedo, segment membrane, and juice sac) of Ougan fruit (Citrus reticulate cv. Suavissima). The highest content of poncirin was found in the albedo of Ougan fruit (1.37 mg/g DW). High speed counter-current chromatography (HSCCC) combined with D101 resin chromatography was utilized for the separation and purification of poncirin from the albedo of Ougan fruit. After this two-step purification, poncirin purity increased from 0.14% to 96.56%. The chemical structure of the purified poncirin was identified by both HPLC-PDA and LC-MS. Poncirin showed a significant in vitro inhibitory effect on the growth of the human gastric cancer cells, SGC-7901, in a dose-dependent manner. Thus, poncirin from Ougan fruit, may be beneficial for gastric cancer prevention. The purification method demonstrated here will be useful for further studies on the pharmacological mechanism of poncirin activity, as well as for guiding the consumption of Ougan fruit. PMID:23615464

  17. Cell growth inhibitory action of an unusual labdane diterpene, 13-epi-sclareol in breast and uterine cancers in vitro.

    PubMed

    Sashidhara, Koneni V; Rosaiah, Jammikuntla N; Kumar, Abdhesh; Bid, Hemant K; Konwar, Rituraj; Chattopadhyay, Naibedya

    2007-11-01

    In the course of our studies on the isolation of bioactive compounds from the roots of Coleus forskohlii, a traditional herb in India, rare 13-epi-sclareol has been isolated, and its structure determined by extensive 2D NMR. This is the first report of isolation from this plant. The isolated compound showed antiproliferative activity in breast and uterine cancers in vitro. The antiproliferative activity of 13-epi-sclareol is comparable to Tamoxifen in terms of IC50 and also showed concentration dependent increased apoptotic changes in the breast cancer cell line, MCF-7. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. E-Combretastatin and E-resveratrol structural modifications: antimicrobial and cancer cell growth inhibitory beta-E-nitrostyrenes.

    PubMed

    Pettit, Robin K; Pettit, George R; Hamel, Ernest; Hogan, Fiona; Moser, Bryan R; Wolf, Sonja; Pon, Sandy; Chapuis, Jean-Charles; Schmidt, Jean M

    2009-09-15

    As part of a broad-based SAR investigation of E-resveratrol (strong sirtuin activator and antineoplastic) and the anticancer vascular-targeting combretastatin-type stilbenes, a series of twenty-three beta-E-nitrostyrenes was synthesized in order to evaluate potential antineoplastic, antitubulin, and antimicrobial activities. The beta-E-nitrostyrenes evaluated ranged from monosubstituted phenols to trimethoxy and 3-methoxy-4,5-methylenedioxy derivatives. Two of the beta-nitrostyrenes were synthesized as water-soluble sodium phosphate derivatives (4t, 4v). All except four (4r, 4s, 4t, 4u) of the series significantly inhibited a minipanel of human cancer cell lines. All but eight led to an IC(50) of <10 microM for inhibition of tubulin polymerization, and all except three (4l, 4t, 4v) displayed antimicrobial activity.

  19. Structure-activity relationships of hybrid annonaceous acetogenins: powerful growth inhibitory effects of their connecting groups between heterocycle and hydrophobic carbon chain bearing THF ring on human cancer cell lines.

    PubMed

    Kojima, Naoto; Fushimi, Tetsuya; Tatsukawa, Takahiro; Yoshimitsu, Takehiko; Tanaka, Tetsuaki; Yamori, Takao; Dan, Shingo; Iwasaki, Hiroki; Yamashita, Masayuki

    2013-05-01

    Five novel hybrid molecules of annonaceous acetogenins and insecticides targeting mitochondrial complex I were synthesized and their growth inhibitory activities against 39 human cancer cell lines were investigated. It was revealed that the connecting group between the N-methylpyrazole part and the hydrophobic alkyl chain bearing the THF ring influenced their biological activities significantly. Amide-connected analog 2, in particular, showed selective and very potent activity (<10 nM) against some cancer cell lines.

  20. Elevated serum levels of macrophage migration inhibitory factor and stem cell growth factor β in patients with idiopathic and systemic sclerosis associated pulmonary arterial hypertension.

    PubMed

    Stefanantoni, K; Sciarra, I; Vasile, M; Badagliacca, R; Poscia, R; Pendolino, M; Alessandri, C; Vizza, C D; Valesini, G; Riccieri, V

    2015-03-31

    Pulmonary arterial hypertension (PAH) can be idiopathic or secondary to autoimmune diseases, and it represents one of the most threatening complications of systemic sclerosis (SSc). Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with proinflammatory functions that appears to be involved in the pathogenesis of hypoxia-induced PH. In SSc patients, high serum levels of MIF have been associated with the development of ulcers and PAH. Stem cell growth factor β (SCGF β) is a human growth factor that, together with MIF, is involved in the pathogenesis of chronic spinal cord injury. The aim of our study was to measure serum levels of MIF in patients with idiopathic and SSc-associated PAH. We enrolled 13 patients with idiopathic PAH and 15 with SSc-associated PAH. We also selected 14 SSc patients without PAH and 12 normal healthy controls, matched for sex and age. PAH was confirmed by right hearth catheterism (mPAP>25 mmHg). MIF and SCGF β levels were measured by ELISA. We found significantly higher circulating levels of MIF and of SCGF β in patients with idiopathic PAH (P=0.03 and P=0.004) and with PAH secondary to SSc (P=0.018 and P=0.023) compared to SSc patients without PAH. Higher levels of MIF were found in those patients with an higher New York Heart Association (NYHA) class (P=0.03). We can hypothesize that MIF and SCGF β are able to play a role in PAH, both idiopathic or secondary, and in the future they may be evaluated as useful biomarkers and prognostic factors for this serious vascular disease.

  1. Dissociation of the genotoxic and growth inhibitory effects of selenium.

    PubMed

    Lu, J; Jiang, C; Kaeck, M; Ganther, H; Vadhanavikit, S; Ip, C; Thompson, H

    1995-07-17

    The effects of forms of selenium compounds that enter the cellular selenium metabolic pathway at different points were investigated in a mouse mammary carcinoma cell line. The goal of these experiments was to determine if the genotoxicity of selenium, defined as its ability to induce DNA single-strand breaks, could be dissociated from activities proposed to account for its cancer inhibitory activity. The results demonstrated that growth inhibition, measured as inhibition of cell proliferation and induction of cell death, was induced by all the forms of selenium evaluated. However, sodium selenite and sodium selenide, which are metabolized predominantly to hydrogen selenide, caused the rapid induction of DNA single-strand breaks as an early event that preceded growth inhibition. Interestingly methylselenocyanate and Se-methylselenocysteine, which are initially metabolized predominantly to methylselenol, induced growth inhibition in the absence of DNA single-strand breakage. Differences in the time course of selenium retention, in the occurrence of membrane damage, and in the induction of morphological changes by selenite versus methylselenocyanate were noted. Collectively, these data indicate that different pathways affecting cell proliferation and cell death are induced depending on whether selenium undergoes metabolism predominantly to hydrogen selenide or to methylselenol.

  2. Recombinant human IgG antibodies recognizing distinct extracellular domains of EGF receptor exhibit different degrees of growth inhibitory effects on human A431 cancer cells.

    PubMed

    Chang, Chialun; Takayanagi, Atsushi; Yoshida, Tetsuhiko; Shimizu, Nobuyoshi

    2013-05-01

    Recently, we isolated 4 distinct kinds of single chain antibody against human EGF receptor (EGFR) after screening the Keio phage display scFv library by using two methods of target-guided proximity labeling. In the current study, these monovalent scFv antibodies were converted to bivalent IgGs of humanized forms (hIgGs) by recombinant technology using the specially designed expression vectors followed by protein production in CHO cells. The resulting recombinant hIgGs were examined for their binding specificity using several different transformed human BJ cell lines that express deletion mutants of EGFR, each lacking one of 4 distinct extracellular domains (L1, L2, C1 and C2). Immuno-fluorescent microscopy and immuno-precipitation assay on these cells indicated that 4 distinct kinds of hIgGs bind to one of 3 different domains (L1, C1 and C2). Then, these hIgGs were further examined for biological effects on human A431 cancer cells, which overexpress EGFR. The results indicated that hIgG38 binding to L1 and hIgG45 binding to C2 substantially suppressed the EGF-induced phosphorylation of EGFR, resulting in the growth inhibition of A431 cancer cells. On the contrary, hIgG40 binding to C1 and hIgG42 binding to another site (epitope) of C2 exhibited no such inhibitory effects. Thus, the newly produced four recombinant hIgG antibodies recognize 4 different sites (epitopes) in 3 different extracellular domains of EGFR and exhibit different biological effects on cancer cells. These characteristics are somewhat different from the currently utilized therapeutic anti-EGFR antibodies. Hence, these hIgG antibodies will be invaluable as a research tool for the detailed molecular analysis of the EGFR-mediated signal transduction mechanism and more importantly a possible application as new therapeutic agents to treat certain types of cancers.

  3. Leea indica Ethyl Acetate Fraction Induces Growth-Inhibitory Effect in Various Cancer Cell Lines and Apoptosis in Ca Ski Human Cervical Epidermoid Carcinoma Cells

    PubMed Central

    Yau Hsiung, Wong; Abdul Kadir, Habsah

    2011-01-01

    The anticancer potential of Leea indica, a Chinese medicinal plant was investigated for the first time. The crude ethanol extract and fractions (ethyl acetate, hexane, and water) of Leea indica were evaluated their cytotoxicity on various cell lines (Ca Ski, MCF 7, MDA-MB-435, KB, HEP G2, WRL 68, and Vero) by MTT assay. Leea indica ethyl acetate fraction (LIEAF) was found showing the greatest cytotoxic effect against Ca Ski cervical cancer cells. Typical apoptotic morphological changes such as DNA fragmentation and chromatin condensation were observed in LIEAF-treated cells. Early signs of apoptosis such as externalization of phosphatidylserine and disruption of mitochondrial membrane potential indicated apoptosis induction. This was further substantiated by dose- and time-dependent accumulation of sub-G1 cells, depletion of intracellular glutathione, and activation of caspase-3. In conclusion, these results suggested that LIEAF inhibited cervical cancer cells growth by inducing apoptosis and could be developed as potential anticancer drugs. PMID:21423690

  4. Leea indica Ethyl Acetate Fraction Induces Growth-Inhibitory Effect in Various Cancer Cell Lines and Apoptosis in Ca Ski Human Cervical Epidermoid Carcinoma Cells.

    PubMed

    Yau Hsiung, Wong; Abdul Kadir, Habsah

    2011-01-01

    The anticancer potential of Leea indica, a Chinese medicinal plant was investigated for the first time. The crude ethanol extract and fractions (ethyl acetate, hexane, and water) of Leea indica were evaluated their cytotoxicity on various cell lines (Ca Ski, MCF 7, MDA-MB-435, KB, HEP G2, WRL 68, and Vero) by MTT assay. Leea indica ethyl acetate fraction (LIEAF) was found showing the greatest cytotoxic effect against Ca Ski cervical cancer cells. Typical apoptotic morphological changes such as DNA fragmentation and chromatin condensation were observed in LIEAF-treated cells. Early signs of apoptosis such as externalization of phosphatidylserine and disruption of mitochondrial membrane potential indicated apoptosis induction. This was further substantiated by dose- and time-dependent accumulation of sub-G(1) cells, depletion of intracellular glutathione, and activation of caspase-3. In conclusion, these results suggested that LIEAF inhibited cervical cancer cells growth by inducing apoptosis and could be developed as potential anticancer drugs.

  5. A Peculiar Molecular Profile of Umbilical Cord-Mesenchymal Stromal Cells Drives Their Inhibitory Effects on Multiple Myeloma Cell Growth and Tumor Progression

    PubMed Central

    Ciavarella, Sabino; Caselli, Anna; Tamma, Antonella Valentina; Savonarola, Annalisa; Loverro, Giuseppe; Paganelli, Roberto; Tucci, Marco

    2015-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are under intensive investigation in preclinical models of cytotherapies against cancer, including multiple myeloma (MM). However, the therapeutic use of stromal progenitors holds critical safety concerns due to their potential MM-supporting activity in vivo. Here, we explored whether MSCs from sources other than BM, such as adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs), affect MM cell growth in comparison to either normal (nBM-MSCs) or myelomatous marrow MSCs (MM-BM-MSCs). Results from both proliferation and clonogenic assays indicated that, in contrast to nBM- and MM-BM-MSCs, both AD and particularly UC-MSCs significantly inhibit MM cell clonogenicity and growth in vitro. Furthermore, when co-injected with UC-MSCs into mice, RPMI-8226 MM cells formed smaller subcutaneous tumor masses, while peritumoral injections of the same MSC subtype significantly delayed the tumor burden growing in subcutaneous plasmocytoma-bearing mice. Finally, both microarrays and ELISA revealed different expression of several genes and soluble factors in UC-MSCs as compared with other MSCs. Our data suggest that UC-MSCs have a distinct molecular profile that correlates with their intrinsic anti-MM activity and emphasize the UCs as ideal sources of MSCs for future cell-based therapies against MM. PMID:25758779

  6. A peculiar molecular profile of umbilical cord-mesenchymal stromal cells drives their inhibitory effects on multiple myeloma cell growth and tumor progression.

    PubMed

    Ciavarella, Sabino; Caselli, Anna; Tamma, Antonella Valentina; Savonarola, Annalisa; Loverro, Giuseppe; Paganelli, Roberto; Tucci, Marco; Silvestris, Franco

    2015-06-15

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are under intensive investigation in preclinical models of cytotherapies against cancer, including multiple myeloma (MM). However, the therapeutic use of stromal progenitors holds critical safety concerns due to their potential MM-supporting activity in vivo. Here, we explored whether MSCs from sources other than BM, such as adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs), affect MM cell growth in comparison to either normal (nBM-MSCs) or myelomatous marrow MSCs (MM-BM-MSCs). Results from both proliferation and clonogenic assays indicated that, in contrast to nBM- and MM-BM-MSCs, both AD and particularly UC-MSCs significantly inhibit MM cell clonogenicity and growth in vitro. Furthermore, when co-injected with UC-MSCs into mice, RPMI-8226 MM cells formed smaller subcutaneous tumor masses, while peritumoral injections of the same MSC subtype significantly delayed the tumor burden growing in subcutaneous plasmocytoma-bearing mice. Finally, both microarrays and ELISA revealed different expression of several genes and soluble factors in UC-MSCs as compared with other MSCs. Our data suggest that UC-MSCs have a distinct molecular profile that correlates with their intrinsic anti-MM activity and emphasize the UCs as ideal sources of MSCs for future cell-based therapies against MM.

  7. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1{alpha} expression

    SciTech Connect

    Xu, Wei; Guo, Ting; Zhang, Yan; Jiang, Xiaohong; Zhang, Yongxian; Zen, Ke; Yu, Bo; Zhang, Chen-Yu

    2011-05-01

    Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPAR{gamma}) coactivator-1 alpha (PGC-1{alpha}) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1{alpha} in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1{alpha} expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1{alpha} mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1{alpha} expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1{alpha} by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1{alpha} had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1{alpha} decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPAR{gamma} activation by a PPAR{gamma} antagonist GW9662 abolished the suppressive effects of PGC-1{alpha} on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1{alpha} were enhanced by a PPAR{gamma} agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1{alpha} expression. PGC-1{alpha} suppresses PDGF-induced VSMC migration through PPAR{gamma} coactivation and, consequently, p38 MAPK inhibition.

  8. Growth Inhibitory Effect of (E)-2,4-bis(p-hydroxyphenyl)-2-Butenal Diacetate through Induction of Apoptotic Cell Death by Increasing DR3 Expression in Human Lung Cancer Cells.

    PubMed

    Lee, Ung-Soo; Ban, Jung Ok; Yeon, Eung Tae; Lee, Hee Pom; Udumula, Venkatareddy; Ham, Young Wan; Hong, Jin Tae

    2012-11-01

    The Maillard Reaction Products (MRPs) are chemical compounds which have been known to be effective in chemoprevention. Death receptors (DR) play a central role in directing apoptosis in several cancer cells. In our previous study, we demonstrated that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal, a MRP product, inhibited human colon cancer cell growth by inducing apoptosis via nuclear factor-κB (NF-κB) inactivation and G2/M phase cell cycle arrest. In this study, (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate, a new (E)-2,4-bis(p-hydroxyphenyl)-2-butenal derivative, was synthesized to improve their solubility and stability in water and then evaluated against NCI-H460 and A549 human lung cancer cells. (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate reduced the viability in both cell lines in a time and dose-dependent manner. We also found that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate increased apoptotic cell death through the upregulation of the expression of death receptor (DR)-3 and DR6 in both lung cancer cell lines. In addition to this, the transfection of DR3 siRNA diminished the growth inhibitory and apoptosis inducing effect of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate on lung cancer cells, however these effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate was not changed by DR6 siRNA. These results indicated that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate inhibits human lung cancer cell growth via increasing apoptotic cell death by upregulation of the expression of DR3.

  9. The pan-BCL-2-blocker obatoclax (GX15-070) and the PI3-kinase/mTOR-inhibitor BEZ235 produce cooperative growth-inhibitory effects in ALL cells.

    PubMed

    Stefanzl, Gabriele; Berger, Daniela; Cerny-Reiterer, Sabine; Blatt, Katharina; Eisenwort, Gregor; Sperr, Wolfgang R; Hoermann, Gregor; Lind, Karin; Hauswirth, Alexander W; Bettelheim, Peter; Sill, Heinz; Melo, Junia V; Jäger, Ulrich; Valent, Peter

    2017-09-15

    Acute lymphoblastic leukemia (ALL) is characterized by leukemic expansion of lymphoid blasts in hematopoietic tissues. Despite improved therapy only a subset of patients can be cured. Therefore, current research is focusing on new drug-targets. Members of the BCL-2 family and components of the PI3-kinase/mTOR pathway are critically involved in the regulation of growth and survival of ALL cells. We examined the effects of the pan-BCL-2 blocker obatoclax and the PI3-kinase/mTOR-inhibitor BEZ235 on growth and survival of ALL cells. In (3)H-thymidine uptake experiments, both drugs suppressed the in vitro proliferation of leukemic cells in all patients with Philadelphia chromosome-positive (Ph(+)) ALL and Ph(-) ALL (obatoclax IC50: 0.01-5 μM; BEZ235, IC50: 0.01-1 μM). Both drugs were also found to produce growth-inhibitory effects in all Ph(+) and all Ph(-) cell lines tested. Moreover, obatoclax and BEZ235 induced apoptosis in ALL cells. In drug-combination experiments, obatoclax and BEZ235 exerted synergistic growth-inhibitory effects on ALL cells. Finally, we confirmed that ALL cells, including CD34(+)/CD38(-) stem cells and all cell lines express transcripts for PI3-kinase, mTOR, BCL-2, MCL-1, and BCL-xL. Taken together, this data shows that combined targeting of the PI3-kinase/mTOR-pathway and BCL-2 family-members is a potent approach to counteract growth and survival of ALL cells.

  10. AZT and emodin exhibit synergistic growth-inhibitory effects on K562/ADM cells by inducing S phase cell cycle arrest and suppressing MDR1 mRNA/p-gp protein expression.

    PubMed

    Chen, Peng; Liu, Yingxia; Sun, Yanqing; Chen, Che; Qi, Yongmei; Zhang, Yingmei

    2013-12-01

    Previous studies have demonstrated that both 3'-azido-3'-deoxythymidine (AZT) and emodin, a traditional chemotherapy agent, can inhibit the growth of many types of cancer cells. This study aimed to evaluate the effect of AZT and emodin on adriamycin-resistant human chronic myelogenous leukemia (K562/ADM) cells, determine the expression of multidrug resistance 1 (MDR1) mRNA/p-glycoprotein (p-gp) protein, a protein known to induce resistance to anticancer agents, and to elucidate the underlying molecular mechanisms. K562/ADM cells were treated with AZT (10-160 μM) or emodin (5-80 μM) for 24, 48 and 72 h and cell viability was measured using the MTT assay. The effect of AZT (16.5, 33 and 66 μM) and emodin (6.1, 17.6 and 33.2 μM) on K562/ADM cell cycle distribution was determined by flow cytometry, and MDR1 mRNA/p-gp protein expression was determined by real time RT-PCR and western blotting. The growth suppression of emodin was dramatically enhanced by AZT in K562/ADM cells. The IC50 of AZT and emodin was lower than that of emodin alone. All examined combinations of AZT and emodin yielded a synergetic effect (CI < 1). Furthermore, AZT and emodin altered the cell cycle distribution and led to an accumulation of cells in S phase. Meanwhile, the expression of MDR1 mRNA/p-gp protein was markedly decreased. These results show a synergistic growth-inhibitory effect of AZT and emodin in K562/ADM cells, which is achieved through S phase arrest. MDR1 might ultimately be responsible for these phenomena.

  11. Growth inhibitory effect of an injectable hyaluronic acid-tyramine hydrogels incorporating human natural interferon-α and sorafenib on renal cell carcinoma cells.

    PubMed

    Ueda, Kosuke; Akiba, Jun; Ogasawara, Sachiko; Todoroki, Keita; Nakayama, Masamichi; Sumi, Akiko; Kusano, Hironori; Sanada, Sakiko; Suekane, Shigetaka; Xu, Keming; Bae, Ki Hyun; Kurisawa, Motoichi; Igawa, Tsukasa; Yano, Hirohisa

    2016-01-01

    Immunotherapy including interferon-alpha (IFN-α) is one of the treatment options for metastatic renal cell carcinoma (mRCC) patients. Despite clinical benefits for the selected patients, IFN-α therapy has some problems, such as poor tolerability and dose-limiting adverse effects. In addition, the frequent injections reduce a patient's quality of life and compliance. Recently, an injectable and biodegradable hydrogel system to prolong drug release is reported. In this study, we investigated the anticancer effect of IFN-α (Sumiferon®)-incorporated hyaluronic acid-tyramine (HA-Tyr) hydrogels in human RCC-xenografted in nude mice. We also evaluated the synergistic efficacy of IFN-α-incorporated HA-Tyr hydrogels+sorafenib in this model. IFN-α-incorporated HA-Tyr hydrogels+sorafenib most effectively inhibited tumor growth on human RCC cells xenografted in nude mice. In addition, IFN-α-incorporated HA-Tyr hydrogels+sorafenib inhibited the proliferation of tumor in nude mice by inducing apoptosis and the suppression of angiogenesis. Our results suggest a possibility that HA-Tyr hydrogel drug delivery system prolongs the biological half-life of natural human IFN-α and enhances its anticancer effects on human RCC cells. The scope of this study is to provide an alternative approach to improve the anticancer efficacy in renal cell carcinoma (RCC) treatment by using hyaluronic acid-tyramine (HA-Tyr) hydrogel drug delivery system. We investigated the anticancer effect of natural interferon-α (IFN-α)-incorporated HA-Tyr hydrogels in RCC cells. We also evaluated the synergistic efficacy of natural human IFN-α-incorporated HA-Tyr hydrogels+sorafenib. We demonstrated that HA-Tyr hydrogel system is able to release natural human IFN-α in sustained manner and enhances its anticancer effects on human RCC cells. In addition, we suggested that IFN-α-incorporated HA-Tyr hydrogels+sorafenib exhibited most effectively anticancer effects. Hence, we believe that this approach

  12. Growth-inhibitory effects of pigmented rice bran extracts and three red bran fractions against human cancer cells: relationships with composition and antioxidative activities.

    PubMed

    Chen, Ming-Hsuan; Choi, Suk Hyun; Kozukue, Nobuyuke; Kim, Hyun-Jeong; Friedman, Mendel

    2012-09-12

    We determined the phenolic, anthocyanin, and proanthocyanidin content of three brown, purple, and red rice brans isolated from different rice varieties using HPLC-PDA with the aid of 27 standards of known structure and matching unknown peaks to a spectral library of known compounds. Antioxidative capacities were determined by DPPH and ORAC and cell-inhibiting effects using an MTT assay. Based on the calculated IC(50) values, the light-brown bran had no effect, the purple bran exhibited a minor effect on leukemia and cervical cancer cells, and the red bran exhibited strong inhibitory effects on leukemia, cervical, and stomach cancer cells. High concentrations of protocatechuic acid and anthocyanins in purple bran and proanthocyanidins in red bran were identified. The red bran was further fractionated on a Sephadex column. Fraction 3 rich in proanthocyanidin oligomers and polymers had the greatest activity. Red bran has the potential to serve as a functional food supplement for human consumption.

  13. Neuregulin-1 Regulates Cortical Inhibitory Neuron Dendrite and Synapse Growth through DISC1

    PubMed Central

    Kwan, Vickie

    2016-01-01

    Cortical inhibitory neurons play crucial roles in regulating excitatory synaptic networks and cognitive function and aberrant development of these cells have been linked to neurodevelopmental disorders. The secreted neurotrophic factor Neuregulin-1 (NRG1) and its receptor ErbB4 are established regulators of inhibitory neuron connectivity, but the developmental signalling mechanisms regulating this process remain poorly understood. Here, we provide evidence that NRG1-ErbB4 signalling functions through the multifunctional scaffold protein, Disrupted in Schizophrenia 1 (DISC1), to regulate the development of cortical inhibitory interneuron dendrite and synaptic growth. We found that NRG1 increases inhibitory neuron dendrite complexity and glutamatergic synapse formation onto inhibitory neurons and that this effect is blocked by expression of a dominant negative DISC1 mutant, or DISC1 knockdown. We also discovered that NRG1 treatment increases DISC1 expression and its localization to glutamatergic synapses being made onto cortical inhibitory neurons. Mechanistically, we determined that DISC1 binds ErbB4 within cortical inhibitory neurons. Collectively, these data suggest that a NRG1-ErbB4-DISC1 signalling pathway regulates the development of cortical inhibitory neuron dendrite and synaptic growth. Given that NRG1, ErbB4, and DISC1 are schizophrenia-linked genes, these findings shed light on how independent risk factors may signal in a common developmental pathway that contributes to neural connectivity defects and disease pathogenesis. PMID:27847649

  14. A novel CXCR3-B chemokine receptor-induced growth-inhibitory signal in cancer cells is mediated through the regulation of Bach-1 protein and Nrf2 protein nuclear translocation.

    PubMed

    Balan, Murugabaskar; Pal, Soumitro

    2014-02-07

    Chemokines and their receptors play diverse roles in regulating cancer growth and progression. The receptor CXCR3 can have two splice variants with opposite functions. CXCR3-A promotes cell growth, whereas CXCR3-B mediates growth-inhibitory signals. However, the negative signals through CXCR3-B in cancer cells are not well characterized. In this study, we found that CXCR3-B-mediated signaling in MCF-7 and T47D breast cancer cells induced apoptotic cell death. Signals through CXCR3-B decreased the levels of the antiapoptotic proteins Bcl-2 and Bcl-xL and increased the expression of apoptotic cleaved poly(ADP-ribose) polymerase. Along with up-regulation in apoptosis, CXCR3-B signals were associated with a decrease in cellular autophagy with reduced levels of the autophagic markers Beclin-1 and LC3B. Notably, CXCR3-B down-regulated the expression of the cytoprotective and antiapoptotic molecule heme oxygenase-1 (HO-1) at the transcriptional level. There was an increased nuclear localization of Bach-1 and nuclear export of Nrf2, which are important negative and positive transcription factors, respectively, for HO-1 expression. We also observed that CXCR3-B promoted the activation of p38 MAPK and the inhibition of ERK-1/2. CXCR3-B could not induce cancer cell apoptosis at the optimal level when we either inhibited p38 activity or knocked down Bach-1. Further, CXCR3-B-induced apoptosis was down-regulated when we overexpressed HO-1. Together, our data suggest that CXCR3-B mediates a growth-inhibitory signal in breast cancer cells through the modulations of nuclear translocation of Bach-1 and Nrf2 and down-regulation of HO-1. We suggest that the induction of CXCR3-B-mediated signaling can serve as a novel therapeutic approach where the goal is to promote tumor cell apoptosis.

  15. Molecular mechanism of inhibitory effects of C-phycocyanin combined with all-trans-retinoic acid on the growth of HeLa cells in vitro.

    PubMed

    Yang, Fan; Li, Bing; Chu, Xian-Ming; Lv, Cong-Yi; Xu, Ying-Jie; Yang, Peng

    2014-06-01

    We studied the effects of all-trans-retinoic acid (ATRA), C-phycocyanin (C-PC), or ATRA+C-PC on the growth of cervical cells (HeLa cells), cell cycle distribution, and apoptosis. The anticancer mechanism of the drug combination was revealed. MTT assay was adopted to determine the effects of C-PC and ATRA on the growth of HeLa cells. The expression quantities of cyclin-dependent kinase (CDK) 4, cyclin D1, Bcl-2, caspase-3, and CD59 were determined by in situ hybridization, immunofluorescence, immunohistochemistry staining, Western blot, and RT-PCR. TUNEL assay was adopted to determine the cellular apoptosis levels. Both C-PC and ATRA could inhibit the growth of HeLa cells, and the combination of ATRA+C-PC functioned cooperatively to induce apoptosis in HeLa cells. The dosage of ATRA was reduced when it cooperated with C-PC to reduce the toxicity. ATRA treated with C-PC could induce more cell cycle arrests than the single drug used by decrease in cyclin D1 and CDK4 expression. The combination of the two drugs could upregulate caspase-3 and downregulate the Bcl-2 gene and induce cell apoptosis. Moreover, the combination therapy has an important immunological significance in decreased expression of the CD59 protein. Singly, C-PC or ATRA could inhibit the growth of HeLa cells, and the effects of treatment were further enhanced in the combination group. In combination with C-PC, the dosage of ATRA was effectively reduced. The C-PC + ATRA combination might take effect by inhibiting the progress of the cell cycle, inducing cell apoptosis and promoting complement-mediated cytolysis.

  16. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells

    PubMed Central

    Landis-Piwowar, Kristin R.; Milacic, Vesna; Dou, Q. Ping

    2008-01-01

    Flavonoids are polyphenolic compounds widely distributed in the plant kingdom. Compelling research indicates that flavonoids have important roles in cancer chemoprevention and chemotherapy possibly due to biological activities that include action through anti-inflammation, free radical scavenging, modulation of survival/proliferation pathways, and inhibition of the ubiquitin-proteasome pathway. Plant polyphenols including the green tea polyphenol, (-)-epigallocatechin gallate or (-)-EGCG, and the flavonoids apigenin, luteolin, quercetin, and chrysin have been shown to inhibit proteasome activity and induce apoptosis in human leukemia cells. However, biotransformation reactions to the reactive hydroxyl groups on polyphenols could reduce their biological activities. Although methylated polyphenols have been suggested to be metabolically more stable than unmethylated polyphenols, the practical use of methylated polyphenols as a cancer preventative agent warrants further investigation. In the current study, methylated and unmethylated flavonoids were studied for their proteasome-inhibitory and apoptosis-inducing abilities in human leukemia HL60 cells. Methylated flavonoids displayed sustained bioavailability and inhibited cellular proliferation by arresting cells in the G1 phase. However, they did not act as proteasome inhibitors in either an in vitro system or an in silico model and only weakly induced apoptosis. In contrast, unmethylated flavonoids exhibited inhibition of the proteasomal activity in intact HL60 cells, accumulating proteasome target proteins and inducing caspase activation and poly (ADP-ribose) polymerase cleavage. We conclude that methylated flavonoids lack potent cytotoxicity against human leukemia cells and most likely have limited ability as chemopreventive agents. PMID:18636546

  17. Five novel naphthylisoquinoline alkaloids with growth inhibitory activities against human leukemia cells HL-60, K562 and U937 from stems and leaves of Ancistrocladus tectorius.

    PubMed

    Jiang, Chao; Li, Zhan-Lin; Gong, Ping; Kang, Sheng-Li; Liu, Ming-Sheng; Pei, Yue-Hu; Jing, Yong-Kui; Hua, Hui-Ming

    2013-12-01

    Two new 7,6'-coupled naphthylisoquinolines, namely ancistrotectorines A (1) and B (2), two new 5,3'-coupled naphthylisoquinolines, namely ancistrotectorines C (3) and D (4), and one new 7,8-coupled naphthylisoquinoline, namely ancistrotectorine E (5), together with 9 known naphthylisoquinoline alkaloids, hamatine (6), ancistrobertsonine B (7), ancistrocladinine (8), hamatinine (9), ancistrotanzanine A (10), ancistrotanzanine B (11), ancistrotectoriline B (12), 7-epi-ancistrobrevine D (13), and ancistrotectorine (14), were isolated from the 70% EtOH extract of Ancistrocladus tectorius. Their structures were elucidated based on the extensive analysis of spectroscopic data (1D, 2D NMR and MS). Compound 5 exhibited inhibitory activities against HL-60, K562 and U937 cell lines with IC50 values of 1.70, 4.18 and 2.56 μM respectively. © 2013.

  18. Growth Inhibitory Effect of Low Fat Diet on Prostate Cancer Cells: Results of a Prospective, Randomized Dietary Intervention Trial in Men With Prostate Cancer

    PubMed Central

    Aronson, William J.; Barnard, R. James; Freedland, Stephen J.; Henning, Susanne; Elashoff, David; Jardack, Patricia M.; Cohen, Pinchas; Heber, David; Kobayashi, Naoko

    2011-01-01

    Purpose A high fat Western diet and sedentary lifestyle may predispose men to prostate cancer through changes in serum hormones and growth factors. We evaluated the effect of a low fat diet on serum factors affecting prostate cancer cell growth by performing a prospective, randomized dietary intervention trial in men with prostate cancer. Materials and Methods We randomized 18 men with prostate cancer who did not receive prior therapy to a low fat (15% kcal), high fiber, soy protein supplemented diet or a Western (40% kcal fat) diet for 4 weeks. Fasting serum was collected at baseline and after the intervention to measure prostate specific antigen, sex hormones, insulin, insulin-like growth factor I and II, insulin-like growth factor binding proteins, lipids and fatty acids. LNCaP cells (ATCC®) were cultured in medium containing pre-intervention and post-intervention human serum to assess the in vitro effect of the diet on prostate cancer cell proliferation. Results Subjects in each group were highly compliant with the dietary intervention. Serum from men in the low fat group significantly decreased the growth of LNCaP cells relative to Western diet serum (p = 0.03). There were no significant between group changes in serum prostate specific antigen, sex hormones, insulin, insulin-like growth factor I and II, and insulin-like growth factor binding proteins. Serum triglyceride and linoleic acid (ω-6) levels were decreased in the low fat group (p = 0.034 and 0.005, respectively). Correlation analysis revealed that decreased ω-6 and increased ω-3 fatty acid correlated with decreased serum stimulated LNCaP cell growth (r = 0.64, p = 0.004 and r = −0.49, p = 0.04, respectively). Conclusions In this prospective, randomized dietary intervention trial a low fat diet resulted in changes in serum fatty acid levels that were associated with decreased human LNCaP cancer cell growth. Further prospective trials are indicated to evaluate the potential of low fat diets for

  19. Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition.

    PubMed

    Tinsley, Heather N; Gary, Bernard D; Thaiparambil, Jose; Li, Nan; Lu, Wenyan; Li, Yonghe; Maxuitenko, Yulia Y; Keeton, Adam B; Piazza, Gary A

    2010-10-01

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here, we show that the NSAID sulindac sulfide (SS) inhibits cyclic guanosine 3',5'-monophosphate (cGMP) phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit colon tumor cell growth in vitro and in vivo. A series of chemically diverse NSAIDs also inhibited cGMP hydrolysis at concentrations that correlate with their potency to inhibit colon tumor cell growth, whereas no correlation was observed with COX-2 inhibition. Consistent with its selectivity for inhibiting cGMP hydrolysis compared with cyclic AMP hydrolysis, SS inhibited the cGMP-specific PDE5 isozyme and increased cGMP levels in colon tumor cells. Of numerous PDE isozyme-specific inhibitors evaluated, only the PDE5-selective inhibitor MY5445 inhibited colon tumor cell growth. The effects of SS and MY5445 on cell growth were associated with inhibition of β-catenin-mediated transcriptional activity to suppress the synthesis of cyclin D and survivin, which regulate tumor cell proliferation and apoptosis, respectively. SS had minimal effects on cGMP PDE activity in normal colonocytes, which displayed reduced sensitivity to SS and did not express PDE5. PDE5 was found to be overexpressed in colon tumor cell lines as well as in colon adenomas and adenocarcinomas compared with normal colonic mucosa. These results suggest that PDE5 inhibition, cGMP elevation, and inhibition of β-catenin transcriptional activity may contribute to the chemopreventive properties of certain NSAIDs.

  20. Relationship Between Organization of Mammary Tumors and the Ability of Tumor Cells to Replicate Mammary Tumor Virus and to Recognize Growth-Inhibitory Contact Signals In Vitro

    PubMed Central

    McGrath, Charles M.; Nandi, S.; Young, Lawrence

    1972-01-01

    Mammary tumor virus (MTV) replication was confined primarily to cells organized as acini in intact mouse mammary glands. Primary mammary tumors maintained a high degree of acinar organization and cells therein continued to replicate MTV vegetatively. Nonacinar mammary cells, derived by serial transplantation of acinar tumor cells, no longer actively replicated MTV. This suggests that phenotypic differences exist among mammary epithelial cells in their ability to support virus replication, that a fundamental relationship exists between the organization of epithelium for secretion and active virus replication, and that this relationship is not altered as a primary consequence of neoplastic transformation. Mammary epithelial cells from pregnant, non-tumor-bearing, MTV-infected BALB/cfC3H mice or from acinar mammary tumors from a number of mouse strains were grown in primary monolayer cultures. Such cell cultures under the influence of insulin and cortisol exhibited the ability to organize into discrete three-dimensional structures called “domes.” MTV replication in such cultures took place primarily in cells within the organized domes. Cells cultured from nonacinar tumors did not exhibit any propensity to organize into domes, nor did they replicate MTV in primary culture. This suggests that the cell organizational requirement for MTV replication observed in vivo is conserved in primary culture. Dome formation is not an effect of virus replication, as cells from uninfected BALB/c animals organized into domes in culture without concomitant MTV replication. Growth-regulating signals, exerted between contiguous cells in cultures of non-MTV-infected mammary epithelium, were not modified by the occurrence of active virus replication nor as a direct consequence of neoplastic transformation. Cells derived from nontumor BALB/cfC3H glands and from spontaneous tumors exhibited cell growth kinetics, saturation densities, and deoxyribonucleic acid synthesis kinetics nearly

  1. Isolation of peridinin-related norcarotenoids with cell growth-inhibitory activity from the cultured dinoflagellate of Symbiodinium sp., a symbiont of the Okinawan soft coral Clavularia viridis, and analysis of fatty acids of the dinoflagellate.

    PubMed

    Suzuki, Motoya; Watanabe, Kinzo; Fujiwara, Shoko; Kurasawa, Toshie; Wakabayashi, Takako; Tsuzuki, Mikio; Iguchi, Kazuo; Yamori, Takao

    2003-06-01

    Two norcarotenoids, 1 and 2, related to peridinin (3) were isolated from the cultured dinoflagellate of the genus Symbiodinium, a symbiont of the Okinawan soft coral Clavularia viridis, which contains in abundance antitumor marine prostanoids such as clavulones. The structures of 1 and 2 were elucidated on the basis of spectroscopic analysis. These compounds showed significant growth-inhibitory activity in vitro toward cancer cells. Analysis of fatty acids of the dinoflagellate was also carried out, suggesting that the marine prostanoids are produced by the host soft coral itself.

  2. In Search of the Molecular Mechanisms Mediating the Inhibitory Effect of the GnRH Antagonist Degarelix on Human Prostate Cell Growth

    PubMed Central

    Sakai, Monica; Martinez-Arguelles, Daniel B.; Patterson, Nathan H.; Chaurand, Pierre; Papadopoulos, Vassilios

    2015-01-01

    Degarelix is a gonadrotropin-releasing hormone (GnRH) receptor (GnRHR) antagonist used in patients with prostate cancer who need androgen deprivation therapy. GnRHRs have been found in extra-pituitary tissues, including prostate, which may be affected by the GnRH and GnRH analogues used in therapy. The direct effect of degarelix on human prostate cell growth was evaluated. Normal prostate myofibroblast WPMY-1 and epithelial WPE1-NA22 cells, benign prostatic hyperplasia (BPH)-1 cells, androgen-independent PC-3 and androgen-dependent LNCaP prostate cancer cells, as well as VCaP cells derived from a patient with castration-resistant prostate cancer were used. Discriminatory protein and lipid fingerprints of normal, hyperplastic, and cancer cells were generated by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The investigated cell lines express GNRHR1 and GNRHR2 and their endogenous ligands. Degarelix treatment reduced cell viability in all prostate cell lines tested, with the exception of the PC-3 cells; this can be attributed to increased apoptosis, as indicated by increased caspase 3/7, 8 and 9 levels. WPE1-NA22, BPH-1, LNCaP, and VCaP cell viability was not affected by treatment with the GnRH agonists leuprolide and goserelin. Using MALDI MS, we detected changes in m/z signals that were robust enough to create a complete discriminatory profile induced by degarelix. Transcriptomic analysis of BPH-1 cells provided a global map of genes affected by degarelix and indicated that the biological processes affected were related to cell growth, G-coupled receptors, the mitogen-activated protein kinase (MAPK) pathway, angiogenesis and cell adhesion. Taken together, these data demonstrate that (i) the GnRH antagonist degarelix exerts a direct effect on prostate cell growth through apoptosis; (ii) MALDI MS analysis provided a basis to fingerprint degarelix-treated prostate cells; and (iii) the clusters of genes affected by degarelix suggest that

  3. Rig-G is a growth inhibitory factor of lung cancer cells that suppresses STAT3 and NF-κB.

    PubMed

    Li, Dong; Sun, Junjun; Liu, Wenfang; Wang, Xuan; Bals, Robert; Wu, Junlu; Quan, Wenqiang; Yao, Yiwen; Zhang, Yu; Zhou, Hong; Wu, Kaiyin

    2016-10-04

    The expression of the retinoic acid-induced G (Rig-G) gene, an all trans retinoic acid (ATRA)-inducible gene, was observed in multiple cancer cells, including lung cancer cells. However, whether Rig-G is a tumor suppressor in lung cancer is unknown. Here, we found that ectopic expression of Rig-G can lead to a significant decrease in proliferation of lung cancer cells, resulting in an inhibition of tumor growth. Rig-G knockdown results in a modest increase in cell proliferation, as well as confers an increase in colony formation. Furthermore, transcriptome and pathway analyses of cancer cells revealed a fundamental impact of Rig-G on various growth signaling pathways, including the NF-κB pathway. Rig-G inhibits NF-κB activity by suppressing STAT3 in lung cancer cells. The downregulation of miR21 and miR181b-1 and subsequent activation of PTEN/Akt and CYLD/IκB signaling axis leading to decreased NF-κB activity required to maintain the tumor-inhibiting effect of Rig-G.. Our findings contribute to a better understanding of the antitumor effect mechanism of Rig-G, as well as offer a novel strategy for lung cancer therapy.

  4. Rig-G is a growth inhibitory factor of lung cancer cells that suppresses STAT3 and NF-κB

    PubMed Central

    Wang, Xuan; Bals, Robert; Wu, Junlu; Quan, Wenqiang; Yao, Yiwen; Zhang, Yu; Zhou, Hong; Wu, Kaiyin

    2016-01-01

    The expression of the retinoic acid-induced G (Rig-G) gene, an all trans retinoic acid (ATRA)-inducible gene, was observed in multiple cancer cells, including lung cancer cells. However, whether Rig-G is a tumor suppressor in lung cancer is unknown. Here, we found that ectopic expression of Rig-G can lead to a significant decrease in proliferation of lung cancer cells, resulting in an inhibition of tumor growth. Rig-G knockdown results in a modest increase in cell proliferation, as well as confers an increase in colony formation. Furthermore, transcriptome and pathway analyses of cancer cells revealed a fundamental impact of Rig-G on various growth signaling pathways, including the NF-κB pathway. Rig-G inhibits NF-κB activity by suppressing STAT3 in lung cancer cells. The downregulation of miR21 and miR181b-1 and subsequent activation of PTEN/Akt and CYLD/IκB signaling axis leading to decreased NF-κB activity required to maintain the tumor-inhibiting effect of Rig-G.. Our findings contribute to a better understanding of the antitumor effect mechanism of Rig-G, as well as offer a novel strategy for lung cancer therapy. PMID:27602766

  5. Direct growth-inhibitory effects of prostaglandin E2 in pancreatic cancer cells in vitro through an EP4/PKA-mediated mechanism.

    PubMed

    Schmidt, Andrea; Sinnett-Smith, James; Young, Steven; Chang, Hui-Hua; Hines, O Joe; Dawson, David W; Rozengurt, Enrique; Eibl, Guido

    2017-06-01

    There is strong evidence linking inflammation and the development of pancreatic ductal adenocarcinoma. Cyclooxygenase-2 (COX-2) and COX-2-derived PGE2 are overexpressed in human and murine pancreatic ductal adenocarcinoma. Several studies have demonstrated an important role of COX-2-derived PGE2 in tumor-stroma interactions; however, the direct growth effects of prostaglandin E2 (PGE2) on pancreatic ductal adenocarcinoma cells is less well defined. Our aim was to investigate the effects of PGE2 on pancreatic ductal adenocarcinoma cell growth and to characterize the underlying mechanisms. Human pancreatic ductal adenocarcinoma cell lines, Panc-1 and MIA PaCa-2, were treated with PGE2 in varying doses (0-10 μM). Effects on the phosphorylation of ERK1/2 were evaluated by Western blot. Colony formation was observed for cells treated with PGE2 for 11 days. DNA synthesis was determined by (3H)-thymidine incorporation assay. Gene expression of E-type prostaglandin (EP)2/EP4 receptors and their correlation with survival in patients with pancreatic ductal adenocarcinoma were assessed using the RNA-Seq data set from The Cancer Genome Atlas Research Network. PGE2 decreased the size and number of colonies in Panc-1 but not MIA PaCa-2 cells. In the Panc-1 cells, PGE2 activated PKA/CREB and decreased phosphorylation of ERK1/2, which was reversed by an EP4 receptor antagonist, while an EP2 receptor antagonist had no effect. In contrast, in MIA PaCa-2 cells, PGE2 had no effect on ERK1/2 phosphorylation. Treatment of both Panc-1 and MIA PaCa-2 cells with forskolin/IBMX decreased ERK1/2 phosphorylation. Finally, PGE2 decreased DNA synthesis only in Panc-1 cells, which was reversed by an EP4 receptor antagonist. In human pancreatic ductal adenocarcinoma, high EP2 and low EP4 gene expression was correlated to worse median overall survival (15.6 vs 20.8 months, log-rank P = .017). Our study provides evidence that PGE2 can inhibit directly pancreatic ductal adenocarcinoma

  6. Transforming growth factor beta 1 prevents cytokine-mediated inhibitory effects and induction of nitric oxide synthase in the RINm5F insulin-containing beta-cell line.

    PubMed

    Mabley, J G; Cunningham, J M; John, N; Di Matteo, M A; Green, I C

    1997-12-01

    The aim of this study was to examine if the growth factor, transforming growth factor beta 1 (TGF beta 1), could prevent induction of nitric oxide synthase and cytokine-mediated inhibitory effects in the insulin-containing, clonal beta cell line RINm5F. Treatment of RINm5F cells for 24 h with interleukin-1 beta (IL-1 beta) (100 pM) induced expression of nitric oxide synthase and inhibited glyceraldehyde-stimulated insulin secretion. Combinations of IL-1 beta (100 pM), tumour necrosis factor-alpha (100 pM) and interferon-gamma (100 pM) reduced RINm5F cell viability (determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium (MTT) reduction assay) and de novo protein synthesis, as measured by incorporation of radiolabelled amino acids into perchloric acid-precipitable protein. Pretreatment of RINm5F cells with TGF beta 1 (10 pM) for 18 or 24 h, prior to the addition of either IL-1 beta or combined cytokines, prevented cytokine-induced inhibition of insulin secretion, protein synthesis and the loss of cell viability. TGF beta 1 pretreatment inhibited cytokine-induced expression and activity of nitric oxide synthase in RINm5F cells as determined by Western blotting and by cytosolic conversion of radiolabelled arginine into labelled citrulline and nitric oxide. Chemically generated superoxide also induced expression of nitric oxide synthase possibly due to direct activation of the nuclear transcription factor NF kappa B, an effect prevented by both an antioxidant and TGF beta 1 pretreatment. In conclusion, the mechanism of action of TGF beta 1 in blocking cytokine inhibitory effects was by preventing induction of nitric oxide synthase.

  7. Growth inhibitory effect of paratocarpin E, a prenylated chalcone isolated from Euphorbia humifusa Wild., by induction of autophagy and apoptosis in human breast cancer cells.

    PubMed

    Gao, Suyu; Sun, Dejuan; Wang, Guan; Zhang, Jin; Jiang, Yingnan; Li, Guoyu; Zhang, Ke; Wang, Lei; Huang, Jian; Chen, Lixia

    2016-12-01

    Five flavones, including four flavonoids and one prenylated chalcone (paratocarpin E), were isolated from E. humifusa. and their chemical structures were established by spectroscopic analyses. We assessed the efficacy of these compounds against the growth of human breast cancer, leukemic, kidney cancer cell lines. Among them, paratocarpin E showed significant cytotoxicity against these cancer cell lines with an IC50 of 19.6μM on the growth of MCF-7 cells. Paratocarpin E treatment of MCF-7 cells resulted in typical apoptotic features via increasing expression of activated caspase-8 and -9 and PARP cleavage. Moreover, paratocarpin E altered the expression of Bax and Bcl-2, leading to the release of cytochrome c from the mitochondria into the cytosol, suggesting that the mitochondria-mediated apoptosis was initiated. In addition, paratocarpin E increased the MDC-positive autophagic vacuoles, the ratio of LC3-II/LC3-I protein levels of Beclin-1, but decreased p62 expression, indicating the potent pro-autophagic effects of paratocarpin E in MCF-7 cells. Mechanistically, cell death induced by paratocarpin E is able to induce apoptosis of MCF-7 cells by activating p38 and JNK signaling pathway while inhibiting Erk pathway. Furthermore, paratocarpin E promotes the activation and nuclear translocation of NF-κB, which plays an important role in balancing paratocarpin E-mediated apoptosis and autophagy. The molecular docking study also revealed that paratocarpin E bound to Fas and NF-κB complex. These findings provide initial evidences that paratocarpin E can be used as a potential anti-cancer drug in future for breast cancer therapy.

  8. The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells

    PubMed Central

    Hong, Seung-Keun; Kim, Jin-Hwan; Lin, Ming-Fong; Park, Jong-In

    2011-01-01

    Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16INK4A and p21CIP1, but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation. PMID:21871886

  9. Inhibitory effects of megakaryocytic cells in prostate cancer skeletal metastasis.

    PubMed

    Li, Xin; Koh, Amy J; Wang, Zhengyan; Soki, Fabiana N; Park, Serk In; Pienta, Kenneth J; McCauley, Laurie K

    2011-01-01

    Prostate cancer cells commonly spread through the circulation, but few successfully generate metastatic foci in bone. Osteoclastic cellular activity has been proposed as an initiating event for skeletal metastasis. Megakaryocytes (MKs) inhibit osteoclastogenesis, which could have an impact on tumor establishment in bone. Given the location of mature MKs at vascular sinusoids, they may be the first cells to physically encounter cancer cells as they enter the bone marrow. Identification of the interaction between MKs and prostate cancer cells was the focus of this study. K562 (human MK precursors) and primary MKs derived from mouse bone marrow hematopoietic precursor cells potently suppressed prostate carcinoma PC-3 cells in coculture. The inhibitory effects were specific to prostate carcinoma cells and were enhanced by direct cell-cell contact. Flow cytometry for propidium iodide (PI) and annexin V supported a proapoptotic role for K562 cells in limiting PC-3 cells. Gene expression analysis revealed reduced mRNA levels for cyclin D1, whereas mRNA levels of apoptosis-associated specklike protein containing a CARD (ASC) and death-associated protein kinase 1 (DAPK1) were increased in PC-3 cells after coculture with K562 cells. Recombinant thrombopoietin (TPO) was used to expand MKs in the marrow and resulted in decreased skeletal lesion development after intracardiac tumor inoculation. These novel findings suggest a potent inhibitory role of MKs in prostate carcinoma cell growth in vitro and in vivo. This new finding, of an interaction of metastatic tumors and hematopoietic cells during tumor colonization in bone, ultimately will lead to improved therapeutic interventions for prostate cancer patients.

  10. Nifedipine suppresses neointimal thickening by its inhibitory effect on vascular smooth muscle cell growth via a MEK-ERK pathway coupling with Pyk2

    PubMed Central

    Hirata, Akihiko; Igarashi, Masahiko; Yamaguchi, Hiroshi; Suwabe, Akira; Daimon, Makoto; Kato, Takeo; Tominaga, Makoto

    2000-01-01

    The aim of this study was to determine whether nifedipine could suppress an atherogenic process such as balloon-injured intimal thickening in vivo and the proliferation of vascular smooth muscle cells (VSMC) in vitro. First, we examined the in vivo effect of nifedipine to determine whether it could suppress intimal thickening induced by balloon catheterization. Sprague-Dawley (SD) rats were divided into three groups (L, nifedipine 0.3 mg kg−1 day−1; H, nifedipine 3 mg kg−1 day−1; C, no nifedipine), and Alzet® osmotic pumps were implanted in their backs for continuous administration. The neointimal layers were completely occupied by proliferated VSMC, and the area ratios of neointima/media treated with nifedipine significantly decreased dose-dependently compared to those of the control. Neither blood pressure nor lipid levels changed among the three groups. We next evaluated the in vitro effect of nifedipine on the proliferation of cultured rat VSMC. Nifedipine decreased the values of [3H]-thymidine incorporation and total cellular protein content as well as the levels of phosphorylated extracellular signal-regulated protein kinase (ERK) 1/2, mitogen-activated protein kinase kinase (MEK) 1/2, and even the phosphorylation of Pyk2, in dose-dependent fashions. In addition, nifedipine suppressed the levels of proliferative cell nuclear antigen (PCNA) dose-dependently in both VSMC and balloon-injured thoracic aortae. These results indicate that nifedipine has an inhibitory effect on intimal thickening by attenuating intimal VSMC proliferation, suggesting that nifedipine could be effective for preventing the progression of atherosclerotic plaque as in restenosis after angioplasty. PMID:11139427

  11. Growth inhibitory effects of gastric cancer cells with an increase in S phase and alkaline phosphatase activity repression by aloe-emodin.

    PubMed

    Guo, Junming; Xiao, Bingxiu; Zhang, Shun; Liu, Donghai; Liao, Yiping; Sun, Qian

    2007-01-01

    Aloe-emodin is a novel active compound found in the root and rhizome of Rheum palmatum. To investigate the effects and mechanisms of aloe-emodin on human gastric cancer, MGC-803 cells were treated with 2.5, 5, 10, 20 and 40 microM aloe-emodin for 1-5 d. The results showed that aloe-emodin inhibited the growth of cancer cells in a dose-dependent manner with an increase in S phase and in the proportion of cells cycling at a higher ploidy level (>G2/M). Moreover, the alkaline phosphatase (ALP) activity, an indicator of cell differentiation, was found decreased. This is one of the first to focus on the effect of ALP activity in human gastric carcinomas cells treated by aloe-emodin. These results indicate that aloe-emodin has a potential value for the treatment of gastric cancer and its mechanisms are by means of cell cycle interruption and induce differentiation.

  12. Inhibitory Effect of Isoflavones from Erythrina poeppigiana on the Growth of HL-60 Human Leukemia Cells through Inhibition of Glyoxalase I.

    PubMed

    Hikita, Kiyomi; Yamada, Saori; Shibata, Rina; Katoh, Miyako; Murata, Tomiyasu; Kato, Kuniki; Tanaka, Hitoshi; Kaneda, Norio

    2015-09-01

    It has been reported that many malignant human tissues, including breast, colon, and lung cancers, may show an elevated expression of glyoxalase I (GLO I). GLO I catalyzes the reaction to transform hemimercaptal, a compound formed from methylglyoxal (MG) and reduced glutathione, into S-D-lactoylglutathione, which is then converted to D-lactic acid by glyoxalase II. GLO I inhibitors are expected to be useful for inhibiting tumorigenesis through the accumulation of apoptosis-inducible MG in tumor cells. Here, we investigated the anti-proliferative activity of eight kinds of isoflavone isolated from Erythrina poeppigiana against the growth of HL-60 human leukemia cells from the viewpoint of GLO I inhibition. Of the compounds tested, the diprenyl isoflavone, isolupalbigenin, was shown to exhibit the highest anti-proliferative activity against HL-60 cells. Upon the treatment of HL-60 cells with isolupalbigenin, MG was significantly accumulated in the culture medium, and the caspase 3 activity of the cell lysate was elevated in a time-dependent manner. Thus, it is suggested that isolupalbigenin inhibits the enzyme GLO I, resulting in MG accumulation in the medium, and leading to cell apoptosis. Isolupalbigenin, with two prenyl groups in its A- and B-rings, might be expected to become a potent leading compound for the development of anticancer agents.

  13. The inhibitory effect of disodium cromoglycate on the growth of Chlamydophila (Chlamydia) pneumoniae in vitro.

    PubMed

    Yamazaki, Tsutomu; Yamaguchi, Tetsuya; Sasaki, Nozomu; Inoue, Miyuki; Sato, Kozue; Kishimoto, Toshio

    2006-04-01

    Chlamydophila (Chlamydia) pneumoniae is associated with asthma and several other respiratory illnesses. Disodium cromoglycate (DSCG) is known to inhibit both immediate and late asthmatic responses. In this study, the inhibitory effect of DSCG on the growth of C. pneumoniae was examined by minimum inhibitory concentration (MIC) and pre-inoculation minimal cidal concentration (MCC) assays using HL cells and C. pneumoniae AR-39. DSCG below the clinically relevant concentration inhibited the growth of C. pneumoniae in a dose-dependent manner in both the MCC and MIC assays. The inhibitory effect was also time-dependent in the MCC assay at 20 mg/ml of DSCG. These results warrant further clinical study on the connection between C. pneumoniae infections and use of DSCG.

  14. In vitro growth-inhibitory activity and malaria risk in a cohort study in mali.

    PubMed

    Crompton, Peter D; Miura, Kazutoyo; Traore, Boubacar; Kayentao, Kassoum; Ongoiba, Aissata; Weiss, Greta; Doumbo, Safiatou; Doumtabe, Didier; Kone, Younoussou; Huang, Chiung-Yu; Doumbo, Ogobara K; Miller, Louis H; Long, Carole A; Pierce, Susan K

    2010-02-01

    Immunity to the asexual blood stage of Plasmodium falciparum is complex and likely involves several effector mechanisms. Antibodies are thought to play a critical role in malaria immunity, and a corresponding in vitro correlate of antibody-mediated immunity has long been sought to facilitate malaria vaccine development. The growth inhibition assay (GIA) measures the capacity of antibodies to limit red blood cell (RBC) invasion and/or growth of P. falciparum in vitro. In humans, naturally acquired and vaccine-induced P. falciparum-specific antibodies have growth-inhibitory activity, but it is unclear if growth-inhibitory activity correlates with protection from clinical disease. In a longitudinal study in Mali, purified IgGs, obtained from plasmas collected before the malaria season from 220 individuals aged 2 to 10 and 18 to 25 years, were assayed for growth-inhibitory activity. Malaria episodes were recorded by passive surveillance over the subsequent 6-month malaria season. Logistic regression showed that greater age (odds ratio [OR], 0.78; 95% confidence interval [95% CI], 0.63 to 0.95; P = 0.02) and growth-inhibitory activity (OR, 0.50; 95% CI, 0.30 to 0.85; P = 0.01) were significantly associated with decreased malaria risk in children. A growth-inhibitory activity level of 40% was determined to be the optimal cutoff for discriminating malaria-immune and susceptible individuals in this cohort, with a sensitivity of 97.0%, but a low specificity of 24.3%, which limited the assay's ability to accurately predict protective immunity and to serve as an in vitro correlate of antibody-mediated immunity. These data suggest that antibodies which block merozoite invasion of RBC and/or inhibit the intra-RBC growth of the parasite contribute to but are not sufficient for the acquisition of malaria immunity.

  15. Inhibitory effects of monoterpenes on seed germination and seedling growth.

    PubMed

    Kordali, Saban; Cakir, Ahmet; Sutay, Sunay

    2007-01-01

    Monoterpenes, the chemical constituents of essential oils found in plants, are known biologically active compounds. The present study was conducted to investigate the inhibitory effects of 30 monoterpenes including monoterpene hydrocarbons and oxygenated monoterpenes on seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus under laboratory conditions. The monoterpenes were applied at contents of 10 and 20 microl for liquid compounds and 10 and 20 microg for solid compounds. The results show that most of the monoterpenes significantly inhibited seed germination and seedling growth of the tested plants. Oxygenated monoterpenes including beta-citronellol, nerol and terpinen-4-ol completely inhibited seed germination and seedling growth of all tested plants. Their inhibitory effects were also stronger than that of the herbicide 2,4-D. In general, monoterpenes were less effective against seed germination and seedling growth of C. album as compared with R. crispus and A. retroflexus. Phytotoxic effects of monoterpene hydrocarbons were found to be lower than those of oxygenated monoterpenes. The alcohol derivatives of oxygenated monoterpenes were also found to be more phytotoxic as compared with their acetate derivatives. Based on the present results, it can be concluded that the oxygenated monoterpenes can be used as potential bio-herbicides.

  16. Tamoxifen enhances the differentiation-inducing and growth-inhibitory effects of all-trans retinoic acid in acute promyelocytic leukemia cells.

    PubMed

    Adachi, Koji; Honma, Yoshio; Miyake, Takaaki; Kawakami, Koshi; Takahashi, Tsutomu; Suzumiya, Junji

    2016-03-01

    All-trans retinoic acid (ATRA) is valuable in differentiation therapy for acute promyelocytic leukemia (APL). However, ATRA has had limited success as a single agent, due to the development of resistance. We found that tamoxifen effectively enhanced the differentiation-inducing effect of ATRA. Tamoxifen alone inhibited the proliferation of myeloid leukemia cell lines while only slightly increasing morphologic differentiation. Tamoxifen effectively enhanced the growth-inhibiting actions of various differentiation-inducing agents. ATRA in the presence of tamoxifen increased NBT reduction and the expression of CD11b in HL-60 cells more effectively than ATRA alone. Tamoxifen also enhanced the differentiation induced by the other inducers tested. ATRA induced the differentiation of APL cell lines NB4 and HT93 and APL cells in primary culture, and this differentiation was also enhanced by tamoxifen. Tamoxifen is one of the most widely used drugs for the treatment of cancer and has few side effects. The combination of ATRA and tamoxifen might be considered for the treatment of APL patients in whom it can be difficult to apply arsenic trioxide or anthracyclines.

  17. Selective Phosphorylation of South and North-Cytidine and Adenosine Methanocarba-Nucleosides by Human Nucleoside and Nucleotide Kinases Correlates with Their Growth Inhibitory Effects on Cultured Cells.

    PubMed

    Sjuvarsson, Elena; Marquez, Victor E; Eriksson, Staffan

    2015-01-01

    Here bicyclo[3.1.0]hexane locked deoxycytidine (S-MCdC, N-MCdC), and deoxyadenosine analogs (S-MCdA and N-MCdA) were examined as substrates for purified preparations of human deoxynucleoside kinases: dCK, dGK, TK2, TK1, the ribonucleoside kinase UCK2, two NMP kinases (CMPK1, TMPK) and a NDP kinase. dCK can be important for the first step of phosphorylation of S-MCdC in cells, but S-MCdCMP was not a substrate for CMPK1, TMPK, or NDPK. dCK and dGK had a preference for the S-MCdA whereas N-MCdA was not a substrate for dCK, TK1, UCK2, TK2, dGK nucleoside kinases. The cell growth experiments suggested that N-MCdC and S-MCdA could be activated in cells by cellular kinases so that a triphosphate metabolite was formed. List of abbreviations: ddC, 2', 3'-didioxycytosine, Zalcitabine; 3TC, β-L-(-)-2',3'-dideoxy-3'-thiacytidine, Lamivudine; CdA, 2-cloro-2'-deoxyadenosine, Cladribine; AraA, 9-β-D-arabinofuranosyladenine; hCNT 1-3, human Concentrative Nucleoside Transporter type 1, 2 and 3; hENT 1-4, human Equilibrative Nucleoside Transporter type 1, 2, 3, and 4.

  18. Growth inhibitory effects of endotoxins from Bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro

    SciTech Connect

    Layman, D.L.; Diedrich, D.L.

    1987-06-01

    Purified endotoxin or lipopolysaccharide from Bacteroides gingivalis and Bacteroides intermedius caused a similar dose-dependent inhibition of growth of cultured human gingival fibroblasts as determined by /sup 3/H-thymidine incorporation and direct cell count. Approximately 200 micrograms/ml endotoxin caused a 50% reduction in /sup 3/H-thymidine uptake of logarithmically growing cells. Inhibition of growth was similar in cultures of fibroblasts derived from either healthy or diseased human gingiva. When examining the change in cell number with time of exposure in culture, the rate of proliferation was significantly suppressed during the logarithmic phase of growth. However, the cells recovered so that the rate of proliferation, although reduced, was sufficient to produce a cell density similar to the control cells with prolonged culture. The endotoxins were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles of the Bacteroides endotoxins were different. B. gingivalis endotoxin showed a wide range of distinct bands indicating a heterogeneous distribution of molecular species. Endotoxin from B. intermedius exhibited a few discrete low molecular weight bands, but the majority of the lipopolysaccharides electrophoresed as a diffuse band of high molecular weight material. The apparent heterogeneity of the two Bacteroides endotoxins and the similarity in growth inhibitory capacity suggest that growth inhibitory effects of these substances cannot be attributed to any polysaccharide species of endotoxin.

  19. Structure-activity relationship of human GLO I inhibitory natural flavonoids and their growth inhibitory effects.

    PubMed

    Takasawa, Ryoko; Takahashi, Saki; Saeki, Kazunori; Sunaga, Satoshi; Yoshimori, Atsushi; Tanuma, Sei-ichi

    2008-04-01

    Glyoxalase I (GLO I) is the rate-limiting enzyme for detoxification of methylglyoxal (MG), a side product of glycolysis, which is able to induce apoptosis. Since GLO I is known to be highly expressed in the most tumor cells and little in normal cells, specific inhibitors of this enzyme have been expected as effective anticancer drugs. The purpose of this study is a good construction of the human GLO I/inhibitor pharmacophore to obtain unique human GLO I inhibitory seed compounds for the development of useful anticancer drugs. Here, we selected natural flavonoid compounds that possess a plane configuration of cis C-4 ketone and C-5 hydroxy groups as the substrate (MG) transition-state mimetic structure. These compounds were examined the inhibitory abilities to human GLO I activity and analyzed their structure-activity relationships to determine an important pharmacophore of flavonoids for the human GLO I binding. Our results point to the contribution of hydroxy groups at the B ring of flavonoids to the effective inhibition of the human GLO I. Based on the binding mode of flavonoids, we constructed the human GLO I/inhibitor pharmacophore. This work delivers the first three-dimensional (3D) structural data and explains certain flavonoids interact specifically with the human GLO I.

  20. Differential growth inhibitory effects of highly oxygenated guaianolides isolated from the Middle Eastern indigenous plant Achillea falcata in HCT-116 colorectal cancer cells.

    PubMed

    Tohme, Rita; Al Aaraj, Lamis; Ghaddar, Tarek; Gali-Muhtasib, Hala; Saliba, Najat A; Darwiche, Nadine

    2013-07-15

    Medicinal plants play a crucial role in traditional medicine and in the maintenance of human health worldwide. Sesquiterpene lactones represent an interesting group of plant-derived compounds that are currently being tested as lead drugs in cancer clinical trials. Achillea falcata is a medicinal plant indigenous to the Middle Eastern region and belongs to the Asteraceae family, which is known to be rich in sesquiterpene lactones. We subjected Achillea falcata extracts to bioassay-guided fractionation against the growth of HCT-116 colorectal cancer cells and identified four secotanapartholides, namely 3-β-methoxy-isosecotanapartholide (1), isosecotanapartholide (2), tanaphallin (3), and 8-hydroxy-3-methoxyisosecotanapartholide (4). Three highly oxygenated guaianolides were isolated for the first time from Achillea falcata, namely rupin A (5), chrysartemin B (6), and 1β, 2β-epoxy-3β,4α,10α-trihydroxyguaian-6α,12-olide (7). These sesquiterpene lactones showed no or minor cytotoxicity while exhibiting promising anticancer effects against HCT-116 cells. Further structure-activity relationship studies related the bioactivity of the tested compounds to their skeleton, their lipophilicity, and to the type of functional groups neighboring the main alkylating center of the molecule.

  1. Hellebrin and its aglycone form hellebrigenin display similar in vitro growth inhibitory effects in cancer cells and binding profiles to the alpha subunits of the Na+/K+-ATPase

    PubMed Central

    2013-01-01

    Background Surface-expressed Na+/K+-ATPase (NaK) has been suggested to function as a non-canonical cardiotonic steroid-binding receptor that activates multiple signaling cascades, especially in cancer cells. By contrast, the current study establishes a clear correlation between the IC50in vitro growth inhibitory concentration in human cancer cells and the Ki for the inhibition of activity of purified human α1β1 NaK. Methods The in vitro growth inhibitory effects of seven cardiac glycosides including five cardenolides (ouabain, digoxin, digitoxin, gitoxin, uzarigenin-rhamnoside, and their respective aglycone forms) and two bufadienolides (gamabufotalin-rhamnoside and hellebrin, and their respective aglycone forms) were determined by means of the MTT colorimetric assay and hellebrigenin-induced cytotoxic effects were visualized by means of quantitative videomicroscopy. The binding affinity of ten of the 14 compounds under study was determined with respect to human α1β1, α2β1 and α3β1 NaK complexes. Lactate releases and oxygen consumption rates were also determined in cancer cells treated with these various cardiac glycosides. Results Although cardiotonic steroid aglycones usually display weaker binding affinity and in vitro anticancer activity than the corresponding glycoside, the current study demonstrates that the hellebrin / hellebrigenin pair is at odds with respect to this rule. In addition, while some cardiac steroid glycosides (e.g., digoxin), but not the aglycones, display a higher binding affinity for the α2β1 and α3β1 than for the α1β1 complex, both hellebrin and its aglycone hellebrigenin display ~2-fold higher binding affinity for α1β1 than for the α2β1 and α3β1 complexes. Finally, the current study highlights a common feature for all cardiotonic steroids analyzed here, namely a dramatic reduction in the oxygen consumption rate in cardenolide- and bufadienolide-treated cells, reflecting a direct impact on mitochondrial oxidative

  2. Human endostatin gene transfer, either naked or with liposome, has the same inhibitory effect on growth of mouse liver tumor cells in vivo

    PubMed Central

    Ma, Chun-Hong; Zhang, Yan; Wang, Xiao-Yan; Gao, Li-Fen; Liu, Hua; Guo, Chun; Liu, Su-Xia; Cao, Ying-Lin; Zhang, Li-Ning; Sun, Wen-Sheng

    2004-01-01

    AIM: To explore a safe and efficient strategy of tumor therapy using anti-angiogenetic agents. METHODS: Endostatin gene with a signal sequence of human IgG γ chain was amplified by PCR and cloned into pVAX1 plasmid which was the only vector authorized by FDA in clinical trial to construct a recombinant plasmid named as pVAX-sEN. The recombinant plasmid was detected with Eco I/Kpn I and DNA sequencing. BALB/c mice bearing hepatocarcinoma cell line H22 were treated with naked pVAX-sEN or liposome-DNA complex in which the dose of DNA and the ratio of DNA and liposome were different from each other. To compare the efficiency of gene transfection, expression of endostatin at the treated tumor site was assayed with ELISA. To investigate the effect of pVAX1-sEN on hepatocellular carcinoma, pVAX-sEN either naked or in liposome-DNA complex was injected into BALB/c mice bearing H22, then the diameter of tumors was measured, microvessel density was detected by immunohistochemistry, endostatin expression in vivo was assayed at different time points. RESULTS: DNA sequencing showed the endostatin gene with the signal peptide was correctly cloned. In situ gene expression assay indicated that both the ratio of DNA and liposome and the dose of DNA could affect the gene transfection efficiency. Interestingly, naked pVAX-sEN had a similar in situ endostatin expression to pVAX-sEN with liposome. Animal experiments showed that pVAX-sEN together with pVAX-sEN-liposome complex could efficiently suppress the growth of mouse hepatoma cells. CONCLUSION: Naked endostatin plasmid intratumoral injection can get a similar gene transfection efficiency to liposome-DNA complex when used in situ. PMID:15334690

  3. Nuclear Factor of Activated T Cells-dependent Down-regulation of the Transcription Factor Glioma-associated Protein 1 (GLI1) Underlies the Growth Inhibitory Properties of Arachidonic Acid*

    PubMed Central

    Comba, Andrea; Almada, Luciana L.; Tolosa, Ezequiel J.; Iguchi, Eriko; Marks, David L.; Vara Messler, Marianela; Silva, Renata; Fernandez-Barrena, Maite G.; Enriquez-Hesles, Elisa; Vrabel, Anne L.; Botta, Bruno; Di Marcotulio, Lucia; Ellenrieder, Volker; Eynard, Aldo R.; Pasqualini, Maria E.; Fernandez-Zapico, Martin E.

    2016-01-01

    Numerous reports have demonstrated a tumor inhibitory effect of polyunsaturated fatty acids (PUFAs). However, the molecular mechanisms modulating this phenomenon are in part poorly understood. Here, we provide evidence of a novel antitumoral mechanism of the PUFA arachidonic acid (AA). In vivo and in vitro experiments showed that AA treatment decreased tumor growth and metastasis and increased apoptosis. Molecular analysis of this effect showed significantly reduced expression of a subset of antiapoptotic proteins, including BCL2, BFL1/A1, and 4-1BB, in AA-treated cells. We demonstrated that down-regulation of the transcription factor glioma-associated protein 1 (GLI1) in AA-treated cells is the underlying mechanism controlling BCL2, BFL1/A1, and 4-1BB expression. Using luciferase reporters, chromatin immunoprecipitation, and expression studies, we found that GLI1 binds to the promoter of these antiapoptotic molecules and regulates their expression and promoter activity. We provide evidence that AA-induced apoptosis and down-regulation of antiapoptotic genes can be inhibited by overexpressing GLI1 in AA-sensitive cells. Conversely, inhibition of GLI1 mimics AA treatments, leading to decreased tumor growth, cell viability, and expression of antiapoptotic molecules. Further characterization showed that AA represses GLI1 expression by stimulating nuclear translocation of NFATc1, which then binds the GLI1 promoter and represses its transcription. AA was shown to increase reactive oxygen species. Treatment with antioxidants impaired the AA-induced apoptosis and down-regulation of GLI1 and NFATc1 activation, indicating that NFATc1 activation and GLI1 repression require the generation of reactive oxygen species. Collectively, these results define a novel mechanism underlying AA antitumoral functions that may serve as a foundation for future PUFA-based therapeutic approaches. PMID:26601952

  4. Nuclear Factor of Activated T Cells-dependent Down-regulation of the Transcription Factor Glioma-associated Protein 1 (GLI1) Underlies the Growth Inhibitory Properties of Arachidonic Acid.

    PubMed

    Comba, Andrea; Almada, Luciana L; Tolosa, Ezequiel J; Iguchi, Eriko; Marks, David L; Vara Messler, Marianela; Silva, Renata; Fernandez-Barrena, Maite G; Enriquez-Hesles, Elisa; Vrabel, Anne L; Botta, Bruno; Di Marcotulio, Lucia; Ellenrieder, Volker; Eynard, Aldo R; Pasqualini, Maria E; Fernandez-Zapico, Martin E

    2016-01-22

    Numerous reports have demonstrated a tumor inhibitory effect of polyunsaturated fatty acids (PUFAs). However, the molecular mechanisms modulating this phenomenon are in part poorly understood. Here, we provide evidence of a novel antitumoral mechanism of the PUFA arachidonic acid (AA). In vivo and in vitro experiments showed that AA treatment decreased tumor growth and metastasis and increased apoptosis. Molecular analysis of this effect showed significantly reduced expression of a subset of antiapoptotic proteins, including BCL2, BFL1/A1, and 4-1BB, in AA-treated cells. We demonstrated that down-regulation of the transcription factor glioma-associated protein 1 (GLI1) in AA-treated cells is the underlying mechanism controlling BCL2, BFL1/A1, and 4-1BB expression. Using luciferase reporters, chromatin immunoprecipitation, and expression studies, we found that GLI1 binds to the promoter of these antiapoptotic molecules and regulates their expression and promoter activity. We provide evidence that AA-induced apoptosis and down-regulation of antiapoptotic genes can be inhibited by overexpressing GLI1 in AA-sensitive cells. Conversely, inhibition of GLI1 mimics AA treatments, leading to decreased tumor growth, cell viability, and expression of antiapoptotic molecules. Further characterization showed that AA represses GLI1 expression by stimulating nuclear translocation of NFATc1, which then binds the GLI1 promoter and represses its transcription. AA was shown to increase reactive oxygen species. Treatment with antioxidants impaired the AA-induced apoptosis and down-regulation of GLI1 and NFATc1 activation, indicating that NFATc1 activation and GLI1 repression require the generation of reactive oxygen species. Collectively, these results define a novel mechanism underlying AA antitumoral functions that may serve as a foundation for future PUFA-based therapeutic approaches. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    SciTech Connect

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang; Yang, Runxiang; Cai, Xinyi; Zhang, Lijuan; Jin, Congguo; Huang, Yunchao

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  6. A thermally targeted c-Myc inhibitory polypeptide inhibits breast tumor growth.

    PubMed

    Bidwell, Gene L; Perkins, Eddie; Raucher, Drazen

    2012-06-28

    Although surgical resection with adjuvant chemotherapy and/or radiotherapy are used to treat breast tumors, normal tissue tolerance, development of metastases, and inherent tumor resistance to radiation or chemotherapy can hinder a successful outcome. We have developed a thermally responsive polypeptide, based on the sequence of Elastin-like polypeptide (ELP), that inhibits breast cancer cell proliferation by blocking the activity of the oncogenic protein c-Myc. Following systemic administration, the ELP - delivered c-Myc inhibitory peptide was targeted to tumors using focused hyperthermia, and significantly reduced tumor growth in an orthotopic mouse model of breast cancer. This work provides a new modality for targeted delivery of a specific oncogene inhibitory peptide, and this strategy may be expanded for delivery of other therapeutic peptides or small molecule drugs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Monofunctional platinum(II) complexes with potent tumor cell growth inhibitory activity: the effect of a hydrogen-bond donor/acceptor N-heterocyclic ligand.

    PubMed

    Margiotta, Nicola; Savino, Salvatore; Gandin, Valentina; Marzano, Christine; Natile, Giovanni

    2014-06-01

    In this paper we investigate the possibility of further increase the role of the N-donor aromatic base in antitumor Hollis-type compounds by conferring the possibility to act as a hydrogen-bond donor/acceptor. Therefore, we synthesized the Pt(II) complex cis-[PtCl(NH3 )2 (naph)]NO3 (1) containing the 1,8-naphthyridine (naph) ligand. The naphthyridine ligand is generally monodentate, and the second nitrogen atom can act as H-bond donor/acceptor depending upon its protonation state. The possibility of forming such an H-bond could be crucial in the interaction of the drug with DNA or proteins. Apart from the synthesis of the compound, in this study we evaluated its in vitro antitumor activity in a wide panel of tumor cell lines, also including cells selected for their sensitivity/resistance to oxaliplatin, which was compared with that of previously reported complex 2 ([PtI(2,9-dimethyl-1,10-phenanthroline)(1-methyl-cytosine)]I) and oxaliplatin and cisplatin as reference compounds. The cytotoxicity data were correlated with the cellular uptake and the DNA platination levels. Finally, the reactivity of 1 towards guanosine 5'-monophosphate (5'-GMP) and glutathione was investigated to provide insights into its mechanism of action.

  8. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    PubMed

    Arafat, Kholoud; Iratni, Rabah; Takahashi, Takashi; Parekh, Khatija; Al Dhaheri, Yusra; Adrian, Thomas E; Attoub, Samir

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days) significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  9. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells.

    PubMed

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang; Yang, Runxiang; Cai, Xinyi; Zhang, Lijuan; Jin, Congguo; Huang, Yunchao

    2014-04-18

    Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  10. H-Ras Mediates the Inhibitory Effect of Epidermal Growth Factor on the Epithelial Na+ Channel

    PubMed Central

    Lee, Il-Ha; Song, Sung-Hee; Cook, David I.; Dinudom, Anuwat

    2015-01-01

    The present study investigates the role of small G-proteins of the Ras family in the epidermal growth factor (EGF)-activated cellular signalling pathway that downregulates activity of the epithelial Na+ channel (ENaC). We found that H-Ras is a key component of this EGF-activated cellular signalling mechanism in M1 mouse collecting duct cells. Expression of a constitutively active H-Ras mutant inhibited the amiloride-sensitive current. The H-Ras-mediated signalling pathway that inhibits activity of ENaC involves c-Raf, and that the inhibitory effect of H-Ras on ENaC is abolished by the MEK1/2 inhibitor, PD98059. The inhibitory effect of H-Ras is not mediated by Nedd4-2, a ubiquitin protein ligase that regulates the abundance of ENaC at the cell surface membrane, or by a negative effect of H-Ras on proteolytic activation of the channel. The inhibitory effects of EGF and H-Ras on ENaC, however, were not observed in cells in which expression of caveolin-1 (Cav-1) had been knocked down by siRNA. These findings suggest that the inhibitory effect of EGF on ENaC-dependent Na+ absorption is mediated via the H-Ras/c-Raf, MEK/ERK signalling pathway, and that Cav-1 is an essential component of this EGF-activated signalling mechanism. Taken together with reports that mice expressing a constitutive mutant of H-Ras develop renal cysts, our findings suggest that H-Ras may play a key role in the regulation of renal ion transport and renal development. PMID:25774517

  11. Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines.

    PubMed

    Ho, Yi-Chien; Liu, Chi-Hsien; Chen, Chien-Nan; Duan, Kow-Jen; Lin, Ming-Tse

    2008-11-01

    Xanthohumol is one of the main flavonoids in hop extracts and in beer. Very few investigations of xanthohumol have studied hepatocellular carcinoma. In this study, the inhibitory effects of xanthohumol on human hepatocellular carcinoma cell lines were investigated. The IC(50) values of xanthohumol for two hepatocellular carcinoma cell lines and one normal hepatocyte cell line were 108, 166 and 211 microm, respectively. Normal murine hepatocyte cell line had more resistance to xanthohumol than hepatocellular carcinoma cell lines. Besides, the inhibitory effects of xanthohumol on human hepatocellular carcinoma cell lines were attributed to apoptosis as indicated in the results of flow cytometry, fluorescent nuclear staining and electrophoresis of oligonucleosomal DNA fragments. Hop xanthohumol was more efficient in the growth inhibition of hepatocellular carcinoma cell lines than the flavonoids silibinin and naringin from thistle and citrus. It was shown for the first time that xanthohumol from hops effectively inhibits proliferation of human hepatocellular carcinoma cells in vitro.

  12. Inhibitory effects of Chinese nutritional herbs in isogenic breast carcinoma cells with modulated estrogen receptor function

    PubMed Central

    Telang, Nitin; Li, Guo; Katdare, Meena; Sepkovic, Daniel; Bradlow, Leon; Wong, George

    2016-01-01

    In estrogen receptor (ER)+ MCF-7 cells, ER represents a ligand-activated transcription factor, and 17β-estradiol (E2) represents its physiological ligand. Maintenance of the human breast carcinoma-derived MCF-7 cells with 0.7% serum selected a proliferative sub-population of E2-responsive cells with transiently non-functional ER due to limited availability of E2. Culture of MCF-7 cells in the presence of either 0.7% serum, <1 nM E2 or 0.7% serum + 20 nM E2 selected isogenic cells with either non-functional ER (ER-NF) or functional ER (ER-F) phenotype. The two phenotypes responded to the growth-promoting effects of E2 and to the growth-inhibitory effects of the selective ER modulator tamoxifen, indicating retention of E2 responsiveness. Comparative dose-response experiments with Chinese nutritional herbs on ER-NF and ER-F cells identified the inhibitory concentration (IC)50 values for these herbs, while the IC50 ratios for the ER-NF:ER-F phenotypes facilitated their rank ordering in terms of efficacy. Out of the 11 efficacious herbs tested, five herbs exhibited ER-F > ER-NF inhibitory activity, four exhibited ER-F = ER-NF inhibitory activity and two exhibited ER-NF > ER-F inhibitory activity. Extracts from representative herbs, Lycium barbarum bark, Epimedium grandiflorum and Cornus officinalis, from each of the three groups inhibited anchorage-independent growth, induced G1 or G2/M arrest and/or apoptosis, and generated anti-proliferative E2 metabolites. The differential growth inhibition in ER-NF and ER-F phenotypes, together with the mechanistic efficacy of representative herbs, identified potential leads for their efficacy on ER+ and/or ER- breast cancer. PMID:27895755

  13. Inhibitory effects of Chinese nutritional herbs in isogenic breast carcinoma cells with modulated estrogen receptor function.

    PubMed

    Telang, Nitin; Li, Guo; Katdare, Meena; Sepkovic, Daniel; Bradlow, Leon; Wong, George

    2016-11-01

    In estrogen receptor (ER)+ MCF-7 cells, ER represents a ligand-activated transcription factor, and 17β-estradiol (E2) represents its physiological ligand. Maintenance of the human breast carcinoma-derived MCF-7 cells with 0.7% serum selected a proliferative sub-population of E2-responsive cells with transiently non-functional ER due to limited availability of E2. Culture of MCF-7 cells in the presence of either 0.7% serum, <1 nM E2 or 0.7% serum + 20 nM E2 selected isogenic cells with either non-functional ER (ER-NF) or functional ER (ER-F) phenotype. The two phenotypes responded to the growth-promoting effects of E2 and to the growth-inhibitory effects of the selective ER modulator tamoxifen, indicating retention of E2 responsiveness. Comparative dose-response experiments with Chinese nutritional herbs on ER-NF and ER-F cells identified the inhibitory concentration (IC)50 values for these herbs, while the IC50 ratios for the ER-NF:ER-F phenotypes facilitated their rank ordering in terms of efficacy. Out of the 11 efficacious herbs tested, five herbs exhibited ER-F > ER-NF inhibitory activity, four exhibited ER-F = ER-NF inhibitory activity and two exhibited ER-NF > ER-F inhibitory activity. Extracts from representative herbs, Lycium barbarum bark, Epimedium grandiflorum and Cornus officinalis, from each of the three groups inhibited anchorage-independent growth, induced G1 or G2/M arrest and/or apoptosis, and generated anti-proliferative E2 metabolites. The differential growth inhibition in ER-NF and ER-F phenotypes, together with the mechanistic efficacy of representative herbs, identified potential leads for their efficacy on ER(+) and/or ER- breast cancer.

  14. The Role of Leukemia Inhibitory Factor Receptor Signaling in Skeletal Muscle Growth, Injury and Disease.

    PubMed

    Hunt, Liam C; White, Jason

    2016-01-01

    Cytokines are an incredibly diverse group of secreted proteins with equally diverse functions. The actions of cytokines are mediated by the unique and sometimes overlapping receptors to which the soluble ligands bind. Classified within the interleukin-6 family of cytokines are leukemia inhibitory factor (LIF), oncostatin-M (OSM), cardiotrophin-1 (CT-1) and ciliary neurotrophic factor (CNTF). These cytokines all bind to the leukemia inhibitory factor receptor (LIFR) and gp130, and in some cases an additional receptor subunit, leading to activation of downstream kinases and transcriptional activators. LIFR is expressed on a broad range of cell types and can generate pleiotropic effects. In the context of skeletal muscle physiology, these cytokines have been shown to exert effects on motor neurons, inflammatory and muscle cells. From isolated cells through to whole organisms, manipulations of LIFR signaling cytokines have a wide range of outcomes influencing muscle cell growth, myogenic differentiation, response to exercise, metabolism, neural innervation and recruitment of inflammatory cells to sites of muscle injury. This article will discuss the shared and distinct processes that LIFR cytokines regulate in a variety of experimental models with the common theme of skeletal muscle physiology.

  15. Purification of kidney epithelial cell growth inhibitors.

    PubMed Central

    Holley, R W; Böhlen, P; Fava, R; Baldwin, J H; Kleeman, G; Armour, R

    1980-01-01

    Two high molecular weight growth inhibitors have been isolated from the culture medium of BSC-1 cells, epithelial cells of African green monkey kidney. The purified kidney epithelial cell growth inhibitors, at ng/ml concentrations, reversibly arrest the growth of BSC-1 cells in the G1 phase of the cell cycle. Their action is selective; they are most active on BSC-1 cells, are less active as inhibitors of the growth of rat lung and human breast epithelial cells, and do not inhibit the growth of 3T3 mouse embryo fibroblasts ad human skin fibroblasts in culture. Their growth inhibitory action on BSC-1 cell cultures is counteracted by epidermal growth factor or calf serum. PMID:6969400

  16. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.

    PubMed

    Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M

    2007-12-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.

  17. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  18. Inhibitory control of growth hormone secretion by somatostatin in rat pituitary GC cells: sst(2) but not sst(1) receptors are coupled to inhibition of single-cell intracellular free calcium concentrations.

    PubMed

    Cervia, Davide; Petrucci, Cristina; Bluet-Pajot, Marie Thérèse; Epelbaum, Jacques; Bagnoli, Paola

    2002-08-01

    Rat pituitary tumor cells (GC cells) exhibit spontaneous oscillations of intracellular free calcium concentration ([Ca(2+)](i)) that allow continuous release of growth hormone (GH). Of the somatostatin (SRIH) receptor subtypes (sst receptors) mediating SRIH action, sst(1) and sst(2) receptors are highly expressed by GC cell membranes. In the present study, the effects of sst(1) or sst(2) receptor activation on single-cell [Ca(2+)](i) were investigated in GC cells by confocal fluorescence microscopy. In addition, the effects of sst(1) or sst(2) receptor activation on GH secretion were also studied. Our results demonstrate that SRIH decreases [Ca(2+)](i) baseline and almost completely blocks Ca(2+) transients through activation of sst(2) but not of sst(1) receptors. In contrast, SRIH effectively inhibits GH secretion through activation of both sst(1) and sst(2) receptors. Blocking Ca(2+) transients is less efficient than SRIH to inhibit GH release. The cyclic octapeptide, CYN-154806, antagonizes sst(2) receptors at [Ca(2+)](i) since it abolishes the sst(2) receptor-mediated inhibition of [Ca(2+)](i) without affecting single-cell Ca(2+) signals. On the other hand, CYN-154806 alone potently inhibits GH secretion through the involvement of pertussis toxin-sensitive G proteins. In conclusion, the present results demonstrate that SRIH inhibition of GH release in GC cells involves mechanisms either dependent or independent on SRIH modulation of [Ca(2+)](i). The implications of CYN-154806 inhibition of GH secretion are discussed. Copyright 2002 S. Karger AG, Basel

  19. Inhibitory Effects of Metabolites of 5-Demethylnobiletin on Human Nonsmall Cell Lung Cancer Cells.

    PubMed

    Song, Mingyue; Charoensinphon, Noppawat; Wu, Xian; Zheng, Jinkai; Gao, Zili; Xu, Fei; Wang, Minqi; Xiao, Hang

    2016-06-22

    5-Demethylnobiletin is a unique flavonoid found in citrus fruits with potential chemopreventive effects against human cancers. We previously identified three metabolites of 5DN, namely 5,4'-didemethylnobiletin (M1), 5,3',4'- tridemethylnobiletin (M2), and 5,3'-didemethylnobiletin (M3) in mice fed 5DN. Herein, we investigated the inhibitory effects of these three metabolites on NSCLC cells. Our results demonstrated that M1, M2, and especially M3 showed stronger inhibition on the growth and colony formation of H460 and H1299 cells compared to 5DN. Three metabolites significantly inhibited the tumorsphere formation of A549 cells. Flow cytometry analysis showed that all metabolites induced cell cycle arrest and cellular apoptosis, and these effects were also stronger than that of 5DN. The inhibitory effects of these metabolites were associated with their ability to modulate the key signaling proteins related to cell proliferation and apoptosis. Overall, our results provided a basis for utilizing 5DN and its metabolites for chemoprevention of lung cancer.

  20. RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo

    PubMed Central

    Alkasalias, Twana; Alexeyenko, Andrey; Hennig, Katharina; Danielsson, Frida; Lebbink, Robert Jan; Fielden, Matthew; Turunen, S. Pauliina; Lehti, Kaisa; Kashuba, Vladimir; Madapura, Harsha S.; Bozoky, Benedek; Lundberg, Emma; Balland, Martial; Guvén, Hayrettin; Klein, George; Gad, Annica K. B.; Pavlova, Tatiana

    2017-01-01

    Fibroblasts are a main player in the tumor-inhibitory microenvironment. Upon tumor initiation and progression, fibroblasts can lose their tumor-inhibitory capacity and promote tumor growth. The molecular mechanisms that underlie this switch have not been defined completely. Previously, we identified four proteins overexpressed in cancer-associated fibroblasts and linked to Rho GTPase signaling. Here, we show that knocking out the Ras homolog family member A (RhoA) gene in normal fibroblasts decreased their tumor-inhibitory capacity, as judged by neighbor suppression in vitro and accompanied by promotion of tumor growth in vivo. This also induced PC3 cancer cell motility and increased colony size in 2D cultures. RhoA knockout in fibroblasts induced vimentin intermediate filament reorganization, accompanied by reduced contractile force and increased stiffness of cells. There was also loss of wide F-actin stress fibers and large focal adhesions. In addition, we observed a significant loss of α-smooth muscle actin, which indicates a difference between RhoA knockout fibroblasts and classic cancer-associated fibroblasts. In 3D collagen matrix, RhoA knockout reduced fibroblast branching and meshwork formation and resulted in more compactly clustered tumor-cell colonies in coculture with PC3 cells, which might boost tumor stem-like properties. Coculturing RhoA knockout fibroblasts and PC3 cells induced expression of proinflammatory genes in both. Inflammatory mediators may induce tumor cell stemness. Network enrichment analysis of transcriptomic changes, however, revealed that the Rho signaling pathway per se was significantly triggered only after coculturing with tumor cells. Taken together, our findings in vivo and in vitro indicate that Rho signaling governs the inhibitory effects by fibroblasts on tumor-cell growth. PMID:28174275

  1. RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo.

    PubMed

    Alkasalias, Twana; Alexeyenko, Andrey; Hennig, Katharina; Danielsson, Frida; Lebbink, Robert Jan; Fielden, Matthew; Turunen, S Pauliina; Lehti, Kaisa; Kashuba, Vladimir; Madapura, Harsha S; Bozoky, Benedek; Lundberg, Emma; Balland, Martial; Guvén, Hayrettin; Klein, George; Gad, Annica K B; Pavlova, Tatiana

    2017-02-21

    Fibroblasts are a main player in the tumor-inhibitory microenvironment. Upon tumor initiation and progression, fibroblasts can lose their tumor-inhibitory capacity and promote tumor growth. The molecular mechanisms that underlie this switch have not been defined completely. Previously, we identified four proteins overexpressed in cancer-associated fibroblasts and linked to Rho GTPase signaling. Here, we show that knocking out the Ras homolog family member A (RhoA) gene in normal fibroblasts decreased their tumor-inhibitory capacity, as judged by neighbor suppression in vitro and accompanied by promotion of tumor growth in vivo. This also induced PC3 cancer cell motility and increased colony size in 2D cultures. RhoA knockout in fibroblasts induced vimentin intermediate filament reorganization, accompanied by reduced contractile force and increased stiffness of cells. There was also loss of wide F-actin stress fibers and large focal adhesions. In addition, we observed a significant loss of α-smooth muscle actin, which indicates a difference between RhoA knockout fibroblasts and classic cancer-associated fibroblasts. In 3D collagen matrix, RhoA knockout reduced fibroblast branching and meshwork formation and resulted in more compactly clustered tumor-cell colonies in coculture with PC3 cells, which might boost tumor stem-like properties. Coculturing RhoA knockout fibroblasts and PC3 cells induced expression of proinflammatory genes in both. Inflammatory mediators may induce tumor cell stemness. Network enrichment analysis of transcriptomic changes, however, revealed that the Rho signaling pathway per se was significantly triggered only after coculturing with tumor cells. Taken together, our findings in vivo and in vitro indicate that Rho signaling governs the inhibitory effects by fibroblasts on tumor-cell growth.

  2. [Electrophysiological properties of inhibitory neurones in cultured dissociated hippocampal cells].

    PubMed

    Moskaliuk, A O; Kolodin, Iu O; Kravchenko, M O; Fedulova, S A; Veselovs'kyĭ, M S

    2004-01-01

    Electrophysiological properties of inhibitory (GABAergic) neurones were studied in dissociated hippocampal culture using simultaneous whole cell recordings from pairs of monosynaptically coupled neurons. Reliable identification of GABAergic neuron was performed by presence of monosynaptic inhibitory currents at postsynaptic cell in response to action potentials at stimulated cell. It was shown that GABAergic neurons in hippocampal culture are divided in two groups by their firing characteristics: first type generates action potentials at high frequency in response to injection of current (duration 0.5 s)--fast-spiking neurons (FS), cells from second type has no ability for high-frequency action potential generation--regular spiking neurons (RS). These two groups were distinguished by kinetic characteristics of action potentials, adaptation characteristics during continuous generation of action potentials and inhibitory effect making on postsynaptic cell. Application of potassium channel blocker 4-AP to somas of FS neurons in concentration, which selectively inhibits Kv3 potassium channels evoked reversible changes in kinetic of action potentials, frequency and adaptation characteristics during continuous generation of action potentials. It was concluded that there is hight level of expression of Kv3 potassium channels in the first group of neurons.

  3. Growth-inhibitory activity of natural and synthetic isothiocyanates against representative human microbial pathogens.

    PubMed

    Kurepina, N; Kreiswirth, B N; Mustaev, A

    2013-10-01

    The aim of this study was to test the growth inhibition activity of isothiocyanates (ITCs), defence compounds of plants, against common human microbial pathogens. In this study, we have tested the growth-inhibitory activity of a diverse collection of new and previously known representative ITCs of various structural classes against pathogenic bacteria, fungi and moulds by a serial dilution method. Generally, the compounds were more active against Gram-positive bacteria and fungi exhibiting species-specific bacteriostatic or bactericidal effect. The most active compounds inhibited the growth of both drug-susceptible and multi-drug-resistant (MDR) pathogens at micromolar concentrations. In the case of Mycobacterium tuberculosis, some compounds were more active against MDR, rather than against susceptible strains. The average antimicrobial activity for some of the new derivatives was significantly higher than that previously reported for the most active ITC compounds. The structure-activity relationship (SAR) established for various classes of ITC with Bacillus cereus (model organism for B. anthracis) followed a distinct pattern, thereby enabling prediction of new more efficient inhibitors. Remarkably, tested bacteria failed to develop resistance to ITC. While effectively inhibiting microbial growth, ITCs displayed moderate toxicity towards eukaryotic cells. High antimicrobial activity coupled with moderate toxicity grants further thorough studies of the ITC compounds aimed at elucidation of their cellular targets and inhibitory mechanism. This systematic study identified new ITC compounds highly active against common human microbial pathogens at the concentrations comparable with those for currently used antimicrobial drugs (e.g. rifampicin and fluconazole). Tested representative pathogens do not develop resistance to the inhibitors. These properties justify further evaluation of ITC compounds as potential antimicrobial agents for medicinal use and for industrial

  4. Growth-inhibitory activity of natural and synthetic isothiocyanates against representative human microbial pathogens

    PubMed Central

    Kurepina, Natalia; Kreiswirth, Barry N.; Mustaev, Arkady

    2013-01-01

    Aims The aim of this study was to test the growth inhibition activity of isothiocyanates (ITC), defense compounds of plants, against common human microbial pathogens. Methods and Results In this study we have tested the growth inhibitory activity of a diverse collection of new and previously known representative ITC of various structural classes against pathogenic bacteria, fungi and molds by a serial dilution method. Generally, the compounds were more active against Gram-positive bacteria and fungi exhibiting species-specific bacteriostatic or bactericidal effect. The most active compounds inhibited the growth of both drug-susceptible and multi drug resistant (MDR) pathogens at micromolar concentrations. In the case of Mycobacterium tuberculosis some compounds were more active against MDR, rather than against susceptible strains. The average anti-microbial activity for some of new derivatives was significantly higher than previously reported for the most active ITC compounds. The structure-activity relationship (SAR) established for various classes of ITC with Bacillus cereus (model organism for B. anthracis) followed a distinct pattern, thereby enabling prediction of new more efficient inhibitors. Remarkably, tested bacteria failed to develop resistance to ITC. While effectively inhibiting microbial growth, ITCs displayed moderate toxicity towards eukaryotic cells. Conclusions High antimicrobial activity coupled with moderate toxicity grants further thorough studies of the ITC compounds aimed at elucidation of their cellular targets and inhibitory mechanism. Significance and impact of the study This systematic study identified new ITC compounds highly active against common human microbial pathogens at the concentrations comparable with those for currently used antimicrobial drugs (e.g. rifampicin, fluconazole). Tested representative pathogens do not develop resistance to the inhibitors. These properties justify further evaluation of ITC compounds as potential

  5. AIDS-associated Kaposi's sarcoma (KS) cells express oncostatin M (OM)-specific receptor but not leukemia inhibitory factor/OM receptor or interleukin-6 receptor. Complete block of OM-induced KS cell growth and OM binding by anti-gp130 antibodies.

    PubMed Central

    Murakami-Mori, K; Taga, T; Kishimoto, T; Nakamura, S

    1995-01-01

    Oncostatin M (OM), which shares functional similarity and structural homology to leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), functions as a potent growth factor for AIDS-associated Kaposi's sarcoma-derived cells (AIDS-KS cells). OM was also suggested to bind to the LIF receptor (LIF/OM receptor), which consists of a signal transducing subunit for LIF and IL-6 (gp130) and a LIF receptor alpha-subunit. Recent studies indicate that IL-6 has growth-stimulating activity for AIDS-KS cells. However, we find that AIDS-KS cell growth is exclusively induced by OM and not by LIF or IL-6. We also observed the lack of binding properties of AIDS-KS cells for LIF and IL-6. Scatchard plots revealed the existence of two affinity classes of OM receptor sites on AIDS-KS cells, with Kd values of 6-12 pM (high affinity) and 521-815 pM (low affinity). In competition binding studies, we find that the OM-specific receptor, but not the LIF/OM receptor, contributes to the OM-specific growth stimulation of AIDS-KS cells. We also noted that anti-gp130 antibodies can completely abolish OM-induced growth stimulation of AIDS-KS cells as well as OM binding to AIDS-KS cells. PCR amplification clearly revealed high levels of gp130 expression in AIDS-KS cells, while the transcript of LIF receptor alpha-subunit or IL-6 receptor alpha-subunit was not observed. Therefore, we conclude that (a) AIDS-KS cells express the OM-specific receptor with high and low affinity, but not the LIF/OM receptor; (b) gp130 on AIDS-KS cells plays a key role in OM binding and signaling on the OM-specific receptor; and (c) the lack of biological response of AIDS-KS cells to IL-6 and LIF can be explained by the absence of the IL-6 and LIF/OM receptors. All this evidence shows the correlation of OM-specific biological activity with expression of the OM-specific receptor and the involvement of gp130 on this receptor, as based on findings in in vitro growth assays and binding experiments for AIDS-KS cells. Images

  6. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease

    PubMed Central

    Chen, Li; Zhou, Xia; Fan, Lucy X.; Yao, Ying; Swenson-Fields, Katherine I.; Gadjeva, Mihaela; Wallace, Darren P.; Peters, Dorien J.M.; Yu, Alan; Grantham, Jared J.; Li, Xiaogang

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by renal cyst formation, inflammation, and fibrosis. Macrophages infiltrate cystic kidneys, but the role of these and other inflammatory factors in disease progression are poorly understood. Here, we identified macrophage migration inhibitory factor (MIF) as an important regulator of cyst growth in ADPKD. MIF was upregulated in cyst-lining epithelial cells in polycystin-1–deficient murine kidneys and accumulated in cyst fluid of human ADPKD kidneys. MIF promoted cystic epithelial cell proliferation by activating ERK, mTOR, and Rb/E2F pathways and by increasing glucose uptake and ATP production, which inhibited AMP-activated protein kinase signaling. MIF also regulated cystic renal epithelial cell apoptosis through p53-dependent signaling. In polycystin-1–deficient mice, MIF was required for recruitment and retention of renal macrophages, which promoted cyst expansion, and Mif deletion or pharmacologic inhibition delayed cyst growth in multiple murine ADPKD models. MIF-dependent macrophage recruitment was associated with upregulation of monocyte chemotactic protein 1 (MCP-1) and inflammatory cytokine TNF-α. TNF-α induced MIF expression, and MIF subsequently exacerbated TNF-α expression in renal epithelial cells, suggesting a positive feedback loop between TNF-α and MIF during cyst development. Our study indicates MIF is a central and upstream regulator of ADPKD pathogenesis and provides a rationale for further exploration of MIF as a therapeutic target for ADPKD. PMID:25961459

  7. Inhibitory effects of essential oils of medicinal plants from growth of plant pathogenic fungi.

    PubMed

    Panjehkeh, N; Jahani Hossein-Abadi, Z

    2011-01-01

    Plant cells produce a vast amount of secondary metabolites. Production of some compounds is restricted to a single species. Some compounds are nearly always found only in certain specific plant organs and during a specific developmental period of the plant. Some secondary metabolites of plants serve as defensive compounds against invading microorganisms. Nowadays, it is attempted to substitute the biological and natural agents with chemically synthesized fungicides. In the present research, the antifungal activities of essential oils of seven medicinal plants on mycelial growth of three soilborne plant pathogenic fungi were investigated. The plants consisted of Zataria multiflora, Thymus carmanicus, Mentha pieperata, Satureja hortensis, Lavandual officinolis, Cuminum cyminum and Azadirachta indica. The first five plants are from the family Labiatae. Examined fungi, Fusarium oxysporum f.sp. lycopersici, Fusarium solani and Rhizoctonia solani are the causal agents of tomato root rot. Essential oils of Z. multiflora, T. carmanicus, M. pieperata, S. hortensis and C. cyminum were extracted by hydro-distillation method. Essential oils of L. officinalis and A. indica were extracted by vapor-distillation method. A completely randomized design with five replicates was used to examine the inhibitory impact of each concentration (300, 600 and 900 ppm) of each essential oil. Poisoned food assay using potato dextrose agar (PDA) medium was employed. Results showed that essential oils of A. indica, Z. multiflora, T. carmanicus and S. hortensis in 900 ppm at 12 days post-inoculation, when the control fungi completely covered the plates, prevented about 90% from mycelial growth of each of the fungi. While, the essential oils of M. pieperata, C. cyminum and L. officinalis in the same concentration and time prevented 54.86, 52.77 and 48.84%, respectively, from F. solani growth. These substances did not prevent from F. oxysporum f.sp. lycopersici and R. solani growth. Minimum

  8. Inhibitory Effect of Baicalin and Baicalein on Ovarian Cancer Cells

    PubMed Central

    Chen, Jianchu; Li, Zhaoliang; Chen, Allen Y.; Ye, Xingqian; Luo, Haitao; Rankin, Gary O.; Chen, Yi Charlie

    2013-01-01

    Ovarian cancer is one of the primary causes of death for women all through the Western world. Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants and are thought to have antioxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. Two kinds of ovarian cancer (OVCAR-3 and CP-70) cell lines and a normal ovarian cell line (IOSE-364) were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45–55 μM for baicalin and 25–40 μM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 μM for baicalin and 68 μM for baicalein. Baicalin decreased expression of VEGF (20 μM), cMyc (80 μM), and NFkB (20 μM); baicalein decreased expression of VEGF (10 μM), HIF-1α (20 μM), cMyc (20 μM), and NFkB (40 μM). Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB. Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers. PMID:23502466

  9. Anti-vascular endothelial growth factor antibody single therapy for pancreatic neuroendocrine carcinoma exhibits a marked tumor growth-inhibitory effect.

    PubMed

    Kasuya, Kazuhiko; Nagakawa, Yuichi; Suzuki, Minako; Tanaka, Hiroaki; Ohta, Hiroshi; Itoi, Takao; Tsuchida, Akihiko

    2011-11-01

    At present, no effective chemotherapy for pancreatic neuroendocrine carcinoma (PNEC) exists. However, anti-angiogenic therapy is expected to be effective for PNEC, a hypervascular tumor. We treated PNEC and hypovascular pancreatic ductal cell carcinoma (DCC) cell lines with the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab, and compared the antitumor effect between the two different types of cell lines. The PNEC cell line QGP-1 and the DCC cell lines BxPC-3 and AsPC-1 were used. We evaluated the ability of the cell lines to proliferate and secrete VEGF in vitro, the antitumor effect of bevacizumab administration in vivo and the side effects of bevacizumab on the pancreas in a caerulein-induced pancreatitis model. Comparison of the QGP-1 and DCC cell lines showed that QGP-1 secreted a higher level of VEGF under a hypoxic environment than the DCC cell line, and bevacizumab exerted the most marked growth-inhibitory effect on QGP-1; the number of intratumoral blood vessels decreased and the percentage of proliferating cells was approximately the same. In the pancreatitis model, bevacizumab administration did not adversely affect the pancreatitis or the associated hypoxic environment. Bevacizumab does not affect the pancreas itself; therefore, its potent inhibitory effect on the growth of pancreatic neuroendocrine tumors alone can be expected.

  10. Anti-vascular endothelial growth factor antibody single therapy for pancreatic neuroendocrine carcinoma exhibits a marked tumor growth-inhibitory effect

    PubMed Central

    KASUYA, KAZUHIKO; NAGAKAWA, YUICHI; SUZUKI, MINAKO; TANAKA, HIROAKI; OHTA, HIROSHI; ITOI, TAKAO; TSUCHIDA, AKIHIKO

    2011-01-01

    At present, no effective chemotherapy for pancreatic neuroendocrine carcinoma (PNEC) exists. However, anti-angiogenic therapy is expected to be effective for PNEC, a hypervascular tumor. We treated PNEC and hypovascular pancreatic ductal cell carcinoma (DCC) cell lines with the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab, and compared the antitumor effect between the two different types of cell lines. The PNEC cell line QGP-1 and the DCC cell lines BxPC-3 and AsPC-1 were used. We evaluated the ability of the cell lines to proliferate and secrete VEGF in vitro, the antitumor effect of bevacizumab administration in vivo and the side effects of bevacizumab on the pancreas in a caerulein-induced pancreatitis model. Comparison of the QGP-1 and DCC cell lines showed that QGP-1 secreted a higher level of VEGF under a hypoxic environment than the DCC cell line, and bevacizumab exerted the most marked growth-inhibitory effect on QGP-1; the number of intratumoral blood vessels decreased and the percentage of proliferating cells was approximately the same. In the pancreatitis model, bevacizumab administration did not adversely affect the pancreatitis or the associated hypoxic environment. Bevacizumab does not affect the pancreas itself; therefore, its potent inhibitory effect on the growth of pancreatic neuroendocrine tumors alone can be expected. PMID:22977618

  11. Inhibitory effects of several saturated fatty acids and their related fatty alcohols on the growth of Candida albicans.

    PubMed

    Hayama, Kazumi; Takahashi, Miki; Yui, Satoru; Abe, Shigeru

    2015-12-01

    We examined the effect of 5 saturated fatty acids and their related alcohols on the growth of Candida albicans. The inhibitory effects of these compounds against the yeast and hyphal growth forms of C. albicans were examined using the modified NCCLS method and crystal violet staining, respectively. Among these compounds, capric acid inhibited both types of growth at the lowest concentration. The IC(80), i.e., the concentration at which the compounds reduced the growth of C. albicans by 80% in comparison with the growth of control cells, of capric acid for the hyphal growth of this fungus, which is indispensable for its mucosal invasion, was 16.7 μM. These fatty acids, including capric acid, have an unpleasant smell, which may limit their therapeutic use. To test them at reduced concentrations, the combined effect of these fatty acids and oligonol, a depolymerized polyphenol, was evaluated in vitro. These combinations showed potent synergistic inhibition of hyphal growth [fractional inhibitory concentration (FIC) index = 0.319]. Our results demonstrated that capric acid combined with oligonol could be used as an effective anti-Candida compound. It may be a candidate prophylactic or therapeutic tool against mucosal Candida infection.

  12. Growth-inhibitory effect of a fucoidan from brown seaweed Undaria pinnatifida on Plasmodium parasites.

    PubMed

    Chen, Jun-Hu; Lim, Jung-Dae; Sohn, Eun-Hwa; Choi, Yong-Soon; Han, Eun-Taek

    2009-01-01

    The present study was undertaken to investigate the inhibitory effects of fucoidan, a sulfated polysaccharide isolated from the edible brown seaweed Undaria pinnatifida, on the growth of Plasmodium parasites. In order to assess the anti-malarial activity of fucoidan, growth inhibition activities were evaluated using cultured Plasmodium falciparum parasites in vitro and on Plasmodium berghei-infected mice in vivo. Fucoidan significantly inhibited the invasion of erythrocytes by P. falciparum merozoites, and its 50% inhibition concentration was similar to those for the chloroquine-sensitive P. falciparum 3D7 strain and the chloroquine-resistant K1 strain. Four-day suppressive testing in P. berghei-infected mice with fucoidan resulted in a 37% suppressive effect versus the control group and a delay in death associated with anemia (P < 0.05). In addition, fucoidans had no toxic effect on RAW 264.7 cells. These findings indicate that fucoidans from the Korean brown algae U. pinnatifida inhibits the invasion of Plasmodium merozoites into erythrocytes in vitro and in vivo.

  13. Inhibition of Nb2 T-lymphoma cell growth by transforming growth factor-beta.

    PubMed Central

    Rayhel, E J; Prentice, D A; Tabor, P S; Flurkey, W H; Geib, R W; Laherty, R F; Schnitzer, S B; Chen, R; Hughes, J P

    1988-01-01

    Transforming growth factor-beta (TGF-beta) inhibits proliferation of Nb2 cells, a rat T lymphoma, in response to lactogens and interleukin-2. Prostaglandins may play an important role in the pathway through which TGF-beta exerts its inhibitory actions, because prostaglandin E2 also inhibits proliferation of Nb2 cells, and indomethacin, an inhibitor of prostaglandin synthesis, reverses the inhibitory effects of TGF-beta on Nb2 cell proliferation. PMID:3262338

  14. Role of Schlafen 2 (SLFN2) in the generation of interferon alpha-induced growth inhibitory responses.

    PubMed

    Katsoulidis, Efstratios; Carayol, Nathalie; Woodard, Jennifer; Konieczna, Iwona; Majchrzak-Kita, Beata; Jordan, Alison; Sassano, Antonella; Eklund, Elizabeth A; Fish, Eleanor N; Platanias, Leonidas C

    2009-09-11

    The precise STAT-regulated gene targets that inhibit cell growth and generate the antitumor effects of Type I interferons (IFNs) remain unknown. We provide evidence that Type I IFNs regulate expression of Schlafens (SLFNs), a group of genes involved in the control of cell cycle progression and growth inhibitory responses. Using cells with targeted disruption of different STAT proteins and/or the p38 MAP kinase, we demonstrate that the IFN-dependent expression of distinct Schlafen genes is differentially regulated by STAT complexes and the p38 MAP kinase pathway. We also provide evidence for a key functional role of a member of the SLFN family, SLFN2, in the induction of the growth-suppressive effects of IFNs. This is shown in studies demonstrating that knockdown of SLFN2 enhances hematopoietic progenitor colony formation and reverses the growth-suppressive effects of IFNalpha on normal hematopoietic progenitors. Importantly, NIH3T3 or L929 cells with stable knockdown of SLFN2 form more colonies in soft agar, implicating this protein in the regulation of anchorage-independent growth. Altogether, our data implicate SLFN2 as a negative regulator of the metastatic and growth potential of malignant cells and strongly suggest a role for the SLFN family of proteins in the generation of the antiproliferative effects of Type I IFNs.

  15. Role of Schlafen 2 (SLFN2) in the Generation of Interferon α-induced Growth Inhibitory Responses*

    PubMed Central

    Katsoulidis, Efstratios; Carayol, Nathalie; Woodard, Jennifer; Konieczna, Iwona; Majchrzak-Kita, Beata; Jordan, Alison; Sassano, Antonella; Eklund, Elizabeth A.; Fish, Eleanor N.; Platanias, Leonidas C.

    2009-01-01

    The precise STAT-regulated gene targets that inhibit cell growth and generate the antitumor effects of Type I interferons (IFNs) remain unknown. We provide evidence that Type I IFNs regulate expression of Schlafens (SLFNs), a group of genes involved in the control of cell cycle progression and growth inhibitory responses. Using cells with targeted disruption of different STAT proteins and/or the p38 MAP kinase, we demonstrate that the IFN-dependent expression of distinct Schlafen genes is differentially regulated by STAT complexes and the p38 MAP kinase pathway. We also provide evidence for a key functional role of a member of the SLFN family, SLFN2, in the induction of the growth-suppressive effects of IFNs. This is shown in studies demonstrating that knockdown of SLFN2 enhances hematopoietic progenitor colony formation and reverses the growth-suppressive effects of IFNα on normal hematopoietic progenitors. Importantly, NIH3T3 or L929 cells with stable knockdown of SLFN2 form more colonies in soft agar, implicating this protein in the regulation of anchorage-independent growth. Altogether, our data implicate SLFN2 as a negative regulator of the metastatic and growth potential of malignant cells and strongly suggest a role for the SLFN family of proteins in the generation of the antiproliferative effects of Type I IFNs. PMID:19592487

  16. INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO.

    PubMed

    Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling

    2017-01-01

    Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug.

  17. Rethinking cell growth models.

    PubMed

    Kafri, Moshe; Metzl-Raz, Eyal; Jonas, Felix; Barkai, Naama

    2016-11-01

    The minimal description of a growing cell consists of self-replicating ribosomes translating the cellular proteome. While neglecting all other cellular components, this model provides key insights into the control and limitations of growth rate. It shows, for example, that growth rate is maximized when ribosomes work at full capacity, explains the linear relation between growth rate and the ribosome fraction of the proteome and defines the maximal possible growth rate. This ribosome-centered model also highlights the challenge of coordinating cell growth with related processes such as cell division or nutrient production. Coordination is promoted when ribosomes don't translate at maximal capacity, as it allows escaping strict exponential growth. Recent data support the notion that multiple cellular processes limit growth. In particular, increasing transcriptional demand may be as deleterious as increasing translational demand, depending on growth conditions. Consistent with the idea of trade-off, cells may forgo maximal growth to enable more efficient interprocess coordination and faster adaptation to changing conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Prenatal Origins of Temperament: Fetal Growth, Brain Structure, and Inhibitory Control in Adolescence

    PubMed Central

    Schlotz, Wolff; Godfrey, Keith M.; Phillips, David I.

    2014-01-01

    Objective Individual differences in the temperamental dimension of effortful control are constitutionally based and have been associated with an adverse prenatal developmental environment, with structural brain alterations presenting a potential mechanism. We investigated this hypothesis for anatomically defined brain regions implicated in cognitive and inhibitory motor control. Methods Twenty-seven 15–16 year old participants with low, medium, or high fetal growth were selected from a longitudinal birth cohort to maximize variation and represent the full normal spectrum of fetal growth. Outcome measures were parent ratings of attention and inhibitory control, thickness and surface area of the orbitofrontal cortex (lateral (LOFC) and medial (MOFC)) and right inferior frontal gyrus (rIFG), and volumetric measures of the striatum and amygdala. Results Lower birth weight was associated with lower inhibitory control, smaller surface area of LOFC, MOFC and rIFG, lower caudate volume, and thicker MOFC. A mediation model found a significant indirect effect of birth weight on inhibitory control via caudate volume. Conclusions Our findings support a neuroanatomical mechanism underlying potential long-term consequences of an adverse fetal developmental environment for behavioral inhibitory control in adolescence and have implications for understanding putative prenatal developmental origins of externalizing behavioral problems and self-control. PMID:24802625

  19. Inhibitory effects of spices on growth and toxin production of toxigenic fungi.

    PubMed

    Hitokoto, H; Morozumi, S; Wauke, T; Sakai, S; Kurata, H

    1980-04-01

    The inhibitory effects of 29 commercial powdered spices on the growth and toxin production of three species of toxigenic Aspergillus were observed by introducing these materials into culture media for mycotoxin production. Of the 29 samples tested, cloves, star anise seeds, and allspice completely inhibited the fungal growth, whereas most of the others inhibited only the toxin production. Eugenol extracted from cloves and thymol from thyme caused complete inhibition of the growth of both Aspergillus flavus and Aspergillus versicolor at 0.4 mg/ml or less. At a concentration of 2 mg/ml, anethol extracted from star anise seeds inhibited the growth of all the strains.

  20. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure.

    PubMed

    Keskin, O; Bahar, I; Jernigan, R L; Beutler, J A; Shoemaker, R H; Sausville, E A; Covell, D G

    2000-04-01

    An analysis of the growth inhibitory potency of 122 anticancer agents available from the National Cancer Institute anticancer drug screen is presented. Methods of singular value decomposition (SVD) were applied to determine the matrix of distances between all compounds. These SVD-derived dissimilarity distances were used to cluster compounds that exhibit similar tumor growth inhibitory activity patterns against 60 human cancer cell lines. Cluster analysis divides the 122 standard agents into 25 statistically distinct groups. The first eight groups include structurally diverse compounds with reactive functionalities that act as DNA-damaging agents while the remaining 17 groups include compounds that inhibit nucleic acid biosynthesis and mitosis. Examination of the average activity patterns across the 60 tumor cell lines reveals unique 'fingerprints' associated with each group. A diverse set of structural features are observed for compounds within these groups, with frequent occurrences of strong within-group structural similarities. Clustering of cell types by their response to the 122 anticancer agents divides the 60 cell types into 21 groups. The strongest within-panel groupings were found for the renal, leukemia and ovarian cell panels. These results contribute to the basis for comparisons between log(GI(50)) screening patterns of the 122 anticancer agents and additional tested compounds.

  1. Microarray analysis of early adipogenesis in C3H10T1/2 cells: Cooperative inhibitory effects of growth factors and 2,3,7,8-tetrachlorodibenzo-p-dioxin

    SciTech Connect

    Hanlon, Paul R.; Cimafranca, Melissa A.; Liu Xueqing; Cho, Young C.; Jefcoate, Colin R. . E-mail: jefcoate@facstaff.wisc.edu

    2005-08-22

    C3H10T1/2 mouse embryo fibroblasts differentiate into adipocytes when stimulated by a standard hormonal mixture (IDMB). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), via the aryl hydrocarbon receptor (AhR), inhibits induction of the key adipogenic gene peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and subsequent adipogenesis. This TCDD-mediated inhibition requires activation of the extracellular signal-regulated kinase (ERK) pathway, which can be accomplished by serum, epidermal growth factor (EGF), or fibroblast growth factor (FGF). In the absence of serum or growth factors, IDMB induced adipogenesis without mitosis. Microarray analysis identified 200 genes that exhibited expression changes of at least twofold after 24 h of IDMB treatment. This time precedes most PPAR{gamma} stimulation but follows the period of TCDD/ERK cooperation and periods of increased cell contraction and DNA synthesis. Functionally related gene clusters include genes associated with cell structure, triglyceride and cholesterol metabolism, oxidative regulation, and secreted proteins. In the absence of growth factors TCDD inhibited 30% of these IDMB responses without inhibiting the process of differentiation. A combination of EGF and TCDD that blocks differentiation cooperatively blocked a further 44 IDMB-responsive genes, most of which have functional links to differentiation, including PPAR{gamma}. Cell cycle regulators that are stimulated by EGF were substantially inhibited by IDMB but these responses were unaffected by TCDD. By contrast, TCDD and EGF cooperatively reversed IDMB-induced changes in cell adhesion complexes immediately prior to increases in PPAR{gamma}1 expression. Changes in adhesion-linked signaling may play a key role in TCDD affects on differentiation.

  2. Inhibitory and Cytotoxic Activities of Chrysin on Human Breast Adenocarcinoma Cells by Induction of Apoptosis

    PubMed Central

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Hasanzadeh, Malihe; Jabbari, Farahzad; Farkhondeh, Tahereh; Samini, Mohammad

    2016-01-01

    Objectives: Chrysin, an active natural bioflavonoid found in honey and many plant extracts, was first known for its antioxidant and anti-inflammatory effects. The fact that antioxidants have several inhibitory effects against different diseases, such as cancer, led to search for food rich in antioxidants. In this study, we investigated the antiproliferative and apoptotic effects of chrysin on the cultured human breast cancer cells (MCF-7). Materials and Methods: Cells were cultured in Roswell Park Memorial Institute medium and treated with different chrysin concentrations for three consecutive days. Cell viability was quantitated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The percentage of apoptotic cells was determined by flow cytometry using Annexin V-fluorescein isothiocyanate. Results: The MTT assay showed that chrysin had an antiproliferative effect on MCF-7 cells in a dose- and time-dependent manner. The 50% cell growth inhibition values for chrysin against MCF-7 cells were 19.5 and 9.2 μM after 48 and 72 h, respectively. Chrysin induced apoptosis in MCF-7 cells as determined by flow cytometry. Chrysin inhibits the growth of the breast cancer cells by inducing cancer cell apoptosis which may, in part, explain its anticancer activity. Conclusion: This study shows that chrysin could also be considered as a promising chemotherapeutic agent and anticancer activity in treatment of the breast cancer cells in future. SUMMARY Chrysin had an antiproliferative effect on human breast cancer cells (MCF-7) cells in a dose- and time-dependent mannerChrysin induced apoptosis in MCF-7 cells, as determined by flow cytometryChrysin inhibits the growth of the breast cancer cells by inducing cancer cell apoptosisChrysin may have anticancer activity. Abbreviations used: Human breast cancer cells (MCF-7), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), phosphate-buffered saline (PBS), normal fibroblast mouse (L929). PMID

  3. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells.

    PubMed

    Pan, Feng; Toychiev, Abduqodir; Zhang, Yi; Atlasz, Tamas; Ramakrishnan, Hariharasubramanian; Roy, Kaushambi; Völgyi, Béla; Akopian, Abram; Bloomfield, Stewart A

    2016-11-15

    Retinal ganglion cells (RGCs) in dark-adapted retinas show a range of threshold sensitivities spanning ∼3 log units of illuminance. Here, we show that the different threshold sensitivities of RGCs reflect an inhibitory mechanism that masks inputs from certain rod pathways. The masking inhibition is subserved by GABAC receptors, probably on bipolar cell axon terminals. The GABAergic masking inhibition appears independent of dopaminergic circuitry that has been shown also to affect RGC sensitivity. The results indicate a novel mechanism whereby inhibition controls the sensitivity of different cohorts of RGCs. This can limit and thereby ensure that appropriate signals are carried centrally in scotopic conditions when sensitivity rather than acuity is crucial. The responses of rod photoreceptors, which subserve dim light vision, are carried through the retina by three independent pathways. These pathways carry signals with largely different sensitivities. Retinal ganglion cells (RGCs), the output neurons of the retina, show a wide range of sensitivities in the same dark-adapted conditions, suggesting a divergence of the rod pathways. However, this organization is not supported by the known synaptic morphology of the retina. Here, we tested an alternative idea that the rod pathways converge onto single RGCs, but inhibitory circuits selectively mask signals so that one pathway predominates. Indeed, we found that application of GABA receptor blockers increased the sensitivity of most RGCs by unmasking rod signals, which were suppressed. Our results indicate that inhibition controls the threshold responses of RGCs under dim ambient light. This mechanism can ensure that appropriate signals cross the bottleneck of the optic nerve in changing stimulus conditions. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus.

    PubMed

    Razzaghi-Abyaneh, Mehdi; Shams-Ghahfarokhi, Masoomeh; Yoshinari, Tomoya; Rezaee, Mohammad-Bagher; Jaimand, Kamkar; Nagasawa, Hiromichi; Sakuda, Shohei

    2008-04-30

    In an effort to screen the essential oils of some Iranian medicinal plants for novel aflatoxin (AF) inhibitors, Satureja hortensis L. was found as a potent inhibitor of aflatoxins B1 (AFB1) and G1(AFG1) production by Aspergillus parasiticus NRRL 2999. Fungal growth was also inhibited in a dose-dependent manner. Separation of the plant inhibitory substance(s) was achieved using initial fractionation of its effective part (leaf essential oil; LEO) by silica gel column chromatography and further separation by reverse phase-high performance liquid chromatography (RP-HPLC). These substances were finally identified as carvacrol and thymol, based on the interpretation of 1H and 13C NMR spectra. Microbioassay (MBA) on cell culture microplates contained potato-dextrose broth (PDB) medium (4 days at 28 degrees C) and subsequent analysis of cultures with HPLC technique revealed that both carvacrol and thymol were able to effectively inhibit fungal growth, AFB1 and AFG1 production in a dose-dependent manner at all two-fold concentrations from 0.041 to 1.32 mM. The IC50 values for growth inhibition were calculated as 0.79 and 0.86 mM for carvacrol and thymol, while for AFB1 and AFG1, it was reported as 0.50 and 0.06 mM for carvacrol and 0.69 and 0.55 mM for thymol. The results obtained in this study clearly show a new biological activity for S. hortensis L. as strong inhibition of aflatoxin production by A. parasiticus. Carvacrol and thymol, the effective constituents of S. hortensis L., may be useful to control aflatoxin contamination of susceptible crops in the field.

  5. Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation

    PubMed Central

    KAWASHIMA, NAGAKO; QU, HUANHUAN; LOBATON, MARLIN; ZHU, ZHENYUAN; SOLLOGOUB, MATTHIEU; CAVENEE, WEBSTER K.; HANDA, KAZUKO; HAKOMORI, SEN-ITIROH; ZHANG, YONGMIN

    2014-01-01

    Glycosphingolipids are components of essentially all mammalian cell membranes and are involved in a variety of significant cellular functions, including proliferation, adhesion, motility and differentiation. Sialosyllactosylceramide (GM3) is known to inhibit the activation of epidermal growth factor receptor (EGFR). In the present study, an efficient method for the total chemical synthesis of monochloro- and dichloro-derivatives of the sialosyl residue of GM3 was developed. The structures of the synthesized compounds were fully characterized by high-resolution mass spectrometry and nuclear magnetic resonance. In analyses of EGFR autophosphorylation and cell proliferation ([3H]-thymidine incorporation) in human epidermoid carcinoma A431 cells, two chloro-derivatives exhibited stronger inhibitory effects than GM3 on EGFR activity. Monochloro-GM3, but not GM3 or dichloro-GM3, showed a significant inhibitory effect on ΔEGFR, a splicing variant of EGFR that lacks exons 2–7 and is often found in human glioblastomas. The chemical synthesis of other GM3 derivatives using approaches similar to those described in the present study, has the potential to create more potent EGFR inhibitors to block cell growth or motility of a variety of types of cancer that express either wild-type EGFR or ΔEGFR. PMID:24944646

  6. Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation.

    PubMed

    Kawashima, Nagako; Qu, Huanhuan; Lobaton, Marlin; Zhu, Zhenyuan; Sollogoub, Matthieu; Cavenee, Webster K; Handa, Kazuko; Hakomori, Sen-Itiroh; Zhang, Yongmin

    2014-04-01

    Glycosphingolipids are components of essentially all mammalian cell membranes and are involved in a variety of significant cellular functions, including proliferation, adhesion, motility and differentiation. Sialosyllactosylceramide (GM3) is known to inhibit the activation of epidermal growth factor receptor (EGFR). In the present study, an efficient method for the total chemical synthesis of monochloro- and dichloro-derivatives of the sialosyl residue of GM3 was developed. The structures of the synthesized compounds were fully characterized by high-resolution mass spectrometry and nuclear magnetic resonance. In analyses of EGFR autophosphorylation and cell proliferation ([(3)H]-thymidine incorporation) in human epidermoid carcinoma A431 cells, two chloro-derivatives exhibited stronger inhibitory effects than GM3 on EGFR activity. Monochloro-GM3, but not GM3 or dichloro-GM3, showed a significant inhibitory effect on ΔEGFR, a splicing variant of EGFR that lacks exons 2-7 and is often found in human glioblastomas. The chemical synthesis of other GM3 derivatives using approaches similar to those described in the present study, has the potential to create more potent EGFR inhibitors to block cell growth or motility of a variety of types of cancer that express either wild-type EGFR or ΔEGFR.

  7. Recombinant leukemia inhibitory factor suppresses human medullary thyroid carcinoma cell line xenografts in mice.

    PubMed

    Starenki, Dmytro; Singh, Nishant K; Jensen, Davin R; Peterson, Francis C; Park, Jong-In

    2013-10-01

    Medullary thyroid carcinoma (MTC) is a neoplasm of the endocrine system, which originates from parafollicular C-cells of the thyroid gland. For MTC therapy, the Food and Drug Administration recently approved vandetanib and cabozantinib, multi-kinase inhibitors targeting RET and other tyrosine kinase receptors of vascular endothelial growth factor, epidermal growth factor, or hepatocyte growth factor. Nevertheless, not all patients with the progressive MTC respond to these drugs, requiring the development of additional therapeutic modalities that have distinct activity. Previously, we reported that expression of activated Ras or Raf in the human MTC cell lines, TT and MZ-CRC-1, can induce growth arrest and RET downregulation via a leukemia inhibitory factor (LIF)-mediated autocrine/paracrine loop. In this study, we aimed to evaluate bacterially-produced recombinant human LIF for its efficacy to suppress human MTC xenografts in mice. Here, we report that, consistent with its effects in vitro, locally or systemically administered recombinant LIF effectively suppressed growth of TT and MZ-CRC-1 xenografts in mice. Further, as predicted from its effects in TT and MZ-CRC-1 cell cultures in vitro, recombinant LIF activated the JAK/STAT pathway and downregulated RET and E2F1 expression in tumors in mice. These results suggest that LIF is a potent cytostatic agent for MTC cells, which regulates unique mechanisms that are not targeted by currently available therapeutic agents. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Characterization of the cell growth inhibitory effects of a novel DNA-intercalating bipyridyl-thiourea-Pt(II) complex in cisplatin-sensitive and -resistant human ovarian cancer cells.

    PubMed

    Marverti, Gaetano; Ligabue, Alessio; Montanari, Monica; Guerrieri, Davide; Cusumano, Matteo; Di Pietro, Maria Letizia; Troiano, Leonarda; Di Vono, Elena; Iotti, Stefano; Farruggia, Giovanna; Wolf, Federica; Monti, Maria Giuseppina; Frassineti, Chiara

    2011-02-01

    The cellular effects of a novel DNA-intercalating agent, the bipyridyl complex of platinum(II) with diphenyl thiourea, [Pt(bipy)(Ph(2)-tu)(2)]Cl(2), has been analyzed in the cisplatin (cDDP)-sensitive human ovarian carcinoma cell line, 2008, and its -resistant variant, C13* cells, in which the highest accumulation and cytotoxicity was found among six related bipyridyl thiourea complexes. We also show here that this complex causes reactive oxygen species to form and inhibits topoisomerase II activity to a greater extent in the sensitive than in the resistant line. The impairment of this enzyme led to DNA damage, as shown by the comet assay. As a consequence, cell cycle distribution has also been greatly perturbed in both lines. Morphological analysis revealed deep cellular derangement with the presence of cellular masses, together with increased membrane permeability and depolarization of the mitochondrial membrane. Some of these effects, sometimes differentially evident between the two cell lines, might also be related to the decrease of total cell magnesium content caused by this thiourea complex both in sensitive and resistant cells, though the basal content of this ion was higher in the cDDP-resistant line. Altogether these results suggest that this compound exerts its cytotoxicity by mechanisms partly mediated by the resistance phenotype. In particular, cDDP-sensitive cells were affected mostly by impairing topoisomerase II activity and by increasing membrane permeability and the formation of reactive oxygen species; conversely, mitochondrial impairment appeared to play the most important role in the action of complex F in resistant cells.

  9. Inhibitory effect of allicin on the growth of Babesia and Theileria equi parasites.

    PubMed

    Salama, Akram Ahmed; AbouLaila, Mahmoud; Terkawi, Mohamad Alaa; Mousa, Ahmed; El-Sify, Ahmed; Allaam, Mahmoud; Zaghawa, Ahmed; Yokoyama, Naoaki; Igarashi, Ikuo

    2014-01-01

    Allicin is an active ingredient of garlic that has antibacterial, antifungal, antiviral, and antiprotozoal activity. However, the inhibitory effects of allicin on Babesia parasites have not yet been examined. In the present study, allicin was tested as a potent inhibitor against the in vitro growth of bovine and equine Babesia parasites and the in vivo growth of Babesia microti in a mouse model. The in vitro growth of Babesia bovis, Babesia bigemina, Babesia caballi, or Theileria equi was inhibited by allicin in a dose-dependent manner and had IC50 values of 818, 675, 470, and 742 μM, respectively. Moreover, allicin significantly inhibited (P < 0.001) invasion of B. bovis, B. bigemina, B. caballi, and T. equi into the host erythrocyte. Furthermore, mice treated with 30 mg/kg of allicin for 5 days significantly (P < 0.05) reduced the parasitemia of B. microti over the period of the study. To further examine the potential synergism of allicin with diminazene aceturate, growth inhibitory assays were performed in vitro and in vivo. Interestingly, combinations of diminazene aceturate with allicin synergistically potentiated its inhibitory effects in vitro and in vivo. These results indicate that allicin might be beneficial for the treatment of babesiosis, particularly when used in combination with diminazene aceturate.

  10. Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens

    PubMed Central

    Ocheng, Francis; Bwanga, Freddie; Joloba, Moses; Softrata, Abier; Azeem, Muhammad; Pütsep, Katrin; Borg-Karlson, Anna-Karin; Obua, Celestino; Gustafsson, Anders

    2015-01-01

    The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum, and Lantana trifolia) used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and cariogenic Streptococcus mutans and Lactobacillus acidophilus using broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism was A. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil from C. nardus exhibited the highest activity with complete growth inhibition of A. actinomycetemcomitans and P. gingivalis at all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects on L. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathic A. actinomycetemcomitans and P. gingivalis, moderate effects on cariogenic S. mutans, and the least effect on L. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents. PMID:26170872

  11. Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens.

    PubMed

    Ocheng, Francis; Bwanga, Freddie; Joloba, Moses; Softrata, Abier; Azeem, Muhammad; Pütsep, Katrin; Borg-Karlson, Anna-Karin; Obua, Celestino; Gustafsson, Anders

    2015-01-01

    The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum, and Lantana trifolia) used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans and cariogenic Streptococcus mutans and Lactobacillus acidophilus using broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism was A. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil from C. nardus exhibited the highest activity with complete growth inhibition of A. actinomycetemcomitans and P. gingivalis at all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects on L. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathic A. actinomycetemcomitans and P. gingivalis, moderate effects on cariogenic S. mutans, and the least effect on L. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents.

  12. Inhibitory effects of pepstatin A and mefloquine on the growth of Babesia parasites.

    PubMed

    Munkhjargal, Tserendorj; AbouLaila, Mahmoud; Terkawi, Mohamad Alaa; Sivakumar, Thillaiampalam; Ichikawa, Madoka; Davaasuren, Batdorj; Nyamjargal, Tserendorj; Yokoyama, Naoaki; Igarashi, Ikuo

    2012-10-01

    We evaluated the inhibitory effects of pepstatin A and mefloquine on the in vitro and in vivo growths of Babesia parasites. The in vitro growth of Babesia bovis, B. bigemina, B. caballi, and B. equi was significantly inhibited (P < 0.05) by micromolar concentrations of pepstatin A (50% inhibitory concentrations = 38.5, 36.5, 17.6, and 18.1 μM, respectively) and mefloquine (50% inhibitory concentrations = 59.7, 56.7, 20.7, and 4 μM, respectively). Furthermore, both reagents either alone at a concentration of 5 mg/kg or in combinations (2.5/2.5 and 5/5 mg/kg) for 10 days significantly inhibited the in vivo growth of B. microti in mice. Mefloquine treatment was highly effective and the combination treatments were less effective than other treatments. Therefore, mefloquine may antagonize the actions of pepstatin A against babesiosis and aspartic proteases may play an important role in the asexual growth cycle of Babesia parasites.

  13. Differential Inhibitory Receptor Expression on T Cells Delineates Functional Capacities in Chronic Viral Infection.

    PubMed

    Teigler, Jeffrey E; Zelinskyy, Gennadiy; Eller, Michael A; Bolton, Diane L; Marovich, Mary; Gordon, Alexander D; Alrubayyi, Aljawharah; Alter, Galit; Robb, Merlin L; Martin, Jeffrey N; Deeks, Steven G; Michael, Nelson L; Dittmer, Ulf; Streeck, Hendrik

    2017-09-13

    Inhibitory receptors have been extensively described for their importance in regulating immune responses in chronic infections and cancers. Blocking the function of inhibitory receptors such as PD-1, CTLA-4, 2B4, Tim-3, and LAG-3 have shown promise for augmenting CD8 T cell activity and boosting pathogen-specific immunity. However, the prevalence of inhibitory receptors on CD4 T cells and their relative influence on CD4 T cell functionality in chronic HIV infection remains poorly described. We therefore determined and compared inhibitory receptor expression patterns of 2B4, CTLA-4, LAG-3, PD-1, and Tim-3 on virus-specific CD4 and CD8 T cells in relation to their functional T cell profile. In chronic HIV infection, inhibitory receptor distribution differed markedly between cytokine-producing T cell subsets with IFN-γ- and TNF-α-producing cells displaying the highest and lowest prevalence of inhibitory receptors, respectively. Blockade of inhibitory receptors differentially impacted cytokine production by cells in response to SEB stimulation. CTLA-4 blockade increased IFN-γ and CD40L production, while PD-1 blockade strongly augmented IFN-γ, IL-2, and TNF-α production. In a Friend retrovirus infection model, CTLA-4 blockade in particular was able to improve control of viral replication. Together these results show that inhibitory receptor distribution on HIV-specific CD4 T cells varies markedly with respect to the functional subset of CD4 T cell being analyzed. Furthermore, the differential effects of receptor blockade suggest novel methods of immune response modulation, which could be important in the context of HIV vaccination or therapeutic strategies.IMPORTANCE Inhibitory receptors are important to limit damage by the immune system during acute infections. In chronic infections however, their expression limits immune system responsiveness. Studies have shown that blocking inhibitory receptors augments CD8 T cell functionality in HIV infection, but their

  14. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    SciTech Connect

    Teng, Chih-Chuan; Kuo, Hsing-Chun; Cheng, Ho-Chen; Wang, Ting-Chung; Sze, Chun-I

    2012-08-15

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{sup 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  15. Relationship between interstitial cells of Cajal, fibroblast-like cells and inhibitory motor nerves in the internal anal sphincter.

    PubMed

    Cobine, Caroline A; Hennig, Grant W; Kurahashi, Masaaki; Sanders, Kenton M; Ward, Sean M; Keef, Kathleen D

    2011-04-01

    Interstitial cells of Cajal (ICC) have been shown to participate in nitrergic neurotransmission in various regions of the gastrointestinal (GI) tract. Recently, fibroblast-like cells, which are positive for platelet-derived growth factor receptor α (PDGFRα(+)), have been suggested to participate additionally in inhibitory neurotransmission in the GI tract. The distribution of ICC and PDGFRα(+) cell populations and their relationship to inhibitory nerves within the mouse internal anal sphincter (IAS) are unknown. Immunohistochemical techniques and confocal microscopy were therefore used to examine the density and arrangement of ICC, PDGFRα(+) cells and neuronal nitric-oxide-synthase-positive (nNOS(+)) nerve fibers in the IAS of wild-type (WT) and W/W ( v ) mice. Of the total tissue volume within the IAS circular muscle layer, 18% consisted in highly branched PDGFRα(+) cells (PDGFRα(+)-IM). Other populations of PDGFRα(+) cells were observed within the submucosa and along the serosal and myenteric surfaces. Spindle-shaped intramuscular ICC (ICC-IM) were present in the WT mouse IAS but were largely absent from the W/W ( v ) IAS. The ICC-IM volume (5% of tissue volume) in the WT mouse IAS was significantly smaller than that of PDGFRα(+)-IM. Stellate-shaped submucosal ICC (ICC-SM) were observed in the WT and W/W ( v ) IAS. Minimum surface distance analysis revealed that nNOS(+) nerve fibers were closely aligned with both ICC-IM and PDGFRα(+)-IM. An even closer association was seen between ICC-IM and PDGFRα(+)-IM. Thus, a close morphological arrangement exists between inhibitory motor neurons, ICC-IM and PDGFRα(+)-IM suggesting that some functional interaction occurs between them contributing to inhibitory neurotransmission in the IAS.

  16. FKBP-12 exhibits an inhibitory activity on calcium oxalate crystal growth in vitro.

    PubMed Central

    Han, In Sook; Nakagawa, Yasushi; Park, Jong Wook; Suh, Min Ho; Suh, Sung Il; Shin, Song Woo; Ahn, Su Yul; Choe, Byung Kil

    2002-01-01

    Urolithiasis and calcium oxalate crystal deposition diseases are still significant medical problems. In the course of nephrocalcin cDNA cloning, we have identified FKBP-12 as an inhibitory molecule of calcium oxalate crystal growth. lambdagt 11 cDNA libraries were constructed from renal carcinoma tissues and screened for nephrocalcin cDNA clones using anti-nephrocalcin antibody as a probe. Clones expressing recombinant proteins, which appeared to be antigenically cross-reactive to nephrocalcin, were isolated and their DNA sequences and inhibitory activities on the calcium oxalate crystal growth were determined. One of the clone lambda gt 11 #31-1 had a partial fragment (80 bp) of FKBP-12 cDNA as an insert. Therefore, a full-length FKBP-12 cDNA was PCR-cloned from the lambda gt 11 renal carcinoma cDNA library and was subcloned into an expression vector. The resultant recombinant FKBP-12 exhibited an inhibitory activity on the calcium oxalate crystal growth (Kd=10(-7) M). Physiological effect of the extracellular FKBP-12 was investigated in terms of macrophage activation and proinflammatory cytokine gene induction. Extracellular FKBP-12 failed to activate macrophages even at high concentrations. FKBP-12 seems an anti-stone molecule for the oxalate crystal deposition disease and recurrent stone diseases. PMID:11850587

  17. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates.

    PubMed

    Buchser, William J; Smith, Robin P; Pardinas, Jose R; Haddox, Candace L; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R; Bixby, John L; Lemmon, Vance P

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  18. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    PubMed Central

    Buchser, William J.; Smith, Robin P.; Pardinas, Jose R.; Haddox, Candace L.; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R.; Bixby, John L.; Lemmon, Vance P.

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons. PMID:22701605

  19. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  20. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  1. Chemistry and Tumor Cell Growth Inhibitory Activity of 11,20-Epoxy-3Z,5(6)E-diene Briaranes from the South China Sea Gorgonian Dichotella gemmacea

    PubMed Central

    Li, Cui; Jiang, Mei; La, Ming-Ping; Li, Tie-Jun; Tang, Hua; Sun, Peng; Liu, Bao-Shu; Yi, Yang-Hua; Liu, Zhiyong; Zhang, Wen

    2013-01-01

    Eighteen new 11,20-epoxy-3Z,5E-dien briaranes, gemmacolides AA–AR (1–18), were isolated together with three known analogs, dichotellides F (19) and I (20), and juncenolide C (21), from the South China Sea gorgonian Dichotella gemmacea. The structures of the compounds were elucidated by detailed spectroscopic analysis and comparison with reported data. The absolute configuration was determined based on the ECD experiment. In the in vitro bioassay, compounds 1–3, 5, 6, 8–12, and 14–19 exhibited different levels of growth inhibition activity against A549 and MG63 cell lines. Preliminary structure-activity analysis suggests that 12-O-isovalerate may increase the activity whereas 13- or 14-O-isovalerate may decrease the activity. Contribution of substitutions at C-2 and C-16 remains uncertain. PMID:23697947

  2. Inhibitory Effects of Dichlorophenoxyacetones on Auxin-induced Growth of Avena Coleoptile Sections 1

    PubMed Central

    Masingale, Robert E.; Lewis, Janet E.; Bryant, Sarah R.; Skinner, Charles G.

    1968-01-01

    Six dichlorophenoxyacetones were synthesized and examined as potential metabolic antagonists utilizing Avena coleoptile sections and the straight growth assay procedure. Supplements of indoleacetic acid promoted growth of the sections which were inhibited by the analogs; the most inhibitory derivatives were 2,3-; 2,4-; 2,5-; and 3,4-dichlorophenoxyacetone which produced half-maximal growth responses (relative to the unaug-mented control growth) at concentrations of 106, 86, 80, and 62 μg/ml, respectively. A Lineweaver-Burk plot of the data for the inhibition by 2,4-dichlorophenoxyacetone and its reversal by indoleacetic acid appeared to represent an uncompetitive-like inhibition. PMID:16656819

  3. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  4. Characterization of DicB by partially masking its potent inhibitory activity of cell division

    PubMed Central

    Yang, Shaoyuan; Pei, Hairun; Zhang, Xiaoying; Wei, Qiang; Zhu, Jia; Zheng, Jimin; Jia, Zongchao

    2016-01-01

    DicB, a protein encoded by the Kim (Qin) prophage in Escherichia coli, inhibits cell division through interaction with MinC. Thus far, characterization of DicB has been severely hampered owing to its potent activity which ceases cell division and leads to cell death. In this work, through fusing maltose-binding protein to the N-terminus of DicB (MBP–DicB), we successfully expressed and purified recombinant DicB that enabled in vitro analysis for the first time. More importantly, taking advantage of the reduced inhibitory activity of MBP–DicB, we were able to study its effects on cell growth and morphology. Inhibition of cell growth by MBP–DicB was systematically evaluated using various DicB constructs, and their corresponding effects on cell morphology were also investigated. Our results revealed that the N-terminal segment of DicB plays an essential functional role, in contrast to its C-terminal tail. The N-terminus of DicB is of critical importance as even the first amino acid (following the initial Met) could not be removed, although it could be mutated. This study provides the first glimpse of the molecular determinants underlying DicB's function. PMID:27466443

  5. Neural cells play an inhibitory role in pancreatic differentiation of pluripotent stem cells.

    PubMed

    Nakashima, Ryutaro; Morooka, Mayu; Shiraki, Nobuaki; Sakano, Daisuke; Ogaki, Soichiro; Kume, Kazuhiko; Kume, Shoen

    2015-12-01

    Pancreatic endocrine β-cells derived from embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have received attention as screening systems for therapeutic drugs and as the basis for cell-based therapies. Here, we used a 12-day β-cell differentiation protocol for mouse ES cells and obtained several hit compounds that promoted β-cell differentiation. One of these compounds, mycophenolic acid (MPA), effectively promoted ES cell differentiation with a concomitant reduction of neuronal cells. The existence of neural cell-derived inhibitory humoral factors for β-cell differentiation was suggested using a co-culture system. Based on gene array analysis, we focused on the Wnt/β-catenin pathway and showed that the Wnt pathway inhibitor reversed MPA-induced β-cell differentiation. Wnt pathway activation promoted β-cell differentiation also in human iPS cells. Our results showed that Wnt signaling activation positively regulates β-cell differentiation, and represent a downstream target of the neural inhibitory factor.

  6. Growth inhibitory response and ultrastructural modification of oral-associated candidal reference strains (ATCC) by Piper betle L. extract.

    PubMed

    Nordin, Mohd-Al-Faisal; Wan Harun, Wan Himratul-Aznita; Abdul Razak, Fathilah; Musa, Md Yusoff

    2014-03-01

    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL(-1); (iii) 3 mg⋅mL(-1); and (iv) 6 mg⋅mL(-1). The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×10(6) to 1.78×10(6) viable cell counts (CFU)⋅mL(-1). SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity.

  7. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  8. Mutation at Glu23 eliminates the neuron growth inhibitory activity of human metallothionein-3

    SciTech Connect

    Ding Zhichun; Teng Xinchen; Cai Bin; Wang Hui; Zheng Qi; Wang Yang; Zhou Guoming; Zhang Mingjie; Wu Houming; Sun Hongzhe . E-mail: hsun@hku.hk; Huang Zhongxian . E-mail: zxhuang@fudan.edu.cn

    2006-10-20

    Human metallothionein-3 (hMT3), first isolated and identified as a neuronal growth inhibitory factor (GIF), is a metalloprotein expressed predominantly in brain. However, untill now, the exact mechanism of the bioactivity of hMT3 is still unknown. In order to study the influence of acid-base catalysis on S-nitrosylation of hMT3, we constructed the E23K mutant of hMT3. During the course of bioassay, we found out unexpectedly that mutation at E23 of hMT3 eliminates the neuronal growth inhibitory activity completely. To the best of our knowledge, it is First report that other residues, besides the TCPCP motif, in the {beta}-domain can alter the bioactivity of hMT3. In order to figure out the causes for the loss of bioactivity of the E23K mutant, the biochemical properties were characterized by UV-vis spectroscopy, CD spectroscopy, pH titration, DTNB reaction, EDTA reaction, and SNOC reaction. All data demonstrated that stability of the metal-thiolate cluster and overall structure of the E23K mutant were not altered too much. However, the reaction of the E23K mutant with SNOC exhibited biphasic kinetics and the mutant protein released zinc ions much faster than hMT3 in the initial step, while hMT3 exhibited single kinetic process. The 2D [{sup 1}H-{sup 15}N] HSQC was also employed to characterize structural changes during the reaction of hMT3 with varying mounts of nitric oxide. It was shown that the resonance of Glu23 disappeared at a molar ratio of NO to protein of 4. Based on these results, we suggest that mutation at Glu23 may alter the NO metabolism and/or affect zinc homeostasis in brain, thus altering the neuronal growth inhibitory activity.

  9. Growth inhibitory effect of shelf life extending agents on Bacillus subtilis IAM 1026.

    PubMed

    Mitsuboshi, Saori; Obitsu, Rie; Muramatsu, Kanako; Furube, Kentaro; Yoshitake, Shigehiro; Kiuchi, Kan

    2007-06-01

    Natural shelf life extending agents and sugar fatty acid esters that might inhibit the growth of B. subtilis IAM 1026 were screened, and the effective agents were as follows: beta-thujaplicin (Hinokitiol) and chitosan, inhibited the growth of IAM 1026 at a concentration of 0.001% ; epsilon-polylysine and M-1695 (a sugar fatty acid ester) at 0.005%; citrus seed extract, thiamin lauryl sulfate, and grapefruit seed extract at 0.01%; CT-1695 and L-1695 (sugar fatty acid esters) at 0.05%; pectin digests and SM-800 (a sugar fatty acid ester) at 0.5%; water pepper seed extract and the sugar fatty acid esters SM-1000 and CE-1695 at 1.0%. The growth inhibitory effects of the agents in custard cream were not necessarily similar to those in liquid culture. The agent that showed the highest inhibitory effect in custard cream was 0.3% beta-thujaplicin, followed by 0.3% epsilon-polylysine.

  10. Inhibitory Activity of Human Immunodeficiency Virus Aspartyl Protease Inhibitors against Encephalitozoon intestinalis Evaluated by Cell Culture-Quantitative PCR Assay

    PubMed Central

    Menotti, Jean; Santillana-Hayat, Maud; Cassinat, Bruno; Sarfati, Claudine; Derouin, Francis; Molina, Jean-Michel

    2005-01-01

    Immune reconstitution might not be the only factor contributing to the low prevalence of microsporidiosis in human immunodeficiency virus (HIV)-infected patients treated with protease inhibitors, as these drugs may exert a direct inhibitory effect against fungi and protozoa. In this study, we developed a cell culture-quantitative PCR assay to quantify Encephalitozoon intestinalis growth in U-373-MG human glioblastoma cells and used this assay to evaluate the activities of six HIV aspartyl protease inhibitors against E. intestinalis. A real-time quantitative PCR assay targeted the E. intestinalis small-subunit rRNA gene. HIV aspartyl protease inhibitors were tested over serial concentrations ranging from 0.2 to 10 mg/liter, with albendazole used as a control. Ritonavir, lopinavir, and saquinavir were able to inhibit E. intestinalis growth, with 50% inhibitory concentrations of 1.5, 2.2, and 4.6 mg/liter, respectively, whereas amprenavir, indinavir, and nelfinavir had no inhibitory effect. Pepstatin A, a reference aspartyl protease inhibitor, could also inhibit E. intestinalis growth, suggesting that HIV protease inhibitors may act through the inhibition of an E. intestinalis-encoded aspartyl protease. These results showed that some HIV protease inhibitors can inhibit E. intestinalis growth at concentrations that are achievable in vivo and that the real-time quantitative PCR assay that we used is a valuable tool for the in vitro assessment of the activities of drugs against E. intestinalis. PMID:15917534

  11. Cbln1 downregulates the formation and function of inhibitory synapses in mouse cerebellar Purkinje cells.

    PubMed

    Ito-Ishida, Aya; Kakegawa, Wataru; Kohda, Kazuhisa; Miura, Eriko; Okabe, Shigeo; Yuzaki, Michisuke

    2014-04-01

    The formation of excitatory and inhibitory synapses must be tightly coordinated to establish functional neuronal circuitry during development. In the cerebellum, the formation of excitatory synapses between parallel fibers and Purkinje cells is strongly induced by Cbln1, which is released from parallel fibers and binds to the postsynaptic δ2 glutamate receptor (GluD2). However, Cbln1's role, if any, in inhibitory synapse formation has been unknown. Here, we show that Cbln1 downregulates the formation and function of inhibitory synapses between Purkinje cells and interneurons. Immunohistochemical analyses with an anti-vesicular GABA transporter antibody revealed an increased density of interneuron-Purkinje cell synapses in the cbln1-null cerebellum. Whole-cell patch-clamp recordings from Purkinje cells showed that both the amplitude and frequency of miniature inhibitory postsynaptic currents were increased in cbln1-null cerebellar slices. A 3-h incubation with recombinant Cbln1 reversed the increased amplitude of inhibitory currents in Purkinje cells in acutely prepared cbln1-null slices. Furthermore, an 8-day incubation with recombinant Cbln1 reversed the increased interneuron-Purkinje cell synapse density in cultured cbln1-null slices. In contrast, recombinant Cbln1 did not affect cerebellar slices from mice lacking both Cbln1 and GluD2. Finally, we found that tyrosine phosphorylation was upregulated in the cbln1-null cerebellum, and acute inhibition of Src-family kinases suppressed the increased inhibitory postsynaptic currents in cbln1-null Purkinje cells. These findings indicate that Cbln1-GluD2 signaling inhibits the number and function of inhibitory synapses, and shifts the excitatory-inhibitory balance towards excitation in Purkinje cells. Cbln1's effect on inhibitory synaptic transmission is probably mediated by a tyrosine kinase pathway.

  12. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    PubMed

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion.

  13. 3β,5α,6β-Oxygenated sterols from the South China Sea gorgonian Muriceopsis flavida and their tumor cell growth inhibitory activity and apoptosis-inducing function.

    PubMed

    Liu, Tao-Fang; Lu, Xin; Tang, Hua; Zhang, Min-Min; Wang, Pan; Sun, Peng; Liu, Zhi-Yong; Wang, Zeng-Lei; Li, Ling; Rui, Yao-Cheng; Li, Tie-Jun; Zhang, Wen

    2013-01-01

    Three new polyhydroxysterols, named muriflasteroids A-C (1-3) were isolated from the South China Sea gorgonian Muriceopsis flavida, together with sixteen known analogs, cholest-3β,5α,6β-triol,3β-acetate (4), 5α-methoxycholest-3β,6β-diol (5), (22E)-cholest-22-en-3β,5α,6β-triol (6), cholest-3β,5α,6β-triol (7), (22E)-24-norcholest-22-en-3β,5α,6β-triol (8), (22E,24S)-ergost-22-en-3β,5α,6β-triol (9), ergost-24(28)-en-3β,5α,6β-triol (10), (22E)-cholest-7,22-dien-3β,5α,6β-triol (11), cholest-7-en-3β,5α,6β-triol (12), (22E)-24-norcholest-7,22-dien-3β,5α,6β-triol (13), ergost-7,24(28)-dien-3β,5α,6β-triol (14), (22E,24R)-ergost-7,22-dien-3β,5α,6β-triol (15), (22E)-cholest-22-en-1β,3β,5α,6β-tetrol (16), (22E)-24-norcholest-22-en-1β,3β,5α,6β-tetrol (17), cholest-1β,3β,5α,6β-tetrol (18), and (24ξ)-ergost-1β,3β,5α,6β-tetrol (19). The structures of the new compounds were elucidated by detailed spectroscopic analysis in combination with comparison of reported data. All the compounds are reported for the first time from the animal. In the bioassay in vitro, these compounds exhibited different levels of growth inhibition activity against A549 and MG63 cell lines. In particular, compound 18 displayed a considerable activity, being similar as that of positive control adriamycin. An annexin V analysis indicated that compounds 7 and 18 can significantly induce apoptosis in A549 cell, and compound 7 is more potent in the induction of apoptosis. Preliminary structure-activity analysis suggests that the acetylation on 3-OH and appearance of Δ⁷ may decrease the activity while substitution of 1-OH and the nature of side chain may also play an important role in the activity. Methylation of 5-OH contributed a little to the activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    PubMed

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  15. Effect of a dominant inhibitory Ha-ras mutation on neuronal differentiation of PC12 cells.

    PubMed Central

    Szeberényi, J; Cai, H; Cooper, G M

    1990-01-01

    A dominant inhibitory mutation of Ha-ras which changes Ser-17 to Asn-17 in the gene product p21 [p21 (Asn-17)Ha-ras] has been used to investigate the role of ras in neuronal differentiation of PC12 cells. The growth of PC12 cells, in contrast to NIH 3T3 cells, was not inhibited by p21(Asn-17)Ha-ras expression. However, PC12 cells expressing the mutant Ha-ras protein showed a marked inhibition of morphological differentiation induced by nerve growth factor (NGF) or fibroblast growth factor (FGF). These cells, however, were still able to respond with neurite outgrowth to dibutyryl cyclic AMP and 12-O-tetradecanoylphorbol-13-acetate (TPA). Induction of early-response genes (fos, jun, and zif268) by NGF and FGF but not by TPA was also inhibited by high levels of p21(Asn-17)Ha-ras. However, lower levels of p21(Asn-17) expression were sufficient to block neuronal differentiation without inhibiting induction of these early-response genes. Induction of the secondary-response genes SCG10 and transin by NGF, like morphological differentiation, was inhibited by low levels of p21(Asn-17) whether or not induction of early-response genes was blocked. Therefore, although inhibition of ras function can inhibit early-response gene induction, this is not required to block morphological differentiation or secondary-response gene expression. These results suggest that ras proteins are involved in at least two different pathways of signal transduction from the NGF receptor, which can be distinguished by differential sensitivity to p21(Asn-17)Ha-ras. In addition, ras and protein kinase C can apparently induce early-response gene expression by independent pathways in PC12 cells. Images PMID:2118994

  16. Re-188 Enhances the Inhibitory Effect of Bevacizumab in Non-Small-Cell Lung Cancer.

    PubMed

    Xiao, Jie; Xu, Xiaobo; Li, Xiao; Li, Yanli; Liu, Guobing; Tan, Hui; Shen, Hua; Shi, Hongcheng; Cheng, Dengfeng

    2016-09-30

    The malignant behaviors of solid tumors such as growth, infiltration and metastasis are mainly nourished by tumor neovascularization. Thus, anti-angiogenic therapy is key to controlling tumor progression. Bevacizumab, a humanized anti-vascular endothelial growth factor (VEGF) antibody, plus chemotherapy or biological therapy can prolong survival for cancer patients, but treatment-related mortality is a concern. To improve inhibitory effect and decrease side-effects on non-small-cell lung cancer (NSCLC), we used Re-188, which is a β emitting radionuclide, directly labeled with bevacizumab for radioimmunotherapy in a human A549 tumor model. Cytotoxic assay data showed that, after (188)ReO₄(-) or (188)Re-bevacizumab at different concentration for 4 and 24 h, a time- and radioactivity does-dependent reduction in cell viability occurred. Also, an apoptosis assay conformed great apoptosis in the (188)Re-bevacizumab group compared with controls and other treatment groups. In vivo, tumor volumes in the (188)Re-bevacizumab (11.1 MBq/mice) group were not reduced but growth was delayed compared with other groups. Thus, (188)Re-bevacizumab enhanced the therapeutic effect of bevacizumab, suggesting a potential therapeutic strategy for NSCLC treatment.

  17. Inhibitory effects of novel SphK2 inhibitors on migration of cancer cells.

    PubMed

    Jung, Deokho; Jung, Junghyun; Lee, Euiyeon; Mok, Chang Soo; Jeon, Hyunjin; Park, Chang Seo; Jang, Wonhee; Kwon, Youngeun

    2017-02-13

    Cell migration is an essential process for survival and differentiation of mammalian cells. Numerous diseases are induced or influenced by inappropriate regulation of cell migration, which plays a key role in cancer cell metastasis. In fact, very few anti-metastasis drugs are available on the market. SphKs are enzymes that convert sphingosine to sphingosine-1- phosphate (S1P) and are known to control various cellular functions, including migration of cells. Among two human isozymes of SphK2, SphK2 is known to promote apoptosis, suppresses cell growth, and controls cell migration; in addition, the specific ablation of SphK2 activity was reported to inhibit cancer cell metastasis. The previously identified SG12 and SG14 are synthetic analogs of sphingoid, natural inhibitors of SphKs, and can specifically inhibit the functions of SphK2. In this paper, we investigated how SG12 and SG14 affect cell migration by monitoring both cumulative and individual cell migration behavior using HeLa cells. SG12 and SG14 mutually showed stronger inhibitory effects with less cytotoxicity compared with a general SphK inhibitor, N,N-dimethylsphingosine (DMS). The mechanistic aspects of specific SphK2 inhibition were studied by examining actin filamentation as well as the expression levels of motility-related genes. The data revealed that SG12 and SG14 resemble DMS in decreasing overall cell motility, but differ in that they differentially affect motility parameters and motility-related signal transduction pathways and therefore actin polymerization, which are not altered by DMS. Our findings show that SphK2 inhibitors are putative candidates for anti-metastatic drugs.

  18. Transcriptome analysis of phycocyanin inhibitory effects on SKOV-3 cell proliferation.

    PubMed

    Ying, Jun; Wang, Jian; Ji, Huijuan; Lin, Chaoqing; Pan, Ruowang; Zhou, Li; Song, Yulong; Zhang, Enyong; Ren, Ping; Chen, Jishun; Liu, Qian; Xu, Teng; Yi, Huiguang; Li, Jinsong; Bao, Qiyu; Hu, Yunliang; Li, Peizhen

    2016-07-01

    Phycocyanin (PC) from Spirulina platensis has inhibitory effects on tumor cell growth. In this research, the transcriptome study was designed to investigate the underlying molecular mechanisms of PC inhibition on human ovarian cancer cell SKOV-3 proliferation. The PC IC50 was 216.6μM and 163.8μM for 24h and 48h exposure, respectively, as determined by CCK-8 assay. The morphological changes of SKOV-3 cells after PC exposure were recorded using HE staining. Cells arrested in G2/M stages as determined by flow cytometry. The transcriptome analysis showed that 2031 genes (with > three-fold differences) were differentially expressed between the untreated and the PC-treated cells, including 1065 up-regulated and 966 down-regulated genes. Gene ontology and KEGG pathway analysis identified 18 classical pathways that were remarkably enriched, such as neurotrophin signaling pathway, VEGF signaling pathway and P53 signaling pathway. qPCR results further showed that PTPN12, S100A2, RPL26, and LAMA3 increased while HNRNPA1P10 decreased in PC-treated cells. Molecules and genes in those pathways may be potential targets to develop treatments for ovarian cancer.

  19. [Inhibitory effects of Lantana camera and its contained phenolic compounds in Eichhornia crassipes growth].

    PubMed

    Yi, Zhen; Zhang, Maoxin; Ling, Bing; Xu, Di; Ye, Jingzhong

    2006-09-01

    This paper studied the effects of Lantana camera fresh leaves aqueous extract and its contained phenolic compounds on the growth and physiologic-biochemical indexes of Eichhornia crassipes. The results showed that this extract had obvious inhibitory effects on the growth and development of E. crassipes. When the concentration was higher than 30 g FW x L(-1), it could kill E. crassipes after 6 days treatment. A total of seven phenolic compounds in the abstract were identified by HPLC, which were salicylic acid, gentisic acid, beta-resorcylic acid , coumarin, ferulic acid, p-hydroxybenzoic acid and 6-methyl coumarin, with the concentrations being, 50.95, 13.46, 5.28, 3.36, 2.92, 2.19 and 0.34 mg x L(-1), respectively. The mixture of the seven compounds had the strongest inhibitory effect, followed by salicylic acid, 6-methyl coumarin, coumarin, and p-hydroxybenzoic acid, while the effects of beta-resorcylic acid and gentisic acid were not significant.

  20. In vitro inhibitory effect of tetrahydrocurcuminoids on Fusarium proliferatum growth and fumonisin B₁ biosynthesis.

    PubMed

    Coma, Véronique; Portes, Elise; Gardrat, Christian; Richard-Forget, Florence; Castellan, Alain

    2011-02-01

    Many plant pathogens produce toxic metabolites when growing on food and feed. Some antioxidative components seem to prevent fungal growth and mycotoxin formation. Recently, we synthesized a new class of powerful antioxidative compounds, i.e. tetrahydrocurcuminoids, and its structure/antioxidant activity relationships have been established. The South West of France produces large amounts of corn, which can be infected by Fusarium species, particularly F. proliferatum. In this context, the efficiency of tetrahydrocurcuminoids, which can be obtained from natural curcuminoids, was investigated to control in vitro the growth of F. proliferatum and the production of its associated mycotoxin, fumonisin B₁. The relation between structure and antifungal activity was studied. Tetrahydrocurcumin (THC1), with two guaiacyl phenolic subunits, showed the highest inhibitory activity (measured as radial growth on agar medium) against the F. proliferatum development (67% inhibition at a concentration of 13.6 µmol ml⁻¹). The efficiencies of THC2 (36% at a concentration of 11.5 µmol ml⁻¹), which contains syringyl phenolic units, and THC3 (30% at a concentration of 13.6 µmol ml⁻¹), which does not have any substituent on the aromatic rings, were relatively close. These results indicate that the simultaneous presence of guaiacyl phenols and the enolic function of the β-diketone moiety play an important role in the inhibition mechanisms. The importance of this combination was confirmed using n-propylguaiacol and acetylacetone as molecular models. Under the same conditions, ferulic acid and eugenol, other natural phenolic antioxidants, were less efficient in inhibiting fungal growth. THC1 also reduced fumonisin B₁ production in liquid medium by approximately 35, 50 and 75% at concentrations of 0.8, 1.3, and 1.9 µmol ml⁻¹, respectively. These very low inhibitory concentrations show that tetrahydrocurcuminoids could be one of the most promising biobased molecules for the

  1. Inhibitory effects of (-)-epigallocatechin-3-gallate from green tea on the growth of Babesia parasites.

    PubMed

    Aboulaila, M; Yokoyama, N; Igarashi, I

    2010-04-01

    (-)-Epigallocatechin-3-gallate (EGCG) is the major tea catechin and accounts for 50-80% of the total catechin in green tea. (-)-Epigallocatechin-3-gallate has antioxidant, anti-inflammatory, anti-microbial, anti-cancer, and anti-trypanocidal activities. This report describes the inhibitory effect of (-)-Epigallocatechin-3-gallate on the in vitro growth of bovine Babesia parasites and the in vivo growth of the mouse-adapted rodent babesia B. microti. The in vitro growth of the Babesia species was significantly (P<0.05) inhibited in the presence of micromolar concentrations of EGCG (IC50 values=18 and 25 microM for B. bovis, and B. bigemina, respectively). The parasites showed no re-growth at 25 microM for B. bovis and B. bigemina in the subsequent viability test. The drug significantly (P<0.05) inhibited the growth of B. microti at doses of 5 and 10 mg/kg body weight, and the parasites completely cleared on day 14 and 16 post-inoculation in the 5 and 10 mg/kg treated groups, respectively. These findings highlight the potentiality of (-)-Epigallocatechin-3-gallate as a chemotherapeutic drug for the treatment of babesiosis.

  2. Characterization of Inhibitory Anti-insulin-like Growth Factor Receptor Antibodies with Different Epitope Specificity and Ligand-blocking Properties

    PubMed Central

    Doern, Adam; Cao, Xianjun; Sereno, Arlene; Reyes, Christopher L.; Altshuler, Angelina; Huang, Flora; Hession, Cathy; Flavier, Albert; Favis, Michael; Tran, Hon; Ailor, Eric; Levesque, Melissa; Murphy, Tracey; Berquist, Lisa; Tamraz, Susan; Snipas, Tracey; Garber, Ellen; Shestowsky, William S.; Rennard, Rachel; Graff, Christilyn P.; Wu, Xiufeng; Snyder, William; Cole, Lindsay; Gregson, David; Shields, Michael; Ho, Steffan N.; Reff, Mitchell E.; Glaser, Scott M.; Dong, Jianying; Demarest, Stephen J.; Hariharan, Kandasamy

    2009-01-01

    Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 μm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism leads

  3. Recruitment of an inhibitory hippocampal network after bursting in a single granule cell.

    PubMed

    Mori, Masahiro; Gähwiler, Beat H; Gerber, Urs

    2007-05-01

    The hippocampal CA3 area, an associational network implicated in memory function, receives monosynaptic excitatory as well as disynaptic inhibitory input through the mossy-fiber axons of the dentate granule cells. Synapses made by mossy fibers exhibit low release probability, resulting in high failure rates at resting discharge frequencies of 0.1 Hz. In recordings from functionally connected pairs of neurons, burst firing of a granule cell increased the probability of glutamate release onto both CA3 pyramidal cells and inhibitory interneurons, such that subsequent low-frequency stimulation evoked biphasic excitatory/inhibitory responses in a CA3 pyramidal cell, an effect lasting for minutes. Analysis of the unitary connections in the circuit revealed that granule cell bursting caused powerful activation of an inhibitory network, thereby transiently suppressing excitatory input to CA3 pyramidal cells. This phenomenon reflects the high incidence of spike-to-spike transmission at granule cell to interneuron synapses, the numerically much greater targeting by mossy fibers of inhibitory interneurons versus principal cells, and the extensively divergent output of interneurons targeting CA3 pyramidal cells. Thus, mossy-fiber input to CA3 pyramidal cells appears to function in three distinct modes: a resting mode, in which synaptic transmission is ineffectual because of high failure rates; a bursting mode, in which excitation predominates; and a postbursting mode, in which inhibitory input to the CA3 pyramidal cells is greatly enhanced. A mechanism allowing the transient recruitment of inhibitory input may be important for controlling network activity in the highly interconnected CA3 pyramidal cell region.

  4. Toll-like receptor 9 expression is associated with breast cancer sensitivity to the growth inhibitory effects of bisphosphonates in vitro and in vivo

    PubMed Central

    Sandholm, Jouko; Lehtimäki, Jaakko; Ishizu, Tamiko; Velu, Sadanandan E.; Clark, Jeremy; Härkönen, Pirkko; Jukkola-Vuorinen, Arja; Schrey, Aleksi; Harris, Kevin W.; Tuomela, Johanna M.; Selander, Katri S.

    2016-01-01

    Bisphosphonates are standard treatments for bone metastases. When given in the adjuvant setting, they reduce breast cancer mortality and recurrence in bone but only among post-menopausal patients. Optimal drug use would require biomarker-based patient selection. Such biomarkers are not yet in clinical use. Based on the similarities in inflammatory responses to bisphosphonates and Toll-like receptor (TLR) agonists, we hypothesized that TLR9 expression may affect bisphosphonate responses in cells. We compared bisphosphonate effects in breast cancer cell lines with low or high TLR9 expression. We discovered that cells with decreased TLR9 expression are significantly more sensitive to the growth-inhibitory effects of bisphosphonates in vitro and in vivo. Furthermore, cancer growth-promoting effects seen with some bisphosphonates in some control shRNA cells were not detected in TLR9 shRNA cells. These differences were not associated with inhibition of Rap1A prenylation or p38 phosphorylation, which are known markers for bisphosphonate activity. However, TLR9 shRNA cells exhibited increased sensitivity to ApppI, a metabolite that accumulates in cells after bisphosphonate treatment. We conclude that decreased TLR9-expression sensitizes breast cancer cells to the growth inhibitory effects of bisphosphonates. Our results suggest that TLR9 should be studied as a potential biomarker for adjuvant bisphosphonate sensitivity among breast cancer patients. PMID:27888633

  5. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1.

    PubMed

    Choi, Sangyong; Cui, Chaochu; Luo, Yanhong; Kim, Sun-Hee; Ko, Jae-Kyun; Huo, Xiaofang; Ma, Jianjie; Fu, Li-Wu; Souza, Rhonda F; Korichneva, Irina; Pan, Zui

    2017-09-19

    Zinc, an essential micronutrient, has a cancer preventive role. Zinc deficiency has been shown to contribute to the progression of esophageal cancer. Orai1, a store-operated Ca(2+) entry (SOCE) channel, was previously reported to be highly expressed in tumor tissues removed from patients with esophageal squamous cell carcinoma (ESCC) with poor prognosis, and elevation of its expression contributes to both hyperactive intracellular Ca(2+) oscillations and fast cell proliferation in human ESCC cells. However, the molecular basis of cancer preventive functions of zinc and its association with Orai1-mediated cell proliferation remains unknown. The present study shows that zinc supplementation significantly inhibits proliferation of ESCC cell lines and that the effect of zinc is reversible with N,N,N',N'-Tetrakis (2-pyridylmethyl) ethylenediamine, a specific Zn(2+) chelator, whereas nontumorigenic esophageal epithelial cells are significantly less sensitive to zinc treatment. Fluorescence live cell imaging revealed that extracellular Zn(2+) exerted rapid inhibitory effects on Orai1-mediated SOCE and on intracellular Ca(2+) oscillations in the ESCC cells. Knockdown of Orai1 or expression of Orai1 mutants with compromised zinc binding significantly diminished sensitivity of the cancer cells to zinc treatment in both SOCE and cell proliferation analyses. These data suggest that zinc may inhibit cell proliferation of esophageal cancer cells through Orai1-mediated intracellular Ca(2+) oscillations and reveal a possible molecular basis for zinc-induced cancer prevention and Orai1-SOCE signaling pathway in cancer cells.-Choi, S., Cui, C., Luo, Y., Kim, S.-H., Ko, J.-K., Huo, X., Ma, J., Fu, L.-W., Souza, R. F., Korichneva, I., Pan, Z. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1. © FASEB.

  6. Feeding deterrent and growth inhibitory activities of PONNEEM, a newly developed phytopesticidal formulation against Helicoverpa armigera (Hubner)

    PubMed Central

    Packiam, Soosaimanickam Maria; Baskar, Kathirvelu; Ignacimuthu, Savarimuthu

    2014-01-01

    Objective To assess the feeding deterrent, growth inhibitory and egg hatchability effects of PONNEEM on Helicoverpa armigera (H. armigera). Methods Five oil formulations were prepared at different ratios to assess the feeding deterrent, growth inhibitory and egg hatchability effects on H. armigera. Results Invariably all the newly formulated phytopesticidal oil formulations showed the feeding deterrent and growth inhibitory activities against H. armigera. The maximum feeding deterrent activity of 88.44% was observed at 15 µL/L concentration of PONNEEM followed by formulation A (74.54%). PONNEEM was found to be effective in growth inhibitory activities and egg hatchability at 10 µL/L concentration. It exhibited statistically significant feeding deterrent activity and growth inhibitory activity compared with all the other treatments. Conclusions PONNEEM was found to be effective phytopesticidal formulation to control the larval stage of H. armigera. This is the first report for the feeding deterrent activity of PONNEEM against H. armigera. This newly formulated phytopesticide was patented in India. PMID:25183105

  7. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection.

    PubMed

    Khakoo, Salim I; Thio, Chloe L; Martin, Maureen P; Brooks, Collin R; Gao, Xiaojiang; Astemborski, Jacquie; Cheng, Jie; Goedert, James J; Vlahov, David; Hilgartner, Margaret; Cox, Steven; Little, Ann-Margeret; Alexander, Graeme J; Cramp, Matthew E; O'Brien, Stephen J; Rosenberg, William M C; Thomas, David L; Carrington, Mary

    2004-08-06

    Natural killer (NK) cells provide a central defense against viral infection by using inhibitory and activation receptors for major histocompatibility complex class I molecules as a means of controlling their activity. We show that genes encoding the inhibitory NK cell receptor KIR2DL3 and its human leukocyte antigen C group 1 (HLA-C1) ligand directly influence resolution of hepatitis C virus (HCV) infection. This effect was observed in Caucasians and African Americans with expected low infectious doses of HCV but not in those with high-dose exposure, in whom the innate immune response is likely overwhelmed. The data strongly suggest that inhibitory NK cell interactions are important in determining antiviral immunity and that diminished inhibitory responses confer protection against HCV.

  8. Tumor growth-inhibitory effect of an angiotensin-converting enzyme inhibitor (captopril) in a lung cancer xenograft model analyzed using 18F-FDG-PET/CT.

    PubMed

    Nakaya, Koji; Otsuka, Hideki; Kondo, Kazuya; Otani, Tamaki; Nagata, Motoi

    2016-02-01

    We administered an angiotensin-converting enzyme inhibitor (captopril) to mice implanted with a human lung adenocarcinoma epithelial cell line (A549 cells) and investigated the tumor growth-inhibitory effect of captopril from the viewpoint of glucose metabolism using (18)F-fluorodeoxyglucose ((18)F-FDG)-PET/CT. Subcutaneous implantation of A549 cells (1.9×10(6) cells) was carried out in the lower right flank of mice. Fifteen days after the transplantation of A549 cells, mice (six in each group) were treated with captopril (3.0 mg/mouse) or saline (1000 μl/mouse) for 5 days. We performed (18)F-FDG-PET/CT imaging of the mice before and after the treatment and evaluated the degree of (18)F-FDG accumulation in tumors. In both groups (the captopril-administrated and control groups), values for the metabolic tumor volume (MTV), maximum standardized uptake value, total lesion glycolysis, and tumor volume after treatment had a tendency to increase. However, tumor growth was suppressed in the captopril-administrated group compared with the control group. In terms of the growth rate, the MTV and tumor volume were significantly different (P<0.05). It was found that captopril exerted a potential tumor growth-inhibitory effect; this was because the captopril-administrated group showed low values of MTV, maximum standardized uptake value, total lesion glycolysis, and tumor volume in comparison with the control group.

  9. Maturation of the inhibitory response of growth hormone secretion to ether stress in postnatal rat.

    PubMed

    Strbák, V; Jurcovicová, J; Vigas, M

    1985-05-01

    To study the maturation of inhibitory influences on growth hormone (GH) secretion the effect of ether stress on plasma GH levels was studied during postnatal ontogenesis in female rats. Ether stress did not affect plasma GH levels in 1-day-old pups. A distinct decrease of plasma GH was found in 3- and 9-day-old pups, and the response was prevented by treatment of 3-day-old animals with somatostatin antiserum. No effect of ether stress on plasma GH was noted in 12-, 15-, 18- and 21-day-old rats. Treatment of intact 12-day-old pups with the somatostatin antiserum increased plasma GH level under basal conditions. The inhibitory effect of ether stress on plasma GH was noted again at the age 30 days and in adult animals. It is concluded that the hypothalamus of 3-day-old rats is able to release enough somatostatin to inhibit GH secretion after stress. At the period 12-18 days a phase of pituitary refractoriness was noted: ether stress as well as TRH injection (our previous observation) fail to affect plasma GH in female pups, probably due to high somatostatin secretion under basal conditions and (or) low capacity of pituitary to release GH. It is suggested that regulation of GH secretion is not mature until after the 21st day of life.

  10. Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity.

    PubMed

    Hull, Court; Regehr, Wade G

    2012-01-12

    Here we provide evidence that revises the inhibitory circuit diagram of the cerebellar cortex. It was previously thought that Golgi cells, interneurons that are the sole source of inhibition onto granule cells, were exclusively coupled via gap junctions. Moreover, Golgi cells were believed to receive GABAergic inhibition from molecular layer interneurons (MLIs). Here we challenge these views by optogenetically activating the cerebellar circuitry to determine the timing and pharmacology of inhibition onto Golgi cells and by performing paired recordings to directly assess synaptic connectivity. In contrast to current thought, we find that Golgi cells, not MLIs, make inhibitory GABAergic synapses onto other Golgi cells. As a result, MLI feedback does not regulate the Golgi cell network, and Golgi cells are inhibited approximately 2 ms before Purkinje cells, following a mossy fiber input. Hence, Golgi cells and Purkinje cells receive unique sources of inhibition and can differentially process shared granule cell inputs. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    PubMed Central

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-01-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron–Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum. PMID:26179122

  12. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  13. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling.

    PubMed

    Diniz, Luan Pereira; Tortelli, Vanessa; Garcia, Matheus Nunes; Araújo, Ana Paula Bérgamo; Melo, Helen M; Silva, Gisele S Seixas da; Felice, Fernanda G De; Alves-Leon, Soniza Vieira; Souza, Jorge Marcondes de; Romão, Luciana Ferreira; Castro, Newton Gonçalves; Gomes, Flávia Carvalho Alcantara

    2014-12-01

    The balance between excitatory and inhibitory synaptic inputs is critical for the control of brain function. Astrocytes play important role in the development and maintenance of neuronal circuitry. Whereas astrocytes-derived molecules involved in excitatory synapses are recognized, molecules and molecular mechanisms underlying astrocyte-induced inhibitory synapses remain unknown. Here, we identified transforming growth factor beta 1 (TGF-β1), derived from human and murine astrocytes, as regulator of inhibitory synapse in vitro and in vivo. Conditioned media derived from human and murine astrocytes induce inhibitory synapse formation in cerebral cortex neurons, an event inhibited by pharmacologic and genetic manipulation of the TGF-β pathway. TGF-β1-induction of inhibitory synapse depends on glutamatergic activity and activation of CaM kinase II, which thus induces localization and cluster formation of the synaptic adhesion protein, Neuroligin 2, in inhibitory postsynaptic terminals. Additionally, intraventricular injection of TGF-β1 enhanced inhibitory synapse number in the cerebral cortex. Our results identify TGF-β1/CaMKII pathway as a novel molecular mechanism underlying astrocyte control of inhibitory synapse formation. We propose here that the balance between excitatory and inhibitory inputs might be provided by astrocyte signals, at least partly achieved via TGF-β1 downstream pathways. Our work contributes to the understanding of the GABAergic synapse formation and may be of relevance to further the current knowledge on the mechanisms underlying the development of various neurological disorders, which commonly involve impairment of inhibitory synapse transmission. © 2014 Wiley Periodicals, Inc.

  14. Adhesion and growth inhibitory effect of chicken egg yolk antibody (IgY) on Salmonella enterica serovars Enteritidis and Typhimurium in vitro.

    PubMed

    Chalghoumi, Raja; Théwis, André; Beckers, Yves; Marcq, Christopher; Portetelle, Daniel; Schneider, Yves-Jacques

    2009-06-01

    The protective effects of powder preparation of egg yolk immunoglobulin Y (IgY), specific to Salmonella Enteritidis and Salmonella Typhimurium outer membrane proteins (OMP), against these two Salmonella sp. serovars were investigated in vitro in two different assays: adhesion-prevention and growth-inhibition. The adhesion-prevention assay was conducted using polarized monolayers of the human intestinal epithelial Caco-2 cell line. First, the conditions of Salmonella adherence to Caco-2 cells were optimized, and interferences of bacteria with the transepithelial electrical resistance (TER) of fully differentiated Caco-2 cell monolayers and the lactate dehydrogenase release upon exposure of the cells to Salmonella were evaluated. Both Salmonella sp. serovars were able to adhere to Caco-2 cells and decreased TER. Results from the adhesion-prevention assay demonstrated that specific IgY reduced the decrease in TER of the infected Caco-2 cell monolayers and blocked the Salmonella sp. adhesion in a concentration-dependent manner (p < 0.05). Nonspecific IgY also exhibited an inhibitory effect on these two parameters, but to a lesser extent than that of the specific IgY (p < 0.05). The protective effect of nonspecific IgY could be attributed to the low-density lipoprotein component of the water-soluble fraction of egg yolks that may not have been eliminated during ultrafiltration. The growth-inhibition assay revealed that specific IgY had an inhibitory effect on the bacterial growth, markedly during the late exponential phase, whereas nonspecific IgY failed to do so. Taken together, these results suggest that the in vitro growth inhibitory effect of specific IgY on Salmonella spp. resulted from the specific binding activity of these IgY to Salmonella sp. OMP. Passive immunization with Salmonella sp. OMP-specific IgY could thus be useful to prevent Salmonella colonization in broiler chickens and the subsequent carcass contamination during processing.

  15. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation.

    PubMed

    Rybalchenko, Oxana V; Bondarenko, Viktor M; Orlova, Olga G; Markov, Alexander G; Amasheh, S

    2015-10-01

    Beneficial effects of Lactobacilli have been reported, and lactic bacteria are employed for conservation of foods. Therefore, the effects of a Lactobacillus fermentum strain were analyzed regarding inhibitory effects on staphylococci, Candida albicans and enterotoxigenic enterobacteria by transmission electron microscopy (TEM). TEM of bacterial biofilms was performed using cocultures of bacteriocin-producing L. fermentum 97 with different enterotoxigenic strains: Staphylococcus epidermidis expressing the ica gene responsible for biofilm formation, Staphylococcus aureus producing enterotoxin type A, Citrobacter freundii, Enterobacter cloaceae, Klebsiella oxytoca, Proteus mirabilis producing thermolabile and thermostable enterotoxins determined by elt or est genes, and Candida albicans. L. fermentum 97 changed morphological features and suppressed biofilm formation of staphylococci, enterotoxigenic enterobacteria and Candida albicans; a marked transition to resting states, a degradation of the cell walls and cytoplasm, and a disruption of mature bacterial biofilms were observed, the latter indicating efficiency even in the phase of higher cell density.

  16. The Direct Inhibitory Effect of Dutasteride or Finasteride on Androgen Receptor Activity is Cell Line Specific

    PubMed Central

    Chhipa, Rishi Raj; Halim, Danny; Cheng, Jinrong; Zhang, Huan Yi; Mohler, James L.; Ip, Clement; Wu, Yue

    2014-01-01

    BACKGROUND Finasteride and dutasteride were developed originally as 5α-reductase inhibitors to block the conversion of testosterone to dihydrotestosterone (DHT). These drugs may possess off-target effects on the androgen receptor (AR) due to their structural similarity to DHT. METHODS A total of 4 human prostate cancer cell models were examined: LNCaP (T877A mutant AR), 22Rv1 (H874Y mutant AR), LAPC4 (wild type AR) and VCaP (wild type AR). Cells were cultured in 10% charcoal-stripped fetal bovine serum, either with or without DHT added to the medium. AR activity was evaluated using the ARE-luciferase assay or the expression of AR regulated genes. RESULTS Dutasteride was more potent than finasteride in interfering with DHT-stimulated AR signaling. Disruption of AR function was accompanied by decreased cell growth. Cells that rely on DHT for protection against death were particularly vulnerable to dutasteride. Different prostate cancer cell models exhibited different sensitivities to dutasteride and finasteride. LNCaP was most sensitive, LAPC4 and VCaP were intermediate, while 22Rv1 was least sensitive. Regardless of the AR genotype, if AR was transfected into drug-sensitive cells, AR was inhibited by drug treatment; and if AR was transfected into drug-resistant cells, AR was not inhibited. CONCLUSIONS The direct inhibitory effect of dutasteride or finasteride on AR signaling is cell line specific. Mutations in the ligand binding domain of AR do not appear to play a significant role in influencing the AR antagonistic effect of these drugs. Subcellular constituent is an important factor in determining the drug effect on AR function. PMID:23813737

  17. The direct inhibitory effect of dutasteride or finasteride on androgen receptor activity is cell line specific.

    PubMed

    Chhipa, Rishi Raj; Halim, Danny; Cheng, Jinrong; Zhang, Huan Yi; Mohler, James L; Ip, Clement; Wu, Yue

    2013-10-01

    Finasteride and dutasteride were developed originally as 5α-reductase inhibitors to block the conversion of testosterone to dihydrotestosterone (DHT). These drugs may possess off-target effects on the androgen receptor (AR) due to their structural similarity to DHT. A total of four human prostate cancer cell models were examined: LNCaP (T877A mutant AR), 22Rv1 (H874Y mutant AR), LAPC4 (wild-type AR), and VCaP (wild-type AR). Cells were cultured in 10% charcoal-stripped fetal bovine serum, either with or without DHT added to the medium. AR activity was evaluated using the ARE-luciferase assay or the expression of AR regulated genes. Dutasteride was more potent than finasteride in interfering with DHT-stimulated AR signaling. Disruption of AR function was accompanied by decreased cell growth. Cells that rely on DHT for protection against death were particularly vulnerable to dutasteride. Different prostate cancer cell models exhibited different sensitivities to dutasteride and finasteride. LNCaP was most sensitive, LAPC4 and VCaP were intermediate, while 22Rv1 was least sensitive. Regardless of the AR genotype, if AR was transfected into drug-sensitive cells, AR was inhibited by drug treatment; and if AR was transfected into drug-resistant cells, AR was not inhibited. The direct inhibitory effect of dutasteride or finasteride on AR signaling is cell line specific. Mutations in the ligand binding domain of AR do not appear to play a significant role in influencing the AR antagonistic effect of these drugs. Subcellular constituent is an important factor in determining the drug effect on AR function. Copyright © 2013 Wiley Periodicals, Inc.

  18. [Grape seed extract inhibits the growth of prostate cancer PC-3 cells].

    PubMed

    Huang, Ting-Ting; Shang, Xue-Jun; Yao, Gen-Hong; Ge, Jing-Ping; Teng, Wen-Hui; Sun, Yi; Huang, Yu-Feng

    2008-04-01

    To investigate the inhibitory effect of grape seed extract (GSE) on the growth of prostate cancer PC-3 cells. PC-3 cells were treated with GSE at the concentration of 100, 200 and 300 microg/ml for 24, 48 and 72 hours, respectively. The the inhibitory effect of GSE on the growth of the PC-3 cells and the kidney cells of SD rats was determined by MTT reduction assay, with primarily cultured kidney cells of 1-3 days old SD rats as the normal control. GSE significantly inhibited the growth of PC-3 cells in a concentration- and time-dependent manner, but had only a mild inhibitory effect on the kidney cells. GSE inhibits the growth of prostate cancer PC-3 cells and can be used as a new drug for the treatment of prostate cancer.

  19. Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth

    SciTech Connect

    Tane, Shoji; Okayama, Hitomi; Ikenishi, Aiko; Amemiya, Yuki; Nakayama, Keiichi I.; Takeuchi, Takashi

    2015-10-16

    Mammalian cardiomyocytes actively proliferate during embryonic stages, following which they exit their cell cycle after birth, and the exit is maintained. Previously, we showed that two inhibitory systems (the G1-phase inhibitory system: repression of cyclin D1 expression; the M-phase inhibitory system: inhibition of CDK1 activation) maintain the cell cycle exit of mouse adult cardiomyocytes. We also showed that two CDK inhibitors (CKIs), p21{sup Cip1} and p27{sup Kip1}, regulate the cell cycle exit in a portion of postnatal cardiomyocytes. It remains unknown whether the two inhibitory systems are involved in the cell cycle exit of postnatal cardiomyocytes and whether p21{sup Cip1} and p27{sup Kip1} also inhibit entry to M-phase. Here, we showed that more than 40% of cardiomyocytes entered an additional cell cycle by induction of cyclin D1 expression at postnatal stages, but M-phase entry was inhibited in the majority of cardiomyocytes. Marked cell cycle progression and endoreplication were observed in cardiomyocytes of p21{sup Cip1} knockout mice at 4 weeks of age. In addition, tri- and tetranucleated cardiomyocytes increased significantly in p21{sup Cip1} knockout mice. These data showed that the G1-phase inhibitory system and two CKIs (p21{sup Cip1} and p27{sup Kip1}) inhibit entry to an additional cell cycle in postnatal cardiomyocytes, and that the M-phase inhibitory system and p21{sup Cip1} inhibit M-phase entry of cardiomyocytes which have entered the additional cell cycle. - Highlights: • Many postnatal cardiomyocytes entered an additional cell cycle by cyclin D1 induction. • The majority of cardiomyocytes could not enter M-phase after cyclin D1 induction. • Cell cycle progressed markedly in p21{sup Cip1} knockout mice after postnatal day 14. • Tri- and tetranucleated cardiomyocytes increased in p21{sup Cip1} knockout mice.

  20. Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus.

    PubMed

    Acsády, L; Katona, I; Martínez-Guijarro, F J; Buzsáki, G; Freund, T F

    2000-09-15

    Perisomatic inhibitory innervation of all neuron types profoundly affects their firing characteristics and vulnerability. In this study we examined the postsynaptic targets of perisomatic inhibitory cells in the hilar region of the dentate gyrus where the proportion of potential target cells (excitatory mossy cells and inhibitory interneurons) is approximately equal. Both cholecystokinin (CCK)- and parvalbumin-immunoreactive basket cells formed multiple contacts on the somata and proximal dendrites of mossy cells. Unexpectedly, however, perisomatic inhibitory terminals arriving from these cell types largely ignored hilar GABAergic cell populations. Eighty-ninety percent of various GABAergic neurons including other CCK-containing basket cells received no input from CCK-positive terminals. Parvalbumin-containing cells sometimes innervated each other but avoided 75% of other GABAergic cells. Overall, a single mossy cell received 40 times more CCK-immunoreactive terminals and 15 times more parvalbumin-positive terminals onto its soma than the cell body of an average hilar GABAergic cell. In contrast to the pronounced target selectivity in the hilar region, CCK- and parvalbumin-positive neurons innervated each other via collaterals in stratum granulosum and moleculare. Our observations indicate that the inhibitory control in the hilar region is qualitatively different from other cortical areas at both the network level and the level of single neurons. The paucity of perisomatic innervation of hilar interneurons should have profound consequences on their action potential generation and on their ensemble behavior. These findings may help explain the unique physiological patterns observed in the hilus and the selective vulnerability of the hilar cell population in various pathophysiological conditions.

  1. The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways.

    PubMed

    Shearer, Morven C; Niclou, Simone P; Brown, David; Asher, Richard A; Holtmaat, Anthony J G D; Levine, Joel M; Verhaagen, Joost; Fawcett, James W

    2003-12-01

    Invading meningeal cells form a barrier to axon regeneration after damage to the spinal cord and other parts of the CNS, axons stopping at the interface between meningeal cells and astrocytes. Axon behavior was examined using an in vitro model of astrocyte/meningeal cell interfaces, created by plating aggregates of astrocytes and meningeal cells onto coverslips. At these interfaces growth of dorsal root ganglion axons attempting to grow from astrocytes to meningeal cells was blocked, but axons grew rapidly from meningeal cells onto astrocytes. Meningeal cells were examined for expression of axon growth inhibitory molecules, and found to express NG2, versican, and semaphorins 3A and 3C. Astrocytes express growth promoting molecules, including N-Cadherin, laminin, fibronectin, and tenascin-C. We treated cultures in various ways to attempt to promote axon growth across the inhibitory boundaries. Blockade of NG2 with antibody and blockade of neuropilin 2 but not neuropilin 1 both promoted axon growth from astrocytes to meningeal cells. Blockade of permissive molecules on astrocytes with N-Cadherin blocking peptide or anti beta-1 integrin had no effect. Manipulation of axonal signalling pathways also increased axon growth from astrocytes to meningeal cells. Increasing cAMP levels and inactivation of rho were both effective when the cultures were fixed in paraformaldehyde, demonstrating that their effect is on axons and not via effects on the glial cells.

  2. A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity

    PubMed Central

    Ankri, Lea; Husson, Zoé; Pietrajtis, Katarzyna; Proville, Rémi; Léna, Clément; Yarom, Yosef; Dieudonné, Stéphane; Uusisaari, Marylka Yoe

    2015-01-01

    The cerebellum, a crucial center for motor coordination, is composed of a cortex and several nuclei. The main mode of interaction between these two parts is considered to be formed by the inhibitory control of the nuclei by cortical Purkinje neurons. We now amend this view by showing that inhibitory GABA-glycinergic neurons of the cerebellar nuclei (CN) project profusely into the cerebellar cortex, where they make synaptic contacts on a GABAergic subpopulation of cerebellar Golgi cells. These spontaneously firing Golgi cells are inhibited by optogenetic activation of the inhibitory nucleo-cortical fibers both in vitro and in vivo. Our data suggest that the CN may contribute to the functional recruitment of the cerebellar cortex by decreasing Golgi cell inhibition onto granule cells. DOI: http://dx.doi.org/10.7554/eLife.06262.001 PMID:25965178

  3. A study on the inhibitory effect of polysaccharides from Radix ranunculus ternati on human breast cancer MCF-7 cell lines.

    PubMed

    Sun, De-Li; Xie, Han-Bing; Xia, Yun-Zhan

    2013-01-01

    The objective of this paper was to study the in vitro anti-breast cancer activity of polysaccharides from Radix ranunculus ternati. Different concentrations of polysaccharide extracts were selected, and MTT assay and flow cytometry (FCM) were used to investigate their growth-inhibitory and apoptosis-inducing effects on human breast cancer MCF-7 cell lines. Radix ranunculus ternati polysaccharides had varying degrees of effects on the growth of human breast cancer MCF-7 cell lines, and the differences were significant compared with the blank control group. FCM showed that the polysaccharides can induce apoptosis. In addition, it can also enhance NK cell activity. Radix ranunculus ternati polysaccharides have a relatively good in-vitro anti-breast cancer activity.

  4. [Inhibitory effect of valproic acid on xenografted Kasumi-1 tumor growth in nude mouse and its mechanism].

    PubMed

    Liu, Peng; Tian, Xia; Shi, Gui-Rong; Jiang, Feng-Yun; Liu, Bao-Qin; Zhang, Zhi-Hua; Zhao, Lei; Yan, Li-Na; Liang, Zhi-Qiang; Hao, Chang-Lai

    2011-07-01

    To investigate in vivo inhibitory effect of histone deacetylase (HDAC) inhibitor valproic acid (VPA) on xenografted Kasumi-1 tumor in nude mice and its mechanism. Xenografted Kasumi-1 tumor mouse model was established by subcutaneous inoculation of Kasumi-1 cells. Xenotransplanted nude mice were assigned into control or VPA treatment groups. Volume of the xenografted tumors was measured and compared between the two groups. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) was applied to detection of tumor cell apoptosis. The gene expression of GM-CSF, HDAC1, Ac-H3 and survivin was studied with semi-quantitative RT-PCR and Western blotting. ChIP method was used to assay the effects of VPA on acetylation of histone H3 within GM-CSF promoter region. (1) VAP significantly inhibited xenografted Kasumi-1 tumor growth. The calculated inhibition rate was 57.25%. (2) Morphologic study showed that VPA induced differentiation and apoptosis of Kasumi-1 tumor cells. The apoptosis index of VAP treatment group [(3.661 +/- 0.768)%] was significantly higher than that of control group [(0.267 +/- 0.110)%]. (3) Comparing to those in control group, the level of nuclear HDAC1 protein was significantly decreased, the Ac-H3 protein expression level was increased, the mRNA and protein expression levels of GM-CSF and acetylation of histone H3 were remarkably increased, and the gene expression level of survivin significantly decreased in VPA treatment group. VAP significantly inhibits xenografted Kasumi-1 tumor growth and induces tumor cell differentiation and apoptosis. The mechanism may be decrease of survivin gene expression, inhibition of nuclear expression of HDAC, promotion of histone protein acetylation level and acetylation of histone H3 within GM-CSF promoter region, and increase of GM-CSF transcription.

  5. Leukemia inhibitory factor promotes tumor growth and metastasis in human osteosarcoma via activating STAT3.

    PubMed

    Liu, Bin; Lu, Yi; Li, Jinzhi; Liu, Yanping; Liu, Jian; Wang, Weiguo

    2015-10-01

    The leukemia inhibitory factor (LIF) has been demonstrated to be an oncogene and participated in multiple procedures during the initiation and progression of many human malignancies. However, the role of LIF in osteosarcoma is still largely unknown. Here, we performed a series of in vitro and in vivo experiments to investigate the expression and biological functions of LIF in osteosarcoma. Compared to that in the non-cancerous tissues, LIF was significantly overexpressed in a panel of 68 osteosarcoma samples (p < 0.0001). Moreover, the overexpression of LIF was significantly correlated with advanced tumor stage, larger tumor size, and shorter overall survival. In addition, knockdown of LIF notably suppressed the proliferation and invasion of osteosarcoma via blocking the STAT3 signal pathway; in contrast, treatment with the recombinant LIF protein significantly promoted the growth and invasion of osteosarcoma through enhancing the phosphorylation of STAT3, which can be partially neutralized by the STAT3 inhibitor, HO-3867. In conclusion, we demonstrated that LIF was frequently overexpressed in osteosarcoma, which could promote the growth and invasion through activating the STAT3 pathway. Our findings proposed that LIF might be a potent therapeutic target for osteosarcoma. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  6. Secondary metabolites from Glycine soja and their growth inhibitory effect against Spodoptera litura.

    PubMed

    Zhou, Yan-Ying; Luo, Shi-Hong; Yi, Ting-Shuang; Li, Chun-Huan; Luo, Qian; Hua, Juan; Liu, Yan; Li, Sheng-Hong

    2011-06-08

    The wild soybean (Glycine soja Sieb. et Zucc) has been reported to be relatively resistant to insect and pathogenic pests. However, the responsible secondary metabolites in the aerial part of this important plant are largely unknown. From the aerial part of G. soja, 13 compounds were isolated and identified, including seven isoflavonoids (1-7), a cyclitol (8), two sterol derivatives (9 and 10), and three triterpenoids (11-13). Compound 7 is a new isoflavonoid, and compounds 9 and 10 are reported as natural products for the first time. The growth inhibitory activity of 1, 3, 4, and 8 against the larvae of Spodoptera litura was investigated. The most abundant isoflavonoid in the aerial part of G. soja, daidzein (1), which could not be metabolized by S. litura, was found to inhibit the insect larvae growth significantly in 3 days after feeding diets containing the compound. Compounds 3, 4, and 8, which could be partially or completely metabolized, were inactive. Our results suggested that the isoflavonoid daidzein (1) might function as a constitutive defense component in G. soja against insect pests.

  7. Regio- and stereoselective synthesis of pregnane-fused isoxazolines by nitril-oxide/alkene 1,3-dipolar cycloaddition and an evaluation of their cell-growth inhibitory effect in vitro

    NASA Astrophysics Data System (ADS)

    Mótyán, Gergő; Baji, Ádám; Zupkó, István; Frank, Éva

    2016-04-01

    Efficient syntheses of some pregnane-fused isoxazolines from 16-dehydropregnenolone acetate with different arylnitrile oxides were carried out by 1,3-dipolar cycloadditions. The intermolecular ring-closures occurred in a highly regio- and stereoselective manner permitting the formation of a single 16α,17α-condensed diastereomer in which the O terminus of the nitrile oxide dipole is attached to C-17 of the sterane core. The conversions were found to be affected significantly by the electronic character of the substituents on the aromatic moiety of the 1,3-dipoles. Deacetylation of the primary products resulted in the corresponding 3β-OH analogs. All of the synthesized compounds were subjected to in vitro pharmacological studies for the determination of their antiproliferative effects on four breast cancer cell lines (MCF7, T47D, MDA-MB-231 and MDA-MB-361).

  8. Exploring the inhibitory effect of membrane tension on cell polarization

    PubMed Central

    Wang, Jing; Yang, Gen; Ouyang, Qi; Wang, Yugang; Zhang, Lei

    2017-01-01

    Cell polarization toward an attractant is influenced by both physical and chemical factors. Most existing mathematical models are based on reaction-diffusion systems and only focus on the chemical process occurring during cell polarization. However, membrane tension has been shown to act as a long-range inhibitor of cell polarization. Here, we present a cell polarization model incorporating the interplay between Rac GTPase, filamentous actin (F-actin), and cell membrane tension. We further test the predictions of this model by performing single cell measurements of the spontaneous polarization of cancer stem cells (CSCs) and non-stem cancer cells (NSCCs), as the former have lower cell membrane tension. Based on both our model and the experimental results, cell polarization is more sensitive to stimuli under low membrane tension, and high membrane tension improves the robustness and stability of cell polarization such that polarization persists under random perturbations. Furthermore, our simulations are the first to recapitulate the experimental results described by Houk et al., revealing that aspiration (elevation of tension) and release (reduction of tension) result in a decrease in and recovery of the activity of Rac-GTP, respectively, and that the relaxation of tension induces new polarity of the cell body when a cell with the pseudopod-neck-body morphology is severed. PMID:28135277

  9. [Inhibitory effect of thalidomide combined with interferon on the proliferation of Kasumi-1 cells].

    PubMed

    Xu, Hao; Mi, Ruihua; Fan, Ruihua; Yin, Qingsong; Wang, Xiaojiao; Wei, Xudong

    2015-09-01

    To explore the inhibitory effect of thalidomide combined with interferon (IFN) on the human acute myeloid leukemia cell line Kasumi- 1 and its mechanism. The inhibitiory effect of Kasumi- 1 cells by thalidomide, interferon or combination was detected by CCK- 8 method, the apoptosis by flow cytometry, the expression of apoptosis related proteins by Western blot, vascular endothelial growth factor (VEGF) concentration in culture supernatant by ELISA. Thalidomide inhibited the proliferation of Kasumi- 1 in a dose- dependent manner from 50 μg/ml to 500 μg/ml with an IC₅₀ of (451.13 ± 6.92)μg/ml at 24 h and (362.50 ± 14.52)μg/ml at 48 h. IFN also demonstrated the inhibitory capacity in a dose-dependent manner from 500 U/ml to 5 000 U/ml, with an IC₅₀ of (2 209 ± 127) U/ml at 24 h and (1 393±63) U/ml at 48 h. The apoptosis rates of Kasumi-1 cells treated with thalidomide 350 μg/ml or IFN 1 400 U/ml for 48 h were (14.68 ± 2.61) % and (21.71 ± 0.71)%, respectively, significantly higher than control group (P<0.01). In combination group the inhibition and the apoptosis rate were (88.50 ± 2.40) % and (41.95 ± 3.41)%, significantly higher than control and each single agent group (P<0.01). The VEGF concentrations of combination group [(94.61 ± 5.46) ng/L decreased significantly, as compared to thalidomide group [(141.11 ± 3.70) ng/L and IFN group [(119.90 ± 2.00) ng/L (P < 0.05). Western blot analysis showed Bcl-2 expression of Kasumi-1 cells decreased, while p-P38, Bax, cytochrome C, cleaved-Caspase-3, 8, 9 increased after treated with thalidomide 350 μg/ml or IFN 1 400 U/ml for 48 h. When treated with the combination agents, the expression of Bcl-2 further decreased and p-P38, Bax, cytochrome C, cleaved-Caspase-3, 8, 9 further increased as compared with each single agent (P < 0.05). Thalidomide and IFN could synergistically inhibit the proliferation of Kasumi-1 cells probably through inducing apoptosis via the mitochondrial pathway, death receptor

  10. [Inhibitory Effect of Serum Containing Fuzheng Jiedu Decoction on the Leukemia K562/A02 Multi-drug Resistance Cells and Its Mechanism].

    PubMed

    Cao, Yi-Xiong; Luo, Ze-Yu; Li, Jun-Jun; Wen, Feng; Huang, Li-Fang

    2016-08-01

    To study the inhibitory effect of serum containing Fuzheng Jiedu decoction on leukemia multi-drug-resistance K562/A02 cells and its possible mechanism. The MTT method was used to detect the inhibitory rate of K562/AO2 cells treated with serum containing Fuzheng Jiedu decoction; the flow cytometry was used to detect the inhibitory effect of serum containing medicin on growth of K562/AO2 cells and P-gp expression; the Q-PCR was used to assay the BCL-2 mRNA expression; the Western blot was used to detect the BCL-2 protein expression. MTT cytotoxic test showed serum containing Fuzheng Jiedu decoction could inhibit K562/A02 cell growth, and the inhibitory rate increased with the increase of drug concentration; the flow cytometry showed that the serum containing Fuzheng Jiedu decoction could promote K562/A02 cell apoptosis in a concentration-dependent manner. qPCR and Western blot showed that serum containing Fuzheng Jiedu decoction could down-regulate the protein expression of BCL-2. Fuzheng Jiedu decoction could reduce the protein expression of P-gp on the K562/A02 cell membrane. serum containing Fuzheng Jiedu decoction can promote K562/A02 cell apoptosis, its mechanism of inducing apoptosis may be related with the inhibition of BCL-2 and P-gp protein expression.

  11. Proliferative and Inhibitory Activity of Siberian ginseng (Eleutherococcus senticosus) Extract on Cancer Cell Lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b.

    PubMed

    Cichello, Simon Angelo; Yao, Qian; Dowell, Ashley; Leury, Brian; He, Xiao-Qiong

    2015-01-01

    Siberian ginseng (Eleutherococcus senticosus) is used primarily as an adaptogen herb and also for its immune stimulant properties in Western herbal medicine. Another closely related species used in East Asian medicine systems i.e. Kampo, TCM (Manchuria, Korea, Japan and Ainu of Hokkaido) and also called Siberian ginseng (Acanthopanax senticosus) also displays immune-stimulant and anti-cancer properties. These may affect tumour growth and also provide an anti-fatigue effect for cancer patients, in particular for those suffering from lung cancer. There is some evidence that a carbohydrate in Siberian ginseng may possess not only immune stimulatory but also anti-tumour effects and also display other various anti-cancer properties. Our study aimed to determine the inhibitory and also proliferative effects of a methanol plant extract of Siberan ginseng (E. senticosus) on various cancer and normal cell lines including: A-549 (small cell lung cancer), XWLC-05 (Yunnan lung cancer cell line), CNE (human nasopharyngeal carcinoma cell line), HCT-116 (human colon cancer) and Beas-2b (human lung epithelial). These cell lines were treated with an extract from E. senticosus that was evaporated and re- constituted in DMSO. Treatment of A-549 (small cell lung cancer) cells with E. senticosus methanolic extract showed a concentration-dependent inhibitory trend from 12.5 - 50μg/mL, and then a plateau, whereas at 12.5 and 25 μg/mL, there is a slight growth suppression in QBC-939 cells, but then a steady suppression from 50, 100 and 200μg/mL. Further, in XWLC-05 (Yunnan lung cancer cell line), E. senticosus methanolic extract displayed an inhibitory effect which plateaued with increasing dosage. Next, in CNE (human nasopharyngeal carcinoma cell line) there was a dose dependent proliferative response, whereas in Beas-2 (human lung epithelial cell line), an inhibitory effect. Finally in colon cancer cell line (HCT-116) we observed an initially weak inhibitory effect and then plateau.

  12. Zinc-induced molt: evidence for a direct inhibitory effect on granulosa cell steroidogenesis.

    PubMed

    Johnson, A L; Brake, J

    1992-01-01

    Results from previous studies indicate that the use of dietary zinc may provide an effective means to initiate an induced molt in laying hens. Although much evidence indicates that high concentrations of zinc (10,000 to 20,000 ppm) cause the cessation of lay primarily by depressing feed intake, recent data suggest that lower concentrations (2,800 ppm) in a calcium-deficient diet may act via a direct action on the ovary. Therefore, a series of in vitro studies was conducted to evaluate whether zinc can affect granulosa cell progesterone production. Incubation of granulosa cells from the largest preovulatory (F1) follicle with zinc as zinc sulfate (.1 to 10 microM) had no effect on basal progesterone production. By contrast, ovine luteinizing hormone-stimulated progesterone production was inhibited (P less than .05) in a dose-related fashion by zinc in both the sulfate and acetate forms (1 to 10 microM). Furthermore, zinc attenuated oLH- and forskolin-induced cyclic adenosine monophosphate (cAMP) formation, and inhibited 8-bromo-cAMP- and calcium ionophore (A23187)-induced progesterone production. Such results indicate both pre- and post-cAMP sites of action for zinc's inhibitory actions on progesterone production in F1 granulosa cells. Finally, ovine follicle-stimulating hormone-stimulated cAMP accumulation and progesterone production in granulosa cells collected from 9- to 12-mm follicles (a stage of development representing the early, rapid growth phase) were suppressed (P less than .05) by co-incubation of cells with zinc.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. A balance between B cell receptor and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels.

    PubMed

    Luo, Wei; Mayeux, Jessica; Gutierrez, Toni; Russell, Lisa; Getahun, Andrew; Müller, Jennifer; Tedder, Thomas; Parnes, Jane; Rickert, Robert; Nitschke, Lars; Cambier, John; Satterthwaite, Anne B; Garrett-Sinha, Lee Ann

    2014-07-15

    Signaling through the BCR can drive B cell activation and contribute to B cell differentiation into Ab-secreting plasma cells. The positive BCR signal is counterbalanced by a number of membrane-localized inhibitory receptors that limit B cell activation and plasma cell differentiation. Deficiencies in these negative signaling pathways may cause autoantibody generation and autoimmune disease in both animal models and human patients. We have previously shown that the transcription factor Ets1 can restrain B cell differentiation into plasma cells. In this study, we tested the roles of the BCR and inhibitory receptors in controlling the expression of Ets1 in mouse B cells. We found that Ets1 is downregulated in B cells by BCR or TLR signaling through a pathway dependent on PI3K, Btk, IKK2, and JNK. Deficiencies in inhibitory pathways, such as a loss of the tyrosine kinase Lyn, the phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP1) or membrane receptors CD22 and/or Siglec-G, result in enhanced BCR signaling and decreased Ets1 expression. Restoring Ets1 expression in Lyn- or SHP1-deficient B cells inhibits their enhanced plasma cell differentiation. Our findings indicate that downregulation of Ets1 occurs in response to B cell activation via either BCR or TLR signaling, thereby allowing B cell differentiation and that the maintenance of Ets1 expression is an important function of the inhibitory Lyn → CD22/SiglecG → SHP1 pathway in B cells.

  14. Inhibitory Effect of the Noncamptothecin Topoisomerase I Inhibitor LMP-400 on Female Mice Models and Human Pheochromocytoma Cells

    PubMed Central

    Schovanek, Jan; Bullova, Petra; Tayem, Yasin; Giubellino, Alessio; Wesley, Robert; Lendvai, Nikoletta; Nölting, Svenja; Kopacek, Juraj; Frysak, Zdenek; Pommier, Yves; Kummar, Shivaani

    2015-01-01

    Metastatic pheochromocytoma continues to be an incurable disease, and treatment with conventional cytotoxic chemotherapy offers limited efficacy. In the present study, we evaluated a novel topoisomerase I inhibitor, LMP-400, as a potential treatment for this devastating disease. We found a high expression of topoisomerase I in human metastatic pheochromocytoma, providing a basis for the evaluation of a topoisomerase 1 inhibitor as a therapeutic strategy. LMP-400 inhibited the cell growth of established mouse pheochromocytoma cell lines and primary human tumor tissue cultures. In a study performed in athymic female mice, LMP-400 demonstrated a significant inhibitory effect on tumor growth with two drug administration regimens. Furthermore, low doses of LMP-400 decreased the protein levels of hypoxia-inducible factor 1 (HIF-1α), one of a family of factors studied as potential metastatic drivers in these tumors. The HIF-1α decrease resulted in changes in the mRNA levels of HIF-1 transcriptional targets. In vitro, LMP-400 showed an increase in the growth-inhibitory effects in combination with other chemotherapeutic drugs that are currently used for the treatment of pheochromocytoma. We conclude that LMP-400 has promising antitumor activity in preclinical models of metastatic pheochromocytoma and its use should be considered in future clinical trials. PMID:26267380

  15. Inhibitory Effect of the Noncamptothecin Topoisomerase I Inhibitor LMP-400 on Female Mice Models and Human Pheochromocytoma Cells.

    PubMed

    Schovanek, Jan; Bullova, Petra; Tayem, Yasin; Giubellino, Alessio; Wesley, Robert; Lendvai, Nikoletta; Nölting, Svenja; Kopacek, Juraj; Frysak, Zdenek; Pommier, Yves; Kummar, Shivaani; Pacak, Karel

    2015-11-01

    Metastatic pheochromocytoma continues to be an incurable disease, and treatment with conventional cytotoxic chemotherapy offers limited efficacy. In the present study, we evaluated a novel topoisomerase I inhibitor, LMP-400, as a potential treatment for this devastating disease. We found a high expression of topoisomerase I in human metastatic pheochromocytoma, providing a basis for the evaluation of a topoisomerase 1 inhibitor as a therapeutic strategy. LMP-400 inhibited the cell growth of established mouse pheochromocytoma cell lines and primary human tumor tissue cultures. In a study performed in athymic female mice, LMP-400 demonstrated a significant inhibitory effect on tumor growth with two drug administration regimens. Furthermore, low doses of LMP-400 decreased the protein levels of hypoxia-inducible factor 1 (HIF-1α), one of a family of factors studied as potential metastatic drivers in these tumors. The HIF-1α decrease resulted in changes in the mRNA levels of HIF-1 transcriptional targets. In vitro, LMP-400 showed an increase in the growth-inhibitory effects in combination with other chemotherapeutic drugs that are currently used for the treatment of pheochromocytoma. We conclude that LMP-400 has promising antitumor activity in preclinical models of metastatic pheochromocytoma and its use should be considered in future clinical trials.

  16. Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway.

    PubMed

    Wang, Chen; Zhou, Xing; Li, Wentao; Li, Mingyue; Tu, Tingyue; Ba, Ximing; Wu, Yinyu; Huang, Zhen; Fan, Gentao; Zhou, Guangxin; Wu, Sujia; Zhao, Jianning; Zhang, Junfeng; Chen, Jiangning

    2017-09-10

    Emerging evidence suggests that the tumour microenvironment plays a critical role in osteosarcoma (OS) development. Thus, cytokine immunotherapy could be a novel strategy for OS treatment. In this study, we explored the role of macrophage migration inhibitory factor (MIF), an important cytokine in OS progression, and investigated the anti-tumour effects of targeting MIF in OS. The results showed that MIF significantly increased in the tissue and serum samples of OS patients and was associated with tumour size, pulmonary metastasis and the survival rate of OS patients. We verified a positive correlation between MIF and p-ERK1/2 in OS patients. The in vitro results indicated that MIF could activate the RAS/MAPK pathway in a time- and dose-dependent manner, thereby promoting cell proliferation and migration. Furthermore, shRNA targeting MIF significantly inhibited tumour growth and lung metastasis in a mouse xenograft model and orthotopic model of OS. Additionally, inhibition of MIF significantly enhanced the sensitivity of OS cells to cisplatin and doxorubicin. Our findings suggest that immunotherapy targeting MIF to block the RAS/MAPK kinase cascade may represent a feasible and promising approach for OS treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Growth Inhibitory Effects of Adhatoda vasica and Its Potential at Reducing Listeria monocytogenes in Chicken Meat

    PubMed Central

    Shukla, Shruti; Ahirwal, Laxmi; Bajpai, Vivek K.; Huh, Yun Suk; Han, Young-Kyu

    2017-01-01

    The inhibitory effects of Adhatoda vasica ethanolic leaf extract (AVELE) against Listeria monocytogenes were examined to assess its potential to preserve minimally processed meat products safely. The total phenolic, flavonoid, and alkaloid levels in AVELE were 10.09 ± 4.52 mg of gallic acid equivalents (GAE)/g, 22.43 ± 1.62 mg of quercetin equivalents/g, and 19.43 ± 3.90 mg/g, respectively. AVELE (1, 5, 10, or 20%) had considerable antibacterial effects against L. monocytogenes NCIM 24563 in terms of the inhibitory zones (7.4–13.6 mm), MIC (100 mg/mL or 10% formulated solution), reduced cell viability, potassium ion efflux, and the release of 260-nm absorbing materials and extracellular ATP. AVELE was used as a rinse solution (5, 10, and 20%) for raw chicken breast meat. A 20% rinsing solution applied for 60 min inhibited the L. monocytogenes NCIM 24563 counts significantly on raw chicken breast meat. Moreover, L. monocytogenes NCIM 24563 did not grow in the meat sample when the rinse time was increased to 90 min at the same concentration. L. monocytogenes showed a greater reduction to ~3 CFU/g after rinsing with a 10 and 20% AVELE solution for 30 min than with a 5% AVELE solution. The rinsing processes with AVELE produced the final cooked chicken products with higher sensory attribute scores, such as taste, juiciness, and tenderness, compared to the control group along with a decrease in microbial contamination. Chicken meat rinsed with AVELE (rinsing time of 90 min) showed better sensory attribute scores of juiciness and tenderness, as well as the overall sensory quality compared to the untreated group. This research highlights the effectiveness of AVELE against L. monocytogenes NCIM 24563, suggesting that AVELE can be used as an effective antimicrobial marinade and/or a rinse for meat preservation. PMID:28769879

  18. Inhibition of breast cancer cell motility with a non-cyclooxygenase inhibitory derivative of sulindac by suppressing TGFβ/miR-21 signaling

    PubMed Central

    Ma, Ruixia; Feng, Xiangling; Li, Wei; Piazza, Gary A.; Xi, Yaguang

    2016-01-01

    Compelling efficacy on intervention of tumorigenesis by nonsteroidal anti-inflammatory drugs (NSAIDs) has been documented intensively. However, the toxicities related to cyclooxygenase (COX) inhibition resulting in suppression of physiologically important prostaglandins limit their clinical use for human cancer chemoprevention. A novel derivative of the NSAID sulindac sulfide (SS), referred as sulindac sulfide amide (SSA), was recently developed, which lacks COX inhibitory activity, yet shows greater suppressive effect than SS on growth of various cancer cells. In this study, we focus on the inhibitory activity of SSA on breast tumor cell motility, which has not been studied previously. Our results show that SSA treatment at non-cytotoxic concentrations can specifically reduce breast tumor cell motility without influencing tumor cell growth, and the mechanism of action involves the suppression of TGFβ signaling by directly blocking Smad2/3 phosphorylation. Moreover, miR-21, a well-documented oncogenic miRNA for promoting tumor cell metastasis, was also found to be involved in inhibitory activity of SSA in breast tumor cell motility through the modulation of TGFβ pathway. In conclusion, we demonstrate that a non-COX inhibitory derivative of sulindac can inhibit breast tumor metastasis by a mechanism involving the TGFβ/miR-21 signaling axis. PMID:26769851

  19. Inhibition of breast cancer cell motility with a non-cyclooxygenase inhibitory derivative of sulindac by suppressing TGFβ/miR-21 signaling.

    PubMed

    Yi, Bin; Chang, Hong; Ma, Ruixia; Feng, Xiangling; Li, Wei; Piazza, Gary A; Xi, Yaguang

    2016-02-16

    Compelling efficacy on intervention of tumorigenesis by nonsteroidal anti-inflammatory drugs (NSAIDs) has been documented intensively. However, the toxicities related to cyclooxygenase (COX) inhibition resulting in suppression of physiologically important prostaglandins limit their clinical use for human cancer chemoprevention. A novel derivative of the NSAID sulindac sulfide (SS), referred as sulindac sulfide amide (SSA), was recently developed, which lacks COX inhibitory activity, yet shows greater suppressive effect than SS on growth of various cancer cells. In this study, we focus on the inhibitory activity of SSA on breast tumor cell motility, which has not been studied previously. Our results show that SSA treatment at non-cytotoxic concentrations can specifically reduce breast tumor cell motility without influencing tumor cell growth, and the mechanism of action involves the suppression of TGFβ signaling by directly blocking Smad2/3 phosphorylation. Moreover, miR-21, a well-documented oncogenic miRNA for promoting tumor cell metastasis, was also found to be involved in inhibitory activity of SSA in breast tumor cell motility through the modulation of TGFβ pathway. In conclusion, we demonstrate that a non-COX inhibitory derivative of sulindac can inhibit breast tumor metastasis by a mechanism involving the TGFβ/miR-21 signaling axis.

  20. Inhibitory effects of 3-bromopyruvate in human nasopharyngeal carcinoma cells.

    PubMed

    Zou, Xue; Zhang, Mengxiao; Sun, Yiming; Zhao, Surong; Wei, Yingmei; Zhang, Xudong; Jiang, Chenchen; Liu, Hao

    2015-10-01

    Tumor cells depend on aerobic glycolysis for adenosine triphosphate (ATP) production, which is therefore targeted by therapeutic agents. The compound 3-bromopyruvate (3-BrPA), a strong alkylating agent and hexokinase inhibitor, inhibits tumor cell glycolysis and the production of ATP, causing apoptosis. 3-BrPA induces apoptosis of nasopharyngeal carcinoma (NPC) cell lines HNE1 and CNE-2Z, which may be related to its molecular mechanisms. In the present study, we investigated the effects of 3-BrPA on the viability, reactive oxygen species (ROS), apoptosis and other types of programmed cell death in NPC cells in vitro and in vivo. PI staining showed significant apoptosis in NPC cells accompanied by the overproduction of ROS and downregulation of mitochondrial membrane potential (MMP, ΔΨm) by 3-BrPA. However, the ROS scavenger N-acetyl-L-cysteine (NAC) significantly reduced 3-BrPA-induced apoptosis by decreasing ROS and facilitating the recovery of MMP. We elucidated the molecular mechanisms underlying 3-BrPA activity and found that it caused mitochondrial dysfunction and ROS production, leading to necroptosis of NPC cells. We investigated the effects of the caspase inhibitor z-VAD-fmk, which inhibits apoptosis but promotes death domain receptor (DR)-induced NPC cell necrosis. Necrostatin-1 (Nec-1) inhibits necroptosis, apparently via a DR signaling pathway and thus abrogates the effects of z-VAD‑fmk. In addition, we demonstrated the effective attenuation of 3-BrPA-induced necrotic cell death by Nec-1. Finally, animal studies proved that 3-BrPA exhibited significant antitumor activity in nude mice. The present study is the first demonstration of 3-BrPA-induced non-apoptotic necroptosis and ROS generation in NPC cells and provides potential strategies for developing agents against apoptosis‑resistant cancers.

  1. Inhibitory effects of Arhgap6 on cervical carcinoma cells.

    PubMed

    Li, Junping; Liu, Yang; Yin, Yihua

    2016-02-01

    Ras homology GTPase activation protein 6 (Arhgap6), as a member of the rhoGAP family of proteins, performs vital functions on the regulation of actin polymerization at the plasma membrane during several cellular processes. The role of Arhgap6 in the progression and development of cancer remains nearly unknown. This study aimed at exploring the effects of Arhgap6 on cervical carcinoma. Human cervical cancer cells HeLa and SiHa were transduced with a lentivirus targeting Arhgap6 (Arhgap6+), while CaSki and C4-1 cells were transfected with miRNA. Cell proliferation was identified by Cell Counting Kit-8 (CCK-8). Cell cycle distribution and cell apoptosis were identified by flow cytometry. The capacity of cell migration, invasion, and adhesion were detected by Transwell assay. Further, quantitative real-time PCR (qRT-PCR) and western blot were used to analyze the expression levels of Arhgap6 and several tumor-related genes. Co-immunoprecipitation assay was performed to validate the interaction between Arhgap6 and Rac3 (Ras-related C3 botulinum toxin substrate 3). Results showed that Arhgap6 inhibited cell proliferation, migration, invasion, and adhesion of cervical carcinoma, induced cell apoptosis, and caused cell cycle arrest in the G0/G1 phase (n = 3, p < 0.05). Expression of the tumor suppressor genes and oncogenes were up- and down-regulated respectively by Arhgap6, and Rac3 was proved to be the target of Arhgap6. Besides, in in vivo assays, tumor size and weight were destructed in Arhgap6+ athymic nude mouse. This study indicated that Arhgap6 may play a role in the treatment of cervical cancer as a tumor supressor.

  2. PID1 (NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas.

    PubMed

    Erdreich-Epstein, Anat; Robison, Nathan; Ren, Xiuhai; Zhou, Hong; Xu, Jingying; Davidson, Tom B; Schur, Mathew; Gilles, Floyd H; Ji, Lingyun; Malvar, Jemily; Shackleford, Gregory M; Margol, Ashley S; Krieger, Mark D; Judkins, Alexander R; Jones, David T W; Pfister, Stefan M; Kool, Marcel; Sposto, Richard; Asgharzadeh, Shahab; Asgharazadeh, Shahab

    2014-02-15

    We present here the first report of PID1 (Phosphotyrosine Interaction Domain containing 1; NYGGF4) in cancer. PID1 was identified in 2006 as a gene that modulates insulin signaling and mitochondrial function in adipocytes and muscle cells. Using four independent medulloblastoma datasets, we show that mean PID1 mRNA levels were lower in unfavorable medulloblastomas (groups 3 and 4, and anaplastic histology) compared with favorable medulloblastomas (SHH and WNT groups, and desmoplastic/nodular histology) and with fetal cerebellum. In two large independent glioma datasets, PID1 mRNA was lower in glioblastomas (GBM), the most malignant gliomas, compared with other astrocytomas, oligodendrogliomas and nontumor brains. Neural and proneural GBM subtypes had higher PID1 mRNA compared with classical and mesenchymal GBM. Importantly, overall survival and radiation-free progression-free survival were longer in medulloblastoma patients whose tumors had higher PID1 mRNA (univariate and multivariate analyses). Higher PID1 mRNA also correlated with longer overall survival in patients with glioma and GBM. In cell culture, overexpression of PID1 inhibited colony formation in medulloblastoma, atypical teratoid rhabdoid tumor (ATRT), and GBM cell lines. Increasing PID1 also increased cell death and apoptosis, inhibited proliferation, induced mitochondrial depolaization, and decreased serum-mediated phosphorylation of AKT and ERK in medulloblastoma, ATRT, and/or GBM cell lines, whereas siRNA to PID1 diminished mitochondrial depolarization. These data are the first to link PID1 to cancer and suggest that PID1 may have a tumor inhibitory function in these pediatric and adult brain tumors. ©2013 AACR

  3. PID1 (NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas

    PubMed Central

    Erdreich-Epstein, Anat; Robison, Nathan; Ren, Xiuhai; Zhou, Hong; Xu, Jingying; Davidson, Tom B.; Schur, Mathew; Gilles, Floyd H.; Ji, Lingyun; Malvar, Jemily; Shackleford, Gregory M.; Margol, Ashley S.; Krieger, Mark D.; Judkins, Alexander R.; Jones, David T.W.; Pfister, Stefan; Kool, Marcel; Sposto, Richard; Asgharazadeh, Shahab

    2014-01-01

    Purpose We present here the first report of PID1 (Phosphotyrosine Interaction Domain containing 1; NYGGF4) in cancer. PID1 was identified in 2006 as a gene that modulates insulin signaling and mitochondrial function in adipocytes and muscle cells. Experimental Design and Results Using four independent medulloblastoma datasets, we show that mean PID1 mRNA levels were lower in unfavorable medulloblastomas (Groups 3 and 4, and anaplastic histology) compared with favorable medulloblastomas (SHH and WNT groups, and desmoplastic/nodular histology) and with fetal cerebellum. In two large independent glioma datasets PID1 mRNA was lower in glioblastomas (GBMs), the most malignant gliomas, compared to other astrocytomas, oligodendrogliomas and non-tumor brains. Neural and proneural GBM subtypes had higher PID1 mRNA compared to classical and mesenchymal GBM. Importantly, overall survival and radiation-free progression-free survival were longer in medulloblastoma patients with higher PID1 mRNA (univariate and multivariate analyses). Higher PID1 mRNA also correlated with longer overall survival in glioma and GBM patients. In cell culture, overexpression of PID1 inhibited colony formation in medulloblastoma, atypical teratoid rhabdoid tumor (ATRT) and GBM cell lines. Increasing PID1 also increased cell death and apoptosis, inhibited proliferation, induced mitochondrial depolarization, and decreased serum-mediated phosphorylation of AKT and ERK in medulloblastoma, ATRT and/or GBM cell lines, whereas siRNA to PID1 diminished mitochondrial depolarization. Conclusions These data are the first to link PID1 to cancer and suggest that PID1 may have a tumor inhibitory function in these pediatric and adult brain tumors. PMID:24300787

  4. Inhibitory Effects of Verrucarin A on Tunicamycin-Induced ER Stress in FaO Rat Liver Cells.

    PubMed

    Bae, Eun Young; Lee, Seung Woong; Seong, Sin; Cho, Wonjun; Ahn, Jong Seog; Cho, Hyun-Sug

    2015-05-19

    Endoplasmic reticulum (ER) stress is linked with development and maintenance of cancer, and serves as a therapeutic target for treatment of cancer. Verrucarin A, isolated from the broth of Fusarium sp. F060190, showed potential inhibitory activity on tunicamycin-induced ER stress in FaO rat liver cells. In addition, the compound decreased tunicamycin-induced GRP78 promoter activity in a dose dependent manner without inducing significant inhibition of luciferase activity and cell growth for 6 and 12 h. Moreover, the compound decreased the expression of GRP78, CHOP, XBP-1, and suppressed XBP-1, and reduced phosphorylation of IRE1α in FaO rat liver cells. This evidence suggests for the first time that verrucarin A inhibited tunicamycin-induced ER stress in FaO rat liver cells.

  5. Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit.

    PubMed

    Mishyna, Maryia; Laman, Nikolai; Prokhorov, Valery; Maninang, John Solomon; Fujii, Yoshiharu

    2015-05-01

    Heracleum sosnowskyi Manden of the Apiaceae family is a malignant invasive plant in Eastern Europe, Belarus and Russia. The species is known for its prolific seed production, which has been linked to the plant's invasive success. The fruit also has a strong aroma, but the contribution of the fruit's volatile constituent to out-compete neighboring plants has not been fully established. In this study, fruit volatiles of H. sosnowskyi and conspecifics (i.e. H. asperum, H. lescovii, H. dissectum, H. hirtum) were identified by headspace gas chromatography-mass spectrometry (HS-GC-MS). Octyl acetate, octanol, octanal, hexyl isobutyrate, and hexyl-2-methyl butyrate were found to be the principal volatiles. Using authentic standards, the growth-inhibitory property of the individual compounds was assayed by the novel Cotton swab method. Assay results with lettuce (Lactuca sativa) showed that octanal strongly inhibited seed germination and radicle elongation of seedlings. The results suggest that octanal may be the main contributor to the allelopathic activity of H. sosnowksyi fruits. Furthermore, the mixture of fruit volatiles from the invasive H. sosnowskyi more strongly delayed lettuce seedling elongation than the volatiles from fruits of the non-invasive H. asperum, H. lescovii, H. dissectum and H. hirtum. Thus, the present study is the first to demonstrate the possible involvement of fruit volatiles of Heracleum species in plant-plant interaction.

  6. Inhibitory Effect of Tanshinone IIA on Rat Hepatic Stellate Cells

    PubMed Central

    Liu, Ya-Wei; Huang, Yi-Tsau

    2014-01-01

    Background Anti-inflammation via inhibition of NF-κB pathways in hepatic stellate cells (HSCs) is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C19H18O3, Tan IIA) is a lipophilic diterpene isolated from Salvia miltiorrhiza Bunge, with reported anti-inflammatory activity. We tested whether Tan IIA could inhibit HSC activation. Materials and Methods The cell line of rat hepatic stellate cells (HSC-T6) was stimulated with lipopolysaccharide (LPS) (100 ng/ml). Cytotoxicity was assessed by MTT assay. HSC-T6 cells were pretreated with Tan IIA (1, 3 and 10 µM), then induced by LPS (100 ng/ml). NF-κB activity was evaluated by the luciferase reporter gene assay. Western blotting analysis was performed to measure NF-κB-p65, and phosphorylations of MAPKs (ERK, JNK, p38). Cell chemotaxis was assessed by both wound-healing assay and trans-well invasion assay. Quantitative real-time PCR was used to detect gene expression in HSC-T6 cells. Results All concentrations of drugs showed no cytotoxicity against HSC-T6 cells. LPS stimulated NF-κB luciferase activities, nuclear translocation of NF-κB-p65, and phosphorylations of ERK, JNK and p38, all of which were suppressed by Tan IIA. In addition, Tan IIA significantly inhibited LPS-induced HSCs chemotaxis, in both wound-healing and trans-well invasion assays. Moreover, Tan IIA attenuated LPS-induced mRNA expressions of CCL2, CCL3, CCL5, IL-1β, TNF-α, IL-6, ICAM-1, iNOS, and α-SMA in HSC-T6 cells. Conclusion Our results demonstrated that Tan IIA decreased LPS-induced HSC activation. PMID:25076488

  7. The inhibitory effects of mycobacterial lipoarabinomannan and polysaccharides upon polyclonal and monoclonal human T cell proliferation.

    PubMed Central

    Moreno, C; Mehlert, A; Lamb, J

    1988-01-01

    Lipoarabinomannan from Mycobacterium tuberculosis was able to inhibit antigen induced T cell proliferation of human CD4+ T cell clones specific for influenza virus. The inhibitory effect was also present when peripheral human T cells were stimulated with crude mycobacterial antigen extracts. Non-specific T cell stimulation, i.e. IL-2, PHA and anti-CD3 antibodies coupled to beads, was not affected. The inhibitory property was also found when arabinomannan and arabinogalactan of mycobacterial origin were tested but not with other unrelated polysaccharides used as controls. The effect appears to be related to the processing of the antigen by the antigen-presenting cells, since it was evident when T cell clones were stimulated with whole virus, whereas stimulation with a synthetic peptide containing the relevant epitope was not inhibitable. PMID:3147152

  8. Cytotoxic and growth inhibitory effects of the methanol extract Struchium sparganophora Ktze (Asteraceae) leaves

    PubMed Central

    Ayinde, B. A.; Agbakwuru, U.

    2010-01-01

    Background: Global research into medicinal plants used in treating tumor-related ailments has become imperative due to the emergence of various forms of cancer diseases. Usually consumed as a vegetable, Struchium sparganophora is indicated in traditional herbal medicine as one of the plants used in treating tumor-related ailments. Materials and Methods: This claim was examined using bench-top assay methods involving the cytotoxicity of the methanol extract of the leaves to tadpoles of Raniceps ranninus at 10, 20, 40 and 80 μg/ml. Also, the growth inhibitory effects of the extract on guinea corn radicle at 0.5, 1.0, 2 and 4 mg/ml in addition to evaluation of the phytochemical constituents of the leaves was performed. After 24 h, the crude extract and the chloroform fraction produced the highest cytotoxicity of 96.67 ± 4.71%, each at a concentration of 80 μg/ml, while the aqueous fraction produced 100% cytotoxicity at a concentration of 20 μg/ml. Results: The crude extract had an LC50 of 26 μg/ml, the chloroform fraction had 6.25 while the aqueous fraction had 5 μg/ml. On the inhibition of the guinea corn radicle growth, after 96 h, the controls had an average length of 67.81 ± 2.6 mm, whereas the seeds treated with 4 mg/ml of the crude extract had an average length of 35.83 ±1.75 mm, indicating 47.81% reduction in length. At the same concentration, the chloroform and the aqueous fractions showed 32.51 and 43.81% inhibitions. The plant material was observed to contain alkaloids, tannins, saponins and flavonoids, with no traces of anthracene derivatives. Conclusion: The results suggest the probable use of the plant in preparing recipes for tumor-related ailments. PMID:21120031

  9. Inhibitory 2B4 contributes to NK cell education and immunological derangements in XLP1 patients.

    PubMed

    Meazza, Raffaella; Falco, Michela; Marcenaro, Stefania; Loiacono, Fabrizio; Canevali, Paolo; Bellora, Francesca; Tuberosa, Claudia; Locatelli, Franco; Micalizzi, Concetta; Moretta, Alessandro; Mingari, Maria C; Moretta, Lorenzo; Aricò, Maurizio; Bottino, Cristina; Pende, Daniela

    2017-06-01

    X-linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)-associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV-infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig-like receptor (KIR)/KIR-L genotype and phenotypic repertoire of self-HLA class I specific inhibitory NK receptors (self-iNKRs). We also analyzed NK-cell cytotoxicity against CD48(+) or CD48(-) KIR-ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self-iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48(+) EBV-transformed B cells and M1 macrophages. Importantly, self-iNKR defective NK cells kill CD48(-) targets, such as mature DCs. Self-iNKR(-) NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK-cell maturation. Killing of autologous mature DC by self-iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients' immune defect. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Inhibitory effect of cepharanthine on dendritic cell activation and function.

    PubMed

    Uto, Tomofumi; Nishi, Yosuke; Toyama, Masaaki; Yoshinaga, Keisuke; Baba, Masanori

    2011-11-01

    Dendritic cells (DCs) are specialized antigen presenting cells that connect innate and adaptive immunity. DCs are considered as a major target for controlling excessive immune responses. In this study, the effect of cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, on murine DCs was examined in vitro. CEP inhibited antigen uptake by DCs at a concentration between 1 and 5 μg/ml. Although CEP did not inhibit the expression of costimulatory molecules and major histocompatibility complex (MHC) class I in DCs, the compound inhibited lipopolysaccharide (LPS)-induced DC maturation determined by the expression of costimulatory molecules and MHC class I. In addition, CEP could reduce the production of interleukin-6 and tumor necrosis factor-α in LPS-stimulated DCs. DCs treated with CEP were found to be a poor stimulator of allogeneic T cell proliferation and interferon-γ production from the cells. These results suggest that CEP may have great potential as an immunoregulatory agent against various autoimmune diseases and allergy.

  11. Inhibitory role of ERβ on anterior pituitary cell proliferation by controlling the expression of proteins related to cell cycle progression.

    PubMed

    Pérez, Pablo A; Petiti, Juan P; Wagner, Ignacio A; Sabatino, Maria E; Sasso, Corina V; De Paul, Ana L; Torres, Alicia I; Gutiérrez, Silvina

    2015-11-05

    Considering that the role of ERβ in the growth of pituitary cells is not well known, the aim of this work was to determine the expression of ERβ in normal and tumoral cells and to investigate its implications in the proliferative control of this endocrine gland, by analyzing the participation of cyclin D1, Cdk4 and p21. Our results showed that the expression of ERβ decreased during pituitary tumoral development induced by chronic E2 stimulation. The 20 ± 1.6% of normal adenohypophyseal cells expressed ERβ, with this protein being reduced in the hyperplastic/adenomatous pituitary: at 20 days the ERβ+ population was 10.7 ± 2.2%, while after 40 and 60 days of treatment an almost complete loss in the ERβ expression was observed (40 d: 1 ± 0.6%; 60 d: 2 ± 0.6%). The ERα/β ratio increased starting from tumors at 40 days, mainly due to the loss of ERβ expression. The cell proliferation was analyzed in normal and hyperplastic pituitary and also in GH3β- and GH3β+ which contained different levels of ERβ expression, and therefore different ERα/β ratios. The over-expression of ERβ inhibited the GH3 cell proliferation and expression of cyclin D1 and ERα. Also, the ERβ activation by its agonist DPN changed the subcellular localization of p21, inducing an increase in the p21 nuclear expression, where it acts as a tumoral suppressor. These results show that ERβ exerts an inhibitory role on pituitary cell proliferation, and that this effect may be partially due to the modulation of some key regulators of the cell cycle, such as cyclin D1 and p21. These data contribute significantly to the understanding of the ER effects in the proliferative control of pituitary gland, specifically related to the ERβ function in the E2 actions on this endocrine gland.

  12. Natural Killer Cell Immunomodulation: Targeting Activating, Inhibitory, and Co-stimulatory Receptor Signaling for Cancer Immunotherapy

    PubMed Central

    Chester, Cariad; Fritsch, Katherine; Kohrt, Holbrook E.

    2015-01-01

    There is compelling clinical and experimental evidence to suggest that natural killer (NK) cells play a critical role in the recognition and eradication of tumors. Efforts at using NK cells as antitumor agents began over two decades ago, but recent advances in elucidating NK cell biology have accelerated the development of NK cell-targeting therapeutics. NK cell activation and the triggering of effector functions is governed by a complex set of activating and inhibitory receptors. In the early phases of cancer immune surveillance, NK cells directly identify and lyse cancer cells. Nascent transformed cells elicit NK cell activation and are eliminated. However, as tumors progress, cancerous cells develop immunosuppressive mechanisms that circumvent NK cell-mediated killing, allowing for tumor escape and proliferation. Therapeutic intervention aims to reverse tumor-induced NK cell suppression and sustain NK cells’ tumorlytic capacities. Here, we review tumor–NK cell interactions, discuss the mechanisms by which NK cells generate an antitumor immune response, and discuss NK cell-based therapeutic strategies targeting activating, inhibitory, and co-stimulatory receptors. PMID:26697006

  13. Inhibitory effects of whisky congeners on melanogenesis in mouse B16 melanoma cells.

    PubMed

    Ohguchi, Kenji; Koike, Minako; Suwa, Yoshihide; Koshimizu, Seiichi; Mizutani, Yuki; Nozawa, Yoshinori; Akao, Yukihiro

    2008-04-01

    We examined the effect of whisky congeners, substances other than ethanol in whisky, on melanogenesis in mouse B16 melanoma cells. Treatment with whisky congeners significantly blocked melanogenesis. Our results indicate that the inhibitory effects of whisky congeners on melanogenesis is due to direct inhibition of tyrosinase activity and to suppression of tyrosinase protein levels.

  14. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis.

    PubMed

    Franden, Mary Ann; Pienkos, Philip T; Zhang, Min

    2009-12-01

    Overcoming the effects of hydrolysate toxicity towards ethanologens is a key technical barrier in the biochemical conversion process for biomass feedstocks to ethanol. Despite its importance, the complexity of the hydrolysate toxicity phenomena and the lack of systematic studies, analysis and tools surrounding this issue have blocked a full understanding of relationships involving toxic compounds in hydrolysates and their effects on ethanologen growth and fermentation. In this study, we developed a quantitative, high-throughput biological growth assay using an automated turbidometer to obtain detailed inhibitory kinetics for individual compounds present in lignocellulosic biomass hydrolysate. Information about prolonged lag time and final cell densities can also be obtained. The effects of furfural, hydroxymethylfurfural (HMF), acetate and ethanol on growth rate and final cell densities of Zymomonas mobilis 8b on glucose are presented. This method was also shown to be of value in toxicity studies of hydrolysate itself, despite the highly colored nature of this material. Using this approach, we can generate comprehensive inhibitory profiles with many individual compounds and develop models that predict and examine toxic effects in the complex mixture of hydrolysates, leading to the development of improved pretreatment and conditioning processes as well as fermentation organisms.

  15. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth

    PubMed Central

    Haque, Farazul; Alfatah, Md.; Ganesan, K.; Bhattacharyya, Mani Shankar

    2016-01-01

    Candida albicans causes superficial and life-threatening systemic infections. These are difficult to treat often due to drug resistance, particularly because C. albicans biofilms are inherently resistant to most antifungals. Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial and anticancer properties. In this study, we investigated the effect of SL on C. albicans biofilm formation and preformed biofilms. SL was found to inhibit C. albicans biofilm formation as well as reduce the viability of preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or fluconazole (FLZ), was found to act synergistically against biofilm formation and preformed biofilms. Effect of SL on C. albicans biofilm formation was further visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture and alteration in the morphology of biofilm cells. We also found that SL downregulates the expression of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4, which possibly explains the inhibitory effect of SL on hyphae and biofilm formation. PMID:27030404

  16. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.

    PubMed

    Haque, Farazul; Alfatah, Md; Ganesan, K; Bhattacharyya, Mani Shankar

    2016-03-31

    Candida albicans causes superficial and life-threatening systemic infections. These are difficult to treat often due to drug resistance, particularly because C. albicans biofilms are inherently resistant to most antifungals. Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial and anticancer properties. In this study, we investigated the effect of SL on C. albicans biofilm formation and preformed biofilms. SL was found to inhibit C. albicans biofilm formation as well as reduce the viability of preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or fluconazole (FLZ), was found to act synergistically against biofilm formation and preformed biofilms. Effect of SL on C. albicans biofilm formation was further visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture and alteration in the morphology of biofilm cells. We also found that SL downregulates the expression of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4, which possibly explains the inhibitory effect of SL on hyphae and biofilm formation.

  17. The Inhibitory Effect of Grasshopper's Cyperus (Cyperus iria L.) on the Seedling Growth of Five Malaysian Rice Varieties.

    PubMed

    Ismail, B S; Siddique, Mohammed Abu Bakar

    2011-05-01

    Experiments were carried out in the laboratory and greenhouse to determine the growth inhibitory effects of Grassohopper's cyperus (Cyperus iria L.) on the seedlings of 5 Malaysian rice varieties namely MR211, MRQ74, MR220, MR84 and MR232. Three concentrations of the aqueous extract of the weed (12.5, 25.0 and 50.0 g/l) and weed debris (5, 10 and 20 g dry debris/1000 g soil) were used to test the allelopathic effect of C. iria on the growth of the rice plants. The weed leaf, stem and root extracts reduced the growth of the rice seedlings and showed selective activity in the varieties. The C. iria leaf and stem extracts showed comparatively higher growth inhibitory effects than those from the root. The weed extract caused more reduction in the root length of the rice plant compared to the shoot length. Among the rice varieties tested, MR232 was found to be more susceptible to the weed inhibitory effect. The leaf extract of C. iria at full strength caused root and shoot reduction of MR232 by 88.1% and 73.1% respectively (compared to the control). In most cases the fresh weight of the rice seedlings were more affected than the plant height. Weed debris caused significant reduction of leaf chlorophyll content in all the rice varieties tested with the exception of MR211. The chlorophyll content of MR232 was greatly affected by the weed debris which caused reduction of 36.4% compared to the control. The inhibitory effects of weed extracts and debris on rice growth parameters were found to be concentration dependent.

  18. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    SciTech Connect

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying; Wu, Jianguo

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  19. Growth Behavior of E. coli, Enterococcus and Staphylococcus Species in the Presence and Absence of Sub-inhibitory Antibiotic Concentrations: Consequences for Interpretation of Culture-Based Data.

    PubMed

    Heß, Stefanie; Gallert, Claudia

    2016-11-01

    Culture-based approaches are used to monitor, e.g., drinking water or bathing water quality and to investigate species diversity and antibiotic resistance levels in environmental samples. For health risk assessment, it is important to know whether the growing cultures display the actual abundance of, e.g., clinically relevant antibiotic resistance phenotypes such as vancomycin-resistant Enterococcus faecium/Enterococcus faecalis (VRE) or methicillin-resistant Staphylococcus aureus. In addition, it is important to know whether sub-inhibitory antibiotic concentrations, which are present in surface waters, favor the growth of antibiotic-resistant strains. Therefore, clinically relevant bacteria were isolated from different water sources and the growth behavior of 58 Escherichia coli, 71 Enterococcus, and 120 Staphylococcus isolates, belonging to different species and revealing different antibiotic resistance patterns, was studied with respect to "environmental" antibiotic concentrations. The finding that VRE could only be detected after specific enrichment can be explained by their slow growth compared to non-resistant strains. Interpreting their absence in standardized culture-based methods as nonexistent might be a fallacy. Sub-inhibitory antibiotic concentrations that were detected in sewage and receiving river water did not specifically promote antibiotic-resistant strains. Generally, those antibiotics that influenced cell metabolism directly led to slightly reduced growth rates and less than maximal optical densities after 48 h of incubation.

  20. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro.

    PubMed

    Juengel, Eva; Thomas, Anita; Rutz, Jochen; Makarevic, Jasmina; Tsaur, Igor; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-02-01

    Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro.

  1. Short Promoters in Viral Vectors Drive Selective Expression in Mammalian Inhibitory Neurons, but do not Restrict Activity to Specific Inhibitory Cell-Types

    PubMed Central

    Nathanson, Jason L.; Jappelli, Roberto; Scheeff, Eric D.; Manning, Gerard; Obata, Kunihiko; Brenner, Sydney; Callaway, Edward M.

    2009-01-01

    Short cell-type specific promoter sequences are important for targeted gene therapy and studies of brain circuitry. We report on the ability of short promoter sequences to drive fluorescent protein expression in specific types of mammalian cortical inhibitory neurons using adeno-associated virus (AAV) and lentivirus (LV) vectors. We tested many gene regulatory sequences derived from fugu (Takifugu rubripes), mouse, human, and synthetic composite regulatory elements. All fugu compact promoters expressed in mouse cortex, with only the somatostatin (SST) and the neuropeptide Y (NPY) promoters largely restricting expression to GABAergic neurons. However these promoters did not control expression in inhibitory cells in a subtype specific manner. We also tested mammalian promoter sequences derived from genes putatively coexpressed or coregulated within three major inhibitory interneuron classes (PV, SST, VIP). In contrast to the fugu promoters, many of the mammalian sequences failed to express, and only the promoter from gene A930038C07Rik conferred restricted expression, although as in the case of the fugu sequences, this too was not inhibitory neuron subtype specific. Lastly and more promisingly, a synthetic sequence consisting of a composite regulatory element assembled with PAX6 E1.1 binding sites, NRSE and a minimal CMV promoter showed markedly restricted expression to a small subset of mostly inhibitory neurons, but whose commonalities are unknown. PMID:19949461

  2. Hypertonic stress induces VEGF production in human colon cancer cell line Caco-2: inhibitory role of autocrine PGE₂.

    PubMed

    Gentile, Luciana B; Piva, Bruno; Diaz, Bruno L

    2011-01-01

    Vascular Endothelial Growth Factor (VEGF) is a major regulator of angiogenesis. VEGF expression is up regulated in response to micro-environmental cues related to poor blood supply such as hypoxia. However, regulation of VEGF expression in cancer cells is not limited to the stress response due to increased volume of the tumor mass. Lipid mediators in particular arachidonic acid-derived prostaglandin (PG)E₂ are regulators of VEGF expression and angiogenesis in colon cancer. In addition, increased osmolarity that is generated during colonic water absorption and feces consolidation seems to activate colon cancer cells and promote PGE₂ generation. Such physiological stimulation may provide signaling for cancer promotion. Here we investigated the effect of exposure to a hypertonic medium, to emulate colonic environment, on VEGF production by colon cancer cells. The role of concomitant PGE₂ generation and MAPK activation was addressed by specific pharmacological inhibition. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked VEGF and PGE₂ production. VEGF production was inhibited by selective inhibitors of ERK 1/2 and p38 MAPK pathways. To address the regulatory role of PGE₂ on VEGF production, Caco-2 cells were treated with cPLA₂ (ATK) and COX-2 (NS-398) inhibitors, that completely block PGE₂ generation. The Caco-2 cells were also treated with a non selective PGE₂ receptor antagonist. Each treatment significantly increased the hypertonic stress-induced VEGF production. Moreover, addition of PGE₂ or selective EP₂ receptor agonist to activated Caco-2 cells inhibited VEGF production. The autocrine inhibitory role for PGE₂ appears to be selective to hypertonic environment since VEGF production induced by exposure to CoCl₂ was decreased by inhibition of concomitant PGE₂ generation. Our results indicated that hypertonicity stimulates VEGF production in colon cancer cell lines. Also PGE₂ plays an inhibitory

  3. Mediators in cell growth and differentiation

    SciTech Connect

    Ford, R.J.; Maizel, A.L.

    1985-01-01

    This book contains papers divided among seven sections. The section headings are: Cell Cycle and Control of Cell Growth, Growth Factors for Nonlymphoid Cells, Colony-Stimulating Factors, Stem Cells and Hematopoiesis, Lymphoid Growth Factors, Growth Factors in Neoplasia, Interferon, and Differentiation in Normal and Neoplastic Cells.

  4. Inhibition of growth and induction of differentiation of colon cancer cells by peach and plum phenolic compounds

    USDA-ARS?s Scientific Manuscript database

    The action of extracts from anthocyanin-enriched plums and peaches on growth and differentiation was studied with human colon cancer cells. Growth inhibitory effects were observed in Caco-2, SW1116, HT29 and NCM460 cells. In Caco-2 cells but not in the other cells studied there was evidence for incr...

  5. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo.

    PubMed

    Doern, Adam; Cao, Xianjun; Sereno, Arlene; Reyes, Christopher L; Altshuler, Angelina; Huang, Flora; Hession, Cathy; Flavier, Albert; Favis, Michael; Tran, Hon; Ailor, Eric; Levesque, Melissa; Murphy, Tracey; Berquist, Lisa; Tamraz, Susan; Snipas, Tracey; Garber, Ellen; Shestowsky, William S; Rennard, Rachel; Graff, Christilyn P; Wu, Xiufeng; Snyder, William; Cole, Lindsay; Gregson, David; Shields, Michael; Ho, Steffan N; Reff, Mitchell E; Glaser, Scott M; Dong, Jianying; Demarest, Stephen J; Hariharan, Kandasamy

    2009-04-10

    Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism

  6. Inhibitory effect of allicin and garlic extracts on growth of cultured hyphae

    PubMed Central

    Aala, Farzad; Yusuf, Umi Kalsom; Nulit, Rosimah; Rezaie, Sassan

    2014-01-01

    Objective(s): Trichophyton rubrum (T. rubrum) is one of the most common dermatophytes worldwide. This fungus invaded skin appendages of humans and animals. Recently, resistance to antifungal drugs as well as appearance of side effects due to indication of these kinds of antibiotics has been reported. Besides, using some plant extracts have been indicated in herbal medicine as an alternative treatment of these fungal infections. The aim of this study was to investigate the effects of Garlic (Allium sativum) and pure allicin on the growth of hypha in T. rubrum using Electron miscroscopy. Materials and Methods: This study was carried out to observe the morphological changes of T. rubrum treated with allicin as well as aqueous garlic extract using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: SEM surveys, showed that hypha treated with allicin has rough and granular like surface, abnormal and irregularly-shape. However, hypha treated with garlic extract had rough and fluffy surface and also irregularly-shape. TEM studies also found that hypha treated with allicin displays disintegration of cytoplasm, breaking down in cell membrane and the cell wall, and collapsing of hypha, meanwhile hypha treated with garlic extract exhibiting degradation and dissolution of cytoplasm components, demolition of cell wall and cell membrane, and hypha appeared to break. Conclusion: The present study revealed that pure allicin (6.25 µg/ml and 12.5 µg/ml) is more efficient in inhibition of the growth in hyphal cells compare to the garlic extract (2 mg/ml and 4 mg/ml) and they could be used as alternatives in treatment of dermatophytosis. PMID:24847416

  7. Inhibitory action of soybean beta-conglycinin hydrolysates on Salmonella typhimurium translocation in Caco-2 epithelial cell monolayers.

    PubMed

    Yang, Baichong; Lv, Ying; Chen, Yang; Wang, Jin; Tang, Wuxia; Guo, Shuntang

    2008-08-27

    Soybean protein hydrolysates are widely used as functional foods as they have antioxidative properties able to enhance immune responses in humans. The alcalase enzymatic hydrolysates of beta-conglycinin were fractionated by ultrafiltration, and two main fractions, SP1 (<10 kDa) and SP2 (10-20 kDa), were obtained. The effects of these two fractions on the growth, development of epithelial cells, and formation of intercellular tight junctions were tested on an in vitro Caco-2 cell culture system. The inhibitory effects of SP1 and SP2 on the penetration of Salmonella typhimurium into Caco-2 epithelial cells were also examined. The results showed that the addition of >0.05 g/L of SP2 improved epithelial cell growth and that a concentration of 0.5 g/L of SP2 increased intercellular tight junction formation, which resulted in increased of transepithelial monolayer resistance (TER) values. Moreover, a lower S. typhimurium count compared to control was obtained when Caco-2 cells were grown in 0.05 and 0.5 g/L of SP2. These results show that beta-conglycinin hydrolysates play an important role in resisting S. typhimurium penetration into intestinal epithelial cells and that high molecular mass peptides (10-20 kDa) were more effective overall than low molecular mass peptides.

  8. Melanogenesis Inhibitory Activity of Two Generic Drugs: Cinnarizine and Trazodone in Mouse B16 Melanoma Cells

    PubMed Central

    Chang, Te-Sheng; Lin, Victor Chia-Hsiang

    2011-01-01

    More than 200 generic drugs were screened to identify the inhibitory activity on melanogenesis in mouse B16 melanoma cells. Cinnarizine and trazodone were identified as melanogenesis inhibitors. The inhibitory effects of the two drugs on cell survival, melanogenesis, and tyrosinase activity were investigated. The results showed that both cinnarizine and trazodone inhibited melanogenesis in B16 cells by a dose-dependent manner at the non-cytotoxic concentrations. Based on the results of the present study, seeking new melanogenesis inhibitors from generic drugs is an alternative approach to developing new depigmenting agents in cosmeceuticals. Moreover, cinnarizine and trazodone were proven to be good candidates as skin-whitening agents for treatment of skin hyperpigmentation. PMID:22272104

  9. Melanogenesis inhibitory activity of two generic drugs: cinnarizine and trazodone in mouse B16 melanoma cells.

    PubMed

    Chang, Te-Sheng; Lin, Victor Chia-Hsiang

    2011-01-01

    More than 200 generic drugs were screened to identify the inhibitory activity on melanogenesis in mouse B16 melanoma cells. Cinnarizine and trazodone were identified as melanogenesis inhibitors. The inhibitory effects of the two drugs on cell survival, melanogenesis, and tyrosinase activity were investigated. The results showed that both cinnarizine and trazodone inhibited melanogenesis in B16 cells by a dose-dependent manner at the non-cytotoxic concentrations. Based on the results of the present study, seeking new melanogenesis inhibitors from generic drugs is an alternative approach to developing new depigmenting agents in cosmeceuticals. Moreover, cinnarizine and trazodone were proven to be good candidates as skin-whitening agents for treatment of skin hyperpigmentation.

  10. Cell Biology of Hyphal Growth.

    PubMed

    Steinberg, Gero; Peñalva, Miguel A; Riquelme, Meritxell; Wösten, Han A; Harris, Steven D

    2017-04-01

    Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.

  11. Toluene decreases Purkinje cell output by enhancing inhibitory synaptic transmission in the cerebellar cortex.

    PubMed

    Gmaz, Jimmie M; McKay, Bruce E

    2014-02-07

    Toluene belongs to a class of psychoactive drugs known as inhalants. Found in common household products such as adhesives, paint products, and aerosols, toluene is inhaled for its intoxicating and euphoric properties. Additionally, exposure to toluene disrupts motor behaviors in a manner consistent with impairments to cerebellar function. Previous work has suggested a role of GABA in mediating toluene's neurobehavioral effects, but how this manifests in the cerebellar cortex is not yet understood. In the present study, we examined the effects of toluene on cerebellar Purkinje cell action potential output and inhibitory synaptic transmission onto Purkinje cells using patch clamp electrophysiology in acute rat cerebellar slices. Toluene (1mM) reduced the frequency of Purkinje cell action potential output without affecting input resistance. Furthermore, toluene dose-dependently enhanced inhibitory synaptic transmission onto Purkinje cells, increasing the amplitude and frequency of inhibitory postsynaptic currents; no change in the frequency of action potentials from molecular layer interneurons was noted. The observed decreases in Purkinje cell action potential output could contribute to toluene-evoked impairments in cerebellar and motor functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Genetic dissection of horizontal cell inhibitory signaling in mice in complete darkness in vivo.

    PubMed

    Berkowitz, Bruce A; Murphy, Geoffrey G; Craft, Cheryl Mae; Surmeier, D James; Roberts, Robin

    2015-05-01

    To test the hypothesis that horizontal cell (HC) inhibitory signaling controls the degree to which rod cell membranes are depolarized as measured by the extent to which L-type calcium channels (LTCCs) are open in complete darkness in the mouse retina in vivo. Dark-adapted wild-type (wt), CACNA1F (Ca(v)1.4(-/-)), arrestin-1 (Arr1(-/-)), and CACNA1D (Ca(v)1.3(-/-)) C57Bl/6 mice were studied. Manganese-enhanced MRI (MEMRI) evaluated the extent that rod LTCCs are open as an index of loss of HC inhibitory signaling. Subgroups were pretreated with D-cis-diltiazem (DIL) at a dose that specifically antagonizes Ca(v)1.2 channels in vivo. Knockout mice predicted to have impaired HC inhibitory signaling (Ca(v)1.4(-/-) or Arr1(-/-)) exhibited greater than normal rod manganese uptake; inner retinal uptake was also supernormal. Genetically knocking out a closely associated gene not expected to impact HC inhibitory signaling (CACNA1D) did not generate this phenotype. The Arr1(-/-) mice exhibited the largest rod uptake of manganese. Manganese-enhanced MRI of DIL-treated Arr1(-/-) mice suggested a greater number of operant LTCC subtypes (i.e., Ca(v)1.2, 1.3, and 1.4) in rods and inner retina than that in DIL-treated Ca(v)1.4(-/-) mice (i.e., Ca(v)1.3). The Ca(v)1.3(-/-) + DIL-treated mice exhibited evidence for a compensatory contribution from Ca(v)1.2 LTCCs. The data suggest that loss of HC inhibitory signaling is the proximate cause leading to maximally open LTCCs in rods, and possibly inner retinal cells, in mice in total darkness in vivo, regardless of compensatory changes in LTCC subtype manifested in the mutant mice.

  13. Misexpression of ptf1a in cortical pyramidal cells in vivo promotes an inhibitory peptidergic identity.

    PubMed

    Russ, Jeffrey B; Borromeo, Mark D; Kollipara, Rahul K; Bommareddy, Praveen K; Johnson, Jane E; Kaltschmidt, Julia A

    2015-04-15

    The intracellular transcriptional milieu wields considerable influence over the induction of neuronal identity. The transcription factor Ptf1a has been proposed to act as an identity "switch" between developmentally related precursors in the spinal cord (Glasgow et al., 2005; Huang et al., 2008), retina (Fujitani et al., 2006; Dullin et al., 2007; Nakhai et al., 2007; Lelièvre et al., 2011), and cerebellum (Hoshino et al., 2005; Pascual et al., 2007; Yamada et al., 2014), where it promotes an inhibitory over an excitatory neuronal identity. In this study, we investigate the potency of Ptf1a to cell autonomously confer a specific neuronal identity outside of its endogenous environment, using mouse in utero electroporation and a conditional genetic strategy to misexpress Ptf1a exclusively in developing cortical pyramidal cells. Transcriptome profiling of Ptf1a-misexpressing cells using RNA-seq reveals that Ptf1a significantly alters pyramidal cell gene expression, upregulating numerous Ptf1a-dependent inhibitory interneuron markers and ultimately generating a gene expression profile that resembles the transcriptomes of both Ptf1a-expressing spinal interneurons and endogenous cortical interneurons. Using RNA-seq and in situ hybridization analyses, we also show that Ptf1a induces expression of the peptidergic neurotransmitter nociceptin, while minimally affecting the expression of genes linked to other neurotransmitter systems. Moreover, Ptf1a alters neuronal morphology, inducing the radial redistribution and branching of neurites in cortical pyramidal cells. Thus Ptf1a is sufficient, even in a dramatically different neuronal precursor, to cell autonomously promote characteristics of an inhibitory peptidergic identity, providing the first example of a single transcription factor that can direct an inhibitory peptidergic fate.

  14. Inhibitory effect of the lectin wheat germ agglutinin (WGA) on the proliferation of AR42J cells.

    PubMed

    Ebert, Constanze; Nebe, Barbara; Walzel, Hermann; Weber, Heike; Jonas, Ludwig

    2009-01-01

    The rat pancreatic acinar tumour cell line AR42J is a widely used model to study the secretion, proliferation and differentiation of cells under the influence of hormones. These so-called amphicrine cells synthesize and secrete digestive enzymes as well as neuroendocrine peptides. They possess both subtypes of the highly glycosylated cholecystokinin (CCK) receptor which are important for the regulation of secretion and for cell growth. AR42J cells extrude CCK and gastrin-like hormone peptides and have the ability of an autostimulation (autocrine loop). The lectins wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA-I) bind to the glycosylated sites of these CCK receptors with the effect inhibiting CCK binding and thus inhibiting the CCK-induced Ca2+ release and alpha-amylase secretion. The so-called trophic hormones CCK and gastrin stimulate the secretion and proliferation of AR42J cells within the autocrine loop via autostimulation of their CCK receptors. In preceding papers, we described the inhibitory effect of WGA on the binding of 125I-CCK-8s to the CCK-A and -B receptors and the subsequent enzyme secretion of AR42J cells. In the present work, we studied the influence of the lectins WGA, UEA-I and galectin-1, as well as of the lectin-like enzyme alpha-amylase, on the proliferation of AR42J cells and prevention of autostimulation. The proliferation inhibition of the growth fraction was measured by estimation of the S-phase fraction by DNA flow cytometry. Whereas WGA inhibited the growth fraction significantly, UEA-I, human galectin-1 and human alpha-amylase had no significant effect. In transmission electron microscopy, we observed the accumulation of typical zymogen granules under the effect of WGA and a better differentiation of cells.

  15. Inhibitory potential of subpopulations of CD8+ T cells in HIV-1-infected elite suppressors.

    PubMed

    Buckheit, Robert W; Salgado, Maria; Silciano, Robert F; Blankson, Joel N

    2012-12-01

    Elite controllers or suppressors (ES) are HIV-1-infected individuals who suppress viral replication to clinically undetectable levels without antiretroviral therapy. Understanding the mechanisms by which ES control viral replication may prove informative for the design of a therapeutic vaccine. Qualitative differences in the CD8(+) T cell response have been implicated in control. Therefore, we isolated CD8(+) T cells from ES and characterized the ability of sorted memory and activation subpopulations to control viral replication at various effector-to-target cell ratios using a novel modification of a CD8(+) T cell suppression assay. The effector memory and terminal effector subpopulations of memory CD8(+) T cells had the highest inhibitory potential over the course of a 3-day in vitro infection. Interestingly, after 5 days of infection, central memory CD8(+) T cells were also very effective at suppressing viral replication. No significant correlation between the suppression of viral replication and the number of HIV-1-specific CD8(+) T cells was observed. HLA-DR(-) CD38(+) CD8(+) T cells possessed the lowest inhibitory potential of the activation subpopulations. Taken together, our data suggest that there are key differences in the magnitude and kinetics of the suppression of HIV-1 replication by different CD8(+) T cell subsets. These data should guide the development of an effective, cellular therapeutic vaccine that has the potential to elicit similar CD8(+) T cell responses.

  16. Inhibitory Potential of Subpopulations of CD8+ T Cells in HIV-1-Infected Elite Suppressors

    PubMed Central

    Buckheit, Robert W.; Salgado, Maria; Silciano, Robert F.

    2012-01-01

    Elite controllers or suppressors (ES) are HIV-1-infected individuals who suppress viral replication to clinically undetectable levels without antiretroviral therapy. Understanding the mechanisms by which ES control viral replication may prove informative for the design of a therapeutic vaccine. Qualitative differences in the CD8+ T cell response have been implicated in control. Therefore, we isolated CD8+ T cells from ES and characterized the ability of sorted memory and activation subpopulations to control viral replication at various effector-to-target cell ratios using a novel modification of a CD8+ T cell suppression assay. The effector memory and terminal effector subpopulations of memory CD8+ T cells had the highest inhibitory potential over the course of a 3-day in vitro infection. Interestingly, after 5 days of infection, central memory CD8+ T cells were also very effective at suppressing viral replication. No significant correlation between the suppression of viral replication and the number of HIV-1-specific CD8+ T cells was observed. HLA-DR− CD38+ CD8+ T cells possessed the lowest inhibitory potential of the activation subpopulations. Taken together, our data suggest that there are key differences in the magnitude and kinetics of the suppression of HIV-1 replication by different CD8+ T cell subsets. These data should guide the development of an effective, cellular therapeutic vaccine that has the potential to elicit similar CD8+ T cell responses. PMID:23055552

  17. Inhibitory effect of endostatin gene therapy combined with phosphorus-32 colloid on tumour growth in Wistar rats.

    PubMed

    Gao, Huiqi; Zhu, Jing; Li, Yong; Fu, Peng; Shen, Baozhong

    2016-07-01

    Eighty healthy male Wistar rats, aged 5 weeks, weighing 100-120 g, were utilized for establishing tumour-bearing models by immediate Walker-256 cancerous ascites injection and randomly divided to four groups (n=20) treated with 0.2 ml solution containing saline, (32)P-colloid (0.3 mCi), endostatin gene (20 μg), endostatin gene combined with colloid (32)P. The effect of endostatin combined with a small dose of (32)P-colloidal on tumour growth in vivo was evaluated and the potential mechanism underlying the combined therapy was explored. We found that (32)P-colloid combined with endostatin exhibited higher inhibitory effect upon tumour growth compared with application of (32)P-colloid or endostatin alone, although three therapies all significantly inhibited tumour growth compared with saline control group. The higher inhibitory effect of (32)P-colloid combined with endostatin upon tumour growth might be attributed to a synergistic effect of inhibiting angiogenesis by endostatin and inducing apoptosis by (32)P-colloid, as demonstrated by microvessel density (MVD) and apoptotic index (AI) measurement. Combined therapy of (32)P-colloid and endostatin probably serves as a novel and efficacious therapy of tumour growth.

  18. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species.

    PubMed

    Avila, Marta; Gómez-Torres, Natalia; Hernández, Marta; Garde, Sonia

    2014-02-17

    The butyric acid fermentation, responsible for late blowing of cheese, is caused by the outgrowth in cheese of some species of Clostridium, resulting in texture and flavor defects and economical losses. The aim of this study was to evaluate the effectiveness of different antimicrobial compounds against vegetative cells and spores of C. tyrobutyricum, C. butyricum, C. beijerinckii and C. sporogenes strains isolated from cheeses with late blowing defect. Minimal inhibitory concentration (MIC) for reuterin, nisin, lysozyme and sodium nitrite were determined against Clostridium strains in milk and modified RCM (mRCM) after 7d exposure. Although the sensitivity of Clostridium to the tested antimicrobials was strain-dependent, C. sporogenes and C. beijerinckii generally had higher MIC values than the rest of Clostridium species. The majority of Clostridium strains were more resistant to antimicrobials in milk than in mRCM, and vegetative cells exhibited higher sensitivity than spores. Reuterin (MIC values 0.51-32.5 mM) and nisin (MIC values 0.05-12.5 μg/ml) were able to inhibit the growth of vegetative cells and spores of all assayed Clostridium strains in milk and mRCM. Strains of C. tyrobutyricum exhibited the highest sensitivity to lysozyme (MIC values<0.20-400 μg/ml) and sodium nitrite (MIC values 18.75-150 μg/ml). These results suggest that reuterin and nisin, with a broad inhibitory activity spectrum against Clostridium spp. spores and vegetative cells, may be the best options to control Clostridium growth in dairy products and to prevent associated spoilage, such as late blowing defect of cheese. However, further studies in cheese would be necessary to validate this hypothesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Solid-phase synthesis of 2'-hydroxychalcones. Effects on cell growth inhibition, cell cycle and apoptosis of human tumor cell lines.

    PubMed

    Neves, Marta Perro; Cravo, Sara; Lima, Raquel T; Vasconcelos, M Helena; Nascimento, M São José; Silva, Artur M S; Pinto, Madalena; Cidade, Honorina; Corrêa, Arlene G

    2012-01-01

    Thirty-one 2'-hydroxychalcones were prepared via solid-phase synthesis by base-catalyzed aldol condensation of substituted 2'-hydroxyacetophenones and benzaldehydes. Chalcones were tested for their growth inhibitory activity in three human tumor cell lines (MCF-7, NCI-H460 and A375-C5) using the SRB assay. Results revealed that several of the tested compounds caused a pronounced dose-dependent growth inhibitory effect on the tumor cell lines studied in the low micromolar range. To gain further insight on the cellular mechanism of action of this class of compounds, studies of their effect on cell cycle profile as well as on induction of cellular apoptosis were also carried out. Generally, the tested chalcones interfered with the cell cycle profile and increased the percentage of apoptotic MCF-7 cells. The results here presented may help to identify new chalcone-like structures with optimized cell growth inhibitory activity which may be further tested as potential antitumor agents.

  20. Effect of zinc-reversible growth-inhibitory activity in human empyema fluid on antibiotic microbicidal activity.

    PubMed

    Sohnle, P G; Hahn, B L

    2000-01-01

    Abscess fluid supernatants have zinc-reversible microbial growth-inhibitory activity that is mediated by calprotectin, a zinc-binding protein. Because it inhibits microbial growth, this activity might interfere with killing by antibiotics that require their target organisms to be proliferating. In the present study, we cultured bacteria in human empyema fluid and used zinc to overcome the growth-inhibitory effect of calprotectin. We then compared the effect of zinc on killing by the beta-lactams ampicillin and cefazolin with that of the fluoroquinolone trovafloxacin, since the latter may be better able to kill nonproliferating organisms. In empyema fluid diluted 1:5 in normal saline, addition of zinc (30 microM) increased growth of two strains of Staphyloccocus aureus and two strains of Escherichia coli but did not affect the MICs or MBCs of the three antibiotics in Mueller-Hinton broth. For one strain of S. aureus, no effect of zinc was found on killing by either ampicillin or cefazolin. However, with the other strain of S. aureus and both strains of E. coli, significant enhancement of killing by both drugs was observed with zinc addition. On the other hand, no effect on the killing of any of the organisms was observed for trovafloxacin when zinc was added. These results suggest that the zinc-reversible growth-inhibitory activity of abscess fluid may interfere with the microbicidal activity of antibiotics requiring proliferating target organisms, although antibiotics better able to kill nonproliferating organisms may be less affected by this phenomenon.

  1. Inhibitory effect of berberine on human skin squamous cell carcinoma A431 cells.

    PubMed

    Li, D X; Zhang, J; Zhang, Y; Zhao, P W; Yang, L M

    2015-09-08

    Berberine (BBR) is a natural alkaloid with significant anti-tumor activity against many types of cancer cells. In this study, we investigated the molecular mechanisms employed by BBR to repress the proliferation and growth of skin squamous cell carcinoma A431 cells. Berberine was reported to inhibit the proliferation of A431 cells in a dose- and time-dependent manner and was observed to induce a series of biochemical events, including the loss of mitochondrial membrane potential, release of cytochrome-c to cytosol, induction of proteins of the Bcl-2 family and caspases, and the cleavage of poly(ADP)-ribose polymerase. This suggested its ability to induce apoptosis. The results of a wound healing test revealed that berberine inhibited the migration of A431 cells. Ezrin was transfected into A431 cells by RNA interference. The level of expression of Ezrin in the transfected A431 cells was observed to decrease with berberine treatment, which suggested that berberine might inhibit the invasion of A431 cells through Ezrin. The results of this study demonstrated that berberine could potentially inhibit proliferation, induce apoptosis, and inhibit the invasion of A431 cells.

  2. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity.

    PubMed

    Klein, Sabine; Seidler, Barbara; Kettenberger, Anna; Sibaev, Andrei; Rohn, Michael; Feil, Robert; Allescher, Hans-Dieter; Vanderwinden, Jean-Marie; Hofmann, Franz; Schemann, Michael; Rad, Roland; Storr, Martin A; Schmid, Roland M; Schneider, Günter; Saur, Dieter

    2013-01-01

    The enteric nervous system contains excitatory and inhibitory neurons, which control contraction and relaxation of smooth muscle cells as well as gastrointestinal motor activity. Little is known about the exact cellular mechanisms of neuronal signal transduction to smooth muscle cells in the gut. Here we generate a c-Kit(CreERT2) knock-in allele to target a distinct population of pacemaker cells called interstitial cells of Cajal. By genetic loss-of-function studies, we show that interstitial cells of Cajal, which generate spontaneous electrical slow waves and thus rhythmic contractions of the smooth musculature, are essential for transmission of signals from enteric neurons to gastrointestinal smooth muscle cells. Interstitial cells of Cajal, therefore, integrate excitatory and inhibitory neurotransmission with slow-wave activity to orchestrate peristaltic motor activity of the gut. Impairment of the function of interstitial cells of Cajal causes severe gastrointestinal motor disorders. The results of our study show at the genetic level that these disorders are not only due to loss of slow-wave activity but also due to disturbed neurotransmission.

  3. Know Thyself: NK-Cell Inhibitory Receptors Prompt Self-Tolerance, Education, and Viral Control

    PubMed Central

    Nash, William T.; Teoh, Jeffrey; Wei, Hairong; Gamache, Awndre; Brown, Michael G.

    2014-01-01

    Natural killer (NK) cells provide essential protection against viral infections. One of the defining features of this lymphocyte population is the expression of a wide array of variable cell surface stimulatory and inhibitory NK receptors (sNKR and iNKR, respectively). The iNKR are particularly important in terms of NK-cell education. As receptors specific for MHC class I (MHC I) molecules, they are responsible for self-tolerance and adjusting NK-cell reactivity based on the expression level of self-MHC I. The end result of this education is twofold: (1) inhibitory signaling tunes the functional capacity of the NK cell, endowing greater potency with greater education, and (2) education on self allows the NK cell to detect aberrations in MHC I expression, a common occurrence during many viral infections. Many studies have indicated an important role for iNKR and MHC I in disease, making these receptors attractive targets for manipulating NK-cell reactivity in the clinic. A greater understanding of iNKR and their ability to regulate NK cells will provide a basis for future attempts at translating their potential utility into benefits for human health. PMID:24795719

  4. Prediction of Inhibitory Activity of Epidermal Growth Factor Receptor Inhibitors Using Grid Search-Projection Pursuit Regression Method

    PubMed Central

    Du, Hongying; Hu, Zhide; Bazzoli, Andrea; Zhang, Yang

    2011-01-01

    The epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) is an important protein target for anti-tumor drug discovery. To identify potential EGFR inhibitors, we conducted a quantitative structure–activity relationship (QSAR) study on the inhibitory activity of a series of quinazoline derivatives against EGFR tyrosine kinase. Two 2D-QSAR models were developed based on the best multi-linear regression (BMLR) and grid-search assisted projection pursuit regression (GS-PPR) methods. The results demonstrate that the inhibitory activity of quinazoline derivatives is strongly correlated with their polarizability, activation energy, mass distribution, connectivity, and branching information. Although the present investigation focused on EGFR, the approach provides a general avenue in the structure-based drug development of different protein receptor inhibitors. PMID:21811593

  5. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    EPA Science Inventory

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.
    Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  6. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    EPA Science Inventory

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.
    Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  7. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    PubMed Central

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  8. Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors.

    PubMed

    Thommen, Daniela S; Schreiner, Jens; Müller, Philipp; Herzig, Petra; Roller, Andreas; Belousov, Anton; Umana, Pablo; Pisa, Pavel; Klein, Christian; Bacac, Marina; Fischer, Ozana S; Moersig, Wolfgang; Savic Prince, Spasenija; Levitsky, Victor; Karanikas, Vaios; Lardinois, Didier; Zippelius, Alfred

    2015-12-01

    Dysfunctional T cells present in malignant lesions are characterized by a sustained and highly diverse expression of inhibitory receptors, also referred to as immune checkpoints. Yet, their relative functional significance in different cancer types remains incompletely understood. In this study, we provide a comprehensive characterization of the diversity and expression patterns of inhibitory receptors on tumor-infiltrating T cells from patients with non-small cell lung cancer. In spite of the large heterogeneity observed in the amount of PD-1, Tim-3, CTLA-4, LAG-3, and BTLA expressed on intratumoral CD8(+) T cells from 32 patients, a clear correlation was established between increased expression of these inhibitory coreceptors and progression of the disease. Notably, the latter was accompanied by a progressively impaired capacity of T cells to respond to polyclonal activation. Coexpression of several inhibitory receptors was gradually acquired, with early PD-1 and late LAG-3/BTLA expression. PD-1 blockade was able to restore T-cell function only in a subset of patients. A high percentage of PD-1(hi) T cells was correlated with poor restoration of T-cell function upon PD-1 blockade. Of note, PD-1(hi) expression marked a particularly dysfunctional T-cell subset characterized by coexpression of multiple inhibitory receptors and thus may assist in identifying patients likely to respond to inhibitory receptor-specific antibodies. Overall, these data may provide a framework for future personalized T-cell-based therapies aiming at restoration of tumor-infiltrating lymphocyte effector functions.

  9. Leptin Enhances Cholangiocarcinoma Cell Growth

    PubMed Central

    Fava, Giammarco; Alpini, Gianfranco; Rychlicki, Chiara; Saccomanno, Stefania; DeMorrow, Sharon; Trozzi, Luciano; Candelaresi, Cinzia; Venter, Julie; Di Sario, Antonio; Marzioni, Marco; Bearzi, Italo; Glaser, Shannon; Alvaro, Domenico; Marucci, Luca; Francis, Heather; Svegliati-Baroni, Gianluca; Benedetti, Antonio

    2008-01-01

    Cholangiocarcinoma is a strongly aggressive malignancy with a very poor prognosis. Effective therapeutic strategies are lacking because molecular mechanisms regulating cholangiocarcinoma cell growth are unknown. Furthermore, experimental in vivo animal models useful to study the pathophysiologic mechanisms of malignant cholangiocytes are lacking. Leptin, the hormone regulating caloric homeostasis, which is increased in obese patients, stimulates the growth of several cancers, such as hepatocellular carcinoma. The aim of this study was to define if leptin stimulates cholangiocarcinoma growth. We determined the expression of leptin receptors in normal and malignant human cholangiocytes. Effects on intrahepatic cholangiocarcinoma (HuH-28) cell proliferation, migration, and apoptosis of the in vitro exposure to leptin, together with the intracellular pathways, were then studied. Moreover, cholangiocarcinoma was experimentally induced in obese fa/fa Zucker rats, a genetically established animal species with faulty leptin receptors, and in their littermates by chronic feeding with thioacetamide, a potent carcinogen. After 24 weeks, the effect of leptin on cholangiocarcinoma development and growth was assessed. Normal and malignant human cholangiocytes express leptin receptors. Leptin increased the proliferation and the metastatic potential of cholangiocarcinoma cells in vitro through a signal transducers and activators of transcription 3–dependent activation of extracellular signal-regulated kinase 1/2. Leptin increased the growth and migration, and was antiapoptotic for cholangiocarcinoma cells. Moreover, the loss of leptin function reduced the development and the growth of cholangiocarcinoma. The experimental carcinogenesis model induced by thioacetamide administration is a valid and reproducible method to study cholangiocarcinoma pathobiology. Modulation of the leptin-mediated signal could be considered a valid tool for the prevention and treatment of

  10. Tracking Inhibitory Alterations during Interstrain Clostridium difficile Interactions by Monitoring Cell Envelope Capacitance

    PubMed Central

    2016-01-01

    Global threats arising from the increasing use of antibiotics coupled with the high recurrence rates of Clostridium difficile (C. difficile) infections (CDI) after standard antibiotic treatments highlight the role of commensal probiotic microorganisms, including nontoxigenic C. difficile (NTCD) strains in preventing CDI due to highly toxigenic C. difficile (HTCD) strains. However, optimization of the inhibitory permutations due to commensal interactions in the microbiota requires probes capable of monitoring phenotypic alterations to C. difficile cells. Herein, by monitoring the field screening behavior of the C. difficile cell envelope with respect to cytoplasmic polarization, we demonstrate that inhibition of the host-cell colonization ability of HTCD due to the S-layer alterations occurring after its co-culture with NTCD can be quantitatively tracked on the basis of the capacitance of the cell envelope of co-cultured HTCD. Furthermore, it is shown that effective inhibition requires the dynamic contact of HTCD cells with freshly secreted extracellular factors from NTCD because contact with the cell-free supernatant causes only mild inhibition. We envision a rapid method for screening the inhibitory permutations to arrest C. difficile colonization by routinely probing alterations in the HTCD dielectrophoretic frequency response due to variations in the capacitance of its cell envelope. PMID:27547818

  11. Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus.

    PubMed

    Wittner, L; Maglóczky, Z; Borhegyi, Z; Halász, P; Tóth, S; Eross, L; Szabó, Z; Freund, T F

    2001-01-01

    Temporal lobe epilepsy is known to be associated with hyperactivity that is likely to be generated or amplified in the hippocampal formation. The majority of granule cells, the principal cells of the dentate gyrus, are found to be resistant to damage in epilepsy, and may serve as generators of seizures if their inhibition is impaired. Therefore, the parvalbumin-containing subset of interneurons, known to provide the most powerful inhibitory input to granule cell somata and axon initial segments, were examined in human control and epileptic dentate gyrus. A strong reduction in the number of parvalbumin-containing cells was found in the epileptic samples especially in the hilar region, although in some patches of the granule cell layer parvalbumin-positive terminals that form vertical clusters characteristic of axo-axonic cells were more numerous than in controls. Analysis of the postsynaptic target elements of parvalbumin-positive axon terminals showed that they form symmetric synapses with somata, dendrites, axon initial segments and spines as in the control, but the ratio of axon initial segment synapses was increased in the epileptic tissue (control: 15.9%, epileptic: 31.3%). Furthermore, the synaptic coverage of granule cell axon initial segments increased more than three times (control: 0.52, epileptic: 2.10 microm synaptic length/100 microm axon initial segment membrane) in the epileptic samples, whereas the amount of somatic symmetric synapses did not change significantly. Although the number of parvalbumin-positive interneurons is decreased, the perisomatic inhibitory input of dentate granule cells is preserved in temporal lobe epilepsy. Basket and axo-axonic cell terminals - whether positive or negative for parvalbumin - are present, moreover, the axon collaterals targeting axon initial segments sprout in the epileptic dentate gyrus. We suggest that perisomatic inhibitory interneurons survive in epilepsy, but their somadendritic compartment and partly the

  12. Inhibitory effect and cell damage on bacterial flora of fish caused by chitosan, nisin and sodium lactate.

    PubMed

    Schelegueda, Laura Inés; Zalazar, Aldana Lourdes; Gliemmo, María Fernanda; Campos, Carmen Adriana

    2016-02-01

    The effect of the combined use of chitosan, nisin and sodium lactate on the growth of Listeria innocua, Shewanella putrefaciens and psychrophilic bacteria isolated from fish was investigated in broth by means of minimum inhibitory concentrations (MIC). Furthermore, the sites of cell-injury caused by mentioned antimicrobials and their combinations on L. innocua and S. putrefaciens were studied. MIC of antimicrobial mixtures were evaluated by Berembaum design and check board method. Antimicrobials' sites of injury were investigated by the evaluation of cell constituents' release, cell surface hydrophobicity and differential scanning calorimetry. Results depended on antimicrobial used; several combinations inhibited the growth of L. innocua and S. putrefaciens and all combinations inhibited psychrophilic bacteria. Besides, some mixtures showed synergistic effects. All the mixtures affected ribosomes and DNA of the studied bacteria. Regarding cellular envelope, antimicrobials acted according to the structural characteristics of target microorganisms. Cell damage was higher when antimicrobials were combined, which could explain the observed synergistic effects. This study demonstrates and justifies the synergistic action of chitosan, nisin and sodium lactate on the inhibition of microorganisms related to fish spoilage and remarks the promissory use of the synergic combination of antimicrobials for fish preservation.

  13. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia

    PubMed Central

    Selin, Carrie; Stietz, Maria S.; Blanchard, Jan E.; Hall, Dennis G.; Brown, Eric D.; Cardona, Silvia T.

    2015-01-01

    Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery. PMID:26053039

  14. Natural killer cells: role in local tumor growth and metastasis

    PubMed Central

    Langers, Inge; Renoux, Virginie M; Thiry, Marc; Delvenne, Philippe; Jacobs, Nathalie

    2012-01-01

    Historically, the name of natural killer (NK) cells came from their natural ability to kill tumor cells in vitro. From the 1970s to date, accumulating data highlighted the importance of NK cells in host immune response against cancer and in therapy-induced antitumor response. The recognition and the lysis of tumor cells by NK cells are regulated by a complex balance of inhibitory and activating signals. This review summarizes NK cell mechanisms to kill cancer cells, their role in host immune responses against tumor growth or metastasis, and their implications in antitumor immunotherapies via cytokines, antibodies, or in combination with other therapies. The regulatory role of NK cells in autoimmunity is also discussed. PMID:22532775

  15. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells.

    PubMed

    Imai, Chihaya; Iwamoto, Shotaro; Campana, Dario

    2005-07-01

    Natural killer (NK) cells hold promise for improving the therapeutic potential of allogeneic hematopoietic transplantation, but their effectiveness is limited by inhibitory HLA types. We sought to overcome this intrinsic resistance by transducing CD56+CD3- NK cells with chimeric receptors directed against CD19, a molecule widely expressed by malignant B cells. An abundance of NK cells for transduction was secured by culturing peripheral blood mononuclear cells with K562 cells expressing the NK-stimulatory molecules 4-1BB ligand and interleukin 15, which yielded a median greater than 1000-fold expansion of CD56+CD3- cells at 3 weeks of culture, without T-lymphocyte expansion. Expression of anti-CD19 receptors linked to CD3zeta overcame NK resistance and markedly enhanced NK-cell-mediated killing of leukemic cells. This result was significantly improved by adding the 4-1BB costimulatory molecule to the chimeric anti-CD19-CD3zeta receptor; the cytotoxicity produced by NK cells expressing this construct uniformly exceeded that of NK cells whose signaling receptors lacked 4-1BB, even when natural cytotoxicity was apparent. Addition of 4-1BB was also associated with increased cell activation and production of interferon gamma and granulocyte-macrophage colony-stimulating factor. Our findings indicate that enforced expression of signaling receptors by NK cells might circumvent inhibitory signals, providing a novel means to enhance the effectiveness of allogeneic stem cell transplantation.

  16. Sphingosine Kinase-1 Involves the Inhibitory Action of HIF-1α by Chlorogenic Acid in Hypoxic DU145 Cells

    PubMed Central

    Lee, Myoung-Sun; Lee, Seon-Ok; Kim, Kyu-Ri; Lee, Hyo-Jeong

    2017-01-01

    Hypoxia enhances cancer development in a solid tumor. Hypoxia-inducible factor-1 α (HIF-1α) is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor that regulates tumor. HIF-1α regulates several target genes involved in many aspects of cancer progression, including angiogenesis, metastasis, anti-apoptosis and cell proliferation as well as imparts resistance to cancer treatment. In this study, we assessed Crataegus Pinnatifida Bunge var. typical Schneider ethanol extract (CPE) for its anti-cancer effects in hypoxia-induced DU145 human prostate cancer cell line. CPE decreased the abundance of HIF-1α and sphingosine kinase-1 (SPHK-1) in hypoxia-induced prostate cancer DU145 cells. CPE decreased HIF-1α and SPHK-1 as well as SPHK-1 activity. Chlorogenic acid (CA) is one of four major compounds of CPE. Compared to CPE, CA significantly decreased the expression of HIF-1α and SPHK-1 as well as SPHK-1 activity in hypoxia-induced DU145 cells. Furthermore, CA decreased phosphorylation AKT and GSK-3β, which are associated with HIF-1α stabilization and affected SPHK-1 in a concentration-dependent manner. We confirmed the mechanism of CA-induced inhibition of HIF-1α by SPHK-1 signaling pathway using SPHK-1 siRNA and SPHK inhibitor (SKI). CA decreased the secretion and cellular expression of VEGF, thus inhibiting hypoxia-induced angiogenesis. Treatment of DU145cells with SPHK1 siRNA and CA for 48 h decreased cancer cell growth, and the inhibitory action of SPHK siRNA and CA on cell growth was confirmed by decrease in the abundance of Proliferating cell nuclear antigen (PCNA). PMID:28165392

  17. Synergistic inhibitory effect of berberine and d-limonene on human gastric carcinoma cell line MGC803.

    PubMed

    Zhang, Xiu-Zhen; Wang, Ling; Liu, Dong-Wu; Tang, Guang-Yan; Zhang, Hong-Yu

    2014-09-01

    This study aims at evaluating the anticancer effects of berberine hydrochloride (berberine) and d-limonene, alone and in combination, on human gastric carcinoma cell line MGC803 to determine whether berberine and d-limonene work synergistically and elucidate their mechanisms. MGC803 cells were treated with berberine and d-limonene, alone and in combination, for 24-48 h. The inhibitory effects of these drugs on growth were determined by MTT assay. The combination index and drug reduction index were calculated with the Chou-Talalay method based on the median-effect principle. Flow cytometry and laser scanning confocal microscopy were employed to evaluate the effects of both drugs on cell-cycle perturbation and apoptosis, generation of reactive oxygen species (ROS), mitochondrial membrane potential, and expression of Bcl-2 and caspase-3 in MGC803 cells. Berberine or d-limonene alone can inhibit the growth of MGC803 cells in a dose- and time-dependent manner. Berberine and d-limonene at a combination ratio of 1:4 exhibited a synergistic effect on anti-MGC803 cells. The two drugs distinctly induced intracellular ROS generation, reduced the mitochondrial transmembrane potential (ΔΨm), enhanced the expression of caspase-3, and decreased the expression of Bcl-2. The combination of berberine and d-limonene showed more remarkable effects compared with drugs used singly in MGC803 cells. The combination of berberine and d-limonene exerted synergistic anticancer effects on MGC803 cells by cell-cycle arrest, ROS production, and apoptosis induction through the mitochondria-mediated intrinsic pathway.

  18. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    PubMed Central

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  19. [Inhibitory effect of ilexpernoside C from Ilex pernyi on aggregated LDL-induced foam cells formation].

    PubMed

    Lun, Qi-Xing; Liu, Bing-Lin; Li, Jun; Zhao, Yun-Fang; Zheng, Jiao; Tu, Peng-Fei

    2016-02-01

    The aggregation of macrophage-derived foam cells on vascular wall is considered to be a main cause of atherosclerosis. In the present study, we evaluated the inhibitory effect of the compound ilexpernoside C (IC1) extracted from Ilex pernyi (Aquifoliaceae) on foam cell formation in THP-1 macrophages cells which were induced by low density lipoproteins aggregates (LDL aggregates). Results showed that IC1 could significantly inhibit the formation of foam cells. The analysis on related receptors of foam cells indicated that IC1 could significantly decrease the expression of low density lipoprotein-related receptor 1(LRP1). Therefore, these findings indicated that IC1 inhibited the formation of foam cells by inhibiting endocytosis of macrophages, thus it may act as a potential anti-atherosclerotic agent. Copyright© by the Chinese Pharmaceutical Association.

  20. A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum

    SciTech Connect

    Yu Da; Liang Jiangguo; Yu Haining; Wu Haifeng; Xu Chunhua; Liu Jingze . E-mail: jzliu21@heinfo.net; Lai Ren . E-mail: rlai72@njau.edu.cn

    2006-05-05

    Some studies done to date suggest that B-cell inhibitory factor occurred in tick saliva. In this study, a novel protein having B-cell inhibitory activity was purified and characterized from the salivary glands of the hard tick, Hyalomma asiaticum asiaticum. This protein was named B-cell inhibitory factor (BIF). The cDNA encoding BIF was cloned by cDNA library screening. The predicted protein from the cDNA sequence is composed of 138 amino acids including the mature BIF. No similarity was found by Blast search. The lipopolysaccharide-induced B-cell proliferation was inhibited by BIF. This is First report of the identification and characterization of B-cell inhibitory protein from tick. The current study facilitates the study of identifying the interaction among tick, Borrelia burgdorferi, the causative agent of Lyme disease, and host.

  1. Cytoskeletal stabilization of inhibitory interactions in immunologic synapses of mature human dendritic cells with natural killer cells

    PubMed Central

    Barreira da Silva, Rosa; Graf, Claudine

    2011-01-01

    Human mature dendritic cells (DCs) can efficiently stimulate natural killer (NK)–cell responses without being targeted by their cytotoxicity. To understand this important regulatory crosstalk, we characterized the development of the immunologic synapse between mature DCs and resting NK cells. Conjugates between these 2 innate leukocyte populations formed rapidly, persisted for prolonged time periods and matured with DC-derived f-actin polymerization at the synapse. Polarization of IL-12 and IL-12R to the synapse coincided with f-actin polymerization, while other activating and inhibitory molecules were enriched at the interface between DCs and NK cells earlier. Functional assays revealed that inhibition of f-actin polymerization in mature synapses led to an increase of IFN-γ secretion and cytotoxicity by NK cells. This elevated NK-cell reactivity resulted from decreased inhibitory signaling in the absence of MHC class I polarization at the interface, which was observed on inhibition of f-actin polymerization in DCs. Thus, inhibitory signaling is stabilized by f-actin at the synapse between mature DCs and resting NK cells. PMID:21917751

  2. Discovery of Diverse Small Molecule Chemotypes with Cell-Based PKD1 Inhibitory Activity

    PubMed Central

    Sharlow, Elizabeth R.; Mustata Wilson, Gabriela; Close, David; Leimgruber, Stephanie; Tandon, Manuj; Reed, Robyn B.; Shun, Tong Ying; Wang, Q. Jane; Wipf, Peter; Lazo, John S.

    2011-01-01

    Protein kinase D (PKD) is a novel family of serine/threonine kinases regulated by diacylglycerol, which is involved in multiple cellular processes and various pathological conditions. The limited number of cell-active, selective inhibitors has historically restricted biochemical and pharmacological studies of PKD. We now markedly expand the PKD1 inhibitory chemotype inventory with eleven additional novel small molecule PKD1 inhibitors derived from our high throughput screening campaigns. The in vitro IC50s for these eleven compounds ranged in potency from 0.4 to 6.1 µM with all of the evaluated compounds being competitive with ATP. Three of the inhibitors (CID 1893668, (1Z)-1-(3-ethyl-5-methoxy-1,3-benzothiazol-2-ylidene)propan-2-one; CID 2011756, 5-(3-chlorophenyl)-N-[4-(morpholin-4-ylmethyl)phenyl]furan-2-carboxamide; CID 5389142, (6Z)-6-[4-(3-aminopropylamino)-6-methyl-1H-pyrimidin-2-ylidene]cyclohexa-2,4-dien-1-one) inhibited phorbol ester-induced endogenous PKD1 activation in LNCaP prostate cancer cells in a concentration-dependent manner. The specificity of these compounds for PKD1 inhibitory activity was supported by kinase assay counter screens as well as by bioinformatics searches. Moreover, computational analyses of these novel cell-active PKD1 inhibitors indicated that they were structurally distinct from the previously described cell-active PKD1 inhibitors while computational docking of the new cell-active compounds in a highly conserved ATP-binding cleft suggests opportunities for structural modification. In summary, we have discovered novel PKD1 inhibitors with in vitro and cell-based inhibitory activity, thus successfully expanding the structural diversity of small molecule inhibitors available for this important pharmacological target. PMID:21998636

  3. Inhibitory effect of genistein on mouse colon cancer MC-26 cells involved TGF-{beta}1/Smad pathway

    SciTech Connect

    Yu Zengli . E-mail: zengliy@yahoo.com.cn; Tang Yunan; Hu Dongsheng; Li Juan

    2005-08-05

    TGF-{beta}1/signaling has been shown to be associated with proapoptotic and antimitotic activities in epithelial tissues. Genistein, a major component of soybean isoflavone, has multiple functions resulting in anticancer proliferation. We herein showed that genistein dose-dependently increased TGF-{beta}1 mRNA expression in mouse colon cancer MC-26 cells. A mouse monoclonal anti-TGF-{beta}1 neutralizing antibody partially, but not completely, blocked the growth inhibition by genistein. By using adenoviral vector, we demonstrated that Smad7 overexpression attenuated genistein-induced growth inhibition and apoptosis as determined by MTT and apoptosis ELISA. Smad7 overexpression also inhibited upregulation of p21 and caspase-3 activity by geinistein. To further confirm inhibitory effect of genistein in MC-26 cells require TGF-{beta}1/Smad signaling, we employed Western blot and electrophoretic mobility shift assay to detect formation of Smad-DNA complexes and phosphorylation of Smad2 and Smad3, respectively. Data revealed that genistein induced an evident formation of Smad-DNA complexes and phosphorylation of Smad2 and Smad3, indicating increased TGF-{beta}1 signaling. Taken together, these findings first provided insights into possible molecular mechanisms of growth inhibition by genistein that required Smad signaling, which could aid in its evaluation for colon tumor prevention.

  4. Inhibitory effects of sea buckthorn procyanidins on fatty acid synthase and MDA-MB-231 cells.

    PubMed

    Wang, Yi; Nie, Fangyuan; Ouyang, Jian; Wang, Xiaoyan; Ma, Xiaofeng

    2014-10-01

    Fatty acid synthase (FAS) is overexpressed in many human cancers including breast cancer and is considered to be a promising target for therapy. Sea buckthorn has long been used to treat a variety of maladies. Here, we investigated the inhibitory effect of sea buckthorn procyanidins (SBPs) isolated from the seeds of sea buckthorn on FAS and FAS overexpressed human breast cancer MDA-MB-231 cells. The FAS activity and FAS inhibition were measured by a spectrophotometer at 340 nm of nicotinamide adenine dinucleotide phosphate (NADPH) absorption. We found that SBP potently inhibited the activity of FAS with a half-inhibitory concentration (IC50) value of 0.087 μg/ml. 3-4,5-Dimethylthiazol-2-yl-2,3-diphenyl tetrazolium bromide (MTT) assay was used to test the cell viability. SBP reduced MDA-MB-231 cell viability with an IC50 value of 37.5 μg/ml. Hoechst 33258/propidium iodide dual staining and flow cytometric analysis showed that SBP induced MDA-MB-231 cell apoptosis. SBP inhibited intracellular FAS activity with a dose-dependent manner. In addition, sodium palmitate could rescue the cell apoptosis induced by SBP. These results showed that SBP was a promising FAS inhibitor which could induce the apoptosis of MDA-MB-231 cells via inhibiting FAS. These findings suggested that SBP might be useful for preventing or treating breast cancer.

  5. Extrasynaptic glutamate and inhibitory neurotransmission modulate ganglion cell participation during glutamatergic retinal waves.

    PubMed

    Firl, Alana; Sack, Georgeann S; Newman, Zachary L; Tani, Hiroaki; Feller, Marla B

    2013-04-01

    During the first 2 wk of mouse postnatal development, transient retinal circuits give rise to the spontaneous initiation and lateral propagation of depolarizations across the ganglion cell layer (GCL). Glutamatergic retinal waves occur during the second postnatal week, when GCL depolarizations are mediated by ionotropic glutamate receptors. Bipolar cells are the primary source of glutamate in the inner retina, indicating that the propagation of waves depends on their activation. Using the fluorescence resonance energy transfer-based optical sensor of glutamate FLII81E-1μ, we found that retinal waves are accompanied by a large transient increase in extrasynaptic glutamate throughout the inner plexiform layer. Using two-photon Ca(2+) imaging to record spontaneous Ca(2+) transients in large populations of cells, we found that despite this spatially diffuse source of depolarization, only a subset of neurons in the GCL and inner nuclear layer (INL) are robustly depolarized during retinal waves. Application of the glutamate transporter blocker dl-threo-β-benzyloxyaspartate (25 μM) led to a significant increase in cell participation in both layers, indicating that the concentration of extrasynaptic glutamate affects cell participation in both the INL and GCL. In contrast, blocking inhibitory transmission with the GABAA receptor antagonist gabazine and the glycine receptor antagonist strychnine increased cell participation in the GCL without significantly affecting the INL. These data indicate that during development, glutamate spillover provides a spatially diffuse source of depolarization, but that inhibitory circuits dictate which neurons within the GCL participate in retinal waves.

  6. Interstitial cells of Cajal mediate nitrergic inhibitory neurotransmission in the murine gastrointestinal tract.

    PubMed

    Lies, Barbara; Gil, Víctor; Groneberg, Dieter; Seidler, Barbara; Saur, Dieter; Wischmeyer, Erhard; Jiménez, Marcel; Friebe, Andreas

    2014-07-01

    Nitric oxide (NO) is a major inhibitory neurotransmitter in the gastrointestinal (GI) tract. Its main effector, NO-sensitive guanylyl cyclase (NO-GC), is expressed in several GI cell types, including smooth muscle cells (SMC), interstitial cells of Cajal (ICC), and fibroblast-like cells. Up to date, the interplay between neurons and these cells to initiate a nitrergic inhibitory junction potential (IJP) is unclear. Here, we investigate the origin of the nitrergic IJP in murine fundus and colon. IJPs were determined in fundus and colon SMC of mice lacking NO-GC globally (GCKO) and specifically in SMC (SM-GCKO), ICC (ICC-GCKO), and both SMC/ICC (SM/ICC-GCKO). Nitrergic IJP was abolished in ICC-GCKO fundus and reduced in SM-GCKO fundus. In the colon, the amplitude of nitrergic IJP was reduced in ICC-GCKO, whereas nitrergic IJP in SM-GCKO was reduced in duration. These results were corroborated by loss of the nitrergic IJP in global GCKO. In conclusion, our results prove the obligatory role of NO-GC in ICC for the initiation of an IJP. NO-GC in SMC appears to enhance the nitrergic IJP, resulting in a stronger and prolonged hyperpolarization in fundus and colon SMC, respectively. Thus NO-GC in both cell types is mandatory to induce a full nitrergic IJP. Our data from the colon clearly reveal the nitrergic IJP to be biphasic, resulting from individual inputs of ICC and SMC.

  7. Inhibitory effect of strychnine on acetylcholine receptor activation in bovine adrenal medullary chromaffin cells.

    PubMed Central

    Kuijpers, G A; Vergara, L A; Calvo, S; Yadid, G

    1994-01-01

    1. Strychnine, which is known as a potent and selective antagonist of the inhibitory glycine receptor in the central nervous system, inhibits the nicotinic stimulation of catecholamine release from bovine cultured adrenal chromaffin cells in a concentration-dependent (1-100 microM) manner. At 10 microM nicotine, the IC50 value for strychnine is approximately 30 microM. Strychnine also inhibits the nicotine-induced membrane depolarization and increase in intracellular Ca2+ concentration. 2. The inhibitory action of strychnine is reversible and is selective for nicotinic stimulation, with no effect observed on secretion elicited by a high external K+ concentration, histamine or angiotensin II. 3. Strychnine competes with nicotine in its effect, but not modify the apparent positive cooperatively of the nicotine binding sites. In the absence of nicotine, strychnine has no effect on catecholamine release. Glycine does not affect catecholamine release nor the inhibitory action of strychnine on this release. 4. These results suggest that strychnine interacts with the agonist binding site of the nicotinic acetylcholine receptor in chromaffin cells, thus exerting a pharmacological effect independently of the glycine receptor. PMID:7834198

  8. Kinetics of Inhibitory Feedback from Horizontal Cells to Photoreceptors: Implications for an Ephaptic Mechanism

    PubMed Central

    Warren, Ted J.; Van Hook, Matthew J.; Tranchina, Daniel

    2016-01-01

    Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca2+ channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8–9 pA and exhibited a biexponential time course with time constants averaging 14–17 ms and 120–220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca2+ channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4–5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9–13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11–14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that

  9. Single-cell growth analysis in a mixed cell culture

    NASA Astrophysics Data System (ADS)

    Ando, Jun; Bato, Mary Grace P.; Daria, Vincent Ricardo

    2008-06-01

    We perform single cell analysis of cell growth in a mixed cell culture. Two species of yeast cells: Saccharomyces cerevisiae and Candida albicans, are optically trapped using focused continuous-wave near infrared laser. Cell growth for both cells is inhibited only when the two species of cells are in contact with each other. This indicates cell-cell interaction mediated cell growth inhibition mechanism. Single cell level analysis of cell growth studied here contributes to the further understanding of yeast growth arrest in a mixed yeast culture.

  10. Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin A production.

    PubMed

    Basílico, M Z; Basílico, J C

    1999-10-01

    Inhibitory effects of essential oils of oregano (Origanum vulgare), mint (Menta arvensis), basil (Ocimum basilicum), sage (Salvia officinalis) and coriander (Coriandrum sativum), on the mycelial growth and ochratoxin A production by Aspergillus ochraceus NRRL 3174 were studied. Cultures were incubated on yeast extract-sucrose (YES) broth, at concentrations of 0, 500, 750 and 1000 p.p.m. of essential oils during 7, 14 and 21 d at 25 degrees C. At 1000 p.p.m., oregano and mint completely inhibited the fungal growth and ochratoxin A production up to 21 d, while basil was only effective up to 7 d. At 750 p.p.m., oregano was completely effective up to 14 d, whereas mint allowed fungal growth but no ocratoxin A production up to 14 d. At 500 p.p.m., no evident inhibition could be in observed with any of the essential oils under analysis. Sage and coriander showed no important effect at any of the concentrations studied. These inhibitory effects are interesting in connection with the prevention of mycotoxin contamination in many foods and they could be used instead of synthetic antifungal products.

  11. Method for Bacterial Growth and Ammonia Production and Effect of Inhibitory Substances in Disposable Absorbent Hygiene Products.

    PubMed

    Forsgren-Brusk, Ulla; Yhlen, Birgitta; Blomqvist, Marie; Larsson, Peter

    The purpose of this study was to evaluate a pragmatic laboratory method to provide a technique for developing incontinence products better able to reduce malodor when used in the clinical setting. Bacterial growth and bacterially formed ammonia in disposable absorbent incontinence products was measured by adding synthetic urine inoculated with bacteria to test samples cut from the crotch area of the product. The inhibitory effect's of low pH (4.5 and 4.9) and 3 antimicrobial substances-chlorhexidine, polyhexamethylene biguanide (PHMB), and thymol-at 2 concentrations each, were studied. From the initial inocula of 3.3 log colony-forming units per milliliter (cfu/mL) at baseline, the bacterial growth of the references increased to 5.0 to 6.0 log cfu/mL at 6 hours for Escherichia coli, Proteus mirabilis, and Enterococcus faecalis. At 12 hours there was a further increase to 7.0 to 8.9 log cfu/mL. Adjusting the pH of the superabsorbent in the incontinence product from 6.0 to pH 4.5 and pH 4.9 significantly (P < .05) inhibited the bacterial growth rates, in most cases, both at 6 and 12 hours. The effect was most pronounced at pH 4.5. Chlorhexidine had significant (P < .05) inhibitory effect on E. coli and E. faecalis, and at 12 hours also on P. mirabilis. For PHMB and thymol the results varied. At 6 hours, the ammonia concentration in the references (pH 6.0) was 200 to 300 ppm and it was 1500 to 1600 ppm at 8 hours. At pH 4.5, no or little ammonia production was measured at 6 and 8 hours. At pH 4.9, there was a significant reduction (P < .01). Chlorhexidine and PHMB exerted a significant (P < .01 or P < .001) inhibitory effect on ammonia production at both concentrations and at 6 and 8 hours. Thymol 0.003% and 0.03% showed inhibitory effect at both 6 hours (P < .01 or P < .001) and at 8 hours (P < .05 or P < .001). The method described in this study can be used to compare the ability of various disposable absorbent products to inhibit bacterial growth and ammonia

  12. Steroid receptor coactivator 3 regulates autophagy in breast cancer cells through macrophage migration inhibitory factor

    PubMed Central

    Wu, Mei-Yi; Fu, Junjiang; Xu, Jianming; O'Malley, Bert W; Wu, Ray-Chang

    2012-01-01

    SRC-3/AIB1 (steroid receptor coactivator 3/amplified in breast cancer 1) is an authentic oncogene that contributes to the development of drug resistance and poor disease-free survival in cancer patients. Autophagy is also an important cell death mechanism that has tumor suppressor function. In this study, we identified macrophage migration inhibitory factor (MIF) as a novel target gene of SRC-3 and demonstrated its importance in cell survival. Specifically, we showed that MIF is a strong suppressor of autophagic cell death. We further showed that suppression of MIF, in turn, induced autophagic cell death, enhanced chemosensitivity and inhibited tumorigenesis in a xenograft mouse tumorigenesis model. Our study demonstrated that regulation of MIF expression and suppression of autophagic cell death is a potent mechanism by which SRC-3 contributes to increased chemoresistance and tumorigenicity. PMID:22430150

  13. Synaptic Connectivity between Renshaw Cells and Motoneurons in the Recurrent Inhibitory Circuit of the Spinal Cord

    PubMed Central

    Moore, Niall J.; Bhumbra, Gardave S.; Foster, Joshua D.

    2015-01-01

    Renshaw cells represent a fundamental component of one of the first discovered neuronal circuits, but their function in motor control has not been established. They are the only central neurons that receive collateral projections from motor outputs, yet the efficacy of the excitatory synapses from single and converging motoneurons remains unknown. Here we present the results of dual whole-cell recordings from identified, synaptically connected Renshaw cell-motoneuron pairs in the mouse lumbar spinal cord. The responses from single Renshaw cells demonstrate that motoneuron synapses elicit large excitatory conductances with few or no failures. We show that the strong excitatory input from motoneurons results from a high probability of neurotransmitter release onto multiple postsynaptic contacts. Dual current-clamp recordings confirm that single motoneuron inputs were sufficient to depolarize the Renshaw cell beyond threshold for firing. Reciprocal connectivity was observed in approximately one-third of the paired recordings tested. Ventral root stimulation was used to evoke currents from Renshaw cells or motoneurons to characterize responses of single neurons to the activation of their corresponding presynaptic cell populations. Excitatory or inhibitory synaptic inputs in the recurrent inhibitory loop induced substantial effects on the excitability of respective postsynaptic cells. Quantal analysis estimates showed a large number of converging inputs from presynaptic motoneuron and Renshaw cell populations. The combination of considerable synaptic efficacy and extensive connectivity within the recurrent circuitry indicates a role of Renshaw cells in modulating motor outputs that may be considerably more important than has been previously supposed. SIGNIFICANCE STATEMENT We have recently shown that Renshaw cells mediate powerful shunt inhibition on motoneuron excitability. Here we complete a quantitative description of the recurrent circuit using recordings of

  14. Effects of flavonoids on the growth and cell cycle of cancer cells.

    PubMed

    Choi, S U; Ryu, S Y; Yoon, S K; Jung, N P; Park, S H; Kim, K H; Choi, E J; Lee, C O

    1999-01-01

    In this study, we investigated the cytotoxicities of flavone (F01), 3-hydroxyflavone (F02), 6- hydroxyflavone (F03), 7-hydroxyflavone (F04), 3,6-dihydroxyflavone (F05), 5,7-dihydroxyflavone (F06) and 5,6,7-trihydroxyflavone (F07) to human cancer cells including P- glycoprotein (Pgp)-expressing HCT15 cells and its multidrug resistant subline, HCT15/CL02 cells. We also examined the effects of those flavonoids on the cell cycle of these cancer cells. HCT15/CL02 cells did not reveal resistance to all the flavonoids tested in comparison with HCT15 cells. In cell cycle analysis, all the flavonoids tested, except F01 and F04, reduced the G0/G1 population of SF295 cells at growth inhibitory concentrations, and increased G2/M (F02, F03 and F06) or S (F05 and F07) populations. In addition, F02 and F03 decreased the G2/M and G0/G1 population, and increased the S and G2/M population in HCT15 cells, respectively. Meanwhile, in HCT15/CL02 cells, F02 and F03 decreased the G0/G1 populations and increased the S population. In conclusion, we deemed that the flavonoids tested had diverse cytotoxic mechanisms, and exerted their cell growth inhibitory or killing activity by distinctive ways in different cells.

  15. Role of macrophage migration inhibitory factor in the regulatory T cell response of tumor-bearing mice

    PubMed Central

    Choi, Susanna; Kim, Hang-Rae; Leng, Lin; Kang, Insoo; Jorgensen, William L.; Cho, Chul-Soo; Bucala, Richard; Kim, Wan-Uk

    2012-01-01

    Macrophage migration inhibitory factor (MIF) is involved in tumorigenesis by facilitating tumor proliferation and evasion of apoptosis; however, its role in tumor immunity is unclear. In this study, we investigated the effect of MIF on the progression of the syngenic, CT26 colon carcinoma and the generation of tumor regulatory T cells (Tregs). The results showed that the tumor growth rate was significantly lower in MIF knockout (MIF−/−) mice than in wild type (MIF+/+) mice. Flow cytometric analysis of both spleen and tumor cells revealed that MIF−/− mice had significantly lower levels of tumor-associated CD4+Tregs than MIF+/+ mice. The splenic cells of MIF−/− mice also showed a decrease in CD8+Tregs, which was accompanied by an increase in CD8-induced tumor cytotoxicity. Interestingly, the inducible Treg response in spleen cells to anti-CD3/CD28+IL-2+TGF-β was greater in MIF−/− mice than in MIF+/+ mice. Spleen cells of MIF−/− mice, stimulated with anti-CD3/CD28, produced lower levels of IL-2, but not TGF-β, than those of MIF+/+ mice, which was recovered by the addition of recombinant MIF. Conversely, a neutralizing anti-MIF Ab blocked anti-CD3-induced IL-2 production by splenocytes of MIF+/+ mice and suppressed the inducible Treg generation. Moreover, the administration of IL-2 into tumor-bearing MIF−/− mice restored the generation of Tregs and tumor growth. Taken together, our data suggest that MIF promotes tumor growth by increasing Tregs generation through the modulation of IL-2 production. Thus, anti-MIF treatment might be useful in enhancing the adaptive immune response to colon cancers. PMID:22972922

  16. Stimulatory and Inhibitory Killer Immunoglobulin-Like Receptor Molecules are Expressed and Functional on Lupus T Cells1

    PubMed Central

    Basu, Dhiman; Liu, Ying; Wu, Ailing; Yarlagadda, Sushma; Gorelik, Gabriela J.; Kaplan, Mariana J.; Hewagama, Anura; Hinderer, Robert C.; Strickland, Faith M.; Richardson, Bruce C.

    2009-01-01

    T cells from lupus patients have hypomethylated DNA and overexpress genes normally suppressed by DNA methylation that contribute to disease pathogenesis. We found that stimulatory and inhibitory killer cell immunoglobulin–like receptor (KIR3) genes are aberrantly overexpressed on experimentally demethylated T cells. We therefore asked if lupus T cells also overexpress KIR, and if the proteins are functional. T cells from lupus patients were found to overexpress KIR genes, and expression was proportional to disease activity. Antibodies to the stimulatory molecule KIR2DL4 triggered IFN-γ release by lupus T cells, and production was proportional to disease activity. Similarly, crosslinking the inhibitory molecule KIR3DL1 prevented the autoreactive macrophage killing that characterizes lupus T cells. These results indicate that aberrant T cell KIR expression may contribute to IFN overproduction and macrophage killing in human lupus, and suggest that antibodies to inhibitory KIR may be a treatment for this disease. PMID:19675166

  17. Stimulatory and inhibitory killer Ig-like receptor molecules are expressed and functional on lupus T cells.

    PubMed

    Basu, Dhiman; Liu, Ying; Wu, Ailing; Yarlagadda, Sushma; Gorelik, Gabriela J; Kaplan, Mariana J; Hewagama, Anura; Hinderer, Robert C; Strickland, Faith M; Richardson, Bruce C

    2009-09-01

    T cells from lupus patients have hypomethylated DNA and overexpress genes normally suppressed by DNA methylation that contribute to disease pathogenesis. We found that stimulatory and inhibitory killer cell Ig-like receptor (KIR) genes are aberrantly overexpressed on experimentally demethylated T cells. We therefore asked if lupus T cells also overexpress KIR, and if the proteins are functional. T cells from lupus patients were found to overexpress KIR genes, and expression was proportional to disease activity. Abs to the stimulatory molecule KIR2DL4 triggered IFN-gamma release by lupus T cells, and production was proportional to disease activity. Similarly, cross-linking the inhibitory molecule KIR3DL1 prevented the autoreactive macrophage killing that characterizes lupus T cells. These results indicate that aberrant T cell KIR expression may contribute to IFN overproduction and macrophage killing in human lupus, and they suggest that Abs to inhibitory KIR may be a treatment for this disease.

  18. An activating and inhibitory signal from an inhibitory receptor LMIR3/CLM-1: LMIR3 augments lipopolysaccharide response through association with FcRgamma in mast cells.

    PubMed

    Izawa, Kumi; Kitaura, Jiro; Yamanishi, Yoshinori; Matsuoka, Takayuki; Kaitani, Ayako; Sugiuchi, Masahiro; Takahashi, Mariko; Maehara, Akie; Enomoto, Yutaka; Oki, Toshihiko; Takai, Toshiyuki; Kitamura, Toshio

    2009-07-15

    Leukocyte mono-Ig-like receptor 3 (LMIR3) is an inhibitory receptor mainly expressed in myeloid cells. Coengagement of Fc epsilonRI and LMIR3 impaired cytokine production in bone marrow-derived mast cells (BMMCs) induced by Fc epsilonRI crosslinking alone. Mouse LMIR3 possesses five cytoplasmic tyrosine residues (Y241, Y276, Y289, Y303, Y325), among which Y241 and Y289 (Y241/289) or Y325 fit the consensus sequence of ITIM or immunotyrosine-based switch motif (ITSM), respectively. The inhibitory effect was abolished by the replacement of Y325 in addition to Y241/289 with phenylalanine (Y241/189/325/F) in accordance with the potential of Y241/289/325 to cooperatively recruit Src homology region 2 domain-containing phosphatase 1 (SHP)-1 or SHP-2. Intriguingly, LMIR3 crosslinking alone induced cytokine production in BMMCs expressing LMIR3 (Y241/276/289/303/325F) mutant as well as LMIR3 (Y241/289/325F). Moreover, coimmunoprecipitation experiments revealed that LMIR3 associated with ITAM-containing FcRgamma. Analysis of FcRgamma-deficient BMMCs demonstrated that both Y276/303 and FcRgamma played a critical role in the activating function of this inhibitory receptor. Importantly, LMIR3 crosslinking enhanced cytokine production of BMMCs stimulated by LPS, while suppressing production stimulated by other TLR agonists or stem cell factor. Thus, an inhibitory receptor LMIR3 has a unique property to associate with FcRgamma and thereby functions as an activating receptor in concert with TLR4 stimulation.

  19. Isolation of virus-cell fusion inhibitory components from the stem bark of Styrax japonica S. et Z.

    PubMed

    Lee, Dung Gun; Jin, Qinglong; Jin, Hong-Guang; Shin, Ji Eun; Choi, Eun Jin; Woo, Eun-Rhan

    2010-06-01

    Five compounds, styraxjaponoside A (1), matairesinoside (2), egonol glucoside (3), dihydrodehydrodiconiferyl alcohol 9'-O-glucoside (4), and styraxjaponoside B (5) were isolated from the stem bark of Styrax japonica. Among them, compounds 1 and 5 showed significantly high virus-cell fusion inhibitory activity. In addition, compound 5 exhibited almost equivalent virus-cell fusion inhibitory activity to that of dextran sulfate, which is used as a positive control.

  20. Purification and Characterization of a Novel Hemagglutinin with Inhibitory Activity toward Osteocarcinoma Cells from Northeast China Black Beans.

    PubMed

    Dan, Xiuli; Wong, Jack Ho; Fang, Evandro Fei; Chan, Francis Chun Wai; Ng, Tzi Bun

    2015-04-22

    In the present study, we isolated a novel hemagglutinin from an edible legume and explored its growth-inhibitory effect on osteocarcinoma and liver cancer cells. The protein was purified by liquid chromatography techniques which entailed affinity chromatography on Affi-gel blue gel, ion-exchange chromatography on Mono Q, and gel filtration on Superdex 75 with an FPLC system. The hemagglutinating activity of this hemagglutinin was demonstrated to be ion dependent and stable over a wide range of temperature and pH values. Antiproliferative activity was observed in the tumor cell lines MG-63 and HepG2 but not in the normal cell line WRL 68. Osteocarcinoma cells treated with the hemagglutinin underwent obvious cell shrinkage, chromatin condensation, mitochondrial membrane depolarization, and apoptosis. The mRNA expression level of interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), interferon-gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α) were found to be up-regulated to different extents after treatment of this hemagglutinin.

  1. Inhibitory effect of a redox-silent analogue of tocotrienol on hypoxia adaptation in prostate cancer cells.

    PubMed

    Shiozawa, Nobuya; Sugahara, Ryosuke; Namiki, Kozue; Sato, Chiaki; Ando, Akira; Sato, Ayami; Virgona, Nantiga; Yano, Tomohiro

    2017-03-01

    Prostate cancer (PCa) is one of the most common cancers in Western countries and acquires a malignant phenotype, androgen-independent growth. PCa under hypoxia often has resistance to chemotherapy and radiotherapy. However, an effective therapy against PCa under hypoxia has not yet been established. In this report, we investigated the inhibitory effect of a redox-silent analogue of tocotrienol on the survival of a human androgen-independent PCa cell line (PC3) under hypoxia. We found that the redox-silent analogue exerted a cytotoxic effect on PC3 cells in a dose-dependent manner irrespective of either hypoxia or normoxia. Moreover, under hypoxia, the analogue dose dependently reduced the protein levels of hypoxia-inducible factor (HIF)-1α and HIF-2α. In addition, a specific inhibitor toward HIF-1α induced cytotoxicity on PC3 cells, whereas selective inhibition of HIF-2α exerted no effect. Furthermore, suppression of HIFs levels by the analogue in hypoxic PC3 cells was closely associated with the inactivation of Fyn, a member of the nonreceptor tyrosine kinase family, as confirmed by the action of a specific inhibitor toward the kinase (PP2). Taken together, these results suggest that the tocotrienol analogue could inhibit the survival of PC3 cells under hypoxia, mainly by the inhibition of Fyn/HIF-1α signaling, and this may lead to the establishment of a new effective therapy for androgen-independent PCa.

  2. Inhibitory effect of kaolin minerals compound against hepatitis C virus in Huh-7 cell lines

    PubMed Central

    2014-01-01

    Background Hepatitis C virus (HCV) is estimated to infect 200 million individuals in the globe, including approximately 10 million in Pakistan causing both acute and chronic hepatitis. The standard treatment against HCV is pegylated interferon therapy in combination with a nucleoside analogue ribavirin. In addition, several herbal extracts and phytochemicals derivatives are used traditionally in the treatment of liver diseases as well as HCV infection. The present study determines the inhibitory effect of kaolin minerals compound against hepatitis C virus in Huh-7 cell lines. Methods Huh-7 cell lines were used for the in vitro HCV replication by using HCV positive sera from different patients with known HCV genotypes and viral titer/load. Total RNA was extracted from these infected cells and was quantified by real-time polymerase chain reaction (Real-time PCR). The viral titer was compared with the control samples to determine the anti-HCV activity of kaolin derived compounds. Kaolin is a group of clay minerals, with the chemical composition Al2 Si2O5 (OH)4. Results The results showed promising effectiveness of local kaolin derived anti-HCV compounds by causing 28% to 77% decrease in the HCV titer, when applied to infected Huh-7 cell lines. This study provides the basis for future work on these compounds especially to determine the specific pathway and mechanism for inhibitory action in the replicon systems of viral hepatitis. Conclusions Kaolin mineral derivatives show promising inhibitory effects against HCV genotypes 3a and 1a infection, which suggests its possible use as complementary and alternative medicine for HCV viral infection. PMID:24742271

  3. Inhibitory effect of kaolin minerals compound against hepatitis C virus in Huh-7 cell lines.

    PubMed

    Ali, Liaqat; Idrees, Muhammad; Ali, Muhammad; Hussain, Abrar; Ur Rehman, Irshad; Ali, Amjad; Iqbal, Syed Abbas; Kamel, Eyad Hassan

    2014-04-17

    Hepatitis C virus (HCV) is estimated to infect 200 million individuals in the globe, including approximately 10 million in Pakistan causing both acute and chronic hepatitis. The standard treatment against HCV is pegylated interferon therapy in combination with a nucleoside analogue ribavirin. In addition, several herbal extracts and phytochemicals derivatives are used traditionally in the treatment of liver diseases as well as HCV infection. The present study determines the inhibitory effect of kaolin minerals compound against hepatitis C virus in Huh-7 cell lines. Huh-7 cell lines were used for the in vitro HCV replication by using HCV positive sera from different patients with known HCV genotypes and viral titer/load. Total RNA was extracted from these infected cells and was quantified by real-time polymerase chain reaction (Real-time PCR). The viral titer was compared with the control samples to determine the anti-HCV activity of kaolin derived compounds. Kaolin is a group of clay minerals, with the chemical composition Al2 Si2O5 (OH)4. The results showed promising effectiveness of local kaolin derived anti-HCV compounds by causing 28% to 77% decrease in the HCV titer, when applied to infected Huh-7 cell lines. This study provides the basis for future work on these compounds especially to determine the specific pathway and mechanism for inhibitory action in the replicon systems of viral hepatitis. Kaolin mineral derivatives show promising inhibitory effects against HCV genotypes 3a and 1a infection, which suggests its possible use as complementary and alternative medicine for HCV viral infection.

  4. Two macrophage migration inhibitory factors regulate starfish larval immune cell chemotaxis.

    PubMed

    Furukawa, Ryohei; Tamaki, Kana; Kaneko, Hiroyuki

    2016-04-01

    Immune cell recruitment is critical step in the inflammatory response and associated diseases. However, the underlying regulatory mechanisms are poorly understood in invertebrates. Mesenchyme cells of the starfish larvae, which allowed Metchnikoff to complete his landmark experiments, are important model for analysis of immune cell migration. The present study investigated the role of macrophage migration inhibitory factor (MIF)--an evolutionarily conserved cytokine that is functionally similar to chemokines--in the larvae of the starfish Patiria (Asterina) pectinifera, which were found to possess two orthologs, ApMIF1 and ApMIF2. ApMIF1 and ApMIF2 clustered with mammalian MIF and its homolog D-dopachrome tautomerase (DDT), respectively, in the phylogenetic analysis. In contrast to the functional similarity between mammalian MIF and DDT, ApMIF1 knockdown resulted in the excessive recruitment of mesenchyme cells in vivo, whereas ApMIF2 deficiency inhibited the recruitment of these cells to foreign bodies. Mesenchyme cells migrated along a gradient of recombinant ApMIF2 in vitro, whereas recombinant ApMIF1 completely blocked ApMIF2-induced directed migration. Moreover, the expression patterns of ApMIF1 and ApMIF2 messenger RNA in bacteria-challenged mesenchyme cells were consistent with in vivo observations of cell behaviors. These results indicate that ApMIF1 and ApMIF2 act as chemotactic inhibitory and stimulatory factors, respectively, and coordinately regulate mesenchyme cell recruitment during the immune response in starfish larvae. This is the first report describing opposing functions for MIF- and DDT-like molecules. Our findings provide novel insight into the mechanisms underlying immune regulation in invertebrates.

  5. ZNF185, an actin-cytoskeleton-associated growth inhibitory LIM protein in prostate cancer.

    PubMed

    Zhang, J-S; Gong, A; Young, C Y F

    2007-01-04

    We have recently identified ZNF185 as a gene that is downregulated in prostate cancer (PCa), in part via epigenetic alteration, and maybe associated with disease progression. In this study, we cloned the ZNF185 cDNA from normal human prostate tissues and investigated its biological function. We show that ZNF185 is a novel actin-cytoskeleton-associated Lin-l 1, Isl-1 and Mec-3 (LIM) domain-containing protein that localizes to F-actin structures, and is enriched at focal adhesions. We find that the NH(2)-terminal region, which we designate the actin-targeting domain, facilitates ZNF185 binding to actin in vitro and is both necessary and sufficient to mediate actin-cytoskeleton targeting of ZNF185, whereas the LIM domain, which is localized in the COOH-terminus is dispensable for this phenomenon. Interestingly, ectopic expression of full-length ZNF185, but not a mutant lacking the actin-targeting domain, could suppress proliferation and anchorage-independent growth of PCa cells. Together, our data suggest that ZNF185 may function as a tumor-suppressor protein by associating with the actin-cytoskeleton.

  6. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos.

    PubMed

    Telugu, Bhanu Prakash V L; Ezashi, Toshihiko; Sinha, Sunilima; Alexenko, Andrei P; Spate, Lee; Prather, Randall S; Roberts, R Michael

    2011-08-19

    The pig is important for agriculture and as an animal model in human and veterinary medicine, yet despite over 20 years of effort, there has been a failure to generate pluripotent stem cells analogous to those derived from mouse embryos. Here we report the production of leukemia inhibitory factor-dependent, so-called naive type, pluripotent stem cells from the inner cell mass of porcine blastocysts by up-regulating expression of KLF4 and POU5F1. The alkaline phosphatase-positive colonies resulting from reprogramming resemble mouse embryonic stem cells in colony morphology, cell cycle interval, transcriptome profile, and expression of pluripotent markers, such as POU5F1, SOX2, and surface marker SSEA1. They are dependent on leukemia inhibitory factor signaling for maintenance of pluripotency, can be cultured over extended passage, and have the ability to form teratomas. These cells derived from the inner cell mass of pig blastocysts are clearly distinct from the FGF2-dependent "primed" induced pluripotent stem cells described recently from porcine mesenchymal cells. The data are consistent with the hypothesis that the up-regulation of KLF4, as well as POU5F1, is required to create and stabilize the naive pluripotent state and may explain why the derivation of embryonic stem cells from pigs and other ungulates has proved so difficult.

  7. Leukemia Inhibitory Factor (LIF)-dependent, Pluripotent Stem Cells Established from Inner Cell Mass of Porcine Embryos*

    PubMed Central

    Telugu, Bhanu Prakash V. L.; Ezashi, Toshihiko; Sinha, Sunilima; Alexenko, Andrei P.; Spate, Lee; Prather, Randall S.; Roberts, R. Michael

    2011-01-01

    The pig is important for agriculture and as an animal model in human and veterinary medicine, yet despite over 20 years of effort, there has been a failure to generate pluripotent stem cells analogous to those derived from mouse embryos. Here we report the production of leukemia inhibitory factor-dependent, so-called naive type, pluripotent stem cells from the inner cell mass of porcine blastocysts by up-regulating expression of KLF4 and POU5F1. The alkaline phosphatase-positive colonies resulting from reprogramming resemble mouse embryonic stem cells in colony morphology, cell cycle interval, transcriptome profile, and expression of pluripotent markers, such as POU5F1, SOX2, and surface marker SSEA1. They are dependent on leukemia inhibitory factor signaling for maintenance of pluripotency, can be cultured over extended passage, and have the ability to form teratomas. These cells derived from the inner cell mass of pig blastocysts are clearly distinct from the FGF2-dependent “primed” induced pluripotent stem cells described recently from porcine mesenchymal cells. The data are consistent with the hypothesis that the up-regulation of KLF4, as well as POU5F1, is required to create and stabilize the naive pluripotent state and may explain why the derivation of embryonic stem cells from pigs and other ungulates has proved so difficult. PMID:21705331

  8. Targeting molecular and cellular inhibitory mechanisms for improvement of antitumor memory responses reactivated by tumor cell vaccine.

    PubMed

    Webster, W Scott; Thompson, R Houston; Harris, Kimberley J; Frigola, Xavier; Kuntz, Susan; Inman, Brant A; Dong, Haidong

    2007-09-01

    Development of effective vaccination approaches to treat established tumors represents a focus of intensive research because such approaches offer the promise of enhancing immune system priming against tumor Ags via restimulation of pre-existing (memory) antitumoral helper and effector immune cells. However, inhibitory mechanisms, which function to limit the recall responses of tumor-specific immunity, remain poorly understood and interfere with therapies anticipated to induce protective immunity. The mouse renal cell carcinoma (RENCA) tumor model was used to investigate variables affecting vaccination outcomes. We demonstrate that although a whole cell irradiated tumor cell vaccine can trigger a functional antitumor memory response in the bone marrows of mice with established tumors, these responses do not culminate in the regression of established tumors. In addition, a CD103+ regulatory T (Treg) cell subset accumulates within the draining lymph nodes of tumor-bearing mice. We also show that B7-H1 (CD274, PD-L1), a negative costimulatory ligand, and CD4+ Treg cells collaborate to impair the recall responses of tumor-specific memory T cells. Specifically, mice bearing large established RENCA tumors were treated with tumor cell vaccination in combination with B7-H1 blockade and CD4+ T cell depletion (triple therapy treatment) and monitored for tumor growth and survival. Triple treatment therapy induced complete regression of large established RENCA tumors and raised long-lasting protective immunity. These results have implications for developing clinical antitumoral vaccination regimens in the setting in which tumors express elevated levels of B7-H1 in the presence of abundant Treg cells.

  9. A balance between BCR and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels1

    PubMed Central

    Luo, Wei; Mayeux, Jessica; Gutierrez, Toni; Russell, Lisa; Getahun, Andrew; Müller, Jennifer; Tedder, Thomas; Parnes, Jane; Rickert, Robert; Nitschke, Lars; Cambier, John; Garrett-Sinha, Lee Ann

    2014-01-01

    Signaling through the B cell receptor (BCR) can drive B cell activation and contribute to B cell differentiation into antibody-secreting plasma cells. The positive BCR signal is counterbalanced by a number of membrane-localized inhibitory receptors that limit B cell activation and plasma cell differentiation. Deficiencies in these negative signaling pathways may cause autoantibody generation and autoimmune disease in both animal models and human patients. We have previously shown that the transcription factor Ets1 can restrain B cell differentiation into plasma cells. Here, we tested the roles of the BCR and inhibitory receptors in controlling the expression of Ets1 in mouse B cells. We found that Ets1 is down regulated in B cells by BCR or TLR signaling through a pathway dependent on PI3 kinase, Btk, IKK2 and JNK. Deficiencies in inhibitory pathways, such as a loss of the tyrosine kinase Lyn, the phosphatase SHP1 or membrane receptors CD22 and/or Siglec-G, result in enhanced BCR signaling and decreased Ets1 expression. Restoring Ets1 expression in Lyn- or SHP1-deficient B cells inhibits their enhanced plasma cell differentiation. Our findings indicate that downregulation of Ets1 occurs in response to B cell activation via either BCR or TLR signaling thereby allowing B cell differentiation and that the maintenance of Ets1 expression is an important function of the inhibitory Lyn → CD22/SiglecG → SHP1 pathway in B cells. PMID:24929000

  10. Red blood cells in cerebrospinal fluid as possible inhibitory factor for enterovirus RT-PCR.

    PubMed

    Almeida, Sérgio Monteiro de; Raboni, Sônia Mara; Nogueira, Meri Bordignon; Vidal, Luine R Renaud

    2016-10-01

    The presence of hemoglobin in samples are considered an important inhibitory factor for polymerase chain reaction (PCR). The aim of this study was to examine the influence of red blood cells (RBC)s in cerebrospinal fluid (CSF) as an inhibitory factor to reverse transcription polymerase chain reaction (RT-PCR) for enteroviruses (EV). Forty-four CSF samples from patients showing characteristics of viral meningitis were assessed for EV by RT-PCR. Viral RNA extracted with guanidine isothyocianate buffer and virus detection was performed by in-house nested PCR. Positivity for EV RT-PCR was higher in CSF samples without RBCs than in samples with RBCs: 13(26%) and 36(9.2%), p = 0.001. In the group with positive EV RT-PCR, the mean + SD CSF RBC was 37 ± 183 cell/mm3; the group with negative results had 580 + 2,890 cell/mm3 (p = 0.007). The acceptable upper limit for CSF RBCs that could not influence RT-PCR was 108 cells/mm3. CSF samples with negative results for EV RT-PCR have more erythrocytes.

  11. Specificity of inhibitory KIRs enables NK cells to detect changes in an altered peptide environment.

    PubMed

    Carrillo-Bustamante, Paola; de Boer, Rob J; Keşmir, Can

    2017-07-10

    The activity of natural killer (NK) cells is tightly regulated by inhibitory and activating receptors. Inhibitory killer immunoglobulin-like receptors (iKIRs) survey the surface of target cells by monitoring the expression of human leukocyte antigen (HLA) class I. The binding of iKIRs has been shown to be sensitive to the peptides presented by HLA class I, implying that iKIRs have the ability to detect the changes in the repertoire of peptide-HLA class I complexes (pHLA), a process occurring during viral infection and in tumor cells. To study how the pHLA repertoire changes upon infection, and whether an iKIR is able to detect these changes, we study peptides eluted from cells prior and after infection with measles virus (MV). Remarkably, most changes in the repertoire of potential iKIR ligands are predicted to be caused by the altered expression of self-peptides. We show that an iKIR can detect these changes in the presented peptides only if it is sufficiently specific, e.g., if iKIRs can distinguish between different amino acids in the contact residues (e.g., position 7 and 8). Our analysis further indicates that one single iKIR per host is not sufficient to detect changes in the peptide repertoire, suggesting that a multigene family encoding for different iKIRs is required for successful peptide recognition.

  12. Investigation on cellular uptake and pharmacodynamics of DOCK2-inhibitory peptides conjugated with cell-penetrating peptides.

    PubMed

    Adachi, Yusuke; Sakamoto, Kotaro; Umemoto, Tadashi; Fukuda, Yasunori; Tani, Akiyoshi; Asami, Taiji

    2017-04-01

    Protein-protein interaction between dedicator of cytokinesis 2 (DOCK2) and Ras-related C3 botulinum toxin substrate 1 (Rac1) is an attractive intracellular target for transplant rejection and inflammatory diseases. Recently, DOCK2-selective inhibitory peptides have been discovered, and conjugation with oligoarginine cell-penetrating peptide (CPP) improved inhibitory activity in a cell migration assay. Although a number of CPPs have been reported, oligoarginine was only one example introduced to the inhibitory peptides. In this study, we aimed to confirm the feasibility of CPP-conjugation approach for DOCK2-inhibitory peptides, and select preferable sequences as CPP moiety. First, we evaluated cell permeability of thirteen known CPPs and partial sequences of influenza A viral protein PB1-F2 using an internalization assay system based on luciferin-luciferase reaction, and then selected four CPPs with efficient cellular uptake. Among four conjugates of these CPPs and a DOCK2-inhibitory peptide, the inhibitory activity of a novel CPP, PB1-F2 fragment 5 (PF5), conjugate was comparable to oligoarginine conjugate and higher than that of the non-conjugated peptide. Finally, internalization assay revealed that oligoarginine and PF5 increased the cellular uptake of inhibitory peptides to the same extent. Hence, we demonstrated that CPP-conjugation approach is applicable to the development of novel anti-inflammatory drugs based on DOCK2 inhibition by investigating both cellular uptake and bioactivity.

  13. Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei.

    PubMed

    Husson, Zoé; Rousseau, Charly V; Broll, Ilja; Zeilhofer, Hanns Ulrich; Dieudonné, Stéphane

    2014-07-09

    The principal neurons of the cerebellar nuclei (CN), the sole output of the olivo-cerebellar system, receive a massive inhibitory input from Purkinje cells (PCs) of the cerebellar cortex. Morphological evidence suggests that CN principal cells are also contacted by inhibitory interneurons, but the properties of this connection are unknown. Using transgenic, tracing, and immunohistochemical approaches in mice, we show that CN interneurons form a large heterogeneous population with GABA/glycinergic phenotypes, distinct from GABAergic olive-projecting neurons. CN interneurons are found to contact principal output neurons, via glycine receptor (GlyR)-enriched synapses, virtually devoid of the main GABA receptor (GABAR) subunits α1 and γ2. Those clusters account for 5% of the total number of inhibitory receptor clusters on principal neurons. Brief optogenetic stimulations of CN interneurons, through selective expression of channelrhodopsin 2 after viral-mediated transfection of the flexed gene in GlyT2-Cre transgenic mice, evoked fast IPSCs in principal cells. GlyR activation accounted for 15% of interneuron IPSC amplitude, while the remaining current was mediated by activation of GABAR. Surprisingly, small GlyR clusters were also found at PC synapses onto principal CN neurons in addition to α1 and γ2 GABAR subunits. However, GlyR activation was found to account for <3% of the PC inhibitory synaptic currents evoked by electrical stimulation. This work establishes CN glycinergic neurons as a significant source of inhibition to CN principal cells, forming contacts molecularly distinct from, but functionally similar to, Purkinje cell synapses. Their impact on CN output, motor learning, and motor execution deserves further investigation. Copyright © 2014 the authors 0270-6474/14/349418-14$15.00/0.

  14. Only a Minority of the Inhibitory Inputs to Cerebellar Golgi Cells Originates from Local GABAergic Cells123

    PubMed Central

    2016-01-01

    Abstract Cerebellar Golgi cells (GoCs) efficiently control the spiking activity of granule cells through GABAA receptor-mediated tonic and phasic inhibition. Recent experiments provided compelling evidence for the extensive interconnection of GoCs through electrical synapses, but their chemical inhibitory synaptic inputs are debated. Here, we investigated the GABAergic synaptic inputs of GoCs using in vitro electrophysiology and quantitative light microscopy (LM) and electron microscopy (EM). We characterized GABAA receptor-mediated IPSCs in GoCs and Lugaro cells (LuCs), and found that IPSCs in GoCs have lower frequencies, smaller amplitudes, and much slower decay kinetics. Pharmacological and LM immunolocalization experiments revealed that GoCs express α3, whereas LuCs express α1 subunit-containing GABAA receptors. The selective expression and clustered distribution of the α3 subunit in GoCs allowed the quantitative analysis of GABAergic synapses on their dendrites in the molecular layer (ML). EM and LM experiments in rats, and wild-type and GlyT2-GFP transgenic mice revealed that only one third of axon terminals establishing GABAergic synapses on GoC dendrites contain GlyT2, ruling out LuCs, globular cells, and any noncortical glycinergic inputs as major inhibitory sources. We also show that axon terminals of stellate/basket cells very rarely innervate GlyT2-GFP-expressing GoCs, indicating that only a minority of the inhibitory inputs to GoCs in the ML originates from local interneurons, and the majority of their inhibitory inputs exclusively releases GABA. PMID:27257627

  15. Chicken leukemia inhibitory factor maintains chicken embryonic stem cells in the undifferentiated state.

    PubMed

    Horiuchi, Hiroyuki; Tategaki, Airo; Yamashita, Yusuke; Hisamatsu, Hikaru; Ogawa, Mari; Noguchi, Takashi; Aosasa, Masayoshi; Kawashima, Tsuyoshi; Akita, Sachiko; Nishimichi, Norihisa; Mitsui, Naoko; Furusawa, Shuichi; Matsuda, Haruo

    2004-06-04

    Mouse embryonic stem (ES) cells can be maintained in an undifferentiated state in the presence of leukemia inhibitory factor (LIF), a member of the interleukin-6 cytokine family. In other mammals, this is not possible with LIF alone. Chicken ES-like cells (blastodermal cells) have only been cultured with mouse LIF because chicken LIF was not available. However the culture system is imperfect and chicken ES-like cells equivalent to mouse ES cells were not observed. In the present study, we cloned the cDNA-encoding chicken LIF using mRNA subtraction and RACE methodology. The chicken LIF cDNA encodes a protein with approximately 40% sequence identity to mouse LIF. It has 211 amino acids including a putative N-terminal signal peptide of 24 residues. Chicken blastodermal cells were cultured in the presence of bacterially expressed chicken LIF or mouse LIF. The expression of alkaline phosphatase and embryonal carcinoma cell monoclonal antibody-1 and stage-specific embryonic antigen-1 and the activation of STAT3 were examined, all of which are indices of the undifferentiated state. Exposure in the blastodermal cells to recombinant chicken LIF but not to mouse LIF maintained the expression of these various markers. After 9 days of incubation, the blastodermal cells formed cystic embryoid bodies in the presence of mouse LIF but not in the presence of recombinant chicken LIF. We conclude that chicken LIF is able to maintain chicken ES cell cultures in the undifferentiated state.

  16. Liver Sinusoidal Endothelial Cell-Mediated CD8 T Cell Priming Depends on Co-Inhibitory Signal Integration over Time

    PubMed Central

    Kaczmarek, Julita; Homsi, Yahya; van Üüm, Jan; Metzger, Christina; Knolle, Percy A.; Kolanus, Waldemar; Lang, Thorsten; Diehl, Linda

    2014-01-01

    The initiation of adaptive immunity requires cell-to-cell contact between T cells and antigen-presenting cells. Together with immediate TCR signal transduction, the formation of an immune synapse (IS) is one of the earliest events detected during T cell activation. Here, we show that interaction of liver sinusoidal endothelial cells (LSEC) with naive CD8 T cells, which induces CD8 T cells without immediate effector function, is characterized by a multi-focal type IS. The co-inhibitory molecule B7H1, which is pivotal for the development of non-responsive LSEC-primed T cells, did not alter IS structure or TCRβ/CD11a cluster size or density, indicating that IS form does not determine the outcome of LSEC-mediated T cell activation. Instead, PD-1 signaling during CD8 T cell priming by LSEC repressed IL-2 production as well as sustained CD25 expression. When acting during the first 24 h of LSEC/CD8 T cell interaction, CD28 co-stimulation inhibited the induction of non-responsive LSEC-primed T cells. However, after more than 36 h of PD-1 signaling, CD28 co-stimulation failed to rescue effector function in LSEC-primed T cells. Together, these data show that during LSEC-mediated T cell priming, integration of co-inhibitory PD-1 signaling over time turns on a program for CD8 T cell development, that cannot be overturned by co-stimulatory signals. PMID:24924593

  17. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    PubMed

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-07-21

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations.

  18. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    PubMed

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  19. Dosage and Cell Line Dependent Inhibitory Effect of bFGF Supplement in Human Pluripotent Stem Cell Culture on Inactivated Human Mesenchymal Stem Cells

    PubMed Central

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system. PMID:24465853

  20. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.

    PubMed

    Liu, Shaolin; Shipley, Michael T

    2008-10-08

    The initial synapse in the olfactory system is from olfactory nerve (ON) terminals to postsynaptic targets in olfactory bulb glomeruli. Recent studies have disclosed multiple presynaptic factors that regulate this important linkage, but less is known about the contribution of postsynaptic intrinsic conductances to integration at these synapses. The present study demonstrates voltage-dependent amplification of EPSPs in external tufted (ET) cells in response to monosynaptic (ON) inputs. This amplification is mainly exerted by persistent Na(+) conductance. Larger EPSPs, which bring the membrane potential to a relatively depolarized level, are further boosted by the low-voltage-activated Ca(2+) conductance. In contrast, the hyperpolarization-activated nonselective cation conductance (I(h)) attenuates EPSPs mainly by reducing EPSP duration; this also reduces temporal summation of multiple EPSPs. Regulation of EPSPs by these subthreshold, voltage-dependent conductances can enhance both the signal-to-noise ratio and the temporal summation of multiple synaptic inputs and thus help ET cells differentiate high- and low-frequency synaptic inputs. I(h) can also transform inhibitory inputs to postsynaptic excitation. When the ET cell membrane potential is relatively depolarized, as during a burst of action potentials, IPSPs produce classic inhibition. However, near resting membrane potentials where I(h) is engaged, IPSPs produce rebound bursts of action potentials. ET cells excite GABAergic PG cells. Thus, the transformation of inhibitory inputs to postsynaptic excitation in ET cells may enhance intraglomerular inhibition of mitral/tufted cells, the main output neurons in the olfactory bulb, and hence shape signaling to olfactory cortex.

  1. Inhibitory effect of Moutan Cortex aqueous fraction on mast cell-mediated allergic inflammation.

    PubMed

    Kee, Ji-Ye; Inujima, Akiko; Andoh, Tsugunobu; Tanaka, Ken; Li, Feng; Kuraishi, Yasushi; Sakurai, Hiroaki; Shibahara, Naotoshi; Saiki, Ikuo; Koizumi, Keiichi

    2015-04-01

    Moutan Cortex and its major compounds have been shown to possess various biological activities, including anti-inflammatory properties. However, the effects of Moutan Cortex aqueous fraction (MCA) and its molecular mechanisms have yet to be elucidated. In this study, we attempted to evaluate the effects of MCA on mast cell-mediated allergy inflammation in vitro and in vivo compared with major Moutan Cortex compounds. Thus, we examined the anti-inflammatory effects of a water extract of Moutan Cortex by comparing the inhibition of β-hexosaminadase and tumor necrosis factor-α (TNF-α) release in an aqueous fraction with other major compounds of Moutan Cortex. The inhibitory mechanism of MCA was investigated by western blotting in IgE-mediated DNP-BSA-stimulated RBL-2H3 cells. We confirmed the pharmacological effects of MCA on compound 48/80-induced allergic reactions in a mouse model by assessing scratching behavior and passive cutaneous anaphylaxis (PCA)-like reaction. Consequently, MCA inhibited IgE-mediated DNP-BSA-induced β-hexosaminadase and TNF-α release via inactivation of p38, ERK, Akt, and NF-κB in RBL-2H3 cells. MCA reduced compound 48/80-induced PCA reaction and scratching behavior in mice. This inhibitory effect of MCA is more potent than major compounds of Moutan Cortex. In conclusion, our results suggest that MCA has more potential in the treatment of allergic inflammatory diseases compared to other major compounds of Moutan Cortex.

  2. Inhibitory effects of Leucaena leucocephala on the metastasis and invasion of human oral cancer cells.

    PubMed

    Chung, Hsiao-Hang; Chen, Mu-Kuan; Chang, Yu-Chao; Yang, Shun-Fa; Lin, Chia-Chieh; Lin, Chiao-Wen

    2017-02-09

    Oral cancer is one of the most common cancers worldwide, and metastasis is recognized as a major factor causing its low survival rate. The inhibition of metastasis progress and the improvement of the survival rate for oral cancer are critical research objectives. Leucaena leucocephala from the mimosa branch Leucaena genus is native to Central and South America and has been used as a traditional remedy for treating various disorders. Previous studies have demonstrated antioxidant, anti-inflammatory as well as anticancer properties of L. leucocephala plant materials. However, the molecular mechanism underlying the anticancer effect induced by L. leucocephala remains unclear. In this study, we investigated the effect of L. leucocephala extract (LLE) on SCC-9 and SAS oral cancer cells and examined the potential inhibitory mechanisms involved. The results indicated that LLE attenuated the migration and invasion abilities of both SCC-9 and SAS cells by reducing the activity and protein expression of matrix metalloproteinases-2 (MMP-2). Regarding mitogen-activated protein kinase (MAPK) pathways, the phosphorylation of ERK1/2 and p38 exhibited a significant inhibitory effect in the presence of LLE. The application of ERK inhibitor and p38 inhibitor confirmed that both signalling transduction pathways were involved in the inhibition of cell metastasis. These data indicate that L. leucocephala could be a potent therapeutic agent for the prevention and treatment of oral cancer and a prominent plant source for anticancer research in the future.

  3. A Computational Analysis of the Function of Three Inhibitory Cell Types in Contextual Visual Processing

    PubMed Central

    Lee, Jung H.; Koch, Christof; Mihalas, Stefan

    2017-01-01

    Most cortical inhibitory cell types exclusively express one of three genes, parvalbumin, somatostatin and 5HT3a. We conjecture that these three inhibitory neuron types possess distinct roles in visual contextual processing based on two observations. First, they have distinctive synaptic sources and targets over different spatial extents and from different areas. Second, the visual responses of cortical neurons are affected not only by local cues, but also by visual context. We use modeling to relate structural information to function in primary visual cortex (V1) of the mouse, and investigate their role in contextual visual processing. Our findings are three-fold. First, the inhibition mediated by parvalbumin positive (PV) cells mediates local processing and could underlie their role in boundary detection. Second, the inhibition mediated by somatostatin-positive (SST) cells facilitates longer range spatial competition among receptive fields. Third, non-specific top-down modulation to interneurons expressing vasoactive intestinal polypeptide (VIP), a subclass of 5HT3a neurons, can selectively enhance V1 responses. PMID:28487644

  4. A dual inhibitory mechanism sufficient to maintain cell cycle restricted CENP-A assembly

    PubMed Central

    Stankovic, Ana; Guo, Lucie Y.; Mata, João F.; Bodor, Dani L.; Cao, Xing-Jun; Bailey, Aaron O.; Shabanowitz, Jeffrey; Hunt, Donald F.; Garcia, Benjamin A.; Black, Ben E.; Jansen, Lars E.T

    2017-01-01

    Summary Chromatin featuring the H3 variant CENP-A at the centromere is critical for its mitotic function and epigenetic maintenance. Assembly of centromeric chromatin is restricted to G1 phase through inhibitory action of Cdk1/2 kinases in other phases of the cell cycle. Here, we identify the two key targets sufficient to maintain cell cycle control of CENP-A assembly. We uncovered a single phosphorylation site in the licensing factor M18BP1 and a cyclin A binding site in the CENP-A chaperone, HJURP, mediating specific inhibitory phosphorylation. Simultaneous expression of mutant proteins lacking these residues, results in complete uncoupling from the cell cycle. Consequently, CENP-A assembly is fully recapitulated under high Cdk activities, indistinguishable from G1 assembly. We find that Cdk-mediated inhibition is exerted by sequestering active factors away from the centromere. Finally, we show that displacement of M18BP1 from the centromere is critical for the assembly mechanism of CENP-A. PMID:28017591

  5. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds

    PubMed Central

    2011-01-01

    Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda). Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v) pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight) into 17.5% w/v solids, the final

  6. Inhibitory effect of oestradiol on activation of rat hepatic stellate cells in vivo and in vitro

    PubMed Central

    Shimizu, I; Mizobuchi, Y; Yasuda, M; Shiba, M; Ma, Y; Horie, T; Liu, F; Ito, S

    1999-01-01

    Background—Hepatic stellate cells play a key role in the pathogenesis of hepatic fibrosis. 
Aims—To examine the inhibitory effect of oestradiol on stellate cell activation. 
Methods—In vivo, hepatic fibrosis was induced in rats by dimethylnitrosamine or pig serum. In vitro, rat stellate cells were activated by contact with plastic dishes resulting in their transformation into myofibroblast-like cells. 
Results—In the dimethylnitrosamine and pig serum models, treatment with oestradiol at gestation related doses resulted in a dose dependent suppression of hepatic fibrosis with restored content of hepatic retinyl palmitate, reduced collagen content, lower areas of stellate cells which express α smooth muscle actin (α-SMA) and desmin, and lower procollagen type I and III mRNA levels in the liver. In cultured stellate cells, oestradiol inhibited type I collagen production, α-SMA expression, and cell proliferation. These findings suggest that oestradiol is a potent inhibitor of stellate cell transformation. 
Conclusion—The antifibrogenic role of oestradiol in the liver may contribute to the sex associated differences in the progression from hepatic fibrosis to cirrhosis. 

 Keywords: hepatic stellate cells; hepatic fibrosis; oestradiol; α smooth muscle actin; retinyl palmitate PMID:9862839

  7. Inhibitory effect of interferon gamma on frequency of Ehrlichia canis-infected cells in vitro.

    PubMed

    Tajima, Tomoko; Wada, Makoto

    2013-12-15

    Ehrlichia canis is an obligate intracellular bacterium that infects the macrophage-monocyte cells of dogs, causing canine monocytic ehrlichiosis. Interferon-γ (IFN-γ), along with other cytokines, mediates the immune response to such intracellular bacterial invasions. To determine the role of IFN-γ in the immunity of dogs to E. canis infection, peripheral blood mononuclear cells (PBMC) and white blood cells (WBC) were collected from E. canis-infected dogs and added to a culture of E. canis in DH82 cells. The number of E. canis inclusion-positive cells was significantly reduced in cultures containing PBMC and WBC from E. canis-infected dogs compared to uninfected dogs. However, this resistance was inhibited by the addition of an anti-dog IFN-γ antibody. Resistance was also observed when PBMC were added to the Cell Culture Inserts, which prohibited contact of PBMC to DH82 cells, while allowed the diffusion of soluble cell products. The results of this study indicate that resistance was not dependent on cell to cell contact, but was associated with soluble cell products, such as IFN-γ. The addition of recombinant canine IFN-γ to the E. canis culture also reduced the number of infected cells. A commercial recombinant canine IFN-γ, which is sold in Japan, was also effective at reducing E. canis-infected cell number. These results indicate that IFN-γ has an inhibitory effect on the frequency of E. canis-infected cells in vitro and that contact between effector and target cells is not necessary for the resistance.

  8. Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells.

    PubMed

    Peng, Hai-Shan; Liao, Ming-Bin; Zhang, Mei-Yin; Xie, Yin; Xu, Li; Zhang, Yao-Jun; Zheng, X F Steven; Wang, Hui-Yun; Chen, Yi-Fei

    2014-01-01

    Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO) therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC) but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. Hepatoma cell lines (BEL-7402 and SK-Hep1) were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation) in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression in hepatoma cells.

  9. Synergistic Inhibitory Effect of Hyperbaric Oxygen Combined with Sorafenib on Hepatoma Cells

    PubMed Central

    Peng, Hai-Shan; Liao, Ming-Bin; Zhang, Mei-Yin; Xie, Yin; Xu, Li; Zhang, Yao-Jun; Zheng, X. F. Steven; Wang, Hui-Yun; Chen, Yi-Fei

    2014-01-01

    Objectives Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO) therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC) but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. Methods Hepatoma cell lines (BEL-7402 and SK-Hep1) were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. Results Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation) in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. Conclusions We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression in hepatoma cells

  10. Inhibitory effect of herbal remedy PERVIVO and anti-inflammatory drug sulindac on L-1 sarcoma tumor growth and tumor angiogenesis in Balb/c mice.

    PubMed

    Skopiński, P; Bałan, B J; Kocik, J; Zdanowski, R; Lewicki, S; Niemcewicz, M; Gawrychowski, K; Skopińska-Różewska, E; Stankiewicz, W

    2013-01-01

    Anticancer activity of many herbs was observed for hundreds of years. They act as modifiers of biologic response, and their effectiveness may be increased by combining multiple herbal extracts . PERVIVO, traditional digestive herbal remedy, contains some of them, and we previously described its antiangiogenic activity. Numerous studies documented anticancer effects of nonsteroidal anti-inflammatory drugs. We were the first to show that sulindac and its metabolites inhibit angiogenesis. In the present paper the combined in vivo effect of multicomponent herbal remedy PERVIVO and nonsteroidal anti-inflammatory drug sulindac on tumor growth, tumor angiogenesis, and tumor volume in Balb/c mice was studied. These effects were checked after grafting cells collected from syngeneic sarcoma L-1 tumors into mice skin. The strongest inhibitory effect was observed in experimental groups treated with PERVIVO and sulindac together. The results of our investigation showed that combined effect of examined drugs may be the best way to get the strongest antiangiogenic and antitumor effect.

  11. Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function.

    PubMed

    Berryer, Martin H; Chattopadhyaya, Bidisha; Xing, Paul; Riebe, Ilse; Bosoi, Ciprian; Sanon, Nathalie; Antoine-Bertrand, Judith; Lévesque, Maxime; Avoli, Massimo; Hamdan, Fadi F; Carmant, Lionel; Lamarche-Vane, Nathalie; Lacaille, Jean-Claude; Michaud, Jacques L; Di Cristo, Graziella

    2016-11-09

    Haploinsufficiency of the SYNGAP1 gene, which codes for a Ras GTPase-activating protein, impairs cognition both in humans and in mice. Decrease of Syngap1 in mice has been previously shown to cause cognitive deficits at least in part by inducing alterations in glutamatergic neurotransmission and premature maturation of excitatory connections. Whether Syngap1 plays a role in the development of cortical GABAergic connectivity and function remains unclear. Here, we show that Syngap1 haploinsufficiency significantly reduces the formation of perisomatic innervations by parvalbumin-positive basket cells, a major population of GABAergic neurons, in a cell-autonomous manner. We further show that Syngap1 haploinsufficiency in GABAergic cells derived from the medial ganglionic eminence impairs their connectivity, reduces inhibitory synaptic activity and cortical gamma oscillation power, and causes cognitive deficits. Our results indicate that Syngap1 plays a critical role in GABAergic circuit function and further suggest that Syngap1 haploinsufficiency in GABAergic circuits may contribute to cognitive deficits.

  12. Inhibitory effects of sodium azide on microbial growth in experimental resuspension of marine sediment.

    PubMed

    Cabrol, Léa; Quéméneur, Marianne; Misson, Benjamin

    2017-02-01

    Sodium azide (NaN3) was evaluated as inhibitor of microbial growth and activity in marine sediment resuspensions by monitoring the abundance of free-living and sessile bacteria using both flow cytometry and qPCR methods. Results show that 50mM of NaN3 strongly inhibits bacterial growth under natural and enriched resource conditions.

  13. Inhibitory effects of stilbenes on the growth of three soybean pathogens in culture

    USDA-ARS?s Scientific Manuscript database

    The effects of resveratrol and pterostilbene on in vitro growth of three soybean pathogens were tested to determine if these stilbenic compounds could potentially be targets to increase innate resistance in transgenic soybean plants. Growth of Macrophomina phaseolina, Rhizoctonia solani, and Sclerot...

  14. Metformin inhibits salivary adenocarcinoma growth through cell cycle arrest and apoptosis

    PubMed Central

    Guo, Yuqi; Yu, Tao; Yang, Jian; Zhang, Tianqing; Zhou, Yang; He, Fan; Kurago, Zoya; Myssiorek, David; Wu, Yingjie; Lee, Peng; Li, Xin

    2015-01-01

    The inhibitory effects of metformin have been observed in many types of cancer. However, its effect on human salivary gland carcinoma is unknown. The effect of metformin alone or in combination with pp242 (an mTOR inhibitor) on salivary adenocarcinoma cells growth were determined in vitro and in vivo. We found that metformin suppressed HSY cell growth in vitro in a time and dose dependent manner associated with a reduced expression of MYC onco-protein, and the same inhibitory effect of metformin was also confirmed in HSG cells. In association with the reduction of MYC onco-protein, metformin significantly restored p53 tumor suppressor gene expression. The distinctive effects of metformin and PP242 on MYC reduction and P53 restoration suggested that metformin inhibited cell growth through a different pathway from PP242 in salivary carcinoma cells. Furthermore, the anti-tumor efficacy of metformin was confirmed in vivo as indicated by the increases of tumor necrosis and reduced proliferation in xenograft tumors from metformin treated group. For the first time, the inhibitory effect of metformin on human salivary gland tumor cells was documented. Moreover, metformin inhibitory effects were enhanced by mTOR inhibitor suggesting that metformin and mTOR inhibitor utilize distinctive signaling pathways to suppress salivary tumor growth. PMID:26885449

  15. [The molecular mechanisms of curcuma wenyujin extract-mediated inhibitory effects on human esophageal carcinoma cells in vitro].

    PubMed

    Jing, Zhao; Zou, Hai-Zhou; Xu, Fang

    2012-09-01

    To study the molecular mechanisms of Curcuma Wenyujin extract-mediated inhibitory effects on human esophageal carcinoma cells. The Curcuma Wenyujin extract was obtained by supercritical carbon dioxide extraction. TE-1 cells were divided into 4 groups after adherence. 100 microL RMPI-1640 culture medium containing 0.1% DMSO was added in Group 1 as the control group. 100 microL 25, 50, and 100 mg/L Curcuma Wenyujin extract complete culture medium was respectively added in the rest 3 groups as the low, middle, and high dose Curcuma Wenyujin extract groups. The effects of different doses of Curcuma Wenyujin extract (25, 50, and 100 mg/L) on the proliferation of human esophageal carcinoma cell line TE-1 in vitro were analyzed by MTT assay. The gene expression profile was identified by cDNA microarrays in esophageal carcinoma TE-1 cells exposed to Curcuma Wenyujin extract for 48 h. The differential expression genes were further analyzed by Gene Ontology function analysis. Compared with the control group, MTT results showed that Curcuma Wenyujin extract significantly inhibited the proliferation of TE-1 cells in a dose-dependent manner (P<0.05). The expression level of 88 genes changed with significance, including 66 up-regulation genes and 22 down-regulation genes. Gene Ontology analysis indicated the genes coding for proteins was involved in signal transduction (6), cell cycle (8), apoptosis (14), and cell differentiation (10). The Curcuma Wenyujin extract could inhibit the growth of human esophageal carcinoma cell line TE-1 in vitro. The molecular mechanisms might be associated with regulating genes expressions at multi-levels.

  16. Physicochemical basis for the inhibitory effects of organic and inorganic salts on the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum.

    PubMed

    Yaganza, Elian-Simplice; Tweddell, Russell J; Arul, Joseph

    2009-03-01

    Twenty-one salts were tested for their effects on the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. In liquid medium, 11 salts (0.2 M) exhibited strong inhibition of bacterial growth. The inhibitory action of salts relates to the water-ionizing capacity and the lipophilicity of their constituent ions.

  17. Physicochemical Basis for the Inhibitory Effects of Organic and Inorganic Salts on the Growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum▿

    PubMed Central

    Yaganza, Elian-Simplice; Tweddell, Russell J.; Arul, Joseph

    2009-01-01

    Twenty-one salts were tested for their effects on the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. In liquid medium, 11 salts (0.2 M) exhibited strong inhibition of bacterial growth. The inhibitory action of salts relates to the water-ionizing capacity and the lipophilicity of their constituent ions. PMID:19114504

  18. Tigecycline exhibits inhibitory activity against Clostridium difficile in the colon of mice and does not promote growth or toxin production.

    PubMed

    Jump, Robin L P; Li, Yuejin; Pultz, Michael J; Kypriotakis, Georgios; Donskey, Curtis J

    2011-02-01

    Tigecycline is a broad-spectrum glycylcycline antibiotic with potent in vitro activity against Clostridium difficile. We used a mouse model to test the hypothesis that tigecycline has a low propensity to promote colonization and toxin production by C. difficile due to inhibitory activity in the colon. Mice (5 to 8 per group) received subcutaneous injections of tigecycline (low and high doses) alone or in combination with clindamycin for 6 days. Growth of and toxin production by 3 strains of C. difficile (tigecycline MICs ≤ 0.012 μg/ml) were measured in cecal contents collected 6 h or 3 days after the final antibiotic dose. Antibiotic concentrations were measured using a bioassay, and concentrations of total anaerobes and Bacteroides spp. were measured. The effects of tigecycline on rendering mice susceptible to colonization with and reducing the burden of C. difficile were also examined. In comparison to saline controls, clindamycin promoted the growth of C. difficile (P < 0.001) in cecal contents, whereas tigecycline did not. Tigecycline did not suppress total anaerobes or Bacteroides spp. in comparison to saline controls. Concurrent administration of tigecycline prevented clindamycin-induced promotion of C. difficile in cecal contents collected 6 h or 3 days (high dose only) after the final antibiotic dose. Tigecycline did not promote the establishment of colonization in mice, yet it did not reduce concentrations of C. difficile in animals with established colonization. In summary, tigecycline did not promote the growth of or toxin production by C. difficile, probably due to inhibitory activity against C. difficile and relative sparing of indigenous anaerobic microflora.

  19. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp. LX1 on its growth and lipid production.

    PubMed

    Zhang, Tian-Yuan; Yu, Yin; Wu, Yin-Hu; Hu, Hong-Ying

    2013-10-01

    Soluble algal products (SAP) accumulated in culture medium via water reuse may affect the growth of microalga during the cultivation. Scenedesmus sp. LX1, a freshwater microalga, was used in this study to investigate the effect of SAP on growth and lipid production of microalga. Under the SAP concentrations of 6.4-25.8 mg L(-1), maximum algal density (K) and maximum growth rate (Rmax) of Scenedesmus sp. LX1 were decreased by 50-80% and 35-70% compared with the control group, respectively. The effect of SAP on lipid accumulation of Scenedesmus sp. LX1 was non-significant. According to hydrophilic-hydrophobic and acid-base properties, SAP was fractionized into six fractions. All of the fractions could inhibit the growth of Scenedesmus sp. LX1. Organic bases (HIB, HOB) and hydrophilic acids (HIA) showed the strongest inhibition. HIA could also decrease the lipid content of Scenedesmus sp. LX1 by 59.2%. As the inhibitory effect, SAP should be seriously treated before water reuse.

  20. Macrophage migration inhibitory factor promotes cell death and aggravates neurologic deficits after experimental stroke

    PubMed Central

    Inácio, Ana R; Ruscher, Karsten; Leng, Lin; Bucala, Richard; Deierborg, Tomas

    2011-01-01

    Multiple mechanisms contribute to tissue demise and functional recovery after stroke. We studied the involvement of macrophage migration inhibitory factor (MIF) in cell death and development of neurologic deficits after experimental stroke. Macrophage migration inhibitory factor is upregulated in the brain after cerebral ischemia, and disruption of the Mif gene in mice leads to a smaller infarct volume and better sensory-motor function after transient middle cerebral artery occlusion (tMCAo). In mice subjected to tMCAo, we found that MIF accumulates in neurons of the peri-infarct region, particularly in cortical parvalbumin-positive interneurons. Likewise, in cultured cortical neurons exposed to oxygen and glucose deprivation, MIF levels increase, and inhibition of MIF by (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) protects against cell death. Deletion of MIF in Mif−/− mice does not affect interleukin-1β protein levels in the brain and serum after tMCAo. Furthermore, disruption of the Mif gene in mice does not affect CD68, but it is associated with higher galectin-3 immunoreactivity in the brain after tMCAo, suggesting that MIF affects the molecular/cellular composition of the macrophages/microglia response after experimental stroke. We conclude that MIF promotes neuronal death and aggravates neurologic deficits after experimental stroke, which implicates MIF in the pathogenesis of neuronal injury after stroke. PMID:21063426

  1. Macrophage migration inhibitory factor promotes cell death and aggravates neurologic deficits after experimental stroke.

    PubMed

    Inácio, Ana R; Ruscher, Karsten; Leng, Lin; Bucala, Richard; Deierborg, Tomas

    2011-04-01

    Multiple mechanisms contribute to tissue demise and functional recovery after stroke. We studied the involvement of macrophage migration inhibitory factor (MIF) in cell death and development of neurologic deficits after experimental stroke. Macrophage migration inhibitory factor is upregulated in the brain after cerebral ischemia, and disruption of the Mif gene in mice leads to a smaller infarct volume and better sensory-motor function after transient middle cerebral artery occlusion (tMCAo). In mice subjected to tMCAo, we found that MIF accumulates in neurons of the peri-infarct region, particularly in cortical parvalbumin-positive interneurons. Likewise, in cultured cortical neurons exposed to oxygen and glucose deprivation, MIF levels increase, and inhibition of MIF by (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) protects against cell death. Deletion of MIF in Mif(-/-) mice does not affect interleukin-1β protein levels in the brain and serum after tMCAo. Furthermore, disruption of the Mif gene in mice does not affect CD68, but it is associated with higher galectin-3 immunoreactivity in the brain after tMCAo, suggesting that MIF affects the molecular/cellular composition of the macrophages/microglia response after experimental stroke. We conclude that MIF promotes neuronal death and aggravates neurologic deficits after experimental stroke, which implicates MIF in the pathogenesis of neuronal injury after stroke.

  2. Inhibitory effect of chitooligosaccharides on matrix metalloproteinase-9 in human fibrosarcoma cells (HT1080).

    PubMed

    Van Ta, Quang; Kim, Moon-Moo; Kim, Se-Kwon

    2006-01-01

    Matrix metalloproteinase-9 (MMP-9) has gelatinase activity and plays an important role in cancer invasion and metastasis. Therefore, inhibition of specific types of MMPs including MMP-9 has become an attractive target for therapeutic intervention. The aim of this study was to investigate the effect of chitooligosaccharides (COS) on activity and expression of MMP-9 in HT1080 cells. The inhibitory effect of COS with different molecular masses was examined by gelatin zymography, reverse transcriptase-polymerase chain reaction (RT-PCR), gene reporter assay, and Western blot analysis. MMP-9 inhibition in the presence of COS was clearly observed in gelatin zymography. Specifically, 1- to 3-kDa COS (COS-I) exhibited the highest inhibitory effect on MMP-9 activity in HT1080 cells among tested molecular mass fractions. It was also found that COS-I was capable of inhibiting both gene and protein expression of MMP-9 (P<0.01). These results suggest that low molecular mass COS can be considered as a potent inhibitor of MMP-9.

  3. Inhibitory effects of neferine on Nav1.5 channels expressed in HEK293 cells.

    PubMed

    Wang, Chen; Wang, Huan; Xiao, Jun-Hua; Wang, Jia-Ling; Xiang, Ji-Zhou; Tang, Qiang

    2016-08-01

    Neferine, a bisbenzylisoquinoline alkaloid in Lotus Plumule, was proved to have a wide range of biological activities. In the present study, using whole-cell patch-clamp technique, we investigated the effects of neferine on Nav1.5 channels that are stably expressed in HEK 293 cells. We found that neferine potently and reversibly inhibited Nav1.5 currents in a concentration dependent manner with a half-maximal inhibition (IC50) being 26.15 μmol/L. The inhibitory effects of neferine on Nav1.5 currents were weaker than those of quinidine at the same concentration. The steady-state inactivation curve was significantly shifted towards hyperpolarizing direction in the presence of 30 μmol/L neferine, while the voltage-dependent activation was unaltered. Neferine prolonged the time to peak of activation, increased the inactivation time constants of Nav1.5 currents and markedly slowed the recovery from inactivation. The inhibitory effect of neferine could be potentiated in a frequency-dependent manner. These results suggested that neferine can block Nav1.5 channels under the open state and inactivating state and it is an open channel blocker of Nav1.5 channels.

  4. Inhibitory Effects of Synthetic Peptides Containing Bovine Lactoferrin C-lobe Sequence on Bacterial Growth

    PubMed Central

    Kim, Woan-Sub; Ohashi, Midori; Shimazaki, Kei-ichi

    2016-01-01

    Lactoferrin is a glycoprotein with various biological effects, with antibacterial activity being one of the first effects reported. This glycoprotein suppresses bacterial growth through bacteriostatic or bactericidal action. It also stimulates the growth of certain kinds of bacteria such as lactic acid bacteria and bifidobacteria. In this study, Asn-Leu-Asn-Arg was selected and chemically synthesized based on the partial sequences of bovine lactoferrin tryptic fragments. Synthetic Asn-Leu-Asn-Arg suppressed the growth of Pseudomonas fluorescens, P. syringae and Escherichia coli. P. fluorescens is a major psychrotrophic bacteria found in raw and pasteurized milk, which decreases milk quality. P. syringae is a harmful infectious bacterium that damages plants. However, synthetic Asn-Leu-Asn-Arg did not inhibit the growth of Lactobacillus acidophilus. It is expected that this synthetic peptide would be the first peptide sequence from the bovine lactoferrin C-lobe that shows antibacterial activity. PMID:27621684

  5. Coupling of online control and inhibitory systems in children with atypical motor development: A growth curve modelling study.

    PubMed

    Ruddock, Scott; Caeyenberghs, Karen; Piek, Jan; Sugden, David; Hyde, Christian; Morris, Sue; Rigoli, Daniela; Steenbergen, Bert; Wilson, Peter

    2016-11-01

    Previous research indicates that children with Developmental Coordination Disorder (DCD) show deficits performing online corrections, an issue exacerbated by adding inhibitory constraints; however, cross-sectional data suggests that these deficits may reduce with age. Using a longitudinal design, the aim of the study presented here was to model the coupling that occurs between inhibitory systems and (predictive) online control in typically developing children (TDC) and in those with Developmental Coordination Disorder (DCD) over an extended period of time, using a framework of interactive specialization. We predicted that TDC would show a non-linear growth pattern, consistent with re-organisation in the coupling during the middle childhood period, while DCD would display a developmental lag. A group of 196 children (111 girls and 85 boys) aged between 6 and 12years participated in the study. Children were classified as DCD according to research criteria. Using a cohort sequential design, both TDC and DCD groups were divided into age cohorts. Predictive (online) control was defined operationally by performance on a Double-Jump Reaching Task (DJRT), which was assessed at 6-month intervals over two years (5 time points in total). Inhibitory control was examined using an anti-jump condition of the DJRT paradigm whereby children were instructed to touch a target location in the hemispace opposite a cued location. For the TDC group, model comparison using growth curve analysis revealed that a quadratic trend was the most appropriate fit with evidence of rapid improvement in anti-reach performance up until middle childhood (around 8-9years of age), followed by a more gradual rate of improvement into late childhood and early adolescence. This pattern was evident on both chronometric and kinematic measures. In contrast, for children with DCD, a linear function provided the best to fit on the key metrics, with a slower rate of improvement than controls. We conclude that

  6. In vitro inhibitory effects of imatinib mesylate on stromal cells and hematopoietic progenitors from bone marrow

    PubMed Central

    Soares, P.B.; Jeremias, T.S.; Alvarez-Silva, M.; Licínio, M.A.; Santos-Silva, M.C.; Vituri, C.L.

    2012-01-01

    Imatinib mesylate (IM) is used to treat chronic myeloid leukemia (CML) because it selectively inhibits tyrosine kinase, which is a hallmark of CML oncogenesis. Recent studies have shown that IM inhibits the growth of several non-malignant hematopoietic and fibroblast cells from bone marrow (BM). The aim of the present study was to evaluate the effects of IM on stromal and hematopoietic progenitor cells, specifically in the colony-forming units of granulocyte/macrophage (CFU-GM), using BM cultures from 108 1.5- to 2-month-old healthy Swiss mice. The results showed that low concentrations of IM (1.25 µM) reduced the growth of CFU-GM in clonogenic assays. In culture assays with stromal cells, fibroblast proliferation and α-SMA expression by immunocytochemistry analysis were also reduced in a concentration-dependent manner, with a survival rate of approximately 50% with a dose of 2.5 µM. Cell viability and morphology were analyzed using MTT and staining with acrydine orange/ethidium bromide. Most cells were found to be viable after treatment with 5 µM IM, although there was gradual growth inhibition of fibroblastic cells while the number of round cells (macrophage-like cells) increased. At higher concentrations (15 µM), the majority of cells were apoptotic and cell growth ceased completely. Oil red staining revealed the presence of adipocytes only in untreated cells (control). Cell cycle analysis of stromal cells by flow cytometry showed a blockade at the G0/G1 phases in groups treated with 5-15 µM. These results suggest that IM differentially inhibits the survival of different types of BM cells since toxic effects were achieved. PMID:23011404

  7. A peptide derived from neutrophil inhibitory factor (NIF) blocks neutrophil adherence to endothelial cells.

    PubMed

    Madden, K; Janczak, J; McEnroe, G; Lim, D; Hartman, T; Liu, D; Stanton, L

    1997-06-01

    Peptides derived from neutrophil inhibitory factor (NIF), a known antagonist of Mac-1, were evaluated as inhibitors of neutrophil adherence. In vitro assays of adherence employed: 1) human polymorphonuclear cells (PMN), 2) human umbilical vein endothelial cells (HUVEC), and 3) CHO cells expressing ICAM-1 (CHO-ICAM cells). Cells, pretreated with NIF-derived peptides (0.1-100 microM) for 10 minutes, were permitted to adhere for 20 min in the continued presence of peptide. Cell-based assays: 1) PMN adherence to HUVEC, 2) PMN adhesion to immobilized human serum proteins, and 3) adherence of CHO-ICAM cells to immobilized Mac-1. A NIF-derived peptide of 29 amino acids blocked PMN adherence to HUVEC, but behaved somewhat differently than the parent NIF protein. NIF specifically antagonized Mac-1 dependent adherence, but the peptide blocked neutrophil adherence that was dependent upon both Mac-1 and LFA-1 integrins. CHO-ICAM adherence to Mac-1 was blocked by NIF, but not by the peptide. Binding studies with NIF and the peptide indicate that the molecules bind to different sites. A peptide derived from NIF blocks PMN adherence but, unlike NIF, the mechanism of action is not mediated by direct antagonism Mac-1.

  8. Extracellular vesicles from malignant effusions induce tumor cell migration: inhibitory effect of LMWH tinzaparin.

    PubMed

    Gamperl, Hans; Plattfaut, Corinna; Freund, Annika; Quecke, Tabea; Theophil, Friederike; Gieseler, Frank

    2016-10-01

    Elevated levels of extracellular vesicles (EVs) have been correlated with inflammatory diseases as well as progressive and metastatic cancer. By presenting tissue factor (TF) on their membrane surface, cellular microparticles (MPs) activate both the coagulation system and cell-signaling pathways such as the PAR/ERK pathway. We have shown before that malignant effusions are a rich source of tumor cell-derived EVs. Here, we used EVs from malignant effusions from three different patients after serial low-speed centrifugation steps as recommended by the ISTH (lsEV). Significant migration of human pancreatic carcinoma cells could be induced by lsEVs and was effectively inhibited by pre-incubation with tinzaparin, a low-molecular-weight heparin. Tinzaparin induced tissue factor pathway inhibitor (TFPI) release from tumor cells, and recombinant TFPI inhibited EV-induced tumor cell migration. EVs also induced ERK phosphorylation, whereas inhibitors of PAR2 and ERK suppressed EV-induced tumor cell migration. LsEVs have been characterized by high-resolution flow cytometry and, after elimination of smaller vesicles including exosomes, by further high-speed centrifugation (hsEV). The remaining population consisting primarily of MPs is indeed the main migration-inducing population with tenase activity. Compared to other LMWHs, tinzaparin is suggested to have high potency to induce TFPI release from epithelial cells. The migration-inhibitory effect of TFPI and the interruption of tumor cell migration by inhibitors of PAR2 and ERK suggest that lsEVs induce tumor cell migration by activating the PAR2 signaling pathway. Tinzaparin might inhibit this process at least partly by inducing the release of TFPI from tumor cells, which blocks PAR-activating TF complexes. The clinical relevance of the results is discussed. © 2016 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  9. Inhibitory effects of lysophosphatidic acid receptor-5 on cellular functions of sarcoma cells.

    PubMed

    Araki, Mutsumi; Kitayoshi, Misaho; Dong, Yan; Hirane, Miku; Ozaki, Shuhei; Mori, Shiori; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2014-06-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that interacts with G protein-coupled LPA receptors (LPA receptor-1 (LPA1) to LPA6). Here, we investigated the effects of LPA signaling via LPA5 on cellular functions of sarcoma cells by generating Lpar5 overexpressing and Lpar5 knockdown cells from rat osteosarcoma and malignant fibrous histiocytoma cells, respectively. The cell motility activity of Lpar5 overexpressing cells was significantly lower, while Lpar5 knockdown cells showed high cell motility, compared with respective controls. Gelatin zymography showed that LPA5 suppressed the activation of matrix metalloproteinase-2. LPA5 also inhibited the cell motility activity of endothelial cells, correlating with the expression levels of vascular endothelial growth factor genes. These results suggest that LPA signaling via LPA5 negatively regulates the cellular functions of rat sarcoma cells.

  10. [Mechanisms for quercetin in prevention of lung cancer cell growth and metastasis].

    PubMed

    Zhao, Xin; Zhang, Jian

    2015-06-01

    To study the effect of quercetin, an inhibitor of matrix metalloproteinases 9 (MMP-9), on the growth and metastasis of lung cancer cells and the underlying mechanisms.
 We evaluated the inhibitory effect and the inhibitory kinetics of quercetin on MMP-9 by ELISA and enzyme inhibition kinetics, and the inhibitory effect of quercetin on the growth of lung cancer cell (A549) by MTT. The effect of quercetin on levels of MMP-9 (mRNA and protein) and TGF-β1 (protein) in A549 were measured by RT-PCR and Western blot, respectively. The synergistic inhibition effect of quercetin plus TIMP-1 on the growth of lung cancer cell A549 was discussed.
 Quercetin induced the apoptosis of A549. It was a reversible competitive inhibitor of MMP-9 (half inhibition rate IC50 of 5.25 μmol/L, inhibition constant Ki was 2.18 μmol/L). With the increase in quercetin concentration, the levels of MMP-9 (mRNA and protein) and TGF-β1 (protein) were decreased, and the number of tumor cells on wear filter membrane was reduced. The combination of quercetin (at low concentrations) with TIMP-1 showed synergistic inhibitory effect on the growth of A549 cells. 
 Quercetin is a competitive inhibitor of MMP-9 and could downregulate the expression of MMP-9 and TGF-β1, which plays an important role in A549 apoptosis.

  11. Root growth is modulated by differential hormonal sensitivity in neighboring cells.

    PubMed

    Fridman, Yulia; Elkouby, Liron; Holland, Neta; Vragović, Kristina; Elbaum, Rivka; Savaldi-Goldstein, Sigal

    2014-04-15

    Coherent plant growth requires spatial integration of hormonal pathways and cell wall remodeling activities. However, the mechanisms governing sensitivity to hormones and how cell wall structure integrates with hormonal effects are poorly understood. We found that coordination between two types of epidermal root cells, hair and nonhair cells, establishes root sensitivity to the plant hormones brassinosteroids (BRs). While expression of the BR receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) in hair cells promotes cell elongation in all tissues, its high relative expression in nonhair cells is inhibitory. Elevated ethylene and deposition of crystalline cellulose underlie the inhibitory effect of BRI1. We propose that the relative spatial distribution of BRI1, and not its absolute level, fine-tunes growth.

  12. Measurement of adherent cell mass and growth

    PubMed Central

    Park, Kidong; Millet, Larry J.; Kim, Namjung; Li, Huan; Jin, Xiaozhong; Popescu, Gabriel; Aluru, N. R.; Hsia, K. Jimmy; Bashir, Rashid

    2010-01-01

    The characterization of physical properties of cells such as their mass and stiffness has been of great interest and can have profound implications in cell biology, tissue engineering, cancer, and disease research. For example, the direct dependence of cell growth rate on cell mass for individual adherent human cells can elucidate the mechanisms underlying cell cycle progression. Here we develop an array of micro-electro-mechanical systems (MEMS) resonant mass sensors that can be used to directly measure the biophysical properties, mass, and growth rate of single adherent cells. Unlike conventional cantilever mass sensors, our sensors retain a uniform mass sensitivity over the cell attachment surface. By measuring the frequency shift of the mass sensors with growing (soft) cells and fixed (stiff) cells, and through analytical modeling, we derive the Young’s modulus of the unfixed cell and unravel the dependence of the cell mass measurement on cell stiffness. Finally, we grew individual cells on the mass sensors and measured their mass for 50+ hours. Our results demonstrate that adherent human colon epithelial cells have increased growth rates with a larger cell mass, and the average growth rate increases linearly with the cell mass, at 3.25%/hr. Our sensitive mass sensors with a position-independent mass sensitivity can be coupled with microscopy for simultaneous monitoring of cell growth and status, and provide an ideal method to study cell growth, cell cycle progression, differentiation, and apoptosis. PMID:21068372

  13. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    PubMed Central

    Shimizu, Tetsuya; Yokomuro, Shigeki; Mizuguchi, Yoshiaki; Kawahigashi, Yutaka; Arima, Yasuo; Taniai, Nobuhiko; Mamada, Yasuhiro; Yoshida, Hiroshi; Akimaru, Koho; Tajiri, Takashi

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholan-giocarcinoma (ICC). METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells. RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3. CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion. TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1. PMID:17072955

  14. Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode

    SciTech Connect

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2016-09-09

    Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds at an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery rates

  15. Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode

    SciTech Connect

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2016-09-09

    Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds at an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery rates

  16. Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks: A Simple Model for the Collective Activity of Striatal Projection Neurons

    PubMed Central

    Angulo-Garcia, David; Berke, Joshua D.; Torcini, Alessandro

    2016-01-01

    Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices. In particular we develop a new metric to determine the conditions under which sparse inhibitory networks form anti-correlated cell assemblies with time-varying activity of individual cells. We find that under these conditions the network displays an input-specific sequence of cell assembly switching, that effectively discriminates similar inputs. Our results support the proposal that GABAergic connections between striatal projection neurons allow stimulus-selective, temporally-extended sequential activation of cell assemblies. Furthermore, we help to show how altered intrastriatal GABAergic signaling may produce aberrant network-level information processing in disorders such as Parkinson’s and Huntington’s diseases. PMID:26915024

  17. Inhibitory Effects of Iranian Thymus vulgaris Extracts on in Vitro Growth of Entamoeba histolytica

    PubMed Central

    Behnia, Maryam; Komeylizadeh, Hossein; Tabaei, Seyyed-Javad Seyyed; Abadi, Alireza

    2008-01-01

    One of the most common drugs used against a wide variety of anaerobic protozoan parasites is metronidazole. However, this drug is mutagenic for bacteria and is a potent carcinogen for rodents. Thymus vulgaris is used for cough suppression and relief of dyspepsia. Also it has antibacterial and antifungal properties. The aim of this study was to investigate antiamebic effect of Thymus vulgaris against Entamoeba histolytica in comparison with metronidazole. One hundred gram air-dried T. vulgaris plant was obtained and macerated at 25℃ for 14 days using n-hexane and a mixture of ethanol and water. For essential oil isolation T. vulgaris was subjected to hydrodistillation using a clevenger-type apparatus for 3 hr. E. histolytica, HM-1: IMSS strain was used in all experiments. It was found that the minimal inhibitory concentration (MIC) for T. vulgaris hydroalcoholic, hexanic extracts, and the essential oil after 24 hr was 4 mg/mL, 4 mg/mL, and 0.7 mg/mL, respectively. After 48 hr the MIC for T. vulgaris hydroalcoholic and hexanic extracts was 3 and 3 mg/mL, respectively. Therefore, it can be concluded that the Iranian T. vulgaris is effective against the trophozoites of E. histolytica. PMID:18830054

  18. Inhibitory effects of seaweed extracts on the growth of the vaginal bacterium Gardnerella vaginalis.

    PubMed

    Ha, Yu-Mi; Choi, Jae-Suk; Lee, Bo-Bae; Moon, Hye Eun; Cho, Kwang Keun; Choi, In Soon

    2014-05-01

    Of 44 species of seaweed screened for potential anti-Gardnerella vaginalis activity, 27 (61.4%) showed antimicrobial activity by the agar disk-diffusion method. Among them, the strongest activities against the pathogen were exhibited by Chlorophyta, with Ulva pertusa producing an 11.3-mm zone of inhibition at 5 mg disk⁻¹. The MIC values of U. pertusa extracts against both G. vaginalis KCTC 5096 and KCTC 5097, the main cause of vaginosis, were 312 μg ml⁻¹, while the MIC values against both Candida albicans KCTC 7270 and KCTC 7965, the main cause of candidiasis, were 2.5 mg ml⁻¹. Against Lactobacillus gasseri KCTC 3173 and Lactobacillus jensenii KCTC 5194, members of the normal vaginal microflora, no inhibitory effect was seen even at 10 mg ml⁻¹. To identify the primary active compounds, a U. pertusa powder was successively fractionated according to polarity, and the main active agents against G. vaginalis KCTC 5096 were determined to be nitrogenous compounds (156 μg ml⁻¹ of the MIC value). According to these results, it was suggested that extracts of the seaweed U. pertusa are valuable for the development of natural therapeutic agents for treating women with bacterial vaginosis.

  19. Inhibitory effects of Iranian Thymus vulgaris extracts on in vitro growth of Entamoeba histolytica.

    PubMed

    Behnia, Maryam; Haghighi, Ali; Komeylizadeh, Hossein; Tabaei, Seyyed-Javadi Seyyed; Abadi, Alireza

    2008-09-01

    One of the most common drugs used against a wide variety of anaerobic protozoan parasites is metronidazole. However, this drug is mutagenic for bacteria and is a potent carcinogen for rodents. Thymus vulgaris is used for cough suppression and relief of dyspepsia. Also it has antibacterial and antifungal properties. The aim of this study was to investigate antiamebic effect of Thymus vulgaris against Entamoeba histolytica in comparison with metronidazole. One hundred gram air-dried T. vulgaris plant was obtained and macerated at 25 degrees C for 14 days using n-hexane and a mixture of ethanol and water. For essential oil isolation T. vulgaris was subjected to hydrodistillation using a clevenger-type apparatus for 3 hr. E. histolytica, HM-1: IMSS strain was used in all experiments. It was found that the minimal inhibitory concentration (MIC) for T. vulgaris hydroalcoholic, hexanic extracts, and the essential oil after 24 hr was 4 mg/mL, 4 mg/mL, and 0.7 mg/mL, respectively. After 48 hr the MIC for T. vulgaris hydroalcoholic and hexanic extracts was 3 and 3 mg/mL, respectively. Therefore, it can be concluded that the Iranian T. vulgaris is effective against the trophozoites of E. histolytica.

  20. Effect of leukemia inhibitory factor and forskolin on establishment of rat embryonic stem cell lines.

    PubMed

    Hirabayashi, Masumi; Goto, Teppei; Tamura, Chihiro; Sanbo, Makoto; Hara, Hiromasa; Hochi, Shinichi

    2014-03-07

    This study was designed to investigate whether supplementation of 2i medium with leukemia inhibitory factor (LIF) and/or forskolin would support establishment of germline-competent rat embryonic stem (ES) cell lines. Due to the higher likelihood of outgrowth rates, supplementation of forskolin with or without LIF contributed to the higher establishment efficiency of ES cell lines in the WDB strain. Germline transmission competency of the chimeric rats was not influenced by the profile of ES cell lines until their establishment. When the LIF/forskolin-supplemented 2i medium was used, the rat strain used as the blastocyst donor, such as the WI strain, was a possible factor negatively influencing the establishment efficiency of ES cell lines. Once ES cell lines were established, all lines were found to be germline-competent by a progeny test in chimeric rats. In conclusion, both LIF and forskolin are not essential but can play a beneficial role in the establishment of "genuine" rat ES cell lines.

  1. Inhibitory effects of Ephedra major Host on Aspergillus parasiticus growth and aflatoxin production.

    PubMed

    Bagheri-Gavkosh, Shahrokh; Bigdeli, Mohsen; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2009-11-01

    This study was undertaken to evaluate the effect of Ephedra major Host, an important medicinal plant with various biological activities, on growth and aflatoxin (AF) production by Aspergillus parasiticus NRRL 2999. The fungus was cultured in yeast extract-sucrose (YES) broth, a conductive medium that supports AF production, in the presence of various concentrations of essential oil (EO), hexanic and methanolic extracts of plant aerial parts, fruits, and roots using microbioassay technique. After incubating for 96 h at 28 degrees C in static conditions, mycelial dry weight was determined as an index of fungal growth, and aflatoxin B(1) (AFB(1)) was measured using HPLC technique. Based on the obtained results, EO of plant aerial parts significantly inhibited fungal growth at the highest concentration of 1000 microg/ml without any obvious effect on AFB(1) production at all concentrations used. Among plant extracts tested, only methanolic extract of aerial parts and roots were found to inhibit fungal growth and AFB(1) production dose-dependently with an IC(50) value of 559.74 and 3.98 microg/ml for AFB(1), respectively. Based on the GC/MS data, the major components of E. major EO were bis (2-ethylhexyl) phthalate (42.48%), pentacosane (20.94%), docosane (14.64%), citronellol (5.15%), heptadecan (4.41%), cis-3-Hexen-1-ol benzoate (4.07%), and 7-Octen-2-ol (3.25%). With respect to the potent inhibition of fungal growth and AF production by E. major, this plant may be useful in protecting crops from both toxigenic fungal growth and AF contamination.

  2. Inhibitory mechanisms of Agaricus blazei Murill on the growth of prostate cancer in vitro and in vivo.

    PubMed

    Yu, Ching-Han; Kan, Shu-Fen; Shu, Chin-Hang; Lu, Ting-Jang; Sun-Hwang, Lucy; Wang, Paulus S

    2009-10-01

    Agaricus blazei Murill (A. blazei) has been conventionally used as a health food for the prevention of cancer. However, little is known about the direct effects and action mechanisms of A. blazei on human prostate cancer. In the present study, the effects of A. blazei on the growth of human prostate cancer were examined in vitro and in vivo. A. blazei, especially the broth fraction, inhibited cell proliferation in both androgen-dependent and androgen-independent prostate cancer cell lines. The broth of A. blazei induced lactate dehydrogenase leakage in three cancer cell lines, whereas the activities of caspase 3 and the DNA fragmentation were enhanced the most in androgen-independent PC3 cells. The protein expressions of apoptosis-related molecules were elevated by the broth of A. blazei in PC3 cells. Oral supplementation with the broth of A. blazei (with the higher ratio of beta-glucan) significantly suppressed tumor growth without inducing adverse effects in severe combined immunodeficient mice with PC3 tumor xenograft. Tumor xenografts from A. blazei-fed mice showed decreased proliferating cell nuclear antigen-positive cells and reduced tumor microvessel density. Based on these results, we found that the broth of A. blazei may directly inhibit the growth of prostate cancer cell via an apoptotic pathway and suppress prostate tumor growth via antiproliferative and antiangiogenic mechanisms. We therefore suggest that A. blazei might have potential therapeutic use in the prevention and treatment of human prostate cancer.

  3. Bidirectional modulation of deep cerebellar nuclear cells revealed by optogenetic manipulation of inhibitory inputs from Purkinje cells.

    PubMed

    Han, V Z; Magnus, G; Zhang, Y; Wei, A D; Turner, E E

    2014-09-26

    In the mammalian cerebellum, deep cerebellar nuclear (DCN) cells convey all information from cortical Purkinje cells (PCs) to premotor nuclei and other brain regions. However, how DCN cells integrate inhibitory input from PCs with excitatory inputs from other sources has been difficult to assess, in part due to the large spatial separation between cortical PCs and their target cells in the nuclei. To circumvent this problem we have used a Cre-mediated genetic approach to generate mice in which channelrhodopsin-2 (ChR2), fused with a fluorescent reporter, is selectively expressed by GABAergic neurons, including PCs. In recordings from brain slice preparations from this model, mammalian PCs can be robustly depolarized and discharged by brief photostimulation. In recordings of postsynaptic DCN cells, photostimulation of PC axons induces a strong inhibition that resembles these cells' responses to focal electrical stimulation, but without a requirement for the glutamate receptor blockers typically applied in such experiments. In this optogenetic model, laser pulses as brief as 1 ms can reliably induce an inhibition that shuts down the spontaneous spiking of a DCN cell for ∼50 ms. If bursts of such brief light pulses are delivered, a fixed pattern of bistable bursting emerges. If these pulses are delivered continuously to a spontaneously bistable cell, the immediate response to such photostimulation is inhibitory in the cell's depolarized state and excitatory when the membrane has repolarized; a less regular burst pattern then persists after stimulation has been terminated. These results indicate that the spiking activity of DCN cells can be bidirectionally modulated by the optically activated synaptic inhibition of cortical PCs.

  4. Inhibitory effect of cyclophilin A from the hard tick Haemaphysalis longicornis on the growth of Babesia bovis and Babesia bigemina.

    PubMed

    Maeda, Hiroki; Boldbaatar, Damdinsuren; Kusakisako, Kodai; Galay, Remil Linggatong; Aung, Kyaw Min; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2013-06-01

    Haemaphysalis longicornis is known as one of the most important ticks transmitting Babesia parasites in East Asian countries, including Babesia ovata and Babesia gibsoni, as well as Theileria parasites. H. longicornis is not the natural vector of Babesia bovis and Babesia bigemina. Vector ticks and transmitted parasites are thought to have established unique host-parasite interaction for their survival, meaning that vector ticks may have defensive molecules for the growth control of parasites in their bodies. However, the precise adaptation mechanism of tick-Babesia parasites is still unknown. Recently, cyclophilin A (CyPA) was reported to be important for the development of Babesia parasites in ticks. To reveal a part of their adaptation mechanism, the current study was conducted. An injection of B. bovis-infected RBCs into adult female H. longicornis ticks was found to upregulate the expression profiles of the gene and protein of CyPA in H. longicornis (HlCyPA). In addition, recombinant HlCyPA (rHlCyPA) purified from Escherichia coli exhibited significant inhibitory growth effects on B. bovis and B. bigemina cultivated in vitro, without any hemolytic effect on bovine RBCs at all concentrations used. In conclusion, our results suggest that HlCyPA might play an important role in the growth regulation of Babesia parasites in H. longicornis ticks, during natural acquisition from an infected host. Furthermore, rHlCyPA may be a potential alternative chemotherapeutic agent against babesiosis.

  5. Inhibitory effect of essential oils on decay fungi and mold growth on wood

    Treesearch

    Vina W. Yang; Carol A. Clausen

    2007-01-01

    Structural damage and potential health risks caused by wood decay and mold fungi in residential structures have been a major concern for homeowners, building contractors and insurance companies alike. The combined damage from decay fungi and mold claims exceeds several billion US dollars annually. Protection against decay and mold growth on wood is a critical economic...

  6. Growth inhibitory effects of gossypol and related compounds on fungal cotton root pathogens

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to investigate the effects of terpenoids gossypol, gossypolone, apogossypolone, methoxygossypol and dimethoxygossypol on growth of a collection of fungal soil pathogens. The compounds were tested at a concentration of 100 µg ml-1 in a Czapek Dox agar medium at 25°C. Gossy...

  7. Testing the inhibitory effects of Mascara Life on bacterial growth in mascara.

    PubMed

    Gabriel, H M; Gable, E M; Sauser, K; Rice, J

    2001-04-01

    Mascara Life is a liquid additive that claims to reconstitute mascara consistency while retarding bacterial and fungal growth in tubes of used mascara. The purpose of this study was to compare the effectiveness of mascara alone versus mascara with the addition of Mascara Life against the growth of Staphylococcus aureus, a common bacterial contaminant responsible for potentially serious ocular infections. To simulate 3 to 6 months of use, 12 new tubes of Maybelline Great Lash mascara were dried for 5 consecutive days with the applicator wands removed. Mascara Life was added to a set of six tubes and an equal amount of saline was added to another set of six tubes. Equal amounts of eugonic broth were added to each tube to provide nutrients for the organisms and to further dilute the mascara. One tube from each set served as a negative control. The ten remaining tubes were inoculated with a standardized suspension of Staphylococcus aureus. Two calibrated samples from each tube were plated onto blood agar at 0, 1, 7, 14, 21, and 28 days after initial inoculation. The number of viable organisms was determined after 24 hours of incubation by the plate-count method. The concentration of viable bacteria was reduced to zero by day 7, and remained at this level through day 28 in all inoculated tubes. The negative control tubes showed no growth throughout the study. The preservatives in both mascara and mascara with the addition of Mascara Life are effective in retarding growth of Staphylococcus aureus.

  8. Quiescence of Memory CD8(+) T Cells Is Mediated by Regulatory T Cells through Inhibitory Receptor CTLA-4.

    PubMed

    Kalia, Vandana; Penny, Laura Anne; Yuzefpolskiy, Yevgeniy; Baumann, Florian Martin; Sarkar, Surojit

    2015-06-16

    Immune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection yet exist in a functionally quiescent state. The paradigm is that memory T cells remain inactive due to lack of T cell receptor (TCR) stimuli. Here, we report that regulatory T (Treg) cells orchestrate memory T cell quiescence by suppressing effector and proliferation programs through inhibitory receptor, cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Loss of Treg cells resulted in activation of genome-wide transcriptional programs characteristic of effector T cells and drove transitioning as well as established memory CD8(+) T cells toward terminally differentiated KLRG-1(hi)IL-7Rα(lo)GzmB(hi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality, and protective efficacy. CTLA-4 functionally replaced Treg cells in trans to rescue memory T cell defects and restore homeostasis. These studies present the CTLA-4-CD28-CD80/CD86 axis as a potential target to accelerate vaccine-induced immunity and improve T cell memory quality in current cancer immunotherapies proposing transient Treg cell ablation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model.

    PubMed

    Huang, Ruea-Yea; Eppolito, Cheryl; Lele, Shashikant; Shrikant, Protul; Matsuzaki, Junko; Odunsi, Kunle

    2015-09-29

    The immune co-inhibitory receptors lymphocyte activation gene-3 (LAG3) and programmed