Science.gov

Sample records for cell immunoreactivity treatment

  1. Distribution of Fos-immunoreactive cells in rat forebrain and midbrain following social defeat stress and diazepam treatment.

    PubMed

    Lkhagvasuren, B; Oka, T; Nakamura, Y; Hayashi, H; Sudo, N; Nakamura, K

    2014-07-11

    The anxiolytic diazepam selectively inhibits psychological stress-induced autonomic and behavioral responses without causing noticeable suppression of other central performances. This pharmacological property of diazepam led us to the idea that neurons that exhibit diazepam-sensitive, psychological stress-induced activation are potentially those recruited for stress responses. To obtain neuroanatomical clues for the central stress circuitries, we examined the effects of diazepam on psychological stress-induced neuronal activation in broad brain regions. Rats were exposed to a social defeat stress, which caused an abrupt increase in body temperature by up to 2°C. Pretreatment with diazepam (4mg/kg, i.p.) attenuated the stress-induced hyperthermia, confirming an inhibitory physiological effect of diazepam on the autonomic stress response. Subsequently, the distribution of cells expressing Fos, a marker of neuronal activation, was examined in 113 forebrain and midbrain regions of these rats after the stress exposure and diazepam treatment. The stress following vehicle treatment markedly increased Fos-immunoreactive (IR) cells in most regions of the cerebral cortex, limbic system, thalamus, hypothalamus and midbrain, which included parts of the autonomic, neuroendocrine, emotional and arousal systems. The diazepam treatment significantly reduced the stress-induced Fos expression in many brain regions including the prefrontal, sensory and motor cortices, septum, medial amygdaloid nucleus, medial and lateral preoptic areas, parvicellular paraventricular hypothalamic nucleus, dorsomedial hypothalamus, perifornical nucleus, tuberomammillary nucleus, association, midline and intralaminar thalami, and median and dorsal raphe nuclei. In contrast, diazepam increased Fos-IR cells in the central amygdaloid nucleus, medial habenular nucleus, ventromedial hypothalamic nucleus and magnocellular lateral hypothalamus. These results provide important information for elucidating the

  2. Cells immunoreactive for neuropeptide in human thymomas.

    PubMed Central

    Lauriola, L; Maggiano, N; Larocca, L M; Ranelletti, F O; Ricci, R; Piantelli, M; Capelli, A

    1990-01-01

    The presence of opioid peptides, bombesin, and substance P was investigated by immunohistochemistry in tissue sections from six human thymomas. The number of immunoreactive cells seemed to vary from one case to another. Ultrastructural investigation, showing the presence of desmosomes in labelled cells, allowed these cells to be classified as epithelial lineage cells. The occurrence of cells containing neuropeptide in thymomas suggest that peptide molecules could have modulated the behaviour of this tumour, given the reported influence of these molecules on immune functions and their growth promoting activity on several cell types, including mesenchymal and epithelial cells. Images PMID:1699978

  3. Nestin immunoreactivity of Purkinje cells in Creutzfeldt-Jakob disease.

    PubMed

    Mizuno, Yuji; Ohama, Eisaku; Hirato, Junko; Nakazato, Yoichi; Takahashi, Hitoshi; Takatama, Masamitsu; Takeuchi, Toshiyuki; Okamoto, Koichi

    2006-07-15

    Nestin, an intermediate filament protein, is mainly expressed in neural progenitor/stem cells in the central nervous system. Recently, we reported that nestin is expressed in Purkinje cells in patients with Creutzfeldt-Jakob disease (CJD). In this study, we examined a total of 19 CJD cerebella to analyze the intensity and pattern of nestin immunoreactivity of Purkinje cells in different pathological stages of degeneration in the cerebellar cortex. The results showed that the Purkinje cells were immunoreactive with nestin regardless of the severity of degenerative cerebellar cortex. Furthermore, we noted several different types of nestin immunoreactivity, indicated by diffuse and fine, coarse, and inclusion-like immunostainings within Purkinje cell bodies as well as dot-like staining outside of the cell bodies. In contrast, on examination of cerebella from non-CJD patients, 6 of 30 cases showed nestin immunoreactivity to a lesser extent. Thus, nestin-positive Purkinje cells are more common in CJD cerebella than in non-CJD cerebella. Although the mechanism of nestin expression in Purkinje cells is not yet understood, we suggest that such nestin-positive Purkinje cells are being reactivated to survive the cell death.

  4. Parvalbumin-immunoreactive amacrine cells of macaque retina

    PubMed Central

    Klump, Kathryn E.; Zhang, Ai-Jun; Wu, Samuel M.; Marshak, David W.

    2012-01-01

    A number of authors have observed amacrine cells containing high levels of immunoreactive parvalbumin in primate retinas. The experiments described here were designed to identify these cells morphologically, to determine their neurotransmitter, to record their light responses, and to describe the other cells that they contact. Macaque retinas were fixed in paraformaldehyde and labeled with antibodies to parvalbumin and one or two other markers, and this double- and triple-labeled material was analyzed by confocal microscopy. In their morphology and dendritic stratification patterns, the parvalbumin-positive cells closely resembled the knotty type 2 amacrine cells described using the Golgi method in macaques. They contained immunoreactive glycine transporter, but not immunoreactive γ-aminobutyric acid, and therefore, they use glycine as their neurotransmitter. Their spatial density was relatively high, roughly half that of AII amacrine cells. They contacted lobular dendrites of AII cells, and they are expected to be presynaptic to AII cells based on earlier ultrastructural studies. They also made extensive contacts with axon terminals of OFF midget bipolar cells whose polarity cannot be predicted with certainty. A macaque amacrine cell of the same morphological type depolarized at the onset of increments in light intensity, and it was well coupled to other amacrine cells. Previously, we described amacrine cells like these that contacted OFF parasol ganglion cells and OFF starburst amacrine cells. Taken together, these findings suggest that one function of these amacrine cells is to inhibit the transmission of signals from rods to OFF bipolar cells via AII amacrine cells. Another function may be inhibition of the OFF pathway following increments in light intensity. PMID:19435546

  5. Cholecystokinin-like immunoreactive amacrine cells in the rat retina

    PubMed Central

    Firth, Sally I.; Varela, Carolina; De La Villa, Pedro; Marshak, David W.

    2012-01-01

    High levels of endogenous cholecystokinin (CCK) are present in the rat retina (Eskay & Beinfeld, 1982), but the cellular localization and physiological actions of CCK in the rat retina are uncertain. The goals of this study were to characterize the cells containing CCK, identify cell types that interact with CCK cells, and investigate the effects of CCK on rod bipolar cells. Rat retinas were labeled with antibody to gastrin-CCK (gCCK) using standard immunofluorescence techniques. Patch-clamp methods were used to record from dissociated rod bipolar cells from rats and mice. Gastrin-CCK immunoreactive (-IR) axons were evenly distributed throughout the retina in stratum 5 of the inner plexiform layer of the rat retina. However, the gCCK-IR somata were only detected in the ganglion cell layer in the peripheral retina. The gCCK-IR cells contained glutamate decarboxylase, and some of them also contained immunoreactive substance P. Labeled axons contacted PKC-IR rod bipolar cells, and recoverin-IR ON-cone bipolar cells. CCK-octapeptide inhibits GABAC but not GABAA mediated currents in dissociated rod bipolar cells. PMID:12511085

  6. Localization of Neuropeptide Y1 Receptor Immunoreactivity in the Rat Retina and the Synaptic Connectivity of Y1 Immunoreactive Cells

    PubMed Central

    D'Angelo, Iona; Oh, Su-Ja; Chun, Myung-Hoon; Brecha, Nicholas C.

    2010-01-01

    Neuropeptide Y (NPY), an inhibitory neuropeptide expressed by a moderately dense population of wide-field amacrine cells in the rat retina, acts through multiple (Y1–y6) G-protein–coupled receptors. This study determined the cellular localization of Y1 receptors and the synaptic connectivity of Y1 processes in the inner plexiform layer (IPL) of the rat retina. Specific Y1 immunoreactivity was localized to horizontal cell bodies in the distal inner nuclear layer and their processes in the outer plexiform layer. Immunoreactivity was also prominent in cell processes located in strata 2 and 4, and puncta in strata 4 and 5 of the IPL. Double-label immunohistochemical experiments with calbindin, a horizontal cell marker, confirmed Y1 immunostaining in all horizontal cells. Double-label immunohistochemical experiments, using antibodies to choline acetyltransferase and vesicular acetylcholine transporter to label cholinergic amacrine cell processes, demonstrated that Y1 immunoreactivity in strata 2 and 4 of the IPL was localized to cholinergic amacrine cell processes. Electron microscopic studies of the inner retina showed that Y1-immunostained amacrine cell processes and puncta received synaptic inputs from unlabeled amacrine cell processes (65.2%) and bipolar cell axon terminals (34.8%). Y1-immunoreactive amacrine cell processes most frequently formed synaptic outputs onto unlabeled amacrine cell processes (34.0%) and ganglion cell dendrites (54.1%). NPY immunoreactivity in the rat retina is distributed primarily to strata 1 and 5 of the IPL, and the present findings, thus, suggest that NPY acts in a paracrine manner on Y1 receptors to influence both horizontal and amacrine cells. PMID:12455004

  7. Robust syntaxin-4 immunoreactivity in mammalian horizontal cell processes

    PubMed Central

    HIRANO, ARLENE A.; BRANDSTÄTTER, JOHANN HELMUT; VILA, ALEJANDRO; BRECHA, NICHOLAS C.

    2009-01-01

    Horizontal cells mediate inhibitory feed-forward and feedback communication in the outer retina; however, mechanisms that underlie transmitter release from mammalian horizontal cells are poorly understood. Toward determining whether the molecular machinery for exocytosis is present in horizontal cells, we investigated the localization of syntaxin-4, a SNARE protein involved in targeting vesicles to the plasma membrane, in mouse, rat, and rabbit retinae using immunocytochemistry. We report robust expression of syntaxin-4 in the outer plexiform layer of all three species. Syntaxin-4 occurred in processes and tips of horizontal cells, with regularly spaced, thicker sandwich-like structures along the processes. Double labeling with syntaxin-4 and calbindin antibodies, a horizontal cell marker, demonstrated syntaxin-4 localization to horizontal cell processes; whereas, double labeling with PKC antibodies, a rod bipolar cell (RBC) marker, showed a lack of co-localization, with syntaxin-4 immunolabeling occurring just distal to RBC dendritic tips. Syntaxin-4 immunolabeling occurred within VGLUT-1-immunoreactive photoreceptor terminals and underneath synaptic ribbons, labeled by CtBP2/RIBEYE antibodies, consistent with localization in invaginating horizontal cell tips at photoreceptor triad synapses. Vertical sections of retina immunostained for syntaxin-4 and peanut agglutinin (PNA) established that the prominent patches of syntaxin-4 immunoreactivity were adjacent to the base of cone pedicles. Horizontal sections through the OPL indicate a one-to-one co-localization of syntaxin-4 densities at likely all cone pedicles, with syntaxin-4 immunoreactivity interdigitating with PNA labeling. Pre-embedding immuno-electron microscopy confirmed the subcellular localization of syntaxin-4 labeling to lateral elements at both rod and cone triad synapses. Finally, co-localization with SNAP-25, a possible binding partner of syntaxin-4, indicated co-expression of these SNARE proteins in

  8. Topographic distribution of serotonin-immunoreactive urethral endocrine cells and their relationship with calcitonin gene-related peptide-immunoreactive nerves in male rats.

    PubMed

    Yokoyama, Takuya; Saino, Tomoyuki; Nakamuta, Nobuaki; Yamamoto, Yoshio

    2017-01-01

    We investigated the topographic distribution and morphology of serotonin (5-HT)-immunoreactive endocrine cells in the urethra of male rats, and focused on their relationship with peptidergic nerve fibers immunoreactive for calcitonin gene-related peptide (CGRP). Urethral endocrine cells immunoreactive for 5-HT were densely distributed in the epithelial layers of the prostatic part, but were sparsely distributed in the membranous and spongy parts of urethra. Distribution of urethral endocrine cells with 5-HT immunoreactivity in the prostatic part was restricted from the internal urethral orifice to the region of seminal colliculus. 5-HT-immunoreactive endocrine cells were also observed in the ductal epithelial layers of coagulating glands, prostatic glands, and seminal vesicles. 5-HT-immunoreactive endocrine cells were triangular or flask in shape and possessed an apical projection extending toward the urethral lumen, and basal or lateral protrusions intruding between other epithelial cells were also detected in some cells. Double immunolabeling for 5-HT and CGRP revealed that CGRP-immunoreactive nerve fibers attached to urethral endocrine cells with 5-HT immunoreactivity in the prostatic part. These results suggest that urethral endocrine cells may release 5-HT in response to luminal stimuli, and that these cells and CGRP-immunoreactive nerves may regulate each other by an axon reflex mechanism.

  9. Pancreatic endoproteases and pancreatic secretory trypsin inhibitor immunoreactivity in human Paneth cells.

    PubMed Central

    Bohe, M; Borgström, A; Lindström, C; Ohlsson, K

    1986-01-01

    Normal and metaplastic gastrointestinal mucosa obtained at surgical resection were studied by light microscopy, using the unlabelled antibody enzyme method for immunohistochemical staining of lysozyme, pancreatic endoproteases, and pancreatic secretory trypsin inhibitor (PSTI). Paneth cells in the mucosa of normal small intestine, gastric mucosa with intestinal metaplasia, and colonic metaplastic mucosa were found to contain anionic trypsin, cationic trypsin, lysozyme, and PSTI immunoreactivity, but not chymotrypsin and elastase immunoreactivity. Normal gastric and colonic mucosa and some goblet cells in the small intestine showed positive PSTI immunoreactivity but no endoprotease immunoreactivity. The presence of immunoreactive trypsin and immunoreactive PSTI in the Paneth cells, which are of secretory type, probably indicates an important extrapancreatic source of these proteins rather than a storage of endocytosed material. Images PMID:3525612

  10. Effects of neonatal treatment with valproic acid on vasopressin immunoreactivity and olfactory behaviour in mice

    PubMed Central

    Murray, Elaine K.; Varnum, Megan M.; Fernandez, Jared L.; de Vries, Geert J.; Forger, Nancy G.

    2011-01-01

    Recent findings demonstrate that epigenetic modifications are required for sexual differentiation of the brain. For example, neonatal administration of the histone deacetylase inhibitor, valproic acid, blocks masculinisation of cell number in the principal nucleus of the bed nucleus of the stria terminalis (BNST). Here we examined effects of valproic acid on neurochemistry and behaviour, focusing on traits that are sexually dimorphic and linked to the BNST. Newborn mice were treated with saline or valproic acid and the effect on vasopressin immunoreactivity and olfactory preference behavior examined in adulthood. As expected, males had more vasopressin immunoreactive fibers than females in the lateral septum and medial dorsal thalamus, two projection sites of BNST vasopressin neurons. Neonatal valproic acid increased vasopressin fiber density specifically in females in the lateral septum, thereby reducing the sex difference, and increased vasopressin fibers in both sexes in the medial dorsal thalamus. Effects were not specific to BNST vasopressin projections, however, as valproic acid also significantly increased vasopressin immunoreactivity in the anterior hypothalamic area in both sexes. Subtle sex-specific effects of neonatal valproic acid treatment were observed on olfactory behavior. As predicted, males showed a preference for investigating female-soiled bedding whereas females showed a preference for male-soiled bedding. Valproic acid did not significantly alter olfactory preference, per se, but increased the number of visits females made to female-soiled bedding and the overall time females spent investigating soiled versus clean bedding. Taken together, these results suggest that a transient disruption of histone deacetylation at birth does not have generalized effects on sexual differentiation, but does produce lasting effects on brain neurochemistry and behaviour. PMID:21793947

  11. Neuronal nitric oxide synthase immunoreactivity in ependymal cells during early postnatal development.

    PubMed

    Soygüder, Zafer; Karadağ, Hüseyin; Nazli, Mümtaz

    2004-03-01

    Neuronal nitric oxide synthase (nNOS) immunoreactivity was observed in ependymal cell layer of the central canal of spinal cord of neonatal rats (2-20 days old). Neuronal nitric oxide synthase immunoreactivity was present in postnatal day 2 and this immunoreactivity gradually disappeared by postnatal day 16. The progressive decrease in nNOS staining with the increasing postnatal age may suggest that nNOS staining paralleled the maturation of the central canal and may also suggest that nNOS activity plays a role in the development of the ependymal cells.

  12. Effects of chronic treatment with corticosterone and imipramine on fos immunoreactivity and adult hippocampal neurogenesis.

    PubMed

    Diniz, L; dos Santos, T B; Britto, L R G; Céspedes, I C; Garcia, M C; Spadari-Bratfisch, R C; Medalha, C C; de Castro, G M; Montesano, F T; Viana, M B

    2013-02-01

    In a previous study we showed that rats chronically treated with corticosterone (CORT) display anxiogenic behavior, evidenced by facilitation of avoidance responses in the elevated T-maze (ETM) model of anxiety. Treatment with the tricyclic antidepressant imipramine significantly reversed the anxiogenic effects of CORT, while inhibiting ETM escape, a response related to panic disorder. To better understand the neurobiological mechanisms underlying these behavioral effects, analysis of c-fos protein immunoreactivity (fos-ir) was used here to map areas activated by chronic CORT (200 mg pellets, 21-day release) and imipramine (15 mg/kg, IP) administration. We also evaluated the number of cells expressing the neurogenesis marker doublecortin (DCX) in the hippocampus and measured plasma CORT levels on the 21st day of treatment. Results showed that CORT increased fos-ir in the ventrolateral septum, medial amygdala and paraventricular hypothalamic nucleus and decreased fos-ir in the lateral periaqueductal gray. Imipramine, on the other hand, increased fos-ir in the medial amygdala and decreased fos-ir in the anterior hypothalamus. CORT also decreased the number of DCX-positive cells in the ventral and dorsal hippocampus, an effect antagonized by imipramine. CORT levels were significantly higher after treatment. These data suggest that the behavioral effects of CORT and imipramine are mediated through specific, at times overlapping, neuronal circuits, which might be of relevance to a better understanding of the physiopathology of generalized anxiety and panic disorder.

  13. Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: the hippocampal formation.

    PubMed

    Pitkänen, A; Amaral, D G

    1993-05-01

    The distribution of parvalbumin-immunoreactive cells and fibers in the various fields of the hippocampal formation was studied in the macaque monkey. Parvalbumin-immunoreactive neurons had aspiny or sparsely spiny dendrites that often had a beaded appearance; most resembled classically identified interneurons. Parvalbumin-immunoreactive fibers and terminals were confined to certain laminae in each field and generally had a pericellular distribution. In the dentate gyrus, there was a dense pericellular plexus of immunoreactive terminals in the granule cell layer. Except for a narrow supragranular zone, there was a marked paucity of terminals in the molecular and polymorphic cell layers. Immunoreactive neurons were mainly located immediately subjacent to the granule cell layer and comprised a variety of morphological cell types. The three fields of the hippocampus proper (CA3, CA2, and CA1) demonstrated differences in their parvalbumin staining characteristics. In CA3, there was a prominent pericellular terminal plexus in the pyramidal cell layer that was densest distally (closer to CA2). Immunoreactive cells were located either in the pyramidal cell layer, where many had a pyramidal shape and prominent apical and basal dendrites, or in stratum oriens. CA2 had a staining pattern similar to that in CA3, though both the number of labeled cells and the density of the pericellular terminal plexus were greater in CA2. In CA1, there was a markedly lower number of parvalbumin-labeled cells than in CA3 and CA2 and the cells tended to be located in the deep part of the pyramidal cell layer or in stratum oriens. The pyramidal cell layer of CA1 contained a pericellular terminal plexus that was substantially less dense than in CA3 and CA2. At the border between CA1 and the subiculum there was a marked increase in the number of parvalbumin-immunoreactive neurons. The positive cells were scattered throughout the pyramidal cell layer of the subiculum and comprised a variety of

  14. [Changes in neuropeptide Y and substance P immunoreactive nerve fibres and immunocompetent cells in hepatitis].

    PubMed

    Fehér, Erzsébet

    2015-11-22

    Neuropeptide Y and substance P were thought to play a role in the function of immune cells and in amplification or elimination of the inflammatory processes. In hepatitis the number of both neuropeptide Y and substance P immunoreactive nerve fibres are increased, where the increase of neoropeptide Y is significant. A large number of lymphocytes and mast cells are also stained for neuropeptide Y and substance P. Very close associations (less than 1 µm) were observed between neuropeptide Y immunoreactive nerve fibres and immune cells stained also with neuropeptide Y. Some immune cells were also found to be immunoreactive for tumor necrosis factor-α and NF-κB. Some of the SP IR immunocells were also stained for TNF-α and nuclear factor kappaB. Based on these data it is hypothesized that neuropeptid Y and substance P released from nerve fibres and immune cells play a role in inflammation and elimination of inflammation in hepatitis.

  15. Production of immunoreactive calcitonin and some other tumor markers by established human carcinoma cell lines.

    PubMed

    Ichiki, S; Kuroki, M; Matsunaga, A; Kuroki, M; Matsuoka, Y

    1986-03-01

    Out of seven human carcinoma cell lines (M7609, CCK-81, FCC-1, RPMI#4788, QGP-1, HLC-1, and KNS-62), 4 cell lines were found to produce immunoreactive calcitonin (ICT), a potential tumor marker for various malignancies. During a 7-day culture, 1.4 X 10(5) QGP-1, RPMI#4788, HLC-1, and KNS-62 cells secreted 7,000 pg, 500 pg, 400 pg, and 400 pg of ICT in the medium, respectively. The production of ICT by QGP-1 cells was increased by addition of pentagastrin or calcium gluconate. Three different components of ICT (peak I, molecular weight greater than 40,000; peak II, 14,000-18,000; peak III, 3,400) were detected by gel filtration of the QGP-1 spent medium. In a competitive inhibition-type radioimmunoassay of serial dilutions of each ICT component, peak III component showed very similar immunoreactivity to synthetic calcitonin. However, the other two components gave clearly different immunoreactivities from the peak III component and showed very similar immunoreactivities to each other. All the cell lines were further screened for synthesis of 7 other tumor markers, carcinoembryonic antigen, nonspecific cross-reacting antigen, CA19-9, tissue polypeptide antigen, alpha-fetoprotein, beta 2-microglobulin and ferritin. Every cell line produced 2 to 6 markers concomitantly, and various combinations of positive markers were found among the cell lines.

  16. Somatostatin-immunoreactive nerve cell bodies and fibers in the medulla oblongata et spinalis.

    PubMed

    Forssmann, W G; Burnweit, C; Shehab, T; Triepel, J

    1979-10-01

    Complete serial sectioning of the medulla oblongata in monkey, cat, guinea pig, and japanese dancing mouse and incubation for somatostatin-immunoreaction was carried out. Numerous regions of the medulla oblongata such as the nucleus reticularis gigantocellularis, nucleus cuneatus et gracillis, nucleus raphe magnus, nucleus tractus solitarius, nucleus vestibularis, and parts of the oliva contain dense networks of somatostatin-immunoreactive nerve fibers. Cell bodies were seen in the nucleus reticularis medullae oblongatae. In the spinal cord the sections from each segment were analyzed, showing the highest concentrations of somatostatinergic fibers in the substantia gelantinosa of the columna dorsalis. Cell bodies were seen in the zona intermedia centralis, especially in the upper cervical segments. Many positive fibers were also seen in the entire zona intermedia and the columna ventralis. Especially prominent was the immunoreactivity in the zona intermediolateralis of the thoracic segments and the columna ventralis of the lower lumbar and sacral segments.

  17. Effects of heat and high-pressure treatments on the solubility and immunoreactivity of almond proteins.

    PubMed

    Zhang, Yan; Zhang, Jieqiong; Sheng, Wei; Wang, Shuo; Fu, Tong-Jen

    2016-05-15

    The effects of dry and moist heat, autoclave sterilization and high-pressure treatment on the biochemical characteristics and immunological properties of almond proteins were investigated. Changes in the solubility and immunoreactivity of almond proteins extracted from treated almond flour were evaluated using a total protein assay, indirect competitive inhibition enzyme-linked immunosorbent assay (IC-ELISA), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Almond proteins were stable during dry-heat treatment at temperatures below 250°C. Dry heat at 400°C, boiling, autoclave sterilization and high-pressure treatment in the presence of water at ⩾ 500 MPa greatly reduced the solubility and immunoreactivity of almond proteins. SDS-PAGE revealed that the protein profiles of almond flour samples treated under these conditions also changed significantly. The synergistic effects of heat, pressure and the presence of water contributed to significant changes in solubility and immunoreactivity of almond proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    PubMed

    Bueno, Carlos; Tabares-Seisdedos, Rafael; Moraleda, Jose M; Martinez, Salvador

    2016-01-01

    Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the idea that MeCP2 may

  19. Thymic epithelial cells of human patients affected by myasthenia gravis overexpress IGF-I immunoreactivity.

    PubMed

    Marinova, Tsvetana T; Kuerten, Stefanie; Petrov, Danail B; Angelov, Doychin N

    2008-01-01

    Accumulating evidence shows that several kinds of thymic cells express insulin-like growth factor-I (IGF-I), which is known to play an important role in T cell ontogeny under both physiological and pathological conditions. Still, little is known about the mechanisms of IGF-I involvement in the pathological transformation of the thymocyte microenvironment. The present study focuses on a comparative analysis of the IGF-I immunoreactivity of thymic epithelial cells (EC) from human patients with hyperplasia-associated myasthenia gravis (MG) versus physiological thymic tissue from healthy controls using immunohistochemistry and immunoelectron microscopy. We show that myasthenic EC overexpress IGF-I in comparison to EC from control subjects. The IGF-I immunoreactivity in the medullary and cortical EC from MG patients was stronger than in the normal gland. The increased expression of IGF-I and more frequent distribution of IGF-I and IGF-I-receptor (IGF-IR) immunopositive EC correlated with modulation in the immunoreactivity of double (IGF-I/IGF-IR) positive EC. Our data provide new immunocytochemial evidence for alterations of IGF-I and IGF-IR immunoreactivity in EC from pathological thymi. The persisting expression of IGF-I and IGF-IR most likely indicates that the myasthenic thymus is still capable of governing IGF-I signaling pathways, which are involved in the local regulation of T cell development and plasticity.

  20. Doublecortin immunoreactivity in giant cells of tuberous sclerosis and focal cortical dysplasia.

    PubMed

    Mizuguchi, Masashi; Yamanouchi, Hideo; Becker, Laurence E; Itoh, Masayuki; Takashima, Sachio

    2002-10-01

    Cerebral cortical lesions of tuberous sclerosis (TSC) and focal cortical dysplasia (FCD) show disturbances in laminar architecture and cellular differentiation. We immunohistochemically studied the expression of doublecortin, a fetal neuronal protein that regulates neuronal migration, in the surgical specimens of five TSC and eight FCD patients. In both TSC and FCD, bizarre giant cells showed a variable degree of doublecortin immunoreactivity. Both cytomegalic neurons and balloon cells were positive. The staining tended to be more intense in TSC than in FCD, although there were exceptional cases in both groups. Doublecortin immunoreactivity of normal-sized neural cells was restricted to a small number of astrocytes, and comparable to that in control patients. The persistent expression of doublecortin by giant cells in the postnatal cerebrum is additional evidence of abnormal differentiation, which may be relevant to the pathogenesis of cortical disarray in TSC and FCD.

  1. Activin A, corticotropin-releasing factor and prostaglandin F2 alpha increase immunoreactive oxytocin release from cultured human placental cells.

    PubMed

    Florio, P; Lombardo, M; Gallo, R; Di Carlo, C; Sutton, S; Genazzani, A R; Petraglia, F

    1996-01-01

    The aim of the present study was to investigate the presence of the immunoreactive oxytocin in human placental extracts and putative factors regulating the release of immunoreactive oxytocin from cultured human placental cells. Fresh placental tissue was collected from pregnant women at term and dissected of membranes (n = 5). Presence of immunoreactive oxytocin in trophoblast tissue was evaluated by a specific radio-immunoassay after acidic extraction and high-pressure liquid chromatography. In a second set of experiments, primary cultures of placental cells were performed and, 48-72 h after dissociation, the effect of arginine vasopressin, corticotropin-releasing factor, neuropeptide Y, activin A, inhibin A, noradrenaline or prostaglandins on immunoreactive oxytocin level in culture medium was investigated. The presence of immunoreactive oxytocin was shown in the acidic extract of trophoblast at term, and in the culture medium of human placental cells, and it was identical to the native peptide. The addition of corticotropin-releasing factor or arginine vasopressin, but not of neuropeptide Y, increased the release of immunoreactive oxytocin three- to fourfold from placental cells, with a dose-dependent effect (P < 0.01). A significantly increased release of immunoreactive oxytocin was shown in presence of noradrenaline (P < 0.01), which was reversed by prazosin, an antagonist of alpha-adrenergic receptors. Recombinant human activin A (P < 0.01), but not inhibin A, stimulated the release of immunoreactive oxytocin three- to fourfold from placental cells. Prostaglandin F2 alpha was a potent secretagogue of immunoreactive oxytocin, whereas a partial or no effect was observed when prostaglandin E2 or prostaglandin I2 was added. Thus, the present findings showed that human placenta contains immunoreactive oxytocin, and that its release from cultured placental cells is regulated by neurohormones, growth factors or prostaglandins.

  2. Localization of neurotensin-like immunoreactive amacrine cells in the larval tiger salamander retina.

    PubMed

    Yang, S Z; Watt, C B; Lam, D M; Wu, S M

    1988-01-01

    Light microscopic immunocytochemistry was used to localize the populations of NT-like immunoreactive amacrine cells in the larval tiger salamander retina. Seventy-nine percent of NT-immunostained cells observed in transverse cryo-prepared sections were classified as Type 1 amacrine cells. Another 6% were classified as Type 2 amacrine cells, while 15% of the NT-cells had their cell bodies situated in the ganglion cell layer and were tentatively designated as displaced amacrine cells. Each type of NT-like immunoreactive cell was observed in the central and peripheral retina. NT-immunostained processes were observed to ramify in sublayers 3 and 5 of the inner plexiform layer. An examination of retinal whole mounts revealed that NT-amacrine cells were distributed throughout the center and periphery of the retina at a density of 82 +/- 24 cells/mm2. The dendritic fields of NT-immunostained amacrine and displayed amacrine cells were observed to be either symmetrically or asymmetrically distributed about their somas. Symmetrical dendritic fields were generally oval-shaped and ranged in diameter from 250 to 500 micron (major axis) by 150 to 250 micron (minor axis). Asymmetrical dendritic fields were observed to encompass one-half or less of an imaginary circle surrounding their soma of origin and were orientated in all directions. The processes forming asymmetrical dendritic fields ranged from 75 to 260 micron in length. Furthermore, partial overlap was often observed between the dendritic fields of adjacent NT-amacrine cells.

  3. Do vasoactive intestinal peptide (VIP)- and nitric oxide synthase-immunoreactive terminals synapse exclusively with VIP cell bodies in the submucous plexus of the guinea-pig ileum?

    PubMed

    Li, Z S; Young, H M; Furness, J B

    1995-09-01

    In the submucous plexus of the guinea-pig ileum, previous light-microscopic studies have revealed that vasoactive intestinal peptide (VIP)-immunoreactive and nitric oxide synthase (NOS)-immunoreactive terminals are found predominantly in association with VIP-immunoreactive nerve cell bodies. In this study, double-label immunohistochemistry at the light-microscopic level demonstrated co-localization of NOS-immunoreactivity and VIP-immunoreactivity in axon terminals in submucous ganglia. About 90% of nerve fibres with NOS-immunoreactivity or VIP-immunoreactivity were immunoreactive for both antigens; only about 10% of labelled varicosities contained only NOS-immunoreactivity or VIP-immunoreactivity. The VIP/NOS varicosities were more often seen in the central parts of the ganglia, close to the VIP-immunoreactive cell bodies. Ultrastructural immunocytochemistry with antibodies to VIP was used to determine if NOS/VIP terminals synapse exclusively with VIP-immunoreactive nerve cell bodies. We examined the targets of VIP-immunoreactive boutons in two submucous ganglia from different animals. Serial ultrathin sections were taken through the ganglia after they had been processed for VIP immunocytochemistry. For each cell body, the number of VIP inputs (synapses and close contacts) was determined. The number of VIP-immunoreactive synapses received by the cell bodies of submucous neurons varied from 0-4 and the number of VIP-immunoreactive close contacts varied from 3-10. There was no significant difference between VIP-immunoreactive nerve cell bodies and non-VIP nerve cell bodies in the number of VIP-immunoreactive synapses and close contacts they received. Thus, the implication from light microscopy that NOS/VIP terminals end predominantly on VIP nerve cells was not vindicated by electron microscopy.

  4. Distribution of obestatin and ghrelin in human tissues: immunoreactive cells in the gastrointestinal tract, pancreas, and mammary glands.

    PubMed

    Grönberg, Malin; Tsolakis, Apostolos V; Magnusson, Linda; Janson, Eva T; Saras, Jan

    2008-09-01

    Obestatin and ghrelin are two peptides derived from the same prohormone. It is well established that ghrelin is produced by endocrine cells in the gastric mucosa. However, the distribution of human obestatin immunoreactive cells is not thoroughly characterized. A polyclonal antibody that specifically recognizes human obestatin was produced. Using this antibody and a commercial antibody vs ghrelin, the distribution of obestatin and ghrelin immunoreactive cells was determined in a panel of human tissues using immunohistochemistry. The two peptides were detected in the mucosa of the gastrointestinal tract, from cardia to ileum, and in the pancreatic islets. Interestingly, epithelial cells in the ducts of mammary glands showed distinct immunoreactivity for both ghrelin and obestatin. By double immunofluorescence microscopy, it was shown that all detected cells were immunoreactive for both peptides. Furthermore, the subcellular localization of obestatin and ghrelin was essentially identical, indicating that obestatin and ghrelin are stored in the same secretory vesicles.

  5. Characterization of Insulin-Immunoreactive Cells and Endocrine Cells Within the Duct System of the Adult Human Pancreas.

    PubMed

    Li, Rong; Zhang, Xiaoxi; Yu, Lan; Zou, Xia; Zhao, Hailu

    2016-01-01

    The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.

  6. Localization of neuropeptide-Y immunoreactivity in estradiol-concentrating cells in the hypothalamus

    SciTech Connect

    Sar, M.; Sahu, A.; Crowley, W.R.; Kalra, S.P. )

    1990-12-01

    Considerable evidence shows that gonadal steroids exert a facilitatory influence on levels and release of neuropeptide-Y (NPY) from the hypothalamus. However, it is not known whether gonadal steroids act directly on NPY-producing cells in the arcuate nucleus (ARC) of the hypothalamus to produce these facilitatory effects on NPY or whether they act on other cells that have a modulatory influence via synapses on ARC NPY cells. We applied the combined method of steroid autoradiography and immunocytochemistry to assess the localization of (3H)estradiol in relation to NPY-producing cells in the hypothalamus. Rats (n = 6) were bilaterally ovariectomized and injected intracerebroventricularly with colchicine. Twenty-four hours later each rat received an iv injection of 17 beta-(2,4,6,7,16,17(-3)H)estradiol (SA, 166 Ci/mmol) at a dose of 5.0 micrograms/kg BW. One hour after the injection of (3H)estradiol, the rats were perfused with 4% paraformaldehyde; brains were removed, frozen in isopentane precooled in liquid nitrogen (-190 C), sectioned, and processed for autoradiography. The autoradiograms were then incubated with specific antibodies for NPY immunostaining by the avidin-biotin-peroxidase method. The results revealed NPY-immunopositive cells in the ARC, striatum, hippocampus, amygdala, and cerebral cortex and a few cells in the median eminence. NPY-immunoreactive fibers were also detected in the internal layer of the median eminence. The largest number of neurons showing NPY immunoreactivity in the cytoplasm was detected in the ARC, and only in this nucleus did we observed colocalization of (3H)estradiol and NPY immunoreactivity in neurons. A population of NPY-immunopositive cells in the ARC (10-20%) exhibited nuclear (3H)estradiol; the majority of these cells were located in the lateral and ventral portions of the ARC.

  7. Enhancement of native and phosphorylated TDP-43 immunoreactivity by proteinase K treatment following autoclave heating.

    PubMed

    Mori, Fumiaki; Tanji, Kunikazu; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2011-08-01

    TDP-43 is a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). To evaluate the effectiveness of proteinase K (PK) treatment in antigen retrieval for native and phosphorylated TDP-43 protein, we examined the temporal cortex and spinal cord from patients with sporadic ALS and FTLD-TDP and control subjects. PK treatment following heat retrieval enhanced the immunoreactivity for native TDP-43 in controls as well as for native and phosphorylated TDP-43 in ALS and FTLD-TDP. A significant number of TDP-43-positive neuropil threads were demonstrated in lesions, in which routine immunohistochemistry revealed that the predominant inclusions are cytoplasmic. This retrieval method is the best of immunohistochemical techniques for demonstrating TDP-43 pathology, especially in the neuropil. © 2010 Japanese Society of Neuropathology.

  8. Development of PDF-immunoreactive cells, possible clock neurons, in the housefly Musca domestica.

    PubMed

    Pyza, Elzbieta; Siuta, Tomasz; Tanimura, Teiichi

    2003-10-01

    Even though the housefly Musca domestica shows clear circadian rhythms in its behavioural and physiological processes, a circadian pacemaker system controlling these rhythms has not yet been described morphologically in this species. In M. domestica, neurons immunoreactive to pigment-dispersing factor (PDF), a neurotransmitter/neuromodulator of circadian information arising from a circadian clock and transmitted to target cells, are similar in their number and distribution to the PDF neurons of Drosophila melanogaster. In D. melanogaster these neurons co-localize PER protein and have been identified as clock neurons in that species. Here we report PDF-immunoreactive cells in the housefly's brain during postembryonic development in the larval and pupal stages, as well as in the adult fly soon after eclosion. In the housefly's brain, there are three groups of PDF-immunoreactive neurons: two groups with small (sPDFMe) and large (lPDFMe) cell bodies in the proximal medulla of the optic lobe; and one group in the dorsal protocerebrum (PDFD). Three out of four sPDFMe can be detected during the first hour of larval development, but the fourth sPDFMe is observed in the larva only from 48 hours after hatching, along with five lPDFMe neurons, seen first as two subgroups, and three out of four PDFD neurons. During postembryonic development these neurons show changes in their structure and immunoreactivity. New PDF neurons are observed during pupal development but these neurons mostly do not survive into adulthood. In the adult fly's brain, the PDF neurons have also been examined in double-labelled preparations made with a second antibody directed against the product of one of several clock genes: period (per), timeless (tim), or cryptochrome (cry). Among them, only immunoreactivity to CRY-like protein has been detected in the brain of M. domestica and has shown a daily rhythm in its concentration, as examined immunocytochemically. CRY was co-localized with PDF in the s

  9. Immunoreactivity of glucose transporter 8 is localized in the epithelial cells of the choroid plexus and in ependymal cells.

    PubMed

    Murakami, Ryuta; Chiba, Yoichi; Tsuboi, Kazuhito; Matsumoto, Koichi; Kawauchi, Machi; Fujihara, Ryuji; Mashima, Masato; Kanenishi, Kenji; Yamamoto, Tetsuji; Ueno, Masaki

    2016-08-01

    High fructose intake is known to be associated with increased plasma triglyceride concentration, impaired glucose tolerance, insulin resistance, and high blood pressure. In addition, excess fructose intake is also thought to be a risk factor for dementia. Previous immunohistochemical studies have shown the presence of glucose transporter 5 (GLUT5), a major transporter of fructose, in the epithelial cells of the choroid plexus and ependymal cells in the brains of humans, rats, and mice, while GLUT2, a minor transporter of fructose, was localized in the ependymal cells of rat brain. In this study, immunoreactivity for the fructose transporter GLUT8 was observed in the cytoplasm of the epithelial cells in the choroid plexus and in the ependymal cells of the brains of humans and mice. These structures were not immunoreactive for GLUT7, GLUT11, and GLUT12. Our findings support the hypothesis of the transport of intravascular fructose through the epithelial cells of the choroid plexus and the ependymal cells.

  10. Absent and abundant MET immunoreactivity is associated with poor prognosis of patients with oral and oropharyngeal squamous cell carcinoma

    PubMed Central

    De Herdt, Maria J.; Willems, Stefan M.; van der Steen, Berdine; Noorlag, Rob; Verhoef, Esther I.; van Leenders, Geert J.L.H.; van Es, Robert J.J.; Koljenović, Senada; de Jong, Robert J. Baatenburg; Looijenga, Leendert H.J.

    2016-01-01

    Although the receptor tyrosine kinase (RTK) MET is widely expressed in head and neck squamous cell carcinoma (HNSCC), its prognostic value remains unclear. This might be due to the use of a variety of antibodies and scoring systems. Here, the reliability of five commercial C-terminal MET antibodies (D1C2, CVD13, SP44, C-12 and C-28) was evaluated before examining the prognostic value of MET immunoreactivity in HNSCC. Using cancer cell lines, it was shown that D1C2 and CVD13 specifically detect MET under reducing, native and formalin-fixed paraffin-embedded (FFPE) conditions. Immunohistochemical staining of routinely FFPE oral SCC with D1C2 and CVD13 demonstrated that D1C2 is most sensitive in the detection of membranous MET. Examination of membranous D1C2 immunoreactivity with 179 FFPE oral and oropharyngeal SCC – represented in a tissue microarray – illustrated that staining is either uniform (negative or positive) across tumors or differs between a tumor's center and periphery. Ultimately, statistical analysis revealed that D1C2 uniform staining is significantly associated with poor 5-year overall and disease free survival of patients lacking vasoinvasive growth (HR = 3.019, p < 0.001; HR = 2.559, p < 0.001). These findings might contribute to reliable stratification of patients eligible for treatment with biologicals directed against MET. PMID:26909606

  11. Transient receptor potential vanilloid 1-immunoreactive signals in murine enteric glial cells

    PubMed Central

    Yamamoto, Masahiro; Nishiyama, Mitsue; Iizuka, Seiichi; Suzuki, Shigeaki; Suzuki, Norihiro; Aiso, Sadakazu; Nakahara, Jin

    2016-01-01

    AIM To investigate the possible involvement of transient receptor potential vanilloid 1 (TRPV1) in maturation of enteric glial cells (EGCs). METHODS Immunohistochemical and immunocytochemical techniques were used to analyze EGC markers in myenteric plexus (MP) as well as cultured MP cells and EGCs using TRPV1 knockout (KO) mice. RESULTS We detected TRPV1-immunoreactive signals in EGC in the MP of wild-type (WT) but not KO mice. Expression of glial fibrillary acidic protein (GFAP) immunoreactive signals was lower at postnatal day (PD) 6 in KO mice, though the difference was not clear at PD 13 and PD 21. When MP cells were isolated and cultured from isolated longitudinal muscle-MP preparation from WT and KO mice, the yield of KO EGC was lower than that of WT EGC, while the yield of KO and WT smooth muscle cells showed no difference. Addition of BCTC, a TRPV1 antagonist, to enriched EGC culture resulted in a decrease in the protein ratio of GFAP to S100B, another EGC/astrocyte-specific marker. CONCLUSION These results address the possibility that TRPV1 may be involved in the maturation of EGC, though further studies are necessary to validate this possibility. PMID:27956799

  12. Na(+)/K(+)-ATPase immunoreactivity in branchial chloride cells of Oreochromis mossambicus exposed to copper.

    PubMed

    Dang, Z; Lock, R A; Flik, G; Wendelaar Bonga, S E

    2000-01-01

    Chloride cells were identified by Na(+)/K(+)-ATPase immunocytochemistry at the light and electron microscope levels in gills of freshwater tilapia Oreochromis mossambicus. Turnover of chloride cells was enhanced by exposing the fish to waterborne copper (3.2 micromol l(-)(1)) for 14 days, as indicated by a 38 % increase in cells expressing proliferating cell nuclear antigen (PCNA) relative to controls. The expression of PCNA was most marked in the central area of the filamental epithelium, from where the chloride cells are thought to originate and migrate. In control fish, chloride cells were associated exclusively with the filamental epithelium. In both controls and copper-exposed fish, two chloride cell populations were seen after Na(+)/K(+)-ATPase immunostaining. These probably represent subpopulations of newly emerged chloride cells: (1) strongly stained cells (mature chloride cells) in the filamental and lamellar epithelium and (2) weakly stained cells, identified by electron microscopy as apoptotic and necrotic chloride cells, mainly in the filamental epithelium. Absolute numbers of mature chloride cells fell, while necrotic and apoptotic chloride cell numbers increased, in copper-exposed fish. A strong correlation could be established for gill Na(+)/K(+)-ATPase specific activity and the number of strongly stained chloride cells in controls and copper-exposed fish and for Na(+)/K(+)-ATPase specific activity and total numbers of immunoreactive cells in copper-exposed fish owing to an increased incidence of weakly staining cells.

  13. Light microscopic image analysis system to quantify immunoreactive terminal area apposed to nerve cells

    NASA Technical Reports Server (NTRS)

    Wu, L. C.; D'Amelio, F.; Fox, R. A.; Polyakov, I.; Daunton, N. G.

    1997-01-01

    The present report describes a desktop computer-based method for the quantitative assessment of the area occupied by immunoreactive terminals in close apposition to nerve cells in relation to the perimeter of the cell soma. This method is based on Fast Fourier Transform (FFT) routines incorporated in NIH-Image public domain software. Pyramidal cells of layer V of the somatosensory cortex outlined by GABA immunolabeled terminals were chosen for our analysis. A Leitz Diaplan light microscope was employed for the visualization of the sections. A Sierra Scientific Model 4030 CCD camera was used to capture the images into a Macintosh Centris 650 computer. After preprocessing, filtering was performed on the power spectrum in the frequency domain produced by the FFT operation. An inverse FFT with filter procedure was employed to restore the images to the spatial domain. Pasting of the original image to the transformed one using a Boolean logic operation called 'AND'ing produced an image with the terminals enhanced. This procedure allowed the creation of a binary image using a well-defined threshold of 128. Thus, the terminal area appears in black against a white background. This methodology provides an objective means of measurement of area by counting the total number of pixels occupied by immunoreactive terminals in light microscopic sections in which the difficulties of labeling intensity, size, shape and numerical density of terminals are avoided.

  14. Light microscopic image analysis system to quantify immunoreactive terminal area apposed to nerve cells

    NASA Technical Reports Server (NTRS)

    Wu, L. C.; D'Amelio, F.; Fox, R. A.; Polyakov, I.; Daunton, N. G.

    1997-01-01

    The present report describes a desktop computer-based method for the quantitative assessment of the area occupied by immunoreactive terminals in close apposition to nerve cells in relation to the perimeter of the cell soma. This method is based on Fast Fourier Transform (FFT) routines incorporated in NIH-Image public domain software. Pyramidal cells of layer V of the somatosensory cortex outlined by GABA immunolabeled terminals were chosen for our analysis. A Leitz Diaplan light microscope was employed for the visualization of the sections. A Sierra Scientific Model 4030 CCD camera was used to capture the images into a Macintosh Centris 650 computer. After preprocessing, filtering was performed on the power spectrum in the frequency domain produced by the FFT operation. An inverse FFT with filter procedure was employed to restore the images to the spatial domain. Pasting of the original image to the transformed one using a Boolean logic operation called 'AND'ing produced an image with the terminals enhanced. This procedure allowed the creation of a binary image using a well-defined threshold of 128. Thus, the terminal area appears in black against a white background. This methodology provides an objective means of measurement of area by counting the total number of pixels occupied by immunoreactive terminals in light microscopic sections in which the difficulties of labeling intensity, size, shape and numerical density of terminals are avoided.

  15. Immunoreactivity of glucose transporter 5 is located in epithelial cells of the choroid plexus and ependymal cells.

    PubMed

    Ueno, M; Nishi, N; Nakagawa, T; Chiba, Y; Tsukamoto, I; Kusaka, T; Miki, T; Sakamoto, H; Yamaguchi, F; Tokuda, M

    2014-02-28

    High fructose intake is associated with increased plasma triglyceride concentration, hepatic steatosis, impaired glucose tolerance, insulin resistance, and high blood pressure. In addition, increased fructose intake has recently been supposed to be a risk factor for dementia. However, direct effects of fructose on the brain function remain to be clarified. The localization of glucose transporter 5 (Glut5), a representative transporter of fructose, was immunohistochemically examined in the brains of humans, rats, and mice to clarify whether fructose was transported from the blood into the brain. Glut5 immunoreactivity was demonstrated to be located in the epithelial cells of the choroid plexus and the ependymal cells in the brains of humans and rats using commercial antibodies for Glut5. In addition, mRNA expression of mouse Glut5 was confirmed in the brains of mice. Immunohistochemical examination using a custom-made antibody against two regions of amino acid sequences of mouse Glut5 revealed that Glut5 immunoreactivity was also seen in the epithelial cells of the choroid plexus and the ependymal cells in the brains of mice. These findings show that Glut5 immunoreactivity is located in the epithelial cells of the choroid plexus and the ependymal cells, suggesting the possibility of the direct transportation of intravascular fructose into the brain parenchyma.

  16. Localization of melanopsin-immunoreactive cells in the Mongolian gerbil retina.

    PubMed

    Jeong, Mi-Jin; Jeon, Chang-Jin

    2015-11-01

    Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian rhythm and pupil responses. The purpose of this study was to reveal the organization of melanopsin-immunoreactive (IR) neurons in the Mongolian gerbil retina using immunocytochemistry. Melanopsin-IR cells were primarily located in the ganglion cell layer (GCL; M1c; 75.15%). Many melanopsin-IR cells were also observed in the inner nuclear layer (INL; M1d; 22.28%). The M1c and M1d cell types extended their dendritic processes into the OFF sublayer of the inner plexiform layer (IPL). We rarely observed bistratified cells (M3; 2.56%) with dendrites in both the ON and OFF sublayers of the IPL. Surprisingly, we did not observe M2 cells which are well observed in other rodents. Melanopsin-IR cell somas were small to medium in size and had large dendritic fields. They had 2-5 primary dendrites that branched sparingly and had varicosities. Melanopsin-IR cell density was very low: they comprised 0.50% of the total ganglion cell population. Moreover, none of the melanopsin-IR cells expressed calbindin-D28K, calretinin, or parvalbumin. These results suggest that in the Mongolian gerbil, melanopsin-IR cells are expressed in a very small RGC subpopulation, and are independent of calcium-binding proteins-containing RGCs.

  17. PAX immunoreactivity in poorly differentiated small round cell tumors of childhood.

    PubMed

    Fan, Rong

    2014-08-01

    Paired box (PAX) gene antibodies have made it into the mainstream of tumor diagnosis in the recent years. We report the immunoreactivity expression patterns of three PAX genes (PAX2, PAX5 and PAX8) in poorly differentiated small round cell tumors of childhood for possible useful diagnostic applications. We collected and analyzed 123 cases of poorly differentiated small round cell tumors of childhood for their PAX immunoexpression patterns. The results indicated that PAX2 was strongly positive in all alveolar rhabdomyosarcomas and in two-thirds of the kidney clear cell sarcomas, and displayed variable expression in one-half of the embryonal rhabdomyosarcomas. PAX8 immunoexpression was noticed in five and three cases of alveolar rhabdomyosarcomas and embryonal rhabdomyosarcomas, respectively. About one-third of malignant rhabdoid tumors were PAX2-positive and PAX8-positive. All of the Ewing sarcoma and neuroblastoma cases stained negative with all three PAX stains.

  18. Merkel cells and Meissner's corpuscles in human digital skin display Piezo2 immunoreactivity.

    PubMed

    García-Mesa, Y; García-Piqueras, J; García, B; Feito, J; Cabo, R; Cobo, J; Vega, J A; García-Suárez, O

    2017-09-14

    The transformation of mechanical energy into electrical signals is the first step in mechanotransduction in the peripheral sensory nervous system and relies on the presence of mechanically gated ion channels within specialized sensory organs called mechanoreceptors. Piezo2 is a vertebrate stretch-gated ion channel necessary for mechanosensitive channels in mammalian cells. Functionally, it is related to light touch, which has been detected in murine cutaneous Merkel cell-neurite complexes, Meissner-like corpuscles and lanceolate nerve endings. To the best of our knowledge, the occurrence of Piezo2 in human cutaneous mechanoreceptors has never been investigated. Here, we used simple and double immunohistochemistry to investigate the occurrence of Piezo2 in human digital glabrous skin. Piezo2 immunoreactivity was detected in approximately 80% of morphologically and immunohistochemically characterized (cytokeratin 20(+) , chromogranin A(+) and synaptophisin(+) ) Merkel cells. Most of them were in close contact with Piezo2(-) nerve fibre profiles. Moreover, the axon, but not the lamellar cells, of Meissner's corpuscles was also Piezo2(+) , but other mechanoreceptors, i.e. Pacinian or Ruffini's corpuscles, were devoid of immunoreactivity. Piezo2 was also observed in non-nervous tissue, especially the basal keratinocytes, endothelial cells and sweat glands. The present results demonstrate the occurrence of Piezo2 in cutaneous sensory nerve formations that functionally work as slowly adapting (Merkel cells) and rapidly adapting (Meissner's corpuscles) low-threshold mechanoreceptors and are related to fine and discriminative touch but not to vibration or hard touch. These data offer additional insight into the molecular basis of mechanosensing in humans. © 2017 Anatomical Society.

  19. Single-dose and chronic corticosterone treatment alters c-Fos or FosB immunoreactivity in the rat cerebral cortex.

    PubMed

    Szakács, Réka; Fazekas, Ildikó; Mihály, András; Krisztin-Péva, Beáta; Juhász, Anna; Janka, Zoltán

    2010-03-01

    The aim of this study was to examine the effects of single-dose and chronic corticosterone treatment on the inducible transcription factor c-Fos and FosB, and thereby to estimate the effects of high-doses of corticosterone on calcium-dependent neuronal responses in the rat cerebral cortex. At the same time we investigated the distribution of interneurons containing calretinin (CR), vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY) in chronically treated animals in order to collect data on the involvement of inhibitory neurons in this process. Adult male rats were injected subcutaneously with 10mg corticosterone, whereas controls received the vehicle (sesame oil). The animals were fixed by transcardial perfusion 12 and 24h following single corticosterone injection, and the brains were processed for c-Fos and FosB immunohistochemistry. To investigate the effects of repeated corticosterone administration, rats were daily treated with the same amount of corticosterone (10mg/animal, subcutaneously) for 21 days. Controls were injected with vehicle. At the end of the experiment, the rats were perfused and immunohistochemistry was used to detect the presence of the FosB protein, CR, VIP and NPY. Quantitative evaluation of immunolabelled cells was performed in the neocortex and the hippocampus. The number of immunoreactive nuclei per unit area was used as a quantitative measure of the effects of corticosterone. It was found that a single-dose administration of corticosterone resulted in a significant, time-dependent increase of c-Fos protein immunoreactivity in the granule cell layer of the dentate gyrus, as well as in regions CA1 and CA3 of the hippocampus 12 and 24h post-injection with respect to control animals. Significant enhancement of c-Fos immunoreactivity was also observed in the neocortex at 12 and 24h post-injection. Single-dose treatment did not significantly alter FosB immunolabelling. Repeated administration of corticosterone produced a complex

  20. Losses of immunoreactive parvalbumin amacrine and immunoreactive alphaprotein kinase C bipolar cells caused by methylmercury chloride intoxication in the retina of the tropical fish Hoplias malabaricus.

    PubMed

    Bonci, D M O; Lima, S M A de; Grötzner, S R; Ribeiro, C A Oliveira; Hamassaki, D E; Ventura, D F

    2006-03-01

    To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 microg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-alphaprotein kinase C (alphaPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and alphaPKC (alphaPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and alphaPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 microg/g) showed significant reduction of the ON-bipolar alphaPKC-IR cell density (mean density = 1306 +/- 393 cells/mm2) compared to control (1886 +/- 892 cells/mm2; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 +/- 56 cells/mm2 (2 microg/g) and 845 +/- 82 cells/mm2 (6 microg/g), also lower than control (1312 +/- 31 cells/mm2; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of alphaKC-IR bipolar cells at the dose of 6 microg/g. Further studies are needed to identify the physiological impact of these findings on visual function.

  1. Amylin-immunoreactivity is co-stored in a serotonin cell subpopulation of the vertebrate stomach and duodenum.

    PubMed

    D'Este, L; Wimalawansa, S J; Renda, T G

    1995-12-01

    Amylin (or islet amyloid polypeptide) is a 37 amino acid peptide originally isolated from amyloid deposits in the pancreas of non-insulin dependent diabetic patients. It has already been immunohistochemically localised within the B and D cells of pancreatic islets and in endocrine cells of the rat and human stomach and duodenum. In this phylogenetic study, a polyclonal antiserum raised against the carboxy-terminal tridecapeptide amide of human amylin was used to demonstrate and examine the distribution of amylin-immunoreactivity in the stomach and duodenum of various vertebrate species. Except for fish, gastrointestinal tracts of all the species studied contained amylin-immunoreactive endocrine cells. They were located chiefly in the lower half portion of the distal gastric body and pyloric glands, and in the lining epithelium of the duodenal villi and crypts. Many cells were elongated, triangular or oval, and had a cytoplasmic process that extended from the cell base along the basement membrane. Others had a bipolar feature that gave them a so-called "open" appearance. Double and triple staining procedures on the same tissue section showed that almost all the amylin-immunoreactive cells present in the gastroduodenal region also co-stored serotonin and chromogranin A, and displayed argyrophilia in Grimelius impregnation. On the other hand, almost all the serotonin-immunoreactive cells of this region co-stored amylin, whereas those in more distal gut regions did not. This finding suggests that those amylin-containing cells correspond to a subtype of gastroduodenal serotonin cells.

  2. Relative distribution of gastrin-, CCK-8-, NPY- and CGRP-immunoreactive cells in the digestive tract of dorado (Salminus brasiliensis).

    PubMed

    Pereira, R T; Costa, L S; Oliveira, I R C; Araújo, J C; Aerts, M; Vigliano, F A; Rosa, P V

    2015-04-01

    The endocrine cells (ECs) of the gastrointestinal mucosa form the largest endocrine system in the body, not only in terms of cell numbers but also in terms of the different produced substances. Data describing the association between the relative distributions of the peptide-specific ECs in relation to feeding habits can be useful tools that enable the creation of a general expected pattern of EC distribution. We aimed to investigate the distribution of ECs immunoreactive for the peptides gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in different segments of the digestive tract of carnivorous fish dorado (Salminus brasiliensis) by using immunohistochemistry procedures. The distribution of endocrine cells immunoreactive for gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in digestive tract of dorado S. brasiliensis was examined by immunohistochemistry. The results describe the association between the distribution of the peptide-specific endocrine cells and feeding habits in different carnivorous fish. The largest number of endocrine cells immunoreactive for GAS, CCK-8, and CGRP were found in the pyloric stomach region and the pyloric caeca. However, NPY-immunoreactive endocrine cells were markedly restricted to the midgut. The distribution pattern of endocrine cells identified in S. brasiliensis is similar to that found in other carnivorous fishes.

  3. Sex-specific effects of met-enkephalin treatment on vasopressin immunoreactivity in the rat supraoptic nucleus.

    PubMed

    Blanco, E; Carretero, J; Sànchez, F; Riesco, J M; Vàzquez, R

    1989-01-01

    The supraoptic nucleus of male and female rats treated with met-enkephalin or naloxone and met-enkephalin was examined with light microscopical immunocytochemistry for Arginine-vasopressin. Both genders exhibited the same distribution of immunostained magnocellular neurons. Met-enkephalin treatment caused an increase in number of immunostained vasopressin neurons. This effect was more pronounced in females than in males. Naloxone treatment diminished immunoreactive cytoplasmic vasopressin in males more effectively than in females. In enkephalin-treated animals numerous vasopressin immunoreactive varicosities appeared within the supraoptic nucleus, but were mostly absent in naloxone-treated animals and in controls. Our results indicate that met-enkephalin treatment either stimulates vasopressin synthesis or inhibits secretion. It is likely that steroid hormones mediate the action of enkephalin on vasopressin secretion in a specific manner.

  4. Relationship between serum gonadotropins and pituitary immunoreactive gonadotropins and steroid receptors during the first FSH increase of the estrous cycle and following steroid treatment in heifers.

    PubMed

    Lane, Elizabeth A; Sweeney, Torres; Ryan, Marion; Roche, James F; Crowe, Mark A

    2009-05-01

    The objectives were to determine the effects of (i) time during the first FSH increase of the estrous cycle (time-course study) and (ii) exogenous steroid treatment (steroid feedback study) on the relationship between circulating serum gonadotropins, and the proportions of pituitary cells immunoreactive for gonadotropins and steroid receptors during the estrous cycle in heifers. Pituitaries were collected from heifers (n=40) slaughtered at 13h (n=8), 30h (n=24) and 66h (n=8) after estrous onset, corresponding to before, during and after the first FSH increase of the estrous cycle. Heifers slaughtered during the FSH increase (at 30h) either received no treatment (n=8), or were treated (n=16) with estradiol benzoate and/or progesterone before slaughter. During the time-course study, the proportion of pituitary cells immunoreactive for FSH increased (P<0.05) during the first transient FSH increase reflecting serum concentrations. The proportion of pituitary cells immunoreactive for LH was unaltered, a reflection of serum LH concentrations. The proportion of estrogen receptors (ER)-alpha, but not ER-beta, was decreased (P<0.05) at 30h compared with at either 13 or 66h. During the steroid feedback study, exogenous progesterone with or without estradiol suppressed (P<0.05) the proportions of pituitary cells immunoreactive for gonadotropins, serum FSH concentrations and LH pulse frequency. Steroid treatment did not alter the proportion of pituitary cells positive for estrogen receptors (alpha and beta). While progesterone receptors (PR) were not detected in the anterior pituitary by immunohistochemistry during the early estrous cycle or in response to steroid treatment, quantitative real-time PCR revealed that mRNA for progesterone receptors was expressed at very low levels. The expression of pituitary PR mRNA was decreased (P<0.05) at 30 and 66h compared with 13h, and was suppressed (P<0.05) following steroid treatments. Alterations in pituitary steroid receptors are

  5. Cell-Specific Expression of Neuropeptide Y Y1 Receptor Immunoreactivity in the Rat Basolateral Amygdala

    PubMed Central

    ROSTKOWSKI, AMANDA B.; TEPPEN, TARA L.; PETERSON, DANIEL A.; URBAN, JANICE H.

    2012-01-01

    Activation of neuropeptide Y (NPY) Y1 receptors (Y1r) in the rat basolateral nuclear complex of the amygdala (BLA) produces anxiolysis and interferes with the generation of conditioned fear. NPY is important in regulating the output of the BLA, yet the cell types involved in mediating this response are currently unknown. The current studies employed multiple label immunocytochemistry to determine the distribution of Y1r-immunoreactivity (-ir) in glutamatergic pyramidal and GABAergic cell populations in the BLA using scanning laser confocal stereology. Pyramidal neurons were identified by expression of calcium-calmodulin dependent kinase II (CaMKII-ir) and functionally distinct interneuron subpopulations were distinguished by peptide (cholecystokinin, somatostatin) or calcium-binding protein (parvalbumin, calretinin) content. Throughout the BLA, Y1r-ir was predominately on soma with negligible fiber staining. The high degree of coexpression of Y1r-ir (99.9%) in CaMKII-ir cells suggests that these receptors colocalize on pyramidal cells and that NPY could influence BLA output by directly regulating the activity of these projection neurons. Additionally, Y1r-ir was also colocalized with the interneuronal markers studied. Parvalbumin-ir interneurons, which participate in feedforward inhibition of BLA pyramidal cells, represented the largest number of Y1r expressing interneurons in the BLA (≈4% of the total neuronal population). The anatomical localization of NPY receptors on different cell populations within the BLA provides a testable circuit whereby NPY could modulate the activity of the BLA via actions on both projection cells and interneuronal cell populations. PMID:19731317

  6. Localization of enkephalin-like immunoreactive amacrine cells in the larval tiger salamander retina: a light and electron microscopic study.

    PubMed

    Watt, C B; Li, H B; Fry, K R; Lam, D M

    1985-11-08

    Immunohistochemistry was utilized to examine the light and electron microscopic localization of enkephalin-like (enk) immunoreactive amacrine cells in the larval tiger salamander retina. The vast majority of enk-immunoreactive cells were typical amacrine cells whose round or oval cell bodies (14-16 microns) were situated in the innermost cell row of the inner nuclear layer. A relatively small number of enk-stained oval cell bodies (14-22 microns) were located in the ganglion cell layer and were designated as those of displaced amacrine cells. Enkephalin immunostaining was observed in the inner plexiform layer as a fine plexus in sublamina 1 and as a dense network of fibers in sublamina 5. In both the center and periphery of the retina the density of typical enk-amacrine cells was determined to be 250 +/- 16.36 cells per mm2 surface area of the retina. At the ultrastructural level typical enk-stained amacrine cells possessed a round, indented nuclear membrane. Enk-immunoreactive processes sometimes contained dense-core vesicles (60-115 nm) in addition to a rather homogeneous population of small, round, agranular synaptic vesicles (25-35 nm). In sublamina 1 the processes of enk-amacrine cells were presynaptic to amacrine and bipolar cells. They also contacted processes devoid of synaptic vesicles which possibly arise from ganglion cells. As the postsynaptic element in sublamina 1, they received synaptic input from amacrine cells. In sublamina 5 the processes of enk-amacrine cells were presynaptic to amacrine cells, bipolar cells, and the somas of cells situated in the ganglion cell layer.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Lipolysis Produces Changes in the Immunoreactivity and Cell Reactivity of Very Low Density Lipoproteins

    PubMed Central

    Schonfeld, G.; Patsch, W.; Pfleger, B.; Witztum, J. L.; Weidman, S. W.

    1979-01-01

    Smaller very low density lipoprotein (VLDL) remnants interact more readily with tissues than do larger “intact” VLDL. This may be related to changes in the availability of VLDL apoproteins on the surface of the lipoproteins. To test this hypothesis VLDL were incubated at 37°C with bovine milk lipase (LPL), and the abilities of LPL-treated VLDL preparations to compete with 125I-low density lipoproteins (LDL) for interaction with cultured normal human fibroblasts were measured. At the same time, the immunologic activities of these preparations were also tested by double antibody radioimmunoassay. Triglyceride (TG) contents of VLDL fell by 30-90% during incubation with LPL and, on zonal ultracentrifugation, VLDL of faster Svedberg unit of flotation (Sf1.063) rates (>150) were gradually converted to smaller VLDL with lower Sf rates (21-60). LPL-treated VLDL competed two to five times more effectively with 125I-LDL for binding to cellular receptors than did control VLDL. Control VLDL incubated with heat-inactivated LPL at 37°C, or with active LPL at 4°C had unaltered cell reactivities and TG contents compared with VLDL incubated without any enzyme. The direct uptake and degradation of LPL-treated VLDL was also assessed by using VLDL 125I-labeled in apoprotein (Apo)B. LPL-treated VLDL-125I-ApoB were taken up and degraded by fibroblast at greater rates than were control VLDL-125I-ApoB. Thus, hydrolysis of VLDL lipids was accompanied by an increased ability of VLDL to interact with fibroblasts. The immunoreactivity of ApoB in the same VLDL preparations, expressed as the “apparent ApoB contents” of LPL-treated VLDL, increased by 10-50% (P < 0.02) in those assays that contained anti-LDL antisera, but the ApoB of control VLDL remained constant. However, assays that contained antisera directed against ApoB isolated from VLDL did not distinguish between LPL-treated and control VLDL. Thus, VLDL lipid hydrolysis was accompanied by changes in the immunoreactivity of

  8. Immunohistochemical detection of human natural killer cell like immunoreactivity in human pituitary adenomas, using monoclonal antibody NK-1.

    PubMed

    Sanno, N; Itoh, J; Teramoto, A; Itoh, Y; Hori, S; Osamura, R Y

    1997-10-01

    Natural killer (NK) cells are specialized lymphocytes which are characterized as non-T and non-B cells, as they lack classic T and B cell surface markers. Recently, NK like immunoreactivity has been identified in endocrine and neuronal tissues as well as in the tumors derived from the neuroectoderm and neuroendocrine system. We examined the expression of NK-1 like immunoreactivity in 6 normal pituitary glands and in 55 cases of neoplastic pituitaries (16 growth hormone (GH) producing adenomas, 14 prolactin (PRL) producing adenomas, 4 thyrotropin (TSH) producing adenomas, 5 adrenocortocitropin (ACTH) producing adenomas and 16 non-functioning adenomas) immunohistochemically. The expression of the S-100 protein, which is a marker for folliclo-stellate (FS) cells, which have been reported to secrete cytokines as immuno-endocrine modulators, were also examined. In normal pituitary glands, NK-1 was detected in all 6 tissues in the cytoplasm of about 5-10% of the anterior pituitary cells. By serial sectioning and double immunostaining, NK-1 immunopositivity was frequently found to be localized in ACTH cells. The colocalization with other anterior pituitary hormones such as GH. PRL, the beta-subunit of luteinizing hormone (LH beta), follicle stimulating hormone (FSH beta). TSH beta and alpha-subunit of glycoprotein (alpha SU) was not observed. The S-100 immunopositive FS cells, which were scattered among hormone producing cells, were closely associated with NK-1 immunoreactive cells in the normal pituitaries. Among the 55 cases of pituitary adenomas, NK-1 was present in all the types of pituitary tumors, and a total of 33 (60.0%) contained NK-1 positive tumor cells. The frequency of NK-1 immunoreactivity in the individual adenoma types was; 14 of 16 GH producing adenomas (87.5%), 7 of 14 PRL producing adenomas (50%). 3 of 4 TSH producing adenomas (75%), 3 of 5 ACTH producing adenomas (60%), and 5 of 16 nonfunctioning adenomas (31.3%). By double immunostaining, NK-1 was

  9. The light microscopic localization of substance P- and somatostatin-like immunoreactive cells in the larval tiger salamander retina.

    PubMed

    Li, H B; Chen, N X; Watt, C B; Lam, D M

    1986-01-01

    Light microscopic immunocytochemistry was utilized to localize the populations of substance P (SP)- and somatostatin (SOM)-like immunoreactive cells in the larval tiger salamander retina. Of 104 SP-immunostained cells observed, 82% were Type 1 amacrine cells. Another 8% of the SP-cells were classified as Type 2 amacrine cells, while 10% of the SP-cells had their cell bodies located in the ganglion cell layer and were designated as displaced amacrine cells. Each type of SP-like immunoreactive cell was observed in the central and peripheral retina. SP-immunopositive processes were observed in the inner plexiform layer as a sparse plexus in sublamina 1 and as a denser network of fibers in sublamina 5. Seventy-eight percent of the 110 somatostatin-immunopositive cells observed were designated as Type 1 amacrine cells. Another 12% of SOM-cells were classified as displaced amacrine cells, while only two SOM-immunopositive Type 2 amacrine cells were observed. Nine percent of the SOM-cells were designated as interplexiform cells, based on their giving rise to processes distributing in the outer plexiform layer as well as processes ramifying in the inner plexiform layer. Each type of SOM-immunoreactive cell was observed in the central and peripheral retina, with the exception of the Type 2 amacrine cells, whose somas were only found in the central retina. Lastly, SOM-immunopositive processes in the inner plexiform layer appeared as a fine plexus in sublamina 1 and as a somewhat denser network of fibers in sublamina 5.

  10. Leucine-enkephalin-like immunoreactivity is localized in luteinizing hormone-producing cells in the axolotl (Ambystoma mexicanum) pituitary.

    PubMed

    Suzuki, Hirohumi; Yamamoto, Toshiharu

    2014-02-01

    In this study, we used immunohistochemical techniques to determine the cell type of leucine-enkephalin (Leu-ENK)-immunoreactive cells in the axolotl (Ambystoma mexicanum) pituitary. Immunoreactive cells were scattered throughout the pars distalis except for the dorso-caudal portion. These cells were immuno-positive for luteinizing hormone (LH), but they were immuno-negative for adrenocorticotrophic, growth, and thyroid-stimulating hormones, as well as prolactin. Immunoelectron microscopy demonstrated that Leu-ENK-like substance and LH co-localized within the same secretory granules. Leu-ENK secreted from gonadotrophs may participate in LH secretion in an autocrine fashion, and/or may participate in the release of sex steroids together with LH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Neurocalcin-immunoreactive cells in the rat hippocampus are GABAergic interneurons.

    PubMed

    Martínez-Guijarro, F J; Briñón, J G; Blasco-Ibáñez, J M; Okazaki, K; Hidaka, H; Alonso, J R

    1998-01-01

    Neurocalcin (NC) is a recently described calcium-binding protein isolated and characterized from bovine brain. NC belongs to the neural calcium-sensor proteins defined by the photoreceptor cell-specific protein recoverin that have been proposed to be involved in the regulation of calcium-dependent phosphorylation in signal transduction pathways. We analyzed the distribution and morphology of the NC-immunoreactive (IR) neurons in the rat dorsal hippocampus and the coexistence of NC with GABA and different neurochemical markers which label perisomatic inhibitory cells [parvalbumin (PV) and cholecystokinin (CCK)], mid-proximal dendritic inhibitory cells [calbindin D28k (CB)], distal dendritic inhibitory cells [somatostatin (SOM) and neuropeptide Y (NPY)], and interneurons specialized to innervate other interneurons [calretinin (CR) and vasoactive intestinal polypeptide (VIP)]. NC-IR cells were present in all layers of the dentate gyrus and hippocampal fields. In the dentate gyrus, NC-IR cells were concentrated in the granule cell layer, especially in the hilar border, whereas in the CA fields they were most frequently found in the stratum radiatum. NC-IR cells were morphologically heterogeneous and exhibited distinctive features of non-principal cells. In the dentate gyrus, pyramidal-like, multipolar and fusiform (horizontal and vertical) cells were found. In the CA3 region most NC-IR cells were multipolar, but vertical and horizontal fusiform cells also appeared. In the CA1 region, where NC-IR cells showed most frequently vertically arranged dendrites, multipolar, bitufted and fusiform (vertical and horizontal) cells could be distinguished. All the NC-IR cells were found to be GABA-IR in all hippocampal layers and regions, and they represented about 19% of the GABA-positive cells. NC/CB, NC/CR and NC/VIP double-labeled cells were found in all hippocampal regions, and represented 29%, 24% and 18% of the NC-IR cells, respectively. NC and CCK did not coexist in the

  12. Anatomical localization of the effects of reproductive state, castration, and social milieu on cells immunoreactive for gonadotropin-releasing hormone-I in male European starlings (Sturnus vulgaris).

    PubMed

    Stevenson, Tyler J; Ball, Gregory F

    2009-11-10

    Gonadotropin-releasing hormone-I (GnRH-I) cells are localized primarily to the septopreoptic area (POA) and are responsible for regulating gonadotropin release from the anterior pituitary. Some songbird species exhibit dramatic seasonal variation in the number of detectable GnRH-I immunoreactive cells, with higher numbers being observed during the breeding season. Here we investigated the anatomical distribution of GnRH-I-immunoreactive cells in male starlings that varied in response to manipulations of reproductive state, social context, and gonadal condition. We housed photostimulated, intact and castrated male starlings with a female or alone. Additionally, a fifth treatment group consisted of photorefractory males (i.e., in a nonreproductive state) housed alone. All photostimulated males had significantly greater numbers of GnRH-I cells compared with photorefractory male starlings. There was a significant main effect of castration and social context. Castrated males had significantly greater numbers of GnRH-I cells compared with intact males, and males housed in male-female dyads also had greater numbers of GnRH-I cells. Furthermore, the significant main effects of castration and social context were the result of an increase in GnRH-I cell numbers specifically in the rostral and intermediate regions of the POA. These findings indicate that social context and hormonal milieu have profound effects on GnRH-I immunoreactivity in addition to the previously described effects of reproductive state. These data provide novel insight into the environmental regulation of the hypothalamopituitary axis and suggest that gonadal hormones and female presence independently regulate GnRH-I cells in specific regions of the POA in male starlings.

  13. Morphometry of synaptophysin immunoreactive ganglion cells in Auerbach plexus in patients with colorectal cancer. Is this a new prognostic factor?

    PubMed

    Sobaniec-Lotowska, Maria E; Ciołkiewicz, Mariusz; Pogumirski, Józef; Sulkowski, Stanisław; Sobczak, Andrzej

    2004-01-01

    The aim of our study was to estimate morphometric parameters of synaptophysin (Syn-38) immunoreactive ganglion cells in colorectal cancer (within and at various distances from neoplastic infiltration) in postoperative material from 60 patients. We analysed the intensity of Syn-38 expression in Auerbach ganglion neurones, mean number of these cells in the ganglion, and their longitudinal and transverse diameters. The results showed a statistically significant reduction in the number of neurones in intramural ganglia of the large intestine located in neoplastic infiltration and in its close proximity. The size of ganglion cells was directly proportional to the distance from cancer infiltration and inversely proportional to Syn-38 content, which may be explained by degenerative changes and dysfunction of these cells. This correlation was significant in the case of cells with the cytoplasmatic Syn-38 immunoreactivity pattern, but did not refer to the cells with perimembranous pattern, which seemed to be undamaged. Morphometric analysis of synaptophysin immunoreactive ganglion cells in Auerbach plexus in colorectal cancer may be a new useful marker for the description of changes in the intestinal nervous system as well as a prognostic factor for colorectal cancer.

  14. Environmental Enrichment Prevent the Juvenile Hypoxia-Induced Developmental Loss of Parvalbumin-Immunoreactive Cells in the Prefrontal Cortex and Neurobehavioral Alterations Through Inhibition of NADPH Oxidase-2-Derived Oxidative Stress.

    PubMed

    Zhang, Mingqiang; Wu, Jing; Huo, Lan; Luo, Liang; Song, Xi; Fan, Fei; Lu, Yiming; Liang, Dong

    2016-12-01

    We compared the expression of phenotype of parvalbumin (PV)-immunoreactive cells in the prefrontal cortex (PFC) of juvenile rats reared in enriched environment (EE) after daily intermittent hypoxia (IH) exposure to those reared in standard environment (SE) and investigated the involvement of NADPH oxidase-2 (NOX2)-derived oxidative stress in the IH-induced neurodevelopmental and neurobehavioral consequences in a juvenile rat model of obstructive sleep apnea. Postnatal day 21 (P21) rats were exposed to IH or room air 8 h daily for 14 consecutive days. After the daily exposure, the rats were raised in SE or EE. In the PFC of P34 rats, we determined the impact (i) of IH exposures on NOX2-derived oxidative stress and PV immunoreactivity, (ii) of pharmacological NOX2 inhibition on IH-induced oxidative stress and PV immunoreactivity, and (iii) of EE on the IH-induced oxidative stress and PV immunoreactivity. Behavioral testing of psychiatric anxiety was carried out consecutively in the open-field test and elevated plus maze at P35 and P36. The results showed IH exposures increased NOX2 expression in the PFC of P34 rats, which was accompanied with elevation of NOX activity and indirect markers of oxidative stress (4-HNE). IH exposures increased 4-HNE immunoreactivity in cortical PV cells, which was accompanied with reduction of PV immunoreactivity. Treatment of IH rats with the antioxidant/NOX inhibitor apocynin prevented the PV cells loss in the PFC and reversed the IH-induced psychiatric anxiety. EE attenuated the NOX2-derived oxidative stress and reversed the PV-immunoreactivity reduction in the PFC induced by IH. Our data suggest that EE might prevent the juvenile hypoxia-induced developmental loss of PV cells in the PFC and attenuate the neurobehavioral alterations through inhibition of NOX2-derived oxidative stress.

  15. Cells showing immunoreactivity for calcitonin or calcitonin gene-related peptide (CGRP) in the central nervous system of some invertebrates.

    PubMed

    Sasayama, Y; Katoh, A; Oguro, C; Kambegawa, A; Yoshizawa, H

    1991-09-01

    In the central nervous system of some species of several invertebrate phyla, including land planarians (Platyhelminthes), ribbon worms (Nemertina), slugs (Mollusca), polychaetes, earthworms and leeches (Annelida), pill bugs (Arthropoda), and beard worms (Pogonophora), salmon calcitonin-immunoreactive cells and rat calcitonin gene-related peptide (CGRP)-immunoreactive cells were found by immunohistochemistry. These immunoreactive cells were located in the region surrounding the neuropile, although the sizes of the cells varied according to species. Some of them were round or polygonal and regarded as apolar nerve cells because of their lack of cytoplasmic processes, whereas others were spindle-shaped or elongated, being comparable with unipolar nerve cells because of extension of their cytoplasmic processes in the direction of the neuropile. In some cases, it was noted that the cytoplasmic processes had complicated branches or formed loop-like structures at their ends. These observations suggest that a calcitonin-like or CGRP-like substance is extensively present in invertebrates as well as vertebrates.

  16. Ontogeny of cells containing estrogen receptor-like immunoreactivity in the Brazilian opossum brain.

    PubMed

    Fox, C A; Ross, L R; Jacobson, C D

    1991-11-19

    In this study, we have used the Brazilian short-tailed opossum (Monodelphis domestica) as a model to study the ontogeny of estrogen receptors in the mammalian brain. Monodelphis is a small, pouchless marsupial which breeds well under laboratory conditions and whose young are born in an immature sexually undifferentiated state. The Abbott H222 monoclonal rat estrogen receptor antibody (gift of Abbott Laboratories) was utilized in an indirect immunohistochemical procedure to detect estrogen receptors in developing opossum brains. Estrogen receptors were first expressed in the dorsomedial and ventromedial hypothalamus of the opossum 10 days after birth (10PN). Most regions that contained estrogen receptor-like immunoreactivity (ER LI) in the adult opossum contained ER LI at 15 PN. These areas include the lateral septum, medial preoptic area, bed nucleus of the stria terminalis, periventricular preoptic area and hypothalamus, amygdala, dorsomedial and ventromedial hypothalamic nuclei, arcuate nucleus, ventral premammillary nucleus, and the midbrain central grey. The number of cells that contain ER LI increased through 60PN in all regions that will contain ER LI in the adult opossum. These results indicate that estrogen receptors are present in early development of the Monodelphis brain and may mark the beginning of a critical period for sexual differentiation of the opossum brain.

  17. Deficits in parvalbumin and calbindin immunoreactive cells in the hippocampus of isolation reared rats.

    PubMed

    Harte, M K; Powell, S B; Swerdlow, N R; Geyer, M A; Reynolds, G P

    2007-07-01

    Post-mortem studies have provided evidence for abnormalities of the gamma-aminobutyric acid (GABA)-ergic system in schizophrenia. The calcium-binding proteins (CBPs), parvalbumin (PV), calbindin (CB) and calretinin (CR) can be used as markers for specific subpopulations of GABAergic neurons in the brain. Isolation rearing of rats is a non-pharmacological, non-lesion manipulation that leads to deficits in prepulse inhibition of the startle reflex (PPI) and other behavioural and neurochemical alterations reminiscent of schizophrenia. Female rats were reared in social housing (groups of three) or singly for 11 weeks post weaning and PPI was measured. Brains were removed and hippocampal CBP- containing neurons determined following immunocytochemical staining. Compared to socially housed rats, isolated rats exhibited PPI deficits and reductions in PV and CB-immunoreactive cells in the hippocampus, with no significant change in CR. These findings demonstrate selective abnormalities of sub-populations of GABAergic interneurons in the hippocampus of isolation reared rats, which resemble the neuronal deficits seen in this region in schizophrenia.

  18. Classification of nAChRβ2-immunoreactive retinal ganglion cells and their tectal projections in chicks.

    PubMed

    Naito, Jumpei; Tanada, Yukiko; Watanabe, Takumi

    2013-12-01

    The relationship between the type of retinal ganglion cell (RGC) and the retinoreceptive layer of the tectum is investigated by the immunostaining of RGCs with nicotinic acetylcholine receptorβ2 (nAChRβ2) antibody and intracellular staining by DiI and also by anterograde degeneration and biotinylated dextran amine labeling of retinotectal fibers in chicks. The results strongly suggest that many of the RGCs that express immunoreactivity to nAChRβ2 send axons to tectal layer 7 and are mainly classified into the simple-type of Groups II and III, which contain the cells providing middle-sized to large dendritic fields with simple dendritic arborization. These nAChRβ2-immunoreactive RGCs receive visual information via the multiple sublayers of the inner plexiform layer.

  19. Localization of serotonin, tyrosine hydroxylase, and leu-enkephalin immunoreactive cells in the brainstem of the horn shark, Heterodontus francisci.

    PubMed

    Stuesse, S L; Cruce, W L; Northcutt, R G

    1991-06-08

    In previous studies on reptiles and elasmobranchs, we determined that some reticular groups are either absent or may be displaced compared to their locations in mammals. For example, nucleus raphe dorsalis, the largest serotoninergic cell group in mammals, is not present in rays, skates, or guitarfish. In the present study, we chose heterodontid sharks, a sister group to these batoids, for an out-group comparison of this and other characters. We identified cells in the brainstem of Heterodontus francisci by use of antibodies against tyrosine hydroxylase, serotonin, or leu-enkephalin and compared the distribution of these nuclei to descriptions in mammals and other elasmobranchs. The majority of tyrosine hydroxylase-positive cells were found in the midbrain tegmentum (A8-A10) and the hypothalamus. In addition, putative A1, A2, A5, A7 (noradrenergic) groups were found in the metencephalon and myelencephalon. Serotonin-positive cells were found in raphe nuclei and scattered lateral to the raphe. We identified probable homologues to raphe pallidus, raphe obscurus, raphe magnus, and raphe centralis superior (B8) cell groups, which have been described in mammals. A cluster of cells dorsomedial to the medial longitudinal fasciculus was identified as raphe dorsalis. The distributions of leu-enkephalin and serotonin immunoreactive cells were similar to each other, but the tyrosine-hydroxylase immunoreactive cells rarely intermingle with the former two immunoreactive cell types. Other reticular groups that contained both serotonin- and leu-enkephalin-positive cells included reticularis (r.) ventralis, r. magnocellularis, r. paragigantocellularis lateralis, r. pontis caudalis, and r. pontis oralis medialis and lateralis. Thus, this shark contains many of the major brainstem raphe and catecholaminergic cell groups described for rats, but the relative distribution of the immunopositive cell groups differs in mammals and cartilaginous fish.

  20. Hormonal regulation of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus.

    PubMed

    Williams, Tanya J; Torres-Reveron, Annelyn; Chapleau, Jeanette D; Milner, Teresa A

    2011-02-01

    Clinical and preclinical studies indicate that women and men differ in relapse vulnerability to drug-seeking behavior during abstinence periods. As relapse is frequently triggered by exposure of the recovered addict to objects previously associated with drug use and the formation of these associations requires memory systems engaged by the hippocampal formation (HF), studies exploring ovarian hormone modulation of hippocampal function are warranted. Previous studies revealed that ovarian steroids alter endogenous opioid peptide levels and trafficking of mu opioid receptors in the HF, suggesting cooperative interaction between opioids and estrogens in modulating hippocampal excitability. However, whether ovarian steroids affect the levels or trafficking of delta opioid receptors (DORs) in the HF is unknown. Here, hippocampal sections of adult male and normal cycling female Sprague-Dawley rats were processed for quantitative immunoperoxidase light microscopy and dual label fluorescence or immunoelectron microscopy using antisera directed against the DOR and neuropeptide Y (NPY). Consistent with previous studies in males, DOR-immunoreactivity (-ir) localized to select interneurons and principal cells in the female HF. In comparison to males, females, regardless of estrous cycle phase, show reduced DOR-ir in the granule cell layer of the dentate gyrus and proestrus (high estrogen) females, in particular, display reduced DOR-ir in the CA1 pyramidal cell layer. Ultrastructural analysis of DOR-labeled profiles in CA1 revealed that while females generally show fewer DORs in the distal apical dendrites of pyramidal cells, proestrus females, in particular, exhibit DOR internalization and trafficking towards the soma. Dual label studies revealed that DORs are found in NPY-labeled interneurons in the hilus, CA3, and CA1. While DOR colocalization frequency in NPY-labeled neuron somata was similar between animals in the hilus, proestrus females had fewer NPY-labeled neurons that

  1. Changes in small intestinal chromogranin A-immunoreactive cell densities in patients with irritable bowel syndrome after receiving dietary guidance.

    PubMed

    Mazzawi, Tarek; El-Salhy, Magdy

    2016-05-01

    Chromogranin A (CgA) is a common marker for enteroendocrine cells in the gut, and CgA-immunoreactive cell densities are abnormal in patients with irritable bowel syndrome (IBS). The majority of patients with IBS report that their symptoms develop after consuming certain foodstuffs. In the present study, we investigated the effects of dietary guidance on the total enteroendocrine cell densities in the small intestine, as detected by CgA. A total of 14 patients with IBS underwent a gastroscopy with duodenal biopsies and 11 of them also underwent a colonoscopy, with biopsy samples obtained from the ileum. Fourteen control subjects were also included. Each patient received 3 sessions of dietary guidance. Gastroscopies and colonoscopies were performed on both the controls and patients with IBS (at baseline and at 3-9 months after receiving guidance). Biopsy samples obtained from the duodenum and ileum were immunostained for CgA using the avidin-biotin complex (ABC) method and were quantified using computerized image analysis. The density of CgA-immunoreactive cells in the duodenum (mean ± SEM values) in the control subjects was 235.9 ± 31.9 cells/mm2; in the patients with IBS, the density was 36.9 ± 9.8 and 103.7 ± 16.9 cells/mm2 before and after they received dietary guidance, respectively (P=0.007). The density of CgA-immunoreactive cells in the ileum in the control subjects was 47.4 ± 8.3 cells/mm2; in the patients with IBS, the density was 48.4 ± 8.1 and 17.9 ± 4.4 cells/mm2, before and after they received dietary guidance, respectively (P=0.0006). These data indicate that changes in CgA-immunoreactive cell densities in patients with IBS after receiving dietary guidance may reflect a change in the densities of the small intestinal enteroendocrine cells, which may contribute to an improvement in the IBS symptoms.

  2. Paraffin immunoreactivity of CD10, CDw75, and Bcl-6 in follicle center cell lymphoma.

    PubMed

    Dunphy, C H; Polski, J M; Lance Evans, H; Gardner, L J

    2001-05-01

    Follicle center cell lymphoma(FCCL) has the following immunophenotype(IP): sIg+, Pan B+, CD10+/-, CD5-, CD23-/+, CD43-, CD11c-, CD25-. In addition, reactivities of a malignant lymphoma with CDw75(LN-1) and bcl-6 are considered indicators of FCCL. Bcl-6 expression is common in Grade 1 FCCL (100%) and rare in other indolent B-cell lymphomas(BCL). In contrast, bcl-2 expression is common in FCCL (80%) and in other BCL subtypes. Since no previous study has correlated paraffin immunoreactivity(PIR) of CD10, CDw75, and bcl-6 in FCCL (Grades 1-3), this is this study's purpose. Twenty-nine FCCL's were identified and reviewed (6, Grade 1; 10, Grade 2; 13, Grade 3) from the Division of Hematopathology, St. Louis University. The diagnoses were based on morphology and immunohistochemistry(IH)(21 cases) +/- the flow cytometric IP(14 cases). The paraffin blocks were stained for CD10 (Novacastra, Vector Laboratories, Burlingame, CA), CDw75 and bcl-6 (DAKO Corporation, Carpinteria, CA). Results showed that, CD10 by paraffin IH(PIH) was positive in 23 [18(strong); 3(moderate); 2(weak)] and negative in 6(3, Grade 2; 3, Grade 3). All CD10-cases were CDw75+; 4, bcl-6+. The two CD10-, bcl-6-cases were Grade 2. CDw75 was positive in 28 cases [16(strong); 11(moderate); 1(weak)] and negative in 1 (Grade 3; CD10+, bcl-2+, bcl-6+). Bcl-6 was positive in 26 [16(strong); 6(moderate); 4(weak)] and negative in 3(Grade 2's). Thus, the sensitivity of CD10, CDw75, and bcl-6 by PIH for FCCL was 79%, 97%, and 90%, respectively. Of the three stains evaluated by PIH in FCCL, CDw75 was the most sensitive, closely followed by bcl-6. CD10 was least sensitive-79%. By combining these 3 stains, the sensitivity was 100%; thus, a combined approach is recommended.

  3. Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus.

    PubMed

    Abrahám, Hajnalka; Veszprémi, Béla; Kravják, András; Kovács, Krisztina; Gömöri, Eva; Seress, László

    2009-04-01

    Calbindin (CB) is a calcium-binding protein that is present in principal cells as well as in interneurons of the hippocampal formation of various species including humans. Studies with transgenic mice revealed that CB is essential for long-term potentiation and synaptic plasticity which are the cellular basis of learning and memory. In a previous study we have shown that CB expression in granule cells of the dentate gyrus correlates with the functional maturation of the hippocampal formation in the rat. In the present study we examined the ontogeny of CB using immunohistochemistry in the human hippocampal formation paying special attention to the granule cells of the dentate gyrus. As early as the 14(th) week of gestation (GW), CB was being expressed by pyramidal cells of CA1-3 regions in the deepest cell rows of the pyramidal layer towards the ventricular zone. Later, CB sequentially appears in more superficial cell rows. After midgestation, CB disappears from CA3 pyramidal neurons. Expression of CB by granule cells starts at the 22(nd)-23(rd) GW, first by the most superficial neurons of the ectal end of the dorsal blade. At the 24(th) GW, CB is expressed by granule cells of the crest and medial portion of the ventral blade whereas later the entire ventral blade revealed CB immunoreactivity. At term, and in the first few postnatal months, CB-immunoreaction is detected in granule cells of both blades except for those neurons in the deepest cell rows at the hilar border. At around 2-3 years of age, all granule cells of the entire cell layer are CB-immunoreactive. Axons of granule cells, the mossy fibers, start to express CB around the 30(th) GW in stratum lucidum of CA3a. With further development, CB is expressed in CA3b and c, as well as in the hilus. An adult-like pattern of CB-immunoreactivity could be observed at 11 years of age. Our results indicate that (i) CB is expressed by hippocampal pyramidal cells a few weeks before midgestation; (ii) similarly to

  4. The effect of water quality on the immunoreactivity of stress-response cells and gonadotropin-secreting cells in the pituitary gland of Nile tilapia, Oreochromis niloticus.

    PubMed

    Mousa, Mostafa A; Ibrahim, Amal A E; Hashem, Amal M; Khalil, Noha A

    2015-03-01

    The present experiments investigated the effect of water quality characteristics on the condition factor, the ovarian activity, cortisol level, and the immunoreactivity of stress-response cells (adrenocorticotropic hormone; ACTH- and melanin stimulating hormone; MSH- and somatolactin; SL- secreting cells) and gonadotropin (GTH)-secreting cells in the pituitary gland of Nile tilapia, Oreochromis niloticus. After 3 months of exposure to mixtures of water from different sources (Tap and Lake Manzalah waters), with high levels of minerals and heavy metals, water quality affected the number, size, and immunostaining of stress-response-immunoreactive (ir) cells and GTH-ir cells, which showed a dramatic decrease in their size. The integrated optical density (IOD) of immunoreactivity of MSH- and GTH- cells was significantly increased; however, it was significantly decreased for ACTH- and SL- cells. Also, high levels of cortisol were observed in females exposed to waters with high concentrations of minerals and heavy metals. In parallel, low values of gonadosomatic index (GSI%) and the ovarian histology revealed a decrease of maturing follicles concomitant with an increase of atretic follicles in females exposed to Lake Manzalah polluted water. Taken together, the increased activity of stress-response-ir pituitary cells, serum cortisol level and ovarian atretic follicles in response to elevated concentrations of minerals and heavy metals, supports the possible role of ACTH, MSH, and SL in the adaptive stress response of fish. Therefore, minerals and heavy metals must be considered when discussing tilapia aquaculture status. © 2015 Wiley Periodicals, Inc.

  5. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    NASA Technical Reports Server (NTRS)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  6. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    NASA Technical Reports Server (NTRS)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  7. Immunoreactive vasoactive intestinal polypeptide and vasopressin cells after a protein malnutrition diet in the suprachiasmatic nucleus of the rat.

    PubMed

    Rojas-Castañeda, J; Vigueras-Villaseñor, R M; Rojas, P; Rojas, C; Cintra, L

    2008-07-01

    The aim of the present study was to evaluate the effects of prenatal and postnatal protein deprivation on the morphology and density of vasopressin (VP) and vasoactive intestinal polypeptide (VIP) immunoreactive neurons in the suprachiasmatic nucleus (SCN) of young rats. Female Wistar rats were fed either 6% (malnourished group) or 25% (control group) casein diet five weeks before conception, during gestation and lactation. After weaning, the pups were maintained on the same diet until sacrificed at 30 days of age. The major and minor axes, somatic area and the density of VP- and VIP-immunoreactive neurons were evaluated in the middle sections of the SCN. The present study shows that chronic protein malnutrition (ChPM) in VP neurons induces a significant decrease in number of cells (-31%,) and a significant increase in major and minor axes and somatic area (+12.2%, +21.1% and +15.0%, respectively). The VIP cells showed a significant decrease in cellular density (-41.5%) and a significant increase in minor axis (+13.5%) and somatic area (+10.1%). Our findings suggest that ChPM induces abnormalities in the density and morphology of the soma of VP and VIP neurons. These alterations may be a morphological substrate underlying circadian alterations previously observed in malnourished rats.

  8. Small-molecule inhibitor sorafenib regulates immunoreactions by inducing survival and differentiation of bone marrow cells.

    PubMed

    Zhao, Xiangxuan; Cao, Mengde; Lu, Zaiming; Wang, Ton; Ren, Ying; Liu, Chen; Nelson, David

    2016-10-01

    Sorafenib has been used for the treatment of liver cancer. However, its clinical impact on human immunity system remains poorly known. Our previous study has shown that sorafenib modulates immunosuppressive cell populations in murine liver cancer models. Here, we continue to report that low doses of sorafenib promotes the survival of murine bone marrow cells (BMCs) in a dose-dependent manner by up-regulating the anti-apoptotic protein survivin. Sorafenib induces differentiation of BMCs into suppressive dendritic cells that inhibit autologous T-cell proliferation and stimulate CD4(+) T cells to express increased IL-1β, IL-2, IL-4, IL-10, IFN-γ and TNF-α, and reduced levels of IL-6 and CD25, which indicates that sorafenib-induced dendritic cells represent a distinct cellular subset with unique properties. Taken together, our findings suggest that in addition to its anticancer effects, sorafenib has an immunoregulatory property that is apparent at low doses. © The Author(s) 2016.

  9. Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: prevention by treatment with a substance P receptor (NK1) antagonist.

    PubMed

    Czeh, Boldizsár; Simon, Mária; van der Hart, Marieke Gc; Schmelting, Barthel; Hesselink, Mayke B; Fuchs, Eberhard

    2005-01-01

    Previous studies have demonstrated that stress may affect the hippocampal GABAergic system. Here, we examined whether long-term psychosocial stress influenced the number of parvalbumin-containing GABAergic cells, known to provide the most powerful inhibitory input to the perisomatic region of principal cells. Adult male tree shrews were submitted to 5 weeks of stress, after which immunocytochemical and quantitative stereological techniques were used to estimate the total number of hippocampal parvalbumin-immunoreactive (PV-IR) neurons. Stress significantly decreased the number of PV-IR cells in the dentate gyrus (DG) (-33%), CA2 (-28%), and CA3 (-29%), whereas the CA1 was not affected. Additionally, we examined whether antidepressant treatment offered protection from this stress-induced effect. We administered fluoxetine (15 mg/kg per day) and SLV-323 (20 mg/kg per day), a novel neurokinin 1 receptor (NK1R) antagonist, because the NK1R has been proposed as a possible target for novel antidepressant therapies. Animals were subjected to a 7-day period of psychosocial stress before the onset of daily oral administration of the drugs, with stress continued throughout the 28-day treatment period. NK1R antagonist administration completely prevented the stress-induced reduction of the number of PV-IR interneurons, whereas fluoxetine attenuated this decrement in the DG, without affecting the CA2 and CA3. The effect of stress on interneuron numbers may reflect real cell loss; alternatively, parvalbumin concentration is diminished in the neurons, which might indicate a compensatory attempt. In either case, antidepressant treatment offered protection from the effect of stress and appears to modulate the hippocampal GABAergic system. Furthermore, the NK1R antagonist SLV-323 showed neurobiological efficacy similar to that of fluoxetine.

  10. Olfactory sensory deprivation increases the number of proBDNF-immunoreactive mitral cells in the olfactory bulb of mice.

    PubMed

    Biju, K C; Mast, Thomas Gerald; Fadool, Debra Ann

    2008-12-05

    In the olfactory bulb, apoptotic cell-death induced by sensory deprivation is restricted to interneurons in the glomerular and granule cell layers, and to a lesser extent in the external plexiform layer, whereas mitral cells do not typically undergo apoptosis. With the goal to understand whether brain-derived neurotrophic factor (BDNF) mediates mitral cell survival, we performed unilateral naris occlusion on mice at postnatal day one (P1) and examined the subsequent BDNF-immunoreactive (BDNF-ir) profile of the olfactory bulb at P20, P30, and P40. Ipsilateral to the naris occlusion, there was a significant increase in the number of BDNF-ir mitral cells per unit area that was independent of the duration of the sensory deprivation induced by occlusion. The number of BDNF-ir juxtaglomerular cells per unit area, however, was clearly diminished. Western blot analysis revealed the presence of primarily proBDNF in the olfactory bulb. These data provide evidence for a neurotrophic role of proBDNF in the olfactory system of mice and suggest that proBDNF may act to protect mitral cells from the effects of apoptotic changes induced by odor sensory deprivation.

  11. Serotonin transporter immunoreactivity is modulated during development and after fluoxetine treatment in the rodent visual system.

    PubMed

    Rodrigues Junior, Wandilson Dos Santos; Oliveira-Silva, Priscilla; Faria-Melibeu, Adriana da Cunha; Campello-Costa, Paula; Serfaty, Claudio Alberto

    2017-07-26

    The serotonin transporter (5-HTT) regulates serotonin homeostasis and has been used as a target for different drugs in depression treatment. Although the serotonergic system has received a lot of attention, little is known about the effects of these drugs over serotonin transporters. In this work, we investigated the expression pattern of 5-HTT during development of the visual system and the influence of fluoxetine on different signaling pathways. Our data showed that the expression of 5-HTT has a gradual increase from postnatal day 0 until 42 and decrease afterwards. Moreover, chronic fluoxetine treatment both in childhood and adolescence induces down regulation of 5-HTT expression and phosphorylation of ERK and AKT signaling pathways. Together these data suggest that the levels of 5-HTT protein could be important for the development of the central nervous system and suggest that the ERK and AKT are involved in the molecular pathways of antidepressants drugs, acting in concert to improve serotonergic signaling. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus.

    PubMed

    Acsády, L; Görcs, T J; Freund, T F

    1996-07-01

    The postsynaptic targets of three vasoactive intestinal polypeptide-containing GABAergic interneuron types were examined in the rat hippocampus. Two of them showed remarkable target selectivity for other GABAergic neurons, while the third contacted the somata and proximal dendrites of pyramidal cells. Vasoactive intestinal polypeptide-positive interneurons innervating the stratum oriens/alveus border in the CA1 region were shown to establish multiple contacts with horizontal GABAergic interneurons immunoreactive for type 1 metabotropic glutamate receptor. Similarly, identified axons of vasoactive intestinal polypeptide-positive interneurons projecting to stratum radiatum were found to establish symmetrical synapses largely on GABAergic dendrites. The majority of these postsynaptic GABAergic neurons were shown to contain calbindin or vasoactive intestinal polypeptide. In contrast to the first two vasoactive intestinal polypeptide-containing cell populations, vasoactive intestinal polypeptide-positive interneurons arborizing in stratum pyramidale formed baskets around pyramidal cells. These results revealed a new element in cortical microcircuits, interneurons which are specialized to innervate other GABAergic interneurons. The role of this new component may be the synchronization of dendritic inhibition, or an input-specific disinhibition of pyramidal cells in various dendritic domains. In contrast, vasoactive intestinal polypeptide-containing basket cells are likely to be involved in perisomatic inhibition of pyramidal neurons, and represents a new basket cell type different from that containing parvalbumin.

  13. Distribution of aromatase-immunoreactive cells in the forebrain of zebra finches (Taeniopygia guttata): implications for the neural action of steroids and nuclear definition in the avian hypothalamus.

    PubMed

    Balthazart, J; Absil, P; Foidart, A; Houbart, M; Harada, N; Ball, G F

    1996-10-01

    Cells immunoreactive for the enzyme aromatase were localized in the forebrain of male zebra finches with the use of an immunocytochemistry procedure. Two polyclonal antibodies, one directed against human placental aromatase and the other directed against quail recombinant aromatase, revealed a heterogeneous distribution of the enzyme in the telencephalon, diencephalon, and mesencephalon. Staining was enhanced in some birds by the administration of the nonsteroidal aromatase inhibitor, R76713 racemic Vorozole) prior to the perfusion of the birds as previously described in Japanese quail. Large numbers of cells immunoreactive for aromatase were found in nuclei in the preoptic region and in the tuberal hypothalamus. A nucleus was identified in the preoptic region based on the high density of aromatase immunoreactive cells within its boundaries that appears to be homologous to the preoptic medial nucleus (POM) described previously in Japanese quail. In several birds alternate sections were stained for immunoreactive vasotocin, a marker of the paraventricular nucleus (PVN). This information facilitated the clear separation of the POM in zebra finches from nuclei that are adjacent to the POM in the preoptic area-hypothalamus, such as the PVN and the ventromedial nucleus of the hypothalamus. Positively staining cells were also detected widely throughout the telencephalon. Cells were discerned in the medial parts of the ventral hyperstriatum and neostriatum near the lateral ventricle and in dorsal and medial parts of the hippocampus. They were most abundant in the caudal neostriatum where they clustered in the dorsomedial neostriatum, and as a band of cells coursing along the dorsal edge of the lamina archistriatalis dorsalis. They were also present in high numbers in the ventrolateral aspect of the neostriatum and in the nucleus taeniae. None of the telencephalic vocal control nuclei had appreciable numbers of cells immunoreactive for aromatase within their boundaries

  14. RTP801 immunoreactivity in retinal ganglion cells and its down-regulation in cultured cells protect them from light and cobalt chloride.

    PubMed

    del Olmo-Aguado, Susana; Núñez-Álvarez, Claudia; Ji, Dan; Manso, Alberto García; Osborne, Neville N

    2013-09-01

    RTP801, a stress-related protein, is activated by adverse environmental conditions and inhibits the activity of mammalian target of rapamycin (mTOR) in promoting oxidative stress-dependent cell death. RTP801 exists both in the mammalian retina and the lens of the eye. Here, we observed RTP801 immunoreactivity in some retinal ganglion cells. Intravitreal injection of cobalt chloride (CoCl2) to mimick hypoxia influenced retinal GFAP (glial fibrillary acidic protein) and heme oxygenase-1 (HO-1) levels, but did not affect RTP801 immunoreactivity or mRNA content relative to GAPDH. However, RTP801 mRNA was elevated when compared with Brn3a mRNA, suggesting that RTP801 is activated in stressed Brn3a retinal ganglion cells. In cultures of RGC-5 cells, RTP801 immunoreactivity was located in the cytoplasm and partly present in the mitochondria. An insult of blue light or CoCl2 increased RTP801 expression, which was accompanied by cell death. However, in cultures where RTP801 mRNA was down-regulated, the negative influence of blue light and CoCl2 was blunted. Rapamycin nullified the CoCl2-induced up-regulation of RTP801 and attenuated cell death. Moreover, rapamycin was non-toxic to RGC-5 cells, even at a high concentration (10μM). The protective effect of rapamycin on RGC-5 cells caused by the inhibition of RTP801 suggests that rapamycin might attenuate retinal ganglion cell death in situ, as in glaucoma.

  15. Reciprocal connections between CART-immunoreactive, hypothalamic paraventricular neurons and serotonergic dorsal raphe cells in the rat: Light microscopic study.

    PubMed

    Lee, Ji S; Lee, Hyun S

    2014-04-29

    Based on the overlapping physiological roles of cocaine- and amphetamine-regulated transcript (CART) peptides and serotonin, the present study examined the anatomical connection between the hypothalamic paraventricular nucleus (PVN) and the dorsal raphe (DR). The first series of experiments were performed to investigate descending projections from the CART-immunoreactive (CART-ir) PVN to serotonergic DR cells. CART-ir varicosities made contact with serotonergic DR neurons. An anterograde tracing study revealed that varicosities originating from the PVN formed close appositions to serotonergic neuronal profiles along the entire rostro-caudal extent of the DR. A retrograde study demonstrated that CART neurons projecting to the DR were mainly localized in the caudal parvicellular PVN, comprising approximately 3.0%±0.4% (n=8) of total CART cells. A second series of experiments was performed to investigate ascending projections from the DR to CART-ir PVN cells. Serotonin transporter-ir boutons made contact with CART-ir PVN neurons. Anterograde tracing revealed that varicosities originating from the DR formed close appositions to CART-ir PVN cells. Retrograde examination demonstrated that serotonergic neurons projecting to the parvicellular PVN were located along the entire rostro-caudal extent of the DR. The present observation provided an anatomical basis for accumulating evidence in the literature that suggests a functional interaction between the CART and serotonin systems during the regulation of energy balance, emotional behavior, and arousal. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Predominant Suppression of FSHβ-immunoreactivity after Long-Term Treatment of Intact and Castrate Adult Male Rats with the GnRH Agonist Deslorelin

    PubMed Central

    Smith, Arik W.; Asa, Cheryl S.; Edwards, Brian S.; Murdoch, William J.; Skinner, Donal C.

    2017-01-01

    GnRH agonists are used to treat gonadal steroid-dependent disorders in humans and contracept animals. These agonists are thought to work by desensitizing gonadotropes to GnRH, thereby suppressing FSH and LH secretion. It is not known whether changes occur in the cellular composition of the pituitary gland following chronic GnRH agonist exposure. Adult male Sprague-Dawley rats were treated with a sham, deslorelin, or deslorelin plus testosterone implant for 41.0±0.6 days. In a second experiment, rats were castrated and treated with deslorelin and/or testosterone. Pituitary sections were labeled immunocytochemically for FSHβ and LHβ, or αGSU. Deslorelin suppressed testis weight by two thirds and reduced plasma FSH and LH in intact rats. Deslorelin decreased the percentage of gonadotropes but the effect was specific to the FSHβ-ir cells. Testosterone did not reverse the deslorelin-induced reduction in the overall gonadotrope population. However, in the presence of testosterone, the proportion of gonadotropes that was FSHβ-ir increased in the remaining gonadotropes. There was no effect of treatment on the total LHβ-ir cell population although the loss of FSHβ in bi-hormonal cells increased the proportion of mono-hormonal LHβ-ir gonadotropes. The castration-induced plasma LH and FSH increases were suppressed by deslorelin, testosterone or both. Castration increased both LH-ir and FSH-ir without increasing the overall gonadotrope population; thus increasing the proportion of bi-hormonal cells. Deslorelin suppressed these increases. Testosterone increased FSH-ir in deslorelin-treated castrate rats. Deslorelin did not affect αGSU immunoreactivity, suggesting that the gonadotrope population per se is not eliminated by deslorelin but the ability of gonadotropes to synthesize FSHβ is compromised. We hypothesize that the FSH dominant suppression may be central to the long-term contraceptive efficacy of deslorelin in the male. PMID:22172059

  17. Melatonin-receptor-1-deficiency affects neurogenic differentiation factor immunoreaction in pancreatic islets and enteroendocrine cells of mice.

    PubMed

    Shalabi, Andree; Fischer, Claudia; Korf, Horst-Werner; von Gall, Charlotte

    2013-09-01

    Neurogenic differentiation factor (NeuroD) is a transcription factor involved in the differentiation of neurons and in the control of energy balance and metabolism. It plays a key role in type 1 and type 2 diabetes. Melatonin is an important rhythmic endocrine signal within the circadian system of mammals and modulates insulin secretion and glucose metabolism. In the mouse pars tuberalis, NeuroD mRNA levels show day/night variation, which is independent of the molecular clock gene mPER1 but depends on the functional melatonin receptor 1 (MT1). So far, little is known about the effect of melatonin on NeuroD synthesis in the gastrointestinal tract. Thus, NeuroD protein levels and cellular localization were analyzed by immunohistochemistry in pancreatic islets and duodenal enteroendocrine cells of MT1- and mPER1-deficienct mice. In addition, the localization of NeuroD-positive cells was analyzed by double-immunofluorescence and confocal laser microscopy. In duodenal enteroendocrine cells and pancreatic islets of WT and PER1-deficient mice, NeuroD immunoreaction showed a peak during the early subjective night. In contrast, this peak was absent in MT1-deficent mice. These data suggest that melatonin, by acting on MT1 receptors, affects NeuroD expression in the gastrointestinal tract and thus might contribute to circadian regulation in metabolic functions.

  18. Identification and characterization of gastrointestinal hormone immunoreactive cells in the skin and parotoids of Chinese toad Bufo gargarizans.

    PubMed

    Wang, Huan; Wu, Yuan-Yuan; Zhang, Rui; Zhu, Xue; Zhang, Sheng-Zhou

    2014-01-01

    The skin and skin secretion of Chinese toad Bufo gargarizans have long been used in traditional Chinese medicine. However, the exact types and location of bioactive substances in Bufo gargarizans skin still have not been fully elucidated. The aim of the study was to investigate the distribution and density of six types of gastrointestinal (GI) hormone immunoreactive (IR) cells in the skin and parotoids of Bufo gargarizans. Immunohistochemistry was used for qualitative and semiquantitative analysis of GI hormone presence in the dorsal and ventral skin, and parotoids of eight adult Chinese toads. Six types of IR cells were found: serotonin (5-HT), glucagon (GLU), gastrin (GAS), somatostatin (SS), pancreatic polypeptide (PP) and neuropeptide Y(NPY) IR cells. They were mainly present in the epidermis and skin glands. 5-HT-IR cells were distributed in all layers of epidermis and glands, with higher density in the glands. Glucagon was prominently expressed in the epidermis and the bottle-shaped glands of parotoids; however, it was not present in the granular glands of skin and parotoids. The distributions of GAS and SS-IR cells were similar since they were present mainly in mucous, granular and bottle-shaped glands, while these cell types were absent in the differentiated glands of parotoids. PP-IR cells were predominant in the granular glands and the bottle-shaped glands. The expression of NPY was high in epidermal stratum granulosum and mucous glands of the dorsal skin, the bottle-shaped glands and differentiated glands of parotoids, while NPY-IR was rarely seen in the granular glands of ventral skin, and not present in the granular glands of dorsal skin and parotoids. The expression of several types of GI hormones in the skin and parotoids of Bufo gargarizans varies depending on tissue and type of glands.

  19. Evolution of lymphocytes. Immunoglobulin T of the teleost sea bass (Dicentrarchus labrax): Quantitation of gene expressing and immunoreactive cells.

    PubMed

    Picchietti, S; Nuñez-Ortiz, N; Stocchi, V; Randelli, E; Buonocore, F; Guerra, L; Scapigliati, G

    2017-04-01

    Immunoglobulin T (IgT) is one of the key effector molecules of jawed vertebrate's adaptive immune system, and in this work we describe the quantitative distribution of IgT-expressing and IgT-producing cells in tissues of the European seabass Dicentrarchus labrax by using mRNA riboprobes and a specific anti-IgT antibody. A polyclonal antiserum (pAb) was prepared by immunizing rabbits with three synthetic peptides deduced from the full length IgT cDNA sequence and located in a surface-exposed CH3 domain of IgT constant region. The obtained antiserum, named RAIgT1, was able to recognize by ELISA immunization antigens and IgT from intestinal mucus and serum. In western blots of head kidney leukocytes lysates the antiserum recognized a 180 kDa polypeptide in non-reducing, and a 75 kDa peptide in reducing conditions. Interestingly, the RAIgT1 pAb crossreacted intensely in western blots with rainbow trout IgT purified from mucus and serum. Antisense mRNA IgT oligonucleotide sequences were employed in in situ hybridization to detect IgT-expressing cells in sections from lymphoid tissues, and positive cells were observed in head kidney, spleen, intestine and gills. By employing RAIgT1 in quantitative immunohistochemistry, the highest number of IgT-producing cells was observed in the gills (9.5 ± 0.7%), followed by intestine (8.4 ± 1.2%), head kidney (6.2 ± 1.4%), and spleen (4.1 ± 0.7%). Interestingly, the number of IgT-B cells showed a regionalization in the intestine, increasing from the proximal to the terminal part. By immunofluorescence and flow cytometry of live leukocytes, the percentages of RAIgT1 stained cells were 34 ± 11% in the intestine, 22 ± 5% in head kidney, 16 ± 7% in spleen, and 9 ± 5% in gills. At the fluorescence microscope, live cells from these tissues showed a typical membrane-associated positivity and a lymphocytic morphology, and no IgT/IgM double positive cells were detected. Immunoreactive cells have been purified from

  20. Matrix metalloproteinases and E-cadherin immunoreactivity in different basal cell carcinoma histological types.

    PubMed

    Vanjaka-Rogošić, Lucija; Puizina-Ivić, Neira; Mirić, Lina; Rogošić, Veljko; Kuzmić-Prusac, Ivana; Babić, Mirna Saraga; Vuković, Dubravka; Mardešić, Snježana

    2014-06-01

    The immunohistochemical staining of matrix metalloproteinases (MMPs) and E-cadherin in tumor epithelial and stromal cells was analyzed in a group of solid, superficial spreading and cystic tumors and in a group of morpheaform and recurrent basal cell carcinomas (BCC) in order to determine whether any of these factors possibly contribute to tumor therapy resistance. Tumor tissues of 64 patients were obtained by complete excisional or curettage biopsy of BCC and these were immunohistochemically stained for MMP-1, MMP-2, MMP-9, MMP-13 and E-cadherin. In the morpheaform and recurrent BCC, MMP-9 expression significantly increased in the stroma, while E-cadherin expression was negative in epithelial cells. Odds ratio for development of morpheaform and recurrent BCC was 6.2 for positive MMP-1 immunostaining in epithelial tumor cells, 5.8 for positive MMP-9 immunostaining in tumor stroma, 3.2 for positive MMP-13 immunostaining in tumor stroma, and 4.5 for negative E-cadherin in epithelial tumor cells. Our results suggest that MMP-1 immunostaining in tumor cells, MMP-9 expression in stromal cells, and absence of E-cadherin expression are associated with morpheaform and recurrent BCC.

  1. Characterization of PrPc-immunoreactive cells in monkey (Macaca fascicularis) gastrointestinal tract.

    PubMed

    Marcos, Z; Bodegas, M E; Sesma, M P; Guembe, L

    2005-04-01

    The gastrointestinal tract (GIT) is one of the most likely entry sites for the pathological isoform of prions (PrP(sc)). To understand how PrP(sc) crosses the digestive mucosa, it is crucial to characterize the cells expressing normal prion protein (PrP(c)). By means of double immunofluorescence applied to sections of the monkey GIT, we demonstrated that, in the stomach, PrP(c) immunostaining occurs in subsets of histamine, somatostatin (Som), ghrelin (Ghr), gastrin (G), and serotonin (5HT) cells. In the small and large bowels, PrP(c) cells were found in subpopulations of cells immunolabeled for 5HT, Som, G, and peptide YY (PYY).

  2. A case of bilateral renal cell carcinoma associated with long-term dialysis showing false-positive immunoreactivity for TFE3 as Xp11 translocation renal cell carcinoma.

    PubMed

    Kurisaki-Arakawa, Aiko; Saito, Tsuyoshi; Takahashi, Michiko; Mitani, Keiko; Fukumura, Yuki; Nagashima, Yoji; Argani, Pedrum; Yao, Takashi

    2013-01-01

    Renal carcinomas associated with Xp11.2 translocations/transcription factor 3 (TFE3) gene fusion (Xp11 translocation RCC) are a rare subtype of renal cell carcinoma. A middle-aged Japanese man, who had a medical history of dialysis for more than 12 years, had bilateral renal cancers with a background of acquired cystic disease of the kidney and remarkable deposition of calcium oxalate in the tumorous area. The right renal tumor showed papillary architecture of clear cells with diffuse and strong immunoreactivity for TFE3 and focal and weak positivity for cathepsin K, suggesting a possibility of Xp11 translocation RCC. However, RT-PCR failed to detect any type of the reported fusion genes involving TFE3. Thus, the sample was sent for a TFE3 break-apart FISH assay in a renal tumor consultation service, which reported no evidence of TFE3 gene rearrangement. The right renal tumor was finally diagnosed as papillary renal cell carcinoma with cystic change. We report here a case of bilateral renal cell carcinoma in a patient undergoing long-term dialysis, which showed false-positive immunoreactivity for TFE3 immunostaining. Titration of TFE3 immunohistochemical staining (IHC) should be performed and cross-referenced with the FISH or RT-PCR results to avoid the misinterpretation of TFE3 IHC results.

  3. Ghrelin-immunoreactive cells in the gastrointestinal tract of hypertensive rats.

    PubMed

    Janiuk, Izabela; Kaleczyc, Jerzy; Kasacka, Irena

    2016-01-01

    Ghrelin, an appetite-stimulating hormone secreted by the endocrine cells of the gastrointestinal (GI) tract, has recently been shown to affect the function of the cardiovascular system. This study aimed to assess the number and morphology of ghrelin-immunopositive (GhrIP) cells in the gastrointestinal tract of rats at different developmental phases of experimentally evoked renovascular hypertension. The study involved 40 rats divided into two groups: control (C; n = 20) and rats with experimentally induced hypertension (EH; n = 20). The Goldblatt model of two-kidneys, one clip (2K1C) was used to induce hypertension. Renovascular hypertension was maintained for either 3 (EH1 group; n = 10) or 42 (EH2 group; n = 10) days. Paraffin sections from the cardia, corpus and pylorus of the stomach, as well as from the duodenum, jejunum, ileum and colon were processed for peroxidase immunohistochemistry. The number of GhrIP cells was significantly higher in the cardia and corpus of the stomach as well as the duodenum and jejunum of hypertensive rats compared to that found in the control animals. The increased number of GhrIP cells in the rat gastrointestinal tract after partial unilateral ligation of the renal artery suggests that renovascular hypertension may affect ghrelin secretion, which can contribute to the development of cardiovascular complications.

  4. Mechanism of action of cysteamine in depleting prolactin immunoreactivity

    SciTech Connect

    Sagar, S.M.; Millard, W.J.; Martin, J.B.; Murchison, S.C.

    1985-08-01

    The thiol reagent cysteamine (CSH) depletes anterior pituitary cells of immunoreactive PRL both in vivo and in vitro. The authors examined the hypothesis that CSH affects either the solubility or immunoreactivity of PRL through a mechanism involving thiol-disulfide exchange. Adult female rats were treated with either CSH (300 mg/kg, sc) or an equimolar dose of ethanolamine as a control. Anterior pituitary glands were extracted in 0.1 M sodium borate buffer, pH 9.0. Treatment of pituitary extracts with beta-mercaptoethanol (BME) destroys the immunoreactivity of PRL. However, extraction in the presence of reduced glutathione or CSH of pituitaries of rats treated with CSH restores immunoreactive PRL to control levels. Extracts were also subjected to polyacrylamide gel electrophoresis (PAGE). On gels of pituitary extracts of CSH-treated rats, the band that comigrates with purified PRL is diminished compared to that in ethanolamine-treated controls. However, extraction of the pituitaries in sodium dodecyl sulfate-containing buffer followed by chemical reduction with BME restores the PRL band. Therefore, CSH acts on PRL through a thiol-related mechanism to yield a product that is poorly soluble in aqueous buffer at pH 9 and is poorly immunoreactive. Dispersed anterior pituitary cells in tissue culture were incubated with L-(TVS)methionine to radiolabel newly synthesized peptides. PAGE followed by autoradiography confirmed the above results obtained in vivo.

  5. Evaluation of feline oral squamous cell carcinomas for p16CDKN2A protein immunoreactivity and the presence of papillomaviral DNA.

    PubMed

    Munday, John S; Knight, Cameron G; French, Adrienne F

    2011-04-01

    Oral squamous cell carcinomas (OSCCs) develop commonly in cats. While the cause of the feline neoplasms is unknown, a quarter of human OSCCs are caused by papillomavirus (PV) infection. As PV DNA has been previously detected in a feline OSCC, it was hypothesised that PV infection could be a significant cause of feline OSCCs. Human OSCCs that are caused by PVs contain increased p16(CDKN2A) protein (p16), which can be detected using immunohistochemistry. In cats, increased p16 immunoreactivity has been reported within PV-associated skin lesions. This study evaluated p16 immunoreactivity within 30 feline OSCCs. Additionally, PCR was used to amplify PV DNA from the OSCCs. Increased p16 immunoreactivity was present within 2 OSCCs. However, as PV DNA was not amplified from any OSCC in this study, it cannot be confirmed that the increased p16 was caused by PV infection. Therefore, these results do not support the hypothesis that PVs are a significant cause of OSCCs in cats. Loss of p16 expression is considered an important process in the development of human non-PV-induced OSCCs. In contrast, loss of p16 immunoreactivity was only present in 2 feline OSCCs. This suggests that human and feline OSCCs develop due to different molecular mechanisms.

  6. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

    PubMed Central

    McGranahan, Nicholas; Furness, Andrew J. S.; Rosenthal, Rachel; Ramskov, Sofie; Lyngaa, Rikke; Saini, Sunil Kumar; Jamal-Hanjani, Mariam; Wilson, Gareth A.; Birkbak, Nicolai J.; Hiley, Crispin T.; Watkins, Thomas B. K.; Shafi, Seema; Murugaesu, Nirupa; Mitter, Richard; Akarca, Ayse U.; Linares, Joseph; Marafioti, Teresa; Henry, Jake Y.; Van Allen, Eliezer M.; Miao, Diana; Schilling, Bastian; Schadendorf, Dirk; Garraway, Levi A.; Makarov, Vladimir; Rizvi, Naiyer A.; Snyder, Alexandra; Hellmann, Matthew D.; Merghoub, Taha; Wolchok, Jedd D.; Shukla, Sachet A.; Wu, Catherine J.; Peggs, Karl S.; Chan, Timothy A.; Hadrup, Sine R.; Quezada, Sergio A.; Swanton, Charles

    2016-01-01

    As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens. PMID:26940869

  7. Composition and immunoreactivity of the A60 complex and other cell fractions from Mycobacterium bovis BCG.

    PubMed

    Cocito, C; Vanlinden, F

    1995-02-01

    Surface static cultures of Mycobacterium bovis BCG contained cells embedded in an extracellular matrix, whose mechanical removal yielded free cells that were pressure disrupted and fractionated into cytoplasm and walls. Cell envelopes were either mechanically disrupted or extracted with detergents. Intracellular and extracellular fractions were analysed for proteins, polysaccharides, and antigen 6O (A60), a major complex immunodominant in tuberculosis. A60 was present in extracellular matrix, cytoplasm and walls: it represented a substantial portion of the proteins and polysaccharides of these fractions. While the protein/polysaccharide ratio varied according to the origin of A60 preparations, the electrophoretic patterns of A60 proteins (which accounted for the immunogenicity of the complex) remained unchanged. Western blots pointed to the proteins present within the 29-45 kDa range as the A60 components endowed with the highest immunogenicity level. Since the most heavily stained protein bands in SDS-PAGE patterns were located outside the region best recognized by antisera, a striking discordance was found between concentration and immunogenicity patterns of A60 proteins. The electrophoretic patterns of A60- and non-A60-proteins from cytoplasm were also different. A60 complexes in dot blots and some electrophoresed A60 proteins reacted with monoclonal antibodies directed against lipoarabinomannan (LAM), a highly immunogenic polymer of cell envelope. This contaminating compound was removed from A60 with organic solvents and detergents. SDS-PAGE and Western blot patterns of proteins from delipidated A60 were similar to those of native A60 proteins.

  8. Morphology and Immunoreactivity of Retrogradely Double-Labeled Ganglion Cells in the Mouse Retina

    PubMed Central

    Wu, Samuel M.

    2011-01-01

    Purpose. To examine the specificity and reliability of a retrograde double-labeling technique that was recently established for identification of retinal ganglion cells (GCs) and to characterize the morphology of displaced (d)GCs (dGs). Methods. A mixture of the gap-junction–impermeable dye Lucifer yellow (LY) and the permeable dye neurobiotin (NB) was applied to the optic nerve stump for retrograde labeling of GCs and the cells coupled with them. A confocal microscope was adopted for morphologic observation. Results. GCs were identified by LY labeling, and they were all clearly labeled by NB. Cells coupled to GCs contained a weak NB signal but no LY. LY and NB revealed axon bundles, somas and dendrites of GCs. The retrogradely identified GCs numbered approximately 50,000 per retina, and they constituted 44% of the total neurons in the ganglion cell layer (GCL). Somas of retrogradely identified dGs were usually negative for glycine, ChAT (choline acetyltransferase), bNOS (brain-type nitric oxidase), GAD (glutamate decarboxylase), and glial markers, and occasionally, they were weakly GABA-positive. dGs averaged 760 per retina and composed 1.7% of total GCs. Sixteen morphologic subtypes of dGs were encountered, three of which were distinct from known GCs. dGs sent dendrites to either sublaminas of the IPL, mostly sublamina a. Conclusions. The retrograde labeling is reliable for identification of GCs. dGs participate in ON and OFF light pathways but favor the OFF pathway. ChAT, bNOS, glycine, and GAD remain reliable AC markers in the GCL. GCs may couple to GABAergic ACs, and the gap junctions likely pass NB and GABA. PMID:21482641

  9. Expression, characterization, and immunoreactivities of a soluble hepatitis E virus putative capsid protein species expressed in insect cells.

    PubMed Central

    Zhang, Y; McAtee, P; Yarbough, P O; Tam, A W; Fuerst, T

    1997-01-01

    The hepatitis E virus (HEV) open reading frame-2 (ORF-2) is predicted to encode a 71-kDa putative capsid protein involved in virus particle formation. When insect Spodoptera frugiperda (Sf9) cells were infected with a recombinant baculovirus containing the entire ORF-2 sequence, two types of recombinant proteins were produced; an insoluble protein of 73 kDa and a soluble protein of 62 kDa. The 62-kDa species was shown to be a proteolytic cleavage product of the 73-kDa protein. N-terminal sequence analysis of the 62-kDa protein indicated that it lacked the first 111 amino acids that are present in the full-length 73-kDa protein. A soluble 62-kDa protein was produced without the proteolytic processing by inserting the coding sequence of amino acids 112 to 660 of ORF-2 in a baculovirus expression vector and using the corresponding virus to infect Sf9 cells. The two recombinant 62-kDa proteins made by different mechanisms displayed immunoreactivities very compatible to each other. The 62-kDa proteins obtained by both proteolytic processing and reengineering demonstrated much higher sensitivities in detecting anti-HEV antibodies in human sera than the antigens made from bacteria, as measured by enzyme-linked immunosorbent assay. The data suggest that the soluble 62-kDa protein made from insect cells contains additional epitopes not present in recombinant proteins made from bacteria. Therefore, the 62-kDa protein may be useful for HEV diagnostic improvement and vaccine development. The reengineered construct allows for the consistent large-scale production of the soluble 62-kDa protein without proteolytic processing. PMID:9220158

  10. Immunoreactive cytokines within primates.

    PubMed

    Ahne, W; Mayr, A; Wiesner, H

    1996-12-01

    Peripheral blood mononuclear cells of primates (man, orang utan, gorilla, baboon), rodents (mouse, rat), carnivores (cat, dog), artiodactyls (cattle, goat, pig) and perissodactyls (horse) were isolated and stimulated with mitogens (5 micrograms/ml LPS, 5 micrograms/ml PHA) at 37 degrees C. Cytokines immunoreactive to monoclonal antibodies (mAb) directed to human cytokines (TNF-alpha, IL-1 alpha, IL-2, IL-6, IFN-gamma) could be detected by enzyme-linked immunosorbent assay (ELISA) in the case of primates only. The mAb used did not recognize cytokines of the other mammalian species investigated. The results demonstrate the close relationship within the primates from the immunophysiological point of view.

  11. Localization of amylin-like immunoreactivity in melanocyte-stimulating hormone-containing cells of the pars intermedia but not those of the pars distalis in the axolotl (Ambystoma mexicanum) pituitary.

    PubMed

    Suzuki, Hirohumi; Yamamoto, Toshiharu

    2016-04-01

    Immunohistochemical techniques were employed to investigate the distribution of amylin-like immunoreactivity in the axolotl (Ambystoma mexicanum) pituitary. Amylin-immunoreactive cells were observed in the pars intermedia, and these cells were found to be immunoreactive for α-melanocyte-stimulating hormone (αMSH) as well. In contrast, αMSH-immunoreactive cells in the pars distalis were immuno-negaitive for amylin. These light microscopic findings were confirmed by immunoelectron microscopy. Amylin-immunoreactive signals were located on the haloes of presumable secretory granules in association with αMSH-immunoreactive signals in the amylin-positive cells. However, in the pars distalis, the αMSH-positive cells did not contain amylin-immunoreactive secretory granules. Western blot analysis of axolotl pituitary extracts revealed the labeling of a protein band at approximately 10.5-kDa by the anti-rat amylin serum, which was not labeled by the anti-αMSH antibody. These findings indicate that amylin secreted from MSH-producing cells in the pars intermedia may modulate MSH secretion in an autocrine fashion and may participate in MSH functions such as fatty homeostasis together with MSH. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Postnatal changes in the number of serotonin-immunoreactive cells in midbrain raphe nuclei of male rats.

    PubMed

    Ito, Hiroyuki; Moriizumi, Tetsuji; Shimogawa, Yuji; Yamanouchi, Korehito

    2014-09-01

    To clarify the developmental changes in serotonergic neurons in the subdivisions of the dorsal (DR) and median raphe (MR) nuclei before puberty, the extent of the nuclei and the number of serotonin (5-HT) immunoreactive (ir) cells were measured in 5-, 15-, and 30-day-old rats and 8-week-old (adult) castrated male rats. The brains were fixed and 50 μm frozen sections prepared. After immunostaining for 5-HT, the number of 5-HT-ir cells in a 0.2 × 0.2 mm frame in the dorsal, ventral and lateral subdivisions of the DR (dDR, vDR and lDR, respectively) and MR were counted. Total numbers of 5-HT-ir cells counted in the frame of three sections in each rat were expressed as the number of cells per cubic millimeter (density). The results indicated that the densities of 5-HT-ir cells in the MR were almost the same in all age groups. On the other hand, among the subdivisions of the DR, the mean density of 5-HT-ir cells in 15-day-old rats was higher than that in the 5-day-old group in the lDR only. The area of the three sections of the DR and of the MR was also measured. The area of the DR in 15-day-old rats was found to be twice that in the 5-day-old rats, and differed from the area in 30-day-old rats and adults. There were no differences among the age groups in the areas of the MR. The results indicate that the expression of 5-HT in the lDR and extent of the DR increased to adult levels from days 5 to 15 after birth. In the dDR, vDR and MR, expression of 5-HT at postnatal day 5 was at adult levels already.

  13. Plasmacytoid Dendritic Cells in the Duodenum of Individuals Diagnosed with Myalgic Encephalomyelitis Are Uniquely Immunoreactive to Antibodies to Human Endogenous Retroviral Proteins

    PubMed Central

    De Meirleir, Kenny L.; Khaiboullina, Svetlana F.; Frémont, Marc; Hulstaert, Jan; Rizvanov, Albert A.; Palotás, András; Lombardi, Vincent C.

    2013-01-01

    Myalgic encephalomyelitis (ME) is a debilitating illness of unknown etiology characterized by neurocognitive dysfunction, inflammation, immune abnormalities and gastrointestinal distress. An increasing body of evidence suggests that disruptions in the gut may contribute to the induction of neuroinflammation. Therefore, reports of human endogenous retroviral (HERV) expression in association with neuroinflammatory diseases prompted us to investigate the gut of individuals with ME for the presence of HERV proteins. In eight out of 12 individuals with ME, immunoreactivity to HERV proteins was observed in duodenal biopsies. In contrast, no immunoreactivity was detected in any of the eight controls. Immunoreactivity to HERV Gag and Env proteins was uniquely co-localized in hematopoietic cells expressing the C-type lectin receptor CLEC4C (CD303/BDCA2), the co-stimulatory marker CD86 and the class II major histocompatibility complex HLA-DR, consistent with plasmacytoid dendritic cells (pDCs). Although the significance of HERVs present in the pDCs of individuals with ME has yet to be determined, these data raise the possibility of an involvment of pDCs and HERVs in ME pathology. To our knowledge, this report describes the first direct association between pDCs and HERVs in human disease. PMID:23422476

  14. Change in platelet endothelial cell adhesion molecule-1 immunoreactivity in the dentate gyrus in gerbils fed a folate-deficient diet.

    PubMed

    Yoo, Ki-Yeon; Hwang, In Koo; Kim, Young Sup; Kwon, Dae Young; Won, Moo Ho

    2008-02-01

    Folate deficiency increases stroke risk. We examined whether folate deficiency affects platelet endothelial cell adhesion molecule-1 (PECAM-1), which is an immunoglobulin-associated cell adhesion molecule and mediates the final common pathway of neutrophil transendothelial migration, in blood vessels in the gerbil dentate gyrus after transient forebrain ischemia. Gerbils were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to common carotid artery occlusion for 5 min. In the control diet (CD)- and FAD-treated sham-operated groups, weak PECAM-1 immunoreactivity was detected in the blood vessels located in the dentate gyrus. PECAM-1 immunoreactivity in both groups was increased by 4 days after ischemic insult. PECAM-1 immunoreactivity in the FAD-treated group was twice as high that in the CD-treated-sham-operated group 4 days after ischemic insult. Western blot analyses showed that the change patterns in PECAM-1 protein levels in the dentate gyrus in both groups after ischemic insult were similar to changes in PECAM-1 immunohistochemistry in the ischemic dentate gyrus. Our results suggest that folate deficiency enhances PECAM-1 in the dentate gyrus induced by transient ischemia.

  15. Quantitative changes of GABA-immunoreactive cells in the hindlimb representation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.

    1996-01-01

    The present study was aimed at evaluating quantitatively gamma-aminobutyric acid (GABA) immunoreactivity in the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension. A reduction in the number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-containing terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system of hindlimb-suspended animals, it is suggested that the unloading due to hindlimb suspension alters afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the reduction in immunoreactivity of local circuit GABAergic neurons and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  16. Quantitative changes of GABA-immunoreactive cells in the hindlimb representation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.

    1996-01-01

    The present study was aimed at evaluating quantitatively gamma-aminobutyric acid (GABA) immunoreactivity in the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension. A reduction in the number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-containing terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system of hindlimb-suspended animals, it is suggested that the unloading due to hindlimb suspension alters afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the reduction in immunoreactivity of local circuit GABAergic neurons and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  17. Body Sodium Overload Modulates the Firing Rate and Fos Immunoreactivity of Serotonergic Cells of Dorsal Raphe Nucleus

    PubMed Central

    Godino, Andrea; Pitra, Soledad; Carrer, Hugo F.; Vivas, Laura

    2013-01-01

    In order to determine whether serotonergic (5HT) dorsal raphe nucleus (DRN) cells are involved in body sodium status regulation, the effect of a s.c. infusion of either 2 M or 0.15 M NaCl on 5HT DRN neuron firing was studied using single unit extracellular recordings. In separate groups of 2 M and 0.15 M NaCl-infused rats, water intake, oxytocin (OT) plasma concentration, urine and plasma sodium and protein concentrations were also measured. Also, to determine the involvement of particular brain nuclei and neurochemical systems in body sodium overload (SO), animals from both groups were perfused for brain immunohistochemical detection of Fos, Fos-OT and Fos-5HT expression. SO produced a significant increase in serotonergic DRN neuron firing rate compared to baseline and 0.15 M NaCl-infused rats. As expected, 2 M NaCl s.c. infusion also induced a significant increase of water intake, diuresis and natriuresis, plasma sodium concentration and osmolality, even though plasma volume did not increase as indicated by changes in plasma protein concentration. The distribution of neurons along the forebrain and brainstem expressing Fos after SO showed the participation of the lamina terminalis, extended amygdala, supraoptic and paraventricular hypothalamic nuclei in the neural network that controls osmoregulatory responses. Both Fos-OT immunoreactive and plasma OT concentration increased after s.c. hypertonic sodium infusion. Finally, matching the “in vivo” electrophysiological study, SO doubled the number of Fos-5HT immunolabeled cells within the DRN. In summary, the results characterize the behavioral, renal and endocrine responses after body sodium overload without volume expansion and specify the cerebral nuclei that participate at different CNS levels in the control of these responses. The electrophysiological approach also allows us to determine in an “in vivo" model that DRN 5HT neurons increase their firing frequency during an increase in systemic sodium

  18. Body sodium overload modulates the firing rate and fos immunoreactivity of serotonergic cells of dorsal raphe nucleus.

    PubMed

    Godino, Andrea; Pitra, Soledad; Carrer, Hugo F; Vivas, Laura

    2013-01-01

    In order to determine whether serotonergic (5HT) dorsal raphe nucleus (DRN) cells are involved in body sodium status regulation, the effect of a s.c. infusion of either 2 M or 0.15 M NaCl on 5HT DRN neuron firing was studied using single unit extracellular recordings. In separate groups of 2 M and 0.15 M NaCl-infused rats, water intake, oxytocin (OT) plasma concentration, urine and plasma sodium and protein concentrations were also measured. Also, to determine the involvement of particular brain nuclei and neurochemical systems in body sodium overload (SO), animals from both groups were perfused for brain immunohistochemical detection of Fos, Fos-OT and Fos-5HT expression. SO produced a significant increase in serotonergic DRN neuron firing rate compared to baseline and 0.15 M NaCl-infused rats. As expected, 2 M NaCl s.c. infusion also induced a significant increase of water intake, diuresis and natriuresis, plasma sodium concentration and osmolality, even though plasma volume did not increase as indicated by changes in plasma protein concentration. The distribution of neurons along the forebrain and brainstem expressing Fos after SO showed the participation of the lamina terminalis, extended amygdala, supraoptic and paraventricular hypothalamic nuclei in the neural network that controls osmoregulatory responses. Both Fos-OT immunoreactive and plasma OT concentration increased after s.c. hypertonic sodium infusion. Finally, matching the "in vivo" electrophysiological study, SO doubled the number of Fos-5HT immunolabeled cells within the DRN. In summary, the results characterize the behavioral, renal and endocrine responses after body sodium overload without volume expansion and specify the cerebral nuclei that participate at different CNS levels in the control of these responses. The electrophysiological approach also allows us to determine in an "in vivo" model that DRN 5HT neurons increase their firing frequency during an increase in systemic sodium concentration

  19. Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia.

    PubMed

    Hwang, In Koo; Yoo, Ki-Yeon; Suh, Hong-Won; Kim, Young Sup; Kwon, Dae Young; Kwon, Young-Guen; Yoo, Jun-Hyun; Won, Moo-Ho

    2008-07-01

    Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia. 2008 Wiley-Liss, Inc.

  20. Distribution of immunoreactive adenohypophysial cell types in the pituitaries of the Atlantic and the Pacific hagfish, Myxine glutinosa and Eptatretus burgeri.

    PubMed

    Nozaki, Masumi; Oshima, Yasuo; Miki, Makoto; Shimotani, Toyokazu; Kawauchi, Hiroshi; Sower, Stacia A

    2005-09-01

    The hagfish is considered the most primitive vertebrate known, living or extinct. It remains an enigma whether adenohypophysial hormones similar to those of more advanced vertebrates are present in the hagfish pituitary gland or not. The present study aimed to detect immunoreactive adenohypophysial hormones in the hagfish pituitary gland, using antisera to tetrapod and fish adenohypophysial hormones as immunohistochemical probes. For this purpose, two species of hagfish, the Atlantic hagfish, Myxine glutinosa, and the Pacific hagfish, Eptatretus burgeri, were used. In both species, three different types of immunoreactive cells were detected in the adenohypophysis. (1) The first type of cells was gonadotropin (GTH)-like cells which were stained by antisera to LH-related GTHs, such as ovine LHbeta, human LHbeta, bullfrog LH, salmon LHbeta and sturgeon LHbeta in both species of hagfish. (2) The second type of cells that were detected was growth hormone (GH)/prolactin (PRL)-like cells. In M. glutinosa the cells were stained by antisera to salmon GH, salmon PRL, sturgeon GH, sturgeon PRL, blue shark GH, and lamprey GH. In E. burgeri the cells were only stained by anti-human GH and anti-sturgeon PRL. (3) The last type of cells was adrenocorticotropin (ACTH)-like cells. These cells were stained by antisera to lamprey ACTH and human beta-endorphin. In both species of hagfish, GTH-like cells were relatively abundant, and were distributed throughout the adenohypophysis, whereas GH/PRL-like and ACTH-like cells were few in number in the adenohypophysis. Based on these findings, we suggest that hagfish may have retained ancestral characteristics of key anterior pituitary hormones.

  1. Stereologic estimation of hippocampal GluR2/3- and calretinin-immunoreactive hilar neurons (presumptive mossy cells) in two mouse models of temporal lobe epilepsy.

    PubMed

    Volz, Florian; Bock, Hans H; Gierthmuehlen, Mortimer; Zentner, Josef; Haas, Carola A; Freiman, Thomas M

    2011-09-01

    Hippocampal mossy cells receive dense innervation from dentate granule cells and, in turn, mossy cells innervate both granule cells and interneurons. Mossy cell loss is thought to trigger granule cell mossy fiber sprouting, which may affect granule cell excitability. The aim of this study was to quantify mossy cell loss in two animal models of temporal lobe epilepsy, and determine whether there exists a relationship between mossy cell loss, mossy fiber sprouting, and granule cell dispersion. Representative hippocampal sections from p35 knockout mice and mice with unilateral intrahippocampal kainate injection were immunolabeled for GluR2/3, two subunits of the amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor and calretinin to identify mossy cells. Mossy fibers were immunostained against synaptoporin. p35 Knockout mice showed no hilar cell death, but moderate mossy fiber sprouting and granule cell dispersion. In the kainate-injected hippocampus, there was an 80% and 85% reduction of GluR2/3- and GluR2/3/calretinin-positive hilar neurons, respectively, and dense mossy fiber sprouting and significant granule cell dispersion. In the contralateral hippocampus there was a 52% loss of GluR2/3-, but only a 20% loss of GluR2/3-calretinin-immunoreactive presumptive mossy cells, and granule cell dispersion; no mossy fiber sprouting was observed. These results indicate a probable lack of causality between mossy cell death and mossy fiber sprouting. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  2. CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells.

    PubMed

    Barrantes-Freer, Alonso; Renovanz, Mirjam; Eich, Marcus; Braukmann, Alina; Sprang, Bettina; Spirin, Pavel; Pardo, Luis A; Giese, Alf; Kim, Ella L

    2015-01-01

    A transmembrane protein CD133 has been implicated as a marker of stem-like glioma cells and predictor for therapeutic response in malignant brain tumours. CD133 expression is commonly evaluated by using antibodies specific for the AC133 epitope located in one of the extracellular domains of membrane-bound CD133. There is conflicting evidence regarding the significance of the AC133 epitope as a marker for identifying stem-like glioma cells and predicting the degree of malignancy in glioma cells. The reasons for discrepant results between different studies addressing the role of CD133/AC133 in gliomas are unclear. A possible source for controversies about CD133/AC133 is the widespread assumption that expression patterns of the AC133 epitope reflect linearly those of the CD133 protein. Consequently, the readouts from AC133 assessments are often interpreted in terms of the CD133 protein. The purpose of this study is to determine whether and to what extent do the readouts obtained with anti-AC133 antibody correspond to the level of CD133 protein expressed in stem-like glioma cells. Our study reveals for the first time that CD133 expressed on the surface of glioma cells is poorly immunoreactive for AC133. Furthermore, we provide evidence that the level of CD133 occupancy on the surface of glioma cells fluctuates during the cell cycle. Our results offer a new explanation for numerous inconsistencies regarding the biological and clinical significance of CD133/AC133 in human gliomas and call for caution in interpreting the lack or presence of AC133 epitope in glioma cells.

  3. Antigenic characterization of severe acute respiratory syndrome-coronavirus nucleocapsid protein expressed in insect cells: The effect of phosphorylation on immunoreactivity and specificity.

    PubMed

    Shin, Gu-Choul; Chung, Yoon-Seok; Kim, In-Soo; Cho, Hae-Wol; Kang, Chun

    2007-07-01

    The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is involved in the pathological reaction to SARS and is a key antigen for the development of a sensitive diagnostic assay. However, the antigenic properties of this N protein are largely unknown. To facilitate the studies on the function and antigenicity of the SARS-CoV N protein, 6x histidine-tagged recombinant SARS-CoV N (rSARS-N) with a molecular mass of 46 and 48kDa was successfully produced using the recombinant baculovirus system in insect cells. The rSARS-N expressed in insect cells (BrSARS-N) showed remarkably higher specificity and immunoreactivity than rSARS-N expressed in E. coli (ErSARS-N). Most of all, BrSARS-N proteins were expressed as a highly phosphorylated form with a molecular mass of 48kDa, but ErSARS-N was a nonphosphorylated protein. In further analysis to determine the correlation between the phosphorylation and the antigenicity of SARS-N protein, dephosphorylated SARS-N protein treated with protein phosphatase 1 (PP1) remarkably enhanced the cross-reactivity against SARS negative serum and considerably reduced immunoreactivity with SARS-N mAb. These results suggest that the phosphorylation plays an important role in the immunoreactivity and specificity of SARS-N protein. Therefore, the BrSARS-N protein may be useful for the development of highly sensitive and specific assays to determine SARS infection and for further research of SARS-N pathology.

  4. Effect of cigarette smoke on counts of immunoreactive cells to eotaxin-1 and eosinophils on the nasal mucosa in young patients with perennial allergic rhinitis.

    PubMed

    Montaño-Velázquez, Bertha Beatriz; Flores-Rojas, Eulalia Beatriz; García-Vázquez, Francisco Javier; Jurado-Hernandez, Silvio; Venancio Hernández, Marco Antonio; Alanis Flores, Angélica Kathya; Jáuregui-Renaud, Kathrine

    In teenagers with perennial allergic rhinitis, exposure to tobacco cigarette smoke increases the count of eosinophils in the nasal mucosa; the recruitment of eosinophils arises from the combined action of a number of cellular and molecular signals, including eotaxin. To assess the effect of exposure to tobacco cigarette smoke on the count of immunoreactive cells to eotaxin-1 and eosinophils on the nasal mucosa of children and teenagers with perennial allergic rhinitis. In a cross-sectional study, forty-four patients were evaluated (aged 7-19 years old): 22 with and 22 with no exposure to tobacco cigarette smoke. After replying to 2 validated questionnaires, on Asthma and Allergies in Childhood and on the severity of nasal symptoms, nasal mucosal samples were obtained by scraping the middle one-third of the inferior turbinates. Then counts of immunoreactive cells to eotaxin-1 and eosinophils were assessed by immunohistochemistry. Patients with exposure to tobacco cigarette smoke showed higher cell counts of both eotaxin-1 and eosinophils than patients with no exposure to the smoke, with no correlation between the two variables. However, both counts, of eotaxin-1 and eosinophils, were related to the cotinine/creatinine ratio. Exposure to tobacco cigarette smoke can increase eotaxin-1 and the count of eosinophils in the nasal mucosa of young patients with perennial allergic rhinitis. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  5. Immunoreactivity of gonadotrophs (FSH and LH Cells) and gonadotropin subunit gene expression in the male chub mackerel Scomber japonicus pituitary during the reproductive cycle.

    PubMed

    Nyuji, Mitsuo; Selvaraj, Sethu; Kitano, Hajime; Shiraishi, Tetsuro; Yamaguchi, Akihiko; Shimizu, Akio; Matsuyama, Michiya

    2012-09-01

    The gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are heterodimers composed of a common α subunit (GPα) and a unique β subunit (FSHβ or LHβ); they are synthesized in and secreted from gonadotrophs (FSH and LH cells) in the pituitary. Little is known about the roles of FSH and LH during spermatogenesis in perciform fishes. In this study, we examined immunoreactive changes in FSH and LH cells, and changes in the gene expression of the three gonadotropin subunits in the pituitary of male chub mackerel Scomber japonicus during testicular development. FSHβ-immunoreactive (ir) and LHβ-ir cell area were measured immuno-histochemically based on the FSH and LH cell-occupying area in the proximal pars distalis. The FSHβ-ir cell area increased significantly during spermiation, while FSHβ mRNA levels, already high at the beginning of spermatogenesis, increased further, peaking during spermiation. In contrast, LHβ-ir cell area and LHβ mRNA levels, which were low at the beginning of spermatogenesis, increased significantly during late spermatogenesis, peaking during spermiation. For both FSH and LH, GtHβ-ir cell area and GtHβ mRNA levels decreased until gonadal resting. GPα mRNA levels showed similar changes to LHβ mRNA levels. These results suggest that in the chub mackerel, FSH may play an important role in the early and late phases of spermatogenesis, and that LH may play a role during late spermatogenesis and spermiation. Moreover, our results demonstrate that changes in GtHβ-ir cell area were accompanied by similar changes in the expression of the FSHβ and LHβ genes, both of which increased during testicular development.

  6. Walker 256 tumour cells increase substance P immunoreactivity locally and modify the properties of the blood-brain barrier during extravasation and brain invasion.

    PubMed

    Lewis, Kate M; Harford-Wright, Elizabeth; Vink, Robert; Nimmo, Alan J; Ghabriel, Mounir N

    2013-01-01

    It is not yet known how tumour cells traverse the blood-brain barrier (BBB) to form brain metastases. Substance P (SP) release is a key component of neurogenic inflammation which has been recently shown to increase the permeability of the BBB following CNS insults, making it a possible candidate as a mediator of tumour cell extravasation into the brain. This study investigated the properties of the BBB in the early stages of tumour cell invasion into the brain, and the possible involvement of SP. Male Wistar rats were injected with Walker 256 breast carcinoma cells via the internal carotid artery and euthanised at 1, 3, 6 and 9 days post tumour inoculation. Culture medium-injected animals served as controls at 1 and 9 days. Evidence of tumour cell extravasation across the BBB was first observed at 3 days post-inoculation, which corresponded with significantly increased albumin (p < 0.05) and SP immunoreactivity (p < 0.01) and significantly reduced endothelial barrier antigen labelling of microvessels when compared to culture medium control animals (p < 0.001). By day 9 after tumour cell inoculation, 100 % of animals developed large intracranial neoplasms that had significantly increased albumin in the peri-tumoral area (p < 0.001). The increased SP immunoreactivity and altered BBB properties at 3 days post-inoculation that coincided with early tumour invasion may be indicative of a mechanism for tumour cell extravasation into the brain. Thus, extravasation of tumour cells into the brain to form cerebral metastases may be a SP-mediated process.

  7. Immunohistowax processing, a new fixation and embedding method for light microscopy, which preserves antigen immunoreactivity and morphological structures: visualisation of dendritic cells in peripheral organs

    PubMed Central

    Pajak, B.; De Smedt, T.; Moulin, V.; De Trez, C.; Maldonado-Lopez, R.; Vansanten, G.; Briend, E.; Urbain, J.; Leo, O.; Moser, M.

    2000-01-01

    Aims—To describe a new fixation and embedding method for tissue samples, immunohistowax processing, which preserves both morphology and antigen immunoreactivity, and to use this technique to investigate the role of dendritic cells in the immune response in peripheral tissues. Methods—This technique was used to stain a population of specialised antigen presenting cells (dendritic cells) that have the unique capacity to sensitise naive T cells, and therefore to induce primary immune responses. The numbers of dendritic cells in peripheral organs of mice either untreated or injected with live Escherichia coli were compared. Results—Numbers of dendritic cells were greatly decreased in heart, kidney, and intestine after the inoculation of bacteria. The numbers of dendritic cells in the lung did not seem to be affected by the injection of E coli. However, staining of lung sections revealed that some monocyte like cells acquired morphological and phenotypic features of dendritic cells, and migrated into blood vessels. Conclusions—These observations suggest that the injection of bacteria induces the activation of dendritic cells in peripheral organs, where they play the role of sentinels, and/or their movement into lymphoid organs, where T cell priming is likely to occur. Key Words: dendritic cell • Escherichia coli • immunohistochemistry PMID:10961175

  8. Plasma anti-Müllerian hormone as a biomarker for bovine granulosa-theca cell tumors: comparison with immunoreactive inhibin and ovarian steroid concentrations.

    PubMed

    El-Sheikh Ali, Hossam; Kitahara, Go; Nibe, Kazumi; Yamaguchi, Ryoji; Horii, Yoichiro; Zaabel, Samy; Osawa, Takeshi

    2013-11-01

    Granulosa-theca cell tumors (GTCTs) are the most frequently reported ovarian tumors in cattle. Clinically, GTCTs could be confused with other ovarian abnormalities; therefore, the only definitive diagnosis for such tumors is histopathology of a biopsy from the affected ovary. However, this is an invasive technique and unsuitable for farm conditions. As a result, the key aim of this study was to evaluate the diagnostic value of anti-Müllerian hormone (AMH), a glycoprotein hormone that is synthesized exclusively by ovarian granulosa cells, as a sensitive noninvasive biomarker for diagnosing GTCTs in cattle. To achieve this aim, we conducted two experiments. In experiment 1, four clinically healthy Japanese Black cows had blood samples taken daily over one estrous cycle to characterize their AMH profiles throughout the estrous cycle. Additionally, single blood samples were collected from 21 cyclic cows to clarify the physiological range of AMH. In experiment 2, cows with histologically confirmed GTCT (GTCT group, n = 9) and cows affected with cystic ovarian disease (COD group, n = 8) had one blood sample taken before extraction of the tumorous ovary or therapeutic treatment for the COD. Blood samples (n = 105) from cyclic cows (n = 25) in experiment 1 were assigned as a physiologically cyclic group (PC group). Plasma AMH, immunoreactive inhibin (ir-INH), estradiol-17β (E2), testosterone (T), and progesterone (P4) concentrations were assayed in all samples. In experiment 1, the mean plasma AMH concentration was 0.09 ± 0.003 ng/mL and did not show substantial fluctuation throughout the estrous cycle. In experiment 2, plasma AMH, ir-INH, and E2 concentrations were significantly elevated in the GTCT group in comparison with the PC group; among these parameters, only the AMH concentrations were significantly higher in the GTCT group than in the COD group. The area under the receiver operating characteristic curve of AMH for diagnosis of GTCT was 0.99 and was

  9. Effects of chronic forced swim stress on hippocampal brain-derived neutrophic factor (BDNF) and its receptor (TrkB) immunoreactive cells in juvenile and aged rats.

    PubMed

    Badowska-Szalewska, Ewa; Spodnik, Edyta; Klejbor, Ilona; Morys, Janusz

    2010-01-01

    A type of stress stimulation and age are claimed to affect the expression of brain-derived neurotrophic factor (BDNF) and its receptor - tyrosine kinase B (TrkB) in the hippocampal regions differentially. This study aimed to explore the influence of chronic (15 min daily for 21 days) forced swim stress (FS) exposure on the BDNF and TrkB containing neurons in the hippocampal CA1, CA3 pyramidal cell layers and dentate gyrus (DG) granule cell layer in juvenile (P28) and aged (P360) rats. An immunofluorescence (-ir) method was used to detect BDNF-ir and TrkB-ir cells. Under chronic FS exposure, in the group of juvenile rats a significant decrease in the density of BDNF immunoreactive neurons was observed in CA1 and DG (P less than <0.001), unlike CA3, where it remained unaltered just as the density of TrkB-ir cells in CA1 and DG, but in CA3 the number of TrkB-ir cells was found to grow (P less than 0.05) in comparison with control groups. After chronic FS exposure of aged (P360) rats, the density of BDNF-ir and TrkB-ir cells did not decline in any of the subregions of the hippocampus. In all subfields of the hippocampus, the denseness of BDNF-positive neurons was significantly higher in P360 stressed group, compared with P28 stressed group, but the density of TrkB-ir fell more markedly in P360 than in P28. In conclusion, chronic FS stress influenced the number of BDNF and TrkB immunoreactive neurons only in juvenile animals. The age of rats tested in the chronic forced swim test was a decisive factor determining changes in the density of BDNF-ir and TrkB-ir in the hippocampal structures.

  10. Kisspeptin and GPR54 immunoreactivity in a cohort of 518 patients defines favourable prognosis and clear cell subtype in ovarian carcinoma

    PubMed Central

    Prentice, Leah M; Klausen, Christian; Kalloger, Steve; Köbel, Martin; McKinney, Steven; Santos, Jennifer L; Kenney, Challayne; Mehl, Erika; Gilks, C Blake; Leung, Peter; Swenerton, Ken; Huntsman, David G; Aparicio, Samuel AJ

    2007-01-01

    Background Kisspeptins and their G-protein coupled receptor, GPR54 are required for GnRH release and have been associated with anti-metastatic tumour cell behaviour in model systems. The latter might suggest that their overexpression would be associated with a better prognosis in cancer. However, kisspeptin/GPR54 interactions (autocrine, paracrine, and/or endocrine) could also impact tumour behaviour in a negative manner. Here, for the first time, we associate the immunoreactivity of the kisspeptin/GPR54 ligand-receptor pair with favourable prognosis in a large cohort of ovarian carcinomas. Methods Immunohistochemical analysis for kisspeptin and GPR54 was performed on a tissue microarray (TMA) consisting of 518 early stage ovarian carcinomas, all with linked clinical outcome data. The TMA was scored using a staining intensity scale of 0 (negative), +1 (mild-moderate), and +2 (strong). Strong staining cases were considered either kisspeptin or GPR54 positive and designated as 1, while all other cases were considered negative and designated 0. All statistical analysis was conducted using two-sided tests and a p value equal to or less than 0.05 was considered significant. Results Kisspeptin and GPR54 immunoreactive cases show a favourable prognosis in univariable disease specific survival (p = 0.0023, p = 0.0092), as well as in overall survival (p = 0.0006, p = 0.0002). Furthermore, kisspeptin is an independent marker for favourable prognosis as determined by multivariable disease specific (p = 0.0046) and overall survival analysis (p = 0.0170), while GPR54 is an independent marker for overall survival only (p = 0.0303). Both kisspeptin positive and GPR54 positive cases are strongly associated with the ovarian carcinoma clear cell subtype (p < 0.0001, p < 0.0001), and GPR54 is significantly associated with favourable prognosis in overall survival within the clear cell subtype (p = 0.0102). Conclusion Kisspeptin and GPR54 immunoreactivity are significantly associated

  11. Effect of desipramine and citalopram treatment on forced swimming test-induced changes in cocaine- and amphetamine-regulated transcript (CART) immunoreactivity in mice.

    PubMed

    Chung, Sung; Kim, Hee Jeong; Kim, Hyun Ju; Choi, Sun Hye; Kim, Jin Wook; Kim, Jeong Min; Shin, Kyung Ho

    2014-05-01

    Recent study demonstrates antidepressant-like effect of cocaine- and amphetamine-regulated transcript (CART) in the forced swimming test (FST), but less is known about whether antidepressant treatments alter levels of CART immunoreactivity (CART-IR) in the FST. To explore this possibility, we assessed the treatment effects of desipramine and citalopram, which inhibit the reuptake of norepinephrine and serotonin into the presynaptic terminals, respectively, on changes in levels of CART-IR before and after the test swim in mouse brain. Levels of CART-IR in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), and hypothalamic paraventricular nucleus (PVN) were significantly increased before the test swim by desipramine and citalopram treatments. This increase in CART-IR in the AcbSh, dBNST, and PVN before the test swim remained elevated by desipramine treatment after the test swim, but this increase in these brain areas returned to near control levels after test swim by citalopram treatment. Citalopram, but not desipramine, treatment increased levels of CART-IR in the central nucleus of the amygdala (CeA) and the locus ceruleus (LC) before the test swim, and this increase was returned to control levels after the test swim in the CeA, but not in the LC. These results suggest common and distinct regulation of CART by desipramine and citalopram treatments in the FST and raise the possibility that CART in the AcbSh, dBNST, and CeA may be involved in antidepressant-like effect in the FST.

  12. Age-related changes in growth hormone-immunoreactive cells in the anterior pituitary gland of Jcl: Wistar-TgN (ARGHGEN) 1Nts rats (Mini rats).

    PubMed

    Matsumoto, Yoshiki; Tsukamoto, Yasuhiro; Miki, Takanori; Ogawa, Kazushige; Lee, Kyoung-Youl; Yokoyama, Toshifumi; Satriotomo, Irawan; Li, Hong-Peng; Gu, He; Wang, Zhi-Yu; Karasawa, Shigeru; Ueda, Susumu; Sasaki, Fumihiko; Takeuchi, Yoshiki

    2006-12-01

    Rats of the Jcl: Wistar-TgN (ARGHGEN) 1Nts strain (Mini rats) are transgenic animals carrying an antisense RNA transgene for rat growth hormone (GH); they show poor somatic growth and a low blood GH level compared to age-matched wild-type Wistar (non-Mini) rats. The purpose of the present study was to investigate age-related changes in growth hormone-immunoreactive (GH-IR) cells in the anterior pituitary gland (AP) of Mini rats at four, six, and eight weeks of age. The body weight and size of the GH-IR cells of Mini rats was significantly lower than that of non-Mini rats at six and eight weeks of age; however, this difference was not observed at four weeks of age. The AP volume and the number of GH-IR cells in Mini rats were significantly smaller than those of the age-matched non-Mini rats at the three ages. These results suggest that the abnormal development of GH-IR cells in the AP induced by the GH antisense RNA transgene is responsible for the poor somatic growth and the low blood GH levels in Mini rats.

  13. Wide-field Diffuse Amacrine Cells in the Monkey Retina Contain Immunoreactive Cocaine- and Amphetamine-Regulated Transcript (CART)

    PubMed Central

    Liu, Weiley S.; Davis, Elizabeth P.; Lee, Stephen J.; Tseng, Luke; Chuang, Alice Z.; Whitaker, Christopher M.; Massey, Stephen C.; Sherman, Michael B.; Marshak, David W.

    2016-01-01

    The goals of this study were to localize the neuropeptide Cocaine- and Amphetamine-Regulated Transcript (CART) in primate retinas and to describe the morphology, neurotransmitter content and synaptic connections of the neurons that contain it. Using in situ hybridization, light and electron microscopic immunolabeling, CART was localized to GABAergic amacrine cells in baboon retinas. The CART-positive cells had thin, varicose dendrites that gradually descended through the inner plexiform layer and ramified extensively in the innermost stratum. They resembled two types of wide-field diffuse amacrine cells that had been described previously in macaque retinas using the Golgi method and also A17, serotonin-accumulating and waterfall cells of other mammals. The CART-positive cells received synapses from rod bipolar cell axons and made synapses onto the axons in a reciprocal configuration. The CART-positive cells also received synapses from other amacrine cells. Some of these were located on their primary dendrites, and the presynaptic cells there included dopaminergic amacrine cells. Although some CART-positive somas were localized in the ganglion cell layer, they did not contain the ganglion cell marker RNA binding protein with multiple splicing (RBPMS). Based on these results and electrophysiological studies in other mammals, the CART-positive amacrine cells would be expected to play a major role in the primary rod pathway of primates, providing feedback inhibition to rod bipolar cells. PMID:27568514

  14. Wide-field diffuse amacrine cells in the monkey retina contain immunoreactive Cocaine- and Amphetamine-Regulated Transcript (CART).

    PubMed

    Long, Ye; Bordt, Andrea S; Liu, Weiley S; Davis, Elizabeth P; Lee, Stephen J; Tseng, Luke; Chuang, Alice Z; Whitaker, Christopher M; Massey, Stephen C; Sherman, Michael B; Marshak, David W

    2016-10-01

    The goals of this study were to localize the neuropeptide Cocaine- and Amphetamine-Regulated Transcript (CART) in primate retinas and to describe the morphology, neurotransmitter content and synaptic connections of the neurons that contain it. Using in situ hybridization, light and electron microscopic immunolabeling, CART was localized to GABAergic amacrine cells in baboon retinas. The CART-positive cells had thin, varicose dendrites that gradually descended through the inner plexiform layer and ramified extensively in the innermost stratum. They resembled two types of wide-field diffuse amacrine cells that had been described previously in macaque retinas using the Golgi method and also A17, serotonin-accumulating and waterfall cells of other mammals. The CART-positive cells received synapses from rod bipolar cell axons and made synapses onto the axons in a reciprocal configuration. The CART-positive cells also received synapses from other amacrine cells. Some of these were located on their primary dendrites, and the presynaptic cells there included dopaminergic amacrine cells. Although some CART-positive somas were localized in the ganglion cell layer, they did not contain the ganglion cell marker RNA binding protein with multiple splicing (RBPMS). Based on these results and electrophysiological studies in other mammals, the CART-positive amacrine cells would be expected to play a major role in the primary rod pathway of primates, providing feedback inhibition to rod bipolar cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Recurrent mossy fibers preferentially innervate parvalbumin-immunoreactive interneurons in the granule cell layer of the rat dentate gyrus.

    PubMed

    Blasco-Ibáñez, J M; Martínez-Guijarro, F J; Freund, T F

    2000-09-28

    Detection of vesicular zinc and immunohistochemistry against markers for different interneuron subsets were combined to study the postsynaptic target selection of zinc-containing recurrent mossy fiber collaterals in the dentate gyrus. Mossy fiber collaterals in the granule cell layer selectively innervated parvalbumin-containing cells, with numerous contacts per cell, whereas the granule cells were avoided. Under the electron microscope, those boutons made asymmetrical contacts on dendrites and somata. These findings suggest that, in addition to the hilar perforant path-associated (HIPP) interneurons, the basket and chandelier cells also receive a powerful feed-back drive from the granule cells, and thereby are able to control population synchrony in the dentate gyrus. On the other hand, the amount of monosynaptic excitatory feed-back among granule cells is shown to be negligible.

  16. Morphology of primate's dopaminergic amacrine cells as revealed by TH-like immunoreactivity on retinal flat-mounts.

    PubMed

    Nguyen-Legros, J; Botteri, C; Phuc, L H; Vigny, A; Gay, M

    1984-03-12

    Dopaminergic (DA) cells have been revealed by immunohistochemical localization of tyrosine hydroxylase in the retina of cynomolgus monkey, chimpanzee and human. The DA neurons were visualized in cross-sections as well as in flat-mounts of retina. The comparison revealed a striking morphological similarity between the DA neurons in the three species. When observed in flat-mounts, they were of stellate type; when observed in cross-sections, except for a few displaced cells, they were unistratified amacrine cells branching in the outermost sublayer of the inner plexiform layer. Observations in sections suggested the existence of DA-interplexiform cells in ape and human retinas.

  17. Apoptosis in human hepatocellular carcinoma and in liver cell dysplasia is correlated with p53 protein immunoreactivity.

    PubMed Central

    Zhao, M; Zimmermann, A

    1997-01-01

    AIMS: To investigate the prevalence of apoptosis in human hepatocellular carcinomas (HCC) of different types and grades and in liver cell dysplasia, and to test whether the apoptotic rate is correlated with the p53 protein status. METHODS: 37 HCC and 66 six liver samples with liver cell dysplasia were analysed for apoptosis using in situ DNA end labelling (ISEL), and for p53 protein expression by immunohistochemistry. In HCCs, proliferative activity was quantitatively assessed using proliferating cell nuclear antigen labelling. RESULTS: The apoptotic index in HCC as based on ISEL ranged from 0.1 to 13.5 per 1000 cells analysed and was not related to type or grade. No nuclear staining was observed in multinuclear tumour cells. There was a significant correlation between the apoptotic rate and both the proliferative activity and p53 protein reactivity. In liver samples containing p53 protein positive liver cell dysplasia cells, there was a significantly higher apoptotic rate of these cells. CONCLUSIONS: Apoptosis is detectable in HCC, and is not related to type and grade. There is a highly significant positive correlation between the apoptotic rate in HCC and both the proliferative activity and p53 protein expression. A similar phenomenon occurs for putative cancer precursors. The findings support the role of p53 in regulating apoptosis in preneoplastic and neoplastic liver lesions. Images PMID:9215122

  18. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  19. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  20. Isoform-dependent effects of apoE on doublecortin-positive cells and microtubule-associated protein 2 immunoreactivity following (137)Cs irradiation.

    PubMed

    Villasana, Laura; Pfankuch, Timothy; Raber, Jacob

    2010-08-01

    Previously we found apoE isoform-dependent effects of (137)Cs irradiation on cognitive function of female mice 3 months following irradiation. Alterations in the number of immature neurons and in the levels of the dendritic marker microtubule-associated protein 2 (MAP-2) might contribute to the cognitive changes following irradiation. Therefore, in the present study we determined if, following (137)Cs irradiation, there are apoE isoform-dependent effects on loss of doublecortin-positive neuroprogenitor cells or MAP-2 immumonoreactivity. In the dentate gyrus, CA1 and CA3 regions of the hippocampus, enthorhinal and sensorimotor cortex, and central and basolateral nuclei of the amygdala of apoE3 female mice, MAP-2 immunoreactivity increased 3 months following (137)Cs irradiation. In addition, at 8 h following irradiation, the number of doublecortin-positive cells was higher in apoE3 than apoE2 or apoE4 mice. Together, these data indicate that brains of apoE3 mice respond differently to (137)Cs irradiation than those of apoE2 or apoE4 mice.

  1. Distribution of tyrosine hydroxylase, serotonin, and leu-enkephalin immunoreactive cells in the brainstem of a shark, Squalus acanthias.

    PubMed

    Stuesse, S L; Cruce, W L

    1992-01-01

    The central nervous system location of neurochemicals that are widely distributed among extant animals may give us clues to changes that occurred in the brains of these animals during evolution. We have been studying the brains of cartilaginous fishes, a heterogeneous group whose central nervous system varies considerably. Squalus acanthias, the spiny dogfish shark, was chosen to represent the squalomorphs, a group of living sharks known to possess many primitive characters. The distribution of tyrosine hydroxylase (TH+), serotonin (5-HT+), and leu-enkephalin (LENK+) positive cells within the brainstem of Squalus was determined by use of antibodies to these substances. All the major raphe groups described for mammals were found in Squalus. The 5-HT+ cells in raphe nuclei were more uniformly distributed in Squalus than in Heterodontus, the horn shark. Other nuclei that were 5-HT+ and LENK+, and that have been identified in mammals, included reticularis paragigantocellularis lateralis, a B9 cell group, and reticularis magnocellularis. The postcommissural nucleus and pretectal area contained 5-HT+ and LENK+ cells. These cells have been described in a holocephalian, in teleosts, and in reptiles but not in other elasmobranchs or in mammals. Cells that were TH+ were located in prominent A1/A2, A6 (locus coeruleus), A9 (substantia nigra), and A10 (ventral tegmental area) cell groups, and in a very small A5 group. We conclude that the variation in chondrichthian brainstems exceeds that in mammals, and we suggest that this variation is related to life-style and the long evolutionary history of these fishes.

  2. C-cell-derived calcitonin-free neuroendocrine carcinoma of the thyroid: the diagnostic importance of CGRP immunoreactivity.

    PubMed

    Nakazawa, Tadao; Cameselle-Teijeiro, José; Vinagre, João; Soares, Paula; Rousseau, Emmanuel; Eloy, Catarina; Sobrinho-Simões, Manuel

    2014-09-01

    In the thyroid, primary neuroendocrine tumors encompass medullary thyroid carcinoma (MTC) and, rarely, other tumors such as paragangliomas. MTCs are derived from C-cells and express calcitonin and neuroendocrine markers. Besides classic MTC, some reports have documented thyroid neuroendocrine tumors, which show no calcitonin expression and raise difficult diagnostic problems. A 76-year-old man presented with a mass in the left thyroid with neither serological calcitonin elevation nor familial history. A thorough clinico-laboratorial study did not disclose any other mass elsewhere. A left hemithyroidectomy was performed, and the histological examination revealed a neuroendocrine carcinoma resembling a paraganglioma-like MTC displaying unequivocal signs of vascular invasion. Immunohistochemically, the tumor cells showed reactivity for chromogranin A, synaptophysin, thyroid transcription factor-1 (TTF-1), paired box gene 8 (PAX8), cytokeratins (AE1/AE3 and CK8/18), and calcitonin gene-related peptide (CGRP) and negativity for calcitonin, carcinoembryonic antigen, TTF-2, thyroperoxidase, and thyroglobulin. In situ hybridization showed that the tumor cells lacked expression for calcitonin and thyroglobulin mRNA. Genetic analysis did not disclose any RET mutation. A diagnosis of C-cell-derived primary neuroendocrine carcinoma of the thyroid without calcitonin expression was made, and the patient remains free of metastasis or recurrence 18 months after surgery. © The Author(s) 2014.

  3. Mapping of neurokinin-like immunoreactivity in the human brainstem

    PubMed Central

    Coveñas, Rafael; Martin, Francisco; Belda, Magdalena; Smith, Victor; Salinas, Pablo; Rivada, Eva; Diaz-Cabiale, Zaida; Narvaez, Jose Angel; Marcos, Pilar; Tramu, Gerard; Gonzalez-Baron, Salvador

    2003-01-01

    Background Using an indirect immunoperoxidase technique, we have studied the distribution of immunoreactive fibers and cell bodies containing neurokinin in the adult human brainstem with no prior history of neurological or psychiatric disease. Results Clusters of immunoreactive cell bodies and high densities of neurokinin-immunoreactive fibers were located in the periaqueductal gray, the dorsal motor nucleus of the vagus and in the reticular formation of the medulla, pons and mesencephalon. Moreover, immunoreactive cell bodies were found in the inferior colliculus, the raphe obscurus, the nucleus prepositus hypoglossi, and in the midline of the anterior medulla oblongata. In general, immunoreactive fibers containing neurokinin were observed throughout the whole brainstem. In addition to the nuclei mentioned above, the highest densities of such immunoreactive fibers were located in the spinal trigeminal nucleus, the lateral reticular nucleus, the nucleus of the solitary tract, the superior colliculus, the substantia nigra, the nucleus ambiguus, the gracile nucleus, the cuneate nucleus, the motor hypoglossal nucleus, the medial and superior vestibular nuclei, the nucleus prepositus hypoglossi and the interpeduncular nucleus. Conclusion The widespread distribution of immunoreactive structures containing neurokinin in the human brainstem indicates that neurokinin might be involved in several physiological mechanisms, acting as a neurotransmitter and/or neuromodulator. PMID:12617753

  4. Distribution of secretoneurin-like immunoreactivity in comparison with substance P- and enkephalin-like immunoreactivities in various human forebrain regions.

    PubMed

    Marksteiner, J; Saria, A; Kirchmair, R; Pycha, R; Benesch, H; Fischer-Colbrie, R; Haring, C; Maier, H; Ransmayr, G

    1993-12-01

    The distribution of secretoneurin-like immunoreactivity, a peptide derived from secretogranin II, was studied by means of immunocytochemistry and compared to the pattern of staining for substance P- and enkephalin-like immunoreactivities in the human basal forebrain, with special reference to the basal ganglia. Secretoneurin-like immunoreactivity was characterized by gel filtration and reversed-phase high pressure liquid chromatography analysis. Chromatographic analysis revealed a single peak for secretoneurin-like immunoreactivity. No secretoneurin-immunopositive forms of high molecular weight were found. Secretoneurin-like immunoreactivity appeared mainly in dot- and fibre-like structures. In addition, a band-like terminal staining (woolly fibres) that has been shown by others for substance P- and enkephalin-like immunoreactivities, was also observed for secretoneurin-like immunoreactivity. Medium-sized cells were found arranged in clusters or singly within the caudate and putamen. In the basal ganglia, a high density of secretoneurin-like immunoreactivity was found in the internal segment of the globus pallidus, the ventral pallidum and in the pars reticulata of the substantia nigra. In these areas the immunostaining appeared mainly as woolly fibres. The bed nucleus of the stria terminalis and medial amygdala displayed a high density of fine beaded secretoneurin-like immunoreactive fibres, sometimes forming pericellular contacts. The nucelus basalis of Meynert was highly innervated by secretoneurin-like immunoreactive fibres, mainly in the form of woolly fibres. In general, a large overlap was found between secretoneurin- and substance P-like immunoreactivity in all examined areas of the basal ganglia. In the bed nucelus of the stria terminalis and medial amygdala secretoneurin-like immunoreactivity was distributed very similarly to enkephalin-like immunoreactivity. These data provide evidence that in different subsets of neurons and neuronal pathways

  5. Prenatal valproate treatment produces autistic-like behavior and increases metabotropic glutamate receptor 1A-immunoreactivity in the hippocampus of juvenile rats.

    PubMed

    Peralta, Francisco; Fuentealba, Constanza; Fiedler, Jenny; Aliaga, Esteban

    2016-09-01

    Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by deficits in social communication and social interaction, and repetitive and stereotypical patterns of behavior. Previously, a common physiopathological pathway, involving the control of synaptic protein synthesis, was proposed as a convergence point in ASD. In particular, a role for local mRNA translation activated by class I metabotropic glutamate receptor type 5 (mGluR5) was suggested in genetic syndromes with autistic signs and in the prenatal exposition to the valproate model of autism. However, the role of the other members of class I metabotropic glutamate receptors, including mGluR1, has been poorly studied. The present study analyzed the immunoreactivity for mGluR1a in the hippocampus of rats prenatally treated with valproate. Pregnant dams (embryonic day 12.5) were injected with valproate (450 mg/kg) and subsequently, the behavior and mGluR1a were evaluated at postnatal day 30. Experimental rats exhibited social deficit, repetitive conduct and anxious behaviors compared with that of the control animals. Additionally, the present study observed an increased level of mGluR1a-immunoreactivity in the hilus of dentate gyrus and in the CA1 alveus region of the hippocampus. These results suggested an over‑functioning of mGluR1a signaling in the hippocampus, induced in the valproate model of autism, which may serve a role in cognitive and behavioral signs of ASD.

  6. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia.

    PubMed

    Zhang, Zhi Jun; Reynolds, Gavin P

    2002-05-01

    Neuropathological studies have demonstrated deficits of GABAergic interneurons in the hippocampus in schizophrenia. and selective deficits in some GABAergic sub-populations defined by calcium-binding proteins (CBPs) have been reported in the cortex in schizophrenia. In the present study, the relative densities of cells immunoreactive for the CBPs parvalbumnin (PV) and calretinin (CR) were determined in hippocampal tissue sections taken from patients with schizophrenia, bipolar disorder and major depression and from matched control subjects (15 per group). No significant difference in the density of CR-immunoreactive neurons was found between subject groups. Relative to normal controls, schizophrenic patients showed a significant and profound deficit in the relative density of PV-immunoreactive neurons in all hippocampal sub-fields. These reductions were more apparent in male than female schizophrenic patients, and were unrelated to antipsychotic drug treatment, age or duration of illness. The density of PV-immunoreactive neurons did not differ significantly from controls in the depression group, although a trend toward decreased relative density of PV-immunoreactive neurons was apparent in bipolar disorder that reached significance in one sub-field. The findings provide further evidence to support a profound and selective abnormality of a sub-population of GABAergic neurons in the hippocampus in schizophrenia.

  7. Melatonin Immunoreactivity in Malignant Small Intestinal Neuroendocrine Tumours

    PubMed Central

    Söderquist, Fanny; Janson, Eva Tiensuu; Rasmusson, Annica J.; Ali, Abir; Stridsberg, Mats; Cunningham, Janet L.

    2016-01-01

    Background/Aims Small intestinal neuroendocrine tumours (SI-NETs) are derived from enterochromaffin cells. After demonstrating melatonin in enterochromaffin cells, we hypothesized that SI-NETs may express and secrete melatonin, which may have an impact on clinical factors and treatment response. Methods Tumour tissue from 26 patients with SI-NETs, representing paired sections of primary tumour and metastasis, were immunohistochemically stained for melatonin and its receptors, MT1 and MT2. Plasma melatonin and immunoreactivity (IR) for melatonin, MT1 and MT2 in tumour cells were compared to other tumour markers and clinical parameters. Melatonin was measured at two time points in fasting morning plasma from 43 patients with SI-NETs. Results Melatonin IR was found in all SI-NETS. Melatonin IR intensity in primary tumours correlated inversely to proliferation index (p = 0.022) and patients reported less diarrhoea when melatonin IR was high (p = 0.012). MT1 IR was low or absent in tumours. MT2 expression was medium to high in primary tumours and generally reduced in metastases (p = 0.007). Plasma-melatonin ranged from 4.5 to 220.0 pg/L. Higher levels were associated with nausea at both time points (p = 0.027 and p = 0.006) and flush at the second sampling. In cases with disease stabilization or remission (n = 34), circulating melatonin levels were reduced in the second sample (p = 0.038). Conclusion Immunoreactive melatonin is present in SI-NETs. Circulating levels of melatonin in patients with SI-NETs are reduced after treatment. Our results are congruent with recent understanding of melatonin’s endocrine and paracrine functions and SI-NETs may provide a model for further studies of melatonin function. PMID:27736994

  8. Presence and distribution of serotonin immunoreactivity in the cyprids of the barnacle Balanus amphitrite.

    PubMed

    Gallus, L; Ramoino, P; Faimali, M; Piazza, V; Maura, G; Marcoli, M; Ferrando, S; Girosi, L; Tagliafierro, G

    2005-01-01

    In this work, the presence and distribution of serotonin in the cyprid of the barnacle Balanus amphitrite were investigated by immunohistochemical methods. Serotonin-like immuno-reactive neuronal cell bodies were detected in the central nervous system only. Various clusters of immunoreactive neuronal cell bodies are distributed in the brain (protocerebrum, deutocerebrum, optical lobes), and at least, four pairs of neuronal cell bodies were detected in the centrally positioned neuropil of the posterior ganglion. Rich plexuses of immunoreactive nerve fibers in the neuropil area were also observed. Furthermore, bundles of strongly immunoreactive nerve fibers surrounding the gut wall were localized, and immunoreactive nerve terminals in the antennules and compound eyes were observed. These data demonstrate the presence of a serotonin-like immunoreactive substance in the barnacle cyprids; furthermore, its immunolocalization in the cephalic nerve terminals allows us to postulate the involvement of this bioactive molecule in substrate recognition during the settlement process.

  9. p27 and Skp2 immunoreactivity and its clinical significance with endocrine and chemo-endocrine treatments in node-negative early breast cancer.

    PubMed

    Ravaioli, A; Monti, F; Regan, M M; Maffini, F; Mastropasqua, M G; Spataro, V; Castiglione-Gertsch, M; Panzini, I; Gianni, L; Goldhirsch, A; Coates, A; Price, K N; Gusterson, B A; Viale, G

    2008-04-01

    Low p27 and high Skp2 immunoreactivity are associated with a poor prognosis and other poor prognostic features including resistant phenotypes and antiestrogen drug resistance. We investigated these proteins in two International Breast Cancer Study Group trials studying node-negative early breast cancer. Trial VIII compared chemotherapy followed by goserelin with either modality alone in premenopausal patients. Trial IX compared chemotherapy followed by tamoxifen with tamoxifen alone in postmenopausal patients. Central Pathology Office assessed p27 and Skp2 expression in the primary tumor by immunohistochemistry among 1631 (60%) trial patients. p27 and Skp2 were inversely related; 13% of tumors expressed low p27 and high Skp2. Low p27 and high Skp2 were associated with unfavorable prognostic factors including larger size and higher grade tumors, absence of estrogen receptor and progesterone receptor, human epidermal growth factor receptor 2 overexpression and high Ki-67 (each P < 0.05). Low p27 and high Skp2 were not associated with disease-free survival (P = 0.42 and P = 0.48, respectively). The relative effects of chemo-endocrine versus endocrine therapy were similar regardless of p27 or Skp2. We confirm the association of low p27 and high Skp2 with other poor prognostic features, but found no predictive or prognostic value, and therefore do not recommend routine determination of p27 and Skp2 for node-negative breast cancer.

  10. Sexually Dimorphic Effects of Melatonin on Brain Arginine Vasotocin Immunoreactivity in Green Treefrogs (Hyla cinerea)

    PubMed Central

    Lutterschmidt, Deborah I.; Wilczynski, Walter

    2012-01-01

    Arginine vasotocin (AVT) and its mammalian homologue, arginine vasopressin (AVP), regulate a variety of social and reproductive behaviors, often with complex species-, sex-, and context-dependent effects. Despite extensive evidence documenting seasonal variation in brain AVT/AVP, relatively few studies have investigated the environmental and/or hormonal factors mediating these seasonal changes. In the present study, we investigated whether the pineal hormone melatonin alters brain AVT immunoreactivity in green treefrogs (Hyla cinerea). Reproductively active male and female frogs were collected during the summer breeding season and a melatonin-filled or blank silastic capsule was surgically implanted subcutaneously. The duration of hormone treatment was 4 weeks, at which time frogs were euthanized and the brains and blood collected and processed for AVT immunohistochemistry and steroid hormone assay. We quantified AVT-immunoreactive (AVT-ir) cell bodies in the nucleus accumbens (NAcc), caudal striatum and amygdala (AMG), anterior preoptic area (POA), suprachiasmatic nucleus (SCN), and infundibular region of the ventral hypothalamus (VH). Sex differences in AVT-ir cell number were observed in all brain regions except the anterior POA and VH, with males having more AVT-ir cells than females in the NAcc, AMG, and SCN. Brain AVT was sensitive to melatonin signaling during the breeding season, and the effects of melatonin varied significantly with both region and sex. Treatment with melatonin decreased AVT immunoreactivity in both the NAcc and SCN in male H. cinerea. In contrast, brain AVT was relatively insensitive to melatonin signaling in females, indicating that the regulation of the AVT/AVP neuropeptide system by melatonin may be sexually dimorphic. Finally, melatonin did not significantly influence testosterone or estradiol concentrations of male or female frogs, respectively, suggesting that the effects of melatonin on AVT immunoreactivity are independent of

  11. Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis, upper cervical cord, NTS and Pa5 following capsaicin injection into masticatory and swallowing-related muscles in rats.

    PubMed

    Tsujimura, Takanori; Shinoda, Masamichi; Honda, Kuniya; Hitomi, Suzuro; Kiyomoto, Masaaki; Matsuura, Shingo; Katagiri, Ayano; Tsuji, Kojun; Inoue, Makoto; Shiga, Yoshi; Iwata, Koichi

    2011-10-12

    Many phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells are expressed in the trigeminal spinal subnucleus caudalis (Vc), upper cervical spinal cord (C1-C2), nucleus tractus solitarii (NTS) and paratrigeminal nucleus (Pa5) after capsaicin injection into the whisker pad (WP), masseter muscle (MM), digastric muscle (DM) or sternohyoideus muscle (SM). The pERK-IR cells also showed NeuN immunoreactivity, indicating that ERK phosphorylation occurs in neurons. The pERK-IR cells were significantly reduced after intrathecal injection of MEK 1/2 inhibitor PD98059. The pERK-IR cells expressed bilaterally in the Vc and C1-C2 after capsaicin injection into the unilateral DM or SM, whereas unilaterally in the Vc and C1-C2 after unilateral WP or MM injection. After capsaicin injection into the WP or MM, the pERK-IR cell expression in the Vc was restricted rostrocaudally within a narrow area. However, the distribution of pERK-IR cells was more wide spread without a clear peak in the Vc and C1-C2 after capsaicin injection into the DM or SM. In the NTS, the unimodal pERK-IR cell expression peaked at 0-720μm rostral from the obex following capsaicin injection into WP, MM, DM or SM. In the ipsilateral Pa5, many pERK-IR cells were observed following capsaicin injection into the SM. The number of swallows elicited by distilled water administration was significantly smaller after capsaicin injection into the WP, MM or DM but not SM compared to that of vehicle-injected rats. Various noxious inputs due to the masticatory or swallowing-related muscle inflammation may be differentially involved in muscle pain and swallowing reflex activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones.

    PubMed

    Amstalden, M; Coolen, L M; Hemmerle, A M; Billings, H J; Connors, J M; Goodman, R L; Lehman, M N

    2010-01-01

    Recent evidence has implicated neurokinin B (NKB) in the complex neuronal network mediating the effects of gonadal steroids on the regulation of gonadotrophin-releasing hormone (GnRH) secretion. Because the neurokinin 3 receptor (NK3R) is considered to mediate the effects of NKB at the cellular level, we determined the distribution of immunoreactive NK3R in the septal region, preoptic area (POA) and hypothalamus of the ewe. NK3R cells and/or fibres were found in areas including the bed nucleus of the stria terminalis, POA, anterior hypothalamic and perifornical areas, dopaminergic A15 region, dorsomedial and lateral hypothalamus, arcuate nucleus (ARC) and the ventral premammillary nucleus. We also used dual-label immunocytochemistry to determine whether a neuroanatomical basis for direct modulation of GnRH neurones by NKB was evident. No GnRH neurones at any rostral-caudal level were observed to contain NK3R immunoreactivity, although GnRH neurones and fibres were in proximity to NK3R-containing fibres. Because NKB fibres formed close contacts with NKB neurones in the ARC, we determined whether these NKB neurones also contained immunoreactive NK3R. In luteal-phase ewes, 64% +/- 11 of NKB neurones colocalised NK3R. In summary, NK3R is distributed in areas of the sheep POA and hypothalamus known to be involved in the control of reproductive neuroendocrine function. Colocalisation of NK3R in NKB neurones of the ARC suggests a potential mechanism for the autoregulation of this subpopulation; however, the lack of NK3R in GnRH neurones suggests that the actions of NKB on GnRH neurosecretory activity in the ewe are mediated indirectly via other neurones and/or neuropeptides.

  13. Neurokinin 3 Receptor Immunoreactivity in the Septal Region, Preoptic Area and Hypothalamus of the Female Sheep: Colocalization in Neurokinin B Cells of the Arcuate Nucleus but not in Gonadotrophin-Releasing Hormone Neurones

    PubMed Central

    Amstalden, M.; Coolen, L. M.; Hemmerle, A. M.; Billings, Heather J.; Connors, John M.; Goodman, Robert L.; Lehman, Michael N.

    2009-01-01

    Recent evidence has implicated neurokinin B (NKB) in the complex neuronal network mediating the effects of gonadal steroids on the regulation of gonadotrophin-releasing hormone (GnRH) secretion. Since the neurokinin 3 receptor (NK3R) is thought to mediate the effects of NKB at the cellular level, we determined the distribution of immunoreactive NK3R in the septal region, preoptic area (POA) and hypothalamus of the ewe. NK3R cells and/or fibres were found in areas including the bed nucleus of the stria terminalis, POA, anterior hypothalamic and perifornical areas, dopaminergic A15 region, dorsomedial and lateral hypothalamus, arcuate nucleus (ARC) and the ventral premammillary nucleus. We also used dual-label immunocytochemistry to determine whether a neuroanatomical basis for direct modulation of GnRH neurones by NKB was evident. No GnRH neurones at any rostral-caudal level were observed to contain NK3R immunoreactivity, although GnRH neurones and fibres were in proximity to NK3R-containing fibres. Because NKB fibres formed close contacts with NKB neurones in the ARC, we determined whether these NKB neurones also contained immunoreactive NK3R. In luteal-phase ewes, 64% ± 11 of NKB neurones colocalised NK3R. In summary, NK3R is distributed in areas of the sheep preoptic area and hypothalamus known to be involved in the control of reproductive neuroendocrine function. Colocalization of NK3R in NKB neurones of the ARC suggests a potential mechanism of autoregulation of this subpopulation; however, the lack of NK3R in GnRH neurones suggests that the actions of NKB on GnRH neurosecretory activity in the ewe are mediated indirectly via other neurones and/or neuropeptides. PMID:19912479

  14. [Urinary albumin fragmentation and immunoreactivity].

    PubMed

    Kurihara, Yuriko; Nishimaki, Junichi; Nakajima, Toshie; Ida, Takashi; Shiba, Kiyoko

    2009-02-01

    Urinary albumin (ALB) has been measured as a marker for the early detection of diabetic nephropathy. In 2004, Comper et al. developed a gel-filtration high-performance liquid chromatography (HPLC) procedure for the determination of urinary ALB. They demonstrated the presence in its albumin fraction of non immunoreactive ALB with the total molecular weight of a monomeric ALB that was non-reactive with the existing anti-ALB antibody, and reported that the level of urinary non-immunoreactive ALB was higher in diabetic patients than in normal subjects. In this study, we isolated urinary ALB from diabetic patients using an anti-ALB antibody-coupled affinity column to test its immunoreactivity. In some diabetic patients, the results of HPLC and turbidimetric immunoassay for urinary ALB were discrepant. Western blot analysis showed that ALB samples from such patients were contaminated with proteins other than ALB, and contained ALB, whose molecular weight became lower using a reductive procedure. In addition, the reactivity of ALB with anti-ALB antibody differed depending on whether it was in a reduced or non-reduced state. These results indicate that ALB in such patients is susceptible to structural changes due to disease-induced urinary factors and, thus, their urine contains ALB with an altered reactivity to antibody.

  15. Plasma immunoreactive calcitonin in lung cancer.

    PubMed

    Roos, B A; Lindall, A W; Baylin, S B; O'Neil, J; Frelinger, A L; Birnbaum, R S; Lambert, P W

    1979-01-01

    We have measured plasma calcitonin in 135 untreated eucalemic men with lung cancer and a control/smoker population. Calcitonin levels were determined by radioimmunoassay and validated by immunoextraction. Plasma immunoreactive calcitonin moieties were purified by immunoadsorbent chromatography, treated with mercaptoethanol and urea, and characterized by gel filtration. Artifacts in human calcitonin radioimmunoassays of cancer-patient plasmas were detected by parallel plasma incubations in a salmon calcitonin radioimmunoassay system which does not detect human calcitonin and by immunoprecipitation of tracer at the end of radioimmunoassay incubations. Heating fresh plasmas to 65 degrees C for 1.5 hours reduced radioimmunoassay artifacts without loss of calcitonin moieties. Such characterization of hypercalcitoninemia in each of the histopathological types of lung cancer has raised some important questions about the interpretation of plasma calcitonin radioimmunoassay measurements in lung cancer. Based on inhibition of tracer-antibody binding, plasma calcitonin seemed to be elevated in 18% (14/80) of basal plasma samples obtained from patients with epidermoid or with anaplastic lung cancer. Unequivocal hypercalcitoninemia (heat stable, causing no inhibition of antibody-tracer binding in the salmon calcitonin radioimmunoassays, and immunoextractable with human calcitonin antibodies) was not found in any of the apparently hypercalcitoninemic plasmas from persons with epidermoid or anaplastic lung cancer. By contrast, unequivocal hypercalcitoninemia was found in 27% (15/55) of plasmas from patients with small cell carcinoma or adenocarcinoma. Most of the immunoreactive calcitonin recovered from small cell and adenocarcinoma lung cancer plasmas with unequivocally elevated calcitonin is much larger than calcitonin monomer.

  16. Immunoreactive opioid peptides in human breast cancer.

    PubMed Central

    Scopsi, L.; Balslev, E.; Brünner, N.; Poulsen, H. S.; Andersen, J.; Rank, F.; Larsson, L. I.

    1989-01-01

    Opioid peptides have a variety of actions on inter alia pituitary hormone secretion and the immune system. Release of endogenous opioids has been found to stimulate growth of experimental breast cancers and opiate receptor blockers have reduced the growth of chemically induced rat breast tumors. Opioid peptides may therefore play a role in human breast cancer. Invasive ductal carcinomas from 61 premenopausal women were immunocytochemically analyzed for the presence of opioid peptide immunoreactivity. Positive staining was unambiguously identified in 34 of the tumors (56%). In addition, a medullary carcinoma was positive. In a smaller series of tumors, opioid peptide immunoreactive cells were detected in both primary tumors and metastases. Positive tumor cells were usually few and scattered. Therefore, underestimates of their true frequency of occurrence are likely to have occurred, making accurate correlations with clinical behavior and estrogen receptor status difficult. No correlations with estrogen receptors were established for the unambiguously opioid peptide-positive tumors. Many of the positive tumors also stained with antibodies to gamma-endorphin and alpha-melanocyte-stimulating hormone, suggesting the presence of proopiomelanocortin-derived peptides in them. However, peptides derived from other opioid precursors also may be present in breast cancer. Images Figure 1 PMID:2464945

  17. L-glutamic acid decarboxylase- and gamma-aminobutyric acid-immunoreactive bipolar cells in tiger salamander retina are of ON- and OFF-response types as inferred from Lucifer Yellow injection.

    PubMed

    Yang, C Y

    1997-09-08

    The bipolar cells in vertebrate retinas are considered to be excitatory in nature and use L-glutamate as their neurotransmitter. Our earlier studies have provided evidence demonstrating that a small but significant population of orthotopic bipolar cells in salamander retina may be gamma-aminobutyric acid (GABA)ergic. In this work, the stratification levels of axon terminals in the inner plexiform layer (IPL) of single L-glutamic acid decarboxylase-immunoreactive (GAD-IR) and GABA-immunoreactive (GABA-IR) bipolar cells in the salamander retinal slices were studied. GAD-IR and GABA-IR bipolar cells marked by a fluorescent probe, Texas Red, were injected with Lucifer Yellow (LY) through a patch pipette under visual control. A total number of 42 GAD-IR bipolar cells in 24 slices and 84 GABA-IR bipolar cells in 56 slices were injected. Among these, terminals of nine GAD-IR bipolar cells and 22 GABA-IR bipolar cells were sufficiently filled with LY for determination of the stratification levels in the IPL. The stratification patterns and levels of GAD-IR and GABA-IR bipolar cells were very similar. GAD-IR and GABA-IR orthotopic type I and type II bipolar cells (soma located in the most distal or middle of the inner nuclear layer [INL], respectively), had their axon terminals stratified in sublamina a and sublamina b of the IPL with comparable frequency. Axonal processes were restricted largely to either the distal or the proximal region within sublaminae a and b. In addition, three of the bipolar cells had their terminals located in the middle region of the IPL. The similarities of stratification patterns and levels between GAD-IR and GABA-IR type I and type II bipolar cells indicate that they represent the same population of presumed GABAergic bipolar cells. Based on comparative stratifications of GABA bipolar cells reported here and those derived from electrophysiological studies (Hensley et al. [1993] J. Neurophysiol. 69:2086-2098), it is suggested that putative

  18. Cell cycle and apoptosis regulatory proteins, proliferative markers, cell signaling molecules, CD209, and decorin immunoreactivity in low-grade myxofibrosarcoma and myxoma.

    PubMed

    Cates, Justin M M; Memoli, Vincent A; Gonzalez, Raul S

    2015-08-01

    The histologic differential diagnosis between intramuscular myxoma and low-grade myxofibrosarcoma can be quite difficult in some cases. To identify a diagnostic immunohistochemical marker, we compared the staining profiles of 19 different antigens, including cell cycle proteins, apoptosis proteins, and proliferative markers, and selected other signaling and structural proteins in these two tumors. Ten cases each of intramuscular myxoma and low-grade myxofibrosarcoma were stained with antibodies directed against apoptosis regulatory proteins (Bcl2, activated caspase-3, phospho-H2A.X, and cleaved PARP), cell cycle regulatory proteins (Rb1, Cyclin-A, CDKN1B, and Cdt1), proliferative markers (KI67, MCM2, phospho-histone H3, and geminin), cell signalling molecules (c-Myc, EGF, EGFR, PLA2G4A, and HSP90), a dendritic cell marker (CD209), and the extracellular matrix proteoglycan decorin. Staining patterns of myxoma and myxofibrosarcoma were compared using Fisher's exact test and the Mann-Whitney test. For each potential diagnostic marker studied, the proportions of cases scored as positive on both dichotomous or ordinal scales were not significantly different between myxoma and myxofibrosarcoma. Myxoma and myxofibrosarcoma share a common immunophenotype for each of the markers studied. Distinction between these tumors is still predominantly based on morphologic criteria.

  19. Effects of Dielectrophoresis on Growth, Viability and Immuno-reactivity of Listeria monocytogenes

    PubMed Central

    Yang, Liju; Banada, Padmapriya P; Bhunia, Arun K; Bashir, Rashid

    2008-01-01

    Dielectrophoresis (DEP) has been regarded as a useful tool for manipulating biological cells prior to the detection of cells. Since DEP uses high AC electrical fields, it is important to examine whether these electrical fields in any way damage cells or affect their characteristics in subsequent analytical procedures. In this study, we investigated the effects of DEP manipulation on the characteristics of Listeria monocytogenes cells, including the immuno-reactivity to several Listeria-specific antibodies, the cell growth profile in liquid medium, and the cell viability on selective agar plates. It was found that a 1-h DEP treatment increased the cell immuno-reactivity to the commercial Listeria species-specific polyclonal antibodies (from KPL) by ~31.8% and to the C11E9 monoclonal antibodies by ~82.9%, whereas no significant changes were observed with either anti-InlB or anti-ActA antibodies. A 1-h DEP treatment did not cause any change in the growth profile of Listeria in the low conductive growth medium (LCGM); however, prolonged treatments (4 h or greater) caused significant delays in cell growth. The results of plating methods showed that a 4-h DEP treatment (5 MHz, 20 Vpp) reduced the viable cell numbers by 56.8–89.7 %. These results indicated that DEP manipulation may or may not affect the final detection signal in immuno-based detection depending on the type of antigen-antibody reaction involved. However, prolonged DEP treatment for manipulating bacterial cells could produce negative effects on the cell detection by growth-based methods. Careful selection of DEP operation conditions could avoid or minimize negative effects on subsequent cell detection performance. PMID:18416836

  20. Ovarian Germ Cell Tumors Treatment

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  1. Spreading depression features and Iba1 immunoreactivity in the cerebral cortex of developing rats submitted to treadmill exercise after treatment with monosodium glutamate.

    PubMed

    Lima, Cássia Borges; Soares, Georgia de Sousa Ferreira; Vitor, Suênia Marcele; Andrade-da-Costa, Belmira Lara da Silveira; Castellano, Bernardo; Guedes, Rubem Carlos Araujo

    2014-04-01

    Physical exercise and excessive consumption of monosodium glutamate (MSG) can affect the morphological and electrophysiological organization of the brain during development. However, the interaction of both factors remains unclear. We analyzed the effect of this interaction on the excitability-related phenomenon known as cortical spreading depression (CSD) and the microglial reaction expressed as Iba1-immunolabeled cells in the rat motor cortex. MSG (2g/kg or 4g/kg) was administered every other day during the first 14 postnatal days. Treadmill exercise started at 21-23 days of life and lasted 3 weeks, 5 days/week, for 30min/day. At 45-60 days, CSD was recorded for 4h at two cortical points and the CSD parameters (velocity, amplitude, and duration of the negative potential change) calculated. Confirming previous observations, exercised rats presented with lower CSD velocities (3.29±0.18mm/min) than the sedentary group (3.80±0.18mm/min; P<0.05). MSG increased CSD velocities in the exercised rats compared to saline-treated and exercised animals in a dose-dependent manner (3.49±0.19, 4.05±0.18, and 3.27±0.26 for 2g/kg MSG, 4g/kg MSG, and saline, respectively; P<0.05). The amplitude (ranging from 14.3±5.9 to 18.7±6.2mV) and duration (46.7±11.1 to 60.5±11.6s) of the negative slow potential shift of the CSD were similar in all groups. Both exercise and MSG treatment increased Iba1 immunolabeling. The results confirm that physical exercise decelerates CSD propagation. However, it does not impede the CSD-accelerating action of MSG. These effects were accompanied by a cortical microglia reaction. Therefore, the data suggest that treadmill exercise early in life can influence the development of cortical electrical activity.

  2. Transient immunoreactivity after laser tattoo removal: report of two cases.

    PubMed

    Izikson, Leonid; Avram, Mathew; Anderson, R Rox

    2008-04-01

    Laser tattoo removal is one of most commonly used indications for medical lasers. Professional tattoos contain a multitude of potentially immunogenic chemicals that are released or modified by laser treatment. We studied potential immunologic reactions following laser tattoo removal. Case report of two patients with immunologic reactions after laser tattoo removal. Two patients developed transient immunoreactivity that presented as regional lymphadenopathy after laser tattoo removal of professional black and blue-green tattoos. These reactions resolved without any complications. Tattoo pigments released or modified by laser therapy may trigger transient immunoreactivity in susceptible individuals.

  3. Repeated citalopram administration counteracts kainic acid-induced spreading of PSA-NCAM-immunoreactive cells and loss of reelin in the adult mouse hippocampus.

    PubMed

    Jaako, Külli; Aonurm-Helm, Anu; Kalda, Anti; Anier, Kaili; Zharkovsky, Tamara; Shastin, Dmitri; Zharkovsky, Alexander

    2011-09-01

    Systemic or intracerebral administration of kainic acid in rodents induces neuronal death followed by a cascade of neuroplastic changes in the hippocampus. Kainic acid-induced neuroplasticity is evidenced by alterations in hippocampal neurogenesis, dispersion of the granule cell layer and re-organisation of mossy fibres. Similar abnormalities are observed in patients with temporal lobe epilepsy and, therefore, kainic acid-induced hippocampal neuroplasticity might mimic pathological mechanisms leading to the formation of 'epileptic brain' in patients with temporal lobe epilepsy. Previous studies have demonstrated that selective serotonin re-uptake inhibitor antidepressants might reduce the severity of seizures in epileptic patients and reduce neuronal death in laboratory animal models of kainic acid-induced neurotoxicity. In the present study, we investigated whether kainic acid-induced neuroplasticity in mice is modulated by the repeated administration of citalopram, a selective serotonin reuptake inhibitor. We found that at the histopathological level, repeated citalopram treatment counteracted the kainic acid-induced neuronal loss and dispersion of young granule neurons expressing the polysialylated neural cell adhesion molecule within the granule cell layer of the hippocampus. Citalopram also counteracted the downregulation of reelin on both mRNA and protein levels induced by kainic acid administration. Our findings indicate that repeated administration of citalopram is able to prevent kainic acid-induced abnormal brain plasticity and thereby prevent the formation of an epileptic phenotype.

  4. Cell-specific modulation of surfactant proteins by ambroxol treatment

    SciTech Connect

    Seifart, Carola . E-mail: zwiebel@mailer.uni-marburg.de; Clostermann, Ursula; Seifart, Ulf

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  5. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    PubMed

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  6. Parvalbumin-immunoreactive neurons in the entorhinal cortex of the rat: localization, morphology, connectivity and ultrastructure.

    PubMed

    Wouterlood, F G; Härtig, W; Brückner, G; Witter, M P

    1995-02-01

    We studied the distribution, morphology, ultrastructure and connectivity of parvalbumin-immunoreactive neurons in the entorhinal cortex of the rat. Immunoreactive cell bodies were found in all layers of the entorhinal cortex except layer I. The highest numbers were observed in layers II and III of the dorsal division of the lateral entorhinal area whereas the lowest numbers occurred in the ventral division of the lateral entorhinal area. Most such neurons displayed multipolar configurations with smooth dendrites. We distinguished a type with long dendrites and a type with short dendrites. We also observed pyramidal immunoreactive neurons. A dense plexus of immunoreactive dendrites and axons was prominent in layers II and III of the dorsal division of the lateral entorhinal area and the medial entorhinal area. None of the parvalbumin-immunoreactive cells became retrogradely labelled after injection of horseradish peroxidase into the hippocampal formation. By electron microscopy, immunoreactivity was observed in cell bodies, dendrites, myelinated and unmyelinated axons and axon terminals. Immunoreactive dendrites and axons occurred in all cortical layers. We noted many myelinated immunoreactive axons. Immunoreactive axon terminals were medium sized, contained pleomorphic synaptic vesicles, and established symmetrical synapses. Both horseradish peroxidase labelled and unlabelled immunonegative cell bodies often received synapses from immunopositive axon terminals arranged in baskets. Synapses between immunoreactive axon terminals and unlabelled dendritic shafts and spines were abundant. Synapses with initial axon segments occurred less frequently. In addition, synaptic contacts were present between immunopositive axon terminals and cell bodies and dendrites. Thus, the several types of parvalbumin-containing neuron in the entorhinal cortex are interneurons, connected to one another and to immunonegative neurons through a network of synaptic contacts. Immunonegative

  7. Time of Day differences in the Number of Cytokine-, Neurotrophin- and NeuN-immunoreactive cells in the Rat Somatosensory or Visual Cortex

    PubMed Central

    Hight, Krista; Hallett, Heather; Churchill, Lynn; De, Alok; Boucher, Andrea; Krueger, James M.

    2010-01-01

    Sensory input to different cortical areas differentially varies across the light-dark cycle and likely is responsible, in part, for activity-dependent changes in time-of-day differences in protein expression such as Fos In this study we investigate time-of-day differences between dark (just before light onset) and light (just before dark onset) for the number of immunoreactive (IR) neurons that stained for tumor necrosis factor alpha (TNFα), interleukin-1β (IL1β), nerve growth factor (NGF), the neuronal nuclear protein (NeuN) and Fos in the rat somatosensory cortex (Sctx) and visual cortex (Vctx). Additionally, astrocyte IL1β-IR in the Sctx and Vctx was determined. TNFα and IL1β, as well as the immediate early gene protein Fos, were higher at the end of the dark phase (2300 h) compared to values obtained at the end of the light phase (1100 h) in the Sctx and Vctx. IL1β –IR in Sctx and Vctx astrocytes was higher at 2300 h than that observed at 1100 h. . In contrast, the number of NGF-IR neurons was higher in the Vctx than in the Sctx but did not differ in time. However, the density of the NGF-IR neurons in layer V was greater at 2300 h in the Sctx than at 1100 h. NeuN-IR was higher at 2300 h in the Sctx but was lower at this time in the Vctx compared to 1100 h. These data demonstrate that expressions of the molecules examined are dependent on activity, the sleep-wake cycle and brain location. These factors interact to modulate time-of-day expression. Section Title: Regulatory Systems PMID:20398636

  8. Analysis of the morphology and distribution of argentaffin, argyrophil and insulin-immunoreactive endocrine cells in the small intestine of the adult opossum Didelphis aurita (Wied-Neuwied, 1826).

    PubMed

    Basile, D R S; Novaes, R D; Marques, D C S; Fialho, M C Q; Neves, C A; Fonseca, C C

    2012-10-01

    The aim of this study was to identify and quantify the argyrophil, argentaffin and insulin-immunoreactive cells (IIC) in the small intestine of the opossum Didelphis aurita. Seven adult male specimens of opossums were investigated. The animals were captured, and their blood insulin levels were determined. After euthanasia, fragments of the small intestine were processed for light microscopy and transmission electron microscopy, and submitted to histochemistry and immunohistochemistry for identification of argyrophil and argentaffin endocrine cells, and IIC. Argyrophil and argentaffin cells were identified in the intestinal villi and Liberkühn crypts, whereas IIC were present exclusively in the crypts. Ultrastructure of the IIC revealed cytoplasmic granules of different sizes and electron densities. The numbers of IIC per mm(2) in the duodenum and jejunum were higher than in the ileum (p<0.05). The animals had low levels of blood insulin (2.8 ± 0.78 μIU/ml). There was no correlation between insulin levels and the number of IIC in the small intestine. The IIC presented secretory granules, elongated and variable morphology. It is believed that insulin secretion by the IIC may influence the proliferation of cells in the Liberkühn crypts, and local glucose homeostasis, primarily in animals with low serum insulin levels, such as the opossum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. HER2/ERBB2 immunoreactivity in human retinoblastoma.

    PubMed

    Seigel, G M; Sharma, S; Hackam, A S; Shah, Dhaval K

    2016-05-01

    Retinoblastoma (RB) is an ocular malignancy of early childhood. Although mutations in the Rb1 gene and expression of stem cell markers have been identified in RB, additional information on RB-specific alterations in signaling pathways and protein expression would be useful for the design of targeted RB therapies. Here we have evaluated the expression of HER2 (ERBB2) in RB. HER2 is a member of the epidermal growth factor family, which is overexpressed in breast, ovarian, gastric, colorectal, pancreatic, and endometrial cancers in a stratified manner. Overexpression and gene amplification of HER2 is associated with aggressive malignancies, accompanied by chemoresistance and poor outcomes. In this study, we present the first evidence of HER2 immunoreactivity in retinoblastoma, as shown by immunocytochemistry, flow cytometry, and western immunoblot, with validation by reverse transcription PCR (RT-PCR) in both RB cell lines and clinical RB tumors. Our results suggest that the HER2 protein expressed in RB is a truncated version that spares the trastuzumab binding site, while HER2 is not detected in normal ocular tissues. Our discovery of HER2 expression in RB may lead to innovative and targeted drug treatment options designed to spare the eye and preserve vision in RB patients.

  10. Cytokeratin immunoreactivity in Ewing sarcoma/ primitive neuroectodermal tumour.

    PubMed

    Elbashier, S H A; Nazarina, A R; Looi, L M

    2013-12-01

    Ewing sarcoma (ES)/ primitive neuroectodermal tumour (PNET) is an aggressive malignant neoplasm affecting mainly children and young adults. The tumour is included with other primitive neoplasms under the category of small round cell tumour. Cytokeratin expression in ES/PNET has been described in sporadic case reports as well as a few systemic series. We studied this feature in Malaysian patients diagnosed in University Malaya Medical Centre on the basis of typical morphology and immunohistochemical assays. Immunohistochemical staining for AE1/AE3 and MNF116 were performed in 43 cases. Cytokeratin was expressed in 17 cases (39.5%) in focal, intermediate or diffuse patterns. There was no significant association between cytokeratin immunoreactivity and the following parameters: patient age, sex, skeletal and extraskeletal primary location as well as primary, metastastic or recurrent tumours or chemotherapy treatment. A significant association between cytokeratin and neuron specific enolase (NSE) expression was demonstrated. Our study supports evidence of epithelial differentiation in ES/PNET and emphasizes that the expression of cytokeratin does not exclude ES/PNET in the differential diagnosis of small round cell tumours.

  11. Mapping of alpha-neo-endorphin- and neurokinin B-immunoreactivity in the human brainstem.

    PubMed

    Duque, Ewing; Mangas, Arturo; Salinas, Pablo; Díaz-Cabiale, Zaida; Narváez, José Angel; Coveñas, Rafael

    2013-01-01

    We have studied the distribution of alpha-neo-endorphin- or neurokinin B-immunoreactive fibres and cell bodies in the adult human brainstem with no prior history of neurological or psychiatric disease. A low density of alpha-neo-endorphin-immunoreactive cell bodies was only observed in the medullary central gray matter and in the spinal trigeminal nucleus (gelatinosa part). Alpha-neo-endorphin-immunoreactive fibres were moderately distributed throughout the human brainstem. A high density of alpha-neo-endorphin-immunoreactive fibres was found only in the solitary nucleus (caudal part), in the spinal trigeminal nucleus (caudal part), and in the gelatinosa part of the latter nucleus. Neurokinin B-immunoreactive cell bodies (low density) were found in the periventricular central gray matter, the reticular formation of the pons and in the superior colliculus. The distribution of the neurokinin-immunoreactive fibres was restricted. In general, for both neuropeptides the density of the immunoreactive fibres was low. In the human brainstem, the proenkephalin system was more widely distributed than the prodynorphin system, and the preprotachykinin A system (neurokinin A) was more widely distributed than the preprotachykinin B system (neurokinin B).

  12. Pineal gland expression of the transcription factor Egr-1 is restricted to a population of glia that are distinct from nestin-immunoreactive cells.

    PubMed

    Man, Pui-Sin; Carter, David A

    2008-02-01

    Egr-1 is a plasticity-related transcription factor that has been implicated in circadian regulation of the pineal gland. In the present study we have investigated the cellular expression pattern of Egr-1 in the adult rat pineal. Egr-1 protein is restricted to the nucleus of a sub-population of cells. These cells were characterised using a new transgenic rat model (egr-1-d2EGFP) in which green fluorescent protein is driven by the egr-1 promoter. Cellular filling by GFP revealed that Egr-1-positive cells exhibited processes, indicating a glial cell-type morphology. This was confirmed by co-localizing the GFP-filled processes with vimentin and S-100beta. However, GFP/Egr-1 is expressed in only a tiny minority of the previously identified Id-1/vimentin-positive glial cells and therefore represents a novel sub-set of this (GFAP-negative) glial population. We have also demonstrated for the first time an extensive network of nestin-positive cells throughout the adult pineal gland, however these cells do not co-express Egr-1. Our studies have therefore broadened our understanding of the cell populations that constitute the adult pineal. Cellular localization of Egr-1 has revealed that this factor does not appear to be directly involved in pinealocyte production of melatonin but is required in a sub-set of pineal glia.

  13. Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat

    PubMed Central

    Baizer, Joan S.; Baker, James F.

    2005-01-01

    The vestibular nuclear complex (VNC) is classically divided into four nuclei on the basis of cytoarchitectonics. However, anatomical data on the distribution of afferents to the VNC and the distribution of cells of origin of different efferent pathways suggest a more complex internal organization. Immunoreactivity for calcium-binding proteins has proven useful in many areas of the brain for revealing structure not visible with cell, fiber or Golgi stains. We have looked at the VNC of the cat using immunoreactivity for the calcium-binding proteins calbindin, calretinin and parvalbumin. Immunoreactivity for calretinin revealed a small, intensely stained region of cell bodies and processes just beneath the fourth ventricle in the medial vestibular nucleus. A presumably homologous region has been described in rodents. The calretinin-immunoreactive cells in this region were also immunoreactive for choline acetyltransferase. Evidence from other studies suggests that the calretinin region contributes to pathways involved in eye movement modulation but not generation. There were focal dense regions of fibers immunoreactive to calbindin in the medial and inferior nuclei, with an especially dense region of label at the border of the medial nucleus and the nucleus prepositus hypoglossi. There is anatomical evidence that suggests that the likely source of these calbindin-immunoreactive fibers is the flocculus of the cerebellum. The distribution of calbindin-immunoreactive fibers in the lateral and superior nuclei was much more uniform. Immunoreactivity to parvalbumin was widespread in fibers distributed throughout the VNC. The results suggest that neurochemical techniques may help to reveal the internal complexity in VNC organization. PMID:15662522

  14. Clustering of tau-immunoreactive pathology in chronic traumatic encephalopathy

    PubMed Central

    Armstrong, Richard A.; McKee, Ann C.; Alvarez, Victor E.; Cairns, Nigel J.

    2016-01-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder which may result from repetitive brain injury. A variety of tau-immunoreactive pathologies are present, including neurofibrillary tangles (NFT), neuropil threads (NT), dot-like grains (DLG), astrocytic tangles (AT), and occasional neuritic plaques (NP). In tauopathies, cellular inclusions in the cortex are clustered within specific laminae, the clusters being regularly distributed parallel to the pia mater. To determine whether a similar spatial pattern is present in CTE, clustering of the tau-immunoreactive pathology was studied in the cortex, hippocampus, and dentate gyrus in 11 cases of CTE and 7 cases of Alzheimer’s disease neuropathologic change (ADNC) without CTE. In CTE: (1) all aspects of tau-immunoreactive pathology were clustered and the clusters were frequently regularly distributed parallel to the tissue boundary, (2) clustering was similar in two CTE cases with minimal co-pathology compared with cases with associated ADNC or TDP-43 proteinopathy, (3) in a proportion of cortical gyri, estimated cluster size was similar to that of cell columns of the cortico-cortical pathways, and (4) clusters of the tau-immunoreactive pathology were infrequently spatially correlated with blood vessels. The NFT and NP in ADNC without CTE were less frequently randomly or uniformly distributed and more frequently in defined clusters than in CTE. Hence, the spatial pattern of the tau-immunoreactive pathology observed in CTE is typical of the tauopathies but with some distinct differences compared to ADNC alone. The spread of pathogenic tau along anatomical pathways could be a factor in the pathogenesis of the disease. PMID:27770214

  15. Clustering of tau-immunoreactive pathology in chronic traumatic encephalopathy.

    PubMed

    Armstrong, Richard A; McKee, Ann C; Alvarez, Victor E; Cairns, Nigel J

    2017-02-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder which may result from repetitive brain injury. A variety of tau-immunoreactive pathologies are present, including neurofibrillary tangles (NFT), neuropil threads (NT), dot-like grains (DLG), astrocytic tangles (AT), and occasional neuritic plaques (NP). In tauopathies, cellular inclusions in the cortex are clustered within specific laminae, the clusters being regularly distributed parallel to the pia mater. To determine whether a similar spatial pattern is present in CTE, clustering of the tau-immunoreactive pathology was studied in the cortex, hippocampus, and dentate gyrus in 11 cases of CTE and 7 cases of Alzheimer's disease neuropathologic change (ADNC) without CTE. In CTE: (1) all aspects of tau-immunoreactive pathology were clustered and the clusters were frequently regularly distributed parallel to the tissue boundary, (2) clustering was similar in two CTE cases with minimal co-pathology compared with cases with associated ADNC or TDP-43 proteinopathy, (3) in a proportion of cortical gyri, estimated cluster size was similar to that of cell columns of the cortico-cortical pathways, and (4) clusters of the tau-immunoreactive pathology were infrequently spatially correlated with blood vessels. The NFT and NP in ADNC without CTE were less frequently randomly or uniformly distributed and more frequently in defined clusters than in CTE. Hence, the spatial pattern of the tau-immunoreactive pathology observed in CTE is typical of the tauopathies but with some distinct differences compared to ADNC alone. The spread of pathogenic tau along anatomical pathways could be a factor in the pathogenesis of the disease.

  16. Existence of serotonin and neuropeptides-immunoreactive endocrine cells in the small and large intestines of the mole-rats (Spalax leucodon).

    PubMed

    Yaman, M; Bayrakdar, A; Tarakçı, B G

    2012-08-01

    The present study was conducted to clarify the regional distribution and relative frequency of endocrine cells secreting serotonin, substance P (SP), cholecystokinin-8 (CCK-8), vasoactive intestinal polypeptide (VIP) and neurotensin in the small and large intestine of the mole-rats (Spalax leucodon), by specific immunohistochemical methods. In the small and large intestine of mole-rats (Spalax leucodon), serotonin, SP and VIP were identified with various frequencies, but CCK-8 and neurotensin were not observed. Most of the IR cells in the small and large intestine were located in the intestinal crypt and epithelium however, they were more frequency in the intestinal crypt. Serotonin-IR cells were detected throughout the whole intestinal tract, predominantly in the duodenum and colon. SP-IR cells were demonstrated throughout the whole intestinal tract except for the ileum and rectum with highest frequencies in the cecum. VIP-IR cells were found in all parts of the small intestine except for the large intestine. In conclusion, the general distribution patterns and relative frequency of intestinal endocrine cells of the mole-rats (Spalax leucodon) was similar to those of some rodent species. However, some species-dependent unique distributions and frequencies characteristics of endocrine cells were also observed in the present study.

  17. Development of tyrosine hydroxylase-immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: new perspectives on the evolution of the vertebrate catecholaminergic system.

    PubMed

    Carrera, Iván; Anadón, Ramón; Rodríguez-Moldes, Isabel

    2012-11-01

    Developmental studies of the central catecholaminergic (CA) system are essential for understanding its evolution. To obtain knowledge about the CA system in chondrichthyans, an ancient gnathostome group, we used immunohistochemical techniques for detecting tyrosine hydroxylase (TH), the initial rate-limiting enzyme of the CA synthesis, to study: 1) the neuromery of developing TH-immunoreactive (ir) neuronal populations, 2) the development of TH-ir innervation, and 3) the organization of TH-ir cells and fibers in the brain of postembryonic stages of the shark Scyliorhinus canicula. The first TH-ir cells appeared in the hypothalamus and rostral diencephalon (suprachiasmatic, posterior recess and posterior tubercle nuclei at embryonic stage 26, and dorsomedial hypothalamus at stage 28); then in more caudal basal regions of the diencephalon and rostral mesencephalon (substantia nigra/ventral tegmental area); and later on in the anterior (locus coeruleus/nucleus subcoeruleus) and posterior (vagal lobe and reticular formation) rhombencephalon. The appearance of TH-ir cells in the telencephalon (pallium) was rather late (stage [S]31) with respect to the other TH-ir prosencephalic populations. The first TH-ir fibers arose from cells of the posterior tubercle (S30) and formed recognizable ascending (toward dorsal and rostral territories) and descending pathways at S31. When the second half of embryonic development started (S32), TH-ir fibers innervated most brain areas, and nearly all TH-ir cell groups of the postembryonic brain were already established. This study provides key information about the evolution of the developmental patterns of central CA systems in fishes and thus may help in understanding how the vertebrate CA systems have evolved. Copyright © 2012 Wiley Periodicals, Inc.

  18. Co-localization of erythropoietin mRNA and ecto-5'-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin.

    PubMed

    Bachmann, S; Le Hir, M; Eckardt, K U

    1993-03-01

    In adults, the kidneys are the major site of production of the glycoprotein hormone erythropoietin (EPO), but the type of renal cell producing EPO has not yet been identified. In the present study we used non-radioactive in situ hybridization with a digoxigenin-labeled cRNA probe to localize cells that produce erythropoietin (EPO) in kidneys of anemic rats. Cryostat sections from both native and perfusion-fixed tissue were used. Cells containing EPO mRNA were found exclusively in the peritubular space of the renal cortex. Using high-resolution interference contrast optics, we found that cells expressing EPO mRNA were not associated with the lumina of peritubular capillaries but rather were located in the angles between adjacent tubules or between tubules and vessels. These spaces are predominantly occupied by resident interstitial fibroblasts and by their cytoplasmic processes. To further identify the type of cell containing EPO mRNA, a double-labeling protocol was established that permitted on the same tissue section both in situ hybridization for EPO mRNA and parallel immunolabeling of ecto-5'-nucleotidase (5'-Nu), a surface marker of peritubular interstitial fibroblasts. The combined labeling technique revealed that a clear majority of cells expressing EPO mRNA also displayed staining for anti-5'-Nu. Staining for EPO mRNA was localized in central perinuclear parts of the interstitial cells, whereas 5'-Nu label was present on the cell surface, including the cytoplasmic processes. These data indicate that peritubular fibroblasts are cellular sites for production of erythropoietin.

  19. Parvalbumin and calbindin immunoreactivity in the cerebral cortex of the hedgehog (Erinaceus europaeus).

    PubMed Central

    Ferrer, I; Zujar, M J; Admella, C; Alcantara, S

    1992-01-01

    To investigate the morphology and distribution of nonpyramidal neurons in the brain of insectivores, parvalbumin and calbindin 28 kDa immunoreactivity was examined in the cerebral cortex of the hedgehog (Erinaceus europaeus). Parvalbumin-immunoreactive cells were found in all layers of the isocortex, but in contrast to other mammals, a laminar organisation or specific regional distribution was not seen. Characteristic parvalbumin-immunoreactive neurons were multipolar cells with large ascending and descending dendrites extending throughout several layers. Calbindin-immunoreactive neurons were similar to those found in other species, although appearing in smaller numbers than in the cerebral cortex of more advanced mammals. The morphology and distribution of parvalbumin- and calbindin-immunoreactive cells in the piriform and entorhinal cortices were similar in hedgehogs and rodents. Parvalbumin-immunoreactive cells in the hippocampal complex were pyramidal-like and bitufted neurons, which were mainly found in the stratum oriens and stratum pyramidale of the hippocampus, and in the stratum moleculare and hilus of the fascia dentata. Heavily stained cells were found in the deep part of the stratum granulare. Intense calbindin immunoreactivity occurred mainly in the granule cell and molecular layers of the dentate gyrus and in the mossy fibre layer. The most outstanding feature in the hippocampal complex of the hedgehog was the extension of calbindin immunoreactivity to CA1 field of the hippocampus, suggesting, in agreement with other reports, that mossy fibres can establish synaptic contacts throughout the pyramidal cell layer. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1452472

  20. Preoptic FMRF-amide-like immunoreactive projections to the retina in the lamprey (Lampetra fluviatilis).

    PubMed

    Médina, Monique; Repérant, Jacques; Ward, Roger; Jay, Bruno; Miceli, Dom; Kenigfest, Natalia

    2009-06-01

    A centrifugal visual system showing FMRF-amide-like immunoreactivity has been demonstrated in Lampetra fluviatilis by using immunocytochemical and hodological techniques. From 50 to 60 immunoreactive neurons, labelled after contralateral intraocular injection of rhodamine beta-isothiocyanate, form a small, clearly defined, nucleus in the lateral neural plate of the magnocellular preoptic nucleus. These cells give rise to immunoreactive axons which have been observed at the base of the nucleus, in the optic chiasma and in the optic nerve, to project into the intermediate plexiform layer of the retina, which separates the layer of internal horizontal cells from the layer of external horizontal cells. This FMRF-amide-like immunoreactive centrifugal visual system is compared to that described in Gnathostomes.

  1. Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing immunoreactive serotonin, secretin, and substance P in normal and transgenic mice.

    PubMed Central

    Roth, K A; Gordon, J I

    1990-01-01

    The mammalian intestinal epithelium undergoes continuous and rapid renewal of its four principal terminally differentiated cell types. These cells arise from multipotent stem cells located at or near the base of the crypts of Lieberkühn. The differentiation process is precisely organized along two spatial dimensions (axes)--from the crypt to the villus tip and from the duodenum to the colon. The enteroendocrine cell population provides a sensitive marker of the intestine's topologic differentiation. At least 15 different regionally distributed subsets have been described based on their principal neuroendocrine products. We have used immunocytochemical methods to characterize the spatial relationships of the serotonin-, secretin-, and substance P-containing enteroendocrine cell subsets in normal adult C57BL/6J x LT/Sv mice as well as in transgenic littermates that contain rat liver fatty acid-binding protein-human growth hormone fusion genes. Our results reveal precise spatial interrelationships between these populations and suggest a differentiation pathway that may involve the sequential expression of substance P, serotonin, and secretin. Images PMID:1696730

  2. Distribution of beta-endorphin immunoreactivity in normal human pituitary.

    PubMed Central

    Mendelsohn, G; D'Agostino, R; Eggleston, J C; Baylin, S B

    1979-01-01

    Recent immunohistochemical demonstration of calcitonin in rat pituitary has suggested that calcitonin, in addition to ACTH, endorphins, lipotropins, and melanocyte-stimulating hormones might be derived from a 31,000-dalton glycoprotein percursor molecule. This immunoperoxidase study demonstrates a similar distribution for beta-endorphin and ACTH immunoreactivity in human pituitary; however, the two peptides are not necessarily present in the same cells at all times. Calcitonin could not be demonstrated in human pituitary under conditions suitable for demonstration of the peptide in thyroid C cells. Weakly positive immunostaining could be obtained only with much increase in antiserum concentration and length of incubation, and higher concentrations of calcitonin were needed to abolish staining in preabsorption studies. It thus appears that the immunoreactive calcitonin in human pituitary differs from that in thyroid C cells. Likewise, we could not demonstrate immunoreactive endorphin in any developmental stage of medullary thyroid carcinoma. Our study suggests that caution should be applied in considering a physiologic role for calcitonin in the pituitary and in postulating a common peptide origin for endorphin and calcitonin in humans. Images PMID:221539

  3. Osteopontin Immunoreactivity in Peripheral Blood Mononuclear Cells, Ileum, and Ileocecal Lymph Node of Dairy Cows Naturally Infected with Mycobacterium avium subsp. paratuberculosis

    USDA-ARS?s Scientific Manuscript database

    Osteopontin (Opn), a highly acidic glycoprotein, plays an early role in initiating the innate immune response to mycobacterial infections by promoting cellular adhesion and recruitment of inflammatory cells from the peripheral blood. The formation of granulomas at the site of Mycobacterium avium s...

  4. Wastewater treatment by immobilized cells

    SciTech Connect

    Tyagi, R.D.; Vembu, K.

    1990-01-01

    Immobilized cell processes for wastewater treatment have only recently been intensively studied and applied. Essential information on the feasibility of various immobilization methods has been reviewed and examined with special reference to wastewater treatment. Included are the suitability of various supports, techniques used for microbial attachment factors affecting affinity for the support, strength of fixation, nature of polymers, role of radical groups, properties of attached microorganisms, effects of carriers on settling properties of biomass, characteristics of biofilm on carriers, and changes in cell metabolism as a result of immobilization. The morphologies for identification of immobilized cells, the methods of identification of structure and composition of microbial aggregates, and analytical methods for the estimate of biomass in the presence of carriers are discussed. Applications of immobilized cells to toxic wasted, anaerobic and aerobic systems, and operational criteria for different wastes are specified. The results of immobilized microalgae and cyanobacteria for wastewater treatment are reported and their future prospects are highlighted. Various immobilized cell bioreactor configurations have been critically reviewed with respect to design and granulation process including the topics of: biomass retention, resistance to washout, diffusional resistances, response to toxic shocks, theoretical aspects of hydrodynamic characteristics, start-up and steady-state processes, selection of support particles, particle size and active biomass, head loss considerations, surface area, reactor liquid velocity, hydraulic retention time aerobic versus anaerobic systems, temperature and substrate concentration effects, metabolic interspecies transfer, stability, suspended solids and microbial film interactions, solids residence time requirements, and operational issues.

  5. Postnatal development of parvalbumin and calbindin D-28k immunoreactivities in the canine hippocampus.

    PubMed

    Yoon, S P; Chung, Y Y; Chang, I Y; Kim, J J; Moon, J S; Kim, H S

    2000-07-01

    The calcium-binding proteins, parvalbumin and calbindin D-28k, are markers of different classes of GABAergic interneurons and display different functions. The present study was attempted to determine immunoreactivities and colocalization of the parvalbumin and calbindin D-28k in the developing canine hippocampus by immunohistochemistry. The calcium-binding protein-containing neurons showed different developmental patterns. The first appearance of parvalbumin immunoreactive nonpyramidal cells was observed at P7. Parvalbumin immunoreactivity was elicited by the sequence from CA3 to CA1 to reach an adult-like distribution pattern, which was reached at P60, while calbindin D-28k immunoreactivity appeared from P0, including pyramidal and nonpyramidal cells. The characteristic distribution of calbindin D-28k immunoreactive pyramidal cells was clarified by P28, and an adult-like distribution pattern was reached by the end of the second postnatal month. Double-labeled nonpyramidal cells were frequently seen in the subareas, CA3 of P14/CA1-CA2 of P28, where parvalbumin immunoreactive nonpyramidal cells were emerging. These data suggest that the colocalization of the two calcium-binding proteins during development is related closely to the area-specific maturation of parvalbumin expression, although either prenatal expression of calbindin D-28k or parvalbumin was not determined.

  6. Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation

    PubMed Central

    2012-01-01

    Background Celiac disease (CD) is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins. The CD-toxicity of these proteins and their derived peptides is depending on the presence of specific T-cell epitopes (9-mer peptides; CD epitopes) that mediate the stimulation of HLA-DQ2/8 restricted T-cells. Next to the thoroughly characterized major T-cell epitopes derived from the α-gliadin fraction of gluten, γ-gliadin peptides are also known to stimulate T-cells of celiac disease patients. To pinpoint CD-toxic γ-gliadins in hexaploid bread wheat, we examined the variation of T-cell epitopes involved in CD in γ-gliadin transcripts of developing bread wheat grains. Results A detailed analysis of the genetic variation present in γ-gliadin transcripts of bread wheat (T. aestivum, allo-hexaploid, carrying the A, B and D genome), together with genomic γ-gliadin sequences from ancestrally related diploid wheat species, enabled the assignment of sequence variants to one of the three genomic γ-gliadin loci, Gli-A1, Gli-B1 or Gli-D1. Almost half of the γ-gliadin transcripts of bread wheat (49%) was assigned to locus Gli-D1. Transcripts from each locus differed in CD epitope content and composition. The Gli-D1 transcripts contained the highest frequency of canonical CD epitope cores (on average 10.1 per transcript) followed by the Gli-A1 transcripts (8.6) and the Gli-B1 transcripts (5.4). The natural variants of the major CD epitope from γ-gliadins, DQ2-γ-I, showed variation in their capacity to induce in vitro proliferation of a DQ2-γ-I specific and HLA-DQ2 restricted T-cell clone. Conclusions Evaluating the CD epitopes derived from γ-gliadins in their natural context of flanking protein variation, genome specificity and transcript frequency is a significant step towards accurate quantification of the CD toxicity of bread wheat. This approach can be used to predict relative levels of CD toxicity of individual wheat

  7. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    MedlinePlus

    ... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...

  8. Calretinin and FMRFamide immunoreactivity in the nervus terminalis of prenatal tree shrews (Tupaia belangeri).

    PubMed

    Malz, Cordula Renate; Kuhn, Hans-Jürg

    2002-04-30

    The distribution and development of FMRFamide- and calretinin-immunoreactive neurons were investigated in the nervus terminalis of prenatal tree shrews from gestation day 19 onwards. The first FMRFamide-immunoreactive cells were observed medially in the olfactory epithelium on gestation day 20. From gestation day 23 onwards, the migrating nervus terminalis ganglion cells showed FMRFamide calretinin immunoreactivity. The distribution pattern of FMRFamide- and calretinin-immunoreactive cells was similar along the migratory route and in the ganglion of the terminal nerve. However, most probably calretinin and FMRFamide were expressed in separate neuronal populations. For the first time in a mammal, FMRFamide and calretinin are reported to occur in the migrating perikarya and neuronal processes of the nervus terminalis during prenatal development. The results suggest (i) an early activation of the rostral FMRFamide-immunoreactive migratory stream comparable to that described for the GnRH-immunoreactive part of the terminal nerve in other mammals and possibly (ii) an involvement of calretinin in mechanisms of cell migration and outgrowth of neuronal processes in the terminal nerve during the studied period.

  9. Ischemia-induced degeneration of CA1 pyramidal cells decreases seizure severity in a subgroup of epileptic gerbils and affects parvalbumin immunoreactivity of CA1 interneurons.

    PubMed

    Winkler, D T; Scotti, A L; Nitsch, C

    2001-04-01

    Mongolian gerbils are epilepsy-prone animals. In adult gerbils two major groups can be differentiated according to their seizure behavior: Highly seizure-sensitive gerbils exhibit facial and forelimb clonus or generalized tonic-clonic seizures from the first test on, while kindled-like gerbils are seizure free for the first three to six consecutive tests, later develop forelimb myoclonus, and eventually progress to generalized tonic-clonic seizures. In the hippocampus, seizure history of the individual animal is mirrored in the intensity in which GABAergic neurons are immunostained for the calcium-binding protein parvalbumin: they lose parvalbumin with increasing seizure incidence. In a first step to clarify the influence of hippocampal projection neurons on spontaneous seizure behavior and related parvalbumin expression, we induced degeneration of the CA1 pyramidal cells by transient forebrain ischemia. This results in a decreased seizure sensitivity in highly seizure-sensitive gerbils. The kindling-like process, however, is not permanently blocked by the ischemic nerve cell loss, suggesting that an intact CA1 field is not a prerequisite for the development of seizure behavior. The seizure-induced loss of parvalbumin from the ischemia-resistant interneurons recovers after ischemia. Thus, changes in parvalbumin content brought about by repeated seizures are not permanent but can rather be modulated by novel stimuli.

  10. Colocalization of nitric oxide synthase, vasoactive intestinal polypeptide and tyrosine hydroxylase immunoreactivities in postganglionic neurons of the quail superior cervical ganglion.

    PubMed

    Itoh, Katsuhito; Takaki, Yasuhito; Ando, Koichi; Soh, Tomoki; Ichinomiya, Yasutoshi; Kusaba, Haruo

    2013-05-02

    The colocalization of immunoreactivity to nitric oxide synthase (NOS), vasoactive intestinal polypeptide (VIP) and tyrosine hydroxylase (TH) in the superior cervical ganglion (SCG) was investigated in the quail. In this bird, a substantial amount of NOS-immunoreactive (IR) cells were consistently found in the SCG without colchicine treatment or nerve ligation. The finding worthy of pointing out was that three-fourths of these NOS-IR cells were positive for TH. VIP-IR cells appeared with markedly low frequency than NOS-IR cells. They were generally small in size and often located in the ganglion peripheral. There were no VIP-IR cells positive for TH or negative for NOS: VIP immunoreactivity always appears in NOS-IR cells negative for TH. Thus, the results of the present study clearly showed the existence of two distinct subpopulations of postganglionic NOS-IR neurons (one is catecholaminergic and negative for VIP, and the other is non-catecholaminergic and positive for VIP). This suggests that nitric oxide (NO) and possibly VIP act as postganglionic neurotransmitters or neuromodulators in the quail SCG. The predominant appearance of the former category of NOS-IR cells must be considered in relation to some specific NO-induced controlling mechanisms of SCG neurons.

  11. Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin

    PubMed Central

    Nithichanon, Arnone; Rinchai, Darawan; Gori, Alessandro; Lassaux, Patricia; Peri, Claudio; Conchillio-Solé, Oscar; Ferrer-Navarro, Mario; Gourlay, Louise J.; Nardini, Marco; Vila, Jordi; Daura, Xavier; Colombo, Giorgio; Bolognesi, Martino; Lertmemonkolchai, Ganjana

    2015-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium responsible for melioidosis, a serious and often fatal infectious disease that is poorly controlled by existing treatments. Due to its inherent resistance to the major antibiotic classes and its facultative intracellular pathogenicity, an effective vaccine would be extremely desirable, along with appropriate prevention and therapeutic management. One of the main subunit vaccine candidates is flagellin of Burkholderia pseudomallei (FliCBp). Here, we present the high resolution crystal structure of FliCBp and report the synthesis and characterization of three peptides predicted to be both B and T cell FliCBp epitopes, by both structure-based in silico methods, and sequence-based epitope prediction tools. All three epitopes were shown to be immunoreactive against human IgG antibodies and to elicit cytokine production from human peripheral blood mononuclear cells. Furthermore, two of the peptides (F51-69 and F270-288) were found to be dominant immunoreactive epitopes, and their antibodies enhanced the bactericidal activities of purified human neutrophils. The epitopes derived from this study may represent potential melioidosis vaccine components. PMID:26222657

  12. Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin.

    PubMed

    Nithichanon, Arnone; Rinchai, Darawan; Gori, Alessandro; Lassaux, Patricia; Peri, Claudio; Conchillio-Solé, Oscar; Ferrer-Navarro, Mario; Gourlay, Louise J; Nardini, Marco; Vila, Jordi; Daura, Xavier; Colombo, Giorgio; Bolognesi, Martino; Lertmemonkolchai, Ganjana

    2015-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium responsible for melioidosis, a serious and often fatal infectious disease that is poorly controlled by existing treatments. Due to its inherent resistance to the major antibiotic classes and its facultative intracellular pathogenicity, an effective vaccine would be extremely desirable, along with appropriate prevention and therapeutic management. One of the main subunit vaccine candidates is flagellin of Burkholderia pseudomallei (FliCBp). Here, we present the high resolution crystal structure of FliCBp and report the synthesis and characterization of three peptides predicted to be both B and T cell FliCBp epitopes, by both structure-based in silico methods, and sequence-based epitope prediction tools. All three epitopes were shown to be immunoreactive against human IgG antibodies and to elicit cytokine production from human peripheral blood mononuclear cells. Furthermore, two of the peptides (F51-69 and F270-288) were found to be dominant immunoreactive epitopes, and their antibodies enhanced the bactericidal activities of purified human neutrophils. The epitopes derived from this study may represent potential melioidosis vaccine components.

  13. Glutamate decarboxylase immunoreactivity and gamma-(/sup 3/H) aminobutyric acid accumulation within the same neurons in dissociated cell cultures of cerebral cortex

    SciTech Connect

    Neale, E.A.; Oertel, W.H.; Bowers, L.M.; Weise, V.K.

    1983-02-01

    In order to evaluate the reliability of high affinity (/sup 3/H)GABA accumulation as a marker for GABAergic neurons, murine cerebral cortical neurons were studied in dissociated cell culture. Cultures which had been incubated in (/sup 3/H)GABA were stained immunohistochemically for the GABA-synthesizing enzyme, glutamate decarboxylase, fixed with paraformaldehyde, and subsequently processed for radioautography. In mature cultures, there was an 84 to 94% correlation between the presence of the enzyme and (/sup 3/H)GABA uptake within the same cortical neurons. These data provide direct evidence that those neurons which synthesize GABA are the same neurons which are labeled by high affinity (/sup 3/H)GABA uptake.

  14. Juvenile granulosa cell tumors: immunoreactivity for CD99 and Fli-1 and EWSR1 translocation status: a study of 11 cases.

    PubMed

    Jarboe, Elke A; Hirschowitz, Sharon L; Geiersbach, Katherine B; Wallander, Michelle L; Tripp, Sheryl R; Layfield, Lester J

    2014-01-01

    The accurate diagnosis of a juvenile granulosa cell tumor (JGCT) can be challenging, as these neoplasms often exhibit morphologic features that overlap other ovarian neoplasms. In addition, the immunohistochemical profile exhibited by JGCT is fairly nonspecific and typically includes reactivity for CD99. Recently, we noted that JGCTs can show immunohistochemical expression of Fli-1, a transcription factor expressed by Ewing sarcoma, a neoplasm that is occasionally in the differential diagnosis of JGCT. We evaluated a series of JGCTs to determine whether Fli-1 is commonly expressed by these tumors and whether they demonstrate chromosomal arrangements in EWSR1. Cases diagnosed as JGCT (n=11) were immunohistochemically evaluated for expression of Fli-1 and CD99. Fluorescence in situ hybridization was performed on all cases to search for chromosomal rearrangements in EWSR1. All 11 of our cases exhibited positive immunohistochemical staining for Fli-1 and CD99. None of the cases demonstrated rearrangement in EWSR1 by fluorescence in situ hybridization. In cases of JGCT that cannot be reliably distinguished from Ewing sarcoma based on morphology and immunohistochemistry alone, fluorescence in situ hybridization testing for EWSR1 rearrangements seems to be a useful diagnostic adjunct for their separation.

  15. Acute resistance exercise stimulates sex-specific dimeric immunoreactive growth hormone responses.

    PubMed

    Luk, Hui Ying; Kraemer, William J; Szivak, Tunde K; Flanagan, Shawn D; Hooper, David R; Kupchak, Brian R; Comstock, Brett A; Dunn-Lewis, Courtenay; Vingren, Jakob L; DuPont, William H; Hymer, Wesley C

    2015-06-01

    We sought to determine if an acute heavy resistance exercise test (AHRET) would elicit sex-specific responses in circulating growth hormone (GH), with untreated serum and serum treated with a reducing agent to break disulfide-bindings between GH dimers. 19 untrained participants (nine men and ten women) participated in an acute heavy resistance exercise test using the back squat. Blood samples were drawn before exercise (Pre), immediate post (IP), +15 min (+15), and +30 min (+30) afterwards. Serum samples were chemically reduced using glutathione (GSH). ELISAs were then used to compare immunoreactive GH concentrations in reduced (+GSH) and non-reduced (-GSH) samples. Data were analyzed using a three-way (2 sex × 2 treatment × 4 time) mixed methods ANOVA, with significance set at p ≤ 0.05. GSH reduction resulted in increased immunoreactive GH concentrations when compared to non-reduced samples at Pre (1.68 ± 0.33 μg/L vs 1.25 ± 0.25 μg/L), IP (7.69 ± 1.08 μg/L vs 5.76 ± 0.80 μg/L), +15 min (4.39 ± 0.58 μg/L vs 3.24 ± 0.43 μg/L), and +30 min (2.35 ± 0.49 μg/L vs 1.45 ± 0.23 μg/L). Also, women demonstrated greater GH responses compared to men, and this was not affected by reduction. Heavy resistance exercise increases immunoreactive GH dimer concentrations in men and women, with larger increases in women and more sustained response in men. The physiological significance of a sexually dimorphic GH response adds to the growing literature on aggregate GH and may be explained by differences in sex hormones and the structure of the GH cell network. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Allatostatin-like immunoreactivity in the abdomen of the locust Schistocerca gregaria.

    PubMed

    Skiebe, Petra; Biserova, Natalia M; Vedenina, Varvara; Börner, Jana; Pflüger, Hans-Joachim

    2006-07-01

    A polyclonal antibody against allatostatin 1 (AST-1) of cockroach Diploptera punctata was used to investigate the distribution of AST-like immunoreactivity within the abdomen of the locust, Schistocerca gregaria. In the abdominal ganglia, AST-like immunoreactivity was found in both cell bodies and neuropile. In ganglia 6 and 7, staining was found in serial homologous cell bodies in anterior dorsolateral and dorsomedial, and posterior ventrolateral and ventromedial locations. In the terminal ganglion, the numerous immunoreactive somata were smaller in size than those in the unfused ganglia. The combination of backfill experiments with immunocytochemistry showed that, in abdominal ganglion 7, one neuron of the ventromedian cell body cluster and two of the ventrolateral cluster innervated the oviduct, which itself was covered with a dense mesh of AST-immunoreactive varicosities. Combining electron microscopy with immunohistochemistry revealed AST-like immunoreactivity in dense-core vesicles located in neurohaemal-like terminals lacking structures normally found in synapses. A mesh of AST-immunoreactive varicosities was also found on the muscles of the spermatheca and the spermathecal duct. In addition, a mesh of strongly stained varicosities was present in the distal perisympathetic organs (neurohaemal organs in the abdomen) and on the lateral heart nerves (a putative neurohaemal release zone). These data indicate that AST is an important neuroactive substance that is probably involved in multiple tasks in the control of the locust abdomen.

  17. Immunohistochemical evidence for the coexistence of histidine decarboxylase-like and glutamate decarboxylase-like immunoreactivities in nerve cells of the magnocellular nucleus of the posterior hypothalamus of rats.

    PubMed Central

    Takeda, N; Inagaki, S; Shiosaka, S; Taguchi, Y; Oertel, W H; Tohyama, M; Watanabe, T; Wada, H

    1984-01-01

    Immunohistochemical staining of alternate consecutive sections revealed numerous histidine decarboxylase (L-histidine carboxy-lyase, EC 4.1.1.22)-like immunoreactive neurons that also contained glutamate decarboxylase (L-glutamate 1-carboxy-lyase, EC 4.1.1.15)-like immunoreactive structures in the tuberal magnocellular nucleus, the caudal magnocellular nucleus, and the postmammillary caudal magnocellular nucleus of the posterior hypothalamus of rats. Furthermore, in immunohistochemical double-staining procedures, almost all neurons in the magnocellular nuclei had both histidine decarboxylase-like and glutamate decarboxylase-like immunoreactivities. These results suggest the coexistence of histamine and gamma-aminobutyric acid in single neurons in these nuclei. Images PMID:6594708

  18. Effects of electroacupuncture on orphanin FQ immunoreactivity and preproorphanin FQ mRNA in nucleus of raphe magnus in the neuropathic pain rats.

    PubMed

    Ma, Fei; Xie, Hong; Dong, Zhi-Qiang; Wang, Yan-Qing; Wu, Gen-Cheng

    2004-07-15

    Orphanin FQ (OFQ) is an endogenous ligand for opioid receptor-like-1 (ORL1) receptor. Previous studies have shown that both OFQ immunoreactivity and preproorphanin FQ (ppOFQ) mRNA expression could be observed in the brain regions involved in pain modulation, e.g., nucleus of raphe magnus (NRM), dorsal raphe nucleus (DRN), and ventrolateral periaqueductal gray (vlPAG). It was reported that electroacupuncture (EA) has analgesic effect on neuropathic pain, and the analgesic effect was mediated by the endogenous opioid peptides. In the present study, we investigated the effects of EA on the changes of OFQ in the neuropathic pain rats. In the sciatic nerve chronic constriction injury (CCI) model, we investigated the changes of ppOFQ mRNA and OFQ immunoreactivity in NRM after EA by in situ hybridization (ISH) and immunohistochemistry methods, respectively. Then, the ppOFQ mRNA-positive and OFQ immunoreactive cells were counted under a computerized image analysis system. The results showed that expression of ppOFQ mRNA decreased and OFQ immunoreactivity increased after EA treatment in the neuropathic pain rats. These results indicated that EA modulated OFQ synthesis and OFQ peptide level in NRM of the neuropathic pain rats.

  19. Morphometric characteristics of neuropeptide Y immunoreactive neurons in cortex of human inferior parietal lobule.

    PubMed

    Krivokuća, Dragan; Puskas, Laslo; Puskas, Nela; Erić, Mirela

    2010-03-01

    The aim of this study was to demonstrate and precisely define the morphology of neurons immunoreactive to neuropeptide Y (NPY) in cortex of human inferior parietal lobule (IPL). Five human brains were used for immunohistochemical investigation of the shape and laminar distribution of NPY neurons in serial section in the supramarginal and angular gyrus. Immunoreactivity to NPY was detected in all six layers of the cortex of human IPL. However a great number of NPY immunoreactive neurons were found in the white matter under the IPL cortex. The following types of NPY immunoreactive neurons were found: Cajal-Retzius, pyramidal, inverted pyramidal, "double bouquet" (bitufted), rare type 6, multipolar nonspinous, bipolar, voluminous "basket", and chandelier cells. These informations about morphometric characteristics of NPY immunoreactive neurons in cortical layers, together with morphometric data taken from brains having schizophrenia or Alzheimer's-type dementia may contribute to better understanding patogenesis of these neurological diseases. The finding of Cajal-Retzius neurons immunoreactive to NPY points to the need for further investigations because of great importance of these cells in neurogenesis and involvement in mentioned diseases instead of their rarity.

  20. Effects of aging on the human ovary: the secretion of immunoreactive alpha-inhibin and progesterone.

    PubMed

    Pellicer, A; Marí, M; de los Santos, M J; Simón, C; Remohí, J; Tarín, J J

    1994-04-01

    To investigate the changes induced by age in the function and secretory pattern of the human ovary. Immunoreactive alpha-inhibin, E2, and P secretion in vivo and in vitro have been compared in two different populations. Prospective study. Women undergoing IVF-ET were divided into two groups according to age: group 1 (32.0 +/- 0.7 years; mean +/- SEM) and group 2 (40.3 +/- 0.3 years). In vitro fertilization program at the Instituto Valenciano de Infertilidad. A total of 33 infertile women with regular menses, undergoing IVF-ET. Follicle aspiration performed by transvaginal ultrasound. Four follicles per patient were aspirated in individual plastic tubes. Granulosa-luteal cells isolated with Percoll columns and cultured in vitro up to 4 days in the presence of hCG. In vitro fertilization parameters, serum levels of E2, immunoreactive alpha-inhibin, and P, as well as the secretion of immunoreactive alpha-inhibin and P by the cultured granulosa-luteal cells. Serum immunoreactive alpha-inhibin levels the day of ovum pick-up were significantly lower in group 2 compared with group 1. Incubation of cells for 96 hours showed a significantly higher ability to accumulate immunoreactive alpha-inhibin in group 1 than 2. Human chorionic gonadotropin stimulated immunoreactive alpha-inhibin production after 96 hours. Cells from younger women displayed a significantly higher ability to secrete P than cells from older women. Human chorionic gonadotropin was able to significantly stimulate P production in group 1. These results confirm previous observations showing a reduced production of immunoreactive alpha-inhibin and steroids of ovaries from older women and suggest that a reduced cellular function, rather than a decrease in the follicular population, is the main mechanism by which these changes are produced.

  1. Glial fibrillary acidic protein-like immunoreactive ependymal elements in the third ventricle of the rat. A study at different stages of development.

    PubMed

    Juanes, J A; Riesco, J M; Sánchez, F; Carretero, J; Blanco, E; Vázquez, R

    1992-01-01

    Using the peroxidase-antiperoxidase method a study was made of the cells immunoreactive to glial fibrillary acidic protein (GFAP) anti-serum in the ependyma of the third ventricle of the rat at different stages of growth. Most of the ependymal cells of the third ventricle were seen to be unreactive to this protein; however, it was sometimes possible to observe some GFAP-immunoreactive ependymocytes and occasionally other immunoreactive cellular types, such as tanycytes and supraependymal cells. Despite this, the most frequent localization of the elements immunoreactive to the protein adopted the shape of an immunoreactive subependymal band situated parallel to the ventricular wall. As the weights of the animals increased an increase in the elements immunoreactive to this protein could be observed in all the zones considered, there being no differences between the male and female animals.

  2. Increased Ki-67 immunoreactivity in the white matter in hemimegalencephaly.

    PubMed

    Munakata, Mitsutoshi; Watanabe, Mika; Otsuki, Taisuke; Itoh, Masayuki; Uematsu, Mitsugu; Saito, Yuko; Honda, Ryoko; Kure, Shigeo

    2013-08-26

    Hemimegalencephaly (HMG) is a developmental brain disorder characterized by an enlarged unilateral hemisphere with cortical malformation comprising abnormal hypertrophic cells. To address the proliferative status of HMG, Ki-67 immunoreactivity was investigated in HMG specimens obtained during epilepsy surgery. Nine HMG tissues were stained with a Ki-67 antibody and Ki-67 labeling index in the malformed cortex, and the underlying white matter was measured separately and compared with tissues from focal cortical dysplasias and normal brains from autopsy. In HMG tissues, Ki-67-positive cells were scattered in both the gray and white matter, with a significantly higher Ki-67 labeling index in the white matter compared with gray matter. No dysmorphic neuron or balloon cell was stained for Ki-67. As Ki-67 immunoreactivity overlapped with that of ionized calcium-binding adaptor protein-1, Ki-67-positive cells were identified as microglia. In HMG, microglia were activated and entered into a proliferative status with higher distribution in the white matter, implying an ongoing neuroinflammatory process involving the white matter. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Ambient Temperature and 17β-Estradiol Modify Fos Immunoreactivity in the Median Preoptic Nucleus, a Putative Regulator of Skin Vasomotion

    PubMed Central

    Dacks, Penny A.; Krajewski, Sally J.

    2011-01-01

    Estrogen has pronounced effects on thermoregulation, but the anatomic sites of integration between the reproductive and thermoregulatory axes are unknown. In this study, we tested whether estradiol-17β (E2) treatment would alter the activity of thermoregulatory brain regions responding to mild changes in ambient temperature (TAMBIENT). Core and tail skin temperatures were recorded at the ambient temperatures of 20, 24, or 31 C in ovariectomized (OVX) rats with and without E2. Neuronal activity was evaluated by counting the number of Fos-immunoreactive cells in the brains of rats killed 90 min after exposure to one of the three ambient temperatures. Of 14 brain areas examined, the median preoptic nucleus (MnPO) was the only site that exhibited increased Fos immunoreactivity at the high TAMBIENT of 31 C. At 24 C, OVX rats exhibited increased numbers of MnPO Fos-immunoreactive cells, compared with OVX + E2 rats. Interestingly, tail skin vasomotion and MnPO Fos expression were affected in a similar manner by TAMBIENT and E2 treatment. In the arcuate nucleus and anteroventral periventricular nucleus (AVPV), Fos immunoreactivity was highest at the low TAMBIENT of 20 C, with inhibitory (arcuate nucleus) and stimulatory (AVPV) effects of E2. No other areas responded to both TAMBIENT and E2 treatment. These results implicate the MnPO, the arcuate nucleus, and the AVPV as sites of integration between the reproductive and thermoregulatory axes. Combined with studies showing the importance of MnPO neurons in heat-defense pathways, the MnPO emerges as a likely site for E2 modulation of thermoregulatory vasomotion. PMID:21521752

  4. Ambient temperature and 17β-estradiol modify Fos immunoreactivity in the median preoptic nucleus, a putative regulator of skin vasomotion.

    PubMed

    Dacks, Penny A; Krajewski, Sally J; Rance, Naomi E

    2011-07-01

    Estrogen has pronounced effects on thermoregulation, but the anatomic sites of integration between the reproductive and thermoregulatory axes are unknown. In this study, we tested whether estradiol-17β (E(2)) treatment would alter the activity of thermoregulatory brain regions responding to mild changes in ambient temperature (T(AMBIENT)). Core and tail skin temperatures were recorded at the ambient temperatures of 20, 24, or 31 C in ovariectomized (OVX) rats with and without E(2). Neuronal activity was evaluated by counting the number of Fos-immunoreactive cells in the brains of rats killed 90 min after exposure to one of the three ambient temperatures. Of 14 brain areas examined, the median preoptic nucleus (MnPO) was the only site that exhibited increased Fos immunoreactivity at the high T(AMBIENT) of 31 C. At 24 C, OVX rats exhibited increased numbers of MnPO Fos-immunoreactive cells, compared with OVX + E(2) rats. Interestingly, tail skin vasomotion and MnPO Fos expression were affected in a similar manner by T(AMBIENT) and E(2) treatment. In the arcuate nucleus and anteroventral periventricular nucleus (AVPV), Fos immunoreactivity was highest at the low T(AMBIENT) of 20 C, with inhibitory (arcuate nucleus) and stimulatory (AVPV) effects of E(2). No other areas responded to both T(AMBIENT) and E(2) treatment. These results implicate the MnPO, the arcuate nucleus, and the AVPV as sites of integration between the reproductive and thermoregulatory axes. Combined with studies showing the importance of MnPO neurons in heat-defense pathways, the MnPO emerges as a likely site for E(2) modulation of thermoregulatory vasomotion.

  5. Local differences in calretinin immunoreactivity in the optic tectum of the ocellated dragonet.

    PubMed

    Ulama, Tim; Hofmann, Michael H

    2016-11-01

    The optic tectum of the ocellated dragonet (Synchiropus ocellatus) was studied with immunohistochemistry. Antibodies raised against the calcium binding protein calretinin (CR) revealed a lamination similar to that already reported for other ray finned fish. Most immunoreactive fibers could be observed in those layers receiving retinal afferents and most immunoreactive cells occur in the stratum periventriculare. However, there are marked differences in the presence of other calretinin-positive cell types and immunoreactive lamina between the dorsomedial and ventrolateral parts of the tectum. Synchiropus is a bottom dwelling fish with strong functional subdivisions of the visual system into dorsal and lateral visual fields. The differences in calretinin-positive cell bodies and fibers may be a sensitive indicator of functional differences of tectal circuitry.

  6. Cholecystokinin octapeptide-like immunoreactivity: histochemical localization in rat brain.

    PubMed Central

    Innis, R B; Corrêa, F M; Uhl, G R; Schneider, B; Snyder, S H

    1979-01-01

    Cholecystokinin octapeptide-like (CCK-OP-like) immunoreactivity was localized in the rat brain by using the indirect immunofluorescence method. Specificity in immunohistochemical studies was demonstrated by the virtual elimination of staining with either preimmune sera or sera preadsorbed with CCK-OP and by the achievement of similar fluorescent patterns with two different primary anti-CCK-OP sera. CCK-OP-like fluorescence was localized in neuronal cell bodies, fibers, and varicose terminals. The most dense collections of CCK-OP cells occurred in the periaqueductal gray and in the dorsomedial hypothalamus. Substantial numbers of cells and fibers also were present in the medial/dorsal and perirhinal cortex; more limited groups of cells were found in the pyramidal layer of the hippocampus and in the dorsal raphe. Images PMID:284371

  7. The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats.

    PubMed

    Lynn-Bullock, Christina P; Welshhans, Kristy; Pallas, Sarah L; Katz, Paul S

    2004-05-01

    5-Hydroxytryptophan (5-HTP), which is the rate-limiting precursor in serotonin (5-hydroxytryptamine (5-HT)) biosynthesis, is used as an oral supplement to enhance serotonin levels in humans. To evaluate its effects on serotonin levels and localization, 5-hydroxytryptophan was administered to Sprague-Dawley rats either orally or via intraperitoneal injection. 5-Hydroxytryptophan-immunoreactivity was co-localized with serotonin-immunoreactivity in the serotonergic dorsal raphe nucleus of control animals and this was not changed in animals given 5-hydroxytryptophan. Oral 5-HTP administration increased the intensity of both 5-HTP and serotonin immunoreactivity in raphe neurons. However, 5-HTP treatment also caused ectopic 5-hydroxytryptophan-immunoreactivity and serotonin-immunoreactivity in normally dopaminergic neurons of the substantia nigra par compacta. Serotonin-immunoreactivity was confined to neurons that also displayed amino acid decarboxylase immunoreactivity, but in a small percentage of substantia nigra neurons, serotonin immunoreactivity was not co-localized with tyrosine hydroxylase-immunoreactivity. The intensity of the immunoreactivity to serotonin and 5-hydroxytryptophan in the substantia nigra was maximal within 2h of 5-hydroxytryptophan administration and returned to control levels by 24h. This time course mirrored changes in HPLC measurements of 5-hydroxytryptophan, serotonin, and the metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the urine. 5-Hydroxytryptophan administration did not cause ectopic appearance of either serotonin or 5-hydroxytryptophan in the noradrenergic locus coeruleus. These results suggest that a single oral dose of 5-HTP increases the 5-HTP and serotonin content of serotonergic neurons and causes the transient ectopic appearance of serotonin in some normally non-serotonergic neurons.

  8. Treatment Option Overview (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  9. Treatment Option Overview (Ovarian Germ Cell Tumors)

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  10. Neuronal nitric oxide synthase immunoreactivity in the respiratory tract of the frog, Rana temporaria.

    PubMed

    Bodegas, M E; Villaro, A C; Montuenga, L M; Moncada, S; Riveros-Moreno, V; Sesma, P

    1995-10-01

    Physiological and histochemical studies have recently supported the notion that nitric oxide (NO) is the transduction signal responsible for the non-adrenergic, non-cholinergic relaxation of the vasculature as well as the airways of the mammalian lung. We report the presence of immunoreactivity to NO synthase (NOS) in nerve cell bodies and nerve fibres in the neural plexus of the buccal cavity and lungs of the frog, Rana temporaria, using the indirect immunocytochemical technique of avidin-biotin and the NADPH-diaphorase technique. The neural ganglia located next to the muscle layer and within the connective tissue of the buccal cavity were partially immunoreactive for NOS. In the lungs, NOS immunoreactivity occurred in nerve cell bodies, as well as in both myelinated and unmyelinated nerve fibres. Fine nerve fibres immunoreactive to NOS were observed within the muscle fibre bundles and next to the respiratory epithelium. Both the presence of NOS immunoreactivity and the positive histochemical reaction for NADPH-diaphorase in the neural plexus of amphibian respiratory tract suggests a broad evolutionary role for NO as a peripheral neurotransmitter.

  11. Urocortin-like immunoreactivity in the primary lymphoid organs of the duck (Anas platyrhynchos)

    PubMed Central

    De Luca, A.; Squillacioti, C.; Pero, M. E.; Paino, S.; Langella, E.; Mirabella, N.

    2009-01-01

    Urocortin (UCN) is a 40 aminoacid peptide which belongs to corticotropin-releasing factor (CRF) family. This family of peptides stimulates the secretion of proopiomelanocortin (POMC)-derived peptides, adrenocorticotropic hormone (ACTH), β-endorphin and melanocyte-stimulating hormone (MSH) in the pituitary gland. In the present study, using Western blotting and immunohistochemistry, the distribution of UCN in the primary lymphoid organs of the duck was investigated at different ages. In the cloacal burse and thymus, Western blot demonstrated the presence of a peptide having a molecular weight compatible with that of the mammalian UCN. In the cloacal burse, immunoreactivity was located in the medullary epithelial cells and in the follicular associated and corticomedullary epithelium. In the thymus, immunoreactivity was located in single epithelial cells. Double labelling immunofluorescence studies showed that UCN immunoreactivity completely colocalised with cytokeratin immunoreactivity in both the thymus and cloacal burse. Statistically significant differences in the percentage of UCN immunoreactivity were observed between different age periods in the cloacal burse. The results suggest that, in birds, urocortin has an important role in regulating the function of the immune system.

  12. Substance P-immunoreactive peripheral branches of sensory neurons innervate guinea pig sympathetic neurons

    PubMed Central

    Matthews, Margaret R.; Cuello, A. Claudio

    1982-01-01

    The presence of substance P-immunoreactive (SPI) varicose nerve networks and nerve fiber bundles in guinea pig prevertebral sympathetic ganglia has been confirmed by fluorescence immunohistochemistry. No SPI neurons have been found in sympathetic ganglia, including lumbar paravertebral ganglia. Peroxidase-antiperoxidase immunocytochemical methods have shown that SPI nerve terminal varicosities in the inferior mesenteric ganglion (IMG) form morphologically identifiable synapses on dendritic shafts. Cutting the intermesenteric nerve produces no obvious change in SP immunoreactivity in the IMG; cutting the lumbar splanchnic nerves produces nearly total depletion which becomes virtually complete if the two lesions are combined; SP immunoreactivity accumulates in the central ends of the lumbar splanchnic nerves and in the cranial end of the intermesenteric nerve. Cutting hypogastric nerves or colonic branches of the IMG leads to accumulation of SP immunoreactivity in their ganglionic stumps and to build-up (colonic nerve lesion) rather than depletion of SP immunoreactivity in the IMG. Capsaicin treatment leads to total loss of SP immunoreactivity from the prevertebral ganglia and dorsal root ganglia, severe depletion in laminae I and II and dorsolateral fasciculus of the spinal cord, and total loss from perivascular and paravascular networks of the ileum and mesentery, with sparing of the SP immunoreactivity of the enteric nerve plexuses. Capsaicin is thought to deplete sensory neurons selectively. Removal of the spinal cord below T7 without damage to the dorsal root ganglia leaves the intraganglionic SPI nerve networks and bundles intact. We conclude that these are derived from peripheral processes of sensory neurons and we propose that the SPI synapses in the IMG arise from collateral branches of these sensory peripheral processes. This implies a novel role for these processes, in forming intraganglionically in the prevertebral ganglia synapses which may take part in

  13. Aromatic L-amino acid decarboxylase-immunoreactive structures in human midbrain, pons, and medulla.

    PubMed

    Kitahama, Kunio; Ikemoto, Keiko; Jouvet, Anne; Araneda, Silvia; Nagatsu, Ikuko; Raynaud, Brigitte; Nishimura, Akiyoshi; Nishi, Katsuji; Niwa, Shin-Ichi

    2009-10-01

    The objective of the present study was to determine with precision the localization of neurons and fibers immunoreactive (ir) for aromatic L-amino acid decarboxylase (AADC), the second-step enzyme responsible for conversion of L-dihydroxyphenylalanine (L-DOPA) to dopamine (DA) and 5-hydroxytryptophan (5-HTP) to serotonin (5-hydroxytryptamine: 5-HT) in the midbrain, pons, and medulla oblongata of the adult human brain. Intense AADC immunoreactivity was observed in a large number of presumptive 5-HT neuronal cell bodies distributed in all of the raphe nuclei, as well as in regions outside the raphe nuclei such as the ventral portions of the pons and medulla. Moderate to strong immunoreaction was observable in presumptive DA cells in the mesencephalic reticular formation, substantia nigra, and ventral tegmental area of Tsai, as well as in presumptive noradrenergic (NA) cells, which were aggregated in the locus coeruleus and dispersed in the subcoeruleus nuclei. In the medulla oblongata, immunoreaction of moderate intensity was distributed in the mid and ventrolateral portions of the intermediate reticular nucleus, which constitutes the oblique plate of A1/C1 presumptive adrenergic and/or NA neurons. The dorsal vagal AADC-ir neurons were fewer in number and stained more weakly than cells immunoreactive for tyrosine hydroxylase (TH). AADC immunoreactivity was not identified in an aggregate of TH-ir neurons lying in the gelatinous subnucleus of the solitary nucleus, a restricted region just rostroventral to the area postrema. Nonaminergic AADC-positive neurons (D neurons), which are abundant in the rat and cat midbrain, pons, and medulla, were hardly detectable in homologous regions in the human brain, although they were clearly distinguishable in the forebrain.

  14. Retinal stem cells and potential cell transplantation treatments.

    PubMed

    Lin, Tai-Chi; Hsu, Chih-Chien; Chien, Ke-Hung; Hung, Kuo-Hsuan; Peng, Chi-Hsien; Chen, Shih-Jen

    2014-11-01

    The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone) and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells). The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  15. Melanin-concentrating hormone (MCH) immunoreactive hypophysial neurosecretory system in the teleost Poecilia latipinna: light and electron microscopic study.

    PubMed

    Batten, T F; Baker, B I

    1988-05-01

    Neurons containing immunoreactivity for melanin-concentrating hormone (MCH) were located in the brain of the teleost Poecilia latipinna by light microscopic (peroxidase antiperoxidase) and electron microscopic (immunogold) methods. Neuronal cell bodies were found in the tuberal hypothalamus, mostly within the nucleus lateralis tuberis, pars lateralis, containing MCH-immunoreactive granules up to 150 nm in diameter. From here bundles of immunoreactive fibers could be traced through the preoptic area as far forward as the olfactory bulb, and through the posterior hypothalamus up into the pretectal thalamus and midbrain. The main projection was, however, to the neurohypophysis, where MCH fibers were observed to form contacts with pituicytes, basement membranes around blood vessels, and the endocrine cells of the pars intermedia. Occasionally MCH-immunoreactive terminals were also seen near the corticotrophs of the rostral pars distalis. These results support the hypothesis that MCH may act as a systemic hormone, a central neurotransmitter, and a modulator of pituitary function.

  16. Voltage-gated Na+ channel II immunoreactivity is selectively up-regulated in hippocampal interneurons of seizure sensitive gerbils.

    PubMed

    Kim, Ji-Eun; Kwak, Sung-Eun; Choi, Hui-Chul; Song, Hong-Ki; Kim, Yeong-In; Jo, Seung-Mook; Kang, Tae-Cheon

    2008-06-27

    In the present study, we investigated the distribution of voltage-gated Na(+) channels (VGSCs) in the normal and epileptic hippocampus of gerbils (a genetic epilepsy model) in order to confirm the relationship between VGSC and seizure activity in these animals. There was no difference of VGSC I immunoreactivity in the hippocampus between seizure-resistant (SR) and seizure sensitive (SS) gerbils. VGSC II immunoreactivity was rarely detected in the perikarya of principal neurons and interneurons in the SR gerbil hippocampus. However, in the SS gerbil hippocampus, VGSC II immunoreactivity was densely observed in the somata of interneurons located in the stratum radiatum and stratum lacunosum-moleculare. Double immunofluorescent study showed immunoreactivity for calretinin (approximately 80% in VGSC II-positive neurons) or calbindin D-28k (approximately 20% in VGSC II-positive neurons) in VGSC II-immunoreactive neurons. VGSC II-immunoreactive neurons did not show parvalbumin immunoreactivity. These findings suggest that seizure activity in SS gerbils may be related to the selective hyperactivation of interneurons in stratum lacunosum-moleculare via the up-regulation of VGSC II expression, which leads to the disinhibition of CA1 pyramidal cells.

  17. Bradykinin-like immunoreactive neuronal systems localized histochemically in rat brain.

    PubMed Central

    Corrêa, F M; Innis, R B; Uhl, G R; Snyder, S H

    1979-01-01

    Bradykinin-like immunoreactive structures were localized in rat brain by the indirect immunofluorescence method. Specificity of staining was demonstrated by: (i) the absence of fluorescence when preimmune serum was used, (ii) the disappearance of fluorescence when sera were preadsorbed with bradykinin, and (iii) the presence of identical staining with two different antisera. Immunoreactive neuronal cells are observed only in the hypothalamus, with especially dense clusters overlying the periventricular and dorsomedial nuclei. Fibers and varicose processes are observed in the periaqueductal gray matter, hypothalamus, perirhinal and cingulate cortices, the ventral portion of caudate-putamen, and the lateral septal area. Images PMID:375238

  18. [Immunoreactivity of the synapses on the primary afferent axons and sensory neurons of the spinal cord Lampetra fluviatilis].

    PubMed

    Adanina, V O; Rio, J P; Adanina, A S; Reperan, J; Veselkin, N P

    2008-01-01

    The existence of GABA-like immunoreactivity in the synapses on the primary afferent axons and GABA- and glutamate immunoreactive synapses on the dorsal cell somatic membrane was shown using double postembedding immunogold cytochemistry. These morphological findings suggest that control of the sensory information in the lamprey spinal cord is realized by means of presynaptic inhibition through the synapses on the primary afferent axons as well as directly through the synapses on the somata of the sensory neurons.

  19. Histamine-immunoreactive neurons in the brain of the cockroach Leucophaea maderae.

    PubMed

    Loesel, R; Homberg, U

    1999-09-25

    Histamine is the neurotransmitter of insect photoreceptor cells but has also been found in a small number of interneurons in the insect brain. In order to investigate whether the accessory medulla (AMe), the putative circadian pacemaker of the cockroach Leucophaea maderae receives direct visual input from histaminergic photoreceptors, we analyzed the distribution of histamine-like immunoreactivity in the optic lobe and midbrain of the cockroach. Intense immunostaining was detected in photoreceptor cells of the compound eye, which terminated in the first optic neuropil, the lamina, and in a distal layer of the medulla, the second optic neuropil. Histamine immunostaining in parts of the AMe, however, originated from a centrifugal neuron of the midbrain. Within the midbrain 21-23 bilaterally symmetric pairs of cell bodies were stained. Most areas of the brain were innervated by one or more of these neurons, but the protocerebral bridge and the mushroom bodies were devoid of histamine immunoreactivity. The branching patterns of most histamine-immunoreactive neurons could be reconstructed individually. While the majority of identified neurons arborized in both brain hemispheres, five cells were local neurons of the antennal lobe. A comparison with other insect species shows striking similarities in the position of certain histamine-immunoreactive neurons, but considerable variations in the presence and branching patterns of others. The data suggest a role for histamine in a non-photic input to the circadian system of the cockroach.

  20. Chronological alterations of neurofilament 150 immunoreactivity in the gerbil hippocampus and dentate gyrus after transient forebrain ischemia.

    PubMed

    Hwang, In Koo; Do, Seon-Gil; Yoo, Ki-Yeon; Kim, Duk Soo; Cho, Jun Hwi; Kwon, Young-Guen; Lee, Jae-Yong; Oh, Yang-Seok; Kang, Tae-Cheon; Won, Moo Ho

    2004-07-30

    In this study, we observed the chronological alterations of neurofilament 150 (NF-150) immunoreactivity in the gerbil hippocampus and dentate gyrus after 5 min transient forebrain ischemia. NF-150 immunoreactivity in the sham-operated group was mainly detected in mossy fibers and in the hilar region of the dentate gyrus. NF-150 immunoreactivity and protein contents of NF-150 and RT 97 (polyphosphorylation epitopes of neurofilament) were significantly decreased at 15 min after ischemic insult. Between 30 min and 12 h after ischemic insult, NF-150 immunoreactivity and protein content were significantly increased as compared with the sham-operated group. Thereafter, NF-150 immunoreactivity and protein content started to decrease. At 12 h after ischemic insult, unlike dentate gyrus, NF-150 immunoreactivity increased in pyramidal cells of the CA1 region. Thereafter, NF-150 immunoreactivity in the CA1 region started to decrease, and 4 days after ischemic insult, NF-150 immunoreactivity nearly was similar to that of the sham-operated group. These biphasic patterns of NF-150 immunoreactivity in the hippocampus and dentate gyrus are reverse correlated with that of the intracellular calcium influx. For calcium detection in the CA1 region, we also conducted alizarin red staining. Alizarin red positive neurons were detected in some neurons at 15-30 min after ischemic insult. At 12 h after ischemia, alizarin red positive neurons were decreased. Thereafter, alizarin red positive neurons started to decrease, but alizarin positive neurons were significantly increased in dying neurons 4 days after ischemia. These results suggest that ischemia-related changes of NF-150 expression may be caused by the calcium following transient forebrain ischemia.

  1. Resistance exercise decreases beta-endorphin immunoreactivity.

    PubMed Central

    Pierce, E F; Eastman, N W; McGowan, R W; Tripathi, H; Dewey, W L; Olson, K G

    1994-01-01

    Previous research investigating the response of plasma beta-endorphins (beta-EP) to resistance exercise has resulted in equivocal findings. To examine further the effects of resistance exercise on beta-EP immunoreactivity, 10 male and 10 female college-age students participated in a series of controlled isotonic resistance exercises. The session consisted of three sets of eight repetitions at 80% of one repetition maximum (1-RM) for each of the following exercises: (1) bench press; (2) lateral pull-downs; (3) seated arm curls; and (4) military press. Blood plasma was sampled both before and after the lifting routine and beta-endorphin levels were determined by radioimmunoassay. A Students t test for paired samples indicated that mean(s.e.) plasma beta-endorphin levels after exercise (10.5(1.3) pg beta-EP ml-1) were significantly decreased as compared with pre-exercise (control) levels (16.5(1.2), P < 0.05). While the mechanism(s) contributing to the decrease in immunoreactivity is unclear, it may be the result of the synergistic effect of beta-EP clearance during rest intervals and changes in psychological states between sampling. PMID:8000813

  2. Neuropeptide K-like immunoreactivity in human dental pulp.

    PubMed

    Casasco, A; Calligaro, A; Springall, D R; Casasco, M; Poggi, P; Valentino, K L; Polak, J M

    1990-01-01

    Nerve fibres displaying such immunoreactivity were revealed by indirect immunofluorescence. Neuropeptide K-like immunoreactive fibres, entering the pulp within large nerve trunks, were distributed around blood vessels as well as in the stroma. Some immunoreactive fibres were also observed in the para-odontoblastic region. In view of the biological activity of neuropeptide K, it is tentatively proposed that it may act in the dental pulp as a regulatory peptide involved in neurogenic inflammation, blood flow regulation and sensory transmission.

  3. Development of tyrosine hydroxylase-immunoreactive systems in the brain of the larval lamprey Lampetra fluviatilis.

    PubMed

    Pierre-Simons, Jacqueline; Repérant, Jacques; Mahouche, Mohamed; Ward, Roger

    2002-05-27

    The development of the catecholaminergic system of the brain of the lamprey (Lampetra fluviatilis) was studied with immunocytochemistry in a series of larvae of different sizes by using two different antibodies directed against tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine synthesis. In group 1 larvae (length: 29-54 mm, ages: 8 months to 1.5 years), the only TH-immunoreactive somata observed were located in the caudal wall of the recessus praeopticus (RP) and in the nucleus tuberculi posterioris (NTP). In group 2 larvae (length: 55-80 mm, ages: 1.5-2.5 years), the somata of immunolabeled cells of the NTP give rise to fibers, most of which are ascending and terminate in the corpus striatum. Additional immunoreactive cells are observed in the nucleus praeopticus (NP), which has differentiated, and in the spinal cord. In group 3 larvae (length: 81-110 mm, ages: 2.5-4 years), the spatial distribution of TH-immunoreactive elements (somata, fibers, and terminals) bears many resemblances to that seen in the adult. Immunolabeled cells may be observed in the olfactory bulb, in the nucleus commissurae postopticae (NCP), and in the nucleus dorsalis hypothalami (NDH). Nevertheless, some groups of TH-immunoreactive cells found in the adult are not observed in group 3 larvae; these may appear during the metamorphic phase. By comparative analysis, we show that, in spite of several differences, the spatiotemporal sequence of appearance of TH-immunoreactive cell bodies and fibers in the lamprey presents many similarities to that described in gnathostomes.

  4. Stem cells for the treatment of diabetes.

    PubMed

    Noguchi, Hirofumi

    2007-02-01

    Diabetes mellitus is a devastating disease and over 6% of the population is affected worldwide. The success achieved over the last few years with islet transplantation suggest that diabetes can be cured by the replenishment of deficient beta cells. These observations are proof of concept and have intensified interest in treating diabetes or other diseases not only by cell transplantation but also by stem cells. Work with ES cells has not yet produced cells with the phenotype of true beta cells, but there has been recent progress in directing ES cells to the endoderm. Bone marrow-derived stem cells could initiate pancreatic regeneration. Pancreatic stem/progenitor cells have been identified, and the formation of new beta cells from duct, acinar and liver cells is an active area of investigation. Some agents including glucagon-like peptide-1/exendin-4 can stimulate the regeneration of beta cells in vivo. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. New technology, known as protein transduction technology, facilitates the differentiation of stem cells into insulin-producing cells. Recent progress in the search for new sources of beta cells has opened up several possibilities for the development of new treatments for diabetes.

  5. Localization of allatostatin-immunoreactive material in the central nervous system, stomatogastric nervous system, and gut of the cockroach Blattella germanica.

    PubMed

    Maestro, J L; Bellés, X; Piulachs, M D; Thorpe, A; Duve, H

    1998-01-01

    Immunoreactivity against peptides of the allatostatin family having a typical YXFGL-NH2 C-terminus has been localized in different areas of the central nervous system, stomatogastric nervous system and gut of the cockroach Blattella germanica. In the protocerebrum, the most characteristic immunoreactive perikarya are situated in the lateral and median neurosecretory cell groups. Immunoreactive median neurosecretory cells send their axons around the circumesophageal connectives to form arborizations in the anterior neuropil of the tritocerebrum. A group of cells in the lateral aspect of the tritocerebrum project to the antennal lobes in the deutocerebrum, where immunoreactive arborizations can be seen in the periphery of individual glomeruli. Nerve terminals were shown in the corpora allata. These terminals come from perikarya situated in the lateral neurosecretory cells in the pars lateralis and in the subesophageal ganglion. Immunoreactive axons from median neurosecretory cells and from cells positioned in the anteriormost part of the tritocerebrum enter together in the stomatogastric nervous system and innervate foregut and midgut, especially the crop and the valve between the crop and the midgut. The hindgut is innervated by neurons whose perikarya are located in the last abdominal ganglion. Besides immunoreactivity in neurons, allatostatin-immunoreactive material is present in endocrine cells distributed within the whole midgut epithelium. Possible functions for these peptides according to their localization are discussed.

  6. Parvalbumin-immunoreactive neurons in the human claustrum.

    PubMed

    Hinova-Palova, D V; Edelstein, L; Landzhov, B V; Braak, E; Malinova, L G; Minkov, M; Paloff, A; Ovtscharoff, W

    2014-09-01

    The morphology and distribution of parvalbumin-immunoreactive neurons (PV-ir) were studied in the human claustrum. PV-ir neurons were observed throughout the claustrum, with the highest numbers noted in the central (broadest) portion as compared with the dorsal and ventral aspects. Reaction product was evident in the neuronal perikarya, dendritic processes, and spines. In the majority of these labeled neurons, the cytoplasm was devoid of lipofuscin pigment. Cell bodies varied widely in both shape and size, ranging from oval and small, to multipolar and large. PV-ir neurons were classified into two groups, primarily based on dendritic morphology: spiny neurons with long and straight dendrites, and aspiny neurons with thin and curving dendritic processes. PV-ir fibers were seen throughout the neuropil, with many immuno-positive puncta noted.

  7. Comparative analysis of adrenomedullin-like immunoreactivity in the hypothalamus of amphibians.

    PubMed

    Muñoz, M; López, J M; Sánchez-Camacho, C; Moreno, N; Crespo, M; González, A

    2001-08-01

    Adrenomedullin (AM) is a novel neuropeptide with special significance in the mammalian hypothalamo-hypophysial axis. By using an antiserum specific for human AM, we have studied the localization of AM-like immunoreactive (AMi) cell bodies and fibers in the hypothalamus and hypophysis of the amphibians Rana perezi (anuran), Pleurodeles waltl (urodele), and Dermophis mexicanus (gymnophionan). Distinct AMi cell groups were found for each species. In the anuran, six cell groups were localized in the preoptic and infundibular regions, whereas only three and one were found in the urodele and gymnophionan, respectively. A comparative analysis of AMi cells and cells expressing arginine vasotocin (AVT), neuropeptide Y (NPY), and tyrosine hydroxylase (TH) revealed strong differences between species. Thus, colocalization of AVT/AM is most likely to occur in the preoptic magnocellular nucleus of urodeles and it is reflected by the intense AM immunoreactivity in the neural lobe of the hypophysis. Colocalization of NPY/AM seems to be possible in the suprachiasmatic nucleus of anurans. In the gymnophionan, cells containing AVT and NPY are distinct from AMi cells. Only in anurans, the ventral aspect of the suprachiasmatic nucleus possesses a small population of AMi cells that express also TH immunoreactivity and most likely also express NPY. The results strongly suggest that AM in amphibians plays an important regulatory role in the hypothalamo-hypophysial system, as has been demonstrated in mammals. On the other hand, substantial differences have been found between species with respect to the degree of colocalization with other chemical substances.

  8. Dithranol abolishes UCH-L1 immunoreactivity in the nerve fibers of the rat orofacial skin.

    PubMed

    Orojan, Ivan; Szigeti, Csaba; Varszegi, Szilvia; Dobo, Endre; Gulya, Karoly

    2006-11-22

    Dithranol has been used to treat psoriasis for decades. Although its beneficial effect may involve the induction of cutaneous inflammation, and inflammation often leads to damages in nerve fibers, these alterations are not well documented. Therefore, we investigated the effects of dithranol on the immunohistochemical characteristics of the cutaneous nerve fibers in the rat skin. Epidermal nerve fiber staining was achieved with ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) immunohistochemistry in the orofacial skin of control rats, rats treated with (a) dithranol for 5 days, (b) corticosteroid for 5 days following dithranol treatment for 5 days, and (c) corticosteroid for 5 days. The results revealed a complete loss of UCH-L1 immunoreactivity in the dithranol-treated animals. Topical application of corticosteroid onto the inflamed skin for 5 days reversed this effect: the UCH-L1 immunoreactivity was almost completely restored. Steroid treatment for 5 days did not change the appearance of the UCH-L1-immunoreactive nerve fibers. These findings were supported by Western blot analyses. We conclude that dithranol, incidentally similarly to psoriasis, causes inflammation and abolishes UCH-L1 immunoreactivity in the rat orofacial skin in a corticosteroid-reversible manner. This phenomenon may be due to the ability of dithranol to cause oxidative damage to the UCH-L1 protein, and to the antioxidant activity of the corticosteroids countering this effect.

  9. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    PubMed Central

    Abdelalim, Essam M.; Bellier, Jean-Pierre; Tooyama, Ikuo

    2016-01-01

    Brain natriuretic peptide (BNP) exerts its functions through NP receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn (DH) of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and dorsal root ganglion (DRG). BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the DH of the spinal cord and in the neurons of the intermediate column (IC) and ventral horn (VH). Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I–II) labeled with calcitonin gene-related peptide (CGRP), suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase (ChAT) in the motor neurons of the VH. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NP receptor-A (NPR-A) and/or NP receptor-B (NPR-B) at the spinal cord level. PMID:27994541

  10. Plasma immunoreactive relaxin levels in pregnant and nonpregnant women.

    PubMed

    O'Byrne, E M; Carriere, B T; Sorensen, L; Segaloff, A; Schwabe, C; Steinetz, B G

    1978-11-01

    Immunoreactive relaxin was measured in plasma samples obtained from human volunteers utilizing the RIA procedure of Sherwood et al., as modified by O'Byrne and Steinetz for heterologous plasma samples. Immunoreactive hormone was not detected in samples obtained from men, and only rarely in plasma of nonpregnant women. Immunoreactive relaxin was present as early as the fourth week of pregnancy and was detectable throughout the course of gestation. Immunoreactive relaxin tended to be higher early in pregnancy, and there was no peak just before parturition as occurs in many other species. Our results are at variance with those of Bryant and coworkers, who reported high levels of immunoreactive relaxin in men and nonpregnant as well as pregnant women. The possible reasons for this discrepancy are presented.

  11. Tyrosine hydroxylase immunoreactive neurons in the forebrain of the trout: organization, cellular features and innervation.

    PubMed

    Anadón, Ramón; Rodríguez-Moldes, Isabel; González, Agustín

    We studied the segmental distribution and cellular features of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the forebrain of trout. Large differences in cell size, general morphology, and complexity of cell processes were observed between TH-ir nuclei of different regions, and a new type of complex spiny TH-ir neurons in the ventral telencephalon is described for the first time. The distribution of TH-ir fibers was also analyzed and discussed.

  12. Radiofrequency treatment alters cancer cell phenotype

    NASA Astrophysics Data System (ADS)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  13. Radiofrequency treatment alters cancer cell phenotype

    PubMed Central

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-01-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment. PMID:26165830

  14. Treatment Option Overview (Plasma Cell Neoplasms Including Multiple Myeloma)

    MedlinePlus

    ... Neoplasms for more information. High-dose chemotherapy with stem cell transplant This treatment is a way of giving ... blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood ...

  15. Treatment Options for Plasma Cell Neoplasms (Including Multiple Myeloma)

    MedlinePlus

    ... Neoplasms for more information. High-dose chemotherapy with stem cell transplant This treatment is a way of giving ... blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood ...

  16. Distribution of somatostatin-like immunoreactivity in the brain of the frog, Rana esculenta, during development.

    PubMed

    Vallarino, M; Mathieu, M; D'Aniello, B; Rastogi, R K

    1998-03-12

    The anatomical distribution of somatostatin-like immunoreactivity in the central nervous system of the frog, Rana esculenta, during development and in juvenile specimens was investigated by indirect immunofluorescence. Soon after hatching, at stages II-III, somatostatin-like immunoreactive structures were found in the preoptic-median eminence complex. In stage VI tadpoles, new groups of immunopositive perikarya and nerve fibers appeared in the diencephalon, within the ventral infundibular nucleus and in the ventral area of the thalamus, as well as in the medial pallium. In stages XII-XIV of development, immunopositive perikarya were also present in the dorsal infundibular nucleus of the hypothalamus and ventrolateral area of the thalamus. A small group of somatostatin-like immunoreactive neurons appeared in the posteroventral nucleus of the rhombencephalon. However, these neurons were not seen in later stages of development. Tadpoles in stages XVIII, XXI-XXII and in juveniles were characterized by a wider distribution of immunoreactive cell bodies and fibers in the pallium. New groups of immunoreactive neurons were found in the dorsal and lateral pallium. The presence of positive perikarya in the lateral pallium is a transient expression found only in these stages. The organization of the somatostatinergic system was most complex during the metamorphic climax, with the appearance of positive cell bodies in the posterocentralis area of the thalamus, and in juvenile animals with the presence of perikarya in the ventral part of the medial pallium and within the central grey rhombencephali. In contrast to the adult frog, somatostatin neurons were not observed in the mesencephalon of tadpoles and juveniles.

  17. Central and peripheral expression sites of phoenixin-14 immunoreactivity in rats.

    PubMed

    Prinz, Philip; Scharner, Sophie; Friedrich, Tiemo; Schalla, Martha; Goebel-Stengel, Miriam; Rose, Matthias; Stengel, Andreas

    2017-09-11

    Phoenixin is a pleiotropic peptide involved in reproduction, anxiety and recently also implicated in the control of food intake. Besides the 20-amino acid phoenixin, the 14-amino acid phoenixin-14 also shows bioactive properties. However, the expression sites of phoenixin-14 in the brain and peripheral tissues are not yet described in detail. Therefore, a mapping of the brain and peripheral tissues from male and female Sprague-Dawley rats with a specific phoenixin-14 antibody was performed using western blot and immunohistochemistry. High density of phoenixin-14 immunoreactivity was detected in the medial division of the brain central amygdaloid nucleus, in the spinal trigeminal tract and in the spinocerebellar tract as well as in cells between the crypts of duodenum, jejunum and ileum. Medium density immunoreactivity was observed in the bed nucleus of the stria terminalis, in the area postrema, the nucleus of the solitary tract and the dorsal motor nucleus of the vagus nerve as well as in the peripheral parts of the islets of Langerhans in the pancreas. A low density of phoenixin-14 immunoreactivity was detected in the arcuate nucleus, the supraoptic nucleus and the raphe pallidus. After pre-absorption of the antibody with phoenixin-14 peptide, no immunosignals were observed indicating specificity of the antibody. Taken together, the widespread distribution of phoenixin-14 immunoreactivity gives additional rise to the pleiotropic functions of the peptide such as possible effects in gastrointestinal motility, immune functions and glucose homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Fto immunoreactivity is widespread in the rodent brain and abundant in feeding-related sites, but the number of Fto-positive cells is not affected by changes in energy balance.

    PubMed

    Olszewski, Pawel K; Radomska, Katarzyna J; Ghimire, Kedar; Klockars, Anica; Ingman, Caroline; Olszewska, Agnieszka M; Fredriksson, Robert; Levine, Allen S; Schiöth, Helgi B

    2011-05-03

    A single nucleotide polymorphism in the FTO gene is associated with obesity in humans. Evidence gathered in animals mainly relates energy homeostasis to the central FTO mRNA levels, but our knowledge of the Fto protein distribution and regulation is limited. Fto, a demethylase and transcriptional coactivator, is thought to regulate expression of other genes. Herein, we examined Fto immunoreactivity (IR) in the mouse and rat brain with emphasis on sites governing energy balance. We also studied whether energy status affects central Fto IR. We report that Fto IR, limited to nuclear profiles, is widespread in the brain, in- and outside feeding circuits; it shows a very similar distribution in feeding-related sites in mice and rats. Several areas regulating energy homeostasis display enhanced intensity of Fto staining: the arcuate, paraventricular, supraoptic, dorsomedial, ventromedial nuclei, and dorsal vagal complex. Some regions mediating feeding reward, including the bed nucleus of the stria terminalis, have ample Fto IR. We found that differences in energy status between rats fed ad libitum, deprived or refed following deprivation, did not affect the number of Fto-positive nuclei in 10 sites governing consumption for energy or reward. We conclude that Fto IR, widespread in the rodent brain, is particularly abundant in feeding circuits, but the number of Fto-positive neurons is unaffected by changes in energy balance. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Mesenchymal stromal cells for treatment of arthritis.

    PubMed

    Swart, J F; Wulffraat, N M

    2014-08-01

    Patients with refractory inflammatory arthritis can still respond favourable to autologous haematopoietic stem cell transplantation. However, this treatment has a high morbidity and even 5% mortality. Mesenchymal stromal cells (MSC), a subset of the non-haematopoietic stromal cells obtained from bone marrow, were found to have a strong immunosuppressive effect. MSC treatment is explored in many diseases like diabetes, SLE, MS and RA. This review covers all relevant literature regarding MSC treatment of inflammatory arthritis (RA and JIA). This review contains data of in vitro studies, animal studies and clinical studies. The following subjects will be discussed in detail: properties of MSC, presence of MSC in the joint, intra-articular versus intravenous route, autologous versus allogeneic, ideal source of MSC, distribution, transdifferentiation, engraftment, rejection, efficacy and toxicology. After reading this review the reader will be totally updated in this quickly evolving field of MSC therapy.

  20. Colocalization of serotonin and vesicular glutamate transporter 3-like immunoreactivity in the midbrain raphe of Syrian hamsters (Mesocricetus auratus).

    PubMed

    Mintz, Eric M; Scott, Tamara J

    2006-02-13

    Vesicular glutamate transporter 3 (VGLUT3) expression has been specifically localized to brain regions rich in serotonergic cells. It has been suggested that this transporter may contribute to the regulation of extracellular glutamate concentrations via a nonsynaptic mechanism. In this study, we examine the colocalization of vesicular glutamate transporter 3 immunoreactivity with serotonin immunoreactivity in the dorsal and median raphe nuclei of Syrian hamsters. Brain sections from adult hamsters were fluorescently labeled for serotonin-ir and VGLUT3-ir and examined using confocal microscopy. The results indicate that most serotonergic cells of the midbrain raphe also expressed vesicular glutamate transporter 3. In addition, nonserotonergic cells in these brain regions also show immunoreactivity for the transporter. These data confirm previous findings of vesicular glutamate transporter 3 expression in serotonergic and nonserotonergic neurons in rats. These findings suggest that the location of vesicular glutamate transporter 3 may be as much a function of neuroanatomical location as of the neurochemical identity of the expressing neurons.

  1. Differential Distribution of Somatostatin-like Immunoreactivity in the Visual Sector of the Thalamic Reticular Nucleus in Galago.

    PubMed

    Conley, Michael; Schmechel, Donald E.; Diamond, Irving T.

    1991-01-01

    Immunocytochemical methods were used to compare the distributions of somatostatin-14 (SOM) and glutamic acid decarboxylase (GAD) in the medial and lateral tiers of the visual sector of the thalamic reticular nucleus in the bushbaby, Galago. As expected, all of the neurons in the visual sector were immunoreactive for GAD, the synthesizing enzyme for GABA, but the distribution of SOM-immunoreactive cells was not uniform. It appeared that every cell in the medial tier was immunoreactive for SOM, but that very few cells in the lateral tier contained this neuropeptide. The significance of the difference in reticular neuron SOM content could be related to the functional differences between the dorsal lateral geniculate nucleus, which is connected reciprocally with the lateral tier, and the pulvinar nucleus, which is connected reciprocally with the medial tier.

  2. Immunocytochemical evidence for the presence of gamma 1-MSH-like immunoreactivity in pituitary corticotrophs and ACTH-producing tumours.

    PubMed

    Ali-Rachedi, A; Ferri, G L; Varndell, I M; Van Noorden, S; Schot, L P; Ling, N; Bloom, S R; Polak, J M

    1983-12-01

    The presence of gamma 1-MSH has been demonstrated in bovine neuro-intermediate lobe by biochemical methods, thus suggesting that this peptide is cleaved from the cryptic region of pro-opiocortin. In this study we report the localisation of gamma 1-MSH-like immunoreactivity in the adenohypophysis of man, ox, pig, dog and guinea-pig using immunocytochemical procedures at both light and electron microscope levels. Antisera recognising the C-terminal Arg-Phe-amide and the C-terminal penta-peptide-amide of gamma 1-MSH have been used throughout this study. The immunostaining was found in all endocrine cells of the pars intermedia (where present) and in scattered cells of the pars distalis identified as corticotrophs. No gamma 1-MSH immunoreactivity was detected in rat adenohypophysis. In addition, 7 ACTH-producing tumours (1 pituitary adenoma and 6 ectopic) were investigated and shown to contain gamma 1-MSH immunoreactive cells.

  3. Healthy aging is associated with unaltered production of immunoreactive growth hormone but impaired neuroimmunomodulation.

    PubMed

    Luz, Clarice; Collaziol, Diego; Preissler, Thales; da Cruz, Ivana M; Glock, Luiz; Bauer, Moisés E

    2006-01-01

    Both endocrine and immune systems are continuously remodeled during aging. Here, we investigated to what extent adrenal and somatosenescence are associated reciprocal changes in the immune system during strictly healthy aging. Forty-six elderly subjects and 33 young adults were recruited according to the health criteria of the SENIEUR protocol. Peripheral blood mononuclear cells were isolated and stimulated in vitro with lipopolysaccharide or phytohemagglutinin to assess the production of immunoreactive growth hormone (GH). Peripheral sensitivity to steroids was assessed in vitro by dexamethasone-, cortisol- or dehydroepiandrosterone (DHEA)-induced inhibition of T-cell proliferation. DHEA and GH levels were measured by radioimmunoassays. Healthy elderly had lower salivary DHEA and serum GH levels (somatosenescence). They presented reduced T-cell sensitivity to dexamethasone but similar cellular sensitivities to cortisol and DHEA. Their cells produced similar levels of immunoreactive GH compared to the cells of young adults. These data indicate that healthy aging is associated with adrenal and somatosenescence as well as impaired neuroendocrine immunoregulation at the level of the lymphocyte. In addition, somatosenescence may not be associated with a reciprocal decline in immunoreactive GH. Copyright 2006 S. Karger AG, Basel.

  4. The development of avian enteric nervous system: distribution of artemin immunoreactivity.

    PubMed

    Maruccio, Lucianna; Lucini, Carla; Russo, Finizia; Antonucci, Rosanna; Castaldo, Luciana

    2008-01-01

    Among the factors that control neural crest cell precursors within the enteric nervous system, the ligands of the glial cell line-derived neurotrophic factor family (GFL) seem to be the most influential. Artemin, a member of the GFLs, was previously described only in the oesophagus and stomach of mouse embryos. In this study, the presence and distribution of artemin is reported in duck embryos and adults. Artemin immunoreactivity was apparent in the intestinal tract at embryonic day 7 (d7), firstly in the myenteric plexus and then in the submucous plexus. Later, artemin immunoreactive nerve fibres were also seen in the longitudinal muscle plexus, the circular muscle plexus, the plexus of the muscularis mucosa and in the mucosal plexus. Furthermore, at d7, weak labeling of artemin was detected in neurons and glial cells in the oesophagus, gastric region and duodenum. Subsequently, artemin was also detected in all other intestinal segments. Moreover, during development of the gut in the domestic duck, artemin immunoreactivity decreased in neuronal cell bodies, whilst it increased in neuronal fibres and glial cells. These findings suggest an involvement of artemin in the development and biology of the gut of the domestic duck.

  5. Calretinin-like immunoreactivity in mormyrid and gymnarchid electrosensory and electromotor systems.

    PubMed

    Friedman, M A; Kawasaki, M

    1997-10-27

    Calretinin-like immunoreactivity was examined in the electrosensory and electromotor systems of the two families of mormyriform electric fish. Mormyrid fish showed the strongest immunoreactivity in the knollenorgan electroreceptor pathway; in the nucleus of the electrosensory lateral line lobe (ELL) and the big cells of the nucleus exterolateralis pars anterior. Mormyromast and ampullary zones of the ELL showed calretinin-like immunoreactivity in the ganglion, granule, and intermediate cell and fiber layers. Mormyromast zones additionally showed labeling of apical dendrites and commissural cells, but the ampullary zone did not. In the electromotor system, two nuclei in the corollary discharge pathway showed labeling: in the paratrigeminal command-associated nucleus and the juxtalobar nucleus. Gymnarchus niloticus (Gymnarchidae) showed strongest calretinin-like immunoreactivity in part of the phase-coding pathway; in S-type electroreceptor afferents. Zones of the ELL not receiving phase-coder input had weak labeling. The electromotor system showed labeling in the lateral relay nucleus and less strongly in the medullary relay nucleus, but none in the pacemaker. The concentration of calcium-binding proteins in mormyrid and gymnarchid time-coding electrosensory pathways is consistent with the hypothesis that they play a role in preserving temporal information across synapses. Cell types that encode temporal characteristics of stimuli in precise spike times have high levels of calcium-binding proteins, but cells that re-code temporal information into presence or magnitude of activity have low levels. Some cell types in the electromotor pathways and early in the time-coding electrosensory pathways do not follow this hypothesis, and therefore preserve temporal information using a mechanism independent of calcium-binding proteins. In particular, electromotor systems may use extensive electrotonic coupling within nuclei to ensure precise timing.

  6. Distribution of adrenomedullin and proadrenomedullin N-terminal 20 peptide immunoreactivity in the pituitary gland of the frog Rana perezi.

    PubMed

    Collantes, M; Bodegas, M E; Sesma, M P; Villaro, A C

    2003-08-01

    Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two multifunctional peptides processed from a common precursor which have been described in numerous mammalian organs, including the pituitary gland. Previous studies have found AM immunoreactivity in neurohypophysis nerve fibers of amphibian pituitary. In the present study, immunocytochemical and Western blot analysis in the pituitary gland of the amphibian Rana perezi demonstrated in the adenohypophysis both AM and PAMP. AM-like immunoreactivity was found in a moderate number of endocrine cells of the pars distalis. In the neurohypophysis, AM was observed not only in nerve fibers of pars nervosa and axonal projections innervating the pars intermedia, but also in the outer zone of the median eminence. PAMP staining was observed in numerous endocrine cells scattered all over the pars distalis and in some cells of the pars tuberalis, but not in the neurohypophysis. In order to compare the quantity of AM and PAMP immunoreactivity between pars distalis of female and male specimens, an image analysis study was done. Significant differences for AM immunoreactivity (p<0.001) between sexes was found, the males showing higher immunostained area percentage. Differences of PAMP immunoreactivity were not significant (p=0.599). Western blot analysis detected bands presumably corresponding to precursor and/or intermediate species in the propeptide processing.

  7. Stem cell therapy for treatment of epilepsy.

    PubMed

    Goodarzi, Parisa; Aghayan, Hamid Reza; Soleimani, Masoud; Norouzi-Javidan, Abbas; Mohamadi-Jahani, Fereshteh; Jahangiri, Sharareh; Emami-Razavi, Seyed Hasan; Larijani, Bagher; Arjmand, Babak

    2014-01-01

    Epilepsy as one of the most common neurological disorders affects more than 50 million people worldwide with a higher prevalence rate in low-income countries. Excessive electrical discharges in neurons following neural cell damage or loss cause recurrent seizures. One of the most common and difficult to treat types of epilepsy is temporal lobe epilepsy (TLE) which results from hippocampal sclerosis. Nowadays, similar to other diseases, epilepsy also is a candidate for treatment with different types of stem cells. Various stem cell types were used for treatment of epilepsy in basic and experimental researches. Two major roles of stem cell therapy in epilepsy are prophylaxis against chronic epilepsy and amelioration cognitive function after the occurrence of TLE. Several animal studies have supported the use of these cells for treating drug-resistant TLE. Although stem cell therapy seems like a promising approach for treatment of epilepsy in the future however, there are some serious safety and ethical concerns that are needed to be eliminated before clinical application.

  8. Plasma cell gingivitis: treatment with chlorpheniramine maleate.

    PubMed

    Ranganathan, Aravindhan Thiruputkuzhi; Chandran, Chitraa R; Prabhakar, Priya; Lakshmiganthan, Mahalingam; Parthasaradhi, Thakkalapati

    2015-01-01

    Plasma cell gingivitis is a benign lesion of unknown etiology characterized by massive and diffuse infiltration of plasma cells into the gingival connective tissue. Clinically, it can be seen as a diffuse, erythematous, and edematous swelling involving the marginal gingiva and extending into the attached gingiva. Although usually painless, the lesion can be esthetically unappealing, especially when anterior gingiva is involved. Although the usual line of management is removal of the offending agent, this report describes the treatment of plasma cell gingivitis with the topical application of chlorpheniramine maleate (25 mg) for a period of 10 days.

  9. Variation in plasma leptin-like immunoreactivity in free-living European starlings (Sturnus vulgaris).

    PubMed

    Kordonowy, Lauren L; McMurtry, John P; Williams, Tony D

    2010-03-01

    Leptin, a protein hormone secreted by fat cells, is best known for its role as an adiposity signal; however, leptin has diverse physiological roles ranging from regulation of feeding behavior and body weight, to effects on reproduction and immune function. Although leptin has been extensively studied in mammals, the identification and function of leptin in birds remains controversial, and studies have focused on captive or domesticated species. Here, we describe changes in plasma leptin-like immunoreactivity during the reproductive and non-reproductive seasons in free-living female European starlings (Sturnus vulgaris). Plasma leptin-like immunoreactivity was high during egg-laying (27.8+/-2.4 ng/mL) and clutch completion (23.8+/-1.6 ng/mL), decreased during incubation (13.0+/-1.6 ng/mL) and chick-rearing (12.0+/-1.3 ng/mL), but was elevated again in non-breeders in November (23.7+/-1.1 ng/mL). Although there was marked and consistent variation in total body mass and body composition with breeding stage and season in this population, plasma leptin-like immunoreactivity did not parallel changes in body mass or body composition. These data suggest that the strong positive relationship between plasma leptin-like immunoreactivity and body mass reported for captive birds and mammals does not hold for free-living birds. Rather, among free-living female European starlings, variation in plasma leptin-like immunoreactivity is associated with breeding stage or seasonal variation per se, and we discuss possible mechanisms underlying this variation, focusing on ovarian function and egg production. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Loss of nonphosphorylated neurofilament immunoreactivity in temporal cortical areas in Alzheimer's disease.

    PubMed

    Thangavel, R; Sahu, S K; Van Hoesen, G W; Zaheer, A

    2009-05-05

    The distribution of immunoreactive neurons with nonphosphorylated neurofilament protein (SMI32) was studied in temporal cortical areas in normal subjects and in patients with Alzheimer's disease (AD). SMI32 immunopositive neurons were localized mainly in cortical layers II, III, V and VI, and were medium to large-sized pyramidal neurons. Patients with AD had prominent degeneration of SMI32 positive neurons in layers III and V of Brodmann areas 38, 36, 35 and 20; in layers II and IV of the entorhinal cortex (Brodmann area 28); and hippocampal neurons. Neurofibrillary tangles (NFTs) were stained with Thioflavin-S and with an antibody (AT8) against hyperphosphorylated tau. The NFT distribution was compared to that of the neuronal cytoskeletal marker SMI32 in these temporal cortical regions. The results showed that the loss of SMI32 immunoreactivity in temporal cortical regions of AD brain is paralleled by an increase in NFTs and AT8 immunoreactivity in neurons. The SMI32 immunoreactivity was drastically reduced in the cortical layers where tangle-bearing neurons are localized. A strong SMI32 immunoreactivity was observed in numerous neurons containing NFTs by double-immunolabeling with SMI32 and AT8. However, few neurons were labeled by AT8 and SMI32. These results suggest that the development of NFTs in some neurons results from some alteration in SMI32 expression, but does not account for all, particularly, early NFT-related changes. Also, there is a clear correlation of NFTs with selective population of pyramidal neurons in the temporal cortical areas and these pyramidal cells are specifically prone to formation of paired helical filaments. Furthermore, these pyramidal neurons might represent a significant portion of the neurons of origin of long corticocortical connection, and consequently contribute to the destruction of memory-related input to the hippocampal formation.

  11. Florid vulval Paget disease exhibiting p16 immunoreactivity and mimicking classic VIN.

    PubMed

    Sah, Shatrughan P; McCluggage, W Glenn

    2013-03-01

    The diagnosis of vulval Paget disease is generally relatively straightforward but may be difficult, especially when the Paget cells are few in number. We report 2 cases of the opposite scenario where the Paget cells were present in such large numbers and formed confluent sheets such that they effaced the residual keratinocytes. There were associated epidermal hyperplastic changes in the form of acanthosis, papillomatosis, and hyperkeratosis, and the overall morphology resulted in close mimicry of classic (undifferentiated/human papillomavirus-related) vulval intraepithelial neoplasia. There was focal intraepidermal clefting in both cases, resulting in an acantholytic appearance. In both cases, the Paget cells were strongly positive with p16 that further heightened the mimicry of vulval intraepithelial neoplasia. The Paget cells were diffusely positive with cytokeratin 7, CAM5.2, carcinoembryonic antigen, and epithelial membrane antigen and with mucin stains, and molecular tests for human papillomavirus were negative. The p16 immunoreactivity, which has not previously been reported in vulval Paget disease, prompted us to stain a small number of additional cases of more typical vulval Paget disease with this marker. Four of 5 additional cases were positive with varying degrees and patterns of immunoreactivity. Florid vulval Paget disease may morphologically mimic vulval intraepithelial neoplasia, and this mimicry may be exacerbated by p16 immunoreactivity.

  12. Occurrence of serotonin immunoreactivity in the central nervous system and midgut of adult female Tabanus nigrovittatus (Diptera: Tabanidae).

    PubMed

    Haselton, Aaron T; Yin, Chih-Ming; Stoffolano, John G

    2006-03-01

    Serotonin is an important neuromessenger used in a variety of signaling pathways throughout the animal kingdom. In insects, serotonin has been demonstrated to mediate feeding and feeding-related behaviors. In this study, serotonin antibody was localized in cells and processes throughout the central nervous system (CNS) and midgut of female horse fly Tabanus nigrovittatus Macquart. In the CNS, immunoreactivity was localized in cells and processes throughout the brain and ventral nerve cord. In the midgut, a fine network of immunoreactive processes was observed running along the outer surface of the midgut, with a decrease in innervation toward the posterior region of the midgut.

  13. Giant cell arteritis: diagnosis and treatment.

    PubMed

    Calvo Romero, J M

    2015-01-01

    Giant cell arteritis is the most common primary systemic vasculitis in adults. The condition is granulomatous arteritis of large and medium vessels, which occurs almost exclusively in patients aged 50 years or more. This article reviews the diagnosis and treatment of the disease. Copyright © 2015. Published by Elsevier España, S.L.U.

  14. Treatment of T cell lymphoma in dogs.

    PubMed

    Moore, Antony S

    2016-09-17

    Overall, canine lymphoma remains one of the most chemotherapy-responsive cancers in the dog. In addition to the stage and the substage of disease, T cell phenotype is the most consistently important prognostic factor. T cell lymphoma (TCL) in dogs is a heterogeneous disease; dogs with a separate entity of indolent TCL can have a considerably better prognosis than dogs with other forms of lymphoma, and indolent TCL may not always require immediate treatment. In contrast, high-grade TCL is an aggressive disease, and when treated with CHOP-based protocols, dogs with this high-grade TCL have a complete remission rate as low as 40 per cent, relapse earlier and have shorter survival time than dogs with a comparable stage, high-grade B cell lymphoma. This review describes the different disease entities that comprise canine TCL, discusses prognosis for each and treatment options that appear to give the best outcomes.

  15. New insights on the neuropeptide Y system in the larval lamprey brain: neuropeptide Y immunoreactive neurons, descending spinal projections and comparison with tyrosine hydroxylase and GABA immunoreactivities.

    PubMed

    Barreiro-Iglesias, A; Anadón, R; Rodicio, M C

    2010-05-05

    Lampreys are useful models for studying the evolution of the nervous system of vertebrates. Here we used immunofluorescence and tract-tracing methods to study new aspects of the neuropeptide Y-immunoreactive (NPY-ir) system in larval sea lampreys. NPY-ir neurons were observed in brain nuclei that contain NPY-ir cells in other lamprey species. Moreover, a group of NPY-ir cells that migrated away the periventricular layer was observed in the lateral part of the dorsal hypothalamus, which suggests a role for NPY in feeding behavior in lampreys. We also report NPY-ir cells in the dorsal column nucleus, which appears to be unique among vertebrates, and in the habenula. A combination of tract-tracing and immunohistochemical labeling demonstrated the presence of spinal projecting NPY-ir reticular cells in the anterior rhombencephalic reticular formation, and the relationships between the NPY-ir system and the reticulospinal nuclei and some afferent systems. The colocalization of catecholamines and GABA in lamprey NPY-ir neurons was investigated by double immunofluorescence methods. Colocalization of tyrosine hydroxylase (TH) and NPY immunoreactivities was not observed in any brain neuron, although reported in amphibians and mammals. The frequent presence of NPY-ir terminals on TH-ir cells suggests that NPY modulates the activity of some dopaminergic nuclei in lampreys. Colocalization of NPY and GABA immunoreactivities was frequently observed in neurons of different rhombencephalic and diencephalic NPY-ir populations. These results in lampreys suggest that the coexpression of NPY and GABA in neurons appeared early on in the brains of vertebrates.

  16. Interferon gamma immunoreactivity in iris nerve fibres during endotoxin induced uveitis in the rat

    PubMed Central

    Yang, P.; de Vos, A. F; Kijlstra, A.

    1998-01-01

    AIMS—Previous studies have implied that interferon gamma (IFN-γ) is involved in the pathogenesis of endotoxin induced uveitis (EIU) in the rat. This study investigated the source of IFN-γ in the iris during EIU.
METHODS—Whole mounts of iris were isolated from Lewis rats before and at different times (from 4 hours to 14 days) after foot pad injection of 200 µg Salmonella typhimurium lipopolysaccharide (LPS). Immunohistological analysis was performed using monoclonal antibodies (mAbs) specific to rat IFN-γ (DB12 and DB13). mAbs specific to monocytes, macrophages, and dendritic cells and MHC class II were used to asses the inflammatory response in the eye (ED-1, ED-2, and OX-6). An antibody specific to neurofilaments (2H3) was used to stain nerve fibres in the normal iris.
RESULTS—LPS administration induced acute intraocular inflammation, characterised by a massive infiltration of monocytes/macrophages and increased numbers of MHC class II positive cells in the iris. IFN-γ immunoreactive cells were not detected in iris whole mounts of control rats. Strikingly, IFN-γ immunoreactivity was found in fibres from 4 hours until 10 days after LPS injection, with the most intense staining at 48-72 hours. Other DB12 or DB13 positive cells were not detected in the iris. The pattern of DB12 and DB13 staining in the inflamed iris was similar to the 2H3 staining of neurons in the iris of control rats.
CONCLUSION—These results show that systemic LPS administration induces IFN-γ immunoreactivity in iris fibres and suggest that iris nerve fibres may be a source of IFN-γ during EIU. The IFN-γ immunoreactive material in the iris nerve fibres may be identical to neuronal IFN-γ.

 Keywords: endotoxin induced uveitis; cytokines; interferon gamma; rat PMID:9797675

  17. Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex.

    PubMed

    Grateron, L; Cebada-Sanchez, S; Marcos, P; Mohedano-Moriano, A; Insausti, A M; Muñoz, M; Arroyo-Jimenez, M M; Martinez-Marcos, A; Artacho-Perula, E; Blaizot, X; Insausti, R

    2003-12-01

    The entorhinal cortex is an essential component in the organization of the human hippocampal formation related to cortical activity. It transfers, neocortical information (ultimately distributed to the dentate gyrus and hippocampus) and receives most of the hippocampal output directed to neocortex. At birth, the human entorhinal cortex presents similar layer organization as in adults, although layer II (cell islands) and upper layer III have a protracted maturation. The presence of interneurons expressing calcium-binding proteins (parvalbumin, calbindin-D28K (calbindin) and calretinin) is well documented in the adult human entorhinal cortex. In many of them the calcium binding is co-localized with GABA. Parvalbumin-immunoreactive cells and fibers were virtually absent at birth, their presence increasing gradually in deep layer III, mostly in the lateral and caudal portions of the entorhinal cortex from the 5th month onwards. Calbindin immunoreactive cells and fibers were present at birth, mainly in layers II and upper III; mostly at rostral and lateral portions of the entorhinal cortex, increasing in number and extending to deep layers from the 5th month onwards. Calretinin immunoreactivity was present at birth, homogeneously distributed over layers I, II and upper V, throughout the entorhinal cortex. A substantial increase in the number of calretinin neurons in layer V was observed at the 5th month. The postnatal development of parvalbumin, calbindin and calretinin may have an important role in the functional maturation of the entorhinal cortex through the control of hippocampal, cortical and subcortical information.

  18. Treatment strategies in mantle cell lymphoma.

    PubMed

    Maddocks, Kami; Blum, Kristie A

    2015-01-01

    Mantle cell lymphoma (MCL) is a distinct B-cell non-Hodgkin's lymphoma (NHL) defined by the translocation t(11;14). MCL combines characteristics of both indolent and aggressive lymphomas, and it is incurable with conventional chemoimmunotherapy but has a more aggressive disease course. Minimal data exist on treatment of patients diagnosed with early-stage disease (stage I-II non-bulky), as this represents only a small portion of the patients diagnosed with MCL, but therapeutic options evaluated in retrospective studies include radiation or combination radiation and chemotherapy. There is a subset of patients with newly diagnosed MCL that can be observed without treatment, but the majority of patients will require treatment at diagnosis. Treatment is often based on age (≤65-70 years of age), comorbidities, and risk factors for disease. The majority of patients who are younger and without significant comorbidities are treated with intensive induction using combination chemoimmunotherapy regimens, many which include consolidation with autologous stem cell transplant (ASCT). Several regimens have been studied that show improved median progression-free survival (PFS) to 3-6 years in this population of patients. The majority of older patients (≥65-70 years of age) are treated with combination chemoimmunotherapy regimens with consideration of rituximab maintenance, with enrollment on a clinical trial encouraged. Therapy for relapsed disease is dependent on prior treatment, age, comorbidities, and toxicities but includes targeted therapies such as the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, the immunomodulatory agent lenalidomide, the proteasome inhibitor bortezomib, combination chemoimmunotherapy, ASCT, and allogeneic stem cell transplant in selected cases. Several novel agents and targeted therapies alone or in combination are currently being studied and developed in both the upfront and relapsed setting.

  19. The distribution of neuropeptide Y and dynorphin immunoreactivity in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, from birth to sexual maturity

    NASA Technical Reports Server (NTRS)

    Cepriano, L. M.; Schreibman, M. P.

    1993-01-01

    Immunoreactive neuropeptide Y and dynorphin have been localized in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, at different ages and stages of development from birth to sexual maturity. Immunoreactive neuropeptide Y was found in perikarya and tracts of the nucleus olfactoretinalis, telencephalon, ventral tegmentum and in the neurohypophysis and in the three regions of the adenohypophysis. Immunoreactive dynorphin was found in nerve tracts in the olfactory bulb and in cells of the pars intermedia and the rostral pars distalis of the pituitary gland.

  20. The distribution of neuropeptide Y and dynorphin immunoreactivity in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, from birth to sexual maturity

    NASA Technical Reports Server (NTRS)

    Cepriano, L. M.; Schreibman, M. P.

    1993-01-01

    Immunoreactive neuropeptide Y and dynorphin have been localized in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, at different ages and stages of development from birth to sexual maturity. Immunoreactive neuropeptide Y was found in perikarya and tracts of the nucleus olfactoretinalis, telencephalon, ventral tegmentum and in the neurohypophysis and in the three regions of the adenohypophysis. Immunoreactive dynorphin was found in nerve tracts in the olfactory bulb and in cells of the pars intermedia and the rostral pars distalis of the pituitary gland.

  1. Topical and systemic immunoreaction triggered by intravesical chemotherapy in an N-butyl-N-(4-hydroxybutyl) nitorosamine induced bladder cancer mouse model.

    PubMed

    Hori, Shunta; Miyake, Makito; Tatsumi, Yoshihiro; Onishi, Sayuri; Morizawa, Yosuke; Nakai, Yasushi; Tanaka, Nobumichi; Fujimoto, Kiyohide

    2017-01-01

    Intravesical bacillus Calmette-Guerin (BCG) treatment is the most common therapy to prevent progression and recurrence of non-muscle invasive bladder cancer (NMIBC). Although the immunoreaction elicited by BCG treatment is well documented, those induced by intravesical treatment with chemotherapeutic agents are much less known. We investigated the immunological profiles caused by mitomycin C, gemcitabine, adriamycin and docetaxel in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced orthotopic bladder cancer mouse model. Ninety mice bearing orthotopic bladder cancer induced by BBN were randomly divided into six groups and treated with chemotherapeutic agents once a week for four weeks. After last treatment, bladder and serum samples were analyzed for cell surface and immunological markers (CD4, CD8, CD56, CD204, Foxp3, and PD-L1) using immunohistochemistry staining. Serum and urine cytokine levels were evaluated by ELISA. All chemotherapeutic agents presented anti-tumor properties similar to those of BCG. These included changes in immune cells that resulted in fewer M2 macrophages and regulatory T cells around tumors. This result was compatible with those in human samples. Intravesical chemotherapy also induced systemic changes in cytokines, especially urinary interleukin (IL)-17A and granulocyte colony stimulating factor (G-CSF), as well as in the distribution of blood neutrophils, lymphocytes, and monocytes. Our findings suggest that intravesical treatment with mitomycin C and adriamycin suppresses protumoral immunity while enhancing anti-tumor immunity, possibly through the action of specific cytokines. A better understanding of the immunoreaction induced by chemotherapeutic agents can lead to improved outcomes and fewer side effects in intravesical chemotherapy against NMIBC.

  2. Accumulation of amyloid precursor protein-like immunoreactivity in rat brain in response to thiamine deficiency.

    PubMed

    Calingasan, N Y; Gandy, S E; Baker, H; Sheu, K F; Kim, K S; Wisniewski, H M; Gibson, G E

    1995-04-17

    Thiamine deficiency (TD) is a classical model of impaired cerebral oxidation. As in Alzheimer's disease (AD), TD is characterized by selective neuronal loss, decreased activities of thiamine pyrophosphate-dependent enzymes, cholinergic deficits and memory loss. Amyloid beta-protein (A beta), a approximately 4 kDa fragment of the beta-amyloid precursor protein (APP), accumulates in the brains of patients with AD or Down's syndrome. In the current study, we examined APP and A beta immunoreactivity in the brains of thiamine-deficient rats. Animals received thiamine-deficient diet ad libitum and daily injections of the thiamine antagonist, pyrithiamine. Immunocytochemical staining and immunoblotting utilized a rabbit polyclonal antiserum against human APP645-694 (numbering according to APP695 isoform). Three, 6 and 9 days of TD did not appear to damage any brain region nor change APP-like immunoreactivity. However, 13 days of TD led to pathological lesions mainly in the thalamus, mammillary body, inferior colliculus and some periventricular areas. While immunocytochemistry and thioflavine S histochemistry failed to show fibrillar beta-amyloid, APP-like immunoreactivity accumulated in aggregates of swollen, abnormal neurites and perikarya along the periphery of the infarct-like lesion in the thalamus and medial geniculate nucleus. Immunoblotting of the thalamic region around the lesion revealed increased APP-like holoprotein immunoreactivity. APP-like immunoreactive neurites were scattered in the mammillary body and medial vestibular nuclei where the lesion did not resemble infarcts. In the inferior colliculus, increased perikaryal APP-like immunostaining occurred in neurons surrounding necrotic areas. Regions without apparent pathological lesions showed no alteration in APP-like immunoreactivity. Thus, the oxidative insult associated with cell loss, hemorrhage and infarct-like lesions during TD leads to altered APP metabolism. This is the first report to show a

  3. Advanced treatment for basal cell carcinomas.

    PubMed

    Atwood, Scott X; Whitson, Ramon J; Oro, Anthony E

    2014-07-01

    Basal cell carcinomas (BCCs) are very common epithelial cancers that depend on the Hedgehog pathway for tumor growth. Traditional therapies such as surgical excision are effective for most patients with sporadic BCC; however, better treatment options are needed for cosmetically sensitive or advanced and metastatic BCC. The first approved Hedgehog antagonist targeting the membrane receptor Smoothened, vismodegib, shows remarkable effectiveness on both syndromic and nonsyndromic BCCs. However, drug-resistant tumors frequently develop, illustrating the need for the development of next-generation Hedgehog antagonists targeting pathway components downstream from Smoothened. In this article, we will summarize available BCC treatment options and discuss the development of next-generation antagonists.

  4. Advanced Treatment for Basal Cell Carcinomas

    PubMed Central

    Atwood, Scott X.; Whitson, Ramon J.; Oro, Anthony E.

    2014-01-01

    Basal cell carcinomas (BCCs) are very common epithelial cancers that depend on the Hedgehog pathway for tumor growth. Traditional therapies such as surgical excision are effective for most patients with sporadic BCC; however, better treatment options are needed for cosmetically sensitive or advanced and metastatic BCC. The first approved Hedgehog antagonist targeting the membrane receptor Smoothened, vismodegib, shows remarkable effectiveness on both syndromic and nonsyndromic BCCs. However, drug-resistant tumors frequently develop, illustrating the need for the development of next-generation Hedgehog antagonists targeting pathway components downstream from Smoothened. In this article, we will summarize available BCC treatment options and discuss the development of next-generation antagonists. PMID:24985127

  5. Ablation of prion protein immunoreactivity by heating in saturated calcium hydroxide

    PubMed Central

    Greenlee, Justin J; Nicholson, Eric M; Hamir, Amir N; Noyes, Gary P; Holtzapple, Mark T; Kehrli, Marcus E

    2008-01-01

    Background Prions, the infectious agents that cause transmissible spongiform encephalopathies (TSEs), are relatively resistant to destruction by physical, enzymatic, and chemical treatments. Hydrolysis in boiling saturated calcium hydroxide (limewater) utilizes inexpensive chemicals to digest protein components of offal. The purpose of this work was to determine if incubating brain material from scrapie-infected sheep in near-boiling saturated calcium hydroxide solution (Ca(OH)2) would abolish immunoreactivity of the infectious prion (PrPSc) as determined by western blot. Findings After incubating for as few as 10 minutes in saturated calcium hydroxide at 99°C, immunoreactivity of protease resistant bands by western blot analysis is completely lost. Conclusion Boiling in limewater may offer an alternative for disposal of carcasses and enable alternative uses for rendered products from potentially infected carcasses. PMID:18957103

  6. Ablation of prion protein immunoreactivity by heating in saturated calcium hydroxide.

    PubMed

    Greenlee, Justin J; Nicholson, Eric M; Hamir, Amir N; Noyes, Gary P; Holtzapple, Mark T; Kehrli, Marcus E

    2008-10-28

    Prions, the infectious agents that cause transmissible spongiform encephalopathies (TSEs), are relatively resistant to destruction by physical, enzymatic, and chemical treatments. Hydrolysis in boiling saturated calcium hydroxide (limewater) utilizes inexpensive chemicals to digest protein components of offal. The purpose of this work was to determine if incubating brain material from scrapie-infected sheep in near-boiling saturated calcium hydroxide solution (Ca(OH)2) would abolish immunoreactivity of the infectious prion (PrPSc) as determined by western blot. After incubating for as few as 10 minutes in saturated calcium hydroxide at 99 degrees C, immunoreactivity of protease resistant bands by western blot analysis is completely lost. Boiling in limewater may offer an alternative for disposal of carcasses and enable alternative uses for rendered products from potentially infected carcasses.

  7. Choline acetyltransferase-like immunoreactivity in a physiologically distinct subtype of olfactory nonspiking local interneurons in the cockroach (periplaneta americana).

    PubMed

    Fusca, Debora; Husch, Andreas; Baumann, Arnd; Kloppenburg, Peter

    2013-10-15

    Behavioral and physiological studies have shown that local interneurons are pivotal for processing odor information in the insect antennal lobe. They mediate inhibitory and excitatory interactions between the glomerular pathways and ultimately shape the tuning profile of projection neurons. To identify putative cholinergic local interneurons in the antennal lobe of Periplaneta americana, an antibody raised against the biosynthetic enzyme choline acetyltransferase (ChAT) was applied to individual morphologically and electrophysiologically characterized local interneurons. In nonspiking type IIa1 local interneurons, which were classified in this study, we found ChAT-like immunoreactivity suggesting that they are most likely excitatory. This is a well-defined population of neurons that generates Ca(2+) -driven spikelets upon depolarization and stimulation with odorants, but not Na(+) -driven action potentials, because they lack voltage-activated transient Na(+) currents. The nonspiking type IIa2 and type IIb local interneurons, in which Ca(2+) -driven spikelets were absent, had no ChAT-like immunoreactivity. The GABA-like immunoreactive, spiking type I local interneurons had no ChAT-like immunoreactivity. In addition, we showed that uniglomerular projection neurons with cell bodies located in the ventral portion of the ventrolateral somata group and projections along the inner antennocerebral tract exhibited ChAT-like immunoreactivity. Assigning potential transmitters and neuromodulators to distinct morphological and electrophysiological types of antennal lobe neurons is an important prerequisite for a detailed understanding of odor information processing in insects.

  8. Contemporary Treatment of Metastatic Renal Cell Carcinoma

    PubMed Central

    Stukalin, Igor; Alimohamed, Nimira; Heng, Daniel Y.C.

    2016-01-01

    The introduction of targeted therapy has revolutionized the treatment of patients with metastatic renal cell carcinoma (mRCC). The current standard of care focuses on the inhibition of angiogenesis through the targeting of the vascular endothelial growth factor receptor (VEGFR) and the mammalian target of rapamycin (mTOR). Over the past few years, research exploring novel targeted agents has blossomed, leading to the approval of various targeted therapies. Furthermore, results from the CheckMate025 and the METEOR trials have brought about two additional novel options: the programmed cell death 1 (PD-1) checkpoint inhibitor nivolumab and the MET/VEGFR/AXL inhibitor cabozantinib, respectively. With the variety of therapeutic agents available for treatment of mRCC, research examining appropriate sequencing and combinations of the drugs is ongoing. This review discusses the role of prognostic criteria, such as those from the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) criteria. It also covers the current standard of treatment for mRCC with targeted therapy in first-, second-, and third-line setting. Additionally, the novel mechanism of action of nivolumab and cabozantinib, therapeutic sequencing and ongoing clinical trials are discussed. PMID:27471582

  9. Treatment of lung large cell neuroendocrine carcinoma.

    PubMed

    Lo Russo, Giuseppe; Pusceddu, Sara; Proto, Claudia; Macerelli, Marianna; Signorelli, Diego; Vitali, Milena; Ganzinelli, Monica; Gallucci, Rosaria; Zilembo, Nicoletta; Platania, Marco; Buzzoni, Roberto; de Braud, Filippo; Garassino, Marina Chiara

    2016-06-01

    Lung large cell neuroendocrine carcinoma (L-LCNEC) is a rare, aggressive, and difficult-to-treat tumor. It is classified as a neuroendocrine subtype of large cell lung carcinoma (LCLC) belonging to the non-small cell lung cancer (NSCLC) group, but it is also included in the neuroendocrine tumor (NET) group. Most of the available data related to its treatment derive from retrospective analyses or small case series. For patients with L-LCNEC, prognosis is generally very poor. In early stages (I-II-III), surgery is recommended but does not seem to be sufficient. Platinum-based adjuvant chemotherapy may be useful while the role of neoadjuvant chemotherapy is still not well defined. In patients with advanced L-LCNEC, the chemotherapy regimens used in SCLC still remain the standard of treatment, but results are not satisfactory. Due to their peculiar clinical and biological features and the lack of literature data, there is an emerging need for a consensus on the best treatment strategy for L-LCNEC and for the identification of new therapeutic options. In this review, we will discuss the key aspects of L-LCNEC management with the aim to clarify the most controversial issues.

  10. Calbindin D-28k and parvalbumin immunoreactivity in the frontal cortex in patients with frontal lobe dementia of non-Alzheimer type associated with amyotrophic lateral sclerosis.

    PubMed Central

    Ferrer, I; Tuñón, T; Serrano, M T; Casas, R; Alcántara, S; Zújar, M J; Rivera, R M

    1993-01-01

    The morphology and distribution of local-circuit neurons (interneurons) were examined, by calbindin D-28k and parvalbumin immunocytochemistry, in the frontal cortex (area 8) in two patients with frontal lobe dementia of non-Alzheimer type associated with classical amyotrophic lateral sclerosis (ALS), and in seven normal cases. The density of calbindin D-28k immunoreactive cells was dramatically reduced in ALS patients, but the density of parvalbumin-immunoreactive neurons was preserved. Decreased density of calbindin D-28k-immunoreactive neurons, which are mainly located in the upper cortical layers, may interfere with the normal processing of cortico-cortical connections, whereas integrity of parvalbumin-immunoreactive cells may be associated with the preservation of the major inhibitory intracortical circuits in patients with frontal lobe dementia. Images PMID:8459241

  11. Neurotensin-like immunoreactivity in the brain of the chicken, Gallus domesticus

    PubMed Central

    ESPOSITO, VINCENZO; DE GIROLAMO, PAOLO; GARGIULO, GIULIANA

    1997-01-01

    The distribution of neurons containing neurotensin in the central nervous system of the chicken was studied immunohistochemically. The majority of the neurotensin-immunoreactive (-ir) cell bodies were located in the hypothalamus. Extensive groups of labelled perikarya were found in the hypothalamic periventricular nucleus and in the magnocellular periventricular nucleus. In addition, ir-perikarya were scattered throughout the lateral hypothalamic area and in the ventromedial hypothalamic nucleus. The only extrahypothalamic site of ir-perikarya was in the region immediately under the lateral forebrain bundle. Immunoreactive fibres were detected in the hippocampus, the parahippocampal area, the hypothalamus, the region of the tractus corticohabenular and corticoseptal tracts, the median eminence, the region above the posterior commissure and in the intercollicular nucleus. The distribution pattern of the neurotensin-ir neurons suggests that neurotensin-like peptides are involved in the hypophysiotropic functions. PMID:9449073

  12. Laminar organization of peptide-like immunoreactivity in the anuran optic tectum.

    PubMed

    Kuljis, R O; Karten, H J

    1982-12-01

    Peptide, 5-hydroxytryptamine (5-HT)-, tyrosine hydroxylase (TOH)-, and glial fibrillary acidic protein (GFAP)-like immunoreactivity was studied in the optic tectum of Rana pipiens. Peroxidase-antiperoxidase and indirect immunofluorescence single- and double-labeling methods were used to compare differential laminar distribution of each of these substances. Substance P (SP), leucine-enkephalin (LENK), cholecystokinin octapeptide (CCK8), bombesin (BOM), avian pancreatic polypeptide (APP), and possibly neurotensin display unique individual patterns of laminar distribution of processes and cell bodies throughout the tectum. A correlative analysis of the topographical distribution of SP, LENK, BOM, and APP on the basis of double-labeled sections shows a precise laminar segregation of these substances. Vasoactive intestinal peptide-, beta-endorphin-, and ranatensinlike immunoreactivity is consistently absent from our material. 5HT- and TOH-like immunoreactivity discloses a reticular array of fibers without clear evidence of laminar organization. This peptide-like laminar organization is particularly elaborate throughout the superficial neuropil of the optic tectum, the major retinorecipient zone. The pattern of lamination demonstrated in the present study differs in several important features from that previously described on the basis of several histological methods. The cells of origin of processes (axons and/or dendrites) in the superficial tectal neuropil may be either intrinsic or extrinsic to the tectum. Special reference is made to conflicting evidence regarding the possibility of a retinal contribution to peptide-like tectal lamination.

  13. Changes in estrogen-alpha receptor immunoreactivity during the estrous cycle in lactating dairy cattle.

    PubMed

    van Eerdenburg, F J; Daemen, I A; van der Beek, E M; van Leeuwen, F W

    2000-10-13

    Estradiol is one of the most important hormones in the regulation of estrous behavior, which is at a very low level of expression in the modern dairy cow. In the present study the neuroanatomical distribution of estrogen receptors of the alpha-subtype (ER-alpha) in the bovine hypothalamic area is determined with immunocytochemical methods, at various stages of the estrous cycle. During the luteal phase of the cycle, ER-alpha immunoreactive cells were found in most of the nuclei that are known to express ER-alpha immunoreactivity in other species, like the Bed nucleus of the Stria terminalis, Medial preoptic area, Ventromedial hypothalamus and Arcuate nucleus. During estrus and metestrus, however, no ER-alpha immunoreactive cells could be detected in those areas, except for a few in the caudal Arcuate nucleus. The results from the present study indicate that there is a coherent regulation and timing of physiological and behavioral events around ovulation, in which estradiol and its receptor play a key role.

  14. [Treatment of metastatic renal cell carcinoma].

    PubMed

    Thuret, R; Maurin, C; Sun, M; Perrotte, P; Karakiewicz, P I

    2011-04-01

    The median survival of patients with metastatic renal cell carcinoma (mRCC) increased from 10 to more than 40 months since the advent of targeted therapy. The transformation of mRCC from an initially lethal disease to a more favorable entity, albeit incurable, occurred with the transition from best supportive care, to cytokines, to finally sequential targeted therapies. Sunitinib and bevacizumab (level 1b) represent the first-line standard of care for patients with clear-cell mRCC vs temsirolimus (level 2) for those with high-risk features. Additionally, exploratory analyses of the temsirolimus data indicate important benefits for those with nonclear-cell mRCC histological subtypes. In second-line, everolimus proved its efficacy (level 1b). Nonetheless, sunitinib and sorafenib are also effective for nonclear-cell histological subtypes and after failure of other first-line treatment. The PFS benefits of first- and subsequent treatment-lines were confirmed in virtually all subgroup analyses. Potential survival benefits can be derived from cytoreductive nephrectomy (CNT), as was shown for cytokines in the general population, in sunitinib and bevacizumab-exposed patients. Phase III studies are ongoing to address the importance of CNT. This information is crucial to ensure timely delivery of a combination of medical and surgical therapies in this patient population.

  15. Diagnosis and treatment of Basal cell and squamous cell carcinoma.

    PubMed

    Firnhaber, Jonathon M

    2012-07-15

    Family physicians are regularly faced with identifying, treating, and counseling patients with skin cancers. Nonmelanoma skin cancer, which encompasses basal cell and squamous cell carcinoma, is the most common cancer in the United States. Ultraviolet B exposure is a significant factor in the development of basal cell and squamous cell carcinoma. The use of tanning beds is associated with a 1.5-fold increase in the risk of basal cell carcinoma and a 2.5-fold increase in the risk of squamous cell carcinoma. Routine screening for skin cancer is controversial. The U.S. Preventive Services Task Force cites insufficient evidence to recommend for or against routine whole-body skin examination to screen for skin cancer. Basal cell carcinoma most commonly appears as a pearly white, dome-shaped papule with prominent telangiectatic surface vessels. Squamous cell carcinoma most commonly appears as a firm, smooth, or hyperkeratotic papule or plaque, often with central ulceration. Initial tissue sampling for diagnosis involves a shave technique if the lesion is raised, or a 2- to 4-mm punch biopsy of the most abnormal-appearing area of skin. Mohs micrographic surgery has the lowest recurrence rate among treatments, but is best considered for large, high-risk tumors. Smaller, lower-risk tumors may be treated with surgical excision, electrodesiccation and curettage, or cryotherapy. Topical imiquimod and fluorouracil are also potential, but less supported, treatments. Although there are no clear guidelines for follow-up after an index nonmelanoma skin cancer, monitoring for recurrence is prudent because the risk of subsequent skin cancer is 35 percent at three years and 50 percent at five years.

  16. Neuropeptide Y-like immunoreactive neurons in the suprachiasmatic-subparaventricular region in the hedgehog-tenrec.

    PubMed

    Künzle, H; Unger, J W

    1992-04-03

    The distribution of the neuropeptide Y (NPY) was studied in geniculate and peri-chiasmatic regions in the lesser hedgehog-tenrec, Echinops telfairi (Insectivora). Only few neurons demonstrated NPY-like immunoreactivity in the ventral lateral geniculate nucleus. In contrast, NPY-immunoreactive perikarya were clearly present in the suprachiasmatic nucleus (SCh) and dorsal and caudal to it. The latter region might correspond to the subparaventricular zone (SPV), recently identified in the rat as an additional area involved in processing circadian rhythms. While the distribution of a distinct cell population across nuclear boundries in both SCh and SPV might conform to the present idea of processing circadian rhythms, the presence of NPY-like immunoreactive neurons in these areas is rather unusual. In mammals, such neurons have only been demonstrated so far in the mentioned insectivore as well as in man.

  17. Mammaglobin and S-100 immunoreactivity in salivary gland carcinomas other than mammary analogue secretory carcinoma.

    PubMed

    Patel, Kalyani R; Solomon, Isaac H; El-Mofty, Samir K; Lewis, James S; Chernock, Rebecca D

    2013-11-01

    Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumor that has morphologic features similar to secretory carcinoma of the breast and that also harbors the same ETV6 translocation. Diffuse mammaglobin and S-100 immunoreactivity are used to differentiate MASC from its morphologic mimics, especially acinic cell carcinoma and adenocarcinoma, not otherwise specified. However, the combination of mammaglobin and S-100 immunoreactivity has not been well studied in other types of salivary gland carcinomas that may have focal areas reminiscent of MASC. Here we evaluated mammaglobin and S-100 immunoreactivity in 15 cases each of polymorphous low-grade adenocarcinoma, adenoid cystic carcinoma and mucoepidermoid carcinoma, and also in 2 cases of adenocarcinoma, not otherwise specified, and 1 mucinous adenocarcinoma. Cases with significant co-expression of mammaglobin and S-100 (moderate or strong immunoreactivity in >25% of tumor cells) were further analyzed by fluorescence in situ hybridization using the ETV6 (12p13) break-apart probe. Nine cases (60%) of polymorphous low-grade adenocarcinoma and two (13.3%) of adenoid cystic carcinoma met the criteria for significant co-expression of mammaglobin and S-100. All were negative for the ETV6 translocation by fluorescence in situ hybridization. Although mammaglobin and S-100 positivity was seen in the majority of polymorphous low-grade adenocarcinomas and a minority of adenoid cystic carcinomas, none were positive for the ETV6 translocation characteristic of MASC. This indicates a need for caution in the use of immunohistochemistry for diagnosing MASC, especially in the absence of cytogenetic confirmation.

  18. Reduced subcommissural organ glycoprotein immunoreactivity precedes aqueduct closure and ventricular dilatation in H-Tx rat hydrocephalus.

    PubMed

    Somera, K C; Jones, H C

    2004-03-01

    The H-Tx rat has fetal-onset hydrocephalus associated with closure of the cerebral aqueduct and a reduction in the secretory cells of the subcommissural organ (SCO), a circumventricular organ situated in the dorsal wall of the cerebral aqueduct. The objective of this study was to determine the role of the SCO in hydrocephalus pathogenesis. Serial brain sections through aqueduct regions containing the SCO from H-Tx rats, together with non-hydrocephalic Fischer F344 rats, were studied at E16, before hydrocephalus onset, at E17, the beginning of onset, and at P0 when the hydrocephalus was overt. Tissues were immunostained by AFRU, an antibody against the SCO glycoprotein, and for the intermediate filament nestin. The area of SCO cells with AFRU immunostaining and the severity of lateral ventricle dilatation were quantified by image analysis. At E16 all fetuses had distinct SCO ependymal cells, open aqueducts and normal lateral ventricles. The H-Tx fetuses fell into two groups with large areas and small areas of AFRU immunoreactivity, all with a full complement of SCO cells. By E17, fetuses with small areas of immunoreactivity had reduced numbers of tall SCO secretory cells, and most had aqueducts closed posteriorly and dilated ventricles. Three additional fetuses with small areas of immunoreactivity had narrow but patent aqueducts and normal ventricles, and another had an open aqueduct and dilated ventricles. At P0, pups previously identified as hydrocephalic had small areas of AFRU immunoreactivity, an aqueduct that was closed anteriorly but open posteriorly, ventricular dilatation, and an absence of SCO secretory cells. The aqueduct even when closed was lined by typical ependymal cells throughout. Decreased nestin immunostaining accompanied the SCO changes. It is concluded that reduced SCO glycoprotein immunoreactivity precedes both aqueduct closure and expansion of the lateral ventricles in the H-Tx rat.

  19. Enkephalin-like immunoreactivity of olivocochlear nerve fibers in cochlea of guinea pig and cat

    PubMed Central

    Fex, Jörgen; Altschuler, Richard A.

    1981-01-01

    The distribution of enkephalin-like immunoreactivity in the cochlea of the guinea pig and cat was studied. Indirect immunofluorescence immunohistochemistry using antisera generated against a methionine enkephalin-bovine thyroglobulin conjugate was applied to surface preparations of the organ of Corti and cryostat sections of the whole of the cochlea. In the cochlear osseous spiral lamina, immunofluorescence was localized to unmyelinated fibers of the intraganglionic spiral bundle. In the organ of Corti, immunofluorescence was localized to a small number of fibers at inner hair cells, the inner spiral bundle, and tunnel spiral bundle, to tunnel crossing fibers at the level of the tunnel floor, to an occasional spiral outer fiber, and to the synaptic region of outer hair cells in the three rows of the basal turn of the cochlea. Less immunofluorescence was found in this region as one progressed towards the apex, with none seen at the apex. At the most apical region the inner spiral bundle became patchy and the tunnel spiral bundle developed arcades. There was no immunofluorescence found in spiral ganglion cells, in auditory nerve fibers, or in the hair cells of the organ of Corti. The findings were the same in cat as in guinea pig, the latter being studied in more detail. It was concluded that efferent, olivocochlear neurons of the cochlea, synapsing predominantly with primary auditory nerve fibers from the inner sensory cells or with the sensory cells, contain enkephalin-like immunoreactivity. Also, the findings indicate that endings of olivocochlear neurons that synapse predominantly with outer hair cells contain enkephalin-like immunoreactivity. It has previously been shown that olivocochlear neurons are likely to be cholinergic. Images PMID:7015329

  20. Protein profiles and immunoreactivities of Acanthamoeba morphological groups and genotypes.

    PubMed

    Pumidonming, Wilawan; Koehsler, Martina; Leitsch, David; Walochnik, Julia

    2014-11-01

    Acanthamoeba is a free-living protozoan found in a wide variety of habitats. A classification of Acanthamoeba into currently eighteen genotypes (T1-T18) has been established, however, data on differences between genotypes on the protein level are scarce. The aim of this study was to compare protein and immunoreactivity profiles of Acanthamoeba genotypes. Thirteen strains, both clinical and non-clinical, from genotypes T4, T5, T6, T7, T9, T11 and T12, representing three morphological groups, were investigated for their protein profiles and IgG, IgM and IgA immunoreactivities. It was shown that protein and immunoreactivity profiles of Acanthamoeba genotypes T4, T5, T6, T7, T9, T11 and T12 are clearly distinct from each other, but the banding patterns correlate to the morphological groups. Normal human sera revealed anti-Acanthamoeba antibodies against isolates of all investigated genotypes, interestingly, however only very weak IgM and virtually no IgA immunoreactivity with T7 and T9, both representing morphological group I. The strongest IgG, IgM and IgA immunoreactivities were observed for genotypes T4, T5 and T6. Differences of both, protein and immunological patterns, between cytopathic and non-cytopathic strains, particularly within genotype T4, were not at the level of banding patterns, but rather in expression levels.

  1. Identification of immunoreactive proteins of Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Piras, Cristian; Soggiu, Alessio; Bonizzi, Luigi; Greco, Viviana; Ricchi, Matteo; Arrigoni, Norma; Bassols, Anna; Urbani, Andrea; Roncada, Paola

    2015-02-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the cause of a chronic enteritis of ruminants (bovine paratuberculosis (PTB)--Johne's disease) that is associated with enormous worldwide economic losses for the animal production. Diagnosis is based on observation of clinical signs, the detection of antibodies in milk or serum, or evaluation of bacterial culture from feces. The limit of these methods is that they are not able to detect the disease in the subclinical stage and are applicable only when the disease is already advanced. For this reason, the main purpose of this study is to use the MAP proteome to detect novel immunoreactive proteins that may be helpful for PTB diagnoses. 2DE and 2D immunoblotting of MAP proteins were performed using sera of control cattle and PTB-infected cattle in order to highlight the specific immunoreactive proteins. Among the assigned identifiers to immunoreactive spots it was found that most of them correspond to surface-located proteins while three of them have never been described before as antigens. The identification of these proteins improves scientific knowledge that could be useful for PTB diagnoses. The sequence of the identified protein can be used for the synthesis of immunoreactive peptides that could be screened for their immunoreaction against bovine sera infected with MAP. All MS data have been deposited in the ProteomeXchange consortium with identifier PXD001159 and DOI 10.6019/PXD001159.

  2. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    PubMed

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  3. Childhood Central Nervous System Germ Cell Tumors Treatment

    MedlinePlus

    ... Ependymoma Treatment Research Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Childhood Central Nervous System (CNS) Germ Cell Tumors Go to Health Professional Version Key Points ...

  4. N-methyl-D-aspartate receptor-like immunoreactivity in the brain of Sepia and Octopus.

    PubMed

    Di Cosmo, Anna; Paolucci, Marina; Di Cristo, Carlo

    2004-09-13

    Ionotropic glutamate receptors have been subdivided into N-methyl-D-aspartate (NMDA) and AMPA/kainate classes. NMDA receptor subunit 2A and 2B immunoreactivity is shown to be present in specific regions of the central nervous system (CNS) of the cephalopod molluscs Sepia officinalis and Octopus vulgaris. An antibody that recognizes both mammalian NMDAR2A and NMDAR2B subunits equally was used. SDS-PAGE/Western blot analysis performed on membrane proteins revealed an immunoreactive band at 170 kDa for both species. Immunoreactive bands from both Octopus and Sepia brains disappeared when the antibody was preabsorbed with membrane proteins from rat hippocampus or from their own brains. The same antibody was then used for immunohistochemical staining of serial sections of the CNS to reveal localized specific staining of cell bodies and fibers in several lobes of the brain. Staining was found in lower motor centers, in some higher motor centers, in learning centers, and in the optic lobes. Immunopositivity was also found in the areas of brain that control the activity of the optic gland, a gonadotropic endocrine gland. These findings suggest that glutamate, via NMDA receptors, may be involved as a signaling molecule in motor, learning, visual, and olfactory systems in the cephalopod brain.

  5. Valosin-containing protein immunoreactivity in tauopathies, synucleinopathies, polyglutamine diseases and intranuclear inclusion body disease.

    PubMed

    Mori, Fumiaki; Tanji, Kunikazu; Toyoshima, Yasuko; Sasaki, Hidenao; Yoshida, Mari; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2013-12-01

    Valosin-containing protein (VCP) is associated with multiple cellular functions, including ubiquitin-dependent protein degradation. Mutations in VCP are known to cause inclusion body myopathy with Paget's disease and frontotemporal dementia and familial amyotrophic lateral sclerosis (fALS; ALS14), both of which are characterized by trans-activation response DNA protein 43 (TDP-43)-positive neuronal cytoplasmic and nuclear inclusions. Recently, immunoreactivity for fALS-associated proteins (TDP-43, fused in sarcoma (FUS), optineurin and ubiquilin-2) were reported to be present in cytoplasmic and nuclear inclusions in various neurodegenerative diseases. However, the extent and frequency of VCP-immunoreactive structures in these neurodegenerative diseases are uncertain. We immunohistochemically examined the brains of 72 cases with neurodegenerative diseases and five control cases. VCP immunoreactivity was present in Lewy bodies in Parkinson's disease and dementia with Lewy bodies, and neuronal nuclear inclusions in five polyglutamine diseases and intranuclear inclusion body disease, as well as in Marinesco bodies in aged control subjects. However, other neuronal and glial cytoplasmic inclusions in tauopathies and TDP-43 proteinopathies were unstained. These findings suggest that VCP may have common mechanisms in the formation or degradation of cytoplasmic and nuclear inclusions of neurons, but not of glial cells, in several neurodegenerative conditions.

  6. Periviscerokinin-like immunoreactivity in the nervous system of the American cockroach.

    PubMed

    Eckert, M; Predel, R; Gundel, M

    1999-01-01

    A highly specific polyclonal antiserum has been raised against periviscerokinin, the first neuropeptide isolated from the perisympathetic organs of insects (Predel et al. 1995). In this study, two different neuronal systems with periviscerokinin-like immunoreactivity were distinguished in the central nervous system of the American cockroach: (1) An intrinsic neuronal network, restricted to the head-thoracic region, was formed by intersegmental projecting neurons of the brain, suboesophageal ganglion and metathoracic ganglion. In addition, groups of local interneurons occurred in the proto- and tritocerebrum. (2) A typical neurohormonal system was stained exclusively in the abdomen; it was represented by abdominal perisympathetic organs which were supplied by three cell clusters located in each unfused abdominal ganglion. As revealed by nickel backfills, most neurons with axons entering the perisympathetic organs contained a periviscerokinin-like peptide. Immunoreactive fibres left the perisympathetic organs peripherally, innervated the hyperneural muscle and ran via the link nerves/segmental nerves to the heart and segmental vessels. All visceral muscles innervated by periviscerokinin-immunoreactive fibres were shown to be sensitive to periviscerokinin, whereas the hindgut gave no specific response to this peptide.

  7. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease.

    PubMed

    Griffin, W S; Stanley, L C; Ling, C; White, L; MacLeod, V; Perrot, L J; White, C L; Araoz, C

    1989-10-01

    Interleukin 1, an immune response-generated cytokine that stimulates astrocyte proliferation and reactivity (astrogliosis), was present in up to 30 times as many glial cells in tissue sections of brain from patients with Down syndrome and Alzheimer disease compared with age-matched control subjects. Most interleukin 1-immunoreactive glia in Down syndrome and Alzheimer disease were classified as microglia. The number of interleukin 1 immunoreactive neurons did not appear to differ in Down syndrome and Alzheimer disease compared with control brain. Numerous temporal lobe astrocytes in Alzheimer disease and postnatal Down syndrome were intensely interleukin 1-, S-100-, and glial fibrillary acidic protein-immunoreactive and had reactive structure. Interleukin 1 levels in Alzheimer disease temporal lobe homogenates were elevated, as were the levels of S-100 and glial fibrillary acidic protein, two proteins reportedly elevated in reactive astrocytes. These data suggest that increased expression of S-100 in Down syndrome, resulting from duplication of the gene on chromosome 21 that encodes the beta subunit of S-100, may be augmented by elevation of interleukin 1. As a corollary, the astrogliosis in Alzheimer disease may be promoted by elevation of interleukin 1.

  8. Topical tretinoin treatment in basal cell carcinoma.

    PubMed

    Brenner, S; Wolf, R; Dascalu, D I

    1993-03-01

    The efficiency of topical tretinoin was examined in a patient with basal cell carcinomas (BCC) for which conventional means of removal was inappropriate. Topical tretinoin was used to treat multiple arsenic-induced superficial BCCs in a 64-year-old woman. Topical tretinoin (0.05% twice daily) was administered to four lesions for 3 weeks followed by a 3-week interruption. After three cycles of treatment clinical healing of all the lesions was observed. Histopathological examination of the lesional biopsies showed no evidence of a tumor. However, 9 months later all four lesions relapsed and surgical excision disclosed BCC. The data indicate that topical tretinoin treatment of multiple superficial BCCs induces clinical and pathological regression of the lesions with a high rate of relapse. This report suggests that topical tretinoin is not an effective therapy for the cure of arsenic-induced superficial BCCs.

  9. Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana

    PubMed Central

    Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto

    2016-01-01

    The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory

  10. Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana.

    PubMed

    Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto

    2016-01-01

    The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine's actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of "dopaminergic" neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation

  11. Induction by toxic-shock-syndrome toxin-1 of a circulating tumor necrosis factor-like substance in rabbits and of immunoreactive tumor necrosis factor and interleukin-1 from human mononuclear cells.

    PubMed

    Ikejima, T; Okusawa, S; van der Meer, J W; Dinarello, C A

    1988-11-01

    A shock-like syndrome was induced in rabbits by administering toxic-shock-syndrome toxin-1 (TSST-1); tumor necrosis factor (TNF)-like activity was detected in sera of rabbits 3.5 h after injection, as measured by cytotoxic effects on the tumorigenic L929 murine fibroblast cell line. Appearance of this activity in sera coincided with onset of significant shock-related hemodynamic changes. TSST-1 stimulated release of TNF-like material from rabbit mononuclear cells in culture. Human mononuclear cells also secreted a cytotoxic substance shown to be TNF by radioimmunoassay. Maximal TNF secretion was higher in human mononuclear cells stimulated with TSST-1 than in those stimulated with bacterial lipopolysaccharide. Lipopolysaccharide, however, was a more potent inducer of interleukin-1 alpha and interleukin-1 beta from the same cells than was TSST-1. Because TNF and interleukin-1 act synergistically during induction of a shock-like state, these results suggest that part of the TSST-1-induced shock is due to production of interleukin-1 and TNF.

  12. Endothelin-1 Immunoreactivity and its Association with Intramedullary Hemorrhage and Myelomalacia in Naturally Occurring Disk Extrusion in Dogs.

    PubMed

    Mayer, D; Oevermann, A; Seuberlich, T; Vandevelde, M; Casanova-Nakayama, A; Selimovic-Hamza, S; Forterre, F; Henke, D

    2016-07-01

    The pathophysiology of ascending/descending myelomalacia (ADMM) after canine intervertebral disk (IVD) extrusion remains poorly understood. Vasoactive molecules might contribute. To investigate the immunoreactivity of endothelin-1 (ET-1) in the uninjured and injured spinal cord of dogs and its potential association with intramedullary hemorrhage and extension of myelomalacia. Eleven normal control and 34 dogs with thoracolumbar IVD extrusion. Spinal cord tissue of dogs retrospectively selected from our histopathologic database was examined histologically at the level of the extrusion (center) and in segments remote from the center. Endothelin-1 immunoreactivity was examined immunohistochemically and by in situ hybridization. Associations between the immunoreactivity for ET-1 and the severity of intramedullary hemorrhage or the extension of myelomalacia were examined. Endothelin-1 was expressed by astrocytes, macrophages, and neurons and only rarely by endothelial cells in all dogs. At the center, ET-1 immunoreactivity was significantly higher in astrocytes (median score 4.02) and lower in neurons (3.21) than in control dogs (3.0 and 4.54) (P < .001; P = .004) irrespective of the grade of hemorrhage or myelomalacia. In both astrocytes and neurons, there was a higher ET-1 immunoreactivity in spinal cord regions remote from the center (4.58 and 4.15) than in the center itself (P = .013; P = .001). ET-1 mRNA was present in nearly all neurons with variable intensity, but not in astrocytes. Enhanced ET-1 immunoreactivity over multiple spinal cord segments after IVD extrusion might play a role in the pathogenesis of ADMM. More effective quantitative techniques are required. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord.

    PubMed

    Antal, M; Berki, A C; Horváth, L; O'Donovan, M J

    1994-05-08

    The development of gamma-aminobutyric acid (GABA)-immunoreactive neurons was investigated in the embryonic and posthatch chick lumbosacral spinal cord by using pre- and postembedding immunostaining with an anti-GABA antiserum. The first GABA-immunoreactive cells were detected in the ventral one-half of the spinal cord dorsal to the lateral motor column at E4. GABAergic neurons in this location sharply increased in number and, with the exception of the lateral motor column, appeared throughout the entire extent of the ventral one-half of the spinal gray matter by E6. Thereafter, GABA-immunoreactive neurons extended from ventral to dorsal regions. Stained perikarya first appeared at E8 and then progressively accumulated in the dorsal horn, while immunoreactive neurons gradually declined in the ventral horn. The general pattern of GABA immunoreactivity characteristic of mature animals had been achieved by E12 and was only slightly altered afterwards. In the dorsal horn, most of the stained neurons were observed in laminae I-III, both at the upper (LS 1-3) and at the lower (LS 5-7) segments of the lumbosacral spinal cord. In the ventral horn, the upper and lower lumbosacral segments showed marked differences in the distribution of stained perikarya. GABAergic neurons were scattered in a relatively large region dorsomedial to the lateral motor column at the level of the upper lumbosacral segments, whereas they were confined to the dorsalmost region of lamina VII at the lower segments. The early expression of GABA immunoreactivity may indicate a trophic and synaptogenetic role for GABA in early phases of spinal cord development.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Hypoxia-induced increases in serotonin-immunoreactive nerve fibers in the medulla oblongata of the rat.

    PubMed

    Morinaga, Ryosuke; Nakamuta, Nobuaki; Yamamoto, Yoshio

    2016-10-01

    Hypoxia induces respiratory responses in mammals and serotonergic neurons in the medulla oblongata participate in respiratory control. However, the morphological changes in serotonergic neurons induced by hypoxia have not yet been examined and respiratory controls of serotonergic neurons have not been clarified. We herein investigated the distribution of immunoreactivity for serotonin (5-hydroxytryptamine; 5-HT) in the medulla oblongata of control rats and rats exposed to 1-6h of hypoxia (10% O2). We also examined the medulla oblongata by multiple immunofluorescence labeling for 5-HT, neurokinin 1 receptors (NK1R), a marker for some respiratory neurons in the pre-Bötzinger complex (PBC), and dopamine β-hydroxylase (DBH), a marker for catecholaminergic neurons. The number of 5-HT-immunoreactive nerve cell bodies in the raphe nuclei was higher in rats exposed to hypoxia than in control rats. The number of 5-HT-immunoreactive nerve fibers significantly increased in the rostral ventrolateral medulla of rats exposed to 1-6h of hypoxia, caudal ventrolateral medulla of rats exposed to 2-6h of hypoxia, and lateral part of the nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve of rats exposed to 1-2h of hypoxia. Multiple immunofluorescence labeling showed that 5-HT-immunoreactive nerve fibers were close to NK1R-immunoreactive neurons in ventrolateral medulla and to DBH-immunoreactive neurons in the medulla. These results suggest that serotonergic neurons partly regulate respiratory control under hypoxic conditions by modulating the activity of NK1R-expressing and catecholaminergic neurons.

  15. Effect of pulsed light on structure and immunoreactivity of gluten.

    PubMed

    Panozzo, Agnese; Manzocco, Lara; Lippe, Giovanna; Nicoli, Maria Cristina

    2016-03-01

    The effect of pulsed light (from 1.75 to 26.25Jcm(-2)) on selected properties of wheat gluten powder and aqueous suspension (absorbance, particle size and microstructure, free sulfhydryl content, protein fractions, protein electrophoretic mobility and immunoreactivity) was investigated. Gluten photoreactivity was strongly affected by hydration. While minor photo-induced structure modifications were observed in gluten powder, pulsed light induced the development of browning and promoted partial depolymerisation of hydrated gluten proteins by disulphide exchange. These changes were associated with a significant decrease in immunoreactivity, suggesting that pulsed light could be exploited to efficiently modify structure and thus functionality of gluten.

  16. Determination of ghrelin immunoreactivity in the rat stomach after fasting and refeeding.

    PubMed

    Sönmez, Mehmet Fatih; Ozan, Enver

    2007-01-01

    Ghrelin is a recently discovered hormone secreted by cells of the stomach. The aim of this study was to investigate fasting and refeeding induced alterations on ghrelin immunolabelling of cells of the stomach. Thirty-six adult male Wistar rats were used in this study. Rats were divided into six groups. Group I: control group; Group II: rats fasted for 7 days; Group III: rats fed for 1 day after 7 days of fasting; Group IV: rats fed for 3 days after 7 days of fasting; Group V: rats fed for 5 days after 7 days of fasting; Group VI: rats fed for 7 days after 7 days of fasting. At the end of the experiment, rats were sacrificed and stomach tissues were processed for imunohistochemistry to localize ghrelin. Ghrelin-immunopositive cells were detected only in the mucosal lining of the stomach. After fasting for 7 days, the number of ghrelin-immunopositive cells increased significantly compared to the control rats. Following refeeding, the number of ghrelin-immunoreactive cells was reduced to a level comparable to the controls. Therefore, fasting and refeeding after fasting were observed to result in changes in ghrelin immunoreactivity in the cells of the stomach. We conclude that ghrelin is highly expressed in the stomach and that fasting increases the expression of ghrelin in the stomach, but this expression decreases after refeeding. Our results indicate that regulation of ghrelin is a process probably involved in the long-term control of nutritional states.

  17. 17Beta-estradiol reduces nitrotyrosine immunoreactivity and increases SOD1 and SOD2 immunoreactivity in nigral neurons in male mice following MPTP insult.

    PubMed

    Tripanichkul, Wanida; Sripanichkulchai, Kittisak; Duce, James A; Finkelstein, David I

    2007-08-20

    Emerging evidence suggests the beneficial effects of estrogen on Parkinson's disease (PD), yet the mechanisms of action implicated remain elusive. While experimental evidence suggests that estrogen possesses potent antioxidative properties, it is still unknown whether the hormone exhibits a neuroprotection in a PD animal model through its antioxidant activities. This study therefore investigated the effects of 17beta-estradiol (E2) on the immunoreactivity of nigral neurons and glia for nitrotyrosine (NT, a stable marker for oxidative stress), Cu/Zn superoxide dismutase (SOD1) and Mn superoxide dismutase (SOD2) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. Adult male mice were treated with E2 or vehicle for 11 days during which they were injected with MPTP or saline on the sixth day. The brains were collected on day 11 and quantitative immunohistochemistry was used to assess the number of NT-, SOD1- and SOD2-immunoreactive (IR) cells in the substantia nigra pars compacta (SNpc). In saline-treated group, E2 decreased NT-IR neuronal number and raised SOD1 and SOD2 expression in neurons and glia in the SNpc. MPTP induced a significant increase in the number of NT- and SOD2-IR neurons, but decreased the number of SOD1-IR neurons. MPTP also triggered a significant increase of SOD2- and SOD1-IR glial number. E2 pretreatment in MPTP mice reduced the number of NT-IR neurons, increased the number of SOD1- and SOD2-IR neurons, but did not alter the MPTP effect on glia immunoreactive to either SOD. Stimulation of SOD1 and SOD2 expression in nigral neurons suggests that E2 provides neuroprotection against MPTP-induced oxidative stress, partly through its ability to act as an antioxidant.

  18. Treatment options for small cell lung cancer.

    PubMed

    Wolf, Todd; Gillenwater, Heidi H

    2004-07-01

    Lung cancer remains the leading cause of cancer-related death in the United States. Small cell lung cancer (SCLC) comprises 15% to 25% of all lung cancers. The leading cause of lung cancer remains smoking, and rates of smoking continue to rise in women, whereas rates in other subgroups have slowed. In this article we review recent advances in the treatment of limited-stage as well as extensive-stage small cell lung cancer. In limited-stage disease, the best survival results are observed when patients are treated with twice-daily thoracic radiotherapy given concurrently with chemotherapy. Patients who have been successful in smoking cessation during therapy for limited-stage disease may have a survival benefit over those who are unable to quit smoking during treatment. In extensive-stage disease, the most significant trial is one comparing irinotecan plus cisplatin and etoposide plus cisplatin, showing a survival advantage for the irinotecan arm. This trial may change the standard of care for patients with extensive-stage disease. A similar ongoing trial in the United States is attempting to confirm these results.

  19. Allatostatin-like-immunoreactive neurons of the tobacco hornworm, Manduca sexta, and isolation and identification of a new neuropeptide related to cockroach allatostatins.

    PubMed

    Davis, N T; Veenstra, J A; Feyereisen, R; Hildebrand, J G

    1997-08-25

    The YXFGLamide C-terminus serves to define most members of a family of structurally related neuropeptides, the YXFGLamides. These peptides have been identified from the nervous system of various insects and include the allatostatins of cockroaches and crickets, the schistostatins of locusts, and the callatostatins of blowflies. The YXFGLamides have been shown to have various functions, including inhibition of juvenile hormone biosynthesis in cockroaches and crickets and inhibition of contraction of certain insect visceral muscles. We wanted to know if these peptides occur in Manduca sexta and what functions they might have. A new peptide, AKSYNFGLamide, was isolated and identified from M. sexta and has been named "lepidostatin-1"; this is the first YXFGLamide to be found in a lepidopteran, and there are indications that additional YXFGLamides occur in M. sexta. An antiserum to cockroach allatostatins (YXFGLamides) was shown to recognize lepidostatin-1 of M. sexta and was used to map YXFGLamide-immunoreactive neurons in larvae. Because immunoreactive interneurons were found to form an extensive neuropil, YXFGLamides probably function as neuromodulators in M. sexta. Neuroendocrine cells in the brain, abdominal ganglia, and their respective neurohemal organs were YXFGLamide immunoreactive and appear to release YXFGLamides as neurohormones. Immunoreactivity to YXFGLamides and M. sexta diuretic hormone were found to be colocalized and appear to be coreleased in these neuroendocrine cells, indicating that YXFGLamides may be involved in regulation of fluid transport. Innervation of the corpora allata by YXFGLamide-immunoreactive processes was very sparse, suggesting that this innervation does not play an important role in allatostasis. Many thoracic motor neurons were YXFGLamide immunoreactive, suggesting that YXFGLamides may have a myomodulatory or myotrophic function in larvae. However, this immunoreactivity disappeared early in metamorphosis and did not reappear in the

  20. Comparison of immunoreactive serum trypsinogen and lipase in Cystic Fibrosis

    SciTech Connect

    Lloyd-Still, J.D.; Weiss, S.; Wessel, H.; Fong, L.; Conway, J.J.

    1984-01-01

    The incidence of Cystic Fibrosis (CF) is 1 in 2,000. Early detection and treatment of CF may necessitate newborn screening with a reliable and cost-effective test. Serum immunoreactive trypsinogen (IRT) an enzyme produced by the pancreas, is detectable by radioimmunoassay (RIA) techniques. Recently, it has been shown that IRT is elevated in CF infants for the first few months of life and levels become subnormal as pancreatic insufficiency progresses. Other enzymes produced by the pancreas, such as lipase, are also elevated during this time. The author's earlier work confirmed previous reports of elevated IRT levels in CF infants. The development of a new RIA for lipase (nuclipase) has enabled comparison of these 2 pancreatic enzymes in C.F. Serum IRT and lipase determinations were performed on 2 groups of CF patients; infants under 1 year of age, and children between 1 and 18 years of age. Control populations of the same age groups were included. The results showed that both trypsin (161 +- 92 ng/ml, range 20 to 400) and lipase (167 +- 151 ng/ml, range 29 to 500) are elevated in CF in the majority of infants. Control infants had values of IRT ranging from 20 to 29.5 ng/ml and lipase values ranging from 23 to 34 ng/ml. IRT becomes subnormal in most CF patients by 8 years of age as pancreatic function insufficiency increases. Lipase levels and IRT levels correlate well in infancy, but IRT is a more sensitive indicator of pancreatic insufficiency in older patients with CF.

  1. Distribution of adrenomedullin-like immunoreactivity in the rat central nervous system by light and electron microscopy.

    PubMed

    Serrano, J; Uttenthal, L O; Martínez, A; Fernández, A P; Martínez de Velasco, J; Alonso, D; Bentura, M L; Santacana, M; Gallardo, J R; Martínez-Murillo, R; Cuttitta, F; Rodrigo, J

    2000-01-24

    Adrenomedullin is a peptide of marked vasodilator activity first isolated from human pheochromocytoma and subsequently demonstrated in other mammalian tissues. Using a polyclonal antiserum against human adrenomedullin-(22-52) amide and the avidin-biotin peroxidase complex technique, we have demonstrated by light and electron microscopy that adrenomedullin-like immunoreactivity is widely distributed in the rat central nervous system. Western blotting of extracts of different brain regions demonstrated the fully processed peptide as the major form in the cerebellum, whereas a 14-kDa molecular species and a small amount of the 18-kDa propeptide were present in other brain regions. Immunoreactive neurons and processes were found in multipolar neurons and pyramidal cells of layers IV-VI of the cerebral cortex and their apical processes, as well as in a large number of telencephalic, diencephalic, mesencephalic, pontine and medullary nuclei. Cerebellar Purkinje cells and mossy terminal nerve fibers as well as neurons of the cerebellar nuclei were immunostained, as were neurons in area 9 of the anterior horn of the spinal cord. Immunoreactivity was also found in some vascular endothelial cells and surrounding processes that probably originated from perivascular glial cells. Electron microscopy confirmed the light microscopy findings and showed the reaction product in relation to neurofilaments and the external membrane of small mitochondria. Immunoreactive terminal boutons were occasionally seen. The distribution of adrenomedullin-like immunoreactivity in the central nervous system suggests that it has a significant role in neuronal function as well as in the regulation of regional blood flow.

  2. My Treatment Approach to Hairy Cell Leukemia

    PubMed Central

    Naik, Rahul R.; Saven, Alan

    2012-01-01

    Hairy cell leukemia (HCL) is a rare chronic lymphoproliferative disorder characterized by circulating B cells with cytoplasmic projections, pancytopenia, splenomegaly, and a typical flow cytometry pattern. Recently, the BRAF V600E mutation was uniformly identified in one HCL series, which may provide insights into the pathogenic mechanisms. The disease course is usually indolent but inexorably progressive. Patients require treatment when they have significant cytopenia or occasionally recurrent infections from immunocompromise. In the mid-1980s, interferon replaced splenectomy as the initial treatment. A few years later, 2 purine nucleoside analogs, cladribine and pentostatin, showed promising activity in HCL. Complete response rates approached 95% with cladribine given as a single 7-day intravenous infusion. Newer methods of cladribine administration and modified dosing schedules have since been studied. Pentostatin response rates are comparable. We generally prefer cladribine because of its ease of administration, single infusion schema, and favorable toxicity profile. Since the introduction of these drugs, which have never been randomly compared, long-term follow-up studies have confirmed impressive and durable response durations. However, roughly 40% of patients with HCL eventually relapse. In this setting, patients can be re-treated with purine analogs. Rituximab also has a reasonable response rate in relapsed HCL; it can be given as a single agent sequentially after purine nucleosides or concurrently. Immunotoxins have robust responses but remain in development. Targeting the BRAF pathway will be an exciting future area of research. Many patients have minimal residual disease after initial treatment, but the clinical significance of this remains unknown. PMID:22212971

  3. Giant cell arteritis: Current treatment and management

    PubMed Central

    Ponte, Cristina; Rodrigues, Ana Filipa; O’Neill, Lorraine; Luqmani, Raashid Ahmed

    2015-01-01

    Glucocorticoids remain the cornerstone of medical therapy in giant cell arteritis (GCA) and should be started immediately to prevent severe consequences of the disease, such as blindness. However, glucocorticoid therapy leads to significant toxicity in over 80% of the patients. Various steroid-sparing agents have been tried, but robust scientific evidence of their efficacy and safety is still lacking. Tocilizumab, a monoclonal IL-6 receptor blocker, has shown promising results in a number of case series and is now being tested in a multi-centre randomized controlled trial. Other targeted treatments, such as the use of abatacept, are also now under investigation in GCA. The need for surgical treatment is rare and should ideally be performed in a quiescent phase of the disease. Not all patients follow the same course, but there are no valid biomarkers to assess therapy response. Monitoring of disease progress still relies on assessing clinical features and measuring inflammatory markers (C-reactive protein and erythrocyte sedimentation rate). Imaging techniques (e.g., ultrasound) are clearly important screening tools for aortic aneurysms and assessing patients with large-vessel involvement, but may also have an important role as biomarkers of disease activity over time or in response to therapy. Although GCA is the most common form of primary vasculitis, the optimal strategies for treatment and monitoring remain uncertain. PMID:26090367

  4. Haematopoietic cell transplantation in the treatment of sickle cell disease.

    PubMed

    Atkins, Robert C; Walters, Mark C

    2003-12-01

    Allogeneic haematopoietic cell transplantation (HCT) is presently the only treatment which offers the possibility of a cure for patients with sickle cell disease (SCD). While approximately 84% of patients survive disease-free after human leukocyte antigen (HLA)-identical sibling donor HCT, this therapy has traditionally been reserved for patients who have suffered serious complications due to the risk of transplant-related morbidity and mortality. Typically, these sickle-related complications have included recurrent episodes of acute chest syndrome, recurrent vaso-occlusive episodes and stroke. The future of HCT for haemoglobinopathies undoubtedly will evolve as transplant-related complications are reduced and as the process of selecting patients for HCT is refined.

  5. Histamine Immunoreactive Elements in the Central and Peripheral Nervous Systems of the Snail, Biomphalaria spp., Intermediate Host for Schistosoma mansoni.

    PubMed

    Habib, Mohamed R; Mohamed, Azza H; Osman, Gamalat Y; Sharaf El-Din, Ahmed T; Mossalem, Hanan S; Delgado, Nadia; Torres, Grace; Rolón-Martínez, Solymar; Miller, Mark W; Croll, Roger P

    2015-01-01

    Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites.

  6. Development of histamine-immunoreactivity in the Central nervous system of the two locust species Schistocerca gregaria and Locusta migratoria.

    PubMed

    Pätschke, Arne; Bicker, Gerd

    2011-10-01

    Locusts are attractive model preparations for cellular investigations of neurodevelopment. In this study, we investigate the immunocytochemical localization of histamine in the developing ventral nerve cord of two locust species, Schistocerca gregaria and Locusta migratoria. Histamine is the fast neurotransmitter of photoreceptor neurons in the compound eye of insects, but it is also synthesized in interneurons of the central nervous system. In the locust ventral nerve cord, the pattern of histamine-immunoreactive neurons follows a relatively simple bauplan. The histaminergic system comprises a set of single, ascending projection neurons that are segmentally arranged in almost every neuromere. The neurons send out their axons anteriorly, forming branches and varicosities throughout the adjacent ganglia. In the suboesophageal ganglion, the cell bodies lie in a posteriolateral position. The prothoracic ganglion lacks histaminergic neurons. In the posterior ganglia of the ventral nerve cord, the somata of the histaminergic neurons are ventromedially positioned. Histamine-immunoreactivity starts around 50% of embryonic development in interneurons of the brain. Subsequently, the neurons of the more posterior ganglia of the ventral nerve cord become immunoreactive. From 60% embryonic development, the pattern of soma staining in the nerve cord appears mature. Around 65% of embryonic development, the photoreceptor cells show histamine-immunoreactivity. The histaminergic innervation of the neuropile develops from the central branches toward the periphery of the ganglia and is completed right before hatching.

  7. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus.

    PubMed

    Hájos, N; Papp, E C; Acsády, L; Levey, A I; Freund, T F

    1998-01-01

    In previous studies m2 muscarinic acetylcholine receptor-immunoreactive interneurons and various types of m2-positive axon terminals have been described in the hippocampal formation. The aim of the present study was to identify the types of interneurons expressing m2 receptor and to examine whether the somadendritic and axonal m2 immunostaining labels the same or distinct cell populations. In the CA1 subfield, neurons immunoreactive for m2 have horizontal dendrites, they are located at the stratum oriens/alveus border and have an axon that project to the dendritic region of pyramidal cells. In the CA3 subfield and the hilus, m2-positive neurons are multipolar and are scattered in all layers except stratum lacunosum-moleculare. In stratum pyramidale of the CA1 and CA3 regions, striking axon terminal staining for m2 was observed, surrounding the somata and axon initial segments of pyramidal cells in a basket-like manner. The co-localization of m2 with neurochemical markers and GABA was studied using the "mirror" technique and fluorescent double-immunostaining at the light microscopic level and with double-labelling using colloidal gold-conjugated antisera and immunoperoxidase reaction (diaminobenzidine) at the electron microscopic level. GABA was shown to be present in the somata of most m2-immunoreactive interneurons, as well as in the majority of m2-positive terminals in all layers. The calcium-binding protein parvalbumin was absent from practically all m2-immunoreactive cell bodies and dendrites. In contrast, many of the terminals synapsing on pyramidal cell somata and axon initial segments co-localized parvalbumin and m2, suggesting a differential distribution of m2 receptor immunoreactivity on the axonal and somadendritic membrane of parvalbumin-containing basket and axo-axonic cells. The co-existence of m2 receptors with the calcium-binding protein calbindin and the neuropeptides cholecystokinin and vasoactive intestinal polypeptide was rare throughout the

  8. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunoreactive insulin test system. 862.1405 Section 862.1405 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  9. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunoreactive insulin test system. 862.1405 Section 862.1405 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  10. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoreactive insulin test system. 862.1405 Section 862.1405 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  11. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunoreactive insulin test system. 862.1405 Section 862.1405 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  12. Characterization of PDF-immunoreactive neurons in the optic lobe and cerebral lobe of the cricket, Gryllus bimaculatus.

    PubMed

    Abdelsalam, Salaheldin; Uemura, Hiroyuki; Umezaki, Yujiro; Saifullah, A S M; Shimohigashi, Miki; Tomioka, Kenji

    2008-07-01

    Pigment-dispersing factor (PDF) is a neuropeptide playing important roles in insect circadian systems. In this study, we morphologically and physiologically characterized PDF-immunoreactive neurons in the optic lobe and the brain of the cricket Gryllus bimaculatus. PDF-immunoreactivity was detected in cells located in the proximal medulla (PDFMe cells) and those in the dorsal and ventral regions of the outer chiasma (PDFLa cells). The PDFMe cells had varicose processes spread over the frontal surface of the medulla and the PDFLa cells had varicose mesh-like innervations in almost whole lamina, suggesting their modulatory role in the optic lobe. Some of PDFMe cells had a hairpin-shaped axonal process running toward the lamina then turning back to project into the brain where they terminated at various protocerebral areas. The PDFMe cells had a low frequency spontaneous spike activity that was higher during the night and was often slightly increased by light pulses. Six pairs of PDF-immunoreactive neurons were also found in the frontal ganglion. Competitive ELISA with anti-PDF antibodies revealed daily cycling of PDF both in the optic lobe and cerebral lobe with an increase during the night that persisted in constant darkness. The physiological role of PDF is discussed based on these results.

  13. Surgical treatment of basal cell carcinoma and squamous cell carcinoma.

    PubMed

    Gualdi, G; Monari, P; Apalla, Z; Lallas, A

    2015-08-01

    Non melanoma skin cancers (NMSC) are the most common human neoplasms, encompassing basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), but also cutaneous lymphomas, adnexal tumors, merckel cell carcinoma and other rare tumors. The incidence of BCC and SCC varies significantly among different populations, and the overall incidence of both tumors has increased over the last decades. Although generally associated with a favorable prognosis, recent evidence suggests that the mortality rates of SCC might have been underestimated up-to-date.1 According to Medicare data, NMSC is the fifth most expensive cancer for health care systems. This increased economic burden is not associated with the cost of treating an individual patient, but with the large number of affected patients and the recurrence rates.2 Therefore, the adequate management of the primary tumor with a complete excision becomes a priority not only for the patient but also for the public health systems. Multiple treatment modalities are currently usedin clinicalpractice for the treatment of NMSC. While surgical excision (SE) remains the gold standard of care, non-surgical techniques have gained appreciation due to lower morbidity and better cosmetic results. The optimal management of treatment includes a complete tumor clearance, preservation of the normal tissue function, and the best possible cosmetic outcome.3 Surgery with a predefined excision margin is the treatment of choice for most NMSCs, with Mohs micrographic surgery being recommended for tumors considered to be at a higher recurrence risk or those developing on cosmetically sensitive areas.4, 5 Therefore, the surgical approach of a NMSC consists with three different and equally important steps. First the preoperative clinical assessment of the tumor margins, which can be facilitated by the use of dermoscopy. Second, the definition of the surgical margins depending on the tumor subtype and its biological behavior. Finally, the surgical

  14. Identification of functional antigenic segments of toxic shock syndrome toxin 1 by differential immunoreactivity and by differential mitogenic responses of human peripheral blood mononuclear cells, using active toxin fragments.

    PubMed Central

    Edwin, C; Kass, E H

    1989-01-01

    When toxic shock syndrome toxin 1 was subjected to papain hydrolysis, two serologically active fragments of 16.3 kilodaltons (16K fragment) and 12.4 kilodaltons (12K fragment) were generated, whereas a third fragment of 9.7 kilodaltons (10K fragment) was inactive. The biologic activities of the fragments were evaluated in vitro by determining their ability to promote nonspecific proliferation of human peripheral blood mononuclear cells. The 12K fragment was significantly (P less than or equal to 0.013) more stimulatory than the 16K fragment. When human peripheral blood mononuclear cells were preincubated for a period of 24 h with various concentrations of the 16K fragment, followed by incubation with a constant amount (2 x 10(-2) ng/ml) of whole toxin, the level of DNA synthesis induced by the holotoxin was reduced by approximately 60% when compared with that of controls exposed to whole toxin alone. The 12K fragment did not demonstrate a similar blocking effect. Immunoblots of the toxic shock syndrome toxin 1 digest, which were exposed to monoclonal antibodies (MAbs) developed against native toxin, depicted the presence of two different antigenic regions (epitopes). One MAb, 8-5-7, which has been shown previously to inhibit the biologic activity of the holotoxin in vitro and in vivo, reacted primarily with the 12K fragment. A second MAb, 10-6-1, that did not neutralize interleukin-1 production reacted primarily with the 16K fragment. On the basis of the differential mitogenic responses and the identification of heterologous epitopes, it was concluded that the functional region of the holotoxin can be partitioned into at least two functional segments encompassed between amino acid residues 53 and 87 and between amino acid residues 88 and 194 on the polypeptide chain. Images PMID:2731989

  15. Immunoreactivity and amino acid content of fermented soybean products.

    PubMed

    Frias, Juana; Song, Young Soo; Martínez-Villaluenga, Cristina; González de Mejia, Elvira; Vidal-Valverde, Concepcion

    2008-01-09

    Food allergy has become a public health problem that continues to challenge both the public and the food industry. The objective of this research was the detection and quantification of the major human allergenic soy proteins and to study the reduction in immunoreactivity and improvement of amino acid content after fermentation of soybean flour. Fermentation was carried out in the solid state of cracked seeds inoculated with Aspergillus oryzae, Rhizopus oryzae, and Bacillus subtilis and in the liquid state of milled soybean flours fermented naturally by microorganisms present only in the seeds or by inoculation with Lactobacillus plantarum. ELISA and Western blot were used to quantify IgE antibody response, and HPLC was used to identify and quantify total amino acids. L. plantarum fermented soy flour showed the highest reduction in IgE immunoreactivity (96-99%) depending upon the sensitivity of the plasma used. Among the solid fermented products, the lowest reduction in immunoreactivity was obtained when mold strains, R. oryzae and A. oryzae, were used (66 and 68%, respectively, for human plasma 97.5 kUA/L). Among the solid fermented products, those inoculated with B. subtilis yielded a 81 and 86% reduction in immunoreactivity against both human plasma 97.5 IgE kUA/L and human pooled plasma samples, respectively. When soybean was subjected to liquid fermentation, most of the total amino acids increased significantly ( p < or = 0.05). In solid fermentation with R. oryzae, only Ala and Thr content improved. Fermentation can decrease soy immunoreactivity, and there is potential of developing nutritious hypoallergenic soy products.

  16. Non-granule PSA-NCAM immunoreactive neurons in the rat hippocampus.

    PubMed

    Nacher, Juan; Blasco-Ibáñez, José M; McEwen, Bruce S

    2002-03-15

    The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) continues to be expressed in the adult hippocampus, mainly in a subset of neurons located in the innermost portion of the granule cell layer. PSA-NCAM immunoreactive neurons have also been described outside this layer in humans, where they are severely reduced in schizophrenic brains. Given this important clinical implication, we were interested in finding whether similar neurons existed in the adult rat hippocampus and to characterize their distribution, morphology and phenotype. PSA-NCAM immunocytochemistry reveals labeled neurons in the subiculum, fimbria, alveus, hilus, and stratum oriens, lucidum and radiatum of CA3 and CA1. They are mainly distributed in the ventral hippocampus, and have polygonal or fusiform somata with multipolar or bipolar morphology. These neurons show long straight dendrites, which reach several strata and even enter the fimbria and the alveus. These dendrites are often varicose, appear devoid of excrescences and apparently do not show spines. Most of these neurons display GABA immunoreactivity and further analysis has shown that a subpopulation expresses calretinin, but not somatostatin, neuropeptide Y, parvalbumin, calbindin or NADPH diaphorase. Our study demonstrates that there is an important subpopulation of PSA-NCAM immunoreactive neurons, many of which can be considered interneurons, outside the rat granule cell layer, probably homologous to those described in the human hippocampus. The presence of the polysialylated form of NCAM in these neurons could indicate that they are undergoing continuous remodeling during adulthood and may have an important role in hippocampal structural plasticity.

  17. Routine Treatment of Cervical Cytological Cell Changes

    PubMed Central

    Huber, J.; Pötsch, B.; Gantschacher, M.; Templ, M.

    2016-01-01

    Introduction: Diagnosis and treatment of vaginal and cervical cytological cell changes are described in European and national guidelines. The aim of this data collection was to evaluate the remission rates of PAP III and PAP III D cytological findings in patients over a period of 3–4 months. Method: The current state of affairs in managing suspicious and cytological findings (PAP III, and III D) in gynecological practice was assessed in the context of a data collection survey. An evaluation over a period of 24 months was conducted on preventative measures, the occurrence and changes to normal/suspect/pathological findings and therapy management (for suspicious or pathological findings). Results: 307 female patients were included in the analysis. At the time of the survey 186 patients (60.6 %) had PAP III and 119 (38.8 %) had PAP III D findings. The spontaneous remission rate of untreated PAP III patients was 6 % and that of untreated PAP III D patients was 11 %. The remission rates of patients treated with a vaginal gel were 77 % for PAP III and 71 % for PAP III D. Conclusion: A new treatment option was used in gynecological practice on patients with PAP III and PAP III D findings between confirmation and the next follow-up with excellent success. PMID:27761030

  18. Will stem cells bring hope to pathological skin scar treatment?

    PubMed

    Li, Qiankun; Zhang, Cuiping; Fu, Xiaobing

    2016-08-01

    Pathological skin scars, such as keloids, aesthetically and psychosocially affect patients. The quest for scar reduction and the increasing recognition of patient satisfaction has led to the continued exploration of scar treatment. Stem cells are a promising source for tissue repair and regeneration. The multi-potency and secretory functions of these cells could offer possible treatments for pathological scars and have been examined in recent studies. Here, we analyze the factors that influence the formation of pathological skin scars, summarize recent research on pathological scar treatment with stem cells and elaborate on the possible mechanisms of this treatment. Additionally, other effects of stem cell treatments are also presented while evaluating potential side effects of stem cell-based pathological scar treatments. Thus, this review may provide meaningful guidance in the clinic for scar treatments with stem cells. Copyright © 2016. Published by Elsevier Inc.

  19. The significance of Epstein Barr Virus (EBV) & DNA Topoisomerase II alpha (DNA-Topo II alpha) immunoreactivity in normal oral mucosa, Oral Epithelial Dysplasia (OED) and Oral Squamous Cell Carcinoma (OSCC)

    PubMed Central

    Shamaa, Ali A; Zyada, Manal M; Wagner, Mathias; Awad, Sally S; Osman, Mohamed M; Azeem, Ali A Abdel

    2008-01-01

    Background Head and neck cancer including oral cancer is considered to develop by accumulated genetic alterations and the major pathway is cancerization from lesions such as intraepithelial dysplasia in oral leukoplakia and erythroplakia. The relationship of proliferation markers with the grading of dysplasia is uncertain. The involvement of EBV in oral carcinogenesis is not fully understood. Aim The present study was designed to investigate the role of EBV and DNA Topoisomerase II∝ (DNA-Topo II∝) during oral carcinogenesis and to examine the prognostic significance of these protein expressions in OSCCs. Methods Using specific antibodies for EBV and DNA-Topo II∝, we examined protein expressions in archival lesion tissues from 16 patients with oral epithelial dysplasia, 22 oral squamous cell carcinoma and 20 normal oral mucosa by immunohistochemistry. Clinical information was obtained through the computerized retrospective database from the tumor registry. Results DNA-Topo II∝ was expressed in all examined specimens. Analysis of Variance ANOVA revealed highly significant difference (P < 0.01) in young aged labial tissues and significant (P ≤ 0.05) in gingival and not significant (P > 0.05) in inferior surface of tongue and in hard palatal tissues. Significant differences were observed between OEDs and NSE (P < 0.001) and SCCs and controls (P < 0.001), also, significant differences could be observed between SCCs and OEDs. DNA-Topo II∝ expression was significantly higher in tumors of low differentiation versus tumors of moderate and high differentiation (P < 0.001), DNA-Topo II∝ expression was correlated with age, tumor size, tumor stage, node metastasis and tumor differentiation, but not with gender and tumor site. None of normal squamous epithelium (NSE) expressed EBV. Heterogenous reactivity for EBV was observed through the series of dysplasia and squamous cell carcinoma. Its expression increased progressively with lymph node metastasis and low tumor

  20. Reduced anchoring fibril formation and collagen VII immunoreactivity in feline dystrophic epidermolysis bullosa.

    PubMed

    Olivry, T; Dunston, S M; Marinkovich, M P

    1999-11-01

    Dystrophic epidermolysis bullosa was diagnosed in a cat with juvenile-onset epithelial sloughing of the oral mucosa, footpads, and haired skin. Dermoepidermal separation occurred in the absence of inflammation or cytolysis of basal epidermal cells. Collagen IV-specific immunostaining corroborated the fact that clefting took place below the epidermal basement membrane. Ultrastructural examination revealed that the proband's anchoring fibrils exhibited a filamentous morphology and were decreased in number compared with those in a normal cat. Finally, the attenuated immunoreactivity for collagen VII in our patient led us to suspect that its encoding gene, COL7A1, could be mutated in this case of feline dystrophic epidermolysis bullosa.

  1. Differences of calcium binding proteins immunoreactivities in the young hippocampal CA1 region from the adult following transient ischemic damage.

    PubMed

    Lee, Young Joo; Yan, Bing Chun; Park, Joon Ha; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Lee, Hui Young; Kim, Young-Myeong; Won, Moo-Ho; Cho, Jun Hwi

    2013-03-15

    It has been reported that the young were much more resistant to transient cerebral ischemia than in the adult. In the present study, we examined that about 90% of CA1 pyramidal cells in the adult gerbil hippocampus died at 4days after ischemia-reperfusion; however, in the young hippocampus, about 56% of them died at 7days after ischemia-reperfusion. We compared immunoreactivities and levels of calcium binding proteins (CBPs), such as calbindin 28k (CB-D28k), calretinin (CR) and parvalbumin (PV). The immunoreactivities and protein levels of all the CBPs in the young sham were higher than those in the adult sham. In the adult, the immunoreactivities and protein levels of all the CBPs were markedly decreased at 4days after ischemia-reperfusion, however, in the young, they were apparently maintained. At 7days after ischemia-reperfusion, they were decreased in the young, however, they were much higher than those in the adult. In brief, the immunoreactivities and levels of CBPs were not decreased in the ischemic CA1 region of the young 4days after transient cerebral ischemia. This finding indicates that the longer maintenance of CBPs may contribute to a less and more delayed neuronal death/damage in the young.

  2. Characterization of gastrin-releasing peptide immunoreactivity in distinct storage particles in guinea pig myenteric and Torpedo electromotor neurones.

    PubMed

    Shaw, C; Whittaker, V P; Agoston, D V

    1990-01-01

    Using high resolution centrifugal density-gradient separation of cytoplasmic extracts of guinea pig myenteric plexus and Torpedo electric tissue, we have succeeded in isolating fractions of storage particles rich in gastrin-releasing peptide (GRP). In extracts of myenteric plexus and gradients derived therefrom, the 10-amino acid GRP peptide (GRP-10) was the sole form present; this was bimodally distributed in the gradients, one peak copurifying with Golgi membranes and apparently consisting of immature storage particles, the other with other synaptophysin-rich neuropeptide-containing particles. In extracts of electric organ, a tissue rich in cholinergic electromotor nerve terminals, and gradients derived therefrom, GRP-like immunoreactivity behaved in gel permeation and reversed phase high performance liquid chromatography like the 27-amino acid peptide (GRP-27). About half of the immunoreactivity sedimented in the centrifugal gradient to a region rich in particles containing vasoactive intestinal polypeptide-like immunoreactivity; the remainder was recovered in a very dense region of the gradient containing larger membrane fragments, including synaptosomes. The electromotor nerves and cell bodies also contained GRP-27-like immunoreactivity in relatively high concentration as did the Torpedo gut. It is concluded that this GRP-like peptide is packaged in dense storage particles in the electromotor neurones.

  3. Stem cells: research tools and clinical treatments.

    PubMed

    Fahey, Michael C; Wallace, Euan M

    2011-09-01

    The term 'stem cell' most commonly refers to embryonic stem cells, particularly in the lay media; however, it also describes other cell types. A stem cell represents a cell of multi-lineage potential with the ability for self-renewal. It is now clear that the plasticity and immortality of a given stem cell will depend on what type of stem cell it is, whether an embryonic stem cell, a fetal-placental stem cell or an adult stem cell. Stem cells offer great promise as cell-based therapies for the future. With evolving technology, much of the socio-political debate regarding stem cells can now be avoided. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  4. Vascular integrin immunoreactivity is selectively lost on capillaries during rat focal cerebral ischemia and reperfusion.

    PubMed

    Burggraf, Dorothe; Trinkl, Andreas; Burk, Jan; Martens, Helge K; Dichgans, Martin; Hamann, Gerhard F

    2008-01-16

    The alpha1-integrin cell adhesion molecules, the principal endothelial receptors for basal lamina (BL) components disappear during transient ischemia. The current study investigated the localization of integrins, the time dependency and vessel size selectivity in the normal rat brain before and after 3 h of cerebral ischemia (I3) and reperfusion (R). Additionally we looked for a correlation to the amount of extravasation and hemorrhage. In the normal brain, there was a clear immunoreactivity for the alpha1, alpha6, and beta1 integrins on the endothelial perivascular cells. After I3 followed by variable reperfusion intervals of 0, 9, and 24 h (R0, R9 and R24; respectively), the number of vessels and staining intensity indicating immunoreactivity in the ischemic area were compared with the contralateral side. The number of the beta1-immunoreactive capillaries was steadily decreasing with the reperfusion time: -12+/-5%, -15+/-7% and -43+/-8% at I3R0, I3R9 and I3R24 (all p<0.05). The beta1-staining intensity decreased homogeneously to -21% at I3R24 (p<0.05). Vascular staining for alpha1 was affected similarly. Interestingly, the alpha6-positive arterioles/venules were also reduced by -21% at I3R24 (p<0.05) in a diameter-selective way on vessels with diameters larger than 15 mum. The correlated break-down of the blood-brain-barrier was demonstrated by the significant rise of the extravasation of BSA from the perfusion solution as well as the increased hemorrhage after MCAO/R (hemoglobin: 103+/-4% versus 330+/-17%; BSA 101+/-3% versus 132+/-9% in I0R0 and I3R24, respectively). The prominent capillary vulnerability contributes significantly to the impairment of the microvascular integrity and after ischemia and reperfusion.

  5. GABAergic Neurons Immunoreactive for Calcium Binding Proteins are Reduced in the Prefrontal Cortex in Major Depression

    PubMed Central

    Rajkowska, Grazyna; O'Dwyer, Gillian; Teleki, Zsofia; Stockmeier, Craig A; Miguel-Hidalgo, Jose Javier

    2009-01-01

    Post-mortem morphometric studies report reductions in the average density and size of cortical neurons in the dorsolateral prefrontal cortex (dlPFC) and orbitofrontal cortex (ORB) in major depressive disorder (MDD). The contribution of specific neuronal phenotypes to this general pathology in depression is still unclear. Post-mortem sections from the dlPFC and ORB regions of 14 subjects with MDD and 11 controls were immunostained to visualize calbindin-immunoreactive (CB-IR) and parvalbumin-immunoreactive (PV-IR) presumptive GABAergic neurons. A three-dimensional cell counting probe was used to assess the cell packing density and size of CB-IR neurons in layers II + IIIa and PV-IR neurons in layers III–VI. The density of CB-IR neurons was significantly reduced by 50% in depression in the dlPFC and there was a trend toward reduction in the ORB. The size of CB-IR somata was significantly decreased (18%) in depression in the dlPFC with a trend toward reduction in the ORB. In contrast, there was no difference in the density of PV-IR neurons between the depressed and control groups in the dlPFC. The size of PV-IR neuronal soma was unchanged in depressed compared to control subjects in either dlPFC or ORB. In depression, subpopulations of GABAergic neurons may be affected differently in dlPFC and ORB. A significant reduction in the density and size of GABAergic interneurons immunoreactive for calcium binding proteins was found predominantly in the dlPFC region. These cellular changes are consistent with recent neuroimaging studies revealing a reduction in the cortical levels of GABA in depression. PMID:17063153

  6. Magnetically promoted rapid immunoreactions using functionalized fluorescent magnetic beads: a proof of principle.

    PubMed

    Sakamoto, Satoshi; Omagari, Kenshi; Kita, Yoshinori; Mochizuki, Yusuke; Naito, Yasuyuki; Kawata, Shintaro; Matsuda, Sachiko; Itano, Osamu; Jinno, Hiromitsu; Takeuchi, Hiroya; Yamaguchi, Yuki; Kitagawa, Yuko; Handa, Hiroshi

    2014-04-01

    Accurate detection and monitoring of disease-related biomarkers is important in understanding pathophysiology. We devised a rapid immunoreaction system that uses submicrometer polymer-coated fluorescent ferrite (FF) beads containing both ferrites (magnetic iron oxide) and fluorescent europium complexes. FF beads were prepared by encapsulation of hydrophobic europium complexes into the polymer layers of affinity magnetic beads using organic solvent. A sandwich immunoassay using magnetic collection of antibody-coated FF beads to a specific place was performed. Brain natriuretic peptide and prostate-specific antigen were selected as target detection antigens to demonstrate the feasibility of this approach. An immunohistochemical staining using magnetic collection of antibody-coated FF beads onto carcinoma cell samples was also performed. The sandwich immunoassays, taking advantage of the magnetic collection of antibody-coated FF beads, detected target antigens within 5 min of sample addition. Without magnetic collection, the sandwich immunoassay using antibody-coated FF beads required long times, similar to conventional immunoassays. Using the magnetic collection of antibody-coated FF beads, immunohistochemical staining enabled discrimination of carcinoma cells within 20 min. This proof of principle system demonstrates that immunoreactions involving the magnetic collection of antibody-coated FF beads allow acceleration of the antigen-antibody reaction. The simple magnetic collection of antibody-coated FF beads to a specific space enables rapid detection of disease-related biomarkers and identification of carcinoma cells.

  7. Immunoreactive GnRH Type I Receptors in the Mouse and Sheep Brain

    PubMed Central

    Albertson, Asher J.; Navratil, Amy; Mignot, Mallory; Dufourny, Laurence; Cherrington, Brian; Skinner, Donal C.

    2008-01-01

    GnRH has been implicated in an array of functions outside the neuroendocrine reproductive axis. Previous investigations have reported extensive GnRH binding in numerous sites and this has been supported by in situ hybridization studies reporting GnRH receptor mRNA distribution. The present study on mice and sheep supports and extends these earlier investigations by revealing the distribution of cells immunoreactive for the GnRH receptor. In addition to sites previously shown to express GnRH receptors such as the hippocampus, amygdala and the arcuate nucleus, the improved resolution afforded by immunocytochemistry detected cells in the mitral cell lay of the olfactory bulb as well as the central grey of the mesencephalon. In addition, GnRH receptor immunoreactive neurons in the hippocampus and mesencephalon of the sheep were shown to colocalize with estrogen receptor β. Although GnRH may act at some of these sites to regulate reproductive processes, evidence is accumulating to support an extra-reproductive role for this hypothalamic decapeptide. PMID:18439800

  8. Principles of treatment for mast cell tumors.

    PubMed

    Govier, Susanne M

    2003-05-01

    Mast cell tumors (MCT) are the most common malignant cutaneous tumors that occur in dogs. They are most commonly found on the trunk, accounting for approximately 50% to 60% of all sites. MCTs associated with the limbs account for approximately 25% of all sites. Cutaneous MCTs have a wide variety of clinical appearances. Histologic grade is the most consistent prognostic factor available for dogs. MCTs located at 'nail bed' (subungual), inguinal/preputial area, and any mucocutaneous area like perineum or oral cavity carry a guarded prognosis and tend to metastasize. MCTs usually exfoliate well and are cytologically distinct. The extent of staging procedures following fine-needle aspirate cytologic diagnosis is based on the presence or absence of negative prognostic indicators. Surgery is the treatment of choice for solitary MCTs with no evidence of metastasis. Reponses rates to chemotherapy, (partial response) as high as 78% have been reported, and preliminary evidence suggests that multiagent (prednisone and vinblastine) protocols may confer a higher response rate than single-agent therapy. MCTs are the second most common cutaneous tumor in the cat. There are two distinct forms of cutaneous MCTs in the cat. The more common form is the mastocytic form, and the less common is the histiocytic form. Unlike in the dog, the head and neck are the most common sites for MCTs in the cat followed by the trunk and limbs. Cats with disseminated forms of MCT often present with systemic signs of illness, which include depression, anorexia, weight loss, and vomiting. The diagnosis and staging of MCTs in cats is similar to that in the dog. As with dogs with cutaneous MCTs, surgery is the treatment of choice. Little is known about the effectiveness of adjunctive chemotherapy options for cutaneous MCTs. Adjunctive chemotherapy does not appear to increase survival times.

  9. Functional Networks of Parvalbumin-immunoreactive Neurons in Cat Auditory Cortex

    PubMed Central

    Yuan, Kexin; Shih, Jonathan Y.; Winer, Jeffery A.; Schreiner, Christoph E.

    2011-01-01

    Inhibitory interneurons constitute ~20% of auditory cortical cells and are essential for shaping sensory processing. Connectivity patterns of interneurons in relation to functional organization principles are not well understood. We contrasted the connection patterns of parvalbumin-immunoreactive cells in two functionally distinct cortical regions, the tonotopic, narrowly frequency-tuned module (cNB) of cat central primary auditory cortex (AI), and the non-tonotopic, broadly tuned second auditory field (AII). Interneuronal connectivity patterns and laminar distribution were identified by combining a retrograde tracer (WAHG) with labeling of the Ca2+ binding protein, parvalbumin (Pv), a marker for the GABAergic interneurons usually described physiologically as fast-spiking neurons. In AI, PV+ cells constituted 13% of the retrograde labeled cells in the immediate vicinity of the injection site, compared to 10% in AII. The retrograde labeling of Pv+ cells along isofrequency countours was confined to cNB. The spatial spread of labeled excitatory neurons in AI was more than twice that found for Pv+ cells. By contrast, in AII, the spread of Pv+ cells was nearly equal to that of excitatory neurons. The retrograde labeling of Pv+ cells was anisotropic in AI and isotropic in AII. This demonstration of inhibitory networks in auditory cortex reveals that the connections of cat GABAergic AI and AII cells follow different anatomical plans and, thus, contribute differently to the shaping of neural response properties. The finding that local connectivity of parvalbumin-immunoreactive neurons in AI is closely aligned with spectral integration properties demonstrates the critical role of inhibition in creating distinct processing modules in AI. PMID:21917816

  10. Treatment Options by Stage (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  11. Treatment Options By Stage (Ovarian Germ Cell Tumors)

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  12. Nonthermal Plasma-Mediated Cancer Cell Death; Targeted Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Choi, Byul-Bora; Choi, Yeon-Sik; Lee, Hae-Jun; Lee, Jae-Koo; Kim, Uk-Kyu; Kim, Gyoo-Cheon

    Non-thermal air plasma can kill cancer cells. However, there is no selectivity between normal and cancer cells. Therefore, cancer specific antibody conjugated gold nanoparticle (GNP) was pretreated before plasma irradiation. Stimulation of antibody conjugated GNP by plasma treatment resulted in a significant decrease in viability of cancer cells. This technology shows the feasibility of using plasma therapy for killing cancer cells selectively.

  13. Stem cell therapy for neuropathic pain treatment

    PubMed Central

    Siniscalco, D; Rossi, F; Maione, S

    2007-01-01

    Pain initiated or caused by a primary lesion or dysfunction in the nervous system is defined as neuropathic pain. About 75 -150 million people in the United States are suffering for chronic pain disorder. Neuropathic pain has a great impact on the human wellbeing. It is very debilitating and often has an associated degree of depression that contributes to decreasing the quality of life. Moreover, the management of chronic pain is costly to the health care system. Pain is a national healthcare priority in US: the United States Congress has declared the present decade (2001-2010) as the “Decade of Pain Control and Research”. Neuropathic pain is a very complex disease, involving several molecular pathways. Due to its individual character, its treatment is extremely difficult. Current available drugs are usually not acting on the several mechanisms underlying the generation and propagation of pain. Nowadays, pain research is focusing on newer molecular ways, such as stem cell therapy, gene therapy, and viral vectors for delivery of biologic anti-nociceptive molecules. These methods could provide a new therapeutic approach to neuropathic pain relief. PMID:24693013

  14. Identification of initially appearing glycine-immunoreactive neurons in the embryonic zebrafish brain.

    PubMed

    Moly, Pricila Khan; Ikenaga, Takanori; Kamihagi, Chihiro; Islam, A F M Tariqul; Hatta, Kohei

    2014-06-01

    Glycine is a major inhibitory neurotransmitter in the central nervous system of vertebrates. Here, we report the initial development of glycine-immunoreactive (Gly-ir) neurons and fibers in zebrafish. The earliest Gly-ir cells were found in the hindbrain and rostral spinal cord by 20 h post-fertilization (hpf). Gly-ir cells in rhombomeres 5 and 6 that also expressed glycine transporter 2 (glyt2) mRNA were highly stereotyped; they were bilaterally located and their axons ran across the midline and gradually turned caudally, joining the medial longitudinal fascicles in the spinal cord by 24 hpf. Gly-ir neurons in rhombomere 5 were uniquely identified, since there was one per hemisegment, whereas the number of Gly-ir neurons in rhombomere 6 were variable from one to three per hemisegment. Labeling of these neurons by single-cell electroporation and tracing them until the larval stage revealed that they became MiD2cm and MiD3cm, respectively. The retrograde labeling of reticulo-spinal neurons in Tg(glyt2:gfp) larva, which express GFP in Gly-ir cells, and a genetic mosaic analysis with glyt2:gfp DNA construct also supported this notion. Gly-ir cells were also distributed widely in the anterior brain by 27 hpf, whereas glyt2 was hardly expressed. Double staining with anti-glycine and anti-GABA antibodies demonstrated distinct distributions of Gly-ir and GABA-ir cells, as well as the presence of doubly immunoreactive cells in the brain and placodes. These results provide evidence of identifiable glycinergic (Gly-ir/glyt2-positive) neurons in vertebrate embryos, and they can be used in further studies of the neurons' development and function at the single-cell level.

  15. gamma. sub 2 -MSH immunoreactivity in the human heart

    SciTech Connect

    Ekman, R.; Bjartell, A.; Lisander, J.; Edvinsson, L. )

    1989-01-01

    In patients undergoing aorto-coronary by-pass surgery, we found a 26% arterial-venous difference of immunoreactive {gamma}{sub 2}-melanocytostimulating hormone (MSH), a proopiomelanocortin (POMC) derived peptide known to possess profound hemodynamic effects. These results prompted an investigation of the presence of {gamma}{sub 2}-MSH in the human heart. Using a two-step extraction procedure, regions of human hearts were examined by sensitive and specific radioimmunoassays to determine their {gamma}{sub 2}-MSH content. Mean ({plus minus} SEM) concentrations of 0.14 {plus minus} 0.023 pmol/g and 0.12 {plus minus} 0.017 were found in right atrium and right ventricle, respectively. High performance liquid chromatography indicated that 80-90 % of the total immunoreactivity eluted in a single sharp peak in a position identical to that of synthetic {gamma}{sub 2}-MSH.

  16. The effect of experimental ischaemia and excitatory amino acid agonists on the GABA and serotonin immunoreactivities in the rabbit retina.

    PubMed

    Osborne, N N; Herrera, A J

    1994-04-01

    The aim of the described experiments was to use immunohistochemistry to visualize the release of GABA from specific retinal amacrine cells following ischaemia and to establish the involvement of defined glutamatergic receptors. In initial experiments, rabbit retinas were exposed in vitro to excitatory amino acid agonists alone or in combination with a putative antagonist, or in physiological solution lacking oxygen and glucose, or in solution containing potassium cyanide for 45 min at 37 degrees C. The nature of the GABA immunoreactivity was then examined by immunohistochemistry. In other in vitro experiments, retinas were first allowed to accumulate exogenous serotonin before exposing the tissues to the combinations as described. These tissues were then processed immunohistochemically for the localization of serotonin. In yet other experiments, the intraocular pressure of a rabbit's eye was raised to about 110 mmHg for 60 min and a reperfusion time of 45 min allowed before dissecting the retina and processing for the localization of GABA immunoreactivity. The other eye served as a control. Of the excitatory amino acid agonists tested, only N-methyl-D-aspartate, kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid caused a change in the GABA immunoreactivity. The N-methyl-D-aspartate effect was specifically antagonized by dizocilpine maleate, dextromethorphan and memantine, and was characterized by a reduction in the number of GABA-immunoreactive perikarya. The GABA "staining" in the inner plexiform layer also appeared as four clear bands. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- and kainate-induced effects were both antagonized by 6-cyano-2,3-dihydroxy-7-nitroquinoxaline-2,3-dione and partially by kynurenic acid at the concentrations used. Here, the amount of GABA-positive perikarya was greatly reduced and three immunoreactive bands appeared in the inner plexiform layer. However, for low concentrations of alpha-amino-3-hydroxy

  17. Nerve growth factor receptor immunoreactivity is transiently associated with the subplate neurons of the mammalian cerebral cortex

    SciTech Connect

    Allendoerfer, K.L.; Shelton, D.L.; Shooter, E.M.; Shatz, C.J. )

    1990-01-01

    Nerve growth factor and its receptor (NGFR) are known to be present in diverse embryonic and neonatal central nervous system tissues, including the cerebral cortex. However, the identity of the cortical cells expressing NGFR immunoreactivity has not been established. We have used immunolabeling coupled with (3H)thymidine autoradiography to identify such cells in ferret and cat brain. Polyclonal antibodies raised against a synthetic peptide corresponding to a conserved amino acid sequence of the NGFR were used for this purpose. Western (immunologic) blot analyses show that these antibodies specifically recognize NGFR and precursor proteins. In both species, NGFR immunoreactivity is primarily associated with the early generated and transient subplate neuron population of the developing neocortex, as indicated by the following evidence: the immunoreactive cells (i) are located directly beneath the developing cortical plate, (ii) frequently have the inverted pyramid shape characteristic of subplate neurons, and (iii) can be labeled by an injection of (3H)thymidine on embryonic day (E) 28, a time when only subplate neurons are being generated. Intense NGFR immunostaining is seen on the cell bodies of these neurons as early as E30, several days after their last round of cell division, and this immunostaining remains strong for approximately 3 weeks. The NGFR immunoreactivity begins to decline around E52 and has disappeared from the region altogether by E60, at which time subplate neurons begin to die. The cellular localization and timing of expression suggest that the NGFR may play a role in the maintenance of subplate neurons and in the maturation of the cerebral cortex.

  18. Distribution of secretoneurin-like immunoreactivity in comparison with that of substance P in the human brain stem.

    PubMed

    Marksteiner, J; Saria, A; Hinterhuber, H

    1994-10-01

    Secretoneurin is a peptide of 33 amino acids generated in the brain by proteolytic processing of secretogranin II which is a member of the chromogranin/secretogranin family. The distribution of this newly characterized peptide was investigated by immunocytochemistry in the human brain stem. The staining pattern of secretoneurin-like immunoreactivity was compared with that of substance P in adjacent sections. Secretoneurin-like immunoreactivity appeared mainly in dot- and fiber-like structures with densities varying from low to very high. Only a low number of secretoneurin-immunoreactive perikarya was found. Pericellular staining of both secretoneurin-immunopositive and immunonegative cells was frequently observed in the area of the central gray, in the reticular formation and in the solitary nuclear complex. The medial part of the substantia nigra pars reticulata, the nucleus interpeduncularis, the area of the central gray, the raphe complex and the inferior olive displayed a high density of secretoneurin-like immunoreactivity. Furthermore, a very prominent staining was found in the medial, dorsal and gelatinous subnuclei of the solitary tract and the dorsal motor nucleus of vagus. The substantia gelatinosa of the caudal trigeminal nucleus and spinal cord were also very strongly secretoneurin-immunopositive. The staining patterns of secretoneurin- and substance P-like immunoreactivities were to a certain extent overlapping in several areas. The highest degree of coincidence was found in the substantia gelatinosa. This study demonstrated that secretoneurin is distinctly distributed in the human brain stem. Its distributional pattern indicates a role particularly in the modulation of afferent pain transmission and in the regulation of autonomic functions.

  19. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats.

    PubMed

    Fırat, Uğur; Kaya, Savaş; Cim, Abdullah; Büyükbayram, Hüseyin; Gökalp, Osman; Dal, Mehmet Sinan; Tamer, Mehmet Numan

    2012-01-01

    Eryptosis is a term to define apoptosis of erythrocytes. Oxidative stress and hyperglycemia, both of which exist in the diabetic intravascular environment, can trigger eryptosis of erythrocytes. In this experimental study, it is presented that the majority of erythrocytes shows caspase-3 immunoreactivity in streptozocin- (STZ)-induced diabetic rats. Besides that, caspase-3 positive erythrocytes are aggregated and attached to vascular endothelium. In conclusion, these results may start a debate that eryptosis could have a role in the diabetic complications.

  20. Identification of immunoreactive proteins of Brucella melitensis by immunoproteomics.

    PubMed

    Zhao, Zhongpeng; Yan, Fang; Ji, Wenhui; Luo, Deyan; Liu, Xin; Xing, Li; Duan, Yueqiang; Yang, Penghui; Shi, Xiumin; Lu, Zhong; Wang, Xiliang

    2011-09-01

    Infection with Brucella causes brucellosis, a chronic disease in humans, which induces abortion and sterility in livestock. Among the different Brucella species, Brucella melitensis is considered the most virulent and is the predominant species associated with outbreaks in China. To date, no safe human vaccine is available against Brucella infection. The currently used live vaccines against Brucella in livestock induce antibodies that interfere with the diagnosis of field infection in vaccinated animals, which is harmful to eradication programs. However, there is as yet no complete profile of immunogenic proteins of B. melitensis. Towards the development of a safer, equally efficacious, and field infection-distinguishable vaccine, we used immunoproteomics to identify novel candidate immunogenic proteins from B. melitensis M5. Eighty-eight immunoreactive protein spots from B. melitensis M5 were identified by Western blotting and were assigned to sixty-one proteins by mass spectrometry, including many new immunoreactive proteins such as elongation factor G, F0F1 ATP synthase subunit beta, and OMP1. These provide many candidate immunoreactive proteins for vaccine development.

  1. Immunoreactive neuronal pathways of growth hormone-releasing hormone (GRH) in the brain and pituitary of the teleost Gadus morhua.

    PubMed

    Pan, J X; Lechan, R M; Lin, H D; Jackson, I M

    1985-01-01

    Using an antiserum directed against the C-terminus of hGRH(1-44)NH2 and another recognizing the mid portion to C-terminal of hGRH(1-40)OH, we identify two immunocytochemically distinct GRH-immunoreactive systems in the brain of the codfish, Gadus morhua. The antiserum directed against GRF(1-44)NH2 stains cell bodies exclusively in the rostral pars distalis. The other antiserum immunoreactive with GRF(1-40)OH reacts with a population of parvocellular and magnocellular neuronal cell bodies in the hypothalamus and with two major axonal pathways which project toward the median eminence and terminate primarily in the pars nervosa. These results indicate the presence of at least two forms of hGRH-like peptides in the teleost which may have different roles in the regulation of pituitary function.

  2. Males but not females show differences in calbindin immunoreactivity in the dorsal thalamus of the mouse model of fragile X syndrome.

    PubMed

    Giráldez-Pérez, Rosa M; Avila, M Nieves; Feijóo-Cuaresma, Mónica; Heredia, Raúl; De Diego-Otero, Yolanda; Real, M Ángeles; Guirado, Salvador

    2013-03-01

    Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of the Fmr1 gene product, fragile X mental retardation protein. Here we analyze the immunohistochemical expression of calcium-binding proteins in the dorsal thalamus of Fmr1 knockout mice of both sexes and compare it with that of wildtype littermates. The spatial distribution pattern of calbindin-immunoreactive cells in the dorsal thalamus was similar in wildtype and knockout mice but there was a notable reduction in calbindin-immunoreactive cells in midline/intralaminar/posterior dorsal thalamic nuclei of male Fmr1 knockout mice. We counted the number of calbindin-immunoreactive cells in 18 distinct nuclei of the dorsal thalamus. Knockout male mice showed a significant reduction in calbindin-immunoreactive cells (range: 36-67% lower), whereas female knockout mice did not show significant differences (in any dorsal thalamic nucleus) when compared with their wildtype littermates. No variation in the calretinin expression pattern was observed throughout the dorsal thalamus. The number of calretinin-immunoreactive cells was similar for all experimental groups as well. Parvalbumin immunoreactivity was restricted to fibers and neuropil in the analyzed dorsal thalamic nuclei, and presented no differences between genotypes. Midline/intralaminar/posterior dorsal thalamic nuclei are involved in forebrain circuits related to memory, nociception, social fear, and auditory sensory integration; therefore, we suggest that downregulation of calbindin protein expression in the dorsal thalamus of male knockout mice should be taken into account when analyzing behavioral studies in the mouse model of FXS. Copyright © 2012 Wiley Periodicals, Inc.

  3. Correlation between Ocular Demodex Infestation and Serum Immunoreactivity to Bacillus Proteins in Patients with Facial Rosacea

    PubMed Central

    Li, Jianjing; O'Reilly, Niamh; Sheha, Hosam; Katz, Raananah; Raju, Vadrevu K.; Kavanagh, Kevin; Tseng, Scheffer C. G.

    2010-01-01

    Purpose To investigate correlation between ocular Demodex infestation and serum. Design A prospective study to correlate clinical findings with laboratory data. Participants We consecutively enrolled 59 patients: 34 men and 25 women with a mean age of 60.4±17.6 years (range, 17–93). Methods Demodex counting was performed based on lash sampling. Serum immunoreactivity to two 62-kDa and 83-kDa proteins derived from B oleronius was determined by Western blot analysis. Facial rosacea, lid margin, and ocular surface inflammation were documented by photography and graded in a masked fashion. Main Outcome Measures Statistical significance based on correlative analyses of clinical and laboratory data. Results These 59 patients were age matched, but not gender matched, regarding serum immunoreactivity, ocular Demodex infestation, or facial rosacea. There was a significant correlation between serum immunoreactivity and facial rosacea (P = 0.009), lid margin inflammation (P = 0.040), and ocular Demodex infestation (P = 0.048), but not inferior bulbar conjunctival inflammation (P = 0.573). The Demodex count was significantly higher in patients with positive facial rosacea (6.6±9.0 vs. 1.9±2.2; P = 0.014). There was a significant correlation of facial rosacea with lid margin inflammation (P = 0.016), but not with inferior bulbar conjunctival inflammation (P = 0.728). Ocular Demodex infestation was less prevalent in patients with aqueous tear-deficiency dry eye than those without (7/38 vs. 12/21; P = 0.002). Conclusions The strong correlation provides a better understanding of comorbidity between Demodex mites and their symbiotic B oleronius in facial rosacea and blepharitis. Treatments directed to both warrant future investigation. PMID:20079929

  4. HNK-1 immunoreactivity during early morphogenesis of the head region in a nonmodel vertebrate, crocodile embryo.

    PubMed

    Kundrát, Martin

    2008-11-01

    The present study examines HNK-1 immunoidentification of a population of the neural crest (NC) during early head morphogenesis in the nonmodel vertebrate, the crocodile (Crocodylus niloticus) embryos. Although HNK-1 is not an exclusive NC marker among vertebrates, temporospatial immunoreactive patterns found in the crocodile are almost consistent with NC patterns derived from gene expression studies known in birds (the closest living relatives of crocodiles) and mammals. In contrast to birds, the HNK-1 epitope is immunoreactive in NC cells at the neural fold level in crocodile embryos and therefore provides sufficient base to assess early migratory events of the cephalic NC. I found that crocodile NC forms three classic migratory pathways in the head: mandibular, hyoid, and branchial. Further, I demonstrate that, besides this classic phenotype, there is also a forebrain-derived migratory population, which consolidates into a premandibular stream in the crocodile. In contrast to the closely related chick model, crocodilian premandibular and mandibular NC cells arise from the open neural tube suggesting that species-specific heterochronic behavior of NC may be involved in the formation of different vertebrate facial phenotypes.

  5. Glucose transporter-1 (GLUT-1) immunoreactivity in benign, premalignant and malignant lesions of the gallbladder.

    PubMed

    Legan, Mateja; Tevžič, Spela; Tolar, Ana; Luzar, Boštjan; Marolt, Vera Ferlan

    2011-03-01

    GLUT-1 is a transmembrane glucose transport protein that allows the facilitated transport of glucose into cells, normally expressed in tissues which depend mainly on glucose metabolism. Enhanced expression of GLUT-1 can also be found in a large spectrum of carcinomas. This study aimed to investigate GLUT-1 expression in gallbladder tissue: from normal tissue samples, hyperplasias, low-grade and high-grade dysplasias to gallbladder carcinomas. In all, 115 archived samples of gallbladder tissue from 68 patients, presented after cholecystectomy, were immunohistochemically stained for GLUT-1. According to the intensity of GLUT-1 immunoreactivity, samples were divided into negative (stained 0-10% of cells stained), positive with weak to moderate (10-50%) and positive with strong (>50%) GLUT-1 expression. The GLUT-1 immunoreactivity of the samples showed a characteristic increase from premalignant lesions to carcinomas. Normal gallbladder tissue samples did not express GLUT-1 (100%). Weak expression was shown only focally in hyperplasias, but to a greater extent with low-grade dysplasias (20%), high-grade dysplasias (40%) and carcinomas (51.8%). Normal gallbladder tissue is GLUT-1 negative. GLUT-1 expression in carcinoma tissue is significantly higher than in dysplastic lesions. Strong GLUT-1 expression indicates 100% specificity for detecting gallbladder carcinomas. Therefore, GLUT-1 is a candidate as a diagnostic as well as a tissue prognostic marker in gallbladder carcinoma patients.

  6. HNK-1 immunoreactivity during early morphogenesis of the head region in a nonmodel vertebrate, crocodile embryo

    NASA Astrophysics Data System (ADS)

    Kundrát, Martin

    2008-11-01

    The present study examines HNK-1 immunoidentification of a population of the neural crest (NC) during early head morphogenesis in the nonmodel vertebrate, the crocodile ( Crocodylus niloticus) embryos. Although HNK-1 is not an exclusive NC marker among vertebrates, temporospatial immunoreactive patterns found in the crocodile are almost consistent with NC patterns derived from gene expression studies known in birds (the closest living relatives of crocodiles) and mammals. In contrast to birds, the HNK-1 epitope is immunoreactive in NC cells at the neural fold level in crocodile embryos and therefore provides sufficient base to assess early migratory events of the cephalic NC. I found that crocodile NC forms three classic migratory pathways in the head: mandibular, hyoid, and branchial. Further, I demonstrate that, besides this classic phenotype, there is also a forebrain-derived migratory population, which consolidates into a premandibular stream in the crocodile. In contrast to the closely related chick model, crocodilian premandibular and mandibular NC cells arise from the open neural tube suggesting that species-specific heterochronic behavior of NC may be involved in the formation of different vertebrate facial phenotypes.

  7. Dopamine D1 and D2 Receptor Immunoreactivities in the Arcuate-Median Eminence Complex and their Link to the Tubero-Infundibular Dopamine Neurons

    PubMed Central

    Romero-Fernandez, W.; Borroto-Escuela, D.O.; Vargas-Barroso, V.; Narváez, M.; Di Palma, M.; Agnati, L.F.; Sahd, J. Larriva

    2014-01-01

    Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tuberoinfundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially

  8. Distribution of enkephalin-like immunoreactivity in the central nervous system of the rainbow trout: an immunocytochemical study.

    PubMed Central

    Vecino, E; Piñuela, C; Arévalo, R; Lara, J; Alonso, J R; Aijón, J

    1992-01-01

    The distribution of enkephalin-like immunoreactive (ELI) cell bodies and fibres in the brain of the teleost Salmo gairdneri L. was demonstrated with the indirect peroxidase-antiperoxidase immunocytochemical technique using a highly specific antiserum. In the telencephalon, ELI cell bodies were located in the area ventralis. In the diencephalon, they were found in the nucleus ventromedialis of the thalamus, nucleus lateralis tuberis, nucleus recessus lateralis, and nucleus recessus posterioris. In the mesencephalic tegmentum, ELI cell bodies were found in the nucleus of the rostral mesencephalic tegmentum, and in a group of neurons which was located dorsal to the nucleus of the rostral mesencephalic tegmentum. In the medial torus semicircularis, small numbers of immunoreactive cell bodies were found. In the cerebellum, numerous cell bodies were observed in the granule cell layer and at the border between the granular and molecular layer. ELI cell bodies were also seen in the nucleus tegmenti dorsalis lateralis and nucleus fasciculi solitarii. ELI fibres were widely distributed in the rainbow trout brain. The highest density of immunoreactive fibres was found in the area ventralis telencephali, the mesencephalic tegmentum, the stratum opticum of the optic tectum, the central gray of the brainstem, the caudal part of the fasciculi solitarii and the dorsal horn of the spinal cord. In the stratum fibrosum et griseum superficiale, stratum griseum centrale and stratum album centrale of the optic tectum, a moderate number of immunoreactive fibres was observed. In the olfactory bulb only a few immunoreactive fibres were present. No effect in the labelling was found after colchicine injections. These results provide the first complete mapping of the ELI in a fish brain. It is clear that enkephalins show a similar distribution pattern in Salmo gairdneri to that in other vertebrates; however, the number of ELI cell bodies in the fish brain is smaller than in land vertebrates

  9. Stem cell therapy in treatment of different diseases.

    PubMed

    Larijani, Bagher; Esfahani, Ensieh Nasli; Amini, Peyvand; Nikbin, Behrouz; Alimoghaddam, Kamran; Amiri, Somayeh; Malekzadeh, Reza; Yazdi, Nika Mojahed; Ghodsi, Maryam; Dowlati, Yahya; Sahraian, Mohammad Ali; Ghavamzadeh, Ardeshir

    2012-01-01

    Stem cells are undifferentiated cells with the ability of proliferation, regeneration, conversion to differentiated cells and producing various tissues. Stem cells are divided into two categories of embryonic and adult. In another categorization stem cells are divided to Totipotent, Multipotent and Unipotent cells.So far usage of stem cells in treatment of various blood diseases has been studied (such as lymphoblastic leukemia, myeloid leukemia, thalassemia, multiple myeloma and cycle cell anemia). In this paper the goal is evaluation of cell therapy in treatment of Parkinson's disease, Amyotrophic lateral sclerosis, Alzheimer, Stroke, Spinal Cord Injury, Multiple Sclerosis, Radiation Induced Intestinal Injury, Inflammatory Bowel Disease, Liver Disease, Duchenne Muscular Dystrophy, Diabetes, Heart Disease, Bone Disease, Renal Disease, Chronic Wounds, Graft-Versus-Host Disease, Sepsis and Respiratory diseases. It should be mentioned that some disease that are the target of cell therapy are discussed in this article.

  10. Polyclonal antibody localizes glia maturation factor beta-like immunoreactivity in neurons and glia.

    PubMed

    Wang, B R; Zaheer, A; Lim, R

    1992-09-18

    A rabbit polyclonal antibody (91-01) was raised against recombinant human glia maturation factor beta (r-hGMF-beta). The antibody did not cross-react with a number of other growth factors on ELISA test. When compared with the monoclonal antibody G2-09 previously obtained, 91-01 immunoblotted the same protein band in rat brain extract. However, unlike G2-09 which immunostained only astrocytes and Bergmann glia, 91-01 stained neurons as well. Many but not all neurons in the central and peripheral nervous system were positive for GMF-beta. The larger cell population stained by the polyclonal antibody was most likely due to its increased sensitivity, although other explanations are possible. The presence of GMF-beta-like immunoreactivity in both neurons and glia raises the possibility of a wider range of cell-cell interaction than was previously considered.

  11. Effects of reserpine on reproduction and serotonin immunoreactivity in the stable fly Stomoxys calcitrans (L.) ✩

    PubMed Central

    Liu, Samuel S.; Li, Andrew Y.; Witt, Colleen M.; Pérez de León, Adalberto A.

    2014-01-01

    Biogenic amines are known to play critical roles in key insect behaviors such as feeding and reproduction. This study documents the effects of reserpine on mating and egg-laying behaviors of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), which is one of the most significant biting fly pests affecting cattle. Two sperm staining techniques were adapted successfully to reveal the morphology of stable fly sperm, for the first time, and determine successful mating in females through the assessment of sperm transfer. This approach was also applied to assess sperm transfer by males treated with different doses of reserpine. Mating or sperm transfer did not occur in flies during the first 3 days after emergence. Thereafter, the percentage of females that mated increased with age. Reserpine treatment of males reduced sperm transfer in a dose-dependent manner. Older males were more sensitive to reserpine treatment than younger flies. Reserpine treatment of 5 days old females reduced the number of eggs laid, but had no effect on egg-hatching rates. Results of immunoreactivity (IR) experiments indicated that serotonin in the neuronal processes innervating male testes was completely depleted by reserpine within 5 h after treatment. This effect was transient as the serotonin immunoreactive signal was recovered in 33.3% of the males at 1 day post-treatment and in 94.4% of the flies at 3 days post-treatment. The results of this study concur with previous findings in other insect species and extend our knowledge of the critical roles biogenic amines play in mating and oviposition behaviors of the stable fly. The work could provide a foundation to further characterize the specific roles of individual biogenic amines and their receptors in stable fly reproduction. PMID:23321479

  12. Stem cell and extracellular matrix-related molecules increase following melatonin treatment in the skin of postmenopausal rats.

    PubMed

    Uslu, Serap; Oktem, Gulperi; Uysal, Aysegul; Soner, Burak Cem; Arbak, Serap; Ince, Umit

    2014-08-01

    The menopause has a negative effect in the skin. Melatonin affects skin functions and structures through actions mediated by cell-surface and putative-nuclear receptors expressed in skin cell. We have therefore determined the effects of melatonin treatment on stem cell in the epidermis and extracellular matrix related molecules in the dermis the skin of postmenopausal rats. A total of 45 female rats were divided into 5 groups: control group, group A [ovariectomy (OVX)], group B (OVX +10 mg/kg/day melatonin), group C (OVX +30 mg/kg/day melatonin), group S (sham operated + 10 mg/kg/day melatonin). Ventral skin samples were excised at 12th week after ovariectomy. Hematoxylin-eosin, periodic acid- methylamine silver, elastic van Gieson staining techniques were used to measure histomorphometrically the thickness of elastic fibers and basement membrane, depths of the epidermis, dermis, and subcutaneous fat layer. Immunohistochemical staining methods were used for fibroblast growth factor β (FGF β), collagen type I, fibronectin, β-catenin, c-kit, c-Myc evaluation. Epidermal thickness, subcutaneous fat layer, and elastic fibers were significantly decreased in group C, and there was a significant increase after melatonin treatment. Although there was no difference in dermal thickness of group C, melatonin also significantly increased the dermal thickness. High FGF β, type I collagen, fibronectin, β-catenin, c-Myc immunoreactivity developed following melatonin in all groups. Thus melatonin treatment of postmenopausal rats was mostly due to the decrease of stem cell and extracellular matrix-related molecules in the skin.

  13. Engineered T cells for cancer treatment

    PubMed Central

    Anurathapan, Usanarat; Leen, Ann M.; Brenner, Malcolm K.; Vera, Juan F.

    2014-01-01

    Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate even fibrotic tissue and kill antigen-expressing tumor cells. A variety of groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence, or migratory capacity, and increase safety. In this review we focus on recent developments in the T cell engineering arena, discuss the application of these engineered cell products clinically, and outline future prospects for this therapeutic modality. PMID:24239105

  14. Antifungal Treatment in Stem Cell Transplantation Centers in Turkey.

    PubMed

    Akan, Hamdi; Atilla, Erden

    2016-03-05

    Despite the development of various guidelines, the approach to antifungal treatment in stem cell transplantation centers differs according to country or even between centers. This led to the development of another survey that aims to understand the antifungal treatment policies of Turkish stem cell transplantation centers. Although there has been an increasing trend towards the use of diagnostic-based treatments in Turkey in the last few years, empirical treatment is still the main approach. The practices of the stem cell transplantation centers reflect the general trends and controversies in this area, while there is a considerable use of antifungal combination therapy.

  15. ASYMMETRIC CELL DIVISION: IMPLICATIONS FOR GLIOMA DEVELOPMENT AND TREATMENT.

    PubMed

    Lewis, Kate Marie; Petritsch, Claudia

    2013-12-01

    Glioma is a heterogeneous disease process with differential histology and treatment response. It was previously thought that the histological features of glial tumors indicated their cell of origin. However, the discovery of continuous neuro-gliogenesis in the normal adult brain and the identification of brain tumor stem cells within glioma have led to the hypothesis that these brain tumors originate from multipotent neural stem or progenitor cells, which primarily divide asymmetrically during the postnatal period. Asymmetric cell division allows these cell types to concurrently self-renew whilst also producing cells for the differentiation pathway. It has recently been shown that increased symmetrical cell division, favoring the self-renewal pathway, leads to oligodendroglioma formation from oligodendrocyte progenitor cells. In contrast, there is some evidence that asymmetric cell division maintenance in tumor stem-like cells within astrocytoma may lead to acquisition of treatment resistance. Therefore cell division mode in normal brain stem and progenitor cells may play a role in setting tumorigenic potential and the type of tumor formed. Moreover, heterogeneous tumor cell populations and their respective cell division mode may confer differential sensitivity to therapy. This review aims to shed light on the controllers of cell division mode which may be therapeutically targeted to prevent glioma formation and improve treatment response.

  16. ASYMMETRIC CELL DIVISION: IMPLICATIONS FOR GLIOMA DEVELOPMENT AND TREATMENT

    PubMed Central

    Lewis, Kate Marie; Petritsch, Claudia

    2014-01-01

    Glioma is a heterogeneous disease process with differential histology and treatment response. It was previously thought that the histological features of glial tumors indicated their cell of origin. However, the discovery of continuous neuro-gliogenesis in the normal adult brain and the identification of brain tumor stem cells within glioma have led to the hypothesis that these brain tumors originate from multipotent neural stem or progenitor cells, which primarily divide asymmetrically during the postnatal period. Asymmetric cell division allows these cell types to concurrently self-renew whilst also producing cells for the differentiation pathway. It has recently been shown that increased symmetrical cell division, favoring the self-renewal pathway, leads to oligodendroglioma formation from oligodendrocyte progenitor cells. In contrast, there is some evidence that asymmetric cell division maintenance in tumor stem-like cells within astrocytoma may lead to acquisition of treatment resistance. Therefore cell division mode in normal brain stem and progenitor cells may play a role in setting tumorigenic potential and the type of tumor formed. Moreover, heterogeneous tumor cell populations and their respective cell division mode may confer differential sensitivity to therapy. This review aims to shed light on the controllers of cell division mode which may be therapeutically targeted to prevent glioma formation and improve treatment response. PMID:25530875

  17. Dopamine beta-hydroxylase immunoreactivity in human cerebrospinal fluid: properties, relationship to central noradrenergic neuronal activity and variation in Parkinson's disease and congenital dopamine beta-hydroxylase deficiency.

    PubMed

    O'Connor, D T; Cervenka, J H; Stone, R A; Levine, G L; Parmer, R J; Franco-Bourland, R E; Madrazo, I; Langlais, P J; Robertson, D; Biaggioni, I

    1994-02-01

    linked either pharmacologically or biochemically to central noradrenergic neuronal activity. 4. Cerebrospinal fluid dopamine beta-hydroxylase was not changed in essential hypertension. In Parkinson's disease, cerebrospinal fluid dopamine beta-hydroxylase was markedly diminished (16.3 +/- 2.9 versus 31.3 +/- 1.4 ng/ml, P < 0.001) and rose by 58 +/- 21% (P = 0.02) after adrenal-to-caudate chromaffin cell autografts. In congenital dopamine beta-hydroxylase deficiency, lack of detectable dopamine beta-hydroxylase immunoreactivity in cerebrospinal fluid or plasma suggests absent enzyme (rather than a catalytically defective enzyme) as the origin of the disorder. 5. We conclude that cerebrospinal fluid dopamine beta-hydroxylase immunoreactivity, while not closely linked to central noradrenergic neuronal activity, is at least in part derived from the central nervous system, and that its measurement may be useful in both the diagnosis and treatment of neurological disease.

  18. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Penkowa, M; Hidalgo, J

    2001-07-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human autoimmune disease multiple sclerosis (MS). Proinflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are considered important for induction and pathogenesis of EAE/MS disease, which is characterized by significant inflammation and neuroglial damage. We have recently shown that the exogenous administration of the antioxidant protein zinc-metallothionein-II (Zn-MT-II) significantly decreased the clinical symptoms, mortality, and leukocyte infiltration of the CNS during EAE. However, it is not known how EAE progression is regulated nor how cytokine production and cell death can be reduced. We herewith demonstrate that treatment with Zn-MT-II significantly decreased the CNS expression of IL-6 and TNF-alpha during EAE. Zn-MT-II treatment could also significantly reduce apoptotic cell death of neurons and oligodendrocytes during EAE, as judged by using TUNEL and immunoreactivity for cytochrome c and caspases 1 and 3. In contrast, the number of apoptotic lymphocytes and macrophages was less affected by Zn-MT-II treatment. The Zn-MT-II-induced decrease in proinflammatory cytokines and apoptosis during EAE could contribute to the reported diminution of clinical symptoms and mortality in EAE-immunized rats receiving Zn-MT-II treatment. Our results demonstrate that MT-II reduces the CNS expression of proinflammatory cytokines and the number of apoptotic neurons during EAE in vivo and that MT-II might be a potentially useful factor for treatment of EAE/MS.

  19. Stem cells: novel players in the treatment of erectile dysfunction

    PubMed Central

    Zhang, Haiyang; Albersen, Maarten; Jin, Xunbo; Lin, Guiting

    2012-01-01

    Stem cells are defined by their capacity for both self-renewal and directed differentiation; thus, they represent great promise for regenerative medicine. Historically, stem cells have been categorized as either embryonic stem cells (ESCs) or adult stem cells (ASCs). It was previously believed that only ESCs hold the ability to differentiate into any cell type, whereas ASCs have the capacity to give rise only to cells of a given germ layer. More recently, however, numerous studies demonstrated the ability of ASCs to differentiate into cell types beyond their tissue origin. The aim of this review was to summarize contemporary evidence regarding stem cell availability, differentiation, and more specifically, the potential of these cells in the diagnosis and treatment of erectile dysfunction (ED) in both animal models and human research. We performed a search on PubMed for articles related to definition, localisation and circulation of stem cells as well as the application of stem cells in both diagnosis and treatment of ED. Strong evidence supports the concept that stem cell therapy is potentially the next therapeutic approach for ED. To date, a large spectrum of stem cells, including bone marrow mesenchymal stem cells, adipose tissue-derived stem cells and muscle-derived stem cells, have been investigated for neural, vascular, endothelial or smooth muscle regeneration in animal models for ED. In addition, several subtypes of ASCs are localized in the penis, and circulating endogenous stem cells can be employed to predict the outcome of ED and ED-related cardiovascular diseases. PMID:22002437

  20. [Progress in mesenchymal stem cells for treatment of atherosclerosis].

    PubMed

    Liu, Jiajia; Zhang, Yiting; Peng, Hang; Liu, Pengxia

    2013-11-01

    Atherosclerosis is an inflammatory disease. However, its etiology has not been yet fully elucidated. Endothelial dysfunction is currently considered to be one of the most important steps in the initiation of atherosclerosis. In addition, vascular smooth muscle cells, which are the main cellular component of de novo and in-stent restenosis lesions, play an important role in the development of atherosclerosis. Promoting the regeneration of endothelial cells and inhibiting the proliferation of smooth muscle cells are pivotal for the prevention and treatment of vascular injury. Recently, some studies have demonstrated that mesenchymal stem cells can home to the site of injury and differentiate into endothelial cells to repair damaged blood vessels. On the contrary, other researches have revealed that mesenchymal stem cells can differentiate into vascular smooth muscle cells that are involved in the development of restenosis. Here, we review the fundamental researches of mesenchymal stem cell therapy for atherosclerosis and address the perspectives of mesenchymal stem cells in atherosclerosis treatment.

  1. Stem cell treatment for type 1 diabetes

    PubMed Central

    Li, Ming; Ikehara, Susumu

    2014-01-01

    Type 1 diabetes mellitus (T1DM) is a common chronic disease in children, characterized by a loss of β cells, which results in defects in insulin secretion and hyperglycemia. Chronic hyperglycemia causes diabetic complications, including diabetic nephropathy, neuropathy, and retinopathy. Curative therapies mainly include diet and insulin administration. Although hyperglycemia can be improved by insulin administration, exogenous insulin injection cannot successfully mimic the insulin secretion from normal β cells, which keeps blood glucose levels within the normal range all the time. Islet and pancreas transplantation achieves better glucose control, but there is a lack of organ donors. Cell based therapies have also been attempted to treat T1DM. Stem cells such as embryonic stem cells, induced pluripotent stem cells and tissue stem cells (TSCs) such as bone marrow-, adipose tissue-, and cord blood-derived stem cells, have been shown to generate insulin-producing cells. In this review, we summarize the most-recently available information about T1DM and the use of TSCs to treat T1DM. PMID:25364717

  2. 78 FR 44575 - Sickle Cell Disease Treatment Demonstration Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... HUMAN SERVICES Health Resources and Services Administration Sickle Cell Disease Treatment Demonstration... Services (HHS). ACTION: Request for Class Deviation for Non-Competitive Extension: Sickle Cell Disease... nine programs that are funded through competitive grant awards under the Sickle Cell Disease...

  3. Nine Things to Know About Stem Cell Treatments

    MedlinePlus

    ... The same stem cell treatment is unlikely to work for different diseases or conditions Because stem cells that are specific to certain ... much to learn, however, about how stem cells work in the body and their capacity for healing. ... and injuries are in the future. Learn About ...

  4. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis

    PubMed Central

    Ahmetspahic, Diana; Ruck, Tobias; Schulte-Mecklenbeck, Andreas; Schwarte, Kathrin; Jörgens, Silke; Scheu, Stefanie; Windhagen, Susanne; Graefe, Bettina; Melzer, Nico; Klotz, Luisa; Arolt, Volker; Wiendl, Heinz; Meuth, Sven G.

    2016-01-01

    Objective: To characterize changes in myeloid and lymphoid innate immune cells in patients with relapsing-remitting multiple sclerosis (MS) during a 6-month follow-up after alemtuzumab treatment. Methods: Circulating innate immune cells including myeloid cells and innate lymphoid cells (ILCs) were analyzed before and 6 and 12 months after onset of alemtuzumab treatment. Furthermore, a potential effect on granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)–23 production by myeloid cells and natural killer (NK) cell cytolytic activity was determined. Results: In comparison to CD4+ T lymphocytes, myeloid and lymphoid innate cell subsets of patients with MS expressed significantly lower amounts of CD52 on their cell surface. Six months after CD52 depletion, numbers of circulating plasmacytoid dendritic cells (DCs) and conventional DCs were reduced compared to baseline. GM-CSF and IL-23 production in DCs remained unchanged. Within the ILC compartment, the subset of CD56bright NK cells specifically expanded under alemtuzumab treatment, but their cytolytic activity did not change. Conclusions: Our findings demonstrate that 6 months after alemtuzumab treatment, specific DC subsets are reduced, while CD56bright NK cells expanded in patients with MS. Thus, alemtuzumab specifically restricts the DC compartment and expands the CD56bright NK cell subset with potential immunoregulatory properties in MS. We suggest that remodeling of the innate immune compartment may promote long-term efficacy of alemtuzumab and preserve immunocompetence in patients with MS. PMID:27766281

  5. Developmental analysis of GFAP immunoreactivity in the cerebellum of the meander tail mutant mouse.

    PubMed

    Grishkat, H L; Schwartz, E; Jain, G; Eisenman, L M

    1996-08-01

    It is thought that Bergmann glial fibers assist in the inward migration of granule cells. Model systems in which there is a perturbation of either the migrating cells or the glial cell population have been useful in understanding the migratory process. In the meander tail mutant mouse, the anterior cerebellar region is agranular, whereas the posterior cerebellum is relatively unaffected by the mutation. This study presents a qualitative analysis of the development of cerebellar radial glia in mea/mea and +/mea mice aged from postnatal day 0 to adult, using an antibody against the glia specific antigen, glial fibrillary acidic protein. The results indicate a slight delay in the onset of immunoreactivity in the mea/mea cerebellum and abnormal glial formation in the anterior and posterior regions by postnatal day 5. At postnatal day 11, the full complement of labeled fibers appears to be present and although they appear abnormal in formation, they eventually reach the surface and terminate in oddly shaped and irregularly spaced endfeet. In adult mea/mea and +/mea mice, as compared to the early postnatal stages, there is a significant reduction in GFAP immunoreactive fibers. Cresyl violet stained adult mea/mea sections revealed the presence of ectopic granule cells in radial columns and small clumps at the surface of and within the molecular layer of the caudal cerebellum. Quantitative analyses revealed a 4- to 5-fold increase in the number of ectopic granule cells in lobule VIII of the mea/mea when compared with the +/mea cerebellum. These results suggest that the radial glia in the mea/mea cerebellum exhibit some uncharacteristic morphologies, but that these abnormalities are most likely the consequence of environmental alterations produced by the mutant gene.

  6. Stem Cell Treatments: What to Ask

    MedlinePlus

    ... a result of taking part in this study? Cost In a clinical trial, typically the cost of the test treatment and trial monitoring is ... government funding. Learn more here . What are the costs of the treatment? What does this include? What ...

  7. Increases in doublecortin immunoreactivity in the dentate gyrus following extinction of heroin-seeking behavior.

    PubMed

    Hicks, Megan P; Wischerath, Kelly C; Lacrosse, Amber L; Olive, M Foster

    2012-01-01

    Adult-generated neurons in the dentate gyrus (DG) of the hippocampus play a role in various forms of learning and memory. However, adult born neurons in the DG, while still at an immature stage, exhibit unique electrophysiological properties and are also functionally implicated in learning and memory processes. We investigated the effects of extinction of drug-seeking behavior on the formation of immature neurons in the DG as assessed by quantification of doublecortin (DCX) immunoreactivity. Rats were allowed to self-administer heroin (0.03 mg/kg/infusion) for 12 days and then subjected either to 10 days of extinction training or forced abstinence. We also examined extinction responding patterns following heroin self-administration in glial fibrillary acidic protein thymidine kinase (GFAP-tk) transgenic mice, which have been previously demonstrated to show reduced formation of immature and mature neurons in the DG following treatment with ganciclovir (GCV). We found that extinction training increased DCX immunoreactivity in the dorsal DG as compared with animals undergoing forced abstinence, and that GCV-treated GFAP-tk mice displayed impaired extinction learning as compared to saline-treated mice. Our results suggest that extinction of drug-seeking behavior increases the formation of immature neurons in the DG and that these neurons may play a functional role in extinction learning.

  8. Verbascoside promotes the regeneration of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra

    PubMed Central

    Liang, Jian-qing; Wang, Li; He, Jian-cheng; Hua, Xian-dong

    2016-01-01

    Tyrosine hydroxylase is a key enzyme in dopamine biosynthesis. Change in tyrosine hydroxylase expression in the nigrostriatal system is closely related to the occurrence and development of Parkinson's disease. Verbascoside, an extract from Radix Rehmanniae Praeparata has been shown to be clinically effective in treating Parkinson's disease. However, the underlying mechanisms remain unclear. It is hypothesized that the effects of verbascoside on Parkinson's disease are related to tyrosine hydroxylase expression change in the nigrostriatal system. Rat models of Parkinson's disease were established and verbascoside (60 mg/kg) was administered intraperitoneally once a day. After 6 weeks of verbascoside treatment, rat rotational behavior was alleviated; tyrosine hydroxylase mRNA and protein expression and the number of tyrosine hydroxylase-immunoreactive neurons in the rat right substantia nigra were significantly higher than the Parkinson's model group. These findings suggest that the mechanism by which verbascoside treats Parkinson's disease is related to the regeneration of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. PMID:26981096

  9. Effect of time and temperature on PrPCWD immunoreactivity as evidenced by Western blot.

    PubMed

    Triantis, Joni; Dennis, Michelle M; Salman, Mo D; Gould, Daniel H

    2007-07-01

    The protease-resistant infectious prion protein, PrPres, that causes transmissible spongiform encephalopathies, is remarkably resistant to conventional physical and chemical sterilization methods, including heat. It was hypothesized that thermal-dependent PrPres degradation has been underestimated, and the effect of prolonged incubation at 37 degrees C, 55 degrees C, and 80 degrees C on PrPres detection was examined using brain homogenates from chronic wasting disease-affected elk and mule deer (PrPCWD). Immunoblotting demonstrated progressive loss of PrPCWD immunoreactivity with time in all incubated samples as temperature increased, and PrPCWD was virtually undetectable after 90 days of incubation at 55 degrees C and 80 degrees C. These results indicate that decontamination methods and tissue disposal systems maintaining elevated temperatures for long periods of time could interfere with immunodetection, and the reliability of assays for PrPres detection could be compromised when applied to tissues exposed to heat with time. Although these results may suggest that such prolonged heat treatment could destroy prions, the observed loss of immunoreactivity does not necessarily correlate with a concurrent loss of infectivity. Bioassay is needed to determine if samples that have been incubated under these conditions retain infectivity.

  10. Genetically Engineered Alginate Lyase-PEG Conjugates Exhibit Enhanced Catalytic Function and Reduced Immunoreactivity

    PubMed Central

    Lamppa, John W.; Ackerman, Margaret E.; Lai, Jennifer I.; Scanlon, Thomas C.; Griswold, Karl E.

    2011-01-01

    Alginate lyase enzymes represent prospective biotherapeutic agents for treating bacterial infections, particularly in the cystic fibrosis airway. To effectively deimmunize one therapeutic candidate while maintaining high level catalytic proficiency, a combined genetic engineering-PEGylation strategy was implemented. Rationally designed, site-specific PEGylation variants were constructed by orthogonal maleimide-thiol coupling chemistry. In contrast to random PEGylation of the enzyme by NHS-ester mediated chemistry, controlled mono-PEGylation of A1-III alginate lyase produced a conjugate that maintained wild type levels of activity towards a model substrate. Significantly, the PEGylated variant exhibited enhanced solution phase kinetics with bacterial alginate, the ultimate therapeutic target. The immunoreactivity of the PEGylated enzyme was compared to a wild type control using in vitro binding studies with both enzyme-specific antibodies, from immunized New Zealand white rabbits, and a single chain antibody library, derived from a human volunteer. In both cases, the PEGylated enzyme was found to be substantially less immunoreactive. Underscoring the enzyme's potential for practical utility, >90% of adherent, mucoid, Pseudomonas aeruginosa biofilms were removed from abiotic surfaces following a one hour treatment with the PEGylated variant, whereas the wild type enzyme removed only 75% of biofilms in parallel studies. In aggregate, these results demonstrate that site-specific mono-PEGylation of genetically engineered A1-III alginate lyase yielded an enzyme with enhanced performance relative to therapeutically relevant metrics. PMID:21340021

  11. Depletion of somatostatin-like immunoreactivity in the rat central nervous system by cysteamine

    SciTech Connect

    Sagar, S.M.; Landry, D.; Millard, W.J.; Badger, T.M.; Arnold, M.A.; Martin, J.B.

    1982-02-01

    Selective neurotoxins have been of value in providing a means for specifically interfering with the actions of endogenous neurotransmitter candidates. Others have shown cysteamine (CSH) to deplete the gastrointestinal tract and hypothalamus of rats of immunoreactive somatostatin, suggesting a toxic action of that compound directed against somatostatin-containing cells. The present study further defines the actions of cysteamine on somatostatin in the central nervous system. (CNS). Cysteamine hydrochloride administered subcutaneously results in a depletion of somatostatin-like immunoreactivity (SLI) in the retina, brain, and cervical spinal cord of rats. The effect is demonstrable at doses of 30 mg/kg of body weight and above, occurs within 2 to 4 hr of a single injection of the drug, and is largely reversible within 1 week. The mean depletion of SLI observed within the CNS varies from 38% in cerebral cortex to 65% in cervical spinal cord 24 hr following administration of CSH, 300 mg/kg of body weight, s.c. By gel permeation chromatography, all molecular weight forms of SLI are affected, with the largest reductions in those forms that co-chromatograph with synthetic somatostatin-14 and somatostatin-28. These results indicate that CSH has a generalized, rapid, and largely reversible effect in depleting SLI from the rat CNS.

  12. Decreased parvalbumin immunoreactivity in the cortex and striatum of mice lacking the CB1 receptor

    PubMed Central

    Fitzgerald, Megan L.; Lupica, Carl R.; Pickel, Virginia M.

    2011-01-01

    Cortical and striatal regions of the brain contain high levels of the cannabinoid-1 (CB1) receptor, the central neuronal mediator of activity-dependent synaptic plasticity evoked by endocannabinoids. The expression levels of parvalbumin, a calcium-binding protein found in fast-spiking interneurons of both regions, may be controlled in part by synaptic activity during critical periods of development. However, there is presently no evidence that CB1 receptor expression affects parvalbumin levels in either cortical or striatal interneurons. To assess this possibility, we examined parvalbumin immunoreactivity in the dorsolateral striatum, primary motor cortex (M1), and prefrontal cortex (PFC) of CB1 knockout and wild-type C57/BL6 mice. Quantitative densitometry showed a significant decrease in parvalbumin immunoreactivity within individual neurons in each of these regions of CB1 knockout mice relative to the controls. A significantly lower density (number of cells per unit area) of parvalbumin-labeled neurons was observed in the striatum, but not the cortical regions of CB1 knockout mice. These findings suggest that CB1 receptor deletion may elicit a compensatory mechanism for network homeostasis affecting parvalbumin-containing cortical and striatal interneurons. PMID:21445945

  13. Distribution of alpha-neoendorphin immunoreactivity in the diencephalon and the brainstem of the dog.

    PubMed

    Pesini, P; Pego-Reigosa, R; Tramu, G; Coveñas, R

    2001-11-01

    Alpha-neoendorphin (alpha-NE) is an opiate decapeptide derived from the prodynorphin protein. Its anatomical distribution in the brain of mammals other than the rat, particularly in carnivores, is less well known than for other opiate peptides. In the present work, we have charted the distribution of alpha-NE immunoreactive fibers and perikarya in the diencephalon and the brainstem of the dog. The highest densities of labeled fibers were found in the substantia nigra and in patches within the nucleus of the solitary tract. Moderate densities appeared in the arcuate nucleus (Ar), median eminence, entopeduncular nucleus, ventral tegmental area, retrorubral area, periaqueductal central gray, interpeduncular nucleus and lateral parabrachial nucleus. Groups of numerous labeled perikarya were localized in the magnocellular hypothalamic nuclei, Ar and in the central superior and incertus nuclei in the metencephalon. Moreover, less densely packed fibers and cells appeared widely distributed throughout many nuclei in the region studied. These results are discussed with regard to the pattern described in other species. In addition, the present results were compared with the distribution of met-enkephalin immunoreactivity in the diencephalon and the brainstem of the dog that we have recently described. Although the distributions of these two peptides overlap in many areas, the existence of numerous differences suggest that they form separate opiate systems in the dog.

  14. Independent prognostic value of fascin immunoreactivity in stage III–IV colonic adenocarcinoma

    PubMed Central

    Puppa, G; Maisonneuve, P; Sonzogni, A; Masullo, M; Chiappa, A; Valerio, M; Zampino, M G; Franceschetti, I; Capelli, P; Chilosi, M; Menestrina, F; Viale, G; Pelosi, G

    2007-01-01

    Fascin, an actin-bundling protein involved in cell motility, has been shown to be upregulated in several types of carcinomas. In this study, we investigated the expression of fascin in 228 advanced colonic adenocarcinoma patients with a long follow-up. Fascin expression was compared with several clinicopathologic parameters and survival. Overall, fascin immunoreactivity was detected in 162 (71%) tumours with a prevalence for right-sided tumours (P<0.001). Fascin correlated significantly with sex, tumour grade and stage, mucinous differentiation, number of metastatic lymph nodes, extranodal tumour extension, and the occurrence of distant metastases. Patients with fascin-expressing tumours experienced a shorter disease-free and overall survival in comparison with those with negative tumours, and fascin immunoreactivity emerged as an independent prognostic factor in the multivariate analysis. Moreover, patients with the same tumour stages could be stratified in different risk categories for relapse and progression according to fascin expression. Our findings suggest that fascin is a useful prognostic marker for colonic adenocarcinomas. PMID:17375048

  15. KiSS-1 expression and metastin-like immunoreactivity in the rat brain.

    PubMed

    Brailoiu, G Cristina; Dun, Siok L; Ohsawa, Masahiro; Yin, Deling; Yang, Jun; Chang, Jaw Kang; Brailoiu, Eugen; Dun, Nae J

    2005-01-17

    Metastin, the gene product of metastasis suppressor gene KiSS-1, is the endogenous ligand for the G-protein-coupled receptor GPR54 (or AXOR12, or OT7T175). The expression of KiSS-1 gene and peptide and the distribution of metastin were studied in the rat central nervous system by reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemical methods. KiSS-1 gene and peptide expression was higher in the hypothalamus than in the brainstem and spinal cord. In the brain, metastin-like immunoreactivity (irMT) was found mainly in three groups of cells: dorsomedial hypothalamic nucleus, nucleus of the solitary tract, and caudal ventrolateral medulla. Immunoreactive fibers of varying density were noted in bed nucleus of stria terminalis, septal nuclei, nucleus accumbens, caudate putamen, diagonal band, amygdala, hypothalamus, zona incerta, thalamus, periaqueductal gray, raphe nuclei, lateral parabrachial nucleus, locus coeruleus, spinal trigeminal tract, rostral ventrolateral medulla, and medullary reticular nucleus. Preabsorption of the antiserum with metastin peptide fragment (45-54)-NH2 (1 microg/ml) resulted in no staining in any of the sections. The biological activity of metastin was assessed by monitoring intracellular calcium [Ca2+]i in cultured hippocampal neurons, which are known to express GPR54. Metastin increased [Ca2+]i in a population of cultured hippocampal neurons. The results show that metastin is biologically active in rat central neurons, and its anatomical distribution suggests a possible role in nociception and autonomic and neuroendocrine functions.

  16. Stereological analysis of GluR2-immunoreactive hilar neurons in the pilocarpine model of temporal lobe epilepsy

    PubMed Central

    Jiao, Yiqun; Nadler, J. Victor

    2007-01-01

    Mossy fiber sprouting and the genesis of ectopic granule cells contribute to reverberating excitation in the dentate gyrus of epileptic brain. This study determined whether the extent of sprouting after status epilepticus in rats correlates with the seizure-induced degeneration of GluR2-immunoreactive (GluR2+) hilar neurons (presumptive mossy cells) and also quantitated granule cell-like GluR2-immunoreactive hilar neurons. Stereological cell counting indicated that GluR2+ neurons account for 57% of the total hilar neuron population. Prolonged pilocarpine-induced status epilepticus killed 95% of these cells. A smaller percentage of GluR2+ neurons (74%) was killed when status epilepticus was interrupted after 1-3.5 h with a single injection of phenobarbital, and the number of residual GluR2+ neurons varied among animals by a factor of 6.2. GluR2+ neurons were not necessarily more vulnerable than other hilar neurons. In rats administered phenobarbital, the extent of recurrent mossy fiber growth varied inversely and linearly with the number of GluR2+ hilar neurons that remained intact (P = 0.0001). Thus the loss of each GluR2+ neuron was associated with roughly the same amount of sprouting. These findings support the hypothesis that mossy fiber sprouting is driven largely by the degeneration of and/or loss of innervation from mossy cells. Granule cell-like GluR2-immunoreactive neurons were rarely encountered in the hilus of control rats, but increased 6- to 140-fold after status epilepticus. Their number did not correlate with the extent of hilar cell death or mossy fiber sprouting in the same animal. The morphology, number, and distribution of these neurons suggested that they were hilar ectopic granule cells. PMID:17475251

  17. Stem Cell Transplants in Cancer Treatment

    Cancer.gov

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  18. Ionomycin Treatment Renders NK Cells Hyporesponsive

    PubMed Central

    Romera-Cárdenas, Gema; Thomas, L. Michael; Lopez-Cobo, Sheila; García-Cuesta, Eva M.; Long, Eric O.; Reyburn, Hugh T.

    2016-01-01

    Natural killer cells are cytotoxic lymphocytes important in immune responses to cancer and multiple pathogens. However, chronic activation of NK cells can induce a hyporesponsive state. The molecular basis of the mechanisms underlying the generation and maintenance of this hyporesponsive condition are unknown, thus an easy and reproducible mechanism able to induce hyporesponsiveness on human NK cells would be very useful to gain understanding of this process. Human NK cells treated with ionomycin lose their ability to degranulate and secrete IFN-γ in response to a variety of stimuli, but IL-2 stimulation can compensate these defects. Apart from reductions in the expression of CD11a/CD18, no great changes were observed in the activating and inhibitory receptors expressed by these NK cells, however their transcriptional signature is different to that described for other hyporesponsive lymphocytes. PMID:27007115

  19. The increase in metallothionein and ectopic decidual immunoreactivity with respect to the progression of labor at term and the lack of analogical changes in placental abruption.

    PubMed

    Galazka, Krystyna; Pitynski, Kazimierz; Skret-Magierlo, Joanna; Mach, Pawel; Knafel, Anna; Sikora, Jerzy; Niemiec, Tomasz; Dobrogowski, Jan; Basta, Anotni; Wicherek, Lukasz

    2008-09-01

    The coexistence of immune and decidual cells is related to the development of a resistance to immune-mediated apoptosis in both ectopic and eutopic decidua. This unique feature of endometrial cells seems to be linked with the expression of metallothionein (MT), an inhibitor of apoptosis. The MT immunoreactivity level was assessed in 82 eutopic (CC) and ectopic (cesarean scar deciduosis - CSD) decidual tissue samples obtained from patients during cesarean sections at term and from patients on whom cesarean sections were performed on account of placental abruption (PA). Statistically, significantly higher levels of MT immunoreactivity were found in eutopic and ectopic decidua sampled during cesarean sections performed on patients with advanced labor when compared to the levels found in tissues sampled during cesarean sections on patients without labor. No differences were observed in the MT immunoreactivity levels in decidual tissue samples derived from patients who had undergone cesarean sections on account of PA with respect to the progression of labor at the time of the surgical procedure. Statistically, the decidual MT immunoreactivity levels were significantly higher in the PA than the CC subgroups and in the PA than the CSD subgroups correlating with the stage of labor. MT in decidual cells seems to be responsible for the proper coexistence between decidual cells and activated immune cells that infiltrate both eutopic and ectopic decidua during cesarean section and PA.

  20. Time course of postnatal distribution of doublecortin immunoreactive developing/maturing neurons in the somatosensory cortex and hippocampal CA1 region of C57BL/6 mice.

    PubMed

    Yoo, Dae Young; Yoo, Ki-Yeon; Choi, Ji Won; Kim, Woosuk; Lee, Choong Hyun; Choi, Jung Hoon; Park, Jeong Ho; Won, Moo-Ho; Hwang, In Koo

    2011-07-01

    In this study, we observed neuroblast differentiation in the somatosensory cortex (SSC) and hippocampal CA1 region (CA1), which is vulnerable to oxidative stress, of the mouse at various early postnatal days (P) 1, 7, 14, and 21 using doublecortin (DCX, a marker for neuroblasts). Cresyl violet and NeuN (Neuronal Nuclei) staining showed development of layers as well as neurons in the SSC and CA1. At P1, DCX-positive neuroblasts expressed strong DCX immunoreactivity in both the SSC and CA1. Thereafter, DCX immunoreactivity was decreased with time. At P7, many DCX-immunoreactive neuroblasts were well detected in the SSC and CA1. At P14, some DCX-positive neuroblasts were found in the SSC and CA1: The immunoreactivity was weak. At P21, DCX immunoreactivity was hardly found in cells in the SSC and CA1. These results suggest that DCX-positive neuroblasts were significantly decreased in the mouse SSC and CA1 from P14.

  1. Immunoreactive endothelin-1 and endothelin a receptor in basilar artery perivascular nerves of young and adult capybaras.

    PubMed

    Loesch, Andrzej; Dashwood, Michael R; Coppi, Antonio A

    2013-01-01

    The purpose of this qualitative morphological study was the immunocytochemical and ultrastructural comparison of perivascular nerves of the basilar artery (BA) of young (6-month-old) and adult (12-month-old) capybaras - adult capybaras showed regression of the internal carotid artery (ICA). The study focused on immunolabeling for the vasoactive peptide endothelin-1 (ET-1) and endothelin A receptor (ETA) as well as for the synapse marker synaptophysin (SYP). In the BA of young capybaras, immunoreactivity for ET-1, ETA receptor and SYP was detected in perivascular nerve varicosities and/or intervaricosities. Immunoreactivity for ET-1 and ETA receptor was also displayed by some Schwann cells, which accompanied perivascular nerves. In addition to the presence of the above-described perivascular nerve characteristics, the BA of adult animals also revealed structurally altered perivascular nerves, where axon profiles were irregular in shape with dense axoplasm, while the cytoplasm of Schwann cells was vacuolated and contained myelin-like figures. These structurally altered perivascular nerves displayed immunoreactivity for ET-1, ETA receptor and SYP. These results show that the ET-1 system is present in some of the BA perivascular nerves and it is likely that this system is affected during animal maturation when ICA regression takes place. The role of ET-1 in cerebrovascular nerves is still unclear but its involvement in neural (sensory) control of cerebral blood flow and nerve function is possible. Copyright © 2013 S. Karger AG, Basel.

  2. Stem Cell Therapy for Treatment of Ocular Disorders.

    PubMed

    Sivan, Padma Priya; Syed, Sakinah; Mok, Pooi-Ling; Higuchi, Akon; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Awang Hamat, Rukman; Umezawa, Akihiro; Kumar, Suresh

    2016-01-01

    Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.

  3. Stem Cell Therapy for Treatment of Ocular Disorders

    PubMed Central

    Sivan, Padma Priya; Syed, Sakinah; Mok, Pooi-Ling; Higuchi, Akon; Murugan, Kadarkarai; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Awang Hamat, Rukman; Umezawa, Akihiro; Kumar, Suresh

    2016-01-01

    Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented. PMID:27293447

  4. FMRFamide-like immunoreactive nervus terminalis innervation to the pituitary in the catfish, Clarias batrachus (Linn.): demonstration by lesion and immunocytochemical techniques

    NASA Technical Reports Server (NTRS)

    Krishna, N. S.; Subhedar, N.; Schreibman, M. P.

    1992-01-01

    Certain thick FMRFamide-like immunoreactive fibers arising from the ganglion cells of nervus terminalis in the olfactory bulb of Clarias batrachus can be traced centripetally through the medial olfactory tract, telencephalon, lateral preoptic area, tuberal area, and hypothalamohypophysial tract to the pituitary. Following 6 days of bilateral olfactory tract transection, the immunoreactivity in the thick fibers, caudal to the lesion site, was partially eliminated, whereas after 10 and 14 days, it was totally abolished in the processes en route to the pituitary. The results indicate a direct innervation of the pituitary gland by the FMRFamide-like peptide containing fibers of the nervus terminalis.

  5. FMRFamide-like immunoreactive nervus terminalis innervation to the pituitary in the catfish, Clarias batrachus (Linn.): demonstration by lesion and immunocytochemical techniques

    NASA Technical Reports Server (NTRS)

    Krishna, N. S.; Subhedar, N.; Schreibman, M. P.

    1992-01-01

    Certain thick FMRFamide-like immunoreactive fibers arising from the ganglion cells of nervus terminalis in the olfactory bulb of Clarias batrachus can be traced centripetally through the medial olfactory tract, telencephalon, lateral preoptic area, tuberal area, and hypothalamohypophysial tract to the pituitary. Following 6 days of bilateral olfactory tract transection, the immunoreactivity in the thick fibers, caudal to the lesion site, was partially eliminated, whereas after 10 and 14 days, it was totally abolished in the processes en route to the pituitary. The results indicate a direct innervation of the pituitary gland by the FMRFamide-like peptide containing fibers of the nervus terminalis.

  6. Balance and coordination training, but not endurance training, enhances synaptophysin and neurotrophin-3 immunoreactivity in the lumbar spinal cord after sciatic nerve crush.

    PubMed

    Bonetti, Leandro Viçosa; Ilha, Jocemar; Schneider, Ana Paula Krauthein; Barbosa, Silvia; Faccioni-Heuser, Maria Cristina

    2016-04-01

    Numerous rehabilitation treatments have been shown to be useful for peripheral and central restoration after (PNI). After sciatic nerve crush, we investigated 4 weeks of endurance training (ET) and balance and coordination training (BCT) with sciatic function index, hind-paw stride length, and spinal cord dorsal horn synaptophysin and neurotrophin-3 immunoreactivity. Our results demonstrated no significant differences between the non-trained (NT), ET, and BCT groups in sciatic functional index, and in stride-length analysis, but the ET showed higher values compared with the NT group. Synaptophysin immunoreactivity was higher in the BCT group compared with the NT group, and neurotrophin-3 immunoreactivity in the BCT group was greater compared with the other groups. BCT can positively affect spinal cord plasticity after a (PNI), and these modifications are important in the rehabilitation process. © 2015 Wiley Periodicals, Inc.

  7. Parvalbumin immunoreactivity is enhanced by brain-derived neurotrophic factor in organotypic cultures of rat retina.

    PubMed

    Rickman, D W

    1999-11-15

    The rodent retina undergoes considerable postnatal neurogenesis and phenotypic differentiation, and it is likely that diffusible neurotrophic factors contribute to this development and to the subsequent formation of functional retinal circuitry. Accordingly, perturbation of specific neurotrophin ligand-receptor interactions has provided valuable information as to the fundamental processes underlying this development. In the present studies we have built upon our previous observation that suppression of expression of trk(B), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), in the postnatal rat retina results in the alteration of a specific interneuron in the rod pathway-the parvalbumin (PV)-immunoreactive AII amacrine cell. Here, we isolated retinas from newborn rats and maintained them in organotypic culture for up to 14 days (approximating the time of eye opening, in vivo) in the presence of individual neurotrophins [BDNF or nerve growth factor (NGF)]. We then examined histological sections of cultures for PV immunoreactivity. In control cultures, only sparse PV-immunostained cells were observed. In cultures supplemented with NGF, numerous lightly immunostained somata were present in the inner nuclear layer (INL) at the border of the inner plexiform layer (IPL). Many of these cells had rudimentary dendritic arborizations in the IPL. Cultures supplemented with BDNF displayed numerous well-immunostained somata at the INL/IPL border that gave rise to elaborate dendritic arborizations that approximated the morphology of mature AII amacrine cells in vivo. These observations indicate that neurotrophins have specific effects upon the neurochemical and, perhaps, morphological differentiation of an important interneuron in a specific functional retinal circuit.

  8. Immunoreactivity of ATF-2 and Fra-2 in human dental follicle.

    PubMed

    Bolat, Ilker; Keklikoglu, Nurullah

    2010-01-01

    It is asserted that epithelial rests in dental follicle (DF) existing around the impacted teeth in adults are effective in cyst formation. In this study, it is intended for determining and comparing the immunoreactivity (IR) ratio of ATF-2 and Fra-2 proteins, the members of Activator Protein-1 (AP-1) family which regulates important cellular activities such as growth, proliferation and differentiation, in DF epithelial cells (EC) and connective tissue cells (CC). In this study, ATF-2 and Fra-2 immunoreactivity (ATF-2-IR and Fra-2-IR) in EC and CC in DF tissues obtained from 30 patients were analyzed by using immunohistochemical method. Ratios of ATF-2-IR positive cells were found 17.36+/-9.55% in EC, 27.27+/-14.86% in CC and ratios of Fra-2-IR positive cells were found 20.04+/-11.47% in EC, 16.71+/-9.05% in CC. In the statistically comparison performed; significant differences were found between EC and CC in terms of both ATF-2-IR (p<0.001) and Fra-2-IR (p<0.05). In EC, no significant difference was found between ATF-2-IR and Fra-2-IR (p>0.05), whereas significant difference was found between ATF-2-IR and Fra-2-IR in CC (p<0.001). According to these data, it can be suggested that Fra-2 protein may be more effective than ATF-2 protein in cyst formation originated from EC of DF. Besides, finding that ATF-2-IR and Fra-2-IR are different in CC although similar in EC shows that AP-1 members can be expressed at different ratios in same tissues.

  9. Treatment Option Overview (Merkel Cell Carcinoma)

    MedlinePlus

    ... other organs . Sun exposure and having a weak immune system can affect the risk of Merkel cell carcinoma. ... ultraviolet A (PUVA) therapy for psoriasis . Having an immune system weakened by disease, such as chronic lymphocytic leukemia ...

  10. Treatment Options by Stage (Merkel Cell Carcinoma)

    MedlinePlus

    ... other organs . Sun exposure and having a weak immune system can affect the risk of Merkel cell carcinoma. ... ultraviolet A (PUVA) therapy for psoriasis . Having an immune system weakened by disease, such as chronic lymphocytic leukemia ...

  11. Distribution and changes with age of nitric oxide synthase-immunoreactive nerves of the rat urinary bladder, ureter and in lumbosacral sensory neurons.

    PubMed

    Mohammed, H; Santer, R M

    2001-07-01

    In the distal parts of the urinary tract, nerves containing nitric oxide (NO) are either postganglionic parasympathetic nerves, with cell bodies in the major pelvic ganglia, or sensory nerves with cell bodies in the lumbosacral dorsal root ganglia. We have used indirect immunohistochemical techniques to examine the distribution and regional variation of nerves immunoreactive for neuronal nitric oxide synthase (NOS) in the urinary bladder, distal ureter and in neurons in lumbosacral dorsal root ganglia (L1-L2 & L6-S1) of young adult (3 months) and aged (24 months) male rats. Semi-quantitative estimations of nerve densities were made of NOS fibres innervating the dome, body and base of the urinary bladder and distal ureter. Quantitative studies were also used to examine the effects of age on the percentage of dorsal root ganglion neurons immunoreactive for NOS. The dome and the body regions, in both age groups, contained no NOS-immunoreactive axons. The bladder base and distal ureter in young adults showed sparse to moderate numbers of fibres immunoreactive to NOS within the urothelium and in the subepithelium and muscle coat. In the aged rat there were slight reductions in the densities of NOS-immunoreactive nerves in all three regions. In the lumbosacral dorsal root ganglia, the percentage of NOS-immunoreactive neuronal profiles showed a significant reduction from 4.6 +/- 0.2% in young adult to 2.7 +/- 0.2% (means +/- S.E.M) in aged rats. These findings suggest that the effects of NO on the bladder and distal ureteric musculature and also its expression in dorsal root ganglion neurons are affected in aged rats and that the micturition reflex may be perturbed as a result.

  12. Distribution of aromatase immunoreactivity in the forebrain of red-sided garter snakes at the beginning of the winter dormancy.

    PubMed

    Krohmer, Randolph W; Bieganski, Gerald J; Baleckaitis, Daniel D; Harada, Nobuhiro; Balthazart, Jacques

    2002-01-01

    Until recently, it has been difficult to identify the exact location of aromatase containing cells in the brain. The development of new antibodies has provided a sensitive tool to analyze the distribution of aromatase immunoreactive (ARO-ir) material at a cellular level of resolution. In the present study we examined, for the first time, the distribution of ARO-ir cells in the brain of a reptile, the red-sided garter snake, at the beginning of the winter dormancy. ARO-ir cells were found at all rostro-caudal levels in the red-sided garter snake brain. Although weakly stained cells were distributed throughout the brain, more intensely immunoreactive cells were primarily concentrated in the preoptic area, anterior hypothalamus, septum and nucleus sphericus. Although androgens are elevated upon emergence from hibernation in the male red-sided garter snake, initiation of courtship behavior appears to be independent of direct androgen control. To date, the only known stimulus found to initiate courtship is a period of low temperature dormancy followed by exposure to warm temperatures. Circumstantial data, however, suggest an indirect role in the activation of male copulatory behavior for estrogenic metabolites of testosterone produced in the brain by aromatization during the winter dormancy. This study provides the first documentation of the distribution of ARO-ir cells in a reptilian species and demonstrates that while the aromatase enzyme occurs in most regions of the brain, the ARO-ir cells that appear to contain the highest concentration of enzyme are clustered in brain areas classically associated with the control of courtship behavior and mating in vertebrates. These data are consistent with the idea that estrogens locally produced in the brain may participate in some way to the activation of sexual behavior in this species also. This notion should now be experimentally tested by analyzing annual changes in aromatase activity and immunoreactivity and assessing the

  13. Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilia latipinna.

    PubMed

    Batten, T F; Cambre, M L; Moons, L; Vandesande, F

    1990-12-22

    The comparative distribution of peptidergic neural systems in the brain of the euryhaline, viviparous teleost Poecilia latipinna (green molly) was examined by immunohistochemistry. Topographically distinct, but often overlapping, systems of neurons and fibres displaying immunoreactivity (ir) related to a range of neuropeptides were found in most brain areas. Neurosecretory and hypophysiotrophic hormones were localized to specific groups of neurons mostly within the preoptic and tuberal hypothalamus, giving fibre projections to the neurohypophysis, ventral telencephalon, thalamus, and brain stem. Separate vasotocin (AVT)-ir and isotocin (IST)-ir cells were located in the nucleus preopticus (nPO), but many AVT-ir nPO neurons also displayed growth hormone-releasing factor (GRF)-like-ir, and in some animals corticotrophin-releasing factor (CRF)-like-ir. The main group of CRF-ir neurons was located in the nucleus recessus anterioris, where coexistence with galanin (GAL) was observed in some cells. Enkephalin (ENK)-like-ir was occasionally present in a few IST-ir cells of the nPO and was also found in small neurons in the posterior tuberal hypothalamus and in a cluster of large cells in the dorsal midbrain tegmentum. Thyrotrophin-releasing hormone (TRH)-ir cells were found near the rostromedial tip of the nucleus recessus lateralis. Gonadotrophin-releasing hormone (GnRH)-ir cells were present in the nucleus olfactoretinalis, ventral telencephalon, preoptic area, and dorsal midbrain tegmentum. Molluscan cardioexcitatory peptide (FMRF-amide)-ir was colocalized with GnRH-ir in the ganglion cells and central projections of the nervus terminalis. Melanin-concentrating hormone (MCH)-ir neurons were restricted to the tuberal hypothalamus, mostly within the nucleus lateralis tuberis pars lateralis, and somatostatin (SRIF)-ir neurons were numerous throughout the periventricular areas of the diencephalon. A further group of SRIF-ir neurons extending from the ventral telencephalon

  14. Mogamulizumab for the treatment of T-cell lymphoma.

    PubMed

    Makita, Shinichi; Tobinai, Kensei

    2017-09-01

    T-cell lymphoma is a relatively rare hematologic malignancy that accounts for 10-20% of non-Hodgkin lymphomas. Treatment strategies for T-cell lymphomas are different from that for B-cell lymphomas and have poor prognoses. Among various subtypes of T-cell lymphomas, adult T-cell leukemia-lymphoma (ATL) has the worst prognosis. To achieve further improvement in the treatment outcome of T-cell lymphomas, several novel agents such as brentuximab vedotin, lenalidomide, romidepsin, and pralatrexate are actively being studied. Mogamulizumab, an anti-CC chemokine receptor 4 (CCR4) monoclonal antibody, is one of the promising agents for CCR4-positive T-cell lymphomas, especially for ATL. Areas covered: First, basic information about the current treatment strategy of T-cell lymphomas including ATL is described. Then, the authors discuss the current clinical development of mogamulizumab and its clinical implications for T-cell lymphomas. Expert opinion: Mogamulizumab has potent clinical efficacy against CCR4-positive T-cell lymphomas, especially against ATL. Among various toxicities associated with mogamulizumab, skin eruptions are the most significant. Although there are several effective competitors, mogamulizumab has a unique mechanism and is expected to be a key agent for treating CCR4-positive T-cell lymphomas, especially ATL.

  15. Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer's disease.

    PubMed Central

    Masliah, E.; Terry, R. D.; Alford, M.; DeTeresa, R.; Hansen, L. A.

    1991-01-01

    Quantification of synaptophysinlike immunoreactivity is a valuable method for studying the presynaptic terminals in the normal and damaged nervous system. The present report shows that in the control brain, the predominant pattern of synaptic immunostaining in the neocortex was that of an evenly distributed densely granular immunolabeling of the neuropil, while in the paleocortex and in subcortical areas of the brain most of the presynaptic terminals were distributed along the dendritic arborizations or around the neuronal somata. The immunochemical and the immunohistochemical analysis of the Alzheimer's disease tissue showed that the frontal and parietal cortex presented the most severe and widespread loss, with a 45% loss in synaptophysin immunoreactivity. These areas showed an average 35% loss of large neurons. The visual cortex, hippocampus, entorhinal cortex, nucleus basalis of Meynert, and locus ceruleus displayed some degree of loss, but to a lesser extent. In addition to this loss, the basic patterns of organization of the presynaptic terminals were altered, with the presence of abundant, enlarged synaptophysin-labeled terminals. This study further supports the role of synaptic pathology in Alzheimer's disease. Images Figure 10 Figure 11 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 12 PMID:1899001

  16. Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate.

    PubMed

    Meinlschmidt, Pia; Ueberham, Elke; Lehmann, Jörg; Schweiggert-Weisz, Ute; Eisner, P

    2016-08-15

    The effect of induced liquid state fermentation (Bacillus subtilis, Rhizopus oryzae, Saccharomyces cerevisiae, Lactobacillus helveticus) on the immunoreactivity, physicochemical and sensory properties of soy protein isolate (SPI) was studied. L. helveticus revealed the most abundant reduction in terms of immunoreactivity within soluble protein fractions, up to 100%, which could be measured by in vitro sandwich ELISA using mouse monoclonal anti-Glym5 antibodies (mAbs). Almost no binding was found in western blot analysis using mouse monoclonal mAbs and sera from soy sensitive individuals. Fermentation increased water- and oil-binding capacity as well as protein solubility at pH 4.0. Foaming activity was nearly doubled compared to non-fermented SPI. A decreased emulsifying capacity, foaming density, and quantity of soluble proteins at pH 7.0 were observed. Principal component analysis (PCA) confirmed decreased bitter and beany off-flavors of fermented samples compared to non-fermented SPI. Consequently, fermentation might be a promising method to produce tasty low-allergen food ingredients with good physicochemical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ubiquitin-immunoreactive structures in the midbrain of methamphetamine abusers.

    PubMed

    Quan, Li; Ishikawa, Takaki; Michiue, Tomomi; Li, Dong-Ri; Zhao, Dong; Oritani, Shigeki; Zhu, Bao-Li; Maeda, Hitoshi

    2005-05-01

    Ubiquitin (Ub) is involved in neurodegeneration and various stress responses in the brain. The present study investigated the Ub-immunoreactive structures in the midbrain of methamphetamine (MA) abusers as a marker of drug-induced neurodegeneration. Medico-legal autopsy cases were examined: fatal MA intoxication (n=14), other fatalities of MA abusers (n=23) including those due to injuries, asphyxiation, drowning, fire and natural diseases, and control groups (n=260). In the motor nervous systems, MA abusers showed a mild increase in the diffuse-type nuclear Ub-positivity in the pigmented neurons of the substantia nigra, depending on the blood MA level and irrespectively of the immediate causes of death. The intranuclear inclusion-type Ub-positivity of the nigral neurons and the granular 'dot-like' Ub-immunoreactivity area in the crus cerebri (cortico-spinal tracts) were usually low in MA abusers, and any increases were related to the immediate causes of death and the age of subjects. Acute MA fatality showed a higher neuronal Ub-positivity in the midbrain periaqueductal gray matter (PGM), which is involved in processing pain, fear and anxiety, and regulation of respiration and circulation. These findings suggest dysfunction of the nigral dopaminergic neurons and PGM neurons in the midbrain in MA abuse, which may account for the clinical symptoms.

  18. Stem cell treatment for Alzheimer's disease.

    PubMed

    Li, Ming; Guo, Kequan; Ikehara, Susumu

    2014-10-23

    Alzheimer's disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary tangles and neurodegeneration. Current therapies only target the relief of symptoms using various drugs, and do not cure the disease. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders, and in this review, we focus on stem cell therapies for AD.

  19. Training stem cells for treatment of malignant brain tumors.

    PubMed

    Li, Shengwen Calvin; Kabeer, Mustafa H; Vu, Long T; Keschrumrus, Vic; Yin, Hong Zhen; Dethlefs, Brent A; Zhong, Jiang F; Weiss, John H; Loudon, William G

    2014-09-26

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  20. Oestrogen receptor-alpha-immunoreactive neurones project to the suprachiasmatic nucleus of the female Syrian hamster.

    PubMed

    De La Iglesia, H O; Blaustein, J D; Bittman, E L

    1999-07-01

    Ovarian steroid hormones regulate circadian period and phase, but classical receptors for these hormones are absent in the circadian pacemaker localized in the suprachiasmatic nucleus of the hypothalamus (SCN). In order to determine whether effects of oestrogen may be exerted through steroid-binding systems afferent to the SCN we have performed double label immunocytochemistry for oestrogen receptor-alpha(ER-alpha) and the retrograde tracer cholera toxin B subunit (CtB) after its application to the SCN. Most of the areas that contain ER-alpha-immunoreactive (ERalpha-ir) cells also contained cells afferent to the SCN. The percentage of neurones afferent to the SCN which show ERalpha-immunoreactivity varies between areas. As many as one-third of the neurones afferent to the SCN in some parts of the preoptic area and the corticomedial amygdala are ERalpha-ir. Very few of the afferent neurones from the septum and the central grey are ERalpha-ir, whereas an intermediate proportion of afferents from the bed nucleus of the stria terminalis and the arcuate nucleus are ERalpha-ir. Our retrograde tracing results were compared with results of anterograde tracing from some of the sites containing SCN afferents. Using a combined retrograde and anterograde tracing technique we tested the possibility that single ERalpha-ir neurones afferent to the SCN could receive reciprocal innervation by SCN efferents. Although we found SCN input to some SCN afferent neurones, we found no evidence of reciprocity between single ERalpha-ir cells and the SCN. Our results indicate the existence of oestrogen binding systems afferent to the SCN. These neuroanatomical pathways may mediate effects of gonadal steroid hormones on circadian rhythms.

  1. [Treatment of relapsed Hodgkin lymphoma after autologous stem cell transplantation].

    PubMed

    Illés, Árpád; Simon, Zsófia; Udvardy, Miklós; Magyari, Ferenc; Jóna, Ádám; Miltényi, Zsófia

    2017-08-01

    Approximately 10-30% of Hodgkin lymphoma patients relapses or experience refractory disease after first line treatment. Nowadays, autologous stem cell transplantation can successfully salvage half of these patients, median overall survival is only 2-2.5 years. Several prognostic factors determine success of autologous stem cell transplantation. Result of transplantation can be improved considering these factors and using consolidation treatment, if necessary. Patients who relapse after autologous transplantation had worse prognosis, treatment of this patient population is unmet clinical need. Several new treatment options became available in the recent years (brentuximab vedotin and immuncheckpoint inhibitors). These new treatment options offer more chance for cure in relapsed/refractory Hodgkin patients. Outcome of allogenic stem cell transplantation can be improved by using haploidentical donors. New therapeutic options will be discussed in this review. Orv Hetil. 2017; 158(34): 1338-1345.

  2. Role of stem cells in spondyloarthritis: Pathogenesis, treatment and complications.

    PubMed

    Wong, Rebecca S Y

    2015-10-01

    Spondyloarthritis (SpA) is a family of interrelated inflammatory arthritis that includes ankylosing spondylitis (AS), psoriatic arthritis, reactive arthritis, arthritis related to inflammatory bowel disease and undifferentiated SpA. The classification, epidemiology, pathogenesis and treatment of SpA have been extensively reviewed in the published literature. Reviews on the use of stem cells in various autoimmune diseases in general are also common. However, a review on the role of stem cells in SpA is currently lacking. This review focuses on the involvement of stem cells in the pathogenesis of SpA and the application of different types of stem cells in the treatment of SpA. It also addresses some of the complications which may arise as a result of the use of stem cells in the treatment of SpA.

  3. Stem cell transplantation: a treatment option for severe systemic sclerosis?

    PubMed

    van Laar, J M; Farge, D; Tyndall, A

    2008-12-01

    High-dose immunosuppressive therapy and autologous stem cell transplantation (commonly referred to as "stem cell transplantation") is an established treatment for a variety of haemato-oncological conditions. Recent studies have confirmed its potent clinical and immunological effects in rheumatic autoimmune diseases, including severe diffuse systemic sclerosis (SSc). With modifications of treatment protocols and more stringent selection of patients, the safety profile of stem cell transplantation has improved as expressed in lower treatment-related morbidity and mortality. Prospective, randomised trials are in progress in Europe and North America to compare the safety and efficacy of stem cell transplantation with conventional chemotherapy in patients with early diffuse SSc, on the premise that induction of remission in early disease can be achieved by stem cell transplantation as a means to interrupt fibrogenesis.

  4. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    PubMed

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures.

  5. Global Hypoxia-Ischemia Induced Inflammation and Structural Changes in the Preterm Ovine Gut Which Were Not Ameliorated by Mesenchymal Stem Cell Treatment

    PubMed Central

    Nikiforou, Maria; Willburger, Carolin; de Jong, Anja E; Kloosterboer, Nico; Jellema, Reint K; Ophelders, Daan RMG; Steinbusch, Harry WM; Kramer, Boris W; Wolfs, Tim GAM

    2016-01-01

    Perinatal asphyxia, a condition of impaired gas exchange during birth, leads to fetal hypoxia-ischemia (HI) and is associated with postnatal adverse outcomes including intestinal dysmotility and necrotizing enterocolitis. Evidence from adult animal models of transient, locally induced intestinal HI has shown that inflammation is essential in HI-induced injury of the gut. Importantly, mesenchymal stem cell (MSC) treatment prevented this HI-induced intestinal damage. We therefore assessed whether fetal global HI induced inflammation, injury and developmental changes in the gut and whether intravenous MSC administration ameliorated these HI-induced adverse intestinal effects. In a preclinical ovine model, fetuses were subjected to umbilical cord occlusion (UCO), with or without MSC treatment, and euthanized 7 d after UCO. Global HI increased the number of myeloperoxidase-positive cells in the mucosa, upregulated messenger RNA (mRNA) levels of interleukin (IL)-1β and IL-17 in gut tissue and caused T-cell invasion in the intestinal muscle layer. Intestinal inflammation following global HI was associated with increased Ki67+ cells in the muscularis and subsequent muscle hyperplasia. Global HI caused distortion of glial fibrillary acidic protein immunoreactivity in the enteric glial cells and increased synaptophysin and serotonin expression in the myenteric ganglia. Intravenous MSC treatment did not ameliorate these HI-induced adverse intestinal events. Global HI resulted in intestinal inflammation and enteric nervous system abnormalities, which are clinically associated with postnatal complications, including feeding intolerance, altered gastrointestinal transit and necrotizing enterocolitis. The intestinal histopathological changes were not prevented by intravenous MSC treatment directly after HI, indicating that alternative treatment regimens for cell-based therapies should be explored. PMID:27257938

  6. Global hypoxia-ischemia induced inflammation and structural changes in the preterm ovine gut which were not ameliorated by mesenchymal stem cell treatment.

    PubMed

    Nikiforou, Maria; Willburger, Carolin; de Jong, Anja E; Kloosterboer, Nico; Jellema, Reint K; Ophelders, Daan R M G; Steinbusch, Harry W M; Kramer, Boris W; Wolfs, Tim G A M

    2016-04-14

    Perinatal asphyxia, a condition of impaired gas exchange during birth, leads to fetal hypoxia-ischemia (HI) and is associated with postnatal adverse outcomes including intestinal dysmotility and necrotizing enterocolitis (NEC). Evidence from adult animal models of transient, locally-induced intestinal HI has shown that inflammation is essential in HI-induced injury of the gut. Importantly, mesenchymal stem cell (MSC) treatment prevented this HI-induced intestinal damage. We therefore assessed whether fetal global HI induced inflammation, injury and developmental changes in the gut and whether intravenous MSC administration ameliorated these HI-induced adverse intestinal effects. In a preclinical ovine model, fetuses were subjected to umbilical cord occlusion (UCO), with or without MSC treatment, and sacrificed 7 days after UCO. Global HI increased the number of myeloperoxidase positive cells in the mucosa, upregulated mRNA levels of interleukin (IL)-1β and IL-17 in gut tissue and caused T-cell invasion in the intestinal muscle layer. Intestinal inflammation following global HI was associated with increased Ki67+ cells in the muscularis and subsequent muscle hyperplasia. Global HI caused distortion of glial fibrillary acidic protein immunoreactivity in the enteric glial cells and increased synaptophysin and serotonin expression in the myenteric ganglia. Intravenous MSC treatment did not ameliorate these HI-induced adverse intestinal events. Global HI resulted in intestinal inflammation and enteric nervous system abnormalities which are clinically associated with postnatal complications including feeding intolerance, altered gastrointestinal transit and NEC. The intestinal histopathological changes were not prevented by intravenous MSC treatment directly after HI, indicating that alternative treatment regimens for cell-based therapies should be explored.

  7. Dental Fluorosis and Catalase Immunoreactivity of the Brain Tissues in Rats Exposed to High Fluoride Pre- and Postnatally.

    PubMed

    Güner, Şirin; Uyar-Bozkurt, Süheyla; Haznedaroğlu, Eda; Menteş, Ali

    2016-11-01

    This study evaluated dental fluorosis of the incisors and immunoreactivity in the brain tissues of rats given chronic fluoride doses pre- and postnatally. Female rats were given drinking water with 0, 30 or 100 ppm fluoride ad libitum throughout gestation and the nursing period. In addition, 63 male offspring were treated with the same water regimens as the mothers after weaning and were followed for 1, 3 or 5 months. The upper and lower incisors were collected, and all teeth were examined under a stereomicroscope and scored by two blinded examiners using a modified rodent enamel fluorosis index. Cortical, hippocampal and cerebellar brain samples were evaluated morphologically and immunohistochemically. All fluoride-treated pups were born with low body weight (p = 0.001). All animals from the fluoride groups had enamel fluorosis with defects of various degrees. The increase in the dental fluorosis scores in the fluoride treatment groups was significant (p < 0.01). The catalase immunoreactivity in the 30- and 100-ppm fluoride groups was significantly higher than that in the controls after 1, 3 and 5 months (p < 0.001). In conclusion, this study showed that rats with dental fluorosis had catalase immunoreactivity in the brain tissues, which may reflect the neurobehavioral toxicity of fluoride.

  8. Calretinin-immunoreactive nerves in the uterus, pelvic autonomic ganglia, lumbosacral dorsal root ganglia and lumbosacral spinal cord.

    PubMed

    Papka, R E; Collins, J; Copelin, T; Wilson, K

    1999-10-01

    Nerves containing the calcium-binding protein calretinin have been reported in several organs but not in female reproductive organs and associated ganglia. This study was undertaken to determine if nerves associated with the uterus contain calretinin and the source(s) of calretinin-synthesizing nerves in the rat (are they sensory, efferent, or both?). Calretinin-immunoreactive nerves were present in the uterine horns and cervix where they were associated with arteries, uterine smooth muscle, glands, and the epithelium. Calretinin-immunoreactive terminals were apposed to neurons in the paracervical ganglia; in addition, some postganglionic neurons in this ganglion were calretinin positive. Calretinin perikarya were present in the lumbosacral dorsal root ganglia, no-dose ganglia, and lumbosacral spinal cord. Retrograde axonal tracing, utilizing Fluorogold injected into the uterus or paracervical parasympathetic ganglia, revealed calretinin-positive/Fluorogold-labeled neurons in the dorsal root and nodose ganglia. Also, capsaicin treatment substantially reduced the calretinin-positive fibers in the uterus and pelvic ganglia, thus indicating the sensory nature of these fibers. The presence of calretinin immunoreactivity identifies a subset of nerves that are involved in innervation of the pelvic viscera and have origins from lumbosacral dorsal root ganglia and vagal nodose ganglia. Though the exact function of calretinin in these nerves is not currently known, calretinin is likely to play a role in calcium regulation and their function.

  9. Comparative study of TPep-like immunoreactive neurons in the central nervous system of nudibranch molluscs.

    PubMed

    Baltzley, Michael J; Lohmann, Kenneth J

    2008-11-01

    In the sea slug Tritonia diomedea, mucociliary crawling is controlled partly by two pairs of bilaterally symmetrical neurons located in the pedal ganglia. These neurons, known as the Pedal 5 and Pedal 6 cells, produce a class of neuropeptides called TPeps. Using immunohistochemistry we identified TPep-like immunoreactive (TPep-LIR) neurons in diverse nudibranch species. All species examined had 2-7 large, TPep-LIR cells located in each pedal ganglion. The absolute size of the largest TPep-LIR neuron was correlated with foot size. Species with a bigger foot size tended to have larger TPep-LIR cells. However, the number of cells in a given species was not correlated with the size of the adult foot. The presence of large, TPep-LIR cells across the nudibranchs suggests that part of the neural circuitry controlling mucociliary locomotion has been conserved, although the size and number of cells is variable across species. We conclude that the motor circuit underlying crawling might adapt to changes in foot size by changing the size of motor neurons in the circuit, but that changes in cell number are not directly related to foot size.

  10. Volume changes of human endothelial cells induced by photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Leunig, Andreas; Staub, Frank; Plesnila, Nick; Peters, Jurgen; Feyh, Jens; Gutmann, Ralph; Goetz, Alwin E.

    1996-01-01

    Photodynamic therapy (PDT) has shown promising results in treatment of malignant tumors. However, the mechanisms leading to tumor destruction during PDT are still not completely understood. In addition to effects on the microcirculation, damage to cellular structures has been observed following exposure of cells to PDT. A phenomenon preceding these events might possibly be cell swelling. We therefore studied the influence of treatment with Photofrin (PF) and laser light on volume changes and cell viability of endothelial cells. Endothelial cells were obtained from human umbilical cord veins (HUVEC) by an adaption of the method of Maruyama (1963). After subcultivation the cells were harvested and transferred as a cell suspension into a specially designed incubation chamber. Cells received either PF in concentrations of 1.5 or 3.0 (mu) g/ml and laser illumination (630 nm; 40 mW/cm2, 4 Joule), PF alone, or laser treatment only. Following start of PF incubation and after phototreatment cell samples were taken for volume measurements using flow cytometry and for studies of cellular morphology using scanning electron microscopy. Simultaneously, cell viability was monitored by the trypan blue exclusion test and colorimetric MTT assay. (abstract truncated)

  11. Immunocytochemical localization of rhodopsin-like immunoreactivity in the outer segments of the rods and single cones of chick retina.

    PubMed

    Araki, M; Watanabe, K; Yasuda, K

    1984-03-01

    Photoreceptor cells in chick retina consist of a rod and five types of cones. Immunocytochemical techniques have pinpointed rhodopsin-like immunoreactivity in the outer segments of some single cones as well as in rods. The antibody used in our study was raised against bovine rhodopsin purified by SDS-polyacrylamide gel electrophoresis. No rhodopsin-like immunoreactivity was found in the principal and accessory cone. Epon-embedded, semi-thin sections also were treated with potassium hydroxide to remove epoxy resin and then subjected to immunoreaction with the antibody. With this method the same results were obtained repeatedly, and the possibility of staining failure in double cones and some single cones due to insufficient permeability was avoided. Electron microscopy revealed that the oil droplets of stained single cones are slightly smaller and are located in a more vitreal position than those of unstained single cones. The stained single cones are presumed to be types II and III single cones. In the inner segment, especially in the Golgi region and the rER, no staining was seen. Only slight staining was found in the connecting cilium and in the small vesicular or granular structure between the oil droplet and the plasma membrane facing the heavily stained outer segment. This suggests that opsin is incorporated into the plasma membrane in the distal portion of the inner segment.

  12. Eradication of Helicobacter pylori Infection Restores ki67, p53, and Cyclin D1 Immunoreactivity in the Human Gastric Epithelium

    PubMed Central

    Triantafyllou, Konstantinos; Papadopoulos, Vasilios; Emanouil, Theodoros; Gkolfakis, Paraskevas; Damaskou, Vasileia; Tziatzios, Georgios; Panayiotides, Ioannis G.; Vafiadis, Irene; Ladas, Spiros D.

    2016-01-01

    INTRODUCTION We evaluated the effect of Helicobacter pylori (HP) eradication on p53, cyclin D1 expression, and cell proliferation in gastric mucosa. MATERIALS AND METHODS We assessed p53, cyclin D1, and ki67 immunoexpression in gastric mucosa from 31 HP chronic gastritis patients and 12 controls. Reassessment was performed 6 months after successful HP eradication. RESULTS Successful eradication resulted in significant decrease of p53 (1.53 ± 0.16 vs 0.83 ± 0.19, P = 0.01) and ki67 (9.84 ± 0.96 vs 4.77 ± 0.27, P < 0.001) staining in the antrum. Similarly, p53 immunoreactivity significantly decreased in the corpus (1.27 ± 0.20 vs 0.46 ± 0.15, P = 0.02), while there was a trend for decreased corpus cyclin D1 and ki67 expression (0.17 ± 0.07 vs 0.0, P = 0.08 and 8.71 ± 1.24 vs 5.85 ± 0.54, P = 0.09, respectively). Importantly, after successful HP eradication, the immunoreactivity of the studied parameters was similar to that of controls. CONCLUSION Successful HP infection eradication restores p53, cyclin D1, and ki67 immunoreactivity in the gastric mucosa to the level of controls. PMID:27891056

  13. Comparison of three tissue fixatives on the immunoreactivity of mammalian P-glycoprotein antibodies to teleost tissues

    SciTech Connect

    Hemmer, M.J. |; Courtney, L.A.; Benson, W.H.

    1994-12-31

    Mammalian P-glycoprotein is a highly conserved integral membrane protein functioning as an energy dependent plasma membrane efflux pump which decreases the concentration of certain lipophilic aromatic compounds entering the cell by diffusion. Studies indicate that P-glycoprotein is capable of increased expression in response to certain chemical stressors and has demonstrated the ability to transport xenobiotic contaminants. Expression of a xenobiotic transporter in teleost species could play a significant role in conferring resistance to fish populations exposed to xenobiotic stressors and may serve as a potential indicator of species at risk to environmental contaminants. Past studies demonstrated a strong correlation between corresponding mammalian and teleost tissues showing immunoreactivity to specific mammalian P-glycoprotein antibodies. In this study, comparisons of staining pattern, intensity, and tissue specificity between Lillie`s, Bouin`s and Dietrich`s fixed tissues was determined in the sheepshead minnow, Cyprinodon variegatus, using monoclonal antibodies (mAbs) C219, C494 and JSB-1. Immunoreactivity of the mAbs was found to be fixative-dependent and results are presented illustrating the differential staining patterns and tissue specificity observed for each tissue, fixative, and antibody combination. These data indicate tissue fixation has a significant impact on P-glycoprotein immunoreactivity in teleost tissues and must be considered in the comparison and interpretation of results.

  14. Plasma needle: treatment of living cells and tissues

    NASA Astrophysics Data System (ADS)

    Stoffels, Eva

    2003-10-01

    Non-thermal plasmas are capable of refined treatment of heat sensitive surfaces. Recently, many non-thermal sources working under atmospheric pressure have been constructed. Their main applications are various surface treatments: cleaning, etching, changing the wettability/adhesion, and bacterial decontamination. A new research at the Eindhoven University of Technology focuses on in vivo treatment by means of a novel non-thermal plasma source (the plasma needle). At present, a fundamental study has been undertaken to identify all possible responses of living objects exposed to the plasma. Plasma treatment does not lead to cell death (necrosis), which is a cause of inflammation. On the contrary, we observe various sophisticated reactions of mammalian cells, e.g. cell detachment (loss of cell contact) and programmed cell death (apoptosis). Moreover, under certain conditions the plasma is capable of killing bacteria, while eukaryotic cells remain unharmed. These findings may result in development of new techniques, like bacterial sterilization of infected (living) tissues or removal of cells without inflammatory response, and on a longer time scale to new methods in the health care. Possible applications include treatment of skin ailments, aiding wound healing and sterilization of dental cavities.

  15. Mercuric chloride-induced gastrin/cholecystokinin 8 immunoreactivity in the central nervous system of the terrestrial slug Semperula maculata: an immunohistochemical study.

    PubMed

    Londhe, Sunil; Kamble, Nitin

    2013-12-01

    We measured the immunoreactivity of the neuropeptide gastrin cholecystokinin 8 (gastrin/CCK 8) in neurons of the terrestrial slug Semperula maculata following acute treatment with mercuric chloride (HgCl2). The distribution of gastrin/CCK 8 was analyzed in neurons of different regions, specifically from cerebral ganglia (procerebrum (pro-c), mesocerebrum (meso-c) and metacerebrum (meta-c). In the control group, neurons of pedal, pleural, parietal and visceral ganglia showed positive immunoreactivity using vertebrate antiserum against gastrin/CCK 8. Gastrin/CCK 8 immunoreactivity was also seen in the fibers and neuropil region of all ganglia. In the cerebral ganglion, 10, 12 and 8 % of the neurons from pro-c, meso-c and meta-c, respectively, were stained with the antibody. The immunostaining was increased in neurons (giant, large, medium and small) after HgCl2 treatment. The treatment greatly increased the mucin content within the neurons. Exposure to HgCl2 enhanced gastrin immunoreactivity in the neurons and this increased with time. Results are discussed in the context of neuropathology in cerebral ganglia associated with the feeding behavior of Semperula maculata.

  16. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease.

    PubMed

    Rockenstein, Edward; Desplats, Paula; Ubhi, Kiren; Mante, Michael; Florio, Jazmin; Adame, Anthony; Winter, Stefan; Brandstaetter, Hemma; Meier, Dieter; Masliah, Eliezer

    2015-07-01

    Neural stem cells (NSCs) have been considered as potential therapy in Alzheimer's disease (AD) but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL), a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg) model of AD. We grafted murine NSCs into the hippocampus of non-tg and APP tg that were treated systemically with CBL and analyzed after 1, 3, 6 and 9months post grafting. Compared to vehicle-treated non-tg mice, in the vehicle-treated APP tg mice there was considerable reduction in the survival of the grafted NSCs. Whereas, CBL treatment enhanced the survival of NSCs in both non-tg and APP tg with the majority of the surviving NSCs remaining as neuroblasts. The NSCs of the CBL treated mice displayed reduced numbers of caspase-3 and TUNEL positive cells and increased brain derived neurotrophic factor (BDNF) and furin immunoreactivity. These results suggest that CBL might protect grafted NSCs and as such be a potential adjuvant therapy when combined with grafting.

  17. Identification of a new member of PBAN family and immunoreactivity in the central nervous system from Adoxophyes sp. (Lepidoptera: Tortricidae).

    PubMed

    Choi, Man-Yeon; Lee, Jae Min; Han, Kyeung Sik; Boo, Kyung Saeng

    2004-09-01

    Production of sex pheromones, Z9-14:OAc and Z11-14:OAc, of the smaller tea tortrix, Adoxophyes sp. was stimulated by injection of the female or male head extracts as well as synthetic pheromone biosynthesis activating neuropeptide (PBAN) into decapitated females. The amount of pheromone produced reached a maximum level 3 h after injection of synthetic PBAN into females. A cDNA isolated from brain-suboesophageal ganglion complex (Br-SEG) of A. sp. females contained an ORF of 576 nucleotides encoding 192 amino acids. Based on endoproteolytic sites, it can be predicted to be cleaved into five putative peptide domains including PBAN and four other neuropeptides. Ado-PBAN consisting of 31-amino acids is the shortest PBAN so far reported. Four other putative PBAN-encoding gene neuropeptides (PGN) are predicted with PGN-24, PGN-7, PGN-20, and PGN-8 amino acids. All of the peptides are amidated in their C-termini with a FXPR(or I, K)L structure, except for PGN-8 (TVKLTPRLamide). PBAN-like immunoreactive material was observed in Br, SEG and ventral nerve cord (VNC) of the female adult. In the brain, 5-7 pairs of neurons containing PBAN-like immunoreactivity were found in each protocerebral hemisphere. Three groups of cell clusters found in the SEG corresponded to the mandibular, maxillary and labial neurons as in other moths. PBAN-like immunoreactive neurons in the VNC were found in thoracic (three pairs) and abdominal ganglia (two pairs). As compared to other moths, a relatively low similarity of peptide sequences deduced from Ado-PBAN gene and a different expression pattern of PBAN-like immunoreactivity could indicate phylogenetical distance from the other species.

  18. Bortezomib for the treatment of mantle cell lymphoma: an update

    PubMed Central

    Hambley, Bryan; Caimi, Paolo F.; William, Basem M.

    2016-01-01

    Bortezomib is a first in class proteasome inhibitor, initially approved by the US Food and Drug Administration for the treatment of plasma cell myeloma. Bortezomib has been approved for the treatment of relapsed and refractory mantle cell lymphoma (MCL) and, more recently, in the upfront setting as well. Treatment algorithms for MCL have rapidly evolved over the past two decades, and the optimal regimen remains to be defined. The choice of treatment regimen is based on disease risk stratification models, the expected toxicity of antineoplastic agents, the perceived patient ability to tolerate the planned treatments and the availability of novel agents. As new drugs with novel mechanisms of action and variable toxicity profiles come into use, treatment decisions for a given patient have become increasingly complex. This article provides an overview of the evolving use of bortezomib in the rapidly changing management landscape of MCL PMID:27493710

  19. Bortezomib for the treatment of mantle cell lymphoma: an update.

    PubMed

    Hambley, Bryan; Caimi, Paolo F; William, Basem M

    2016-08-01

    Bortezomib is a first in class proteasome inhibitor, initially approved by the US Food and Drug Administration for the treatment of plasma cell myeloma. Bortezomib has been approved for the treatment of relapsed and refractory mantle cell lymphoma (MCL) and, more recently, in the upfront setting as well. Treatment algorithms for MCL have rapidly evolved over the past two decades, and the optimal regimen remains to be defined. The choice of treatment regimen is based on disease risk stratification models, the expected toxicity of antineoplastic agents, the perceived patient ability to tolerate the planned treatments and the availability of novel agents. As new drugs with novel mechanisms of action and variable toxicity profiles come into use, treatment decisions for a given patient have become increasingly complex. This article provides an overview of the evolving use of bortezomib in the rapidly changing management landscape of MCL.

  20. Stem cells for the treatment of neurodegenerative diseases.

    PubMed

    Dantuma, Elise; Merchant, Stephanie; Sugaya, Kiminobu

    2010-12-10

    Stem cells offer an enormous pool of resources for the understanding of the human body. One proposed use of stem cells has been as an autologous therapy. The use of stem cells for neurodegenerative diseases has become of interest. Clinical applications of stem cells for Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis will increase in the coming years, and although great care will need to be taken when moving forward with prospective treatments, the application of stem cells is highly promising.

  1. [Cell technologies in complex treatment of venous trophic ulcers].

    PubMed

    Gavrilenko, A V; Pavlova, O V; Ivanov, A A; Vakhrat'ian, P E; Dashinimaev, É B; Li, R A

    2011-01-01

    Live skin equivalent and fibroblasts in gel were used in complex treatment of venous trophic ulcers to evaluate efficacy of cell transplants. Their efficacy depended on extent of trophic ulcer and time of their existence. Cell culture method is minimally traumatic, can be used in elder patients and seniors and gives positive results in 85% of cases.

  2. Localization and differential expression of FMRFamide-like immunoreactivity in the nematode Ascaris suum.

    PubMed

    Cowden, C; Sithigorngul, P; Brackley, P; Guastella, J; Stretton, A O

    1993-07-15

    By immunocytochemical and immunohistochemical methods, FMRFamide-like immunoreactivity (FLI) was localized to many neurons and processes in the Ascaris nervous system, including the head, tail, and lateral lines. Some of these cells were identified; they included sensory neurons, interneurons, and motor neurons. FLI was also present in the pharyngeal neurons and in their varicosities near the surface of the pharynx. By HPLC analysis of extracts, only a subset of the FMRFamide-like peptides (FLPs) expressed in Ascaris heads, and heads from which the pharynx had been removed, were expressed in the pharynx. Furthermore, FLPs appeared to be differentially expressed in female heads and tails and male heads and tails. Acetone and acid methanol differentially extracted subforms of FLI from Ascaris heads and from C. elegans.

  3. Decreased immunoreactivity of visfatin in the pancreas and liver of rats with renovascular hypertension.

    PubMed

    Piotrowska, Ż; Janiuk, I; Lewandowska, A; Kasacka, I

    2016-01-01

    Hypertension is one of the major endocrine and metabolic disorders, in which visfatin plays a significant role. The objective of this study was to evaluate the immunoreactivity of visfatin in pancreas and liver of “two kidney, one clip” (2K1C) renovascular hypertension model in rats. The studies were carried out on the pancreas and liver of rats. After a 6-week period of the renal artery clipping procedure, 2K1C rats developed a stable hypertension. Paraffin sections were stained with hematoxylin and eosin (for general histological examination) and processed for immunolocalization of visfatin. The intensity of immunohistochemical reaction was measured using Nikon NIS-Elements Advanced Research software. The hypertension significantly weakened the immunohistochemical reaction exhibiting visfatin in the pancreas and liver of hypertensive rats, compared to control animals. The changes induced by hypertension in the visfatin-containing cells in the pancreas and liver of the rats are discussed and needs further study.

  4. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs.

    PubMed

    Zhao, Bingxin; Pan, Xiaoxia; Teng, Yumei; Xia, Wenyue; Wang, Jing; Wen, Yuling; Chen, Yuanding

    2015-10-01

    VP7 of group A rotavirus (RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector, three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains. Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.

  5. Plectin deficiency in liver cancer cells promotes cell migration and sensitivity to sorafenib treatment.

    PubMed

    Cheng, Chiung-Chi; Chao, Wei-Ting; Liao, Chen-Chun; Tseng, Yu-Hui; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Hsu, Yung-Hsiang; Liu, Yi-Hsiang

    2017-02-17

    Plectin involved in activation of kinases in cell signaling pathway and plays important role in cell morphology and migration. Plectin knockdown promotes cell migration by activating focal adhesion kinase and Rac1-GTPase activity in liver cells. Sorafenib is a multi-targeting tyrosine kinase inhibitor that improves patient survival on hepatocellular carcinoma. The aim of this study is to investigate the correlation between the expression of plectin and cell migration as well as the sensitivity of hepatoma cell lines exposing to sorafenib. Hepatoma cell lines PLC/PRF/5 and HepG2 were used to examine the level of plectin expression and cell migration in comparison with Chang liver cell line. In addition, sensitivity of the 3 cell lines to sorafenib treatment was also measured. Expression of plectin was lower in PLC/PRF/5 and HepG2 hepatoma cells than that of Chang liver cells whereas HepG2 and PLC/PRF/5 cells exhibit higher rate of cell migration in trans-well migration assay. Immunohistofluorecent staining on E-cadherin revealed the highest rate of collective cell migration in HepG2 cells and the lowest was found in Chang liver cells. Likewise, HepG2 cell line was most sensitive to sorafenib treatment and Chang liver cells exhibited the least sensitivity. The drug sensitivity to sorafenib treatment showed inverse correlation with the expression of plectin. We suggest that plectin deficiency and increased E-cadherin in hepatoma cells were associated with higher rates of cell motility, collective cell migration as well as higher drug sensitivity to sorafenib treatment.

  6. Superficial treatment of mammalian cells using plasma needle

    NASA Astrophysics Data System (ADS)

    Stoffels, E.; Kieft, I. E.; Sladek, R. E. J.

    2003-12-01

    Interactions of a small-size, non-thermal plasma (plasma needle) with living cells in culture are studied. We have demonstrated the non-destructive character of the plasma needle: under moderate conditions (low-power and low concentration of molecular species) the plasma needle does not heat biological samples and does not induce cell death. Treatment of living cells is restricted to the cell exterior (membrane). As a result of the interactions of plasma radicals with cell adhesion molecules, cell attachment is temporarily interrupted; the loose cells can be removed, reattached or transferred. This effect may prove very useful in fine surgery, where a part of the tissue must be removed with high-precision, without damage to the adjacent cells and without inflammatory reaction.

  7. Progress in the treatment of mature T-cell lymphoma.

    PubMed

    Suzuki, Ritsuro

    Treatment outcomes of malignant lymphoma have improved due to the discovery of novel chemotherapeutic and molecular targeted agents as well as advances in their combination uses. However, the prognosis of T-cell lymphoma remains poorer than that of B-cell lymphomas, and progress is slow. The reasons include their chemotherapeutic resistant nature and the absence of effective antibody agents for T-cell lymphomas. The number of T-cell lymphoma subtypes increased from 21 in the WHO classification 2008 to 29 in the WHO classification 2016. This means that T-cell lymphomas are heterogeneous. T-cell lymphomas can be divided to ALK-positive anaplastic lymphoma (ALCL) with a good prognosis and others with poorer prognoses. ALK-positive ALCL can be successfully treated with CHOP, but the others cannot. P-glycoprotein resistant anthracyclines, etoposide, or hematopoietic stem cell transplantations are increasingly applied to improve outcomes, but no standard treatment approach has yet been established. Regarding relapsed/refractory T-cell lymphoma, many novel agents are currently under development. The treatment outcomes of T-cell lymphoma need to be improved by applying innovative strategies including further novel agents.

  8. Hydraulic analysis of cell-network treatment wetlands

    NASA Astrophysics Data System (ADS)

    Wang, Huaguo; Jawitz, James W.

    2006-11-01

    SummaryWhen individual cells of a multiple-cell treatment wetland are hydraulically connected, the wetland has a cell-network structure. The hydraulic performance of treatment wetlands is often characterized using tracer residence time distributions (RTDs) measured between the wetland inlet and outlet, such that the wetland is considered as a single hydraulic unit, regardless of the extent of networking between individual internal cells. This work extends the single hydraulic unit approach to enable the specification of moments and RTD parameters for individual cells, or clusters of cells, within the cell-network based on inert tracer tests with injection only at the network inlet. Hydraulic performance is quantified in terms of hydraulic efficiency and travel time dimensionless variance using both the method of moments and RTD modeling. Cell-network analysis was applied to a case study from the Orlando Easterly Wetland (OEW), demonstrating the improvement in hydraulic performance of individual wetland cells following wetland restoration activities. Furthermore, cell-network analysis indicated that the location of water quality sampling station locations within the cell network can significantly affect the accuracy of pollutant removal effectiveness estimation when the individual sample station RTD does not represent the hydraulic unit RTD. At the OEW, it was determined that historical nutrient removal effectiveness estimation may be underestimated for one area and overestimated for another, and recommendations were provided for sample station locations to minimize future performance estimation errors.

  9. Female-biased sex difference in vasotocin-immunoreactive neural structures in the developing quail brain.

    PubMed

    Aste, Nicoletta; Yoshioka, Naoki; Sakamoto, Emiko; Saito, Noboru

    2016-11-01

    The bed nucleus of the stria terminalis pars medialis (BSTM), medial preoptic nucleus (POM), and lateral septal region (LS) exhibit more vasotocin-immunoreactive (VT-ir) neural structures in male than in female adult quail. VT-ir cells and fibers in these regions are sensitive to gonadal steroids only in males. The insensitivity of adult female VT-ir neural structures to sex steroids is attributed to estradiol exposure during a critical period in embryonic life. Although the VT-ir system has been intensively examined in adult quail, information is limited in embryos and juveniles. Therefore, we herein investigated the development of VT-immunoreactive neural structures from embryonic day (E) 9 to adulthood with a particular focus on the BSTM, POM and LS of both sexes. VT-ir neural structures were more evident in female than in male embryos from E9 (BSTM and POM) and E11 (LS). This sex difference disappeared between E15 and post-hatch day 1 in the BSTM and POM, and during the first week of life in the LS. Male-biased sex differences in VT-ir structures appeared at puberty. Female-biased sexual dimorphism in the density of the VT-ir structures of BSTM was reflected by the stronger expression of VT mRNA in females than in males. However, the density of VT mRNA somata was comparable in the two sexes. The exposure of male embryos to estradiol resulted in the feminization of VT-ir neural structures in the BSTM, but not in the POM or LS at E11. Collectively, these results suggest that sex differences in VT-ir neural structures changes drastically throughout quail life. In embryos, endogenous estradiol may stimulate the expression of VT in females, resulting in a robust sex difference in VT-ir cells and fibers in favor of this sex.

  10. Basement membrane protein distribution in LYVE-1-immunoreactive lymphatic vessels of normal tissues and ovarian carcinomas.

    PubMed

    Vainionpää, Noora; Bützow, Ralf; Hukkanen, Mika; Jackson, David G; Pihlajaniemi, Taina; Sakai, Lynn Y; Virtanen, Ismo

    2007-05-01

    The endothelial cells of blood vessels assemble basement membranes that play a role in vessel formation, maintenance and function, and in the migration of inflammatory cells. However, little is known about the distribution of basement membrane constituents in lymphatic vessels. We studied the distribution of basement membrane proteins in lymphatic vessels of normal human skin, digestive tract, ovary and, as an example of tumours with abundant lymphatics, ovarian carcinomas. Basement membrane proteins were localized by immunohistochemistry with monoclonal antibodies, whereas lymphatic capillaries were detected with antibodies to the lymphatic vessel endothelial hyaluronan receptor-1, LYVE-1. In skin and ovary, fibrillar immunoreactivity for the laminin alpha4, beta1, beta2 and gamma1 chains, type IV and XVIII collagens and nidogen-1 was found in the basement membrane region of the lymphatic endothelium, whereas also heterogeneous reactivity for the laminin alpha5 chain was detected in the digestive tract. Among ovarian carcinomas, intratumoural lymphatic vessels were found especially in endometrioid carcinomas. In addition to the laminin alpha4, beta1, beta2 and gamma1 chains, type IV and XVIII collagens and nidogen-1, carcinoma lymphatics showed immunoreactivity for the laminin alpha5 chain and Lutheran glycoprotein, a receptor for the laminin alpha5 chain. In normal lymphatic capillaries, the presence of primarily alpha4 chain laminins may therefore compromise the formation of endothelial basement membrane, as these truncated laminins lack one of the three arms required for efficient network assembly. The localization of basement membrane proteins adjacent to lymphatic endothelia suggests a role for these proteins in lymphatic vessels. The distribution of the laminin alpha5 chain and Lutheran glycoprotein proposes a difference between normal and carcinoma lymphatic capillaries.

  11. Developmental and regional patterns of GAP-43 immunoreactivity in a metamorphosing brain.

    PubMed

    Simmons, Andrea Megela; Tanyu, Leslie H; Horowitz, Seth S; Chapman, Judith A; Brown, Rebecca A

    2008-01-01

    Growth-associated protein-43 is typically expressed at high levels in the nervous system during development. In adult animals, its expression is lower, but still observable in brain areas showing structural or functional plasticity. We examined patterns of GAP-43 immunoreactivity in the brain of the bullfrog, an animal whose nervous system undergoes considerable reorganization across metamorphic development and retains a strong capacity for plasticity in adulthood. Immunolabeling was mostly diffuse in hatchling tadpoles, but became progressively more discrete as larval development proceeded. In many brain areas, intensity of immunolabel peaked at metamorphic climax, the time of final transition from aquatic to semi-terrestrial life. Changes in intensity of GAP-43 expression in the medial vestibular nucleus, superior olivary nucleus, and torus semicircularis appeared correlated with stage-dependent functional changes in processing auditory stimuli. Immunolabeling in the Purkinje cell layer of the cerebellum and in the cerebellar nucleus was detectable at most developmental time points. Heavy immunolabel was present from early larval stages through the end of climax in the thalamus (ventromedial, anterior, posterior, central nuclei). Immunolabel in the tadpole telencephalon was observed around the lateral ventricles, and in the medial septum and ventral striatum. In postmetamorphic animals, immunoreactivity was confined mainly to the ventricular zones and immediately adjacent cell layers. GAP-43 expression was present in olfactory, auditory and optic cranial nerves throughout larval and postmetamorphic life. The continued expression of GAP-43 in brain nuclei and in cranial nerves throughout development and into adulthood reflects the high regenerative potential of the bullfrog's central nervous system.

  12. Cytoplasmic c-Jun N-terminal immunoreactivity: a hallmark of retinal apoptosis.

    PubMed

    Chiarini, Luciana B; de Freitas, Fabíola G; Leal-Ferreira, Mona Lisa; Tolkovsky, Aviva; Linden, Rafael

    2002-12-01

    1. We investigated the association of c-Jun with apoptosis within retinal tissue. Explants of the retina of neonatal rats were subject to a variety of procedures that cause apoptosis of specific classes of retinal cells at distinct stages of differentiation. The expression of c-Jun was detected by Western Blot, and immunohistochemistry was done with antibodies made for either N-terminal or C-terminal domains of c-Jun, and correlated with apoptosis detected either by chromatin condensation or by in situ nick end labeling of fragmented DNA. 2. c-Jun protein content was increased in retinal tissue subject to induction of both photoreceptor and ganglion cell death. 3. c-Jun N-terminal immunoreactivity was found mainly in the cytoplasm of apoptotic cells regardless of cell type, of the stage of differentiation, including proliferating cells, or of the means of induction of apoptosis. 4. The data are consistent with the hypothesis that c-Jun is involved in the control of cell death in retinal tissue, but other proteins that cross-react with c-Jun N-terminal antibodies may also be major markers of retinal apoptosis. 5. Antibodies directed to c-Jun N-terminal (aa 91-105) are useful tools to follow apoptotic changes in retinal tissue.

  13. Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus.

    PubMed

    Katona, I; Acsády, L; Freund, T F

    1999-01-01

    Two characteristic interneuron types in the hippocampus, the so-called hilar perforant path-associated cells in the dentate gyrus and stratum oriens/lacunosum-moleculare neurons in the CA3 and CA1 regions, were suggested to be involved in feedback circuits. In the present study, interneurons identical to these cell populations were visualized by somatostatin-immunostaining, then reconstructed, and processed for double-immunostaining and electron microscopy to establish their postsynaptic target selectivity. A combination of somatostatin-immunostaining with immunostaining for GABA or other interneuron markers revealed a quasi-random termination pattern. The vast majority of postsynaptic targets were GABA-negative dendritic shafts and spines of principal cells (76%), whereas other target elements contained GABA (8%). All of the examined neurochemically defined interneuron types (parvalbumin-, calretinin-, vasoactive intestinal polypeptide-, cholecystokinin-, substance P receptor-immunoreactive neurons) received innervation from somatostatin-positive boutons. Recent anatomical and electrophysiological data showed that the main excitatory inputs of somatostatin-positive interneurons originate from local principal cells. The present data revealed a massive GABAergic innervation of distal dendrites of local principal cells by these feedback driven neurons, which are proposed to control the efficacy and plasticity of entorhinal synaptic input as a function of local principal cell activity and synchrony.

  14. Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options.

    PubMed

    McDonald, Courtney A; Fahey, Michael C; Jenkin, Graham; Miller, Suzanne L

    2017-09-22

    Cerebral palsy is the most common cause of physical disability in children, and there is no cure. Umbilical cord blood (UCB) cell therapy for the treatment of children with cerebral palsy is currently being assessed in clinical trials. While there is much interest in the use of UCB stem cells for neuroprotection and neuroregeneration, the mechanisms of action are not fully understood. Further, UCB contains many stem and progenitor cells of interest, and we will point out that individual cell types within UCB may elicit specific effects. UCB is a clinically proven source of hemotopoietic stem cells (HSCs). It also contains mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) and immunosupressive cells such as regulatory T cells (Tregs) and monocyte-derived supressor cells. Each of these cell types may be individual candidates for the prevention of brain injury following hypoxic and inflammatory events in the perinatal period. We will discuss specific properties of cell types in UCB, with respect to their therapeutic potential and the importance of optimal timing of administration. We propose that tailored cell therapy and targeted timing of administration will optimise results for future clinical trials in the neuroprotective treatment of perinatal brain injury.Pediatric Research accepted article preview online, 22 September 2017. doi:10.1038/pr.2017.236.

  15. Mesenchymal stem cells are sensitive to bleomycin treatment

    PubMed Central

    Nicolay, Nils H.; Rühle, Alexander; Perez, Ramon Lopez; Trinh, Thuy; Sisombath, Sonevisay; Weber, Klaus-Josef; Ho, Anthony D.; Debus, Jürgen; Saffrich, Rainer; Huber, Peter E.

    2016-01-01

    Mesenchymal stem cells (MSCs) have been shown to attenuate pulmonary damage induced by bleomycin-based anticancer treatments, but the influence of bleomycin on the stem cells themselves remains largely unknown. Here, we demonstrate that human bone marrow-derived MSCs are relatively sensitive to bleomycin exposure compared to adult fibroblasts. MSCs revealed increased levels of apoptosis after bleomycin treatment, while cellular morphology, stem cell surface marker expression and the ability for adhesion and migration remained unchanged. Bleomycin treatment also resulted in a reduced adipogenic differentiation potential of these stem cells. MSCs were found to efficiently repair DNA double strand breaks induced by bleomycin, mostly through non-homologous end joining repair. Low mRNA and protein expression levels of the inactivating enzyme bleomycin hydrolase were detected in MSCs that may contribute to the observed bleomycin-sensitive phenotype of these cells. The sensitivity of MSCs against bleomycin needs to be taken into consideration for ongoing and future treatment protocols investigating these stem cells as a potential treatment option for bleomycin-induced pulmonary damage in the clinic. PMID:27215195

  16. Cell-Specific Multifunctional Processing of Heterogeneous Cell Systems in a Single Laser Pulse Treatment

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Mutonga, Martin B. G.; Lapotko, Dmitri O.

    2012-01-01

    Current methods of cell processing for gene and cell therapies use several separate procedures for gene transfer and cell separation or elimination, because no current technology can offer simultaneous multi-functional processing of specific cell sub-sets in highly heterogeneous cell systems. Using the cell-specific generation of plasmonic nanobubbles of different sizes around cell-targeted gold nanoshells and nanospheres, we achieved simultaneous multifunctional cell-specific processing in a rapid single 70 ps laser pulse bulk treatment of heterogeneous cell suspension. This method supported the detection of cells, delivery of external molecular cargo to one type of cells and the concomitant destruction of another type of cells without damaging other cells in suspension, and real-time guidance of the two above cellular effects. PMID:23167546

  17. mTOR activation is critical for betulin treatment in renal cell carcinoma cells.

    PubMed

    Cheng, Wenlong; Ji, Shiqi; Zhang, Haijian; Han, Zhixing; Liu, Qingjun; Wang, Jianwen; Ping, Hao

    2017-01-22

    Betulin, a natural product isolated from the bark of the birch trees, exhibits multiple anticancer effects. Activation of mTOR signaling pathway has been found in numerous cancers, including renal cell carcinoma (RCC). Here, we attempted to study whether mTOR signaling was essential for betulin to treat RCC. Based on cell survival and colony formation assays, we found that mTOR hyperactive RCC cell line 786-O cells were more sensitive to betulin treatment compared with mTOR-inactive Caki-2 cells. Knockdown of TSC2 in Caki-2 cells had similar results to 786-O cells, and mTOR silencing in 786-O cells rescued the inhibitory effect of betulin, indicating that betulin inhibited RCC cell proliferation in an mTOR-dependent manner. Furthermore, betulin treatment decreases the levels of glucose consumption and lactate production in 786-O cells, while minimal effects were observed in Caki-2 cells. In addition, betulin significantly inhibited the expression of PKM2 and HK2 in 786-O cells. Finally, knockdown of PKM2 or HK2 in 786-O reversed the anti-proliferative effects of betulin, and overexpression of PKM2 or HK2 in Caki-2 cells enhanced the sensitivity to betulin treatment. Taken together, these findings demonstrated the critical role of mTOR activation in RCC cells to betulin treatment, suggesting that betulin might be valuable for targeted therapies in RCC patients with mTOR activation.

  18. Dynamic Rendering of the Heterogeneous Cell Response to Anticancer Treatments

    PubMed Central

    Falcetta, Francesca; Lupi, Monica; Colombo, Valentina; Ubezio, Paolo

    2013-01-01

    The antiproliferative response to anticancer treatment is the result of concurrent responses in all cell cycle phases, extending over several cell generations, whose complexity is not captured by current methods. In the proposed experimental/computational approach, the contemporary use of time-lapse live cell microscopy and flow cytometric data supported the computer rendering of the proliferative process through the cell cycle and subsequent generations during/after treatment. The effects of treatments were modelled with modules describing the functional activity of the main pathways causing arrest, repair and cell death in each phase. A framework modelling environment was created, enabling us to apply different types of modules in each phase and test models at the complexity level justified by the available data. We challenged the method with time-course measures taken in parallel with flow cytometry and time-lapse live cell microscopy in X-ray-treated human ovarian cancer cells, spanning a wide range of doses. The most suitable model of the treatment, including the dose-response of each effect, was progressively built, combining modules with a rational strategy and fitting simultaneously all data of different doses and platforms. The final model gave for the first time the complete rendering in silico of the cycling process following X-ray exposure, providing separate and quantitative measures of the dose-dependence of G1, S and G2M checkpoint activities in subsequent generations, reconciling known effects of ionizing radiations and new insights in a unique scenario. PMID:24146610

  19. Immunoreactive pattern of Staphylococcus epidermidis biofilm against human whole saliva.

    PubMed

    Carvalhais, Virginia; Amado, Francisco; Cerveira, Frederico; Ferreira, Rita; Vilanova, Manuel; Cerca, Nuno; Vitorino, Rui

    2015-05-01

    Saliva is essential to interact with microorganisms in the oral cavity. Therefore, the interest in saliva antimicrobial properties is on the rise. Here, we used an immunoproteomic approach, based on protein separation of Staphylococcus epidermidis biofilms by 2DE, followed by Western-blotting, to compare human serum and saliva reactivity profile. A total of 17 proteins were identified by MALDI-TOF/TOF. Serum and saliva presented a distinct pattern of immunoreactive proteins. Our results suggest that saliva seems to have higher propensity to react against S. epidermidis proteins with oxidoreductase activity and proteins involved with L-serine metabolic processes. We show that saliva was a powerful tool for the identification of potential S. epidermidis biofilms proteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Neural stem cell-based treatment for neurodegenerative diseases.

    PubMed

    Kim, Seung U; Lee, Hong J; Kim, Yun B

    2013-10-01

    Human neurodegenerative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are caused by a loss of neurons and glia in the brain or spinal cord. Neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and stem cell-based cell therapies for neurodegenerative diseases have been developed. A recent advance in generation of a new class of pluripotent stem cells, induced pluripotent stem cells (iPSCs), derived from patients' own skin fibroblasts, opens doors for a totally new field of personalized medicine. Transplantation of NSCs, neurons or glia generated from stem cells in animal models of neurodegenerative diseases, including PD, HD, ALS and AD, demonstrates clinical improvement and also life extension of these animals. Additional therapeutic benefits in these animals can be provided by stem cell-mediated gene transfer of therapeutic genes such as neurotrophic factors and enzymes. Although further research is still needed, cell and gene therapy based on stem cells, particularly using neurons and glia derived from iPSCs, ESCs or NSCs, will become a routine treatment for patients suffering from neurodegenerative diseases and also stroke and spinal cord injury.

  1. Stem cells for the treatment of liver disease.

    PubMed

    Allen, K J; Buck, N E; Williamson, R

    2005-12-01

    Stem cells tantalise. They alone have the capacity to divide exponentially, recreate the stem cell compartment as well as create differentiated cells to build tissues. They should be the natural candidates to provide a renewable source of cells for transplantation. Does the reality support the promise of this exciting alternative to conventional therapies for metabolic and degenerative liver disease? Can techniques be developed to provide the large number of cells that could be required? Must there be "space" in the liver to accept the cells? To what extent is the liver immunoprivileged, and is immunosuppression necessary for stem cell therapy? Is it better to use haematopoietic stem cells, fetal stem cells, mesenchymal cells, embryonic stem cells, hepatocytes or all of the above, but for different disease indications? This paper discusses why the exploration of stem cells for the treatment of liver disease is of great potential, and delineates some of the hurdles that need to be overcome before patients see benefits from laboratory-based research into stem cell transplantation and function.

  2. Interleukin (IL)-8 immunoreactivity of injured axons and surrounding oligodendrocytes in traumatic head injury.

    PubMed

    Hayashi, Takahito; Ago, Kazutoshi; Nakamae, Takuma; Higo, Eri; Ogata, Mamoru

    2016-06-01

    Interleukin (IL)-8 has been suggested to be a positive regulator of myelination in the central nervous system, in addition to its principal role as a chemokine for neutrophils. Immunostaining for beta-amyloid precursor protein (AβPP) is an effective tool for detecting traumatic axonal injury, although AβPP immunoreactivity can also indicate axonal injury due to hypoxic causes. In this study, we examined IL-8 and AβPP immunoreactivity in sections of corpus callosum obtained from deceased patients with blunt head injury and from equivalent control tissue. AβPP immunoreactivity was detected in injured axons, such as axonal bulbs and varicose axons, in 24 of 44 head injury cases. These AβPP immunoreactive cases had survived for more than 3h. The AβPP immunostaining pattern can be classified into two types: traumatic (Pattern 1) and non-traumatic (Pattern 2) axonal injuries, which we described previously [Hayashi et al. Int. J. Legal Med. 129 (2015) 1085-1090]. Three of 44 control cases also showed AβPP immunoreactive injured axons as Pattern 2. In contrast, IL-8 immunoreactivity was detected in 7 AβPP immunoreactive and in 2 non-AβPP immunoreactive head injury cases, but was not detected in any of the 44 control cases, including the 3 AβPP immunoreactive control cases. The IL-8 immunoreactive cases had survived from 3 to 24 days, whereas those cases who survived less than 3 days (n=29) and who survived 90 days (n=1) were not IL-8 immunoreactive. Moreover, IL-8 was detected as Pattern 1 axons only. In addition, double immunofluorescence analysis showed that IL-8 is expressed by oligodendrocytes surrounding injured axons. In conclusion, our results suggest that immunohistochemical detection of IL-8 may be useful as a complementary diagnostic marker of traumatic axonal injury.

  3. Noninvasive radiofrequency treatment effect on mitochondria in pancreatic cancer cells.

    PubMed

    Curley, Steven A; Palalon, Flavio; Lu, Xiaolin; Koshkina, Nadezhda V

    2014-11-01

    The development of novel therapeutic approaches for cancer therapy is important, especially for tumors that have poor response or develop resistance to standard chemotherapy and radiation. We discovered that noninvasive radiofrequency (RF) fields can affect cancer cells but not normal cells, inhibit progression of tumors in mice, and enhance the anticancer effects of chemotherapy. However, it remains unclear what physiological and molecular mechanisms this treatment induces inside cells. Here, we studied the effect of RF treatment on mitochondria in human pancreatic cancer cells. The morphology of mitochondria in cells was studied via electron microscopy. The alteration of mitochondrial membrane potential (Δψ) was accessed using a Mitotracker probe. The respiratory activity of mitochondria was evaluated by analyzing changes in oxygen consumption rates determined with a Mito Stress Test Kit. The production of intracellular reactive oxygen species was performed using flow cytometry. The colocalization of mitochondria and autophagosome markers in cells was performed using fluorescence immunostaining and confocal microscopy analysis. RF fields treatment changed the morphology of mitochondria in cancer cells, altered polarization of the mitochondrial membrane, substantially impaired mitochondrial respiration, and increased reactive oxygen species production, indicating RF-induced stress on the mitochondria. We also observed frequent colocalization of the autophagosome marker LC3B with the mitochondrial marker Tom20 inside cancer cells after RF exposure, indicating the presence of mitochondria in the autophagosomes. This suggests that RF-induced stress can damage mitochondria and induce elimination of damaged organelles via autophagy. RF treatment impaired the function of mitochondria in cancer cells. Therefore, mitochondria can represent one of the targets of the RF treatment. © 2014 American Cancer Society.

  4. Dasatinib and Doxorubicin Treatment of Sarcoma Initiating Cells: A Possible New Treatment Strategy

    PubMed Central

    Aggerholm-Pedersen, Ninna; Demuth, Christina; Meldgaard, Peter; Kassem, Moustapha; Sandahl Sorensen, Boe

    2016-01-01

    Background. One of the major challenges affecting sarcoma treatment outcome, particularly that of metastatic disease, is resistance to chemotherapy. Cancer-initiating cells are considered a major contributor to this resistance. Methods. An immortalised nontransformed human stromal (mesenchymal) stem cell line hMSC-TERT4 and a transformed cell line hMSC-TERT20-CE8, known to form sarcoma-like tumours when implanted in immune-deficient mice, were used as models. Receptor tyrosine kinase (RTK) activation was analysed by RTK arrays and cellular viability after tyrosine kinases inhibitor (TKI) treatment with or without doxorubicin was assessed by MTS assay. Results. Initial results showed that the hMSC-TERT4 was more doxorubicin-sensitive while hMSC-TERT20-CE8 was less doxorubicin-sensitive evidenced by monitoring cell viability in the presence of doxorubicin at different doses. The epidermal growth factor receptor (EGFR) was activated in both cell lines. However hMSC-TERT20-CE8 exhibited significantly higher expression of the EGFR ligands. EGFR inhibitors such as erlotinib and afatinib alone or in combination with doxorubicin failed to further decrease cell viability of hMSC-TERT20-CE8. However, inhibition with the TKI dasatinib in combination with doxorubicin decreased cell viability of the hMSC-TERT20-CE8 cell line. Conclusion. Our results demonstrate that dasatinib, but not EGFR-directed treatment, can decrease cell viability of stromal cancer stem cells less sensitive to doxorubicin. PMID:26788073

  5. An alternative means of retaining ocular structure and improving immunoreactivity for light microscopy studies

    PubMed Central

    Sun, Ning; Shibata, Brad; Hess, John F.

    2015-01-01

    Purpose Several properties of ocular tissue make fixation for light microscopy problematic. Because the eye is spherical, immersion fixation necessarily results in a temporal gradient of fixation, with surfaces fixing more rapidly and thoroughly than interior structures. The problem is compounded by the fact that the layers of the eye wall are compositionally quite different, resulting in different degrees of fixation-induced shrinkage and distortion. Collectively, these result in non-uniform preservation, as well as buckling and/or retinal detachment. This gradient problem is most acute for the lens, where the density of proteins can delay fixation of the central lens for days, and where the fixation gradient parallels the age gradient of lens cells, which complicates data interpretation. Our goal was to identify a simple method for minimizing some of the problems arising from immersion fixation, which avoided covalent modification of antigens, retained high quality structure, and maintained tissue in a state that is amenable to common cytochemical techniques. Methods A simple and inexpensive derivative of the freeze-substitution approach was developed and compared to fixation by immersion in formalin. Preservation of structure, immunoreactivity, GFP and tdTomato fluorescence, lectin reactivity, outer segment auto fluorescence, Click-iT chemistry, compatibility with in situ hybdrdization, and the ability to rehydrate eyes after fixation by freeze substitution for subsequent cryo sectioning were assessed. Results An inexpensive and simple variant of the freeze substitution approach provides excellent structural preservation for light microscopy, and essentially eliminates ocular buckling, retinal detachment, and outer segment auto-fluorescence, without covalent modification of tissue antigens. The approach shows a notable improvement in preservation of immunoreactivity. TdTomato intrinsic fluorescence is also preserved, as is compatibility with in situ

  6. Keratin immunoreactivity as an aid to the diagnosis of persistent adenocarcinoma in irradiated human prostates

    SciTech Connect

    Brawer, M.K.; Nagle, R.B.; Pitts, W.; Freiha, F.; Gamble, S.L.

    1989-02-01

    Postirradiation prostatic biopsy is believed by many to be the best measure of radiation effectiveness in prostatic cancer. Therapeutic irradiation may induce prostatic glandular atypia, which in its severe form can be confused with persistent adenocarcinoma on prostatic biopsies. In the current study, 37 postirradiation prostate biopsy specimens were evaluated by immunohistochemistry using a specific monoclonal anticytokeratin antibody (KA1) that reacts with the basal cells of normal or hyperplastic glands, but is nonreactive with the lumenal cells or with prostatic carcinoma cells. Persistent carcinoma was observed in 19 cases in which antibody staining was absent. The noncarcinomatous glands retained reactivity, but this reactivity appeared in a new and previously undescribed pattern. The irradiated lesion was characterized by cellular pleomorphisism, with enlargement of nuclei and loss of polarity. The immunoreactivity was seen in the enlarged basal cells and was seen to focally extend to involve the lumenal cell layer. In five of 37 cases, glands were seen that were so atypical on the routinely stained sections that a distinction from cancer could not be made. These same glands in the adjacent section reacted with KA1 in each case allowing us to conclude that the changes were benign. We conclude that the interpretation of postirradiation prostatic biopsy specimens may be aided by immunohistochemistry with this anticytokeratin antibody.

  7. Stem cells for the treatment of musculoskeletal pain

    PubMed Central

    Labusca, Luminita; Zugun-Eloae, Florin; Mashayekhi, Kaveh

    2015-01-01

    Musculoskeletal-related pain is one of the most disabling health conditions affecting more than one third of the adult population worldwide. Pain from various mechanisms and origins is currently underdiagnosed and undertreated. The complexity of molecular mechanisms correlating pain and the progression of musculoskeletal diseases is not yet fully understood. Molecular biomarkers for objective evaluation and treatment follow-up are needed as a step towards targeted treatment of pain as a symptom or as a disease. Stem cell therapy is already under investigation for the treatment of different types of musculoskeletal-related pain. Mesenchymal stem cell-based therapies are already being tested in various clinical trials that use musculoskeletal system-related pain as the primary or secondary endpoint. Genetically engineered stem cells, as well as induced pluripotent stem cells, offer promising novel perspectives for pain treatment. It is possible that a more focused approach and reassessment of therapeutic goals will contribute to the overall efficacy, as well as to the clinical acceptance of regenerative medicine therapies. This article briefly describes the principal types of musculoskeletal-related pain and reviews the stem cell-based therapies that have been specifically designed for its treatment. PMID:25621109

  8. Metformin treatment reduces temozolomide resistance of glioblastoma cells

    PubMed Central

    Lu, Guangrong; Xue, Haipeng; Kim, Dong H.

    2016-01-01

    It has been reported that metformin acts synergistically with temozolomide (TMZ) to inhibit proliferation of glioma cells including glioblastoma multiforme (GBM). However, the molecular mechanism underlying how metformin exerts its anti-cancer effects remains elusive. We used a combined experimental and bioinformatics approach to identify genes and complex regulatory/signal transduction networks that are involved in restoring TMZ sensitivity of GBM cells after metformin treatment. First, we established TMZ resistant GBM cell lines and found that the resistant cells regained TMZ sensitivity after metformin treatment. We further identified that metformin down-regulates SOX2 expression in TMZ-resistant glioma cells, reduces neurosphere formation capacity of glioblastoma cells, and inhibits GBM xenograft growth in vivo. Finally, the global gene expression profiling data reveals that multiple pathways are involved in metformin treatment related gene expression changes, including fatty acid metabolism and RNA binding and splicing pathways. Our work provided insight of the mechanisms on potential synergistic effects of TMZ and metformin in the treatment of glioblastoma, which will in turn yield potentially translational value for clinical applications. PMID:27791206

  9. Amino acid immunoreactivity in normal human retina and after brachytherapy.

    PubMed

    de Souza, Clairton F; Acosta, Monica L; Polkinghorne, Philip J; McGhee, Charles N J; Kalloniatis, Michael

    2013-09-01

    We localised amino acids in the mid-peripheral aged human retina and a retina that had undergone radiation treatment 10 years earlier. The distribution pattern of glutamate, γ-amino butyric acid (GABA), glycine, glutamine and taurine, reflected patterns established in the primate retina. The retina that had undergone radiation exposure displayed both anatomical and neurochemical remodelling. The proximal retina comprised around 40 to 45 per cent of the total retina and neuronal kinesis and aberrant neuronal projections were also present. Amino acid neurochemistry was strikingly different with Müller cells displaying GABA loading, glycinergic neurons displaced and displaying a very high level of glycine labelling. We conclude that radiation exposure triggered these changes in the human retina and likely reflects general remodelling of structure and function following ischaemic damage to endothelial cells.

  10. Possible involvement of galectin-3 in microglial activation in the hippocampus with trimethyltin treatment.

    PubMed

    Yang, Miyoung; Kim, Juhwan; Kim, Taehyub; Kim, Sung-Ho; Kim, Jong-Choon; Kim, Jeongtae; Takayama, Chitoshi; Hayashi, Akinobu; Joo, Hong-Gu; Shin, Taekyun; Moon, Changjong

    2012-12-01

    Trimethyltin (TMT) is an organotin neurotoxicant with effects that are selectively localized to the limbic system (especially the hippocampus), which produces memory deficits and temporal lobe seizures. Galectin-3 (Gal-3) is a beta-galactoside-binding lectin that is important in cell proliferation and regulation of apoptosis. The present study evaluated the temporal expression of Gal-3 in the hippocampus of adult BALB/c mice after TMT treatment (i.p., 2.5mg/kg). Western blotting analyses showed that Gal-3 immunoreactivity began to increase days after treatment; the immunoreactivity peaked significantly within days after treatment but significantly declined between days 4 and 8. Immunohistochemical analysis indicated that Gal-3 expression was very rare in the hippocampi of vehicle-treated controls. However, Gal-3 immunoreactivity appeared between 2 and 8 days after TMT treatment and was primarily localized to the hippocampal dentate gyrus (DG), in which neuronal degeneration occurred. The immunoreactivity was detected predominantly in most of the Iba1-positive microglia and in some GFAP-positive astrocytes of the hippocampal DG. Furthermore, Gal-3 expression co-localized with the pro-inflammatory enzymes cyclooxygenase-2 and inducible nitric oxide synthase in the hippocampal DG. Therefore, we suggest that Gal-3 is involved in the inflammatory process of neurodegenerative disorder induced by organotin intoxication.

  11. Dopamine D1 Receptor Immunoreactivity on Fine Processes of GFAP-Positive Astrocytes in the Substantia Nigra Pars Reticulata of Adult Mouse

    PubMed Central

    Nagatomo, Katsuhiro; Suga, Sechiko; Saitoh, Masato; Kogawa, Masahito; Kobayashi, Kazuto; Yamamoto, Yoshio; Yamada, Katsuya

    2017-01-01

    Substantia nigra pars reticulata (SNr), the major output nucleus of the basal ganglia, receives dopamine from dendrites extending from dopaminergic neurons of the adjacent nucleus pars compacta (SNc), which is known for its selective degeneration in Parkinson's disease. As a recipient for dendritically released dopamine, the dopamine D1 receptor (D1R) is a primary candidate due to its very dense immunoreactivity in the SNr. However, the precise location of D1R remains unclear at the cellular level in the SNr except for that reported on axons/axon terminals of presumably striatal GABAergic neurons. To address this, we used D1R promotor-controlled, mVenus-expressing transgenic mice. When cells were acutely dissociated from SNr of mouse brain, prominent mVenus fluorescence was detected in fine processes of glia-like cells, but no such fluorescence was detected from neurons in the same preparation, except for the synaptic bouton-like structure on the neurons. Double immunolabeling of SNr cells dissociated from adult wild-type mice brain further revealed marked D1R immunoreactivity in the processes of glial fibrillary acidic protein (GFAP)-positive astrocytes. Such D1R imunoreactivity was significantly stronger in the SNr astrocytes than that in those of the visual cortex in the same preparation. Interestingly, GFAP-positive astrocytes dissociated from the striatum demonstrated D1R immunoreactivity, either remarkable or minimal, similarly to that shown in neurons in this nucleus. In contrast, in the SNr and visual cortex, only weak D1R immunoreactivity was detected in the neurons tested. These results suggest that the SNr astrocyte may be a candidate recipient for dendritically released dopamine. Further study is required to fully elucidate the physiological roles of divergent dopamine receptor immunoreactivity profiles in GFAP-positive astrocytes. PMID:28203148

  12. Induced pluripotent stem cells and Parkinson's disease: modelling and treatment.

    PubMed

    Xu, Xiaoyun; Huang, Jinsha; Li, Jie; Liu, Ling; Han, Chao; Shen, Yan; Zhang, Guoxin; Jiang, Haiyang; Lin, Zhicheng; Xiong, Nian; Wang, Tao

    2016-02-01

    Many neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by progressive neuronal loss in different regions of the central nervous system, contributing to brain dysfunction in the relevant patients. Stem cell therapy holds great promise for PD patients, including with foetal ventral mesencephalic cells, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Moreover, stem cells can be used to model neurodegenerative diseases in order to screen potential medication and explore their mechanisms of disease. However, related ethical issues, immunological rejection and lack of canonical grafting protocols limit common clinical use of stem cells. iPSCs, derived from reprogrammed somatic cells, provide new hope for cell replacement therapy. In this review, recent development in stem cell treatment for PD, using hiPSCs, as well as the potential value of hiPSCs in modelling for PD, have been summarized for application of iPSCs technology to clinical translation for PD treatment. © 2016 John Wiley & Sons Ltd.

  13. Glial progenitor cell-based treatment of the childhood leukodystrophies

    PubMed Central

    Osorio, M. Joana; Goldman, Steven A.

    2017-01-01

    The childhood leukodystrophies comprise a group of hereditary disorders characterized by the absence, malformation or destruction of myelin. These disorders share common clinical, radiological and pathological features, despite their diverse molecular and genetic etiologies. Oligodendrocytes and astrocytes are the major affected cell populations, and are either structurally impaired or metabolically compromised through cell-intrinsic pathology, or are the victims of mis-accumulated toxic byproducts of metabolic derangement. In either case, glial cell replacement using implanted tissue or pluripotent stem cell-derived human neural or glial progenitor cells may comprise a promising strategy for both structural remyelination and metabolic rescue. A broad variety of pediatric white matter disorders, including the primary hypomyelinating disorders, the lysosomal storage disorders, and the broader group of non-lysosomal metabolic leukodystrophies, may all be appropriate candidates for glial progenitor cell-based treatment. Nonetheless, a variety of specific challenges remain before this therapeutic strategy can be applied to children. These include timely diagnosis, before irreparable neuronal injury has ensued; understanding the natural history of the targeted disease; defining the optimal cell phenotype for each disorder; achieving safe and scalable cellular compositions, designing age-appropriate controlled clinical trials; and for autologous therapy of genetic disorders, achieving the safe genetic editing of pluripotent stem cells. Yet these challenges notwithstanding, the promise of glial progenitor cell-based treatment of the childhood myelin disorders offers hope to the many victims of this otherwise largely untreatable class of disease. PMID:27170209

  14. Calcitonin immunoreactivity and hypercalcitoninemia in two patients with sporadic, nonfamilial, gastroenteropancreatic neuroendocrine tumors.

    PubMed

    McLeod, M K; Vinik, A I

    1992-05-01

    Hypercalcitoninemia in gastroenteropancreatic tumors associated with calcitonin immunoreactivity is rare. We report here two patients in whom pancreatic neuroendocrine tumors both contained and secreted immunoreactive calcitonin. Both patients experienced elevated basal calcitonin immunoreactivity. The peak responses of immunoreactive calcitonin occurred 5 minutes after pentagastrin administration in these two patients and were 30% and 180% above basal concentrations corresponding to peak increments of 0.39 and 8.78 ng/ml, respectively. The immunoreactive calcitonin response to pentagastrin in these two patients was not significantly different from that seen among five patients with medullary carcinoma of the thyroid gland. It does not appear that immunoreactive calcitonin responses to pentagastrin stimulation will discriminate between patients with medullary carcinoma of the thyroid gland and those with nonfamilial, gastroenteropancreatic neuroendocrine tumors that express calcitonin immunoreactivity. In patients with secretory diarrhea and/or flushing, an elevated level of immunoreactive calcitonin, in the absence of a thyroid mass in the neck, may herald the presence of a gastroenteropancreatic neuroendocrine tumor.

  15. Galectin-3 inhibition sensitizes human renal cell carcinoma cells to arsenic trioxide treatment

    PubMed Central

    Xu, Yangyang; Gu, Xin; Gong, Mancheng; Guo, Guiying; Han, Kaiyu; An, Ruihua

    2013-01-01

    The anti-tumor effects of arsenic trioxide (ATO) were well established in acute promyelocytic leukemia, but not in renal cell carcinoma (RCC). Recent evidences indicate that galectin-3 (Gal-3) plays an anti-apoptotic role in chemotherapy induced tumor cell death. This study was intended to clarify the exact roles of Gal-3 performed in ATO-induced apoptosis in RCC cells. Weak apoptosis was observed in Gal-3-positive RCC cells (Caki-1, Caki-2, 786-0, and ACHN) following ATO treatment. However, ATO treatment upregulated Gal-3 expression concurrently caused a Synexin-cooperated translocation of Gal-3 from the nucleus to the cytoplasm. Gal-3-knockdown cells were more sensitive to ATO treatment as indicated by a strong mitochondria-dependent apoptosis following ATO treatment. Meanwhile, Gal-3 was found to inhibit ATO-induced apoptosis through enhancing Bcl-2 expression and stabilizing mitochondria. To confirm the results obtained from genetic method, we employed a Gal-3 inhibitor, modified citrus prectin (MCP), and co-treated the RCC cells with ATO. The cells showed an increased apoptosis in the syngeneic application of Gal-3 inhibition and ATO compared with ATO application alone. Based on these results, we conclude that Gal-3 inhibition sensitizes human renal cell carcinoma cells to ATO treatment through increasing mitochondria-dependent apoptosis. Our studies implicate synergetic application of ATO and Gal-3 inhibition as a potential strategy for RCC treatment. PMID:23917726

  16. The effects of cysteamine on thyrotropin and immunoreactive beta-endorphin secretion in the rat

    SciTech Connect

    Millard, W.J.; Sagar, S.M.; Badger, T.M.; Carr, D.B.; Arnold, M.A.; Spindel, E.; Kasting, N.W.; Martin, J.B.

    1983-02-01

    We examined the effects of the thiol agent cysteamine (CSH), which is known to deplete the hypothalamus of immunoreactive somatostatin, on physiological TSH and beta- endorphin secretion in the adult male rat. CSH at doses of 90 and 300 mg/kg CSH produced a rapid decline in plasma TSH, whereas a dose of 30 mg/kg did not alter plasma TSH levels. After the higher doses of CSH, TSH levels in the blood remained lower than control values on day 2, but returned to normal by 1 week. This decrease in TSH within the plasma was not associated with a reduction in hypothalamic TRH concentrations. The TSH response to 500 ng/kg TRH was normal in CSH-treated animals. Blockade of norepinephrine synthesis with diethyldithiocarbamate (500 mg/kg) or fusaric acid (100 mg/kg) inhibited TSH secretion in a manner similar to that of CSH. beta-Endorphin-like immunoreactivity (bet-End-LI) was elevated in the plasma immediately after CSH (300 mg/kg) administration. This was associated with a 58% reduction in anterior pituitary beta-End-LI and no change in hypothalmic beta-End-LI. Plasma beta-End-LI returned to normal on day 2. The increase in plasma beta-End-LI induced by immobilization stress was not compromised by CSH treatment. The observed effects of CSH on both TSH and beta-End-LI are consistent with a reduction in central norepinephrine neurotransmission through the known actin of CSH to inhibit dopamine-beta-hydroxylase. Acute stress may play a role as well in the observed changes in TSH and beta-End-LI secretion.

  17. Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins

    PubMed Central

    Irie, Yasuyuki; Saeki, Makio; Kamisaki, Yoshinori; Martin, Emil; Murad, Ferid

    2003-01-01

    Several reports have described an activity that modifies nitrotyrosine-containing proteins and their immunoreactivity to nitrotyrosine Abs. Without knowing the product of the reaction, this new activity has been called a “denitrase.” In those studies, some nonspecific proteins, which have multiple tyrosine residues, e.g., albumin, were used as a substrate. Therefore, the studies were based on an unknown mechanism of reaction and potentially a high background. To solve these problems, one of the most important things is to find a more suitable substrate for assay of the enzyme. We developed an assay strategy for determining the substrate for denitrase combining 2D-gel electrophoresis and an on-blot enzyme assay. The resulting substrate from RAW 264.7 cells was Histone H1.2, an isoform protein of linker histone. Histone H1.2 has only one tyrosine residue in the entire molecule, which ensures the exact position of the substrate to be involved. It has been reported that Histones are the most prominent nitrated proteins in cancer tissues. It was also demonstrated that tyrosine nitration of Histone H1 occurs in vivo. These findings lead us to the idea that Histone H1.2 might be an intrinsic substrate for denitrase. We nitrated recombinant and purified Histone H1.2 chemically and subjected it to an on-blot enzyme assay to characterize the activity. Denitrase activity behaved as an enzymatic activity because the reaction was time dependent and was destroyed by heat or trypsin treatment. The activity was shown to be specific for Histone H1.2, to differ from proteasome activity, and to require no additional cofactors. PMID:12719531

  18. Distribution and characterization of neuropeptide Y-like immunoreactivity in the brain of the crested newt.

    PubMed

    Perroteau, I; Danger, J M; Biffo, S; Pelletier, G; Vaudry, H; Fasolo, A

    1988-09-15

    The newt brain represents a simplified model for the increasingly complex vertebrate neuronal organization. The localization of neuropeptide Y-like (NPY-like) containing neurons in the brain of Triturus cristatus was studied by means of indirect immunofluorescence, peroxidase-antiperoxidase, and avidin-biotin techniques using a highly specific antiserum. NPY-like positive cell bodies were observed in several areas, most notably in the telencephalon (primordium hippocampi and amygdaloid complex), the preoptic and suprachiasmatic areas, the hypothalamus, the dorsal thalamus, the tegmentum, and the rhombencephalon (laterolateral grey column and raphe area). Nerve fibres were particularly abundant in the pallium, striatum, septum, amygdaloid, preoptic neuropils, and pars intercalaris diencephali. Bundles of NPY-immunoreactive fibres also were visualized in the dorsal thalamus and in the posterior hypothalamus. The pars intermedia lacked any NPY-like positive fibres. Neuronal processes also were found in the tectum mesencephali and in the body of the cerebellum. A prominent NPY-like fibre network was observed in the octavolateralis. Concentrations of NPY measured by means of a specific radioimmunoassay were threefold higher in the hypothalamus (15.2 +/- 1.3 ng/mg proteins) than in the rhombencephalon (4.9 +/- 0.3) and the mesencephalon (4.3 +/- 0.2). The concentration found in the telencephalon was 2.1 +/- 0.3 ng/mg proteins. Sephadex G-50 gel chromatography of whole brain extracts indicated the presence of high molecular weight forms of NPY-like material in addition to the authentic peptide. Both amphibian and mammalian NPY peptides had an apparent molecular weight of 4,000 daltons, as evidenced by immunoblotting analysis. High-performance liquid chromatography demonstrated, however, that the newt peptide was slightly less hydrophobic than porcine NPY. The present findings indicate that NPY-immunoreactive neurons are widely distributed in the brain of urodeles. Our

  19. Acquired pure red cell aplasia: updated review of treatment

    PubMed Central

    Sawada, Kenichi; Fujishima, Naohito; Hirokawa, Makoto

    2008-01-01

    Pure red cell aplasia (PRCA) is a syndrome characterized by a severe normocytic anaemia, reticulocytopenia, and absence of erythroblasts from an otherwise normal bone marrow. Primary PRCA, or secondary PRCA which has not responded to treatment of the underlying disease, is treated as an immunologically-mediated disease. Although vigorous immunosuppressive treatments induce and maintain remissions in a majority of patients, they carry an increased risk of serious complications. Corticosteroids were used in the treatment of PRCA and this has been considered the treatment of first choice although relapse is not uncommon. Cyclosporine A (CsA) has become established as one of the leading drugs for treatment of PRCA. However, common concerns have been the number of patients treated with CsA who achieve sustained remissions and the number that relapse. This article reviews the current status of CsA therapy and compares it to other treatments for diverse PRCAs. PMID:18510682

  20. Hippocampal serotonin-2A receptor-immunoreactive neurons density increases after testosterone therapy in the gonadectomized male mice

    PubMed Central

    Nikmahzar, Emsehgol; Ghaemi, Amir; Naseri, Gholam Reza; Moharreri, Ali Reza; Lotfinia, Ahmad Ali

    2016-01-01

    The change of steroid levels may also exert different modulatory effects on the number and class of serotonin receptors present in the plasma membrane. The effects of chronic treatment of testosterone for anxiety were examined and expression of 5-HT2A serotonergic receptor, neuron, astrocyte, and dark neuron density in the hippocampus of gonadectomized male mice was determined. Thirty-six adult male NMRI mice were randomly divided into six groups: intact-no testosterone treatment (No T), gonadectomy (GDX)-No T, GDX-Vehicle, GDX-6.25 mg/kg testosterone (T), GDX-12.5 mg/kg T, and GDX-25 mg/kg T. Anxiety-related behavior was evaluated using elevated plus maze apparatus. The animals were anesthetized after 48 hours after behavioral testing, and decapitated and micron slices were prepared for immunohistochemical as well as histopathological assessment. Subcutaneous injection of testosterone (25 mg/kg) may induce anxiogenic-like behavior in male mice. In addition, immunohistochemical data reveal reduced expression of 5-HT2A serotonergic receptor after gonadectomy in all areas of the hippocampus. However, treatment with testosterone could increase the mean number of dark neurons as well as immunoreactive neurons in CA1 and CA3 area, dose dependently. The density of 5-HT2A receptor-immunoreactive neurons may play a crucial role in the induction of anxiety like behavior. As reduction in such receptor expression have shown to significantly enhance anxiety behaviors. However, replacement of testosterone dose dependently enhances the number of 5-HT2A receptor-immunoreactive neurons and interestingly also reduced anxiety like behaviors. PMID:28127501

  1. Estradiol replacement enhances sleep deprivation-induced c-Fos immunoreactivity in forebrain arousal regions of ovariectomized rats.

    PubMed

    Deurveilher, S; Cumyn, E M; Peers, T; Rusak, B; Semba, K

    2008-10-01

    To understand how female sex hormones influence homeostatic mechanisms of sleep, we studied the effects of estradiol (E(2)) replacement on c-Fos immunoreactivity in sleep/wake-regulatory brain areas after sleep deprivation (SD) in ovariectomized rats. Adult rats were ovariectomized and implanted subcutaneously with capsules containing 17beta-E(2) (10.5 microg; to mimic diestrous E(2) levels) or oil.