Carbon "Quantum" Dots for Fluorescence Labeling of Cells.
Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping
2015-09-02
The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.
High efficiency labeling of glycoproteins on living cells
Zeng, Ying; Ramya, T. N. C.; Dirksen, Anouk; Dawson, Philip E.; Paulson, James C.
2010-01-01
We describe a simple method for efficiently labeling cell surface glycans on virtually any living animal cell. The method employs mild Periodate oxidation to generate an aldehyde on sialic acids, followed by Aniline-catalyzed oxime Ligation with a suitable tag (PAL). Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell surface glycoproteins while maintaining high cell viability. PMID:19234450
Yan, Yuanwei; Sart, Sébastien; Calixto Bejarano, Fabian; Muroski, Megan E; Strouse, Geoffrey F; Grant, Samuel C; Li, Yan
2015-01-01
Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre-labeled neural cells, especially in three-dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC-derived multicellular NPC aggregates labeled with micron-sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70-80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post-cryopreservation. MRI analysis showed comparable detectability for the MPIO-labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO-labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers.
Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T
2017-04-01
Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.
Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M
2015-01-01
Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used. Copyright © 2015 Elsevier Inc. All rights reserved.
Optimization and validation of FePro cell labeling method.
Janic, Branislava; Rad, Ali M; Jordan, Elaine K; Iskander, A S M; Ali, Md M; Varma, N Ravi S; Frank, Joseph A; Arbab, Ali S
2009-06-11
Current method to magnetically label cells using ferumoxides (Fe)-protamine (Pro) sulfate (FePro) is based on generating FePro complexes in a serum free media that are then incubated overnight with cells for the efficient labeling. However, this labeling technique requires long (>12-16 hours) incubation time and uses relatively high dose of Pro (5-6 microg/ml) that makes large extracellular FePro complexes. These complexes can be difficult to clean with simple cell washes and may create low signal intensity on T2* weighted MRI that is not desirable. The purpose of this study was to revise the current labeling method by using low dose of Pro and adding Fe and Pro directly to the cells before generating any FePro complexes. Human tumor glioma (U251) and human monocytic leukemia cell (THP-1) lines were used as model systems for attached and suspension cell types, respectively and dose dependent (Fe 25 to 100 microg/ml and Pro 0.75 to 3 microg/ml) and time dependent (2 to 48 h) labeling experiments were performed. Labeling efficiency and cell viability of these cells were assessed. Prussian blue staining revealed that more than 95% of cells were labeled. Intracellular iron concentration in U251 cells reached approximately 30-35 pg-iron/cell at 24 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. However, comparable labeling was observed after 4 h across the described FePro concentrations. Similarly, THP-1 cells achieved approximately 10 pg-iron/cell at 48 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. Again, comparable labeling was observed after 4 h for the described FePro concentrations. FePro labeling did not significantly affect cell viability. There was almost no extracellular FePro complexes observed after simple cell washes. To validate and to determine the effectiveness of the revised technique, human T-cells, human hematopoietic stem cells (hHSC), human bone marrow stromal cells (hMSC) and mouse neuronal stem cells (mNSC C17.2) were labeled. Labeling for 4 hours using 100 microg/ml of Fe and 3 microg/ml of Pro resulted in very efficient labeling of these cells, without impairing their viability and functional capability. The new technique with short incubation time using 100 microg/ml of Fe and 3 microg/ml of Pro is effective in labeling cells for cellular MRI.
D. M., Jayaseema; Lai, Jiann-Shiun; Hueng, Dueng-Yuan; Chang, Chen
2013-01-01
Cellular magnetic resonance imaging (MRI) has been well-established for tracking neural progenitor cells (NPC). Superparamagnetic iron oxide nanoparticles (SPIONs) approved for clinical application are the most common agents used for labeling. Conventionally, transfection agents (TAs) were added with SPIONs to facilitate cell labeling because SPIONs in the native unmodified form were deemed inefficient for intracellular labeling. However, compelling evidence also shows that simple SPION incubation is not invariably ineffective. The labeling efficiency can be improved by prolonged incubation and elevated iron doses. The goal of the present study was to establish simple SPION incubation as an efficient intracellular labeling method. To this end, NPCs derived from the neonatal subventricular zone were incubated with SPIONs (Feridex®) and then evaluated in vitro with regard to the labeling efficiency and biological functions. The results showed that, following 48 hours of incubation at 75 µg/ml, nearly all NPCs exhibited visible SPION intake. Evidence from light microscopy, electron microscopy, chemical analysis, and magnetic resonance imaging confirmed the effectiveness of the labeling. Additionally, biological assays showed that the labeled NPCs exhibited unaffected viability, oxidative stress, apoptosis and differentiation. In the demonstrated in vivo cellular MRI experiment, the hypointensities representing the SPION labeled NPCs remained observable throughout the entire tracking period. The findings indicate that simple SPION incubation without the addition of TAs is an efficient intracellular magnetic labeling method. This simple approach may be considered as an alternative approach to the mainstream labeling method that involves the use of TAs. PMID:23468856
Cell-specific Labeling Enzymes for Analysis of Cell–Cell Communication in Continuous Co-culture*
Tape, Christopher J.; Norrie, Ida C.; Worboys, Jonathan D.; Lim, Lindsay; Lauffenburger, Douglas A.; Jørgensen, Claus
2014-01-01
We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDCM.tub-KDEL) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (LyrM37-KDEL) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDCM.tub-KDEL and LyrM37-KDEL facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell–cell phospho-signaling experiments, we propose DDCM.tub-KDEL and LyrM37-KDEL as excellent enzymes for cell-specific labeling with amino acid precursors. PMID:24820872
Ho, Yin Ying; Penno, Megan; Perugini, Michelle; Lewis, Ian; Hoffmann, Peter
2012-01-01
Labeling of exposed cell surface proteins of live cells using CyDye DIGE fluor minimal dyes is an efficient strategy for cell surface proteome profiling and quantifying differentially expressed proteins in diseases. Here we describe a strategy to evaluate a two-step detergent-based protein fractionation method using live cell labeling followed by visualization of the fluorescently labeled cell surface proteins and fractionated proteins within a single 2D gel.
Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped Viruses.
Lacour, William; Adjili, Salim; Blaising, Julie; Favier, Arnaud; Monier, Karine; Mezhoud, Sarra; Ladavière, Catherine; Place, Christophe; Pécheur, Eve-Isabelle; Charreyre, Marie-Thérèse
2016-08-01
Far-red emitting fluorescent lipid probes are desirable to label enveloped viruses, for their efficient tracking by optical microscopy inside autofluorescent cells. Most used probes are rapidly released from membranes, leading to fluorescence signal decay and loss of contrast. Here, water-soluble lipid-polymer probes are synthesized harboring hydrophilic or hydrophobic far-red emitting dyes, and exhibiting enhanced brightness. They efficiently label Hepatitis C Virus pseudotyped particles (HCVpp), more stably and reproducibly than commercial probes, and a strong fluorescence signal is observed with a high contrast. Labeling with such probes do not alter virion morphology, integrity, nor infectivity. Finally, it is shown by fluorescence microscopy that these probes enable efficient tracking of labeled HCVpp inside hepatocarcinoma cells used as model hepatocytes, in spite of their autofluorescence up to 700 nm. These novel fluorescent lipid-polymer probes should therefore enable a better characterization of early stages of infection of autofluorescent cells by enveloped viruses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-efficiency dual labeling of influenza virus for single-virus imaging.
Liu, Shu-Lin; Tian, Zhi-Quan; Zhang, Zhi-Ling; Wu, Qiu-Mei; Zhao, Hai-Su; Ren, Bin; Pang, Dai-Wen
2012-11-01
Many viruses invade host cells by entering the cells and releasing their genome for replication, which are remarkable incidents for viral infection. Therefore, the viral internal and external components should be simultaneously labeled and dynamically tracked at single-virus level for further understanding viral infection mechanisms. However, most of the previously reported methods have very low labeling efficiency and require considerable time and effort, which is laborious and inconvenient for researchers. In this work, we report a general strategy to high-efficiently label viral envelope and genome for single-virus imaging with quantum dots (QDs) and Syto 82, respectively. It was found that nearly all viral envelopes could be labeled with QDs with superior stability, which makes it possible to realize global and long-term tracking of single virus in individual cells. Effectively labeling their genome with Syto 82, about 90% of QDs-labeled viruses could be used to monitor the viral genome signal, which may provide valuable information for deeply studying viral genome transport. This is very important and meaningful to investigate the viral infection mechanism. Our labeling strategy has advantage in commonality, convenience and efficiency, which is expected to be widely used in biological research. Copyright © 2012 Elsevier Ltd. All rights reserved.
Saldanha, Karl J; Doan, Ryan P; Ainslie, Kristy M; Desai, Tejal A; Majumdar, Sharmila
2011-01-01
To examine mesenchymal stem cell (MSC) labeling with micrometer-sized iron oxide particles (MPIOs) for magnetic resonance imaging (MRI)-based tracking and its application to monitoring articular cartilage regeneration. Rabbit MSCs were labeled using commercial MPIOs. In vitro MRI was performed with gradient echo (GRE) and spin echo (SE) sequences at 3T and quantitatively characterized using line profile and region of interest analysis. Ex vivo MRI of hydrogel-encapsulated labeled MSCs implanted within a bovine knee was performed with spoiled GRE (SPGR) and T(1ρ) sequences. Fluorescence microscopy, labeling efficiency, and chondrogenesis of MPIO-labeled cells were also examined. MPIO labeling results in efficient contrast uptake and signal loss that can be visualized and quantitatively characterized via MRI. SPGR imaging of implanted cells results in ex vivo detection within native tissue, and T(1ρ) imaging is unaffected by the presence of labeled cells immediately following implantation. MPIO labeling does not affect quantitative glycosaminoglycan production during chondrogenesis, but iron aggregation hinders extracellular matrix visualization. This aggregation may result from excess unincorporated particles following labeling and is an issue that necessitates further investigation. This study demonstrates the promise of MPIO labeling for monitoring cartilage regeneration and highlights its potential in the development of cell-based tissue engineering strategies. Published by Elsevier Inc.
Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng
2016-01-05
Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.
NASA Astrophysics Data System (ADS)
Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng
2016-01-01
Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.
Jiráková, Klára; Šeneklová, Monika; Jirák, Daniel; Turnovcová, Karolína; Vosmanská, Magda; Babič, Michal; Horák, Daniel; Veverka, Pavel; Jendelová, Pavla
2016-01-01
Introduction Magnetic resonance (MR) imaging is suitable for noninvasive long-term tracking. We labeled human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) with two types of iron-based nanoparticles, silica-coated cobalt zinc ferrite nanoparticles (CZF) and poly-l-lysine-coated iron oxide superparamagnetic nanoparticles (PLL-coated γ-Fe2O3) and studied their effect on proliferation and neuronal differentiation. Materials and methods We investigated the effect of these two contrast agents on neural precursor cell proliferation and differentiation capability. We further defined the intracellular localization and labeling efficiency and analyzed labeled cells by MR. Results Cell proliferation was not affected by PLL-coated γ-Fe2O3 but was slowed down in cells labeled with CZF. Labeling efficiency, iron content and relaxation rates measured by MR were lower in cells labeled with CZF when compared to PLL-coated γ-Fe2O3. Cytoplasmic localization of both types of nanoparticles was confirmed by transmission electron microscopy. Flow cytometry and immunocytochemical analysis of specific markers expressed during neuronal differentiation did not show any significant differences between unlabeled cells or cells labeled with both magnetic nanoparticles. Conclusion Our results show that cells labeled with PLL-coated γ-Fe2O3 are suitable for MR detection, did not affect the differentiation potential of iPSC-NPs and are suitable for in vivo cell therapies in experimental models of central nervous system disorders. PMID:27920532
The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.
Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye
2016-01-01
MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.
Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, LF
2014-01-01
Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson’s disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 105 cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model. PMID:24531365
Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping
2016-10-01
Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.
Peng, Tao; Hang, Howard C
2016-11-02
Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu
2013-05-01
Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future. Electronic supplementary information (ESI) available: Details of cell internalization of fmSiO4@SPIONs compared with SHU555A, immunofluorescence image of the immature phenotype of labeled C17.2. See DOI: 10.1039/c3nr00119a
Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng
2016-01-01
Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo. PMID:26728448
Zhou, Shukui; Yin, Ting; Zou, Qingsong; Zhang, Kaile; Gao, Guo; Shapter, Joseph G; Huang, Peng; Fu, Qiang
2017-02-21
Cell sheet therapy has emerged as a potential therapeutic option for reparation and reconstruction of damaged tissues and organs. However, an effective means to assess the fate and distribution of transplanted cell sheets in a serial and noninvasive manner is still lacking. To investigate the feasibility of tracking Adipose derived stem cells (ADSCs) sheet in vivo using ultrasmall super-paramagnetic Fe 3 O 4 nanoparticles (USPIO), canine ADSCs were cultured and incubated with USPIO and 0.75 μg/ml Poly-L-Lysine (PLL) for 12 h. Labeling efficiency, cell viability, apoptotic cell rate were assessed to screen the optimum concentrations of USPIO for best labeling ADSCs. The results showed ADSCs were labeled by USPIO at an iron dose of 50 μg/ml for a 12 h incubation time, which can most efficiently mark cells and did not impair the cell survival, self-renewal, and proliferation capacity. USPIO-labeled ADSCs sheets can be easily and clearly detected in vivo and have persisted for at least 12 weeks. Our experiment confirmed USPIO was feasible for in vivo labeling of the ADSCs sheets with the optimal concentration of 50 μg Fe/ml and the tracing time is no less than 12 weeks.
2011-01-01
Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide) alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing ferumoxide and protamine may be applicable to patients, since both ferumoxides and protamine are approved for human use. PMID:21542946
2013-01-01
This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo. PMID:24564857
Quantification of Superparamagnetic Iron Oxide (SPIO)-labeled Cells Using MRI
Rad, Ali M; Arbab, Ali S; Iskander, ASM; Jiang, Quan; Soltanian-Zadeh, Hamid
2015-01-01
Purpose To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. Materials and Methods Lymphocytes and 9L rat gliosarcoma cells were labeled with Ferumoxides-Protamine Sulfate complex (FE-PRO). Cells were labeled efficiently (more than 95%) and iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 picograms). Phantom tubes containing different number of labeled or unlabeled cells as well as different concentrations of FE-PRO were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. Results Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7 T and 3 T MRI systems and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. Conclusion Our data indicated that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups. PMID:17623892
(89)Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies.
Sato, Noriko; Wu, Haitao; Asiedu, Kingsley O; Szajek, Lawrence P; Griffiths, Gary L; Choyke, Peter L
2015-05-01
To develop a clinically translatable method of cell labeling with zirconium 89 ((89)Zr) and oxine to track cells with positron emission tomography (PET) in mouse models of cell-based therapy. This study was approved by the institutional animal care committee. (89)Zr-oxine complex was synthesized in an aqueous solution. Cell labeling conditions were optimized by using EL4 mouse lymphoma cells, and labeling efficiency was examined by using dendritic cells (DCs) (n = 4), naïve (n = 3) and activated (n = 3) cytotoxic T cells (CTLs), and natural killer (NK) (n = 4), bone marrow (n = 4), and EL4 (n = 4) cells. The effect of (89)Zr labeling on cell survival, proliferation, and function were evaluated by using DCs (n = 3) and CTLs (n = 3). Labeled DCs (444-555 kBq/[5 × 10(6)] cells, n = 5) and CTLs (185 kBq/[5 × 10(6)] cells, n = 3) transferred to mice were tracked with microPET/CT. In a melanoma immunotherapy model, tumor targeting and cytotoxic function of labeled CTLs were evaluated with imaging (248.5 kBq/[7.7 × 10(6)] cells, n = 4) and by measuring the tumor size (n = 6). Two-way analysis of variance was used to compare labeling conditions, the Wilcoxon test was used to assess cell survival and proliferation, and Holm-Sidak multiple tests were used to assess tumor growth and perform biodistribution analyses. (89)Zr-oxine complex was synthesized at a mean yield of 97.3% ± 2.8 (standard deviation). It readily labeled cells at room temperature or 4°C in phosphate-buffered saline (labeling efficiency range, 13.0%-43.9%) and was stably retained (83.5% ± 1.8 retention on day 5 in DCs). Labeling did not affect the viability of DCs and CTLs when compared with nonlabeled control mice (P > .05), nor did it affect functionality. (89)Zr-oxine complex enabled extended cell tracking for 7 days. Labeled tumor-specific CTLs accumulated in the tumor (4.6% on day 7) and induced tumor regression (P < .05 on day 7). We have developed a (89)Zr-oxine complex cell tracking technique for use with PET that is applicable to a broad range of cell types and could be a valuable tool with which to evaluate various cell-based therapies. (©) RSNA, 2015
Rizzo, Stefania; Petrella, Francesco; Zucca, Ileana; Rinaldi, Elena; Barbaglia, Andrea; Padelli, Francesco; Baggi, Fulvio; Spaggiari, Lorenzo; Bellomi, Massimo; Bruzzone, Maria Grazia
2017-01-01
Among the various stem cell populations used for cell therapy, adult mesenchymal stromal cells (MSCs) have emerged as a major new cell technology. These cells must be tracked after transplantation to monitor their migration within the body and quantify their accumulation at the target site. This study assessed whether rat bone marrow MSCs can be labelled with superparamagnetic iron oxide (SPIO) nanoparticles and perfluorocarbon (PFC) nanoemulsion formulations without altering cell viability and compared magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) results from iron-labelled and fluorine-labelled MSCs, respectively. Of MSCs, 2 × 10 6 were labelled with Molday ION Rhodamine-B (MIRB) and 2 × 10 6 were labelled with Cell Sense. Cell viability was evaluated by trypan blue exclusion method. Labelled MSCs were divided into four samples containing increasing cell numbers (0.125 × 10 6 , 0.25 × 10 6 , 0.5 × 10 6 , 1 × 10 6 ) and scanned on a 7T MRI: for MIRB-labelled cells, phantoms and cells negative control, T1, T2 and T2* maps were acquired; for Cell Sense labelled cells, phantoms and unlabelled cells, a 19 F non-localised single-pulse MRS sequence was acquired. In total, 86.8% and 83.6% of MIRB-labelled cells and Cell Sense-labelled cells were viable, respectively. MIRB-labelled cells were visible in all samples with different cell numbers; pellets containing 0.5 × 10 6 and 1 × 10 6 of Cell Sense-labelled cells showed a detectable 19 F signal. Our data support the use of both types of contrast material (SPIO and PFC) for MSCs labelling, although further efforts should be dedicated to improve the efficiency of PFC labelling.
Tickle, Jacqueline A; Jenkins, Stuart I; Polyak, Boris; Pickard, Mark R; Chari, Divya M
2016-01-01
Aim: To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. Materials & methods: MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. Results: Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly ‘asymmetric’. Conclusion: These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization. PMID:26785794
A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.
Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin
2014-06-01
The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.
Labeling and Magnetic Resonance Imaging of Exosomes Isolated from Adipose Stem Cells.
Busato, Alice; Bonafede, Roberta; Bontempi, Pietro; Scambi, Ilaria; Schiaffino, Lorenzo; Benati, Donatella; Malatesta, Manuela; Sbarbati, Andrea; Marzola, Pasquina; Mariotti, Raffaella
2017-06-19
Adipose stem cells (ASC) represent a promising therapeutic approach for neurodegenerative diseases. Most biological effects of ASC are probably mediated by extracellular vesicles, such as exosomes, which influence the surrounding cells. Current development of exosome therapies requires efficient and noninvasive methods to localize, monitor, and track the exosomes. Among imaging methods used for this purpose, magnetic resonance imaging (MRI) has advantages: high spatial resolution, rapid in vivo acquisition, and radiation-free operation. To be detectable with MRI, exosomes must be labeled with MR contrast agents, such as ultra-small superparamagnetic iron oxide nanoparticles (USPIO). Here, we set up an innovative approach for exosome labeling that preserves their morphology and physiological characteristics. We show that by labeling ASC with USPIO before extraction of nanovesicles, the isolated exosomes retain nanoparticles and can be visualized by MRI. The current work aims at validating this novel USPIO-based exosome labeling method by monitoring the efficiency of the labeling with MRI both in ASC and in exosomes. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Preparation of Labeled Aflatoxins with High Specific Activities
Hsieh, D. P. H.; Mateles, R. I.
1971-01-01
Resting cells of Aspergillus parasiticus ATCC 15517 were used to prepare highly labeled aflatoxins from labeled acetate. High synthetic activity in growing cells was evidenced only during 40 to 70 hr of incubation. Glucose was required for high incorporation efficiency, whereas the concentration of the labeled acetate determined the specific activity of the product. When labeled acetate was continuously added to maintain a concentration near but not exceeding 10 mm, in a culture containing 30 g of glucose per liter, 2% of its labels could be recovered in the purified aflatoxins which have a specific activity more than three times that of the labeled acetate. PMID:4329435
Nanoparticles and clinically applicable cell tracking
Guenoun, Jamal; van Tiel, Sandra T; Krestin, Gabriel P
2015-01-01
In vivo cell tracking has emerged as a much sought after tool for design and monitoring of cell-based treatment strategies. Various techniques are available for pre-clinical animal studies, from which much has been learned and still can be learned. However, there is also a need for clinically translatable techniques. Central to in vivo cell imaging is labelling of cells with agents that can give rise to signals in vivo, that can be detected and measured non-invasively. The current imaging technology of choice for clinical translation is MRI in combination with labelling of cells with magnetic agents. The main challenge encountered during the cell labelling procedure is to efficiently incorporate the label into the cell, such that the labelled cells can be imaged at high sensitivity for prolonged periods of time, without the labelling process affecting the functionality of the cells. In this respect, nanoparticles offer attractive features since their structure and chemical properties can be modified to facilitate cellular incorporation and because they can carry a high payload of the relevant label into cells. While these technologies have already been applied in clinical trials and have increased the understanding of cell-based therapy mechanism, many challenges are still faced. PMID:26248872
89Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies
Wu, Haitao; Asiedu, Kingsley O.; Szajek, Lawrence P.; Griffiths, Gary L.; Choyke, Peter L.
2015-01-01
Purpose To develop a clinically translatable method of cell labeling with zirconium 89 (89Zr) and oxine to track cells with positron emission tomography (PET) in mouse models of cell-based therapy. Materials and Methods This study was approved by the institutional animal care committee. 89Zr-oxine complex was synthesized in an aqueous solution. Cell labeling conditions were optimized by using EL4 mouse lymphoma cells, and labeling efficiency was examined by using dendritic cells (DCs) (n = 4), naïve (n = 3) and activated (n = 3) cytotoxic T cells (CTLs), and natural killer (NK) (n = 4), bone marrow (n = 4), and EL4 (n = 4) cells. The effect of 89Zr labeling on cell survival, proliferation, and function were evaluated by using DCs (n = 3) and CTLs (n = 3). Labeled DCs (444–555 kBq/[5 × 106] cells, n = 5) and CTLs (185 kBq/[5 × 106] cells, n = 3) transferred to mice were tracked with microPET/CT. In a melanoma immunotherapy model, tumor targeting and cytotoxic function of labeled CTLs were evaluated with imaging (248.5 kBq/[7.7 × 106] cells, n = 4) and by measuring the tumor size (n = 6). Two-way analysis of variance was used to compare labeling conditions, the Wilcoxon test was used to assess cell survival and proliferation, and Holm-Sidak multiple tests were used to assess tumor growth and perform biodistribution analyses. Results 89Zr-oxine complex was synthesized at a mean yield of 97.3% ± 2.8 (standard deviation). It readily labeled cells at room temperature or 4°C in phosphate-buffered saline (labeling efficiency range, 13.0%–43.9%) and was stably retained (83.5% ± 1.8 retention on day 5 in DCs). Labeling did not affect the viability of DCs and CTLs when compared with nonlabeled control mice (P > .05), nor did it affect functionality. 89Zr-oxine complex enabled extended cell tracking for 7 days. Labeled tumor-specific CTLs accumulated in the tumor (4.6% on day 7) and induced tumor regression (P < .05 on day 7). Conclusion We have developed a 89Zr-oxine complex cell tracking technique for use with PET that is applicable to a broad range of cell types and could be a valuable tool with which to evaluate various cell-based therapies. © RSNA, 2015 Online supplemental material is available for this article. PMID:25706654
Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun
O'Brien, John A; Lummis, Sarah CR
2009-01-01
Diolistic labeling is a highly efficient method for introducing dyes into cells using biolistic techniques. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery using a hand-held gene gun, allows non-toxic labeling of multiple cells in both living and fixed tissue. The technique is rapid (labeled cells can be visualized in minutes) and technically undemanding. Here, we provide a detailed protocol for diolistic labeling of cultured human embryonic kidney 293 cells and whole brain using a hand-held gene gun. There are four major steps: (i) coating gold microcarriers with one or more dyes; (ii) transferring the microcarriers into a cartridge to make a bullet; (iii) preparation of cells or intact tissue; and (iv) firing the microcarriers into cells or tissue. The method can be readily adapted to other cell types and tissues. This protocol can be completed in less than 1 h. PMID:17406443
Amaike, Kazuma; Tamura, Tomonori; Hamachi, Itaru
2017-11-14
Endogenous protein labeling is one of the most invaluable methods for studying the bona fide functions of proteins in live cells. However, multi-molecular crowding conditions, such as those that occur in live cells, hamper the highly selective chemical labeling of a protein of interest (POI). We herein describe how the efficient coupling of molecular recognition with a chemical reaction is crucial for selective protein labeling. Recognition-driven protein labeling is carried out by a synthetic labeling reagent containing a protein (recognition) ligand, a reporter tag, and a reactive moiety. The molecular recognition of a POI can be used to greatly enhance the reaction kinetics and protein selectivity, even under live cell conditions. In this review, we also briefly discuss how such selective chemical labeling of an endogenous protein can have a variety of applications at the interface of chemistry and biology.
Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie
2017-01-01
Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. PMID:28835375
Nakajima, Kazuki; Ito, Emi; Ohtsubo, Kazuaki; Shirato, Ken; Takamiya, Rina; Kitazume, Shinobu; Angata, Takashi; Taniguchi, Naoyuki
2013-01-01
Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism. PMID:23720760
A microfluidics-based technique for automated and rapid labeling of cells for flow cytometry
NASA Astrophysics Data System (ADS)
Patibandla, Phani K.; Estrada, Rosendo; Kannan, Manasaa; Sethu, Palaniappan
2014-03-01
Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (˜45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain ‘analysis-ready’ samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate ‘holding time’ to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p < 0.01) between the conventional procedure (45 min) and our microfluidic approach (12 min).
Basu, Sankha S; Mesaros, Clementina; Gelhaus, Stacy L; Blair, Ian A
2011-02-15
Stable isotope dilution mass spectrometry (MS) represents the gold standard for quantification of endogenously formed cellular metabolites. Although coenzyme A (CoA) and acyl-CoA thioester derivatives are central players in numerous metabolic pathways, the lack of a commercially available isotopically labeled CoA limits the development of rigorous MS-based methods. In this study, we adapted stable isotope labeling by amino acids in cell culture (SILAC) methodology to biosynthetically generate stable isotope labeled CoA and thioester analogues for use as internal standards in liquid chromatography/multiple reaction monitoring mass spectrometry (LC/MRM-MS) assays. This was accomplished by incubating murine hepatocytes (Hepa 1c1c7) in media in which pantothenate (a precursor of CoA) was replaced with [(13)C(3)(15)N(1)]-pantothenate. Efficient incorporation into various CoA species was optimized to >99% [(13)C(3)(15)N(1)]-pantothenate after three passages of the murine cells in culture. Charcoal-dextran-stripped fetal bovine serum (FBS) was found to be more efficient for serum supplementation than dialyzed or undialyzed FBS, due to lower contaminating unlabeled pantothenate content. Stable isotope labeled CoA species were extracted and utilized as internal standards for CoA thioester analysis in cell culture models. This methodology of stable isotope labeling by essential nutrients in cell culture (SILEC) can serve as a paradigm for using vitamins and other essential nutrients to generate stable isotope standards that cannot be readily synthesized.
Xiao, Kunyi; Liu, Juan; Chen, Hui; Zhang, Song; Kong, Jilie
2017-05-15
A label-free and high-efficient graphene oxide (GO)-based aptasensor was developed for the detection of low quantity cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and dye-labeled linker DNAs stably coexisted in solution, and the fluorescence was quenched by the GO-based FÖrster resonance energy transfer (FRET) process. In the presence of target cells, the specific binding of HAPs with the target cells triggered a conformational alternation, which resulted in linker DNA complementary pairing and cleavage by nicking endonuclease-strand scission cycles. Consequently, more cleaved fragments of linker DNAs with more the terminal labeled dyes could show the enhanced fluorescence because these cleaved DNA fragments hardly combine with GOs and prevent the FRET process. Fluorescence analysis demonstrated that this GO-based aptasensor exhibited selective and sensitive response to the presence of target CCRF-CEM cells in the concentration range from 50 to 10 5 cells. The detection limit of this method was 25 cells, which was approximately 20 times lower than the detection limit of normal fluorescence aptasensors without amplification. With high sensitivity and specificity, it provided a simple and cost-effective approach for early cancer diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu
2013-05-21
Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.
Snyder, Nathaniel W.; Tombline, Gregory; Worth, Andrew J.; Parry, Robert C.; Silvers, Jacob A.; Gillespie, Kevin P.; Basu, Sankha S.; Millen, Jonathan; Goldfarb, David S.; Blair, Ian A.
2015-01-01
Acyl-coenzyme A (CoA) thioesters are key metabolites in numerous anabolic and catabolic pathways, including fatty acid biosynthesis and β-oxidation, the Krebs cycle, and cholesterol and isoprenoid biosynthesis. Stable isotope dilution-based methodology is the gold standard for quantitative analyses by mass spectrometry. However, chemical synthesis of families of stable isotope labeled metabolites such as acyl-coenzyme A thioesters is impractical. Previously, we biosynthetically generated a library of stable isotope internal standard analogs of acyl-CoA thioesters by exploiting the essential requirement in mammals and insects for pantothenic acid (vitamin B5) as a metabolic precursor for the CoA backbone. By replacing pantothenic acid in the cell media with commercially available [13C3 15N1]-pantothenic acid, mammalian cells exclusively incorporated [13C3 15N1]-pantothenate into the biosynthesis of acyl-CoA and acyl-CoA thioesters. We have now developed a much more efficient method for generating stable isotope labeled CoA and acyl-CoAs from [13C3 15N1]-pantothenate using Stable Isotope Labeling by Essential nutrients in Cell culture (SILEC) in Pan6 deficient yeast cells. Efficiency and consistency of labeling were also increased, likely due to the stringently defined and reproducible conditions used for yeast culture. The yeast SILEC method greatly enhances the ease of use and accessibility of labeled CoA thioesters and also provides proof-of-concept for generating other labeled metabolites in yeast mutants. PMID:25572876
Two-photon in vivo flow cytometry using a fiber probe
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R., Jr.; Norris, Theodore B.
2009-02-01
We have demonstrated the use of a double-clad fiber probe to conduct two-photon excited flow cytometry in vitro and in vivo. We conducted two-channel detection to measure fluorescence at two distinct wavelengths simultaneously. Because the scattering and absorption problems from whole blood were circumvented by the fiber probe, the detected signal strength from the cells were found to be similar in PBS and in whole blood. We achieved the same detection efficiency of the membrane-binding lipophilic dye DiD labeled cells in PBS and in whole blood. High detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was demonstrated. DiD-labeled untransfected and GFP-transfected cells were injected into live mice and the circulation dynamics of the externally injected cells were monitored. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed in whole blood.
g-force induced giant efficiency of nanoparticles internalization into living cells
Ocampo, Sandra M.; Rodriguez, Vanessa; de la Cueva, Leonor; Salas, Gorka; Carrascosa, Jose. L.; Josefa Rodríguez, María; García-Romero, Noemí; Luis, Jose; Cuñado, F.; Camarero, Julio; Miranda, Rodolfo; Belda-Iniesta, Cristobal; Ayuso-Sacido, Angel
2015-01-01
Nanotechnology plays an increasingly important role in the biomedical arena. Iron oxide nanoparticles (IONPs)-labelled cells is one of the most promising approaches for a fast and reliable evaluation of grafted cells in both preclinical studies and clinical trials. Current procedures to label living cells with IONPs are based on direct incubation or physical approaches based on magnetic or electrical fields, which always display very low cellular uptake efficiencies. Here we show that centrifugation-mediated internalization (CMI) promotes a high uptake of IONPs in glioblastoma tumour cells, just in a few minutes, and via clathrin-independent endocytosis pathway. CMI results in controllable cellular uptake efficiencies at least three orders of magnitude larger than current procedures. Similar trends are found in human mesenchymal stem cells, thereby demonstrating the general feasibility of the methodology, which is easily transferable to any laboratory with great potential for the development of improved biomedical applications. PMID:26477718
Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D
2010-01-01
Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269
NASA Astrophysics Data System (ADS)
Kemper, Björn; Schnekenburger, Jürgen; Ketelhut, Steffi
2017-02-01
We investigated the capabilities of digital holographic microscopy (DHM) for label-free quantification of the response of living single cells to chemical stimuli in 3D assays. Fibro sarcoma cells were observed in a collagen matrix inside 3D chemotaxis chambers with a Mach-Zehnder interferometer-based DHM setup. From the obtained series of quantitative phase images, the migration trajectories of single cells were retrieved by automated cell tracking and subsequently analyzed for maximum migration distance and motility. Our results demonstrate DHM as a highly reliable and efficient tool for label-free quantification of chemotaxis in 2D and 3D environments.
Chen, Gang; Zhu, Jun-Yi; Zhang, Zhi-Ling; Zhang, Wei; Ren, Jian-Gang; Wu, Min; Hong, Zheng-Yuan; Lv, Cheng; Pang, Dai-Wen; Zhao, Yi-Fang
2015-01-12
Cell-derived microparticles (MPs) have been recently recognized as critical intercellular information conveyors. However, further understanding of their biological behavior and potential application has been hampered by the limitations of current labeling techniques. Herein, a universal donor-cell-assisted membrane biotinylation strategy was proposed for labeling MPs by skillfully utilizing the natural membrane phospholipid exchange of their donor cells. This innovative strategy conveniently led to specific, efficient, reproducible, and biocompatible quantum dot (QD) labeling of MPs, thereby reliably conferring valuable traceability on MPs. By further loading with small interference RNA, QD-labeled MPs that had inherent cell-targeting and biomolecule-conveying ability were successfully employed for combined bioimaging and tumor-targeted therapy. This study provides the first reliable and biofriendly strategy for transforming biogenic MPs into functionalized nanovectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunomodulation of Hyperthermia for Recurrent Prostate Cancer
2005-03-01
immature DCs have efficient antigen uptake capability. Previously we have shown that immature BM DCs can engulf flurochrome labeled hepatocellular ... carcinoma cells (HCC) and after engulfment efficient maturation signals are provided to them and mature DCs induce the expression of cell surface
3D multiplexed immunoplasmonics microscopy
NASA Astrophysics Data System (ADS)
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence.Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence. Electronic supplementary information (ESI) available: Characterization of functionalized nanoparticles by UV-visible-NIR spectroscopy, standard dark field microscopy and reflected light microscopy. Immunofluorescence of cells. See DOI: 10.1039/c6nr01257d
Elhami, Esmat; Goertzen, Andrew L; Xiang, Bo; Deng, Jixian; Stillwell, Chris; Mzengeza, Shadreck; Arora, Rakesh C; Freed, Darren; Tian, Ganghong
2011-07-01
Adipose-derived stem cells (ASCs) have promising potential in regenerative medicine and cell therapy. Our objective is to examine the biological function of the labeled stem cells following labeling with a readily available positron emission tomography (PET) tracer, (18)F-fluoro-2-deoxy-D: -glucose (FDG). In this work we characterize labeling efficiency through assessment of FDG uptake and retention by the ASCs and the effect of FDG on cell viability, proliferation, transdifferentiation, and cell function in vitro using rat ASCs. Samples of 10(5) ASCs (from visceral fat tissue) were labeled with concentrations of FDG (1-55 Bq/cell) in 0.75 ml culture medium. Label uptake and retention, as a function of labeling time, FDG concentration, and efflux period were measured to determine optimum cell labeling conditions. Cell viability, proliferation, DNA structure damage, cell differentiation, and other cell functions were examined. Non-labeled ASC samples were used as a control for all experimental groups. Labeled ASCs were injected via tail vein in several healthy rats and initial cell biodistribution was assessed. Our results showed that FDG uptake and retention by the stem cells did not depend on FDG concentration but on labeling and efflux periods and glucose content of the labeling and efflux media. Cell viability, transdifferentiation, and cell function were not greatly affected. DNA damage due to FDG radioactivity was acute, but reversible; cells managed to repair the damage and continue with cell cycles. Over all, FDG (up to 25 Bq/cell) did not impose severe cytotoxicity in rat ASCs. Initial biodistribution of the FDG-labeled ASCs was 80% + retention in the lungs. In the delayed whole-body images (2-3 h postinjection) there was some activity distribution resembling typical FDG uptake patterns. For in vivo cell tracking studies with PET tracers, the parameter of interest is the amount of radiotracer that is present in the cells being labeled and consequent biological effects. From our study we developed a labeling protocol for labeling ASCs with a readily available PET tracer, FDG. Our results indicate that ASCs can be safely labeled with FDG concentration up to 25 Bq/cell, without compromising their biological function. A labeling period of 90 min in glucose-free medium and efflux of 60 min in complete media resulted in optimum label retention, i.e., 60% + by the stem cells. The initial biodistribution of the implanted FDG-labeled stem cells can be monitored using microPET imaging.
Nicholls, Francesca J.; Liu, Jessie R.; Modo, Michel
2017-01-01
The interpretation of cell transplantation experiments is often dependent on the presence of an exogenous label for the identification of implanted cells. The exogenous labels Hoechst 33342, 5-bromo-2′-deoxyuridine (BrdU), PKH26, and Qtracker were compared for their labeling efficiency, cellular effects, and reliability to identify a human neural stem cell (hNSC) line implanted intracerebrally into the rat brain. Hoechst 33342 (2 mg/ml) exhibited a delayed cytotoxicity that killed all cells within 7 days. This label was hence not progressed to in vivo studies. PKH26 (5 μM), Qtracker (15 nM), and BrdU (0.2 μM) labeled 100% of the cell population at day 1, although BrdU labeling declined by day 7. BrdU and Qtracker exerted effects on proliferation and differentiation. PKH26 reduced viability and proliferation at day 1, but this normalized by day 7. In an in vitro coculture assay, all labels transferred to unlabeled cells. After transplantation, the reliability of exogenous labels was assessed against the gold standard of a human-specific nuclear antigen (HNA) antibody. BrdU, PKH26, and Qtracker resulted in a very small proportion (<2%) of false positives, but a significant amount of false negatives (~30%), with little change between 1 and 7 days. Exogenous labels can therefore be reliable to identify transplanted cells without exerting major cellular effects, but validation is required. The interpretation of cell transplantation experiments should be presented in the context of the label's limitations. PMID:27938486
High-Throughput Particle Uptake Analysis by Imaging Flow Cytometry
Smirnov, Asya; Solga, Michael D.; Lannigan, Joanne; Criss, Alison K.
2017-01-01
Quantifying the efficiency of particle uptake by host cells is important in fields including infectious diseases, autoimmunity, cancer, developmental biology, and drug delivery. Here we present a protocol for high-throughput analysis of particle uptake using imaging flow cytometry, using the bacterium Neisseria gonorrhoeae attached and internalized to neutrophils as an example. Cells are exposed to fluorescently labeled bacteria, fixed, and stained with a bacteria-specific antibody of a different fluorophore. Thus in the absence of a permeabilizing agent, extracellular bacteria are double-labeled with two fluorophores while intracellular bacteria remain single-labeled. A spot count algorithm is used to determine the number of single- and double-labeled bacteria in individual cells, to calculate the percent of cells associated with bacteria, percent of cells with internalized bacteria, and percent of cell-associated bacteria that are internalized. These analyses quantify bacterial association and internalization across thousands of cells and can be applied to diverse experimental systems. PMID:28369762
Evaluation of nanoparticles as endocytic tracers in cellular microbiology
NASA Astrophysics Data System (ADS)
Zhang, Yuying; Hensel, Michael
2013-09-01
The study of pathogen interactions with eukaryotic host cells requires the introduction of fluorescent probes to visualize processes such as endocytosis, intracellular transport or host cell manipulation by the pathogen. Here, three types of fluorescent nanoparticles (NPs), i.e. Rhodamine-labeled polymethacrylate (PMA) NPs, silica NPs and gold NPs, were employed to label the host cellular endolysosomal system and monitor manipulations by the pathogen Salmonella enterica. Using live cell imaging, we investigated the performance of NPs in cellular uptake, labeling of endocytic vesicles and lysosomes, as well as interaction with the pathogen. We show that fluorescent gold and silica, but not PMA NPs appropriately label host cell structures and efficiently track rearrangements of the host endosomal system by the activities of intracellular Salmonella. Silica NPs slightly aggregated and located in Salmonella-induced compartments as isolated dots, while gold NPs distributed uniformly inside such structures. Both silica and gold NPs exhibited no adverse impact on either host cells or pathogens, and are versatile tools for infection biology.The study of pathogen interactions with eukaryotic host cells requires the introduction of fluorescent probes to visualize processes such as endocytosis, intracellular transport or host cell manipulation by the pathogen. Here, three types of fluorescent nanoparticles (NPs), i.e. Rhodamine-labeled polymethacrylate (PMA) NPs, silica NPs and gold NPs, were employed to label the host cellular endolysosomal system and monitor manipulations by the pathogen Salmonella enterica. Using live cell imaging, we investigated the performance of NPs in cellular uptake, labeling of endocytic vesicles and lysosomes, as well as interaction with the pathogen. We show that fluorescent gold and silica, but not PMA NPs appropriately label host cell structures and efficiently track rearrangements of the host endosomal system by the activities of intracellular Salmonella. Silica NPs slightly aggregated and located in Salmonella-induced compartments as isolated dots, while gold NPs distributed uniformly inside such structures. Both silica and gold NPs exhibited no adverse impact on either host cells or pathogens, and are versatile tools for infection biology. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01550e
Flow-Mediated Stem Cell Labeling with Superparamagnetic Iron Oxide Nanoparticle Clusters
Shkumatov, Artem; Lai, Mei-Hsiu; Smith, Cartney E.; Rich, Max; Kong, Hyunjoon
2013-01-01
This study presents a strategy to enhance the uptake of superparamagnetic iron oxide nanoparticle (SPIO) clusters by manipulating the cellular mechanical environment. Specifically, stem cells exposed to an orbital flow ingested almost two-fold greater amount of SPIO clusters than those cultured statically. Improvements in MR contrast were subsequently achieved for labeled cells in collagen gels and a mouse model. Overall, this strategy will serve to improve the efficiency of cell tracking and therapies. PMID:24033276
Zou, Yi; Liu, Qiao; Yang, Xia; Huang, Hua-Chuan; Li, Jiang; Du, Liang-Hui; Li, Ze-Ren; Zhao, Jian-Heng; Zhu, Li-Guo
2017-01-01
We demonstrated that attenuated total reflectance terahertz time-domain spectroscopy (ATR THz-TDS) is able to monitor oxidative stress response of living human cells, which is proven in this work that it is an efficient non-invasive, label-free, real-time and in situ monitoring of cell death. Furthermore, the dielectric constant and dielectric loss of cultured living human breast epithelial cells, and along with their evolution under oxidative stress response induced by high concentration of H2O2, were quantitatively determined in the work. Our observation and results were finally confirmed using standard fluorescence-labeled flow cytometry measurements and visible fluorescence imaging. PMID:29359084
2004-06-01
PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Thermophotovoltaic cells are a good candidate for use in high efficiency radioiso- tope...ongoing in this field since the 1950’s, but the exotic materials necessary for high efficiency cells has only been recently available. Here, several...This cell was able to operate at 24% efficiency which is very high for a silicon cell [Ref. 6]. The inverted pyramids labeled in the figure are
Spencer, J.; Schwarzacher, W.
2016-01-01
ABSTRACT In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli. Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. IMPORTANCE Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This approach could be extended to encompass the capture and concentration of specific pathogens, for example, by functionalizing magnetic nanoparticles with antibodies or small molecule probes. PMID:27060124
Correia Carreira, S; Spencer, J; Schwarzacher, W; Seddon, A M
2016-06-15
In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This approach could be extended to encompass the capture and concentration of specific pathogens, for example, by functionalizing magnetic nanoparticles with antibodies or small molecule probes. Copyright © 2016 Correia Carreira et al.
Skopalik, Josef; Polakova, Katerina; Havrdova, Marketa; Justan, Ivan; Magro, Massimiliano; Milde, David; Knopfova, Lucia; Smarda, Jan; Polakova, Helena; Gabrielova, Eva; Vianello, Fabio; Michalek, Jaroslav; Zboril, Radek
2014-01-01
Cell therapies have emerged as a promising approach in medicine. The basis of each therapy is the injection of 1-100×10(6) cells with regenerative potential into some part of the body. Mesenchymal stromal cells (MSCs) are the most used cell type in the cell therapy nowadays, but no gold standard for the labeling of the MSCs for magnetic resonance imaging (MRI) is available yet. This work evaluates our newly synthesized uncoated superparamagnetic maghemite nanoparticles (surface-active maghemite nanoparticles - SAMNs) as an MRI contrast intracellular probe usable in a clinical 1.5 T MRI system. MSCs from rat and human donors were isolated, and then incubated at different concentrations (10-200 μg/mL) of SAMN maghemite nanoparticles for 48 hours. Viability, proliferation, and nanoparticle uptake efficiency were tested (using fluorescence microscopy, xCELLigence analysis, atomic absorption spectroscopy, and advanced microscopy techniques). Migration capacity, cluster of differentiation markers, effect of nanoparticles on long-term viability, contrast properties in MRI, and cocultivation of labeled cells with myocytes were also studied. SAMNs do not affect MSC viability if the concentration does not exceed 100 μg ferumoxide/mL, and this concentration does not alter their cell phenotype and long-term proliferation profile. After 48 hours of incubation, MSCs labeled with SAMNs show more than double the amount of iron per cell compared to Resovist-labeled cells, which correlates well with the better contrast properties of the SAMN cell sample in T2-weighted MRI. SAMN-labeled MSCs display strong adherence and excellent elasticity in a beating myocyte culture for a minimum of 7 days. Detailed in vitro tests and phantom tests on ex vivo tissue show that the new SAMNs are efficient MRI contrast agent probes with exclusive intracellular uptake and high biological safety.
Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI
NASA Astrophysics Data System (ADS)
Chen, Shuzhen; Zhang, Jun; Jiang, Shengwei; Lin, Gan; Luo, Bing; Yao, Huan; Lin, Yuchun; He, Chengyong; Liu, Gang; Lin, Zhongning
2016-05-01
Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in a variety of biomedical applications, especially as contrast agents for magnetic resonance imaging (MRI) and cell labeling. In this study, SPIO nanoparticles were stabilized with amphiphilic low molecular weight polyethylenimine (PEI) in an aqueous phase to form monodispersed nanocomposites with a controlled clustering structure. The iron-based nanoclusters with a size of 115.3 ± 40.23 nm showed excellent performance on cellular uptake and cell labeling in different types of cells, moreover, which could be tracked by MRI with high sensitivity. The SPIO nanoclusters presented negligible cytotoxicity in various types of cells as detected using MTS, LDH, and flow cytometry assays. Significantly, we found that ferritin protein played an essential role in protecting stress from SPIO nanoclusters. Taken together, the self-assembly of SPIO nanoclusters with good magnetic properties provides a safe and efficient method for universal cell labeling with noninvasive MRI monitoring capability.
Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A; Then, Kong Yong
2017-02-08
Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.
Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj.; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A.; Then, Kong Yong
2017-01-01
Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases. PMID:28208719
Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources.
Osman, O; Zanini, L F; Frénéa-Robin, M; Dumas-Bouchiat, F; Dempsey, N M; Reyne, G; Buret, F; Haddour, N
2012-10-01
Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤10⁶ T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).
Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.
Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang
2016-04-01
Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.
Peckys, Diana B; de Jonge, Niels
2015-09-11
This protocol describes the labeling of epidermal growth factor receptor (EGFR) on COS7 fibroblast cells, and subsequent correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM) of whole cells in hydrated state. Fluorescent quantum dots (QDs) were coupled to EGFR via a two-step labeling protocol, providing an efficient and specific protein labeling, while avoiding label-induced clustering of the receptor. Fluorescence microscopy provided overview images of the cellular locations of the EGFR. The scanning transmission electron microscopy (STEM) detector was used to detect the QD labels with nanoscale resolution. The resulting correlative images provide data of the cellular EGFR distribution, and the stoichiometry at the single molecular level in the natural context of the hydrated intact cell. ESEM-STEM images revealed the receptor to be present as monomer, as homodimer, and in small clusters. Labeling with two different QDs, i.e., one emitting at 655 nm and at 800 revealed similar characteristic results.
Chan, Ken Y; Jang, Min J; Yoo, Bryan B; Greenbaum, Alon; Ravi, Namita; Wu, Wei-Li; Sánchez-Guardado, Luis; Lois, Carlos; Mazmanian, Sarkis K; Deverman, Benjamin E; Gradinaru, Viviana
2017-01-01
Adeno-associated viruses (AAVs) are commonly used for in vivo gene transfer. Nevertheless, AAVs that provide efficient transduction across specific organs or cell populations are needed. Here, we describe AAV-PHP.eB and AAV-PHP.S, capsids that efficiently transduce the central and peripheral nervous systems, respectively. In the adult mouse, intravenous administration of 1×1011 vector genomes (vg) of AAV-PHP.eB transduced 69% of cortical and 55% of striatal neurons, while 1×1012 vg AAV-PHP.S transduced 82% of dorsal root ganglion neurons, as well as cardiac and enteric neurons. The efficiency of these vectors facilitates robust co-transduction and stochastic, multicolor labeling for individual cell morphology studies. To support such efforts, we provide methods for labeling a tunable fraction of cells without compromising color diversity. Furthermore, when used with cell type-specific promoters, these AAVs provide targeted gene expression across the nervous system and enable efficient and versatile gene manipulation throughout the nervous system of transgenic and non-transgenic animals. PMID:28671695
Non-linear optical measurements using a scanned, Bessel beam
NASA Astrophysics Data System (ADS)
Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.
2015-03-01
Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.
Kiru, Louise; Kim, Tae Jin; Shen, Bin; Chin, Frederick T; Pratx, Guillem
2018-06-01
Cell-based therapies are showing great promise for a variety of diseases, but remain hindered by the limited information available regarding the biological fate, migration routes and differentiation patterns of infused cells in trials. Previous studies have demonstrated the feasibility of using positron emission tomography (PET) to track single cells utilising an approach known as positron emission particle tracking (PEPT). The radiolabel hexadecyl-4-[ 18 F]fluorobenzoate ([ 18 F]HFB) was identified as a promising candidate for PEPT, due to its efficient and long-lasting labelling capabilities. The purpose of this work was to characterise the labelling efficiency of [ 18 F]HFB in vitro at the single-cell level prior to in vivo studies. The binding efficiency of [ 18 F]HFB to MDA-MB-231 and Jurkat cells was verified in vitro using bulk gamma counting. The measurements were subsequently repeated in single cells using a new method known as radioluminescence microscopy (RLM) and binding of the radiolabel to the single cells was correlated with various fluorescent dyes. Similar to previous reports, bulk cell labelling was significantly higher with [ 18 F]HFB (18.75 ± 2.47 dpm/cell, n = 6) than 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) (7.59 ± 0.73 dpm/cell, n = 7; p ≤ 0.01). However, single-cell imaging using RLM revealed that [ 18 F]HFB accumulation in live cells (8.35 ± 1.48 cpm/cell, n = 9) was not significantly higher than background levels (4.83 ± 0.52 cpm/cell, n = 12; p > 0.05) and was 1.7-fold lower than [ 18 F]FDG uptake in the same cell line (14.09 ± 1.90 cpm/cell, n = 13; p < 0.01). Instead, [ 18 F]HFB was found to bind significantly to fragmented membranes associated with dead cell nuclei, suggesting an alternative binding target for [ 18 F]HFB. This study demonstrates that bulk analysis alone does not always accurately portray the labelling efficiency, therefore highlighting the need for more routine screening of radiolabels using RLM to identify heterogeneity at the single-cell level.
Stöhr, Katharina; Siegberg, Daniel; Ehrhard, Tanja; Lymperopoulos, Konstantinos; Öz, Simin; Schulmeister, Sonja; Pfeifer, Andrea C; Bachmann, Julie; Klingmüller, Ursula; Sourjik, Victor; Herten, Dirk-Peter
2010-10-01
Recent developments in fluorescence microscopy raise the demands for bright and photostable fluorescent tags for specific and background free labeling in living cells. Aside from fluorescent proteins and other tagging methods, labeling of SNAP-tagged proteins has become available thereby increasing the pool of potentially applicable fluorescent dyes for specific labeling of proteins. Here, we report on novel conjugates of benzylguanine (BG) which are quenched in their fluorescence and become highly fluorescent upon labeling of the SNAP-tag, the commercial variant of the human O(6)-alkylguanosyltransferase (hAGT). We identified four conjugates showing a strong increase, i.e., >10-fold, in fluorescence intensity upon labeling of SNAP-tag in vitro. Moreover, we screened a subset of nine BG-dye conjugates in living Escherichia coli and found them all suited for labeling of the SNAP-tag. Here, quenched BG-dye conjugates yield a higher specificity due to reduced contribution from excess conjugate to the fluorescence signal. We further extended the application of these conjugates by labeling a SNAP-tag fusion of the Tar chemoreceptor in live E. coli cells and the eukaryotic transcription factor STAT5b in NIH 3T3 mouse fibroblast cells. Aside from the labeling efficiency and specificity in living cells, we discuss possible mechanisms that might be responsible for the changes in fluorescence emission upon labeling of the SNAP-tag, as well as problems we encountered with nonspecific labeling with certain conjugates in eukaryotic cells.
Adeno Associated Viral-mediated intraosseus labeling of bone marrow derived cells for CNS tracking
Selenica, Maj-Linda B.; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B.; Nash, Kevin R.; Morgan, Dave; Gordon, Marcia N.; Lee, Daniel C.
2016-01-01
Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseus impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9–GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body following insult or injury. Alternatively, this method might find utility in delivering therapeutic genes for neuroinflammatory conditions. PMID:26784524
Waiczies, Helmar; Lepore, Stefano; Janitzek, Nicole; Hagen, Ulrike; Seifert, Frank; Ittermann, Bernd; Purfürst, Bettina; Pezzutto, Antonio; Paul, Friedemann; Niendorf, Thoralf; Waiczies, Sonia
2011-01-01
The development of cellular tracking by fluorine (19F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton (1H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by 19F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the 19F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models. PMID:21811551
Lv, Cheng; Lin, Yi; Liu, An-An; Hong, Zheng-Yuan; Wen, Li; Zhang, Zhenfeng; Zhang, Zhi-Ling; Wang, Hanzhong; Pang, Dai-Wen
2016-11-01
Highly efficient labeling of viruses with quantum dots (QDs) is the prerequisite for the long-term tracking of virus invasion at the single virus level to reveal mechanisms of virus infection. As one of the structural components of viruses, viral envelope lipids are hard to be labeled with QDs due to the lack of efficient methods to modify viral envelope lipids. Moreover, it is still a challenge to maintain the intactness and infectivity of labeled viruses. Herein, a mild method has been developed to label viral envelope lipids with QDs by harnessing the biotinylated lipid-self-inserted cellular membrane. Biotinylated lipids can spontaneously insert in cellular membranes of host cells during culture and then be naturally assembled on progeny Pseudorabies virus (PrV) via propagation. The biotinylated PrV can be labeled with streptavidin-conjugated QDs, with a labeling efficiency of ∼90%. Such a strategy to label lipids with QDs can retain the intactness and infectivity of labeled viruses to the largest extent, facilitating the study of mechanisms of virus infection at the single virus level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie
2017-10-15
Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. © 2017 Schvartz et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas
2017-01-01
The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice. PMID:28425472
Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas
2017-04-20
The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice.
NASA Astrophysics Data System (ADS)
Wang, Qiu-Yue; Huang, Wei; Jiang, Xing-Lin; Kang, Yan-Jun
2018-01-01
In this work, an efficient method based on biotin-labeled aptamer and streptavidin-conjugated fluorescence-magnetic silica nanoprobes (FITC@Fe3O4@SiNPs-SA) has been established for human breast carcinoma MCF-7 cells synchronous labeling and separation. Carboxyl-modified fluorescence-magnetic silica nanoparticles (FITC@Fe3O4@SiNPs-COOH) were first synthesized using the Stöber method. Streptavidin (SA) was then conjugated to the surface of FITC@Fe3O4@SiNPs-COOH. The MCF-7 cell suspension was incubated with biotin-labeled MUC-1 aptamer. After centrifugation and washing, the cells were then treated with FITC@Fe3O4@SiNPs-SA. Afterwards, the mixtures were separated by a magnet. The cell-probe conjugates were then imaged using fluorescent microscopy. The results show that the MUC-1 aptamer could recognize and bind to the targeted cells with high affinity and specificity, indicating the prepared FITC@Fe3O4@SiNPs-SA with great photostability and superparamagnetism could be applied effectively in labeling and separation for MCF-7 cell in suspension synchronously. In addition, the feasibility of MCF-7 cells detection in peripheral blood was assessed. The results indicate that the method above is also applicable for cancer cells synchronous labeling and separation in complex biological system.
Callé, N; Plainfossé, C; Georget, P; Sénémeaud, C; Rasonglès, P
2011-12-01
The supply of blood cell products requires from the National French Blood Institute (Établissement Français du Sang - EFS) to rely upon regular blood donors. Contact with donors, tailored to individuals as much as possible, helps them to donate on a regular basis. Within the context of a research program conducted with the Psychology Department of the Université de Caen Basse-Normandie, persuasive theoretical models from social psychology have been tested. These models allow adapting messages according to the motivation of donors. The content is centred on the previous donation, differently labelled according to two types of labelling: functional labelling and social labelling. Functional labelling points out the efficiency of what "has been done" (the previous blood donation), whereas social labelling emphasizes the social value of the individual. Different types of mailing invitations have been sent to 1917 donors from the Normandy database, invited to three different blood collections. Every experimental letter worked better than the standard EFS letter (which was used as the "control" letter) in terms of effective blood donation after reception of the letter. Some of the letters are more efficient in motivating donors than other ones. The letters labelling the previous blood donation as functional (efficiency of the donation) appeared more efficient than those with social label (social value) in whichever motivation induced. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
A silicon-based peptide biosensor for label-free detection of cancer cells
NASA Astrophysics Data System (ADS)
Martucci, Nicola M.; Rea, Ilaria; Ruggiero, Immacolata; Terracciano, Monica; De Stefano, Luca; Migliaccio, Nunzia; Dardano, Principia; Arcari, Paolo; Rendina, Ivo; Lamberti, Annalisa
2015-05-01
Sensitive and accurate detection of cancer cells plays a crucial role in diagnosis of cancer and minimal residual disease, so being one of the most hopeful approaches to reduce cancer death rates. In this paper, a strategy for highly selective and sensitive detection of lymphoma cells on planar silicon-based biosensor has been evaluated. In this setting an Idiotype peptide, able to specifically bind the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, has been covalently linked to the sensor active surface and used as molecular probe. The biochip here presented showed a coverage efficiency of 85% with a detection efficiency of 8.5×10-3 cells/μm2. The results obtained suggested an efficient way for specific label-free cell detection by using a silicon-based peptide biosensor. In addition, the present recognition strategy, besides being useful for the development of sensing devices capable of monitoring minimal residual disease, could be used to find and characterize new specific receptor-ligand interactions through the screening of a recombinant phage library.
Rosenholm, Jessica M; Gulin-Sarfraz, Tina; Mamaeva, Veronika; Niemi, Rasmus; Özliseli, Ezgi; Desai, Diti; Antfolk, Daniel; von Haartman, Eva; Lindberg, Desiré; Prabhakar, Neeraj; Näreoja, Tuomas; Sahlgren, Cecilia
2016-03-23
Nanomedicine is gaining ground worldwide in therapy and diagnostics. Novel nanoscopic imaging probes serve as imaging tools for studying dynamic biological processes in vitro and in vivo. To allow detectability in the physiological environment, the nanostructure-based probes need to be either inherently detectable by biomedical imaging techniques, or serve as carriers for existing imaging agents. In this study, the potential of mesoporous silica nanoparticles carrying commercially available fluorochromes as self-regenerating cell labels for long-term cellular tracking is investigated. The particle surface is organically modified for enhanced cellular uptake, the fluorescence intensity of labeled cells is followed over time both in vitro and in vivo. The particles are not exocytosed and particles which escaped cells due to cell injury or death are degraded and no labeling of nontargeted cell populations are observed. The labeling efficiency is significantly improved as compared to that of quantum dots of similar emission wavelength. Labeled human breast cancer cells are xenotransplanted in nude mice, and the fluorescent cells can be detected in vivo for a period of 1 month. Moreover, ex vivo analysis reveals fluorescently labeled metastatic colonies in lymph node and rib, highlighting the capability of the developed probes for tracking of metastasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veeranarayanan, Srivani; Poulose, Aby Cheruvathoor; Mohamed, Sheikh; Aravind, Athulya; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi
2012-03-01
The use of fluorescent nanomaterials has gained great importance in the field of medical imaging. Many traditional imaging technologies have been reported utilizing dyes in the past. These methods face drawbacks due to non-specific accumulation and photobleaching of dyes. We studied the uptake and internalization of two different sized (30 nm and 100 nm) FITC labeled silica nanoparticles in Human umbilical vein endothelial cell line. These nanomaterials show high biocompatability and are highly photostable inside live cells for increased period of time in comparison to the dye alone. To our knowledge, we report for the first time the use of 30 nm fluorescent silica nanoparticles as efficient endothelial tags along with the well studied 100 nm particles. We also have emphasized the good photostability of these materials in live cells.
Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy.
You, Sixian; Tu, Haohua; Chaney, Eric J; Sun, Yi; Zhao, Youbo; Bower, Andrew J; Liu, Yuan-Zhi; Marjanovic, Marina; Sinha, Saurabh; Pu, Yang; Boppart, Stephen A
2018-05-29
Intravital microscopy (IVM) emerged and matured as a powerful tool for elucidating pathways in biological processes. Although label-free multiphoton IVM is attractive for its non-perturbative nature, its wide application has been hindered, mostly due to the limited contrast of each imaging modality and the challenge to integrate them. Here we introduce simultaneous label-free autofluorescence-multiharmonic (SLAM) microscopy, a single-excitation source nonlinear imaging platform that uses a custom-designed excitation window at 1110 nm and shaped ultrafast pulses at 10 MHz to enable fast (2-orders-of-magnitude improvement), simultaneous, and efficient acquisition of autofluorescence (FAD and NADH) and second/third harmonic generation from a wide array of cellular and extracellular components (e.g., tumor cells, immune cells, vesicles, and vessels) in living tissue using only 14 mW for extended time-lapse investigations. Our work demonstrates the versatility and efficiency of SLAM microscopy for tracking cellular events in vivo, and is a major enabling advance in label-free IVM.
Teston, Eliott; Maldiney, Thomas; Marangon, Iris; Volatron, Jeanne; Lalatonne, Yoann; Motte, Laurence; Boisson-Vidal, Catherine; Autret, Gwennhael; Clément, Olivier; Scherman, Daniel; Gazeau, Florence; Richard, Cyrille
2018-04-01
Once injected into a living organism, cells diffuse or migrate around the initial injection point and become impossible to be visualized and tracked in vivo. The present work concerns the development of a new technique for therapeutic cell labeling and subsequent in vivo visualization and magnetic retention. It is hypothesized and subsequently demonstrated that nanohybrids made of persistent luminescence nanoparticles and ultrasmall superparamagnetic iron oxide nanoparticles incorporated into a silica matrix can be used as an effective nanoplatform to label therapeutic cells in a nontoxic way in order to dynamically track them in real-time in vitro and in living mice. As a proof-of-concept, it is shown that once injected, these labeled cells can be visualized and attracted in vivo using a magnet. This first step suggests that these nanohybrids represent efficient multifunctional nanoprobes for further imaging guided cell therapies development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio
2016-01-01
We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m (99mTc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with 99mTc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner. PMID:27399687
Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio
2016-07-07
We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m ((99m)Tc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with (99m)Tc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner.
Harrison, Richard; Markides, Hareklea; Morris, Robert H; Richards, Paula; El Haj, Alicia J; Sottile, Virginie
2017-08-01
Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative medicine treatments for orthopaedic repair and beyond. Following developments in isolation, expansion and differentiation protocols, efforts to promote clinical translation of emerging cellular strategies now seek to improve cell delivery and targeting. This study shows efficient live MSC labelling using silica-coated magnetic particles (MPs), which enables 3D tracking and guidance of stem cells. A procedure developed for the efficient and unassisted particle uptake was shown to support MSC viability and integrity, while surface marker expression and MSC differentiation capability were also maintained. In vitro, MSCs showed a progressive decrease in labelling over increasing culture time, which appeared to be linked to the dilution effect of cell division, rather than to particle release, and did not lead to detectable secondary particle uptake. Labelled MSC populations demonstrated magnetic responsiveness in vitro through directed migration in culture and, when seeded onto a scaffold, supporting MP-based approaches to cell targeting. The potential of these silica-coated MPs for MRI cell tracking of MSC populations was validated in 2D and in a cartilage repair model following cell delivery. These results highlight silica-coated magnetic particles as a simple, safe and effective resource to enhance MSC targeting for therapeutic applications and improve patient outcomes. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Li, Pengli; Li, Chunxia; Xue, Yiting; Zhang, Yang; Liu, Hongbing; Zhao, Xia; Yu, Guangli; Guan, Huashi
2014-08-01
A rapid and sensitive fluorescence labeling method was developed and validated for the microanalysis of a sulfated polysaccharide drug,namely propylene glycol alginate sodium sulfate (PSS), in rat plasma. Fluorescein isothiocyanate (FITC) was selected to label PSS, and 1, 6-diaminohexane was used to link PSS and FITC in order to prepare FITC-labeled PSS (F-PSS) through a reductive amination reaction. F-PSS was identified by UV-Vis, FT-IR and 1H-NMR spectrum. The cell stability and cytotoxicity of F-PSS were tested in Madin-Darby canine kidney (MDCK) cells. The results indicated that the labeling efficiency of F-PSS was 0.522% ± 0.0248% and the absolute bioavailability was 8.39%. F-PSS was stable in MDCK cells without obvious cytotoxicity. The method was sensitive and reliable; it showed a good linearity, precision, recovery and stability. The FITC labeling method can be applied to investigating the absorption and metabolism of PSS and other polysaccharides in biological samples.
15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells.
Lanquar, Viviane; Kuhn, Lauriane; Lelièvre, Françoise; Khafif, Mehdi; Espagne, Christelle; Bruley, Christophe; Barbier-Brygoo, Hélène; Garin, Jérôme; Thomine, Sébastien
2007-03-01
An important goal for proteomic studies is the global comparison of proteomes from different genotypes, tissues, or physiological conditions. This has so far been mostly achieved by densitometric comparison of spot intensities after protein separation by 2-DE. However, the physicochemical properties of membrane proteins preclude the use of 2-DE. Here, we describe the use of in vivo labeling by the stable isotope 15N as an alternative approach for comparative membrane proteomic studies in plant cells. We confirm that 15N-metabolic labeling of proteins is possible and efficient in Arabidopsis suspension cells. Quantification of 14N versus 15N MS signals reflects the relative abundance of 14N and 15N proteins in the sample analyzed. We describe the use of 15N-metabolic labeling to perform a partial comparative analysis of Arabidopsis cells following cadmium exposure. By focusing our attention on plasma membrane proteins, we were able to confidently identify proteins showing up to 5-fold regulation compared to unexposed cells. This study provides a proof of principle that 15N-metabolic labeling is a useful technique for comparative membrane proteome studies.
Labeling proteins inside living cells using external fluorophores for microscopy.
Teng, Kai Wen; Ishitsuka, Yuji; Ren, Pin; Youn, Yeoan; Deng, Xiang; Ge, Pinghua; Lee, Sang Hak; Belmont, Andrew S; Selvin, Paul R
2016-12-09
Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial enzyme which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG's to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20-30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes.
Su, Zi-Fen; He, Jiang; Rusckowski, Mary; Hnatowich, Donald J
2003-02-01
The level of alpha(V)beta(3) integrins on endothelial cells is elevated in angiogenesis. The high binding specificity to alpha(V)beta(3) integrins of peptides containing Arg-Gly-Asp (RGD) residues suggests that the radiolabeled RGD peptides may be useful as tumor specific imaging agents. In this research, cyclised peptides containing Arg-Gly-Asp (RGD) and Arg-Gly-Glu (RGE, as control) residues were conjugated with HYNIC and labeled with (99m)Tc. The goal was to evaluate the influence of co-ligand, either tricine or ethylenediamine-N,N'-diacetic acid (EDDA) on protein and integrin binding and on cellular uptake in culture. The n-octanol/water partition coefficient, binding to bovine serum albumin (BSA) and human umbilical vein endothelial (HUVE) cells, and cell lysate distributions of the radiolabeled peptides were evaluated. The co-ligands had a significant effect on the labeling efficiency of the HYNIC conjugates and on certain properties of the (99m)Tc complexes. The labeling efficiency with tricine was 10 fold higher and BSA binding was over 8 fold greater compared to EDDA. Both RGD labels showed higher (6 to 28 fold) binding to HUVE cells than that of the RGE labels, indicating binding specificity. After cell-lysis, only a small percentage of the total RGD label that accumulated in the cells was found bound to cellular proteins (9% of RGD/tricine and 5% of RGD/EDDA), implying that over 90% of the radiolabeled peptides were internalized for both radiolabeled RGDs. The number of the RGD molecules bound to proteins was estimated to be approximately three per cell, suggesting that only a small number of alpha(V)beta(3) integrin proteins are expressed on the cells. Apart from the differences in radiolabeling, the only important effect of substituting EDDA for tricine as co-ligand on the HYNIC-peptides was the lower degree of serum protein binding. In spite of the lower serum protein binding potential, in vivo tumor accumulation of the RGD/EDDA may not be improved compared to RGD/tricine since quantitation of the cell binding results suggests that the number of alpha(V)beta(3) integrin proteins per cell might be limited.
Chen, Fangyi; Zeng, Yibin; Qi, Xiaoxia; Chen, Yanchao; Ge, Zhe; Jiang, Zengxin; Zhang, Xinchao; Dong, Yinmei; Chen, Huaiwen; Yu, Zuochong
2018-06-10
We previously developed salinomycin (sali)-entrapped nanoparticles labeled with CD133 aptamers which could efficiently eliminate CD133 + osteosarcoma cancer stem cells (CSCs). However, sufficient evidences suggest that the simultaneous targeting both CSCs and cancer cells is pivotal in achieving preferable cancer therapeutic efficacy, due to the spontaneous conversion between cancer cells and CSCs. We hereby constructed sali-entrapped lipid-polymer nanoparticles labeled with CD133 and EGFR aptamers (CESP) to target both osteosarcoma cells and CSCs. The cytotoxicity of CESP in osteosarcoma cells and CSCs was superior to that of single targeting or nontargeted sali-loaded nanoparticles. Administration of CESP in vivo showed the best efficacy in inhibiting tumor growth than other controls in osteosarcoma-bearing mice. Thus, CESP was demonstrated to be capable of efficiently targeting both osteosarcoma CSCs and cancer cells, and it represents an effective potential approach to treat osteosarcoma. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Montón, Helena; Parolo, Claudio; Aranda-Ramos, Antonio; Merkoçi, Arben; Nogués, Carme
2015-02-01
There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label. Using this conjugate we addressed three important issues: (i) we made the labeling of apoptotic cells faster (30 min) and easier; (ii) we fully characterized the samples by common cell biological techniques (confocal laser scanning microscopy, scanning electron microscopy and flow cytometry); and (iii) we developed a fast, cheap and quantitative electrochemical detection method for apoptotic cells with results in full agreement with those obtained by flow cytometry.There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label. Using this conjugate we addressed three important issues: (i) we made the labeling of apoptotic cells faster (30 min) and easier; (ii) we fully characterized the samples by common cell biological techniques (confocal laser scanning microscopy, scanning electron microscopy and flow cytometry); and (iii) we developed a fast, cheap and quantitative electrochemical detection method for apoptotic cells with results in full agreement with those obtained by flow cytometry. Electronic supplementary information (ESI) available: Optical microscopy images of apoptotic induced cell cultures at different times and negative control of flow cytometry. See DOI: 10.1039/c4nr07191c
Copper-64 Labeled Liposomes for Imaging Bone Marrow
Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore
2016-01-01
Introduction Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. Results PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69 %ID/g for 90 nm liposomes and 7.01 ± 0.92 %ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48 %ID/g in tumor and 14.22 ± 8.07 %ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49 %ID/g and 2.23 ± 1.00 %ID/g. Conclusion Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. PMID:27694056
NASA Astrophysics Data System (ADS)
Fu, Jingke; Shao, Yiran; Wang, Liyao; Zhu, Yingchun
2015-04-01
Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests promising applications in cancer treatments.Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests promising applications in cancer treatments. Electronic supplementary information (ESI) available: Experimental section, supplementary figures and characterization of as-prepared compounds. See DOI: 10.1039/c5nr00706b
Managh, Amy J; Hutchinson, Robert W; Riquelme, Paloma; Broichhausen, Christiane; Wege, Anja K; Ritter, Uwe; Ahrens, Norbert; Koehl, Gudrun E; Walter, Lisa; Florian, Christian; Schlitt, Hans J; Reid, Helen J; Geissler, Edward K; Sharp, Barry L; Hutchinson, James A
2014-09-01
Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology. Copyright © 2014 by The American Association of Immunologists, Inc.
NASA Astrophysics Data System (ADS)
Wan, Xiao-Yan; Zheng, Lin-Ling; Gao, Peng-Fei; Yang, Xiao-Xi; Li, Chun-Mei; Li, Yuan Fang; Huang, Cheng Zhi
2014-03-01
Real-time tracking of virus invasion is crucial for understanding viral infection mechanism, which, however, needs simple and efficient labeling chemistry with improved signal-to-noise ratio. For that purpose, herein we investigated the invasion dynamics of respiratory syncytial virus (RSV) through dark-field microscopic imaging (iDFM) technique by using Au nanoparticles (AuNPs) as light scattering labels. RSV, a ubiquitous, non-segmented, pleiomorphic and negative-sense RNA virus, is an important human pathogen in infants, the elderly, and the immunocompromised. In order to label the enveloped virus of paramyxoviridae family, an efficient streptavidin (SA)-biotin binding chemistry was employed, wherein AuNPs and RSV particles modified with SA and biotin, respectively, allowing the AuNP-modified RSVs to maintain their virulence without affecting the native activities of RSV, making the long dynamic visualization successful for the RSV infections into human epidermis larynx carcinoma cells.
Tracking cells implanted into cynomolgus monkeys (Macaca fascicularis) using MRI
Ito-Fujishiro, Yasuyo; Koie, Hiroshi; Shibata, Hiroaki; Okabayashi, Sachi; Katakai, Yuko; Ohno, Chieko; Kanayama, Kiichi; Yasutomi, Yasuhiro; Ageyama, Naohide
2016-01-01
Regenerative therapy with stem cell transplantation is used to treat various diseases such as coronary syndrome and Buerger’s disease. For instance, stem-cell transplantation into the infarcted myocardium is an innovative and promising strategy for treating heart failure due to ischemic heart disease. Basic studies using small animals have shown that transplanted cells improve blood flow in the infarcted region. Magnetic resonance imaging (MRI) can noninvasively identify and track transplanted cells labeled with superparamagnetic iron oxide (SPIO). Although clinical regenerative therapies have been clinically applied to patients, the fate of implanted cells remains unknown. In addition, follow-up studies have shown that some adverse events can occur after recovery. Therefore, the present study evaluated the ability of MRI using a 3T scanner to track implanted peripheral blood mononuclear cells labeled with SPIO on days 0 and 7 after intramuscular (i.m.) and intravenous (i.v.) injection into a cynomolgus monkey. Labeled cells were visualized at the liver and triceps surae muscle on MR images using T1- and T2-weighted sequences and histologically localized by Prussian blue staining. The transplanted cells were tracked without abnormal clinical manifestations throughout this study. Hence, MRI of cynomolgus monkey transplanted SPIO-labeled cells is a safe and efficient method of tracking labeled cells that could help to determine the mechanisms involved in regenerative therapy. PMID:27062993
DIGE compatible labelling of surface proteins on vital cells in vitro and in vivo.
Mayrhofer, Corina; Krieger, Sigurd; Allmaier, Günter; Kerjaschki, Dontscho
2006-01-01
Efficient methods for profiling of the cell surface proteome are desirable to get a deeper insight in basic biological processes, to localise proteins and to uncover proteins differentially expressed in diseases. Here we present a strategy to target cell surface exposed proteins via fluorescence labelling using CyDye DIGE fluors. This method has been applied to human cell lines in vitro as well as to a complex biological system in vivo. It allows detection of fluorophore-tagged cell surface proteins and visualisation of the accessible proteome within a single 2-D gel, simplifying subsequent UV MALDI-MS analysis.
NASA Astrophysics Data System (ADS)
Wakisaka, Yoshifumi; Suzuki, Yuta; Tokunaga, Kyoya; Hirose, Misa; Domon, Ryota; Akaho, Rina; Kuroshima, Mai; Tsumura, Norimichi; Shimobaba, Tomoyoshi; Iwata, Osamu; Suzuki, Kengo; Nakashima, Ayaka; Goda, Keisuke; Ozeki, Yasuyuki
2016-03-01
Microbes, especially microalgae, have recently been of great interest for developing novel biofuels, drugs, and biomaterials. Imaging-based screening of live cells can provide high selectivity and is attractive for efficient bio-production from microalgae. Although conventional cellular screening techniques use cell labeling, labeling of microbes is still under development and can interfere with their cellular functions. Furthermore, since live microbes move and change their shapes rapidly, a high-speed imaging technique is required to suppress motion artifacts. Stimulated Raman scattering (SRS) microscopy allows for label-free and high-speed spectral imaging, which helps us visualize chemical components inside biological cells and tissues. Here we demonstrate high-speed SRS imaging, with temporal resolution of 0.14 seconds, of intracellular distributions of lipid, polysaccharide, and chlorophyll concentrations in rapidly moving Euglena gracilis, a unicellular phytoflagellate. Furthermore, we show that our method allows us to analyze the amount of chemical components inside each living cell. Our results indicate that SRS imaging may be applied to label-free screening of living microbes based on chemical information.
Piepenhagen, Peter A; Vanpatten, Scott; Hughes, Heather; Waire, James; Murray, James; Andrews, Laura; Edmunds, Tim; O'Callaghan, Michael; Thurberg, Beth L
2010-07-01
Efficient targeting of therapeutic reagents to tissues and cell types of interest is critical to achieving therapeutic efficacy and avoiding unwanted side effects due to offtarget uptake. To increase assay efficiency and reduce the number of animals used per experiment during preclinical development, we used a combination of direct fluorescence labeling and confocal microscopy to simultaneously examine the biodistribution of two therapeutic proteins, Cerezyme and Ceredase, in the same animals. We show that the fluorescent tags do not interfere with protein uptake and localization. We are able to detect Cerezyme and Ceredase in intact cells and organs and demonstrate colocalization within target cells using confocal microscopy. In addition, the relative amount of protein internalized by different cell types can be quantified using cell type-specific markers and morphometric analysis. This approach provides an easy and straightforward means of assessing the tissue and cell type-specific biodistribution of multiple protein therapeutics in target organs using a minimal number of animals. (c) 2009 Wiley-Liss, Inc.
Quantum dot labeling and tracking of cultured limbal epithelial cell transplants in-vitro
Genicio, Nuria; Paramo, Juan Gallo; Shortt, Alex J.
2015-01-01
PURPOSE Cultured human limbal epithelial cells (HLEC) have shown promise in the treatment of limbal stem cell deficiency but little is known about their survival, behaviour and long-term fate post transplantation. The aim of this research was to evaluate, in-vitro, quantum dot (QDot) technology as a tool for tracking transplanted HLEC. METHODS In-vitro cultured HLEC were labeled with Qdot nanocrystals. Toxicity was assessed using live-dead assays. The effect on HLEC function was assessed using colony forming efficiency assays and expression of CK3, P63alpha and ABCG2. Sheets of cultured HLEC labeled with Qdot nanocrystals were transplanted onto decellularised human corneo-scleral rims in an organ culture model and observed to investigate the behaviour of transplanted cells. RESULTS Qdot labeling had no detrimental effect on HLEC viability or function in-vitro. Proliferation resulted in a gradual reduction in Qdot signal but sufficient signal was present to allow tracking of cells through multiple generations. Cells labeled with Qdots could be reliably detected and observed using confocal microscopy for at least 2 weeks post transplantation in our organ culture model. In addition it was possible to label and observe epithelial cells in intact human corneas using the Rostock corneal module adapted for use with the Heidelberg HRA. CONCLUSIONS This work demonstrates that Qdots combined with existing clinical equipment could be used to track HLEC for up to 2 weeks post transplantation, however, our model does not permit the assessment of cell labeling beyond 2 weeks. Further characterisation in in-vivo models are required. PMID:26024089
Using label-free screening technology to improve efficiency in drug discovery.
Halai, Reena; Cooper, Matthew A
2012-02-01
Screening assays have traditionally utilized reporter labels to quantify biological responses relevant to the disease state of interest. However, there are limitations associated with the use of labels that may be overcome with temporal measurements possible with label-free. This review comprises general and system-specific information from literature searches using PubMed, published books and the authors' personal experience. This review highlights the label-free approaches in the context of various applications. The authors also note technical issues relevant to the development of label-free assays and their application to HTS. The limitations associated with the use of transfected cell lines and the use of label-based assays are gradually being realized. As such, greater emphasis is being placed on label-free biophysical techniques using native cell lines. The introduction of 96- and 384-well plate label-free systems is helping to broker a wider acceptance of these approaches in high-throughput screening. However, potential users of the technologies remain skeptical, primarily because the physical basis of the signals generated, and their contextual relevance to cell biology and signal transduction, has not been fully elucidated. Until this is done, these new technology platforms are more likely to complement, rather than replace, traditional screening platforms.
Intensity correlation-based calibration of FRET.
Bene, László; Ungvári, Tamás; Fedor, Roland; Sasi Szabó, László; Damjanovich, László
2013-11-05
Dual-laser flow cytometric resonance energy transfer (FCET) is a statistically efficient and accurate way of determining proximity relationships for molecules of cells even under living conditions. In the framework of this algorithm, absolute fluorescence resonance energy transfer (FRET) efficiency is determined by the simultaneous measurement of donor-quenching and sensitized emission. A crucial point is the determination of the scaling factor α responsible for balancing the different sensitivities of the donor and acceptor signal channels. The determination of α is not simple, requiring preparation of special samples that are generally different from a double-labeled FRET sample, or by the use of sophisticated statistical estimation (least-squares) procedures. We present an alternative, free-from-spectral-constants approach for the determination of α and the absolute FRET efficiency, by an extension of the presented framework of the FCET algorithm with an analysis of the second moments (variances and covariances) of the detected intensity distributions. A quadratic equation for α is formulated with the intensity fluctuations, which is proved sufficiently robust to give accurate α-values on a cell-by-cell basis in a wide system of conditions using the same double-labeled sample from which the FRET efficiency itself is determined. This seemingly new approach is illustrated by FRET measurements between epitopes of the MHCI receptor on the cell surface of two cell lines, FT and LS174T. The figures show that whereas the common way of α determination fails at large dye-per-protein labeling ratios of mAbs, this presented-as-new approach has sufficient ability to give accurate results. Although introduced in a flow cytometer, the new approach can also be straightforwardly used with fluorescence microscopes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Holstein, Josephin M; Anhäuser, Lea; Rentmeister, Andrea
2016-08-26
The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adams, André A; Okagbare, Paul I; Feng, Juan; Hupert, Matuesz L; Patterson, Don; Göttert, Jost; McCarley, Robin L; Nikitopoulos, Dimitris; Murphy, Michael C; Soper, Steven A
2008-07-09
A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (>/=1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 mum width x 150 mum depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation.
Adams, André A.; Okagbare, Paul I.; Feng, Juan; Hupert, Matuesz L.; Patterson, Don; Göttert, Jost; McCarley, Robin L.; Nikitopoulos, Dimitris; Murphy, Michael C.; Soper, Steven A.
2008-01-01
A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (≥1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 μm width × 150 μm depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation. PMID:18557614
NASA Astrophysics Data System (ADS)
Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Bo; Zhang, Hui; Chen, Jin; Zhai, Chuanxin; Yang, Deren; Jiang, Biao; Wu, Yulian
2009-09-01
Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.
Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R
2013-05-15
Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.
Labeling and tracking exosomes within the brain using gold nanoparticles
NASA Astrophysics Data System (ADS)
Betzer, Oshra; Perets, Nisim; Barnoy, Eran; Offen, Daniel; Popovtzer, Rachela
2018-02-01
Cell-to-cell communication system involves Exosomes, small, membrane-enveloped nanovesicles. Exosomes are evolving as effective therapeutic tools for different pathologies. These extracellular vesicles can bypass biological barriers such as the blood-brain barrier, and can function as powerful nanocarriers for drugs, proteins and gene therapeutics. However, to promote exosomes' therapy development, especially for brain pathologies, a better understanding of their mechanism of action, trafficking, pharmacokinetics and bio-distribution is needed. In this research, we established a new method for non-invasive in-vivo neuroimaging of mesenchymal stem cell (MSC)-derived exosomes, based on computed tomography (CT) imaging with glucose-coated gold nanoparticle (GNP) labeling. We demonstrated that the exosomes were efficiently and directly labeled with GNPs, via an energy-dependent mechanism. Additionally, we found the optimal parameters for exosome labeling and neuroimaging, wherein 5 nm GNPs enhanced labeling, and intranasal administration produced superior brain accumulation. We applied our technique in a mouse model of focal ischemia. Imaging and tracking of intranasally-administered GNP-labeled exosomes revealed specific accumulation and prolonged presence at the lesion area, up to 24 hrs. We propose that this novel exosome labeling and in-vivo neuroimaging technique can serve as a general platform for brain theranostics.
Alstonine as a potential fluorescent marker for tiny tumor detection and imaging
NASA Astrophysics Data System (ADS)
Viallet, Pierre M.; Vo-Dinh, Tuan; Salmon, Jean-Marie; Watts, Wendi; Rocchi, Emmanuelle; Isola, Narayana R.; Rebillard, Xavier
1997-06-01
3,4,5,6,16,17-Hexadehydro-16-(methoxycarbolyl)-19(alpha) - methyl-20(alpha) -oxyohimbanium (alstonine) is a fluorescent alcaloid which is known to stain tumor cells more efficiently than normal. The interactions between alstonine and biological macromolecules were first investigated to provide the rationale for preferential labelling. Molecular filtration and spectrosfluorometric techniques with different macromolecules and isopolynucleotides have demonstrated that binding occurs only in the presence of uridyl rings. For the binding affect only the fluorescence intensity of alstonine it can be assumed that it involves only the side chain of the fluorescent compound. The capability for preferential staining was verified in culture using SK-OV-3 cells and rat hepatocarcinoma cells as tumor cells and Mouse fibroblasts or rat liver cells as controls. Techniques of image analysis have demonstrated the efficiency of cellular labelling even in aggregates of rat hepatocarcinoma. These experiments lead the way to the detection of tiny tumors developed on thin visceral walls, using a fiber optic device.
Ni, Xiao Yan; Sui, Hua Xiu; Liu, Yao; Ke, Shi Zhong; Wang, Yi Nan; Gao, Feng Guang
2012-08-01
The effects of TGF-β on dendritic cells (DCs) on the tumor microenvironment are not well understood. We report, here, the establishment of an in vitro lung cancer microenvironment by co-incubation of seminaphtharhodafluor (SNARF) labeled Lewis lung cancer (LLC) cells, carboxyfluorescein succinimidyl ester (CFSE) labeled fibroblasts and 4-chloromethyl-7-hydroxycoumarin (CMHC) labeled DCs. Raw 264.7, EL4 and NCI-H446 cells were able to synthesize TGF-β which was determined by flow cyto-metry and western blotting, respectively. Furthermore, TGF-β efficiently increased regulatory T-cell (Treg) expansion and upregulated DC B7H1 and GITRL expression. TGF-β and the co-incubation of LLC cells, fibroblasts with DCs could augment the expression of B7H1 and GITRL molecules of DCs. The data presented here indicate that the B7H1 and GITRL molecules may play an important role in TGF-β-induced Treg expansion of lung cancer microenvironment.
Cell separation using tilted-angle standing surface acoustic waves
Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2014-01-01
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150
Cell separation using tilted-angle standing surface acoustic waves.
Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2014-09-09
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.
Fiber-optic multiphoton flow cytometry in whole blood and in vivo
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R.; Norris, Theodore B.
2010-07-01
Circulating tumor cells in the bloodstream are sensitive indicators for metastasis and disease prognosis. Circulating cells have usually been monitored via extraction from blood, and more recently in vivo using free-space optics; however, long-term intravital monitoring of rare circulating cells remains a major challenge. We demonstrate the application of a two-photon-fluorescence optical fiber probe for the detection of cells in whole blood and in vivo. A double-clad fiber was used to enhance the detection sensitivity. Two-channel detection was employed to enable simultaneous measurement of multiple fluorescent markers. Because the fiber probe circumvents scattering and absorption from whole blood, the detected signal strength from fluorescent cells was found to be similar in phosphate-buffered saline (PBS) and in whole blood. The detection efficiency of cells labeled with the membrane-binding dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindoldicarbocyanine, 4-chlorobenzenesulfonate (DiD) was demonstrated to be the same in PBS and in whole blood. A high detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was also demonstrated. To characterize in vivo detection, DiD-labeled untransfected and GFP-transfected cells were injected into live mice, and the cell circulation dynamics was monitored in real time. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed ex vivo in whole blood.
Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans
Ramya, T N C; Weerapana, Eranthie; Cravatt, Benjamin F; Paulson, James C
2013-01-01
In this paper, we present two complementary strategies for enrichment of glycoproteins on living cells that combine the desirable attributes of “robust enrichment” afforded by covalent-labeling techniques and “specificity for glycoproteins” typically provided by lectin or antibody affinity reagents. Our strategy involves the selective introduction of aldehydes either into sialic acids by periodate oxidation (periodate oxidation and aniline-catalyzed oxime ligation (PAL)) or into terminal galactose and N-acetylgalactosamine residues by galactose oxidase (galactose oxidase and aniline-catalyzed oxime ligation (GAL)), followed by aniline-catalyzed oxime ligation with aminooxy-biotin to biotinylate the glycans of glycoprotein subpopulations with high efficiency and cell viability. As expected, the two methods exhibit reciprocal tagging efficiencies when applied to fully sialylated cells compared with sialic acid-deficient cells. To assess the utility of these labeling methods for glycoproteomics, we enriched the PAL- and GAL-labeled (biotinylated) glycoproteome by adsorption onto immobilized streptavidin. Glycoprotein identities (IDs) and N-glycosylation site information were then obtained by liquid chromatography-tandem mass spectrometry on total tryptic peptides and on peptides subsequently released from N-glycans still bound to the beads using peptide N-glycosidase F. A total of 175 unique N-glycosylation sites were identified, belonging to 108 nonredundant glycoproteins. Of the 108 glycoproteins, 48 were identified by both methods of labeling and the remainder was identified using PAL on sialylated cells (40) or GAL on sialic acid-deficient cells (20). Our results demonstrate that PAL and GAL can be employed as complementary methods of chemical tagging for targeted proteomics of glycoprotein subpopulations and identification of glycosylation sites of proteins on cells with an altered sialylation status. PMID:23070960
Kolecka, Malgorzata Anna; Arnhold, Stefan; Schmidt, Martin; Reich, Christine; Kramer, Martin; Failing, Klaus; von Pückler, Kerstin
2017-02-24
Therapy with mesenchymal stem cells (MSCs) has been reported to provide beneficial effects in the treatment of neurological and orthopaedic disorders in dogs. The exact mechanism of action is poorly understood. Magnetic resonance imaging (MRI) gives the opportunity to observe MSCs after clinical administration. To visualise MSCs with the help of MRI, labelling with an MRI contrast agent is necessary. However, it must be clarified whether there is any negative influence on cell function and viability after labelling prior to clinical administration. For the purpose of the study, seven samples with canine adipose-derived stem cells were incubated with superparamagnetic iron oxide nanoparticles (SPIO: 319.2 μg/mL Fe) for 24 h. The internalisation of the iron particles occurred via endocytosis. SPIO particles were localized as free clusters in the cytoplasm or within lysosomes depending on the time of investigation. The efficiency of the labelling was investigated using Prussian blue staining and MACS assay. After 3 weeks the percentage of SPIO labelled canine stem cells decreased. Phalloidin staining showed no negative effect on the cytoskeleton. Labelled cells underwent osteogenic and adipogenic differentiation. Chondrogenic differentiation occurred to a lesser extent compared with a control sample. MTT-Test and wound healing assay showed no influence of labelling on the proliferation. The duration of SPIO labelling was assessed using a 1 Tesla clinical MRI scanner and T2 weighted turbo spin echo and T2 weighted gradient echo MRI sequences 1, 2 and 3 weeks after labelling. The hypointensity caused by SPIO lasted for 3 weeks in both sequences. An Endorem labelling concentration of 319.2 μg/mL Fe (448 μg/mL SPIO) had no adverse effects on the viability of canine ASCs. Therefore, this contrast agent could be used as a model for iron oxide labelling agents. However, the tracking ability in vivo has to be evaluated in further studies.
Stojanov, Katica; de Vries, Erik F J; Hoekstra, Dick; van Waarde, Aren; Dierckx, Rudi A J O; Zuhorn, Inge S
2012-02-01
The introduction of neural stem cells into the brain has promising therapeutic potential for the treatment of neurodegenerative diseases. To monitor the cellular replacement therapy, that is, to determine stem cell migration, survival, and differentiation, in vivo tracking methods are needed. Ideally, these tracking methods are noninvasive. Noninvasive tracking methods that have been successfully used for the visualization of blood-derived progenitor cells include magnetic resonance imaging and radionuclide imaging using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The SPECT tracer In-111-oxine is suitable for stem cell labeling, but for studies in small animals, the higher sensitivity and facile quantification that can be obtained with PET are preferred. Here the potential of 2'-[18F]fluoro-2'-deoxy-D-glucose ([18F]-FDG), a PET tracer, for tracking of neural stem cell (NSCs) trafficking toward an inflammation site was investigated. [18F]-FDG turns out to be a poor radiopharmaceutical to label NSCs owing to the low labeling efficiency and substantial release of radioactivity from these cells. Efflux of [18F]-FDG from NSCs can be effectively reduced by phloretin in vitro, but inhibition of tracer release is insufficient in vivo for accurate monitoring of stem cell trafficking.
Yura, Hirofumi; Ishihara, Masayuki; Kanatani, Yasuhiro; Takase, Bonpei; Hattori, Hidemi; Suzuki, Shinya; Kawakami, Mitsuyuki; Matsui, Takemi
2006-04-01
Flow cytometric analysis of synthetic galactosyl polymers, asialofetuin and LDL derivatives labeled with FITC (Fluorescein Isothiocyanate) was carried out to determine the phenotypes of endocytic receptors, such as asialoglycoprotein (ASPG) and the LDL receptor, on various types of cells. When FITC-labeled galactosyl polystyrene (GalCPS), being a synthetic ligand of ASPG, was applied to rat hepatocytes and human cancer cells (Hep G2 and Chang Liver), surface fluorescence intensities varied according to receptor expression on the cells. The fluorescence intensity originates from the calcium-dependent binding of the FITC-labeled GalCPS. Although unaltered by pre-treatment with glucosyl polystyrene (GluCPS), fetuin and LDL, the fluorescence intensity was suppressed by pre-treatment with (non-labeled) GalCPS and asialofetuin. Flow cytometry allowed us to demonstrate that the calcium-dependent binding of FITC-labeled LDL (prepared from rabbits) upon the addition of 17alpha-ethinyl estradiol enhances LDL receptor expression, and the expression is suppressed upon the addition of a monoclonal antibody to the LDL receptor. The binding efficiency based on the combination of FITC-labeled ligands suggests a possible application for the classification of cell types and conditions corresponding to endocytic receptor expression without the need for immuno-active antibodies or radiolabeled substances. Furthermore, the synthetic glycoconjugate (GalCPS) is shown to be a sensitive and useful marker for classification based on cell phenotype using flow cytometry.
Li, Ming-wei; Bai, Yu; Guo, Hui-hui
2017-01-01
Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we investigate the effects of fluorescent superparamagnetic iron oxide particles (SPIO) (Molday ION Rhodamine-B™, MIRB) on biological properties of human dental pulp stem cells (hDPSCs) and monitor hDPSCs in vitro and in vivo using magnetic resonance imaging (MRI). Morphological analysis showed that intracellular MIRB particles were distributed in the cytoplasm surrounding the nuclei of hDPSCs. 12.5–100 μg/mL MIRB all resulted in 100% labeling efficiency. MTT showed that 12.5–50 μg/mL MIRB could promote cell proliferation and MIRB over 100 μg/mL exhibited toxic effect on hDPSCs. In vitro MRI showed that 1 × 106 cells labeled with various concentrations of MIRB (12.5–100 μg/mL) could be visualized. In vivo MRI showed that transplanted cells could be clearly visualized up to 60 days after transplantation. These results suggest that 12.5–50 μg/mL MIRB is a safe range for labeling hDPSCs. MIRB labeled hDPSCs cell can be visualized by MRI in vitro and in vivo. These data demonstrate that MIRB is a promising candidate for hDPSCs tracking in hDPSCs based dental pulp regeneration therapy. PMID:28298928
Yeo, David C; Wiraja, Christian; Zhou, Yingying; Tay, Hui Min; Xu, Chenjie; Hou, Han Wei
2015-09-23
Engineering cells with active-ingredient-loaded micro/nanoparticles is becoming increasingly popular for imaging and therapeutic applications. A critical yet inadequately addressed issue during its implementation concerns the significant number of particles that remain unbound following the engineering process, which inadvertently generate signals and impart transformative effects onto neighboring nontarget cells. Here we demonstrate that those unbound micro/nanoparticles remaining in solution can be efficiently separated from the particle-labeled cells by implementing a fast, continuous, and high-throughput Dean flow fractionation (DFF) microfluidic device. As proof-of-concept, we applied the DFF microfluidic device for buffer exchange to sort labeled suspension cells (THP-1) from unbound fluorescent dye and dye-loaded micro/nanoparticles. Compared to conventional centrifugation, the depletion efficiency of free dyes or particles was improved 20-fold and the mislabeling of nontarget bystander cells by free particles was minimized. The microfluidic device was adapted to further accommodate heterogeneous-sized mesenchymal stem cells (MSCs). Complete removal of unbound nanoparticles using DFF led to the usage of engineered MSCs without exerting off-target transformative effects on the functional properties of neighboring endothelial cells. Apart from its effectiveness in removing free particles, this strategy is also efficient and scalable. It could continuously process cell solutions with concentrations up to 10(7) cells·mL(-1) (cell densities commonly encountered during cell therapy) without observable loss of performance. Successful implementation of this technology is expected to pave the way for interference-free clinical application of micro/nanoparticle engineered cells.
Two-photon excited photoconversion of cyanine-based dyes
NASA Astrophysics Data System (ADS)
Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun
2016-03-01
The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.
Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein
Volkmann, Gerrit; Liu, Xiang-Qin
2009-01-01
Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230
ERIC Educational Resources Information Center
Hladky, Paul W.
2009-01-01
The conversion of chemical energy entirely into thermal energy by Bunsen burners and into thermal energy and electrical energy by fuel cells of varying efficiencies illustrates different paths by which a chemical reaction can occur. Using the efficiency of producing electrical energy as a path label allows all of the energy-related quantities to…
Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I
2010-11-19
Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without compromise in image quality or information loss in associated spectra. These results motivate further use of label free microscopy techniques in real-time imaging of live immune cells.
NASA Astrophysics Data System (ADS)
Cariou, Romain; Benick, Jan; Feldmann, Frank; Höhn, Oliver; Hauser, Hubert; Beutel, Paul; Razek, Nasser; Wimplinger, Markus; Bläsi, Benedikt; Lackner, David; Hermle, Martin; Siefer, Gerald; Glunz, Stefan W.; Bett, Andreas W.; Dimroth, Frank
2018-06-01
In the version of this Article originally published, in the legend in Fig. 5a, the blue, green and red lines were incorrectly labelled as GaAs, Si and GaInP, respectively; instead, the labels should have read, respectively, GaInP, GaAs and Si. This has now been corrected.
Gene Transfer and Molecular Cloning of the Human NGF Receptor
NASA Astrophysics Data System (ADS)
Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita
1986-04-01
Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.
A novel label-free cell-based assay technology using biolayer interferometry.
Verzijl, D; Riedl, T; Parren, P W H I; Gerritsen, A F
2017-01-15
Biolayer interferometry (BLI) is a well-established optical label-free technique to study biomolecular interactions. Here we describe for the first time a cell-based BLI (cBLI) application that allows label-free real-time monitoring of signal transduction in living cells. Human A431 epidermoid carcinoma cells were captured onto collagen-coated biosensors and serum-starved, followed by exposure to agonistic compounds targeting various receptors, while recording the cBLI signal. Stimulation of the epidermal growth factor receptor (EGFR) with EGF, the β 2 -adrenoceptor with dopamine, or the hepatocyte growth factor receptor (HGFR/c-MET) with an agonistic antibody resulted in distinct cBLI signal patterns. We show that the mechanism underlying the observed changes in cBLI signal is mediated by rearrangement of the actin cytoskeleton, a process referred to as dynamic mass redistribution (DMR). A panel of ligand-binding blocking and non-blocking anti-EGFR antibodies was used to demonstrate that this novel BLI application can be efficiently used as a label-free cellular assay for compound screening and characterization. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Yamashiro, Sawako; Watanabe, Naoki
2017-07-06
Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS) microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy.
Kopp, Mathis; Rotan, Olga; Papadopoulos, Chrisovalantis; Schulze, Nina; Meyer, Hemmo; Epple, Matthias
2017-01-01
Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.
Modular Carbon and Gold Nanoparticles for High Field MR Imaging and Theranostics
NASA Astrophysics Data System (ADS)
Rammohan, Nikhil
The ability to track labeled cancer cells in vivo would allow researchers to study their distribution, growth and metastatic potential within the intact organism. Magnetic Resonance (MR) imaging is invaluable for tracking cancer cells in vivo as it benefits from high spatial resolution and absence of ionizing radiation. However, many MR contrast agents (CAs) required to label cells either do not significantly accumulate in cells or are not biologically compatible for translational studies. Accordingly, we have developed carbon- and gold-nanoparticles coupled to gadolinium(III) [Gd(III)] chelates for T1-weighted MR imaging that demonstrated remarkable properties for cell tracking in vitro and in vivo.. We created nanodiamond-Gd(III) aggregates (NDG) by peptide coupling Gd(III) chelates to aminated nanodiamonds. NDG had high relaxivity independent of field strength (unprecedented for Gd(III)-nanoparticle conjugates), and demonstrated a 300-fold increase in cellular delivery of Gd(III) compared to clinical Gd(III) chelates. Further, we were able to monitor the tumor growth of NDG-labeled flank tumors by T1-weighted MRI for 26 days in vivo, longer than reported for other MR CAs or nuclear agents. Further, theranostic nanodiamond-gadolinium(III)-doxorubicin (ND-Gd-Dox) aggregates were generated by conjugating doxorubicin (ND-Gd-Dox), which enabled efficient cancer chemotherapy in breast cancer cells. Further, we synthesized Gd(III)-gold nanoconjugates (Gd AuNPs) with varied chelate structure and nanoparticle-chelate linker length. Significantly enhanced cell labeling was demonstrated compared to previous gadolinium-gold-DNA nanoconstructs. Differences in Gd(III) loading, surface packing and cell uptake were observed between four different Gd AuNP formulations suggesting that linker length and surface charge play an important role in cell labeling. The best performing Gd AuNPs afforded 23.6 +/- 3.6 fmol of Gd(III) per cell at an incubation concentration of 27.5 microM. This efficiency of Gd(III) payload delivery (Gd(III)/cell normalized to dose) exceeds that of previously Gd(III)-Au conjugates and most other Gd(III)-nanoparticle formulations. Finally, Gd AuNPs were the first MR CAs of any type to effectively image the pancreas in vivo. . In summary, both Gd AuNPs and NDG support future MR-mediated cell tracking and theranostic applications in whole-animal models.
Cmiel, Vratislav; Skopalik, Josef; Polakova, Katerina; Solar, Jan; Havrdova, Marketa; Milde, David; Justan, Ivan; Magro, Massimiliano; Starcuk, Zenon; Provaznik, Ivo
2017-07-01
In the last few years, magnetically labeled cells have been intensively explored, and non-invasive cell tracking and magnetic manipulation methods have been tested in preclinical studies focused on cell transplantation. For clinical applications, it is desirable to know the intracellular pathway of nanoparticles, which can predict their biocompatibility with cells and the long-term imaging properties of labeled cells. Here, we quantified labeling efficiency, localization, and fluorescence properties of Rhodamine derivatized superparamagnetic maghemite nanoparticles (SAMN-R) in mesenchymal stromal cells (MSC). We investigated the stability of SAMN-R in the intracellular space during a long culture (20 days). Analyses were based on advanced confocal microscopy accompanied by atomic absorption spectroscopy (AAS) and magnetic resonance imaging. SAMN-R displayed excellent cellular uptake (24 h of labeling), and no toxicity of SAMN-R labeling was found. 83% of SAMN-R nanoparticles were localized in lysosomes, only 4.8% were found in mitochondria, and no particles were localized in the nucleus. On the basis of the MSC fluorescence measurement every 6 days, we also quantified the continual decrease of SAMN-R fluorescence in the average single MSC during 18 days. An additional set of analyses showed that the intracellular SAMN-R signal decrease was minimally caused by fluorophore degradation or nanoparticles extraction from the cells, main reason is a cell division. The fluorescence of SAMN-R nanoparticles within the cells was detectable minimally for 20 days. These observations indicate that SAMN-R nanoparticles have a potential for application in transplantation medicine.
Development of background-free tame fluorescent probes for intracellular live cell imaging
Alamudi, Samira Husen; Satapathy, Rudrakanta; Kim, Jihyo; Su, Dongdong; Ren, Haiyan; Das, Rajkumar; Hu, Lingna; Alvarado-Martínez, Enrique; Lee, Jung Yeol; Hoppmann, Christian; Peña-Cabrera, Eduardo; Ha, Hyung-Ho; Park, Hee-Sung; Wang, Lei; Chang, Young-Tae
2016-01-01
Fluorescence labelling of an intracellular biomolecule in native living cells is a powerful strategy to achieve in-depth understanding of the biomolecule's roles and functions. Besides being nontoxic and specific, desirable labelling probes should be highly cell permeable without nonspecific interactions with other cellular components to warrant high signal-to-noise ratio. While it is critical, rational design for such probes is tricky. Here we report the first predictive model for cell permeable background-free probe development through optimized lipophilicity, water solubility and charged van der Waals surface area. The model was developed by utilizing high-throughput screening in combination with cheminformatics. We demonstrate its reliability by developing CO-1 and AzG-1, a cyclooctyne- and azide-containing BODIPY probe, respectively, which specifically label intracellular target organelles and engineered proteins with minimum background. The results provide an efficient strategy for development of background-free probes, referred to as ‘tame' probes, and novel tools for live cell intracellular imaging. PMID:27321135
Magnetic microfluidic system for isolation of single cells
NASA Astrophysics Data System (ADS)
Mitterboeck, Richard; Kokkinis, Georgios; Berris, Theocharis; Keplinger, Franz; Giouroudi, Ioanna
2015-06-01
This paper presents the design and realization of a compact, portable and cost effective microfluidic system for isolation and detection of rare circulating tumor cells (CTCs) in suspension. The innovative aspect of the proposed isolation method is that it utilizes superparamagnetic particles (SMPs) to label CTCs and then isolate those using microtraps with integrated current carrying microconductors. The magnetically labeled and trapped CTCs can then be detected by integrated magnetic microsensors e.g. giant magnetoresistive (GMR) or giant magnetoimpedance (GMI) sensors. The channel and trap dimensions are optimized to protect the cells from shear stress and achieve high trapping efficiency. These intact single CTCs can then be used for additional analysis, testing and patient specific drug screening. Being able to analyze the CTCs metastasis-driving capabilities on the single cell level is considered of great importance for developing patient specific therapies. Experiments showed that it is possible to capture single labeled cells in multiple microtraps and hold them there without permanent electric current and magnetic field.
Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes
Liu, Qiaozhen; Yang, Rui; Huang, Xiuzhen; Zhang, Hui; He, Lingjuan; Zhang, Libo; Tian, Xueying; Nie, Yu; Hu, Shengshou; Yan, Yan; Zhang, Li; Qiao, Zengyong; Wang, Qing-Dong; Lui, Kathy O; Zhou, Bin
2016-01-01
Cardiac cells marked by c-Kit or Kit, dubbed cardiac stem cells (CSCs), are in clinical trials to investigate their ability to stimulate cardiac regeneration and repair. These studies were initially motivated by the purported cardiogenic activity of these cells. Recent lineage tracing studies using Kit promoter to drive expression of the inducible Cre recombinase showed that these CSCs had highly limited cardiogenic activity, inadequate to support efficient cardiac repair. Here we reassess the lineage tracing data by investigating the identity of cells immediately after Cre labeling. Our instant lineage tracing approach identifies Kit-expressing cardiomyocytes, which are labeled immediately after tamoxifen induction. In combination with long-term lineage tracing experiments, these data reveal that the large majority of long-term labeled cardiomyocytes are pre-existing Kit-expressing cardiomyocytes rather than cardiomyocytes formed de novo from CSCs. This study presents a new interpretation for the contribution of Kit+ cells to cardiomyocytes and shows that Kit genetic lineage tracing over-estimates the cardiogenic activity of Kit+ CSCs. PMID:26634606
Zhou, Hong-Chang; Gao, Yu-Hui; Shao, Sheng-Wen; Zhang, Hui; Zhang, Ting
2013-12-01
The cultured Plasmodium falciparum parasites were synchronized twice by 5% sorbitol treatment twice (8-hour window), and then incubated at 37 degrees C for 16 h. Parasites were transfected with fluorescein-labelled oligonucleotides (group A) or fluorescein-labelled oligonucleotides+Entranster-R siRNA transfection reagent (group B). After 5 h a part of parasites was evaluated by fluorescence microscopy and flow cytometry. The rest of parasites were washed with RPMI 1640 medium, and then incubated with 500 microl new medium containing 2% fresh erythrocytes for another 12 h, and detected by flow cytometry. The fluorescein-labelled oligonucleotides were localized in erythrocytes in group B, but nearly no fluorescence was observed for group A. Flow cytometry analysis indicated that the transfection efficiency of group B [(47.40 +/- 3.39)%] was higher than that of group A [(0.60 +/- 0.27)%]. In the second cell cycle, the transfection efficiency in group B was (26.85 +/- 2.90)%, while that of group A was nearly zero. The results indicated that Entranster-R siRNA transfection reagent may increase the oligonucleotides transfection efficiency.
Rapid Characterization of Magnetic Moment of Cells for Magnetic Separation
Ooi, Chinchun; Earhart, Christopher M.; Wilson, Robert J.; Wang, Shan X.
2014-01-01
NCI-H1650 lung cancer cell lines labeled with magnetic nanoparticles via the Epithelial Cell Adhesion Molecule (EpCAM) antigen were previously shown to be captured at high efficiencies by a microfabricated magnetic sifter. If fine control and optimization of the magnetic separation process is to be achieved, it is vital to be able to characterize the labeled cells’ magnetic moment rapidly. We have thus adapted a rapid prototyping method to obtain the saturation magnetic moment of these cells. This method utilizes a cross-correlation algorithm to analyze the cells’ motion in a simple fluidic channel to obtain their magnetophoretic velocity, and is effective even when the magnetic moments of cells are small. This rapid characterization is proven useful in optimizing our microfabricated magnetic sifter procedures for magnetic cell capture. PMID:24771946
Noninvasive Imaging of Administered Progenitor Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R Bergmann, M.D., Ph.D.
The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusionmore » and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90-99% pure population of leukocytes. Viability was assessed using Trypan blue histological analysis. We successfully isolated and labeled ~25-30 x 10{sup 7} CD34+ lymphocytes in cytokine mobilized progenitor cell apharesis harvests. Cells were also subjected to a stat gram stain to look for bacterial contamination, stat endotoxin LAL to look for endotoxin contamination, flow cytometry for evaluation of the purity of the cells and 14-day sterility culture. Colony forming assays confirm the capacity of these cells to proliferate and function ex-vivo with CFU-GM values of 26 colonies/ 1 x 10{sup 4} cells plated and 97% viability in cytokine augmented methylcellulose at 10-14 days in CO{sub 2} incubation. We developed a closed-processing system for the product labeling prior to infusion to maintain autologous cell integrity and sterility. Release criteria for the labeled product were documented for viability, cell count and differential, and measured radiolabel. We were successful in labeling the cells with up to 500 uCi/10{sup 8} cells, with viability of >98%. However, due to delays in getting the protocol approved by the FDA, the cells were not infused in humans in this location (although we did successfully use CD34+ cells in humans in a study in Australia). The approach developed should permit labeling of progenitor cells that can be administered to human subjects for tracking. The labeling approach should be useful for all progenitor cell types, although this would need to be verified since different cell lines may have differential radiosensitivity.« less
NASA Astrophysics Data System (ADS)
Ou, Zhongmin; Wu, Baoyan; Xing, Da
2009-08-01
The pursuit of efficient and highly targeting-selective transporters is an active topic in cancer-targeting therapy. In this study, a novel cancer-targeting transporter with integrin αvβ3 monoclonal antibody functionalized single-walled carbon nanotubes (SWCNTs) was developed to investigate cancer cell targeting in vitro. SWCNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). PL-PEG functionalized SWCNTs were then conjugated with fluorescein isothiocyanate (FITC) labeled integrin αvβ3 monoclonal antibody to construct SWCNT-integrin αvβ3 monoclonal antibody system (denoted as SWCNT-PEG-mAb). In vitro study revealed that the system had a high efficiency in cancer cell targeting in integrin αvβ3 positive U87MG cells. Moreover, the SWCNT-PEG-mAb is stable in physiological media, and can be readily transported into U87MG cells via integrin αvβ3-mediated endocytosis in cell. In summary, the integrin αvβ3 monoclonal antibody labeled SWCNT is a potential carrier-candidate for cancer-imaging and drug-delivering in cancer-targeting therapy.
NASA Astrophysics Data System (ADS)
McReynolds, Naomi; Cooke, Fiona G. M.; Chen, Mingzhou; Powis, Simon J.; Dholakia, Kishan
2017-02-01
Moving towards label-free techniques for cell identification is essential for many clinical and research applications. Raman spectroscopy and digital holographic microscopy (DHM) are both label-free, non-destructive optical techniques capable of providing complimentary information. We demonstrate a multi-modal system which may simultaneously take Raman spectra and DHM images to provide both a molecular and a morphological description of our sample. In this study we use Raman spectroscopy and DHM to discriminate between three immune cell populations CD4+ T cells, B cells, and monocytes, which together comprise key functional immune cell subsets in immune responses to invading pathogens. Various parameters that may be used to describe the phase images are also examined such as pixel value histograms or texture analysis. Using our system it is possible to consider each technique individually or in combination. Principal component analysis is used on the data set to discriminate between cell types and leave-one-out cross-validation is used to estimate the efficiency of our method. Raman spectroscopy provides specific chemical information but requires relatively long acquisition times, combining this with a faster modality such as DHM could help achieve faster throughput rates. The combination of these two complimentary optical techniques provides a wealth of information for cell characterisation which is a step towards achieving label free technology for the identification of human immune cells.
Wang, Jidong; Lu, Wenjing; Tang, Chuanhao; Liu, Yi; Sun, Jiashu; Mu, Xuan; Zhang, Lin; Dai, Bo; Li, Xiaoyan; Zhuo, Hailong; Jiang, Xingyu
2015-12-01
We develop an inertial-based microfluidic cell sorter combined with an integrated membrane filter, allowing for size-based, label-free, and high-efficiency separation and enrichment of circulating tumor cells (CTCs) in whole blood. The cell sorter is composed of a double spiral microchannel that hydrodynamically focuses and separates large CTCs from small blood cells. The focused CTCs with the equilibrium position around the midline of microchannel are further captured and enriched by a membrane filter (pore size of 8 μm) attached at the middle outlet. This integrated microfluidic device can process 1 mL of whole blood containing spiked tumor cells (A549, human lung adenocarcinoma epithelial cell line) within 15 min, with the capture efficiency of 74.4% at the concentration as low as tens of A549 cells per mL of whole blood. This microfluidic cell sorter is further adopted for isolation of CTCs from peripheral blood samples of patients with metastatic lung cancer. The immunostaining and CK-19 mRNA detection are applied for identification of captured CTCs, showing that our method can detect 90% of metastatic lung cancer patients before therapy, whereas the commercially used system can only detect 40% of the same patients. We also use the expression of CK-19 mRNA from captured CTCs as an indicator for monitoring the therapeutic efficiency, which correlates well with X-ray computed tomography (CT) assessment of the disease.
Song, Miyeoun; Kim, Yunhee; Lim, Dongyeol; Song, In-Chan; Yoon, Byung-Woo
2007-01-01
Objective We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Materials and Methods The hNSCs (5 × 105 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 µg/ml of ferumoxides, MION or CLIO-NH2, and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. Results The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15 ± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH2, respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH2 into the hNSCs was comparable to that of tat-CLIO. Conclusion For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH2 and the transfection agent PLL. PMID:17923778
Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure.
Liu, Zongbin; Huang, Fei; Du, Jinghui; Shu, Weiliang; Feng, Hongtao; Xu, Xiaoping; Chen, Yan
2013-01-01
This work reports a microfluidic device with deterministic lateral displacement (DLD) arrays allowing rapid and label-free cancer cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. Experiment data and theoretical simulation are presented to evaluate the isolation efficiency of various types of cancer cells in the microfluidic DLD structure. We also demonstrated the use of both circular and triangular post arrays for cancer cell separation in cell solution and blood samples. The device was able to achieve high cancer cell isolation efficiency and enrichment factor with our optimized design. Therefore, this platform with DLD structure shows great potential on fundamental and clinical studies of circulating tumor cells.
Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells.
Thorek, Daniel L J; Tsourkas, Andrew
2008-09-01
A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large number of cell labeling studies that have been performed with SPIO particles of differing size and surface charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is largely because contradictory findings have stemmed from the variability and imprecise control over surface charge, the general need and complexity of transfection and/or targeting agents, and the limited number of particle configurations examined in any given study. In the present study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33nm to nearly 1.5microm, with precisely controlled surface properties, and without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry. SPIO uptake was dose-dependent and exhibited sigmoidal charge dependence, which was shown to saturate at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300nm, however, micron-sized particle uptake was limited. Our results show that an unconventional highly cationic particle configuration at 107nm maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50nm).
Size, Charge and Concentration Dependent Uptake of Iron Oxide Particles by Non-Phagocytic Cells
Thorek, Daniel L.J.; Tsourkas, Andrew
2008-01-01
A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large number of cell labeling studies that have been performed with SPIO particles of differing size and surface charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is largely because contradictory findings have stemmed from the variability and imprecise control over surface charge, the general need and complexity of transfection and/or targeting agents, and the limited number of particle configurations examined in any given study. In the present study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33 nm to nearly 1.5 μm, with precisely controlled surface properties, and without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry. SPIO uptake was dose dependent and exhibited sigmoidal charge dependence, which was shown to saturate at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300nm, however micron-sized particle uptake was limited. Our results show that an unconventional highly cationic particle configuration at 107 nm maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50 nm). PMID:18533252
Alborzian Deh Sheikh, Amin; Akatsu, Chizuru; Imamura, Akihiro; Abdu-Allah, Hajjaj H M; Takematsu, Hiromu; Ando, Hiromune; Ishida, Hideharu; Tsubata, Takeshi
2018-01-01
Lectins expressed on the cell surface are often bound and regulated by the membrane molecules containing the glycan ligands on the same cell (cis-ligands). However, molecular nature and function of cis-ligands are generally poorly understood partly because of weak interaction between lectins and glycan ligands. Cis-ligands are most extensively studied in CD22 (also known as Siglec-2), an inhibitory B lymphocyte receptor specifically recognizing α2,6 sialic acids. CD22, CD45 and IgM are suggested to be ligands of CD22. Here we labeled molecules in the proximity of CD22 in situ on B cell surface using biotin-tyramide. Molecules including CD22, CD45 and IgM were labeled in wild-type but not ST6GalI -/- B cells that lack α2,6 sialic acids, indicating that these molecules associate with CD22 by lectin-glycan interaction, and are therefore cis-ligands. In ST6GalI -/- B cells, these cis-ligands are located in a slightly more distance from CD22. Thus, the lectin-glycan interaction recruits cis-ligands already located in the relative proximity of CD22 through non-lectin-glycan interaction to the close proximity. Moreover, cis-ligands are labeled in Cmah -/- B cells that lack Neu5Gc preferred by mouse CD22 as efficiently as in wild-type B cells, indicating that very low affinity lectin-glycan interaction is sufficient for recruiting cis-ligands, and can be detected by proximity labeling. Thus, proximity labeling with tyramide appears to be a useful method to identify cis-ligands and to analyze their interaction with the lectins. Copyright © 2017 Elsevier Inc. All rights reserved.
Barrow, Michael; Taylor, Arthur; García Carrión, Jaime; Mandal, Pranab; Park, B Kevin; Poptani, Harish; Murray, Patricia; Rosseinsky, Matthew J; Adams, Dave J
2016-09-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as contrast agents for stem cell tracking using magnetic resonance imaging (MRI). The total mass of iron oxide that can be internalised into cells without altering their viability or phenotype is an important criterion for the generation of contrast, with SPIONs designed for efficient labelling of stem cells allowing for an increased sensitivity of detection. Although changes in the ratio of polymer and iron salts in co-precipitation reactions are known to affect the physicochemical properties of SPIONs, particularly core size, the effects of these synthesis conditions on stem cell labelling and magnetic resonance (MR) contrast have not been established. Here, we synthesised a series of cationic SPIONs with very similar hydrodynamic diameters and surface charges, but different polymer content. We have investigated how the amount of polymer in the co-precipitation reaction affects core size and modulates not only the magnetic properties of the SPIONs but also their uptake into stem cells. SPIONs with the largest core size and lowest polymer content presented the highest magnetisation and relaxivity. These particles also had the greatest uptake efficiency without any deleterious effect on either the viability or function of the stem cells. However, for all particles internalised in cells, the T 2 and T 2 * relaxivity was independent of the SPION's core size. Our results indicate that the relative mass of iron taken up by cells is the major determinant of MR contrast generation and suggest that the extent of SPION uptake can be regulated by the amount of polymer used in co-precipitation reactions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Vašíček, Jaromír; Shehata, Medhat; Schnabl, Susanne; Hilgarth, Martin; Hubmann, Rainer; Jäger, Ulrich; Bauer, Miroslav; Chrenek, Peter
2018-06-08
Rabbits have many hereditary diseases common to humans and are therefore a valuable model for regenerative disease and hematopoietic stem cell (HSC) therapies. Currently, there is no substantial data on the isolation and/or enrichment of rabbit HSCs. This study was initiated to evaluate the efficiency of the commercially available anti-CD34 and anti-CD133 antibodies for the detection and potential enrichment of rabbit HSCs from peripheral blood. PBMCs from rabbit and human blood were labelled with different clones of anti-human CD34 monoclonal antibodies (AC136, 581 and 8G12) and rabbit polyclonal CD34 antibody (pCD34) and anti-human CD133 monoclonal antibodies (AC133 and 293C3). Flow cytometry showed a higher percentage of rabbit CD34 + cells labelled by AC136 in comparison to the clone 581 and pCD34 (P<0.01). A higher percentage of rabbit CD133 + cells were also detected by 293C3 compared to the AC133 clone (P<0.01). Therefore, AC136 clone was used for the indirect immunomagnetic enrichment of rabbit CD34 + cells using magnetic-activated cell sorting (MACS). The enrichment of the rabbit CD34 + cells after sorting was low in comparison to human samples (2.4% vs. 39.6%). PCR analyses confirmed the efficient enrichment of human CD34 + cells and the low expression of CD34 mRNA in rabbit positive fraction. In conclusion, the tested antibodies might be suitable for detection, but not for sorting the rabbit CD34 + HSCs and new specific anti-rabbit CD34 antibodies are needed for efficient enrichment of rabbit HSCs. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
Site-specific protein labeling with PRIME and chelation-assisted Click chemistry
Uttamapinant, Chayasith; Sanchez, Mateo I.; Liu, Daniel S.; Yao, Jennifer Z.; White, Katharine A.; Grecian, Scott; Clarke, Scott; Gee, Kyle R.; Ting, Alice Y.
2016-01-01
This protocol describes an efficient method to site-specifically label cell-surface or purified proteins with chemical probes in two steps: PRobe Incorporation Mediated by Enzymes (PRIME) followed by chelation-assisted copper-catalyzed azide-alkyne cycloaddition (CuAAC). In the PRIME step, Escherichia coli lipoic acid ligase site-specifically attaches a picolyl azide derivative to a 13-amino acid recognition sequence that has been genetically fused onto the protein of interest. Proteins bearing picolyl azide are chemoselectively derivatized with an alkyne-probe conjugate by chelation-assisted CuAAC in the second step. We describe herein the optimized protocols to synthesize picolyl azide, perform PRIME labeling, and achieve CuAAC derivatization of picolyl azide on live cells, fixed cells, and purified proteins. Reagent preparations, including synthesis of picolyl azide probes and expression of lipoic acid ligase, take 12 d, while the procedure to perform site-specific picolyl azide ligation and CuAAC on cells or on purified proteins takes 40 min-3 h. PMID:23887180
Bigini, Paolo; Diana, Valentina; Barbera, Sara; Fumagalli, Elena; Micotti, Edoardo; Sitia, Leopoldo; Paladini, Alessandra; Bisighini, Cinzia; De Grada, Laura; Coloca, Laura; Colombo, Laura; Manca, Pina; Bossolasco, Patrizia; Malvestiti, Francesca; Fiordaliso, Fabio; Forloni, Gianluigi; Morbidelli, Massimo; Salmona, Mario; Giardino, Daniela; Mennini, Tiziana; Moscatelli, Davide; Silani, Vincenzo; Cova, Lidia
2012-01-01
Stem Cell (SC) therapy is one of the most promising approaches for the treatment of Amyotrophic Lateral Sclerosis (ALS). Here we employed Super Paramagnetic Iron Oxide nanoparticles (SPIOn) and Hoechst 33258 to track human Amniotic Fluid Cells (hAFCs) after transplantation in the lateral ventricles of wobbler (a murine model of ALS) and healthy mice. By in vitro, in vivo and ex vivo approaches we found that: 1) the main physical parameters of SPIOn were maintained over time; 2) hAFCs efficiently internalized SPIOn into the cytoplasm while Hoechst 33258 labeled nuclei; 3) SPIOn internalization did not alter survival, cell cycle, proliferation, metabolism and phenotype of hAFCs; 4) after transplantation hAFCs rapidly spread to the whole ventricular system, but did not migrate into the brain parenchyma; 5) hAFCs survived for a long time in the ventricles of both wobbler and healthy mice; 6) the transplantation of double-labeled hAFCs did not influence mice survival. PMID:22384217
Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei
2013-01-01
We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium–tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants. PMID:24109183
Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei
2013-01-01
We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium-tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants.
Lang, Kathrin; Davis, Lloyd; Wallace, Stephen; Mahesh, Mohan; Cox, Daniel J; Blackman, Melissa L; Fox, Joseph M; Chin, Jason W
2012-06-27
Rapid, site-specific labeling of proteins with diverse probes remains an outstanding challenge for chemical biologists. Enzyme-mediated labeling approaches may be rapid but use protein or peptide fusions that introduce perturbations into the protein under study and may limit the sites that can be labeled, while many "bioorthogonal" reactions for which a component can be genetically encoded are too slow to effect quantitative site-specific labeling of proteins on a time scale that is useful for studying many biological processes. We report a fluorogenic reaction between bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) and tetrazines that is 3-7 orders of magnitude faster than many bioorthogonal reactions. Unlike the reactions of strained alkenes, including trans-cyclooctenes and norbornenes, with tetrazines, the BCN-tetrazine reaction gives a single product of defined stereochemistry. We have discovered aminoacyl-tRNA synthetase/tRNA pairs for the efficient site-specific incorporation of a BCN-containing amino acid, 1, and a trans-cyclooctene-containing amino acid 2 (which also reacts extremely rapidly with tetrazines) into proteins expressed in Escherichia coli and mammalian cells. We demonstrate the rapid fluorogenic labeling of proteins containing 1 and 2 in vitro, in E. coli , and in live mammalian cells. These approaches may be extended to site-specific protein labeling in animals, and we anticipate that they will have a broad impact on labeling and imaging studies.
Umashankar, Abhishek; Corenblum, Mandi J; Ray, Sneha; Valdez, Michel; Yoshimaru, Eriko S; Trouard, Theodore P; Madhavan, Lalitha
2016-01-01
An essential component of developing successful neural stem cell (NSC)-based therapies involves the establishment of methodologies to noninvasively monitor grafted NSCs within brain tissues in real time. In this context, ex vivo labeling with ultrasmall superparamagnetic iron oxide (USPIO) particles has been shown to enable efficient tracking of transplanted NSCs via magnetic resonance imaging (MRI). However, whether and how USPIO labeling affects the intrinsic biology of NSCs is not thoroughly understood, and remains an active area of investigation. Here, we perform a comprehensive examination of rat NSC survival and regenerative function upon labeling with the USPIO, Molday ION Rhodamine B (MIRB), which allows for dual magnetic resonance and optical imaging. After optimization of labeling efficiency, two specific doses of MIRB (20 and 50 μg/mL) were chosen and were followed for the rest of the study. We observed that both MIRB doses supported the robust detection of NSCs, over an extended period of time in vitro and in vivo after transplantation into the striata of host rats, using MRI and post hoc fluorescence imaging. Both in culture and after neural transplantation, the higher 50 μg/mL MIRB dose significantly reduced the survival, proliferation, and differentiation rate of the NSCs. Interestingly, although the lower 20 μg/mL MIRB labeling did not produce overtly negative effects, it increased the proliferation and glial differentiation of the NSCs. Additionally, application of this dose also changed the morphological characteristics of neurons and glia produced after NSC differentiation. Importantly, the transplantation of NSCs labeled with either of the two MIRB doses upregulated the immune response in recipient animals. In particular, in animals receiving the 50 μg/mL MIRB-labeled NSCs, this immune response consisted of an increased number of CD68(+)-activated microglia, which appeared to have phagocytosed MIRB particles and cells contributing to an exaggerated MRI signal dropout in the animals. Overall, these results indicate that although USPIO particles, such as MIRB, may have advantageous labeling and magnetic resonance-sensitive features for NSC tracking, a further examination of their effects might be necessary before they can be used in clinical scenarios of cell-based transplantation.
Birch, Ditlev; Christensen, Malene Vinther; Staerk, Dan; Franzyk, Henrik; Nielsen, Hanne Mørck
2017-12-01
Cell-penetrating peptides constitute efficient delivery vectors, and studies of their uptake and mechanism of translocation typically involve fluorophore-labeled conjugates. In the present study, the influence of a number of specific fluorophores on the physico-chemical properties and uptake-related characteristics of penetratin were studied. An array of seven fluorophores belonging to distinct structural classes was examined, and the impact of fluorophore labeling on intracellular distribution and cytotoxicity was correlated to the physico-chemical properties of the conjugates. Exposure of several mammalian cell types to fluorophore-penetratin conjugates revealed a strong structure-dependent reduction in viability (1.5- to 20-fold lower IC 50 values as compared to those of non-labeled penetratin). Also, the degree of less severe effects on membrane integrity, as well as intracellular distribution patterns differed among the conjugates. Overall, neutral hydrophobic fluorophores or negatively charged fluorophores conferred less cytotoxicity as compared to the effect exerted by positively charged, hydrophobic fluorophores. The latter conjugates, however, exhibited less membrane association and more clearly defined intracellular distribution patterns. Thus, selection of the appropriate flurophore is critical. Copyright © 2017 Elsevier B.V. All rights reserved.
Isolation and Ex Vivo Culture of Vδ1+CD4+γδ T Cells, an Extrathymic αβT-cell Progenitor.
Welker, Christian; Handgretinger, Rupert; Schilbach, Karin
2015-12-07
The thymus, the primary organ for the generation of αβ T cells and backbone of the adaptive immune system in vertebrates, has long been considered as the only source of αβT cells. Yet, thymic involution begins early in life leading to a drastically reduced output of naïve αβT cells into the periphery. Nevertheless, even centenarians can build immunity against newly acquired pathogens. Recent research suggests extrathymic αβT cell development, however our understanding of pathways that may compensate for thymic loss of function are still rudimental. γδ T cells are innate lymphocytes that constitute the main T-cell subset in the tissues. We recently ascribed a so far unappreciated outstanding function to a γδ T cell subset by showing that the scarce entity of CD4(+) Vδ1(+)γδ T cells can transdifferentiate into αβT cells in inflammatory conditions. Here, we provide the protocol for the isolation of this progenitor from peripheral blood and its subsequent cultivation. Vδ1 cells are positively enriched from PBMCs of healthy human donors using magnetic beads, followed by a second step wherein we target the scarce fraction of CD4(+) cells with a further magnetic labeling technique. The magnetic force of the second labeling exceeds the one of the first magnetic label, and thus allows the efficient, quantitative and specific positive isolation of the population of interest. We then introduce the technique and culture condition required for cloning and efficiently expanding the cells and for identification of the generated clones by FACS analysis. Thus, we provide a detailed protocol for the purification, culture and ex vivo expansion of CD4(+) Vδ1(+)γδ T cells. This knowledge is prerequisite for studies that relate to this αβT cell progenitor`s biology and for those who aim to identify the molecular triggers that are involved in its transdifferentiation.
NASA Technical Reports Server (NTRS)
Hayes, N. L.; Nowakowski, R. S.
2000-01-01
Two S-phase markers for in vivo studies of cell proliferation in the developing central nervous system, tritiated thymidine ((3)H-TdR) and bromodeoxyuridine (BUdR), were compared using double-labeling techniques in the developing mouse cortex at embryonic day 14 (E14). The labeling efficiencies and detectability of the two tracers were approximately equivalent, and there was no evidence of significant tracer interactions that depend on order of administration. For both tracers, the loading time needed to label an S-phase cell to detectability is estimated at <0.2 h shortly after the injection of the label, but, as the concentration of the label falls, it increases to approximately 0.65 h after about 30 min. Thereafter, cells that enter the S-phase continue to become detectably labeled for approximately 5-6 h. The approximate equivalence of these two tracers was exploited to observe directly the numbers and positions of nuclei entering (labeled with the second tracer only) and leaving (labeled with the first tracer only) the S-phase. As expected, the numbers of nuclei entering and leaving the S-phase both increased as the interval between the two injections lengthened. Also, nuclei leaving the S-phase rapidly move towards the ventricular surface during G2, but, unexpectedly, the distribution of the entering nuclei does not differ significantly from the distribution of the nuclei in the S-phase. This indicates that: (1) the extent and rate of abventricular nuclear movement during G1 is variable, such that not all nuclei traverse the entire width of the ventricular zone, and (2) interkinetic nuclear movements are minimal during S-phase. Copyright 2000 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorur, A.; Leung, C. M.; Jorgens, D.
2010-06-01
Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches,more » but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell, where the chromosome is located. Two other proteins - Thiosulfate reductase and ATP binding protein were found to be cytoplasmically distributed, whereas a molybdenum transporter was found to locate to the cell periphery. We judge labeling outcome by (1) SDS gel electrophoresis, followed by direct fluorescence imaging of the gel to address specificity of labeling/confirm expected molecular weight, and subsequent Coomassie analysis to ensure comparable protein levels (2) fluorescence intensity of culture by plate reader for statistical sampling (after adjustment for respective cell numbers) and (3) fluorescence microscopy for addressing cell-to-cell signal variation and potential localization patterns. All three assays were usually found to be consistent with one another. While we have been able to improve the efficacy of photoconversion by drastically reducing (eliminating) non-specific binding with our altered labeling protocol, we are currently working on reducing non-specific photoconversion reaction arising occasionally in non-labeled cells. In addition, we have confirmed the presence of SNAP tagged constructs in three recently cloned E.coli strains under promotor control, and are in the process of utilizing them for evaluating the sensitivity of the photoconversion protocol. Fluorescent Activated Cell Sorting was successfully applied to labeled E.coli cells containing SNAP tagged AtpA protein. Different batches of sorted cells, representing low and high labeling intensity, were re-grown and re-labeled and displayed a labeling efficiency similar to the starter culture, supporting the notion that cell-to-cell differences in labeling reflect difference in protein expression, rather then genetic differences.« less
Salamon, J; Wicklein, D; Didié, M; Lange, C; Schumacher, U; Adam, G; Peldschus, K
2014-04-01
The aim of this study was to establish co-labeling of mesenchymal stromal cells (MSC) for the detection of single MSC in-vivo by MRI and histological validation. Mouse MSC were co-labeled with fluorescent iron oxide micro-particles and carboxyfluorescein succinimidyl ester (CFSE). The cellular iron content was determined by atomic absorption spectrometry. Cell proliferation and expression of characteristic surface markers were determined by flow cytometry. The chondrogenic differentiation capacity was assessed. Different amounts of cells (n1 = 5000, n2 = 15 000, n3 = 50 000) were injected into the left heart ventricle of 12 mice. The animals underwent sequential MRI on a clinical 3.0 T scanner (Intera, Philips Medical Systems, Best, The Netherlands). For histological validation cryosections were examined by fluorescent microscopy. Magnetic and fluorescent labeling of MSC was established (mean cellular iron content 23.6 ± 3 pg). Flow cytometry showed similar cell proliferation and receptor expression of labeled and unlabeled MSC. Chondrogenic differentiation of labeled MSC was verified. After cell injection MRI revealed multiple signal voids in the brain and fewer signal voids in the kidneys. In the brain, an average of 4.6 ± 1.2 (n1), 9.0 ± 3.6 (n2) and 25.0 ± 1.0 (n3) signal voids were detected per MRI slice. An average of 8.7 ± 3.1 (n1), 22.0 ± 6.1 (n2) and 89.8 ± 6.5 (n3) labeled cells per corresponding stack of adjacent cryosections could be detected in the brain. Statistical correlation of the numbers of MRI signal voids in the brain and single MSC found by histology revealed a correlation coefficient of r = 0.91. The study demonstrates efficient magnetic and fluorescent co-labeling of MSC and their detection on a single cell level in mice by in-vivo MRI and histology. The described techniques may broaden the methods for in-vivo tracking of MSC. • Detection of single magnetically labeled MSC in-vivo using a clinical 3.0 T MRI is possible.• Fluorescent and magnetic co-labeling does not affect cell vitality.• The number of cells detected by MRI and histology has a high correlation. © Georg Thieme Verlag KG Stuttgart · New York.
Yefimova, Svetlana L; Kurilchenko, Irina Yu; Tkacheva, Tatyana N; Kavok, Nataliya S; Todor, Igor N; Lukianova, Nataliya Yu; Chekhun, Vasyl F; Malyukin, Yuriy V
2014-03-01
We report the Förster resonance energy transfer (FRET)-labeling of liposomal vesicles as an effective approach to study in dynamics the interaction of liposomes with living cells of different types (rat hepatocytes, rat bone marrow, mouse fibroblast-like cells and human breast cancer cells) and cell organelles (hepatocyte nuclei). The in vitro experiments were performed using fluorescent microspectroscopic technique. Two fluorescent dyes (DiO as the energy donor and DiI as an acceptor) were preloaded in lipid bilayers of phosphatidylcholine liposomes that ensures the necessary distance between the dyes for effective FRET. The change in time of the donor and acceptor relative fluorescence intensities was used to visualize and trace the liposome-to-cell interaction. We show that FRET-labeling of liposome vesicles allows one to reveal the differences in efficiency and dynamics of these interactions, which are associated with composition, fluidity, and metabolic activity of cell plasma membranes.
He, Wei; Kularatne, Sumith A; Kalli, Kimberly R; Prendergast, Franklyn G; Amato, Robert J; Klee, George G; Hartmann, Lynn C; Low, Philip S
2008-10-15
Quantitation of circulating tumor cells (CTCs) can provide information on the stage of a malignancy, onset of disease progression and response to therapy. In an effort to more accurately quantitate CTCs, we have synthesized fluorescent conjugates of 2 high-affinity tumor-specific ligands (folate-AlexaFluor 488 and DUPA-FITC) that bind tumor cells >20-fold more efficiently than fluorescent antibodies. Here we determine whether these tumor-specific dyes can be exploited for quantitation of CTCs in peripheral blood samples from cancer patients. A CTC-enriched fraction was isolated from the peripheral blood of ovarian and prostate cancer patients by an optimized density gradient centrifugation protocol and labeled with the aforementioned fluorescent ligands. CTCs were then quantitated by flow cytometry. CTCs were detected in 18 of 20 ovarian cancer patients (mean 222 CTCs/ml; median 15 CTCs/ml; maximum 3,118 CTCs/ml), whereas CTC numbers in 16 gender-matched normal volunteers were negligible (mean 0.4 CTCs/ml; median 0.3 CTCs/ml; maximum 1.5 CTCs/ml; p < 0.001, chi(2)). CTCs were also detected in 10 of 13 prostate cancer patients (mean 26 CTCs/ml, median 14 CTCs/ml, maximum 94 CTCs/ml) but not in 18 gender-matched healthy donors (mean 0.8 CTCs/ml, median 1, maximum 3 CTC/ml; p < 0.0026, chi(2)). Tumor-specific fluorescent antibodies were much less efficient in quantitating CTCs because of their lower CTC labeling efficiency. Use of tumor-specific fluorescent ligands to label CTCs in peripheral blood can provide a simple, accurate and sensitive method for determining the number of cancer cells circulating in the bloodstream.
Hellmich, Wibke; Greif, Dominik; Pelargus, Christoph; Anselmetti, Dario; Ros, Alexandra
2006-10-20
Single cell analytics is a key method in the framework of proteom research allowing analyses, which are not subjected to ensemble-averaging, cell-cycle or heterogeneous cell-population effects. Our previous studies on single cell analysis in poly(dimethylsiloxane) microfluidic devices with native label-free laser induced fluorescence detection [W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, D. Anselmetti, Electrophoresis 26 (2005) 3689] were extended in order to improve separation efficiency and detection sensitivity. Here, we particularly focus on the influence of poly(oxyethylene) based coatings on the separation performance. In addition, the influence on background fluorescence is studied by the variation of the incident laser power as well as the adaptation of the confocal volume to the microfluidic channel dimensions. Last but not least, the use of carbon black particles further enhanced the detection limit to 25 nM, thereby reaching the relevant concentration ranges necessary for the label-free detection of low abundant proteins in single cells. On the basis of these results, we demonstrate the first electropherogram from an individual Spodoptera frugiperda (Sf9) cell with native label-free UV-LIF detection in a microfluidic chip.
Biodegradable Magnetic Particles for Cellular MRI
NASA Astrophysics Data System (ADS)
Nkansah, Michael Kwasi
Cell transplantation has the potential to treat numerous diseases and injuries. While magnetic particle-enabled, MRI-based cell tracking has proven useful for visualizing the location of cell transplants in vivo, current formulations of particles are either too weak to enable single cell detection or have non-degradable polymer matrices that preclude clinical translation. Furthermore, the off-label use of commercial agents like Feridex®, Bangs beads and ferumoxytol for cell tracking significantly stunts progress in the field, rendering it needlessly susceptible to market externalities. The recent phasing out of Feridex from the market, for example, heightens the need for a dedicated agent specifically designed for MRI-based cell tracking. To this end, we engineered clinically viable, biodegradable particles of iron oxide made using poly(lactide-co-glycolide) (PLGA) and demonstrated their utility in two MRI-based cell tracking paradigms in vivo. Both micro- and nanoparticles (2.1±1.1 μm and 105±37 nm in size) were highly magnetic (56.7-83.7 wt% magnetite), and possessed excellent relaxometry (r2* relaxivities as high as 614.1 s-1mM-1 and 659.1 s -1mM-1 at 4.7 T respectively). Magnetic PLGA micropartides enabled the in vivo monitoring of neural progenitor cell migration to the olfactory bulb in rat brains over 2 weeks at 11.7 T with ˜2-fold greater contrast-to-noise ratio and ˜4-fold better sensitivity at detecting migrated cells in the olfactory bulb than Bangs beads. Highly magnetic PLGA nanoparticles enabled MRI detection (at 11.7 T) of up to 10 rat mesenchymal cells transplanted into rat brain at 100-μm resolution. Highly magnetic PLGA particles were also shown to degrade by 80% in mice liver over 12 weeks in vivo. Moreover, no adverse effects were observed on cellular viability and function in vitro after labeling a wide range of cells. Magnetically labeled rat mesenchymal and neural stem cells retained their ability to differentiate into multiple lineages. Particle-labeled bone marrow-derived mouse macrophages exhibited little to no immune response to particles and were still capable of normal TNF-α and IL-6 release upon stimulation by lipopolysaccharide. Minimal generation of reactive oxygen species was observed in mouse macrophages and embryonic fibroblasts labeled with particles. In addition, magnetic particles of cellulose and chitin (69.6 wt% and 52 wt% magnetite) were fabricated as more bioresponsive agents that could potentially relay richer information on cellular fate in vivo and enable sophisticated immunocellular investigations via MRI. Magnetic cellulose particles showed a 63% increase in r2 relaxivity and 15% increase in r2* relaxivity upon degradation by cellulase in vitro, consistent with theoretical predictions of relaxometry in the static dephasing regime for a particle of reduced size. Magnetofluorescent chitin nanoparticles efficiently labeled rat peripheral blood monocytes in vitro (72% labeling efficiency) with little adverse effect on viability (92% viability). This thesis describes the first clinically translatable agent specifically designed for MRI-based cell tracking with immediate implications for preclinical investigations in (stem) cell therapy.
Reversible assembly of magnetized particles: Application to water-borne pathogen enumeration
NASA Astrophysics Data System (ADS)
Ramadan, Qasem
2009-12-01
Reversible assembly of magnetized particles and cells has been proposed and implemented. The approach is based on magnetized particles or magnetically labeled cell immobilization in an array of individual particle/cell for optical counting. The device has been tested for few types of magnetic particles and one water-borne pathogen: Giardia Lamblia. An individual particle immobilization efficiency of 92% was achieved.
NASA Astrophysics Data System (ADS)
Shaked, Natan T.
2017-02-01
I review our latest advances in wide-field interferometric imaging of biological cells with molecular specificity, obtained by time-modulated photothermal excitation of gold nanoparticles. Heat emitted from the nanoparticles affects the measured phase signal via both the nanoparticle surrounding refractive-index and thickness changes. These nanoparticles can be bio-functionalized to bind certain biological cell components; thus, they can be used for biomedical imaging with molecular specificity, as new nanoscopy labels, and for photothermal therapy. Predicting the ideal nanoparticle parameters requires a model that computes the thermal and phase distributions around the particle, enabling more efficient phase imaging of plasmonic nanoparticles, and sparing trial and error experiments of using unsuitable nanoparticles. We thus developed a new model for predicting phase signatures from photothermal nanoparticles with arbitrary parameters. We also present a dual-modality technique based on wide-field photothermal interferometric phase imaging and simultaneous ablation to selectively deplete specific cell populations labelled by plasmonic nanoparticles. We experimentally demonstrated our ability to detect and specifically ablate in vitro cancer cells over-expressing epidermal growth factor receptors (EGFRs), labelled with plasmonic nanoparticles, in the presence of either EGFR under-expressing cancer cells or white blood cells. This demonstration established an initial model for depletion of circulating tumour cells in blood. The proposed system is able to image in wide field the label-free quantitative phase profile together with the photothermal phase profile of the sample, and provides the ability of both detection and ablation of chosen cells after their selective imaging.
Wen, Xiaoxia; Lyu, Mi-Ae; Zhang, Rui; Lu, Wei; Huang, Qian; Liang, Dong; Rosenblum, Michael G; Li, Chun
2011-08-01
We examined the biodistribution and pharmacokinetics of (111)In-labeled rGel/BLyS, a gelonin toxin (rGel)-B lymphocyte stimulator (BLyS) fusion protein. rGel/BLyS was labeled with In-111 through DTPA with a labeling efficiency >95%. Biodistribution/imaging studies were obtained in severe-combined immunodeficiency mice bearing diffuse large B cell lymphoma OCI-Ly10. Pharmacokinetic studies were performed in BALB/c mice. In vitro, DTPA-conjugated rGel/BLyS displayed selective cytotoxicity against OCI-Ly10 cells and mantle cell lymphoma JeKo cells. In vivo, rGel/BLyS exhibited a tri-exponential disposition with a rapid initial mean distribution followed by an extensive mean distribution and a long terminal elimination phase. At 48 h after injection, uptake of the radiotracer in tumors was 1.25 %ID/g, with a tumor-to-blood ratio of 13. Tumors were clearly visualized at 24-72 h post-injection. Micro-SPECT-CT images and ex vivo analyses confirmed the accumulation of rGel/BLyS in OCI-Ly10 tumors. (111)In-DTPA-rGel/BLyS are distributed to B cell tumors and induce apoptosis in tumors. Preclinical antitumor studies using rGel/BLyS should use a twice-per-week treatment schedule.
Measuring the labeling efficiency of pseudocontinuous arterial spin labeling.
Chen, Zhensen; Zhang, Xingxing; Yuan, Chun; Zhao, Xihai; van Osch, Matthias J P
2017-05-01
Optimization and validation of a sequence for measuring the labeling efficiency of pseudocontinuous arterial spin labeling (pCASL) perfusion MRI. The proposed sequence consists of a labeling module and a single slice Look-Locker echo planar imaging readout. A model-based algorithm was used to calculate labeling efficiency from the signal acquired from the main brain-feeding arteries. Stability of the labeling efficiency measurement was evaluated with regard to the use of cardiac triggering, flow compensation and vein signal suppression. Accuracy of the measurement was assessed by comparing the measured labeling efficiency to mean brain pCASL signal intensity over a wide range of flip angles as applied in the pCASL labeling. Simulations show that the proposed algorithm can effectively calculate labeling efficiency when correcting for T1 relaxation of the blood spins. Use of cardiac triggering and vein signal suppression improved stability of the labeling efficiency measurement, while flow compensation resulted in little improvement. The measured labeling efficiency was found to be linearly (R = 0.973; P < 0.001) related to brain pCASL signal intensity over a wide range of pCASL flip angles. The optimized labeling efficiency sequence provides robust artery-specific labeling efficiency measurement within a short acquisition time (∼30 s), thereby enabling improved accuracy of pCASL CBF quantification. Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Regulation of Mammary Progenitor Cells by p53 and Parity
2011-01-01
quantitative PCR system (Stratagene). To knockdown Notch1 in TM40A cells, siRNA (s70698 and s70700) were purchased from Ambion. s70698 siRNA sense sequence: 5...hours after transfect ion and real-tim e quantitative P CR was used to confirm the knockdown efficiency. Results Label and chase progenitor cells...cells contained 0.8% o f DsRed positiv e (DsR +) progenitor cells (Fig. 1B). The mammosphere-forming capacity of DsR+ cells is 3.8-fold greater
NASA Astrophysics Data System (ADS)
Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.
2016-09-01
The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.
Microfluidic immunomagnetic cell separation from whole blood.
Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel
2016-02-01
Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Wujun; Cheng, Rui; Lim, So Hyun; Miller, Joshua R; Zhang, Weizhong; Tang, Wei; Xie, Jin; Mao, Leidong
2017-06-27
This paper reports a biocompatible and label-free cell separation method using ferrofluids that can separate a variety of low-concentration cancer cells from cell culture lines (∼100 cancer cells per mL) from undiluted white blood cells, with a throughput of 1.2 mL h -1 and an average separation efficiency of 82.2%. The separation is based on the size difference of the cancer cells and white blood cells, and is conducted in a custom-made biocompatible ferrofluid that retains not only excellent short-term viabilities but also normal proliferations of 7 commonly used cancer cell lines. A microfluidic device is designed and optimized specifically to shorten the time of live cells' exposure to ferrofluids from hours to seconds, by eliminating time-consuming off-chip sample preparation and extraction steps and integrating them on-chip to achieve a one-step process. As a proof-of-concept demonstration, a ferrofluid with 0.26% volume fraction was used in this microfluidic device to separate spiked cancer cells from cell lines at a concentration of ∼100 cells per mL from white blood cells with a throughput of 1.2 mL h -1 . The separation efficiencies were 80 ± 3%, 81 ± 5%, 82 ± 5%, 82 ± 4%, and 86 ± 6% for A549 lung cancer, H1299 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, and PC-3 prostate cancer cell lines, respectively. The separated cancer cells' purity was between 25.3% and 28.8%. In addition, the separated cancer cells from this strategy showed an average short-term viability of 94.4 ± 1.3%, and these separated cells were cultured and demonstrated normal proliferation to confluence even after the separation process. Owing to its excellent biocompatibility and label-free operation and its ability to recover low concentrations of cancer cells from white blood cells, this method could lead to a promising tool for rare cell separation.
Chloroplast Dynamics and Photosynthetic Efficiency: Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Maureen
This project investigated the mechanism by which chloroplasts position themselves to maximize solar energy utilization, to enhance gas exchange, to minimize environmental stress, and to promote efficient exchange of metabolites with other compartments within the plant cell. Chloroplasts move within leaf cells to optimize light levels, moving toward levels of light useful for photosynthesis while moving away from excess light. Plastids sometimes extend their reach by sending out projections (stromules) that can connect anchor chloroplasts in position within the cell or provide close contacts with plasma membrane, mitochondria, peroxisomes, endoplasmic reticulum, and the nucleus. The intracellular location of chloroplasts inmore » relation to other organelles with which they share biosynthetic pathways, such as peroxisomes and mitochondria in photorespiration, affects metabolite flow. This work contributed to the knowledge of the mechanisms of organelle movement and anchoring in specific locations in plant cells and how proteins traffic within the cell. We identified two domains on 12 of the 13 Arabidopsis myosins that were similar to the vacuole-binding (V) domain characterized in yeast and to the DIL domain characterized in yeast and mouse as required for secretory vesicle or melanosome movement, respectively. Because all of the Arabidopsis regions with homology to the V domain contain the amino acid sequence PAL, we refer to this region as the Arabidopsis PAL domain. We have used the yeast Myo2p tail structural information to model the 12 myosin XI tail domains containing the homologous PAL and DIL domains. Eight YFP::DIL domain fusions labeled peroxisomes; none labeled mitochondria or chloroplasts. Six myosin XI Vacuole domains labeled mitochondria and seven labeled Golgi bodies. The Arabidopsis myosin XI-F PAL domain and the homologous myosin XI-F PAL domain from N. benthamiana labels chloroplasts and stromules in N. benthamiana leaves. Using an Arabidopsis line containing hotoconvertible GFP, we observed transfer of protein from one plastid to another and within a stromule from single plastids. We provided time-lapse movies demonstrating movement of both the photoconvertible GFP and standard GFP between plastids. We previously demonstrated the lack of a plastid network within plant cells. We provided protocols explaining how to use fluorescent protein technology to track plastids and stromules within plant cells. We demonstrated that standard GFP unexpectedly could be photoconverted to a red form under certain conditions, allowing the use of GFP lines for studies that require photoconversion.« less
Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M
2015-02-18
Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents.
Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M.
2016-01-01
Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using the glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel alpha helix stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enables this technique to potentially be used as a general method for labeling alpha helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741
NASA Astrophysics Data System (ADS)
Sun, Jianchao; Fan, Hai; Wang, Nan; Ai, Shiyun
2014-09-01
Vancomycin (Van)- and terephthalate (TA)-comodified europium-doped layered double hydroxides (Van-TA-Eu-LDHs) nanoparticles were successfully prepared by a two-step method, in which, TA acted as a sensitizer to enhance the fluorescent property and Van was modified on the surface of LDH to act as an affinity reagent to bacteria. The obtained products were characterized by X-ray diffraction, transmission electron microscope and fluorescent spectroscopy. The results demonstrated that the prepared Van- and TA-comodified europium-doped layered double hydroxides (Van-TA-Eu-LDHs) nanoparticles with diameter of 50 nm in size showed highly efficient fluorescent property. Furthermore, due to the high affinity of Van to bacteria, the prepared Van-TA-Eu-LDHs nanoparticles showed efficient bacteria labelling by fluorescent property. The prepared nanoparticles may have wide applications in the biological fields, such as biomolecular labelling and cell imaging.
Torabizadeh, Seyedeh Atekeh; Abedi, Seyed Mohammad; Noaparast, Zohreh; Hosseinimehr, Seyed Jalal
2017-05-01
Peptides are a class of targeting agents that bind to cancer-specific cell surfaces. Since they specifically target cancer cells, they could be used as molecular imaging tools. In this study, the 15-mer peptide Ac-H1299.2 (YAAWPASGAWTGTAP) was conjugated with HYNIC via lysine amino acid on C-terminus and labeled with 99m Tc using tricine and EDDA/tricine as the co-ligands. These radiotracers were evaluated for potential utilization in diagnostic imaging of ovarian cancer cells (SKOV-3). The cell-specificity of these radiolabeled peptides was determined based on their binding on an ovarian cancer cell line (SKOV-3), and displaying a low affinity for lung adenocarcinoma cell line (A549) and breast cancer cell line (MCF7). Biodistribution studies were conducted in normal mice as well as in nude mice bearing SKOV-3 ovarian cancer xenografts. HYNIC-peptide was labeled with 99m Tc with more than 99% efficiency and showed high stability in buffer and serum. We observed nanomolar binding affinities for both radiolabeled peptides. The tumor uptakes were 3.27%±0.46% and 1.55%±0.20% for tricine and 2.34±1.1% and 1.09%±0.18% for EDDA/tricine at 1 and 4h after injection, respectively. A higher tumor to background ratio and lower radioactivity in the blood were observed for EDDA/tricine co-ligands, leading to clear tumor visualization in imaging with injection of this peptide. This new 99m Tc-labeled peptide selectively targeted ovarian cancer and introduction of a (EDDA/tricine) as a co-ligand improved the pharmacokinetics of 99m Tc-labeled H1299.2 for tumor imaging in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Sangmin; Yoon, Hwa In; Na, Jin Hee; Jeon, Sangmin; Lim, Seungho; Koo, Heebeom; Han, Sang-Soo; Kang, Sun-Woong; Park, Soon-Jung; Moon, Sung-Hwan; Park, Jae Hyung; Cho, Yong Woo; Kim, Byung-Soo; Kim, Sang Kyoon; Lee, Taekwan; Kim, Dongkyu; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Kim, Kwangmeyung
2017-09-01
It is urgently necessary to develop reliable non-invasive stem cell imaging technology for tracking the in vivo fate of transplanted stem cells in living subjects. Herein, we developed a simple and well controlled stem cell imaging method through a combination of metabolic glycoengineering and bioorthogonal copper-free click chemistry. Firstly, the exogenous chemical receptors containing azide (-N 3 ) groups were generated on the surfaces of stem cells through metabolic glycoengineering using metabolic precursor, tetra-acetylated N-azidoacetyl-d-mannosamine(Ac 4 ManNAz). Next, bicyclo[6.1.0]nonyne-modified glycol chitosan nanoparticles (BCN-CNPs) were prepared as imageable nanoparticles to deliver different imaging agents. Cy5.5, iron oxide nanoparticles and gold nanoparticles were conjugated or encapsulated to BCN-CNPs for optical, MR and CT imaging, respectively. These imageable nanoparticles bound chemical receptors on the Ac 4 ManNAz-treated stem cell surface specifically via bioorthogonal copper-free click chemistry. Then they were rapidly taken up by the cell membrane turn-over mechanism resulting in higher endocytic capacity compared non-specific uptake of nanoparticles. During in vivo animal test, BCN-CNP-Cy5.5-labeled stem cells could be continuously tracked by non-invasive optical imaging over 15 days. Furthermore, BCN-CNP-IRON- and BCN-CNP-GOLD-labeled stem cells could be efficiently visualized using in vivo MR and CT imaging demonstrating utility of our stem cell labeling method using chemical receptors. These results conclude that our method based on metabolic glycoengineering and bioorthogonal copper-free click chemistry can stably label stem cells with diverse imageable nanoparticles representing great potential as new stem cell imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Wei; Peng, Peng; Kuang, Yun; Yang, Jiaxin; Cao, Dongyan; You, Yan; Shen, Keng
2016-03-01
Cellular exosomes are involved in many disease processes and have the potential to be used for diagnosis and treatment. In this study, we compared the characteristics of exosomes derived from human ovarian epithelial cells (HOSEPiC) and three epithelial ovarian cancer cell lines (OVCAR3, IGROV1, and ES-2) to investigate the differences between exosomes originating from normal and malignant cells. Two established colloid-chemical methodologies, electron microscopy (EM) and dynamic light scattering (DLS), and a relatively new method, nanoparticle tracking analysis (NTA), were used to measure the size and size distribution of exosomes. The concentration and epithelial cellular adhesion molecule (EpCAM) expression of exosomes were measured by NTA. Quantum dots were conjugated with anti-EpCAM to label exosomes, and the labeled exosomes were detected by NTA in fluorescent mode. The normal-cell-derived exosomes were significantly larger than those derived from malignant cells, and exosomes were successfully labeled using anti-EpCAM-conjugated quantum dots. Exosomes from different cell lines may vary in size, and exosomes might be considered as potential diagnosis biomarkers. NTA can be considered a useful, efficient, and objective method for the study of different exosomes and their unique properties in ovarian cancer.
NASA Astrophysics Data System (ADS)
Delehanty, James B.; Spillmann, Christopher M.; Naciri, Jawad; Algar, W. Russ; Ratna, Banahalli R.; Medintz, Igor L.
2013-02-01
The demonstration of fine control over nanomaterials within biological systems, particularly in live cells, is integral for the successful implementation of nanoparticles (NPs) in biomedical applications. Here, we show the ability to differentially label the endocytic pathway of mammalian cells in a spatiotemporal manner utilizing fluorescent nanocolloids (NCs) doped with a perylene-based dye. EDC-based conjugation of green- and red-emitting NCs to the iron transport protein transferrin resulted in stable bioconjugates that were efficiently endocytosed by HEK 293T/17 cells. The staggered delivery of the bioconjugates allowed for the time-resolved, differential labeling of distinct vesicular compartments along the endocytic pathway in a nontoxic manner. We further demonstrated the ability of the NCs to be impregnated with the anticancer therapeutic, doxorubicin. Delivery of the drug-doped nanoconjugates resulted in the intracellular release and nuclear accumulation of doxorubicin in a time- and dose-dependent manner. We discuss our results in the context of the utility of such materials for NP-mediated drug delivery applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Na; Xiong, Yijia; Squier, Thomas C.
2013-01-21
To optimize cellular delivery and specific labeling of tagged cytosolic proteins by biarsenical fluorescent probes build around a cyanine dye scaffold, we have systematically varied the polarity of the hydrophobic tails (i.e., 4-5 methylene groups appended by a sulfonate or methoxy ester moiety) and arsenic capping reagent (ethanedithiol versus benzenedithiol). Targeted labeling of the cytosolic proteins SlyD and the alpha subunit of RNA polymerase engineered with a tetracysteine tagging sequences demonstrate the utility of the newly synthesized probes for live-cell visualization, albeit with varying efficiencies and background intensities. Optimal routine labeling and visualization is apparent using the ethanedithiol capping reagentmore » with the uncharged methoxy ester functionalized acyl chains. These measurements demonstrate the general utility of this class of photostable and highly fluorescent biarsenical reagents based on the cyanine scaffold for in vivo targeting of tagged cellular proteins for live cell measurements of protein dynamics.« less
Pulp Cell Tracking by Radionuclide Imaging for Dental Tissue Engineering
Souron, Jean-Baptiste; Petiet, Anne; Decup, Franck; Tran, Xuan Vinh; Lesieur, Julie; Poliard, Anne; Le Guludec, Dominique; Letourneur, Didier; Chaussain, Catherine; Rouzet, Francois
2014-01-01
Pulp engineering with dental mesenchymal stem cells is a promising therapy for injured teeth. An important point is to determine the fate of implanted cells in the pulp over time and particularly during the early phase following implantation. Indeed, the potential engraftment of the implanted cells in other organs has to be assessed, in particular, to evaluate the risk of inducing ectopic mineralization. In this study, our aim was to follow by nuclear imaging the radiolabeled pulp cells after implantation in the rat emptied pulp chamber. For that purpose, indium-111-oxine (111In-oxine)-labeled rat pulp cells were added to polymerizing type I collagen hydrogel to obtain a pulp equivalent. This scaffold was implanted in the emptied pulp chamber space in the upper first rat molar. Labeled cells were then tracked during 3 weeks by helical single-photon emission computed tomography (SPECT)/computed tomography performed on a dual modality dedicated small animal camera. Negative controls were performed using lysed radiolabeled cells obtained in a hypotonic solution. In vitro data indicated that 111In-oxine labeling did not affect cell viability and proliferation. In vivo experiments allowed a noninvasive longitudinal follow-up of implanted living cells for at least 3 weeks and indicated that SPECT signal intensity was related to implanted cell integrity. Notably, there was no detectable systemic release of implanted cells from the tooth. In addition, histological analysis of the samples showed mitotically active fibroblastic cells as well as neoangiogenesis and nervous fibers in pulp equivalents seeded with entire cells, whereas pulp equivalents prepared from lysed cells were devoid of cell colonization. In conclusion, our study demonstrates that efficient labeling of pulp cells can be achieved and, for the first time, that these cells can be followed up after implantation in the tooth by nuclear imaging. Furthermore, it appears that grafted cells retained the label and are viable to follow the repair process. This technique is expected to be of major interest for monitoring implanted cells in innovative therapies for injured teeth. PMID:23789732
Labelling and targeted ablation of specific bipolar cell types in the zebrafish retina
2009-01-01
Background Development of a functional retina depends on regulated differentiation of several types of neurons and generation of a highly complex network between the different types of neurons. In addition, each type of retinal neuron includes several distinct morphological types. Very little is known about the mechanisms responsible for generating this diversity of retinal neurons, which may also display specific patterns of regional distribution. Results In a screen in zebrafish, using a trapping vector carrying an engineered yeast Gal4 transcription activator and a UAS:eGFP reporter cassette, we have identified two transgenic lines of zebrafish co-expressing eGFP and Gal4 in specific subsets of retinal bipolar cells. The eGFP-labelling facilitated analysis of axon terminals within the inner plexiform layer of the adult retina and showed that the fluorescent bipolar cells correspond to previously defined morphological types. Strong regional restriction of eGFP-positive bipolar cells to the central part of the retina surrounding the optic nerve was observed in adult zebrafish. Furthermore, we achieved specific ablation of the labelled bipolar cells in 5 days old larvae, using a bacterial nitroreductase gene under Gal4-UAS control in combination with the prodrug metronidazole. Following prodrug treatment, nitroreductase expressing bipolar cells were efficiently ablated without affecting surrounding retina architecture, and recovery occurred within a few days due to increased generation of new bipolar cells. Conclusion This report shows that enhancer trapping can be applied to label distinct morphological types of bipolar cells in the zebrafish retina. The genetic labelling of these cells yielded co-expression of a modified Gal4 transcription activator and the fluorescent marker eGFP. Our work also demonstrates the potential utility of the Gal4-UAS system for induction of other transgenes, including a bacterial nitroreductase fusion gene, which can facilitate analysis of bipolar cell differentiation and how the retina recovers from specific ablation of these cells. PMID:19712466
Generation of Small 32P-Labeled Peptides as a Potential Approach to Colorectal Cancer Therapy
Abraham, John M.; Cheng, Yulan; Hamilton, James P.; Paun, Bogdan; Jin, Zhe; Agarwal, Rachana; Kan, Takatsugu; David, Stefan; Olaru, Alexandru; Yang, Jian; Ito, Tetsuo; Selaru, Florin M.; Mori, Yuriko; Meltzer, Stephen J.
2008-01-01
Cancers have been revealed to be extremely heterogenous in terms of the frequency and types of mutations present in cells from different malignant tumors. Thus, it is likely that uniform clinical treatment is not optimal for all patients, and that the development of individualized therapeutic regimens may be beneficial. We describe the generation of multiple, unique small peptides nine to thirty-four amino acids in length which, when labeled with the radioisotope 32P, bind with vastly differing efficiencies to cell lines derived from different colon adenocarcinomas. In addition, the most effective of these peptides permanently transfers the 32P radioisotope to colorectal cancer cellular proteins within two hours at a rate that is more than 150 times higher than in cell lines derived from other cancers or from the normal tissues tested. Currently, the only two FDA-approved radioimmunotherapeutic agents in use both employ antibodies directed against the B cell marker CD20 for the treatment of non-Hodgkin's lymphoma. By using the method described herein, large numbers of different 32P-labeled peptides can be readily produced and assayed against a broad spectrum of cancer types. This report proposes the development and use of 32P-labeled peptides as potential individualized peptide-binding therapies for the treatment of colon adenocarcinoma patients. PMID:18575578
Jin, Xiaoxia; Abbot, Stewart; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Zhao, Rui; Kameneva, Marina V.; Moore, Lee R.; Chalmers, Jeffrey J.; Zborowski, Maciej
2012-01-01
Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM) when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free) magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A), hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry) to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS) was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes) that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes. PMID:22952572
Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong
2016-09-15
Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Kuo, Chun-Ting; Thompson, Alison M.; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S.; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C.; Carlson, Markus A.; Hingorani, Sunil R.; Paguirigan, Amy L.; Radich, Jerald P.; Chiu, Daniel T.
2016-01-01
The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical ‘painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a ‘paintbrush' and the photoswitchable Pdots as the ‘paint', we select and ‘paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210
A unique 19F MRI agent for the tracking of non phagocytic cells in vivo.
Moonshi, Shehzahdi S; Zhang, Cheng; Peng, Hui; Puttick, Simon; Rose, Stephen; Fisk, Nicholas M; Bhakoo, Kishore; Stringer, Brett W; Qiao, Greg G; Gurr, Paul A; Whittaker, Andrew K
2018-05-03
There is currently intense interest in new methods for understanding the fate of therapeutically-relevant cells, such as mesenchymal stem cells (MSCs). The absence of a confounding background signal and consequent unequivocal assignment makes 19F MRI one of the most attractive modalities for the tracking of injected cells in vivo. We describe here the synthesis of novel partly-fluorinated polymeric nanoparticles with small size and high fluorine content as MRI agents. The polymers, constructed from perfluoropolyether methacrylate (PFPEMA) and oligo(ethylene glycol) methacrylate (OEGMA) have favourable cell uptake profiles and excellent MRI performance. To facilitate cell studies the polymer was further conjugated with a fluorescent dye creating a dual-modal imaging agent. The efficacy of labelling of MSCs was assessed using 19F NMR, flow cytometry and confocal microscopy. The labelling efficiency of 2.6 ± 0.1 × 1012 19F atoms per cell, and viability of >90% demonstrates high uptake and good tolerance by the cells. This loading translates to a minimum 19F MRI detection sensitivity of ∼7.4 × 103 cells per voxel. Importantly, preliminary in vivo data demonstrate that labelled cells can be readily detected within a short acquisition scan period (12 minutes). Hence, these copolymers show outstanding potential for 19F MRI cellular tracking and for quantification of non-phagocytic and therapeutically-relevant cells in vivo.
Eliyahu, H; Makovitzki, A; Azzam, T; Zlotkin, A; Joseph, A; Gazit, D; Barenholz, Y; Domb, A J
2005-03-01
Recently, a novel cationic polymer, dextran-spermine (D-SPM) was developed for gene delivery. An efficient transfection was obtained using this polycation for a variety of genes and cell lines in serum-free or serum-poor medium. However, transfection using the water-soluble D-SPM-based polyplexes decreased with increasing serum concentration in cell culture in a concentration-dependent manner, reaching 95% inhibition at 50% serum in the cell growth medium. In order to overcome this obstacle, oleyl derivatives of D-SPM (which form micelles in aqueous phase) were synthesized at 1, 10, and 20 mol% of oleyl moiety to polymer epsilon-NH2 to form N-oleyl-D-SPM (ODS). Polyplexes based on ODS transfected well in medium containing 50% serum. Comparison with polyplexes based on well-established polymers (branched and linear polyethyleneimine) and with DOTAP/Cholesterol lipoplexes showed that regarding beta-galactosidase transgene expression level and cytotoxicity in tissue culture, the D-SPM and ODS compare well with the above polyplexes and lipoplexes. Intracellular trafficking using FITC-labeled ODS and Rhodamine-labeled pGeneGrip plasmid cloned with hBMP2 monitored by confocal microscopy revealed that during the transfection process the fluorescent-labeled polymer concentrates in the Golgi apparatus and around the nucleus, while the cell cytoplasm was free of fluorescent particles, suggesting that the polyplexes move in the cell toward the nucleus by vesicular transport through the cytoplasm and not by a random diffusion. We found that the plasmids penetrate the cell nucleus without the polymer. Preliminary results in zebra fish and mice demonstrate the potential of ODS to serve as an efficient nonviral vector for in vivo transfection.
Ono, Katsuhiko; Jung, Minkyung; Zhang, Tianli; Tsutsuki, Hiroyasu; Sezaki, Hiroshi; Ihara, Hideshi; Wei, Fan-Yan; Tomizawa, Kazuhito; Akaike, Takaaki; Sawa, Tomohiro
2017-05-01
Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases-CysE, CysK, and CysM-from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34 S-labeled L-cysteine from O-acetyl-L-serine and 34 S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur ( 34 S) and nitrogen ( 15 N) atoms was also achieved by performing enzyme reactions with 15 N-labeled L-serine, acetyl-CoA, and 34 S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34 S-labeled N-acetyl-L-cysteine (NAC) by incubating 34 S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34 S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology. Copyright © 2017 Elsevier Inc. All rights reserved.
Lin, Ming Xian; Hyun, Kyung-A; Moon, Hui-Sung; Sim, Tae Seok; Lee, Jeong-Gun; Park, Jae Chan; Lee, Soo Suk; Jung, Hyo-Il
2013-02-15
Circulating tumor cells (CTCs) are identified in transit within the blood stream of cancer patients and have been proven to be a main cause of metastatic disease. Current approaches for the size-based isolation of CTCs have encountered technical challenges as some of the CTCs have a size similar to that of leukocytes and therefore CTCs are often lost in the process. Here, we propose a novel strategy where most of the CTCs are coated by a large number of microbeads to amplify their size to enable complete discrimination from leukocytes. In addition, all of the microbead labeling processes are carried out in a continuous manner to prevent any loss of CTCs during the isolation process. Thus, a microfluidic mixer was employed to facilitate the efficient and selective labeling of CTCs from peripheral blood samples. By generating secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction in our microfluidic device, CTCs were continuously and successfully coated with anti-epithelial cell adhesion molecule-conjugated beads. After the continuous labeling, the enlarged CTCs were perfectly trapped in a micro-filter whereas all of the leukocytes escaped. Copyright © 2012 Elsevier B.V. All rights reserved.
Fei, Ji-Feng; Schuez, Maritta; Knapp, Dunja; Taniguchi, Yuka; Drechsel, David N; Tanaka, Elly M
2017-11-21
Salamanders exhibit extensive regenerative capacities and serve as a unique model in regeneration research. However, due to the lack of targeted gene knockin approaches, it has been difficult to label and manipulate some of the cell populations that are crucial for understanding the mechanisms underlying regeneration. Here we have established highly efficient gene knockin approaches in the axolotl ( Ambystoma mexicanum ) based on the CRISPR/Cas9 technology. Using a homology-independent method, we successfully inserted both the Cherry reporter gene and a larger membrane-tagged Cherry-ER T2 -Cre-ER T2 (∼5-kb) cassette into axolotl Sox2 and Pax7 genomic loci. Depending on the size of the DNA fragments for integration, 5-15% of the F0 transgenic axolotl are positive for the transgene. Using these techniques, we have labeled and traced the PAX7-positive satellite cells as a major source contributing to myogenesis during axolotl limb regeneration. Our work brings a key genetic tool to molecular and cellular studies of axolotl regeneration.
Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images.
He, Lifeng; Chao, Yuyan; Suzuki, Kenji
2011-08-01
Whenever one wants to distinguish, recognize, and/or measure objects (connected components) in binary images, labeling is required. This paper presents two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. One is voxel based and the other is run based. For the voxel-based one, we present an efficient method of deciding the order for checking voxels in the mask. For the run-based one, instead of assigning each foreground voxel, we assign each run a provisional label. Moreover, we use run data to label foreground voxels without scanning any background voxel in the second scan. Experimental results have demonstrated that our voxel-based algorithm is efficient for 3-D binary images with complicated connected components, that our run-based one is efficient for those with simple connected components, and that both are much more efficient than conventional 3-D labeling algorithms.
Malviya, Gaurav; Nayak, Tapan; Gerdes, Christian; Dierckx, Rudi A J O; Signore, Alberto; de Vries, Erik F J
2016-04-04
A noninvasive in vivo imaging method for NK cell trafficking is essential to gain further understanding of the pathogenesis of NK cell mediated immune response to the novel cancer treatment strategies, and to discover the homing sites and physiological distribution of NK cells. Although human NK cells can be labeled for in vivo imaging, little is known about the murine NK cell labeling and its application in animal models. This study describes the isolation and ex vivo radiolabeling of murine NK cells for the evaluation of cell trafficking in an orthotopic model of human lung cancer in mice. Scid-Tg(FCGR3A)Blt transgenic SCID mice were used to isolate NK cells from mouse splenocytes using the CD49b (DX5) MicroBeads positive selection method. The purity and viability of the isolated NK cells were confirmed by FACS analysis. Different labeling buffers and incubation times were evaluated to optimize (111)In-oxine labeling conditions. Functionality of the radiolabeled NK cell was assessed by (51)Cr-release assay. We evaluated physiological distribution of (111)In-oxine labeled murine NK cells in normal SCID mice and biodistribution in irradiated and nonirradiated SCID mice with orthotopic A549 human lung tumor lesions. Imaging findings were confirmed by histology. Results showed that incubation with 0.011 MBq of (111)In-oxine per million murine NK cells in PBS (pH 7.4) for 20 min is the best condition that provides optimum labeling efficiency without affecting cell viability and functionality. Physiological distribution in normal SCID mice demonstrated NK cells homing mainly in the spleen, while (111)In released from NK cells was excreted via kidneys into urine. Biodistribution studies demonstrated a higher lung uptake in orthotopic lung tumor-bearing mice than control mice. In irradiated mice, lung tumor uptake of radiolabeled murine NK cells decreased between 24 h and 72 h postinjection (p.i.), which was accompanied by tumor regression, while in nonirradiated mice, radiolabeled NK cells were retained in the lung tumor lesions up to 72 h p.i. without tumor regression. In tumor-bearing mice that were only irradiated but did not receive radiolabeled murine NK cells, a high tumor burden was observed at 72 h p.i., which indicates that irradiation in combination with murine NK cell allocation, but not irradiation alone, induced a remarkable antitumor effect in the orthotopic A549 lung tumor bearing mouse model. In conclusion, we describe a method to evaluate murine NK cell trafficking and biodistribution, which can be used to determine potential effects of immune-mediated therapeutic agents on NK cell biodistribution.
Kijanka, M; van Donselaar, E G; Müller, W H; Dorresteijn, B; Popov-Čeleketić, D; El Khattabi, M; Verrips, C T; van Bergen En Henegouwen, P M P; Post, J A
2017-07-01
Immuno-electron microscopy is commonly performed with the use of antibodies. In the last decade the antibody fragment indicated as nanobody (VHH or single domain antibody) has found its way to different applications previously done with conventional antibodies. Nanobodies can be selected to bind with high affinity and specificity to different antigens. They are small (molecular weight ca. 15kDa) and are usually easy to produce in microorganisms. Here we have evaluated the feasibility of a nanobody binding to HER2 for application in immuno-electron microscopy. To obtain highest labeling efficiency combined with optimal specificity, different labeling conditions were analysed, which included nanobody concentration, fixation and blocking conditions. The obtained optimal protocol was applied for post-embedment labeling of Tokuyasu cryosections and for pre-embedment labeling of HER2 for fluorescence microscopy and both transmission and scanning electron microscopy. We show that formaldehyde fixation after incubation with the anti-HER2 nanobody, improves labeling intensity. Among all tested blocking agents the best results were obtained with a mixture of cold water fish gelatine and acetylated bovine serum albumin, which prevented a-specific interactions causing background labeling while preserving specific interactions at the same time. In conclusion, we have developed a nanobody-based protocol for immuno-gold labeling of HER2 for Tokuyasu cryosections in TEM as well as for pre-embedment gold labeling of cells for both TEM and SEM. Copyright © 2017. Published by Elsevier Inc.
Controlled viable release of selectively captured label-free cells in microchannels.
Gurkan, Umut Atakan; Anand, Tarini; Tas, Huseyin; Elkan, David; Akay, Altug; Keles, Hasan Onur; Demirci, Utkan
2011-12-07
Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological sciences, such as tissue engineering, regenerative medicine, rare cell and stem cell isolation, proteomic/genomic research, and clonal/population analyses.
In situ label-free quantification of human pluripotent stem cells with electrochemical potential.
Yea, Cheol-Heon; Jeong, Ho-Chang; Moon, Sung-Hwan; Lee, Mi-Ok; Kim, Kyeong-Jun; Choi, Jeong-Woo; Cha, Hyuk-Jin
2016-01-01
Conventional methods for quantification of undifferentiated pluripotent stem cells such as fluorescence-activated cell sorting and real-time PCR analysis have technical limitations in terms of their sensitivity and recyclability. Herein, we designed a real-time in situ label-free monitoring system on the basis of a specific electrochemical signature of human pluripotent stem cells in vitro. The intensity of the signal of hPSCs highly corresponded to the cell number and remained consistent in a mixed population with differentiated cells. The electrical charge used for monitoring did not markedly affect the proliferation rate or molecular characteristics of differentiated human aortic smooth muscle cells. After YM155 treatment to ablate undifferentiated hPSCs, their specific signal was significantly reduced. This suggests that detection of the specific electrochemical signature of hPSCs would be a valid approach to monitor potential contamination of undifferentiated hPSCs, which can assess the risk of teratoma formation efficiently and economically. Copyright © 2015 Elsevier Ltd. All rights reserved.
Universal nucleic acids sample preparation method for cells, spores and their mixture
Bavykin, Sergei [Darien, IL
2011-01-18
The present invention relates to a method for extracting nucleic acids from biological samples. More specifically the invention relates to a universal method for extracting nucleic acids from unidentified biological samples. An advantage of the presently invented method is its ability to effectively and efficiently extract nucleic acids from a variety of different cell types including but not limited to prokaryotic or eukaryotic cells and/or recalcitrant organisms (i.e. spores). Unlike prior art methods which are focused on extracting nucleic acids from vegetative cell or spores, the present invention effectively extracts nucleic acids from spores, multiple cell types or mixtures thereof using a single method. Important that the invented method has demonstrated an ability to extract nucleic acids from spores and vegetative bacterial cells with similar levels effectiveness. The invented method employs a multi-step protocol which erodes the cell structure of the biological sample, isolates, labels, fragments nucleic acids and purifies labeled samples from the excess of dye.
Zunder, Eli R.; Finck, Rachel; Behbehani, Gregory K.; Amir, El-ad D.; Krishnaswamy, Smita; Gonzalez, Veronica D.; Lorang, Cynthia G.; Bjornson, Zach; Spitzer, Matthew H.; Bodenmiller, Bernd; Fantl, Wendy J.; Pe’er, Dana; Nolan, Garry P.
2015-01-01
SUMMARY Mass-tag cell barcoding (MCB) labels individual cell samples with unique combinatorial barcodes, after which they are pooled for processing and measurement as a single multiplexed sample. The MCB method eliminates variability between samples in antibody staining and instrument sensitivity, reduces antibody consumption, and shortens instrument measurement time. Here, we present an optimized MCB protocol with several improvements over previously described methods. The use of palladium-based labeling reagents expands the number of measurement channels available for mass cytometry and reduces interference with lanthanide-based antibody measurement. An error-detecting combinatorial barcoding scheme allows cell doublets to be identified and removed from the analysis. A debarcoding algorithm that is single cell-based rather than population-based improves the accuracy and efficiency of sample deconvolution. This debarcoding algorithm has been packaged into software that allows rapid and unbiased sample deconvolution. The MCB procedure takes 3–4 h, not including sample acquisition time of ~1 h per million cells. PMID:25612231
On-chip Magnetic Separation and Cell Encapsulation in Droplets
NASA Astrophysics Data System (ADS)
Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.
2012-02-01
The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.
Walsh, Adrian A
2017-01-01
Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.
Trafficking of astrocytic vesicles in hippocampal slices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potokar, Maja; Kreft, Marko; Celica Biomedical Center, Technology Park 24, 1000 Ljubljana
2009-12-25
The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing livemore » cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.« less
Liu, Betty R; Huang, Yue-Wern; Korivi, Mallikarjuna; Lo, Shih-Yen; Aronstam, Robert S; Lee, Han-Jung
2017-01-01
Development of effective drug delivery systems (DDS) is a critical issue in health care and medicine. Advances in molecular biology and nanotechnology have allowed the introduction of nanomaterial-based drug delivery systems. Cell-penetrating peptides (CPPs) can form the basis of drug delivery systems by virtue of their ability to support the transport of cargoes into the cell. Potential cargoes include proteins, DNA, RNA, liposomes, and nanomaterials. These cargoes generally retain their bioactivities upon entering cells. In the present study, the smallest, fully-active lactoferricin-derived CPP, L5a is used to demonstrate the primary contributor of cellular internalization. The secondary helical structure of L5a encompasses symmetrical positive charges around the periphery. The contributions of cell-specificity, peptide length, concentration, zeta potential, particle size, and spatial structure of the peptides were examined, but only zeta potential and spatial structure affected protein transduction efficiency. FITC-labeled L5a appeared to enter cells via direct membrane translocation insofar as endocytic modulators did not block FITC-L5a entry. This is the same mechanism of protein transduction active in Cy5 labeled DNA delivery mediated by FITC-L5a. A significant reduction of transduction efficiency was observed with structurally incomplete FITC-L5a formed by tryptic destruction, in which case the mechanism of internalization switched to a classical energydependent endocytosis pathway. These results support the continued development of the non-cytotoxic L5a as an efficient tool for drug delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Comparison of the biological effects of {sup 18}F at different intracellular levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashino, Genro, E-mail: kashino@oita-u.ac.jp; Hayashi, Kazutaka; Douhara, Kazumasa
Highlights: • We estimated the inductions of DNA DSB in cell treated with {sup 18}F-FDG. • We found that inductions of DNA DSB are dependent on accumulation of {sup 18}F in cell. • Accumulation of {sup 18}F in cell may be indispensable for risk estimation of PET. - Abstract: We herein examined the biological effects of cells treated with {sup 18}F labeled drugs for positron emission tomography (PET). The relationship between the intracellular distribution of {sup 18}F and levels of damaged DNA has yet to be clarified in detail. We used culture cells (Chinese Hamster Ovary cells) treated with twomore » types of {sup 18}F labeled drugs, fluorodeoxyglucose (FDG) and fluorine ion (HF). FDG efficiently accumulated in cells, whereas HF did not. To examine the induction of DNA double strand breaks (DSB), we measured the number of foci for 53BP1 that formed at the site of DNA DSB. The results revealed that although radioactivity levels were the same, the induction of 53BP1 foci was stronger in cells treated with {sup 18}F-FDG than in those treated with {sup 18}F-HF. The clonogenic survival of cells was significantly lower with {sup 18}F-FDG than with {sup 18}F-HF. We concluded that the efficient accumulation of {sup 18}F in cells led to stronger biological effects due to more severe cellular lethality via the induction of DNA DSB.« less
Non-linear optical flow cytometry using a scanned, Bessel beam light-sheet.
Collier, Bradley B; Awasthi, Samir; Lieu, Deborah K; Chan, James W
2015-05-29
Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers.
Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.
2015-01-01
Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, and F-tractin – for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool within the tissue and cell type of interest in order to identify the tool that represents the best compromise between acceptable labeling and minimal disruption of the phenomenon being observed. In this case, we find that F-tractin, and perhaps Utrophin, when Utrophin expression levels are optimized to label efficiently without causing actin defects, can be used to study F-actin dynamics within the Drosophila nurse cells. PMID:24995797
Burger, R; Kurzbuch, D; Gorkin, R; Kijanka, G; Glynn, M; McDonagh, C; Ducrée, J
2015-01-21
In this work we present a centrifugal microfluidic system enabling highly efficient collective trapping and alignment of particles such as microbeads and cells, their multi-colour fluorescent detection and subsequent manipulation by optical tweezers. We demonstrate array-based capture and imaging followed by "cherry-picking" of individual particles, first for fluorescently labelled polystyrene (PS) beads and then for cells. Different cell lines are discriminated based on intracellular as well as surface-based markers.
Chen, Qiushui; He, Ziyi; Liu, Wu; Lin, Xuexia; Wu, Jing; Li, Haifang; Lin, Jin-Ming
2015-10-28
Paper-supported cell culture is an unprecedented development for advanced bioassays. This study reports a strategy for in vitro engineering of cell-compatible paper chips that allow for adherent cell culture, quantitative assessment of drug efficiency, and label-free sensing of intracellular molecules via paper spray mass spectrometry. The polycarbonate paper is employed as an excellent alternative bioscaffold for cell distribution, adhesion, and growth, as well as allowing for fluorescence imaging without light scattering. The cell-cultured paper chips are thus amenable to fabricate 3D tissue construction and cocultures by flexible deformation, stacks and assembly by layers of cells. As a result, the successful development of cell-compatible paper chips subsequently offers a uniquely flexible approach for in situ sensing of live cell components by paper spray mass spectrometry, allowing profiling the cellular lipids and quantitative measurement of drug metabolism with minimum sample pretreatment. Consequently, the developed paper chips for adherent cell culture are inexpensive for one-time use, compatible with high throughputs, and amenable to label-free and rapid analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles.
Klasson, Anna; Ahrén, Maria; Hellqvist, Eva; Söderlind, Fredrik; Rosén, Anders; Käll, Per-Olov; Uvdal, Kajsa; Engström, Maria
2008-01-01
There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s(-1) mm(-1) for cell culture medium. The r2 was 17.4 and 12.9 s(-1) mm(-1), respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (p(r1) = 0.36), but r2 was significantly different for the two different series (p(r2) = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells. Copyright 2008 John Wiley & Sons, Ltd.
Bjerneld, Erik J; Johansson, Johan D; Laurin, Ylva; Hagner-McWhirter, Åsa; Rönn, Ola; Karlsson, Robert
2015-09-01
A pre-labeling protocol based on Cy5 N-hydroxysuccinimide (NHS) ester labeling of proteins has been developed for one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. We show that a fixed amount of sulfonated Cy5 can be used in the labeling reaction to label proteins over a broad concentration range-more than three orders of magnitude. The optimal amount of Cy5 was found to be 50 to 250pmol in 20μl using a Tris-HCl labeling buffer at pH 8.7. Labeling protein samples with a fixed amount of dye in this range balances the requirements of sub-nanogram detection sensitivity and low dye-to-protein (D/P) ratios for SDS-PAGE. Simulations of the labeling reaction reproduced experimental observations of both labeling kinetics and D/P ratios. Two-dimensional electrophoresis was used to examine the labeling of proteins in a cell lysate using both sulfonated and non-sulfonated Cy5. For both types of Cy5, we observed efficient labeling across a broad range of molecular weights and isoelectric points. Copyright © 2015 Elsevier Inc. All rights reserved.
Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo
Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud
2016-01-01
This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992
Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.
Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud
2016-01-19
This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.
NASA Astrophysics Data System (ADS)
Fragola, Alexandra; Bouccara, Sophie; Pezet, Sophie; Lequeux, Nicolas; Loriette, Vincent; Pons, Thomas
2017-02-01
The in vivo detection of rare circulating cells using non invasive fluorescence imaging would provide a key tool to study migration of eg. tumoral or immunological cells. Fluorescence detection is however currently limited by a lack of contrast between the small emission of isolated, fast circulating cells and the strong autofluorescence background of the surrounding tissues. We present the development of near infrared emitting quantum dots (NIR-QDs) with long fluorescence lifetime for sensitive time-gated in vivo imaging of circulating cells. These QDs are composed of low toxicity ZnCuInSe/ZnS materials and made biocompatible using a novel multidentate imidazole zwitterionic block copolymer, ensuring their long term intracellular stability. Cells of interest can thus be labeled ex vivo with QDs, injected intravenously and imaged in the near infrared range. Excitation using a pulsed laser coupled to time-gated detection enables the efficient rejection of short lifetime (≈ ns) autofluorescence background and detection of long lifetime (≈ 150 ns) fluorescence from QD-labeled cells. We demonstrate efficient in vivo imaging of single fast-flowing cells, which opens opportunities for future biological studies. [1] M. Tasso et al, "Sulfobetaine-Vinylimidazole block copolymers: a robust quantum dot surface chemistry expanding bioimaging's horizons", ACS Nano, 9(11), 2015 [2] S. Bouccara et al, "Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection", J Biomed Optc, 19(5), 2014
Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells
Ferrara, Maria Antonietta; Di Caprio, Giuseppe; Managò, Stefano; De Angelis, Annalisa; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara
2015-01-01
A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols. PMID:25836358
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, R.; Hazen, T.C.; Joyner, D.C.
2011-04-15
Immunomagnetic separation (IMS) has proved highly efficient for recovering microorganisms from heterogeneous samples. Current investigation targeted the separation of viable cells of the sulfate-reducing bacterium, Desulfovibrio vulgaris. Streptavidin-coupled paramagnetic beads and biotin labeled antibodies raised against surface antigens of this microorganism were used to capture D. vulgaris cells in both bioreactor grown laboratory samples and from extremely low-biomass environmental soil and subsurface drilling samples. Initial studies on detection, recovery efficiency and viability for IMS were performed with laboratory grown D. vulgaris cells using various cell densities. Efficiency of cell isolation and recovery (i.e., release of the microbial cells from themore » beads following separation) was followed by microscopic imaging and acridine orange direct counts (AODC). Excellent recovery efficiency encouraged the use of IMS to capture Desulfovibrio spp. cells from low-biomass environmental samples. The environmental samples were obtained from a radionuclide-contaminated site in Germany and the chromium (VI)-contaminated Hanford site, an ongoing bioremediation project of the U.S. Department of Energy. Field deployable IMS technology may greatly facilitate environmental sampling and bioremediation process monitoring and enable transcriptomics and proteomics/metabolomics-based studies directly on cells collected from the field.« less
Development and testing of a new disposable sterile device for labelling white blood cells.
Signore, A; Glaudemans, A W J M; Malviya, G; Lazzeri, E; Prandini, N; Viglietti, A L; De Vries, E F J; Dierckx, R A J O
2012-08-01
White blood cell (WBC) labelling requires isolation of cells from patient's blood under sterile conditions using sterile materials, buffers and disposables under good manufacturing practice (GMP) conditions. Till now, this limited the use of white blood cell scintigraphy (WBC-S) only to well equipped laboratories with trained personnel. We invented, developed and tested a disposable, sterile, closed device for blood manipulation, WBC purification and radionuclide labelling without exposing patient's blood and the operator to contamination risks. This device prototype and a final industrialized device (Leukokit®) were tested for WBC labelling and compared to standard procedure. Leukokit® was also tested in an international multi-centre study for easiness of WBC purification and labelling. On the device prototype we tested in parallel, with blood samples from 7 volunteers, the labelling procedure compared to the standard procedure of the International Society of Radiolabeled Blood Elements (ISORBE) consensus protocol with respect to cell recovery, labelling efficiency (LE), cell viability (Trypan Blue test) and sterility (haemoculture). On the final Leukokit® we tested the biocompatibility of all components, and again the LE, erythro-sedimentation rate, cell viability, sterility and apyrogenicity. ACD-A, HES and PBS provided by Leukokit® were also compared to Heparin, Dextran and autologous plasma, respectively. In 4 samples, we tested the chemotactic activity of purified WBC against 1 mg/ml of lipopolysaccharide (LPS) and chemotaxis of 99mTc-HMPAO-labelled WBC (925 MBq) was compared to that of unlabelled cells. For the multi-centre study, 70 labellings were performed with the Leukokit® by 9 expert operators and 3 beginners from five centers using blood from both patients and volunteers. Finally, Media-Fill tests were performed by 3 operators on two different days (11 procedures) by replacing blood and kit reagents with bacterial culture media (Tryptic Soy Broth) and testing sterility of aliquots of the medium at the end of procedure. Tests performed with the prototype showed no significant differences with the standard procedure but a faster and safer approach. Tests performed with the final Leukokit® confirmed full biocompatibility, sterility and apyrogenicity of all reagents and plastic ware. Average WBC recovery with Leukokit® was comparable to that of the ISORBE protocol (117x106±24x106 vs. 132x106±29x106 cells, P=not significant). No differences in red blood cells and platelet content were observed. LE was 82% ± 3% for Leukokit® and 65±5% for control (P=0.0003) being PBS vs autologous plasma the main reason of such difference. Cell viability was always >99.9% in both conditions. Chemotactic tests showed no differences between all Leukokit® samples and controls. Haemocultures and Media-Fill tests were always sterile. The procedure was well accepted by expert operators and beginners, with a very fast learning curve (confidence after 2±2 labellings). The invented device offers high level of protection to operators and patients. The derived Leukokit® is safe and easy to use, and gives a high LE of WBC without affecting cell viability and function. Being a registered closed, sterile medical device, it may allow easier and faster WBC labelling that is not limited to only well equipped laboratories. Also simultaneously labelling of multiple patients is possible.
Direct fluorescent labeling for efficient biological assessment of inhalable particles.
Poudel, Bijay Kumar; Park, Jae Hong; Lim, Jiseok; Byeon, Jeong Hoon
2017-10-01
Labeling of aerosol particles with a radioactive, magnetic, or optical tracer has been employed to confirm particle localization in cell compartments, which has provided useful evidence for correlating toxic effects of inhaled particles. However, labeling requires several physicochemical steps to identify functionalities of the inner or outer surfaces of particles, and moreover, these steps can cause changes in size, surface charge, and bioactivity of the particles, resulting in misinterpretations regarding their toxic effects. This study addresses this challenging issue with a goal of introducing an efficient strategy for constantly supplying labeled aerosol particles in a single-pass configuration without any pre- or post-physicochemical batch treatments of aerosol particles. Carbon black (CB, simulating combustion-generated soot) or calcium carbonate (CC, simulating brake-wear fragments) particles were constantly produced via spark ablation or bubble bursting, respectively. These minute particles were incorporated with fluorescein isothiocyanate-poly(ethylene glycol) 2-aminoethyl ether acetic acid solution at the orifice of a collison atomizer to fabricate hybrid droplets. The droplets successively entered a diffusion dryer containing 254-nm UV irradiation; therefore, the droplets were dynamically stiffened by UV to form fluorescent probes on particles during solvent extraction in the dryer. Particle size distributions, morphologies, and surface charges before and after labeling were measured to confirm fluorescence labeling without significant changes in the properties. In vitro assays, including confocal imaging, were conducted to confirm the feasibility of the labeling approach without inducing significant differences in bioactivity compared with untreated CB or CC particles.
Sakamoto, Soichiro; Kawabata, Hiroshi; Masuda, Taro; Uchiyama, Tatsuki; Mizumoto, Chisaki; Ohmori, Katsuyuki; Koeffler, H. Phillip; Kadowaki, Norimitsu; Takaori-Kondo, Akifumi
2015-01-01
Ferritin is an iron-storage protein composed of different ratios of 24 light (L) and heavy (H) subunits. The serum level of ferritin is a clinical marker of the body’s iron level. Transferrin receptor (TFR)1 is the receptor not only for transferrin but also for H-ferritin, but how it binds two different ligands and the blood cell types that preferentially incorporate H-ferritin remain unknown. To address these questions, we investigated hematopoietic cell-specific ferritin uptake by flow cytometry. Alexa Fluor 488-labeled H-ferritin was preferentially incorporated by erythroid cells among various hematopoietic cell lines examined, and was almost exclusively incorporated by bone marrow erythroblasts among human primary hematopoietic cells of various lineages. H-ferritin uptake by erythroid cells was strongly inhibited by unlabeled H-ferritin but was only partially inhibited by a large excess of holo-transferrin. On the other hand, internalization of labeled holo-transferrin by these cells was not inhibited by H-ferritin. Chinese hamster ovary cells lacking functional endogenous TFR1 but expressing human TFR1 with a mutated RGD sequence, which is required for transferrin binding, efficiently incorporated H-ferritin, indicating that TFR1 has distinct binding sites for H-ferritin and holo-transferrin. H-ferritin uptake by these cells required a threshold level of cell surface TFR1 expression, whereas there was no threshold for holo-transferrin uptake. The requirement for a threshold level of TFR1 expression can explain why among primary human hematopoietic cells, only erythroblasts efficiently take up H-ferritin. PMID:26441243
Yu, Bo; Goel, Shreya; Ni, Dalong; Ellison, Paul A; Siamof, Cerise M; Jiang, Dawei; Cheng, Liang; Kang, Lei; Yu, Faquan; Liu, Zhuang; Barnhart, Todd E; He, Qianjun; Zhang, Han; Cai, Weibo
2018-03-01
Nanoengineering of cell membranes holds great potential to revolutionize tumor-targeted theranostics, owing to their innate biocompatibility and ability to escape from the immune and reticuloendothelial systems. However, tailoring and integrating cell membranes with drug and imaging agents into one versatile nanoparticle are still challenging. Here, multicompartment membrane-derived liposomes (MCLs) are developed by reassembling cancer cell membranes with Tween-80, and are used to conjugate 89 Zr via deferoxamine chelator and load tetrakis(4-carboxyphenyl) porphyrin for in vivo noninvasive quantitative tracing by positron emission tomography imaging and photodynamic therapy (PDT), respectively. Radiolabeled constructs, 89 Zr-Df-MCLs, demonstrate excellent radiochemical stability in vivo, target 4T1 tumors by the enhanced permeability and retention effect, and are retained long-term for efficient and effective PDT while clearing gradually from the reticuloendothelial system via hepatobiliary excretion. Toxicity evaluation confirms that the MCLs do not impose acute or chronic toxicity in intravenously injected mice. Additionally, 89 Zr-labeled MCLs can execute rapid and highly sensitive lymph node mapping, even for deep-seated sentinel lymph nodes. The as-developed cell membrane reassembling route to MCLs could be extended to other cell types, providing a versatile platform for disease theranostics by facilely and efficiently integrating various multifunctional agents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.
Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin
2014-12-08
The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Xiao; Zhang, Jun; Li, Guo-Zheng
2015-01-01
It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg-ECC-mPLoc predictors are freely accessible at http://biomed.zzuli.edu.cn/bioinfo/gpos-ecc-mploc/ and http://biomed.zzuli.edu.cn/bioinfo/gneg-ecc-mploc/ respectively.
Sadhu, Kalyan K; Mizukami, Shin; Watanabe, Shuji; Kikuchi, Kazuya
2011-05-01
Development of protein labeling techniques with small molecules is enthralling because this method brings promises for triumph over the limitations of fluorescent proteins in live cell imaging. This technology deals with the functionalization of proteins with small molecules and is anticipated to facilitate the expansion of various protein assay methods. A new straightforward aggregation and elimination-based technique for a protein labeling system has been developed with a versatile emissive range of fluorophores. These fluorophores have been applied to show their efficiency for protein labeling by exploiting the same basic principle. A genetically modified version of class A type β-lactamase has been used as the tag protein (BL-tag). The strength of the aggregation interaction between a fluorophore and a quencher plays a governing role in the elimination step of the quencher from the probes, which ultimately controls the swiftness of the protein labeling strategy. Modulation in the elimination process can be accomplished by the variation in the nature of the fluorophore. This diversity facilitates the study of the competitive binding order among the synthesized probes toward the BL-tag labeling method. An aggregation and elimination-based BL-tag technique has been explored to develop an order of color labeling from the equimolar mixture of the labeling probe in solutions. The qualitative and quantitative determination of ordering within the probes toward labeling studies has been executed through SDS-PAGE and time-dependent fluorescence intensity enhancement measurements, respectively. The desirable multiple-wavelength fluorescence labeling probes for the BL-tag technology have been developed and demonstrate broad applicability of this labeling technology to live cell imaging with coumarin and fluorescein derivatives by using confocal microscopy.
NASA Astrophysics Data System (ADS)
Ogihara, Yusuke; Yukawa, Hiroshi; Kameyama, Tatsuya; Nishi, Hiroyasu; Onoshima, Daisuke; Ishikawa, Tetsuya; Torimoto, Tsukasa; Baba, Yoshinobu
2017-01-01
The facile synthesis of ZnS-AgInS2 (ZAIS) as cadmium-free QDs and their application, mainly in solar cells, has been reported by our groups. In the present study, we investigated the safety and the usefulness for labeling and in vivo imaging of a newly synthesized aqueous ZnS-coated ZAIS (ZnS-ZAIS) carboxylated nanoparticles (ZZC) to stem cells. ZZC shows the strong fluorescence in aqueous solutions such as PBS and cell culture medium, and a complex of ZZC and octa-arginine (R8) peptides (R8-ZZC) can achieve the highly efficient labeling of adipose tissue-derived stem cells (ASCs). The cytotoxicity of R8-ZZC to ASCs was found to be extremely low in comparison to that of CdSe-based QDs, and R8-ZZC was confirmed to have no influence on the proliferation rate or the differentiation ability of ASCs. Moreover, R8-ZZC was not found to induce the production of major inflammatory cytokines (TNF-α, IFN-γ, IL-12p70, IL-6 and MCP-1) in ASCs. Transplanted R8-ZZC-labeled ASCs could be quantitatively detected in the lungs and liver mainly using an in vivo imaging system. In addition, high-speed multiphoton confocal laser microscopy revealed the presence of aggregates of transplanted ASCs at many sites in the lungs, whereas individual ASCs were found to have accumulated in the liver.
Mennesson, Eric; Erbacher, Patrick; Piller, Véronique; Kieda, Claudine; Midoux, Patrick; Pichon, Chantal
2005-06-01
Following systemic administration, polyplexes must cross the endothelium barrier to deliver genes to the target cells underneath. To design an efficient gene delivery system into lung epithelium, we evaluated capture and transfection efficiencies of DNA complexed with either Jet-PEI (PEI-polyplexes) or histidylated polylysine (His-polyplexes) in human lung microvascular endothelial cells (HLMEC) and tracheal epithelial cells. After optimizing growth conditions to obtain a tight HLMEC monolayer, we characterized uptake of polyplexes by flow cytometry and evaluated their transfection efficiency. Polyplexes were formulated as small particles. YOYO-labelled plasmid fluorescence intensity and luciferase activity were used as readouts for uptake and gene expression, respectively. PEI-polyplexes were more efficiently taken up than His-polyplexes by both non-polarized (2-fold) and polarized HLMEC (10-fold). They were mainly internalized by a clathrin-dependent pathway whatever the cell state. In non-polarized cells, His-polyplexes entered also mainly via a clathrin-dependent pathway but with an involvement of cholesterol. The cell polarization decreased this way and a clathrin-independent pathway became predominant. PEI-polyplexes transfected more efficiently HLMEC than His-polyplexes (10(7) vs. 10(5) relative light units (RLU)/mg of proteins) with a more pronounced difference in polarized cells. In contrast, no negative effect of the cell polarization was observed with tracheal epithelial cells in which both polyplexes had comparable efficiency. We show that the efficiency of polyplex uptake by HLMEC and their internalization mechanism are polymer-dependent. By contrast with His-polyplexes, the HLMEC polarization has little influence on the uptake process and on the transfection efficiency of PEI-polyplexes. Copyright (c) 2005 John Wiley & Sons, Ltd.
2016-01-01
Protein metabolism, consisting of both synthesis and degradation, is highly complex, playing an indispensable regulatory role throughout physiological and pathological processes. Over recent decades, extensive efforts, using approaches such as autoradiography, mass spectrometry, and fluorescence microscopy, have been devoted to the study of protein metabolism. However, noninvasive and global visualization of protein metabolism has proven to be highly challenging, especially in live systems. Recently, stimulated Raman scattering (SRS) microscopy coupled with metabolic labeling of deuterated amino acids (D-AAs) was demonstrated for use in imaging newly synthesized proteins in cultured cell lines. Herein, we significantly generalize this notion to develop a comprehensive labeling and imaging platform for live visualization of complex protein metabolism, including synthesis, degradation, and pulse–chase analysis of two temporally defined populations. First, the deuterium labeling efficiency was optimized, allowing time-lapse imaging of protein synthesis dynamics within individual live cells with high spatial–temporal resolution. Second, by tracking the methyl group (CH3) distribution attributed to pre-existing proteins, this platform also enables us to map protein degradation inside live cells. Third, using two subsets of structurally and spectroscopically distinct D-AAs, we achieved two-color pulse–chase imaging, as demonstrated by observing aggregate formation of mutant hungtingtin proteins. Finally, going beyond simple cell lines, we demonstrated the imaging ability of protein synthesis in brain tissues, zebrafish, and mice in vivo. Hence, the presented labeling and imaging platform would be a valuable tool to study complex protein metabolism with high sensitivity, resolution, and biocompatibility for a broad spectrum of systems ranging from cells to model animals and possibly to humans. PMID:25560305
Efficient Thread Labeling for Monitoring Programs with Nested Parallelism
NASA Astrophysics Data System (ADS)
Ha, Ok-Kyoon; Kim, Sun-Sook; Jun, Yong-Kee
It is difficult and cumbersome to detect data races occurred in an execution of parallel programs. Any on-the-fly race detection techniques using Lamport's happened-before relation needs a thread labeling scheme for generating unique identifiers which maintain logical concurrency information for the parallel threads. NR labeling is an efficient thread labeling scheme for the fork-join program model with nested parallelism, because its efficiency depends only on the nesting depth for every fork and join operation. This paper presents an improved NR labeling, called e-NR labeling, in which every thread generates its label by inheriting the pointer to its ancestor list from the parent threads or by updating the pointer in a constant amount of time and space. This labeling is more efficient than the NR labeling, because its efficiency does not depend on the nesting depth for every fork and join operation. Some experiments were performed with OpenMP programs having nesting depths of three or four and maximum parallelisms varying from 10,000 to 1,000,000. The results show that e-NR is 5 times faster than NR labeling and 4.3 times faster than OS labeling in the average time for creating and maintaining the thread labels. In average space required for labeling, it is 3.5 times smaller than NR labeling and 3 times smaller than OS labeling.
Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury
Vaněček, Václav; Zablotskii, Vitalii; Forostyak, Serhiy; Růřička, Jiří; Herynek, Vít; Babič, Michal; Jendelová, Pavla; Kubinová, Šárka; Dejneka, Alexandr; Syková, Eva
2012-01-01
The transplantation of mesenchymal stem cells (MSC) is currently under study as a therapeutic approach for spinal cord injury, and the number of transplanted cells that reach the lesioned tissue is one of the critical parameters. In this study, intrathecally transplanted cells labeled with superparamagnetic iron oxide nanoparticles were guided by a magnetic field and successfully targeted near the lesion site in the rat spinal cord. Magnetic resonance imaging and histological analysis revealed significant differences in cell numbers and cell distribution near the lesion site under the magnet in comparison to control groups. The cell distribution correlated well with the calculated distribution of magnetic forces exerted on the transplanted cells in the subarachnoid space and lesion site. The kinetics of the cells’ accumulation near the lesion site is described within the framework of a mathematical model that reveals those parameters critical for cell targeting and suggests ways to enhance the efficiency of magnetic cell delivery. In particular, we show that the targeting efficiency can be increased by using magnets that produce spatially modulated stray fields. Such magnetic systems with tunable geometric parameters may provide the additional level of control needed to enhance the efficiency of stem cell delivery in spinal cord injury. PMID:22888231
Actin stress in cell reprogramming
Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie
2014-01-01
Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450
NASA Astrophysics Data System (ADS)
J, Aswathy; V, Seethalekshmy N.; R, Hiran K.; R, Bindhu M.; K, Manzoor; Nair, Shantikumar V.; Menon, Deepthy
2014-11-01
The field of molecular detection and targeted imaging has evolved considerably with the introduction of fluorescent semiconductor nanocrystals. Manganese-doped zinc sulphide nanocrystals (ZnS:Mn NCs), which are widely used in electroluminescent displays, have been explored for the first time for direct immunofluorescent (IF) labeling of clinical tumor tissues. ZnS:Mn NCs developed through a facile wet chemistry route were capped using amino acid cysteine, conjugated to streptavidin and thereafter coupled to biotinylated epidermal growth factor receptor (EGFR) antibody utilizing the streptavidin-biotin linkage. The overall conjugation yielded stable EGFR antibody conjugated ZnS:Mn NCs (EGFR ZnS:Mn NCs) with a hydrodynamic diameter of 65 ± 15 nm, and having an intense orange-red fluorescence emission at 598 nm. Specific labeling of EGF receptors on EGFR+ve A431 cells in a co-culture with EGFR-ve NIH3T3 cells was demonstrated using these nanoprobes. The primary antibody conjugated fluorescent NCs could also clearly delineate EGFR over-expressing cells on clinical tumor tissues processed by formalin fixation as well as cryopreservation with a specificity of 86% and accuracy of 88%, in comparison to immunohistochemistry. Tumor tissues labeled with EGFR ZnS:Mn NCs showed good fluorescence emission when imaged after storage even at 15 months. Thus, ZnS nanobioconjugates with dopant-dependent and stable fluorescence emission show promise as an efficient, target-specific fluorophore that would enable long term IF labeling of any antigen of interest on clinical tissues.
Novel monoclonal antibodies to study tissue regeneration in planarians.
Ross, Kelly G; Omuro, Kerilyn C; Taylor, Matthew R; Munday, Roma K; Hubert, Amy; King, Ryan S; Zayas, Ricardo M
2015-01-21
Planarians are an attractive model organism for studying stem cell-based regeneration due to their ability to replace all of their tissues from a population of adult stem cells. The molecular toolkit for planarian studies currently includes the ability to study gene function using RNA interference (RNAi) and observe gene expression via in situ hybridizations. However, there are few antibodies available to visualize protein expression, which would greatly enhance analysis of RNAi experiments as well as allow further characterization of planarian cell populations using immunocytochemistry and other immunological techniques. Thus, additional, easy-to-use, and widely available monoclonal antibodies would be advantageous to study regeneration in planarians. We have created seven monoclonal antibodies by inoculating mice with formaldehyde-fixed cells isolated from dissociated 3-day regeneration blastemas. These monoclonal antibodies can be used to label muscle fibers, axonal projections in the central and peripheral nervous systems, two populations of intestinal cells, ciliated cells, a subset of neoblast progeny, and discrete cells within the central nervous system as well as the regeneration blastema. We have tested these antibodies using eight variations of a formaldehyde-based fixation protocol and determined reliable protocols for immunolabeling whole planarians with each antibody. We found that labeling efficiency for each antibody varies greatly depending on the addition or removal of tissue processing steps that are used for in situ hybridization or immunolabeling techniques. Our experiments show that a subset of the antibodies can be used alongside markers commonly used in planarian research, including anti-SYNAPSIN and anti-SMEDWI, or following whole-mount in situ hybridization experiments. The monoclonal antibodies described in this paper will be a valuable resource for planarian research. These antibodies have the potential to be used to better understand planarian biology and to characterize phenotypes following RNAi experiments. In addition, we present alterations to fixation protocols and demonstrate how these changes can increase the labeling efficiencies of antibodies used to stain whole planarians.
Buschmann, H; Green, P; Sambade, A; Doonan, J H; Lloyd, C W
2011-04-01
Transient transformation with Agrobacterium is a widespread tool allowing rapid expression analyses in plants. However, the available methods generate expression in interphase and do not allow the routine analysis of dividing cells. Here, we present a transient transformation method (termed 'TAMBY2') to enable cell biological studies in interphase and cell division. Agrobacterium-mediated transient gene expression in tobacco BY-2 was analysed by Western blotting and quantitative fluorescence microscopy. Time-lapse microscopy of cytoskeletal markers was employed to monitor cell division. Double-labelling in interphase and mitosis enabled localization studies. We found that the transient transformation efficiency was highest when BY-2/Agrobacterium co-cultivation was performed on solid medium. Transformants produced in this way divided at high frequency. We demonstrated the utility of the method by defining the behaviour of a previously uncharacterized microtubule motor, KinG, throughout the cell cycle. Our analyses demonstrated that TAMBY2 provides a flexible tool for the transient transformation of BY-2 with Agrobacterium. Fluorescence double-labelling showed that KinG localizes to microtubules and to F-actin. In interphase, KinG accumulates on microtubule lagging ends, suggesting a minus-end-directed function in vivo. Time-lapse studies of cell division showed that GFP-KinG strongly labels preprophase band and phragmoplast, but not the metaphase spindle. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.
Dynamic acoustic field activated cell separation (DAFACS).
Skotis, G D; Cumming, D R S; Roberts, J N; Riehle, M O; Bernassau, A L
2015-02-07
Advances in diagnostics, cell and stem cell technologies drive the development of application-specific tools for cell and particle separation. Acoustic micro-particle separation offers a promising avenue for high-throughput, label-free, high recovery, cell and particle separation and isolation in regenerative medicine. Here, we demonstrate a novel approach utilizing a dynamic acoustic field that is capable of separating an arbitrary size range of cells. We first demonstrate the method for the separation of particles with different diameters between 6 and 45 μm and secondly particles of different densities in a heterogeneous medium. The dynamic acoustic field is then used to separate dorsal root ganglion cells. The shearless, label-free and low damage characteristics make this method of manipulation particularly suited for biological applications. Advantages of using a dynamic acoustic field for the separation of cells include its inherent safety and biocompatibility, the possibility to operate over large distances (centimetres), high purity (ratio of particle population, up to 100%), and high efficiency (ratio of separated particles over total number of particles to separate, up to 100%).
Isotope labeling of proteins in insect cells.
Skora, Lukasz; Shrestha, Binesh; Gossert, Alvar D
2015-01-01
Protein targets of contemporary research are often membrane proteins, multiprotein complexes, secreted proteins, or other proteins of human origin. These are difficult to express in the standard expression host used for most nuclear magnetic resonance (NMR) studies, Escherichia coli. Insect cells represent an attractive alternative, since they have become a well-established expression system and simple solutions have been developed for generation of viruses to efficiently introduce the target protein DNA into cells. Insect cells enable production of a larger fraction of the human proteome in a properly folded way than bacteria, as insect cells have a very similar set of cytosolic chaperones and a closely related secretory pathway. Here, the limited and defined glycosylation pattern that insect cells produce is an advantage for structural biology studies. For these reasons, insect cells have been established as the most widely used eukaryotic expression host for crystallographic studies. In the past decade, significant advancements have enabled amino acid type-specific as well as uniform isotope labeling of proteins in insect cells, turning them into an attractive expression host for NMR studies. © 2015 Elsevier Inc. All rights reserved.
Evaluation of polyethylene glycol coated liposomes labeled with Tc-99m as a blood pool agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, W.T.; Klipper, R.; Goins, B.
1994-05-01
This investigation evaluated Tc-99m liposomes coated with polyethylene glycol (PEG) as a blood pool agent in comparison with Tc-99m liposomes carrying no surface charge (Neutral) and with Tc-99m autologous red cells. Liposomes (135 nm diameter) encapsulating glutathione were labeled with Tc-99m using the lipophilic chelator, HMPAO as previously described. Autologous red cells were labeled using an Ultratag kit. Labeling efficiencies averaged 66%, 52%, and 97% for the PEG liposomes. Neutral liposomes, and red cells, respectively. Rabbits (3-3.5 Kg) were injected IV via ear vein with 2.0 mls of PEG liposomes (2 mCi, 17 mg phospholipid/Kg body weight, n=5). Neutral liposomesmore » (1.3 mCi, 17 mg phospholipid/Kg body weight, n=4), or red cells (2.6 mCi, n=2). Gamma camera images were acquired at 5,22, and 45 minutes, and 2,20,and 44 hours post-injection. Blood samples were obtained at each time point to determine clearance kinetics. Circulation half lives of both Tc-99m liposome formulations were longer than Tc-99m red cells (8 hrs), with the half life of PEG liposomes (35 hrs) 1.6 times longer than Neutral liposomes (22 hrs). In vivo stability of the Tc-99m label was excellent for the liposomes with only 3.5-4% bladder activity at 45 minutes compared to 12% bladder activity for the red cells. Excellent blood pool images were obtained for the PEG liposomes in the rabbit. Heart/liver ratios calculated from region of interest analysis of 45 minutes images were 1.9, 1.5, and 1.7 for PEG liposomes, Neutral liposomes and red cells. This study demonstrates the feasibility of using Tc-99m PEG liposomes to perform gated cardiac blood pool and rapid gastrointestinal bleeding studies.« less
Rampini, S; Kilinc, D; Li, P; Monteil, C; Gandhi, D; Lee, G U
2015-08-21
Nonlinear magnetophoresis (NLM) is a novel approach for on-chip transport and separation of superparamagnetic (SPM) beads, based on a travelling magnetic field wave generated by the combination of a micromagnet array (MMA) and an applied rotating magnetic field. Here, we present two novel MMA designs that allow SPM beads to be focused, sorted, and separated on-chip. Converging MMAs were used to rapidly collect the SPM beads from a large region of the chip and focus them into synchronised lines. We characterise the collection efficiency of the devices and demonstrate that they can facilitate on-chip analysis of populations of SPM beads using a single-point optical detector. The diverging MMAs were used to control the transport of the beads and to separate them based on their size. The separation efficiency of these devices was determined by the orientation of the magnetisation of the micromagnets relative to the external magnetic field and the size of the beads and relative to that of micromagnets. By controlling these parameters and the rotation of the external magnetic field we demonstrated the controlled transport of SPM bead-labelled single MDA-MB-231 cells. The use of these novel MMAs promises to allow magnetically-labelled cells to be efficiently isolated and then manipulated on-chip for analysis with high-resolution chemical and physical techniques.
Abe, Fumiyoshi
1998-01-01
The extent of intracellular accumulation of the fluorescent dye carboxyfluorescein or carboxydichlorofluorescein (CDCF) in Saccharomyces cerevisiae was found to be increased 5- to 10-fold under a nonlethal hydrostatic pressure of 30 to 50 MPa. This observation was confirmed by analysis of individual labeled cells by flow cytometry. The pressure-induced enhancement of staining with CDCF required d-glucose and was markedly inhibited by 2-deoxy-d-glucose, suggesting that glucose metabolism has a role in the process. PMID:9501452
Dynamic views of living cell fine structure revealed by birefringence imaging
NASA Astrophysics Data System (ADS)
Oldenbourg, Rudolf
2001-11-01
We have been developing and applying a new type of polarized light microscope, the new Pol-Scope, which dramatically enhances the unique capabilities of the traditional polarizing microscope. In living cells, without applying exogenous dyes or florescent labels, we have studied the dynamic organization of filamentous actin in neuronal growth cones and improved the efficiency of spindle imaging for in-vitro fertilization and enucleation procedures.
Intracellular Protein Delivery for Treating Breast Cancer
2012-06-01
are efficiently internalized by mammalian cells lines as characterized by confocal microscopy, and rhodamine-labeled apoptin can be observed in the...To determine the cellular localization of delivered proteins, confocal images were taken with HeLa, MCF-7, or HEF cells incubated with 20 nM of S-S...and analyzed by Nikon NIS Element software. Fluorescence images were acquired on a Yokogawa spinning-disk confocal scanner system using a Nikon
PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination.
Garinot, Marie; Fiévez, Virginie; Pourcelle, Vincent; Stoffelbach, François; des Rieux, Anne; Plapied, Laurence; Theate, Ivan; Freichels, Hélène; Jérôme, Christine; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique
2007-07-31
To improve the efficiency of orally delivered vaccines, PEGylated PLGA-based nanoparticles displaying RGD molecules at their surface were designed to target human M cells. RGD grafting was performed by an original method called "photografting" which covalently linked RGD peptides mainly on the PEG moiety of the PCL-PEG, included in the formulation. First, three non-targeted formulations with size and zeta potential adapted to M cell uptake and stable in gastro-intestinal fluids, were developed. Their transport by an in vitro model of the human Follicle associated epithelium (co-cultures) was largely increased as compared to mono-cultures (Caco-2 cells). RGD-labelling of nanoparticles significantly increased their transport by co-cultures, due to interactions between the RGD ligand and the beta(1) intregrins detected at the apical surface of co-cultures. In vivo studies demonstrated that RGD-labelled nanoparticles particularly concentrated in M cells. Finally, ovalbumin-loaded nanoparticles were orally administrated to mice and induced an IgG response, attesting antigen ability to elicit an immune response after oral delivery.
Jia, Jin-Liang; Jin, Xiao-Yong; Liu, Qing-Le; Liang, Wen-Long; Lin, Miao-Shan; Xu, Han-Hong
2016-05-01
Visualizing the biodistribution of pesticides inside living cells is great importance for enhancing targeting of pesticides. Here we reported for the first time that gold nanorods (Au NRs) with size of 39.4 nm x 11.3 nm could be used as a fluorescent tracer to examine the distribution of a typical herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), in tobacco bright yellow 2 (BY-2) cells. The nanostructures of hybrid materials were analyzed by using Raman spectra and X-ray photoelectron spectroscopy (XPS), including spectra assignments and electronic property. These data revealed 2,4-D has successfully conjugated MP-Au NRs according to Raman and XPS. The biodistribution of the conjugates inside BY-2 cells was directly examined at 12 and 24 h by the two-photon microscopy. The intensity of two-photon luminescence (TPL) inside cells demonstrated that the conjugates could be localized and excluded by BY-2 cells. Thus, this labeling approach opens up new avenues to the facile and efficient labeling of pesticides.
Kofuku, Yutaka; Yokomizo, Tomoki; Imai, Shunsuke; Shiraishi, Yutaro; Natsume, Mei; Itoh, Hiroaki; Inoue, Masayuki; Nakata, Kunio; Igarashi, Shunsuke; Yamaguchi, Hideyuki; Mizukoshi, Toshimi; Suzuki, Ei-Ichiro; Ueda, Takumi; Shimada, Ichio
2018-03-08
G protein-coupled receptors (GPCRs) exist in equilibrium between multiple conformations, and their populations and exchange rates determine their functions. However, analyses of the conformational dynamics of GPCRs in lipid bilayers are still challenging, because methods for observations of NMR signals of large proteins expressed in a baculovirus-insect cell expression system (BVES) are limited. Here, we report a method to incorporate methyl- 13 C 1 H 3 -labeled alanine with > 45% efficiency in highly deuterated proteins expressed in BVES. Application of the method to the NMR observations of β 2 -adrenergic receptor in micelles and in nanodiscs revealed the ligand-induced conformational differences throughout the transmembrane region of the GPCR.
NASA Astrophysics Data System (ADS)
Guillet-Nicolas, Rémy; Laprise-Pelletier, Myriam; Nair, Mahesh M.; Chevallier, Pascale; Lagueux, Jean; Gossuin, Yves; Laurent, Sophie; Kleitz, Freddy; Fortin, Marc-André
2013-11-01
Mesoporous silica nanoparticles (MSNs) are used in drug delivery and cell tracking applications. As Mn2+ is already implemented as a ``positive'' cell contrast agent in preclinical imaging procedures (in the form of MnCl2 for neurological studies), the introduction of Mn in the porous network of MSNs would allow labelling cells and tracking them using MRI. These particles are in general internalized in endosomes, an acidic environment with high saline concentration. In addition, the available MSN porosity could also serve as a carrier to deliver medical/therapeutic substances through the labelled cells. In the present study, manganese oxide was introduced in the porous network of MCM-48 silica nanoparticles (Mn-M48SNs). The particles exhibit a narrow size distribution (~140 nm diam.) and high porosity (~60% vol.), which was validated after insertion of Mn. The resulting Mn-M48SNs were characterized by TEM, N2 physisorption, and XRD. Evidence was found with H2-TPR, and XPS characterization, that Mn(ii) is the main oxidation state of the paramagnetic species after suspension in water, most probably in the form of Mn-OOH. The colloidal stability as a function of time was confirmed by DLS in water, acetate buffer and cell culture medium. In NMR data, no significant evidence of Mn2+ leaching was found in Mn-M48SNs in acidic water (pH 6), up to 96 hours after suspension. High longitudinal relaxivity values of r1 = 8.4 mM-1 s-1 were measured at 60 MHz and 37 °C, with the lowest relaxometric ratios (r2/r1 = 2) reported to date for a Mn-MSN system. Leukaemia cells (P388) were labelled with Mn-M48SNs and nanoparticle cell internalization was confirmed by TEM. Finally, MRI contrast enhancement provided by cell labelling with escalated incubation concentrations of Mn-M48SNs was quantified at 1 T. This study confirmed the possibility of efficiently confining Mn into M48SNs using incipient wetness, while maintaining an open porosity and relatively high pore volume. Because these Mn-labelled M48SNs express strong ``positive'' contrast media properties at low concentrations, they are potentially applicable for cell tracking and drug delivery methodologies.Mesoporous silica nanoparticles (MSNs) are used in drug delivery and cell tracking applications. As Mn2+ is already implemented as a ``positive'' cell contrast agent in preclinical imaging procedures (in the form of MnCl2 for neurological studies), the introduction of Mn in the porous network of MSNs would allow labelling cells and tracking them using MRI. These particles are in general internalized in endosomes, an acidic environment with high saline concentration. In addition, the available MSN porosity could also serve as a carrier to deliver medical/therapeutic substances through the labelled cells. In the present study, manganese oxide was introduced in the porous network of MCM-48 silica nanoparticles (Mn-M48SNs). The particles exhibit a narrow size distribution (~140 nm diam.) and high porosity (~60% vol.), which was validated after insertion of Mn. The resulting Mn-M48SNs were characterized by TEM, N2 physisorption, and XRD. Evidence was found with H2-TPR, and XPS characterization, that Mn(ii) is the main oxidation state of the paramagnetic species after suspension in water, most probably in the form of Mn-OOH. The colloidal stability as a function of time was confirmed by DLS in water, acetate buffer and cell culture medium. In NMR data, no significant evidence of Mn2+ leaching was found in Mn-M48SNs in acidic water (pH 6), up to 96 hours after suspension. High longitudinal relaxivity values of r1 = 8.4 mM-1 s-1 were measured at 60 MHz and 37 °C, with the lowest relaxometric ratios (r2/r1 = 2) reported to date for a Mn-MSN system. Leukaemia cells (P388) were labelled with Mn-M48SNs and nanoparticle cell internalization was confirmed by TEM. Finally, MRI contrast enhancement provided by cell labelling with escalated incubation concentrations of Mn-M48SNs was quantified at 1 T. This study confirmed the possibility of efficiently confining Mn into M48SNs using incipient wetness, while maintaining an open porosity and relatively high pore volume. Because these Mn-labelled M48SNs express strong ``positive'' contrast media properties at low concentrations, they are potentially applicable for cell tracking and drug delivery methodologies. Electronic supplementary information (ESI) available: TEM images, particle size distributions, XRD, TPR, magnetometric profiles, T1 and T2 measurements at 60 MHz over time, NMRD profiles of materials, P388 cell proliferation assay after 4 h and T1-w. MR images of P388 cells incubated with a solution of M48SNs. See DOI: 10.1039/c3nr02969g
Huang, Jin; Ying, Le; Yang, Xiaohai; Yang, Yanjing; Quan, Ke; Wang, He; Xie, Nuli; Ou, Min; Zhou, Qifeng; Wang, Kemin
2015-09-01
We designed a new ratiometric fluorescent nanoprobe for sensing pH values in living cells. Briefly, the nanoprobe consists of a gold nanoparticle (AuNP), short single-stranded oligonucleotides, and dual-fluorophore-labeled i-motif sequences. The short oligonucleotides are designed to bind with the i-motif sequences and immobilized on the AuNP surface via Au-S bond. At neutral pH, the dual fluorophores are separated, resulting in very low fluorescence resonance energy transfer (FRET) efficiency. At acidic pH, the i-motif strands fold into a quadruplex structure and leave the AuNP, bringing the dual fluorophores into close proximity, resulting in high FRET efficiency, which could be used as a signal for pH sensing. The nanoprobe possesses abilities of cellular transfection, enzymatic protection, fast response and quantitative pH detection. The in vitro and intracellular applications of the nanoprobe were demonstrated, which showed excellent response in the physiological pH range. Furthermore, our experimental results suggested that the nanoprobe showed excellent spatial and temporal resolution in living cells. We think that the ratiometric sensing strategy could potentially be applied to create a variety of new multicolor sensors for intracellular detection.
Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo
2015-01-01
The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.
Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo
2015-01-01
The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271
Radioactive Phosphorylation of Alcohols to Monitor Biocatalytic Diels-Alder Reactions
Nierth, Alexander; Jäschke, Andres
2011-01-01
Nature has efficiently adopted phosphorylation for numerous biological key processes, spanning from cell signaling to energy storage and transmission. For the bioorganic chemist the number of possible ways to attach a single phosphate for radioactive labeling is surprisingly small. Here we describe a very simple and fast one-pot synthesis to phosphorylate an alcohol with phosphoric acid using trichloroacetonitrile as activating agent. Using this procedure, we efficiently attached the radioactive phosphorus isotope 32P to an anthracene diene, which is a substrate for the Diels-Alderase ribozyme—an RNA sequence that catalyzes the eponymous reaction. We used the 32P-substrate for the measurement of RNA-catalyzed reaction kinetics of several dye-labeled ribozyme variants for which precise optical activity determination (UV/vis, fluorescence) failed due to interference of the attached dyes. The reaction kinetics were analyzed by thin-layer chromatographic separation of the 32P-labeled reaction components and densitometric analysis of the substrate and product radioactivities, thereby allowing iterative optimization of the dye positions for future single-molecule studies. The phosphorylation strategy with trichloroacetonitrile may be applicable for labeling numerous other compounds that contain alcoholic hydroxyl groups. PMID:21731729
NASA Astrophysics Data System (ADS)
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-01
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-06
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-01
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining. PMID:28059147
Greupink, Rick; Sio, Charles F; Ederveen, Antwan; Orsel, Joke
2009-12-01
We investigate radio-labeling and pharmacokinetics of a new AnnexinA5 variant (HYNIC-cys-AnxA5) and then assess its utility for the non-invasive detection of cell death in liver, spleen and prostate. AnnexinA5 binds to phosphatidylserine expressed on the surface of apoptotic and necrotic cells. Contrary to other AnnexinA5 variants, the new cys-AnxA5 allows for site-specific conjugation of a hydrazinonicotinamide-maleimide moiety and subsequent radio-labeling with (99m)Tc at a position not involved in the AnxA5-phosphatidylserine interaction. Distribution of (99m)Tc-HYNIC-cys-AnxA5 was studied in rats, both invasively and via SPECT/CT. Cycloheximide was used to induce cell death in liver and spleen, whereas apoptosis in the prostate was induced by castration. HYNIC-cys-AnxA5 was efficiently and reproducibly labeled with (99m)Tc. Blood clearance of radioactivity after iv-injection was adequately described by a two-compartment model, the renal cortex representing the main site of accumulation. Cycloheximide treatment resulted in increased accumulation of intravenous-injected (99m)Tc-HYNIC-cys-AnxA5 in liver and spleen over controls, which correlated well with TUNEL staining for cell death in corresponding tissue sections. However, the increase in TUNEL-positive prostate epithelial cells observed following castration was not paralleled by greater (99m)Tc-HYNIC-cys-AnxA5 accumulation. (99m)Tc-HYNIC-cys-AnxA5 appears a suitable tracer for assessment of cell death in liver and spleen, but not prostate.
Vremec, David
2016-01-01
Dendritic cells (DCs) form a complex network of cells that initiate and orchestrate immune responses against a vast array of pathogenic challenges. Developmentally and functionally distinct DC subtypes differentially regulate T-cell function. Importantly it is the ability of DC to capture and process antigen, whether from pathogens, vaccines, or self-components, and present it to naive T cells that is the key to their ability to initiate an immune response. Our typical isolation procedure for DC from murine spleen was designed to efficiently extract all DC subtypes, without bias and without alteration to their in vivo phenotype, and involves a short collagenase digestion of the tissue, followed by selection for cells of light density and finally negative selection for DC. The isolation procedure can accommodate DC numbers that have been artificially increased via administration of fms-like tyrosine kinase 3 ligand (Flt3L), either directly through a series of subcutaneous injections or by seeding with an Flt3L secreting murine melanoma. Flt3L may also be added to bone marrow cultures to produce large numbers of in vitro equivalents of the spleen DC subsets. Total DC, or their subsets, may be further purified using immunofluorescent labeling and flow cytometric cell sorting. Cell sorting may be completely bypassed by separating DC subsets using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Our procedure enables efficient separation of the distinct DC subsets, even in cases where mouse numbers or flow cytometric cell sorting time is limiting.
Microdevice for the isolation and enumeration of cancer cells from blood.
Tan, Swee Jin; Yobas, Levent; Lee, Gabriel Yew Hoe; Ong, Choon Nam; Lim, Chwee Teck
2009-08-01
Cancer metastasis is the main attribute to cancer-related deaths. Furthermore, clinical reports have shown a strong correlation between the disease development and number of circulating tumor cells (CTCs) in the peripheral blood of cancer patients. Here, we present a label-free microdevice capable of isolating cancer cells from whole blood via their distinctively different physical properties such as deformability and size. The isolation efficiency is at least 80% for tests performed on breast and colon cancer cells. Viable isolated cells are also obtained which may give further insights to the understanding of the metastatic process. Contrasting with conventional biochemical techniques, the uniqueness of this microdevice lies in the mechanistic and efficient means of isolating viable cancer cells in blood. The microdevice has the potential to be used for routine monitoring of cancer development and cancer therapy in a clinical setting.
Okur, Neslihan Üstündağ; Özdemir, Derya İlem; Kahyaoğlu, Şennur Görgülü; Şenyiğit, Zeynep Ay; Aşıkoğlu, Makbule; Genç, Lütfi; Karasulu, H Yeşim
2015-01-01
The object of the current study was to prepare novel microemulsion formulations of aprotinin for parenteral delivery and to compare in vitro characteristics and release behaviour of different Technetium-99m ((99m)Tc)-Aprotinin loaded microemulsion formulations. In addition, cytotoxicity of microemulsion formulation was evaluated with cell culture studies on human immortalized pancreatic duct epithelial-like cells. For this aim, firstly, pseudo-ternary phase diagrams were plotted to detect the formulation region and optimal microemulsions were characterized for their thermodynamic stability, conductivity, particle size, zeta potential, viscosity, pH and in vitro release properties. For in vitro release studies aprotinin was labelled with (99m)Tc and labelling efficiency, radiochemical purity and stability of the radiolabeled complex were determined by several chromatography techniques. Radiolabeling efficiency of (99m)Tc-Aprotinin was found over than 90% without any significant changes up to 6 hours after labelling at room temperature. After that, in vitro release studies of (99m)Tc-Aprotinin loaded microemulsions were performed with two different methods; dissolution from diffusion cells and dialysis bags. Both methods showed that release rate of (99m)Tc- Aprotinin from microemulsion could be controlled by microemulsion formulations. Drug release from the optimized microemulsion formulations was found lower compared to drug solution at the end of six hours. According to stability studies, the optimized formulation was found to be stable over a period of 12 months. Also, human immortalized pancreatic duct epithelial-like cells were used to evaluate the cytotoxicity of optimum formulation. Developed microemulsion did not reveal cytotoxicity. In conclusion the present study indicated that the M1-APT microemulsion is appropriate for intravenous application of aprotinin.
Automated structure determination of proteins with the SAIL-FLYA NMR method.
Takeda, Mitsuhiro; Ikeya, Teppei; Güntert, Peter; Kainosho, Masatsune
2007-01-01
The labeling of proteins with stable isotopes enhances the NMR method for the determination of 3D protein structures in solution. Stereo-array isotope labeling (SAIL) provides an optimal stereospecific and regiospecific pattern of stable isotopes that yields sharpened lines, spectral simplification without loss of information, and the ability to collect rapidly and evaluate fully automatically the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as those that can be analyzed using conventional methods. Here, we describe a protocol for the preparation of SAIL proteins by cell-free methods, including the preparation of S30 extract and their automated structure analysis using the FLYA algorithm and the program CYANA. Once efficient cell-free expression of the unlabeled or uniformly labeled target protein has been achieved, the NMR sample preparation of a SAIL protein can be accomplished in 3 d. A fully automated FLYA structure calculation can be completed in 1 d on a powerful computer system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilden, A.B.; Cauda, R.; Grossi, C.E.
1986-06-01
Infection with varicella-zoster virus (VZV) rendered RAJI cells more susceptible to lysis by non-adherent blood lymphocytes. At an effector to target ratio of 80:1 the mean percentage of /sup 51/Cr release of VZV-infected RAJI cells was 41 +/- 12%, whereas that of uninfected RAJI cells was 15 +/- 6%. The increased susceptibility to lysis was associated with increased effector to target conjugate formation in immunofluorescence binding assays. The effector cells cytotoxic for VZV-infected RAJI cells were predominantly Leu-11a/sup +/ Leu-4/sup -/ granular lymphocytes as demonstrated by fluorescence-activated cell sorting. The effector cell active against VZV-infected RAJI cells appeared similar tomore » those active against herpes simplex virus (HSV)-infected cells, because in cold target competition experiments the lysis of /sup 51/Cr-labeled VZV-infected RAJI cells was efficiently inhibited by either unlabeled VZV-infected RAJI cells (mean 71% inhibition, 2:1 ratio unlabeled to labeled target) or HSV-infected RAJI cells (mean 69% inhibition) but not by uninfected RAJI cells (mean 10% inhibition). In contrast, competition experiments revealed donor heterogeneity in the overlap between effector cells for VZV- or HSV-infected RAJI vs K-562 cells.« less
NASA Astrophysics Data System (ADS)
Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin
2015-03-01
Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.
Petrich, Thorsten; Korkmaz, Zekiye; Krull, Doris; Frömke, Cornelia; Meyer, Geerd J; Knapp, Wolfram H
2010-05-01
Monoclonal anti-CD33 antibodies conjugated with toxic calicheamicin derivative (gemtuzumab ozogamicin, GO) are a novel therapy option for acute myeloid leukaemia (AML). Key prognostic factors for patients with AML are high CD33 expression on the leukaemic cells and the ability to overcome mechanisms of resistance to cytotoxic chemotherapies, including drug efflux or other mechanisms decreasing apoptosis. Alpha particle-emitting radionuclides overwhelm such anti-apoptotic mechanisms by producing numerous DNA double-stranded breaks (DSBs) accompanied by decreased DNA repair. We labelled anti-CD33 antibodies with the alpha-emitter (211)At and compared survival of leukaemic HL-60 and K-562 cells treated with the (211)At-labelled antibodies, GO or unlabelled antibodies as controls. We also measured caspase-3/7 activity, DNA fragmentation and necrosis in HL-60 cells after treatment with the different antibodies or with free (211)At. The mean labelling ratio of (211)At-labelled antibodies was 1:1,090 +/- 364 (range: 1:738-1:1,722) in comparison to 2-3:1 for GO. Tumour cell binding of (211)At-anti-CD33 was high in the presence of abundant CD33 expression and could be specifically blocked by unlabelled anti-CD33. (211)At-anti-CD33 decreased survival significantly more than did GO at comparable dilution (1:1,000). No significant differences in induction of apoptosis or necrosis or DNA DSB or in decreased survival were observed after (211)At-anti-CD33 (1:1,090) versus GO (1:1) treatment. Our results suggest that (211)At is a promising, highly cytotoxic radioimmunotherapy in CD33-positive leukaemia and kills tumour cells more efficiently than does calicheamicin-conjugated antibody. Labelling techniques leading to higher chemical yield and specific activities must be developed to increase (211)At-anti-CD33 therapeutic effects.
Implementing Connected Component Labeling as a User Defined Operator for SciDB
NASA Technical Reports Server (NTRS)
Oloso, Amidu; Kuo, Kwo-Sen; Clune, Thomas; Brown, Paul; Poliakov, Alex; Yu, Hongfeng
2016-01-01
We have implemented a flexible User Defined Operator (UDO) for labeling connected components of a binary mask expressed as an array in SciDB, a parallel distributed database management system based on the array data model. This UDO is able to process very large multidimensional arrays by exploiting SciDB's memory management mechanism that efficiently manipulates arrays whose memory requirements far exceed available physical memory. The UDO takes as primary inputs a binary mask array and a binary stencil array that specifies the connectivity of a given cell to its neighbors. The UDO returns an array of the same shape as the input mask array with each foreground cell containing the label of the component it belongs to. By default, dimensions are treated as non-periodic, but the UDO also accepts optional input parameters to specify periodicity in any of the array dimensions. The UDO requires four stages to completely label connected components. In the first stage, labels are computed for each subarray or chunk of the mask array in parallel across SciDB instances using the weighted quick union (WQU) with half-path compression algorithm. In the second stage, labels around chunk boundaries from the first stage are stored in a temporary SciDB array that is then replicated across all SciDB instances. Equivalences are resolved by again applying the WQU algorithm to these boundary labels. In the third stage, relabeling is done for each chunk using the resolved equivalences. In the fourth stage, the resolved labels, which so far are "flattened" coordinates of the original binary mask array, are renamed with sequential integers for legibility. The UDO is demonstrated on a 3-D mask of O(1011) elements, with O(108) foreground cells and O(106) connected components. The operator completes in 19 minutes using 84 SciDB instances.
Chang, Shih Chieh; Galea, Charles A; Leung, Eleanor W W; Tajhya, Rajeev B; Beeton, Christine; Pennington, Michael W; Norton, Raymond S
2012-10-01
The polypeptide toxin ShK is a potent blocker of Kv1.3 potassium channels, which play a crucial role in the activation of human effector memory T-cells (T(EM)). Selective blockers constitute valuable therapeutic leads for the treatment of autoimmune diseases mediated by T(EM) cells, such as multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. We have established a recombinant peptide expression system in order to generate isotopically-labelled ShK and various ShK analogues for in-depth biophysical and pharmacological studies. ShK was expressed as a thioredoxin fusion protein in Escherichia coli BL21 (DE3) cells and purified initially by Ni²⁺ iminodiacetic acid affinity chromatography. The fusion protein was cleaved with enterokinase and purified to homogeneity by reverse-phase HPLC. NMR spectra of ¹⁵N-labelled ShK were similar to those reported previously for the unlabelled synthetic peptide, confirming that recombinant ShK was correctly folded. Recombinant ShK blocked Kv1.3 channels with a K(d) of 25 pM and inhibited the proliferation of human and rat T lymphocytes with a preference for T(EM) cells, with similar potency to synthetic ShK in all assays. This expression system also enables the efficient production of ¹⁵N-labelled ShK for NMR studies of peptide dynamics and of the interaction of ShK with Kv1.3 channels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Region-specific DNA synthesis in brains of F344 rats following a six-day bromodeoxyuridine infusion.
Bolon, B; Dunn, C; Goldsworthy, T L
1996-09-01
Prolonged exposure to certain alkylating chemicals induces glial and meningeal tumours in rats, probably resulting from DNA damage to dividing neural cells. The present work evaluated DNA synthesis in the brains of untreated, young adult male F344 rats in order to define a BrdUrd infusion protocol to more adequately assess proliferation in slowly dividing neural cell populations. BrdUrd (2.5 to 160 mg/ml) was administered for 6 days via subcutaneous osmotic pumps. Clinical toxicity was not observed at any dose. The labelling index (LI; % of cells per brain area that incorporated BrdUrd) and unit length labelling index (ULLI; % of cells per meningeal length that incorporated BrdUrd) were calculated for selected regions by counting labelled neural cells in defined areas of the right hemisphere in coronal brain sections. Intensely stained cells were numerous in the cerebral subependymal layer (LI = 35.8%); scattered in cerebral white matter tracts (e.g. corpus callosum and internal capsule; LI = 6.2%) as well as cerebral (ULLI = 4.2%) and cerebellar (ULLI = 3.6%) meninges; and rare in the hippocampus (LI > 0.1%). Mildy stained cells were dispersed in the pons (LI = 2.1%), deep cerebral (LI = 1.8%) and cerebellar (LI = 1.0%) grey matter, and thalamus (LI = 0.3%). Phenotypically, BrdUrd-positive cells in neuropil were glial cell precursors and their progeny, while those associated with meninges were usually located in the superficial subarachnoid space and appeared to be fibrocytes. Using BrdUrd infusion, LI for glial precursors at these sites ranged from two- to 10-fold higher than those reported previously after a brief parenteral pulse dose. These data indicate that continuous BrdUrd infusion for 6 days by subcutaneous osmotic pump is an efficient means of labelling neural cells throughout the brain.
Time-resolved delayed luminescence image microscopy using an europium ion chelate complex.
Marriott, G.; Heidecker, M.; Diamandis, E. P.; Yan-Marriott, Y.
1994-01-01
Improvements and extended applications of time-resolved delayed luminescence imaging microscopy (TR-DLIM) in cell biology are described. The emission properties of europium ion complexed to a fluorescent chelating group capable of labeling proteins are exploited to provide high contrast images of biotin labeled ligands through detection of the delayed emission. The streptavidin-based macromolecular complex (SBMC) employs streptavidin cross-linked to thyroglobulin multiply labeled with the europium-fluorescent chelate. The fluorescent chelate is efficiently excited with 340-nm light, after which it sensitizes europium ion emission at 612 nm hundreds of microseconds later. The SBMC complex has a high quantum yield orders of magnitude higher than that of eosin, a commonly used delayed luminescent probe, and can be readily seen by the naked eye, even in specimens double-labeled with prompt fluorescent probes. Unlike triplet-state phosphorescent probes, sensitized europium ion emission is insensitive to photobleaching and quenching by molecular oxygen; these properties have been exploited to obtain delayed luminescence images of living cells in aerated medium thus complementing imaging studies using prompt fluorescent probes. Since TR-DLIM has the unique property of rejecting enormous signals that originate from scattered light, autofluorescence, and prompt fluorescence it has been possible to resolve double emission images of living amoeba cells containing an intensely stained lucifer yellow in pinocytosed vesicles and membrane surface-bound SBMC-labeled biotinylated concanavalin A. Images of fixed cells represented in terms of the time decay of the sensitized emission show the lifetime of the europium ion emission is sensitive to the environment in which it is found. Through the coupling of SBMC to streptavidin,a plethora of biotin-based tracer molecules are available for immunocytochemical studies. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:7811952
Englund, Erin K; Rodgers, Zachary B; Langham, Michael C; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W
2016-10-01
To compare calf skeletal muscle perfusion measured with pulsed arterial spin labeling (PASL) and pseudo-continuous arterial spin labeling (pCASL) methods, and to assess the variability of pCASL labeling efficiency in the popliteal artery throughout an ischemia-reperfusion paradigm. At 3T, relative pCASL labeling efficiency was experimentally assessed in five subjects by measuring the signal intensity of blood in the popliteal artery just distal to the labeling plane immediately following pCASL labeling or control preparation pulses, or without any preparation pulses throughout separate ischemia-reperfusion paradigms. The relative label and control efficiencies were determined during baseline, hyperemia, and recovery. In a separate cohort of 10 subjects, pCASL and PASL sequences were used to measure reactive hyperemia perfusion dynamics. Calculated pCASL labeling and control efficiencies did not differ significantly between baseline and hyperemia or between hyperemia and recovery periods. Relative to the average baseline, pCASL label efficiency was 2 ± 9% lower during hyperemia. Perfusion dynamics measured with pCASL and PASL did not differ significantly (P > 0.05). Average leg muscle peak perfusion was 47 ± 20 mL/min/100g or 50 ± 12 mL/min/100g, and time to peak perfusion was 25 ± 3 seconds and 25 ± 7 seconds from pCASL and PASL data, respectively. Differences of further metrics parameterizing the perfusion time course were not significant between pCASL and PASL measurements (P > 0.05). No change in pCASL labeling efficiency was detected despite the almost 10-fold increase in average blood flow velocity in the popliteal artery. pCASL and PASL provide precise and consistent measurement of skeletal muscle reactive hyperemia perfusion dynamics. J. MAGN. RESON. IMAGING 2016;44:929-939. © 2016 International Society for Magnetic Resonance in Medicine.
Low Copy Numbers of DC-SIGN in Cell Membrane Microdomains: Implications for Structure and Function
Liu, Ping; Wang, Xiang; Itano, Michelle S.; Neumann, Aaron K.; de Silva, Aravinda M.; Jacobson, Ken; Thompson, Nancy L.
2014-01-01
Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC-SIGN, a C-type lectin, in membrane microdomains. DC-SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC-SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1μm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3T3 cells contains only 4-8 molecules of DC-SIGN, consistent with our preliminary super-resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (~50nm) pathogen, dengue virus, leading to infection of host cells. PMID:24313910
Yoon, June-Sun; Gurusamy, Dhandapani; Palli, Subba Reddy
2017-11-01
RNA interference (RNAi) efficiency varies among insects studied. The barriers for successful RNAi include the presence of double-stranded ribonucleases (dsRNase) in the lumen and hemolymph that could potentially digest double-stranded RNA (dsRNA) and the variability in the transport of dsRNA into and within the cells. We recently showed that the dsRNAs are transported into lepidopteran cells, but they are not processed into small interference RNAs (siRNAs) because they are trapped in acidic bodies. In the current study, we focused on the identification of acidic bodies in which dsRNAs accumulate in Sf9 cells. Time-lapse imaging studies showed that dsRNAs enter Sf9 cells and accumulate in acidic bodies within 20 min after their addition to the medium. CypHer-5E-labeled dsRNA also accumulated in the midgut and fat body dissected from Spodoptera frugiperda larvae with similar patterns observed in Sf9 cells. Pharmacological inhibitor assays showed that the dsRNAs use clathrin mediated endocytosis pathway for transport into the cells. We investigated the potential dsRNA accumulation sites employing LysoTracker and double labeling experiments using the constructs to express a fusion of green fluorescence protein with early or late endosomal marker proteins and CypHer-5E-labeled dsRNA. Interestingly, CypHer-5E-labeled dsRNA accumulated predominantly in early and late endosomes. These data suggest that entrapment of internalized dsRNA in endosomes is one of the major factors contributing to inefficient RNAi response in lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monteiro, Ricardo; Chafsey, Ingrid; Leroy, Sabine; Chambon, Christophe; Hébraud, Michel; Livrelli, Valérie; Pizza, Mariagrazia; Pezzicoli, Alfredo; Desvaux, Mickaël
2018-06-15
Surface proteins are the major factor for the interaction between bacteria and its environment, playing an important role in infection, colonisation, virulence and adaptation. However, the study of surface proteins has proven difficult mainly due to their hydrophobicity and/or relatively low abundance compared with cytoplasmic proteins. To overcome these issues new proteomic strategies have been developed, such as cell-surface protein labelling using biotinylation reagents. Sulfo-NHS-SS-biotin is the most commonly used reagent to investigate the proteins expressed at the cell surface of various organisms but its use in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria) remains limited to a handful of species. While generally pass over in silence, some periplasmic proteins, but also some inner membrane lipoproteins, integral membrane proteins and cytoplasmic proteins (cytoproteins) are systematically identified following this approach. To limit cell lysis and diffusion of the sulfo-NHS-SS-biotin through the outer membrane, biotin labelling was tested over short incubation times and proved to be as efficient for 1 min at room temperature. To further limit labelling of protein located below the outer membrane, the use of high-molecular weight sulfo-NHS-PEG4-bismannose-SS-biotin appeared to recover differentially cell-envelope proteins compared to low-molecular weight sulfo-NHS-SS-biotin. Actually, the sulfo-NHS-SS-biotin recovers at a higher extent the proteins completely or partly exposed in the periplasm than sulfo-NHS-PEG4-bismannose-SS-biotin, namely periplasmic and integral membrane proteins as well as inner membrane and outer membrane lipoproteins. These results highlight that protein labelling using biotinylation reagents of different sizes provides a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. While generally pass over in silence, some periplasmic proteins, inner membrane lipoproteins (IMLs), integral membrane proteins (IMPs) and cytoplasmic proteins (cytoproteins) are systematically identified following cell-surface biotin labelling in lipopolysaccharidic diderm bacteria (archetypal Gram-negative bacteria). The use of biotinylation molecules of different sizes, namely sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin, was demonstrated to provide a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.
Hoigebazar, Lathika; Jeong, Jae Min; Hong, Mee Kyung; Kim, Young Ju; Lee, Ji Youn; Shetty, Dinesh; Lee, Yun-Sang; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul
2011-04-01
The imaging of hypoxia is important for therapeutic decision making in various diseases. (68)Ga is an important radionuclide for positron emission tomography (PET), and its usage is increasing, due to the development of the (68)Ge/(68)Ga-generator. In the present study, the authors synthesized two nitroimidazole derivatives by conjugating nitroimidazole and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) via an amide bond (4) and a thiourea bond (5). Both derivatives were labeled with (68)Ga with high labeling efficiency and were stable after labeling. The low partition coefficients (logP) of (68)Ga-4 (-4.6) and (68)Ga-5 (-4.5) demonstrated the hydrophilic natures of the derivatives, and both showed higher uptake in cancer cell lines cultured under hypoxic condition than under normoxic condition. However, (68)Ga-5 showed higher liver uptake than (68)Ga-4 in a biodistribution study due to higher lipophilicity. In an animal PET study, (68)Ga-4 showed higher standard uptake values (SUV) in tumors than (68)Ga-5 in mice xenografted with CT-26 mouse colon cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
Label-Retaining Stromal Cells in Mouse Endometrium Awaken for Expansion and Repair After Parturition
Cao, Mingzhu; Yeung, William S.B.
2015-01-01
Human and mouse endometrium undergo dramatic cellular reorganization during pregnancy and postpartum. Somatic stem cells maintain homeostasis of the tissue by providing a cell reservoir for regeneration. We hypothesized that endometrial cells with quiescent properties (stem/progenitor cells) were involved in the regeneration of the endometrial tissue. Given that stem cells divide infrequently, they can retain the DNA synthesis label [bromodeoxyuridine (BrdU)] after a prolonged chase period. In this study, prepubertal mice were pulsed with BrdU and after a 6-week chase a small population of label-retaining stromal cells (LRSC) was located primarily beneath the luminal epithelium, adjacent to blood vessels, and near the endometrial–myometrial junction. Marker analyses suggested that they were of mesenchymal origin expressing CD44+, CD90+, CD140b+, CD146+, and Sca-1+. During pregnancy, nonproliferating LRSC predominately resided at the interimplantation/placental loci of the gestational endometrium. Immediately after parturition, a significant portion of the LRSC underwent proliferation (BrdU+/Ki-67+) and expressed total and active β-catenin. The β-catenin expression in the LRSC was transiently elevated at postpartum day (PPD) 1. The proliferation of LRSC resulted in a significant decline in the proportion of LRSC in the postpartum uterus. The LRSC returned to dormancy at PPD7, and the percentage of LRSC remained stable thereafter until 11 weeks. This study demonstrated that LRSC can respond efficiently to physiological stimuli upon initiation of uterine involution and return to its quiescent state after postpartum repair. PMID:25386902
Ravelo, Kristine M; Andersen, Natalia D; Monje, Paula V
2018-01-01
To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75 NGFR , O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.
Uheda, Eiji; Maejima, Kazuhiro
2009-10-15
In the Azolla-Anabaena association, the host plant Azolla efficiently incorporates and assimilates ammonium ions that are released from the nitrogen-fixing cyanobiont, probably via glutamine synthetase (GS; EC 6.3.1.2) in hair cells, which are specialized cells protruding into the leaf cavity. In order to clarify the regulatory mechanism underlying ammonium assimilation in the Azolla-Anabaena association, Azolla plants were grown under an argon environment (Ar), in which the nitrogen-fixing activity of the cyanobiont was inhibited specifically and completely. The localization of GS in hair cells was determined by immunoelectron microscopy and quantitative analysis of immunogold labeling. Azolla plants grew healthily under Ar when nitrogen sources, such as NO(3)(-) and NH(4)(+), were provided in the growth medium. Both the number of cyanobacterial cells per leaf and the heterocyst frequency of the plants under Ar were similar to those of plants in a nitrogen environment (N(2)). In hair cells of plants grown under Ar, regardless of the type of nitrogen source provided, only weak labeling of GS was observed in the cytoplasm and in chloroplasts. In contrast, in hair cells of plants grown under N(2), abundant labeling of GS was observed in both sites. These findings indicate that specific inhibition of the nitrogen-fixing activity of the cyanobiont affects the localization of GS isoenzymes. Ammonium fixed and released by the cyanobiont could stimulate GS synthesis in hair cells. Simultaneously, the abundant GS, probably GS1, in these cells, could assimilate ammonium rapidly.
Eggenberger, Kai; Mink, Christian; Wadhwani, Parvesh; Ulrich, Anne S; Nick, Peter
2011-01-03
The delivery of externally applied macromolecules or nanoparticles into living cells still represents a critically limiting step before the full capabilities of chemical engineering can be explored. Molecular transporters such as cell-penetrating peptides, peptoids, and other mimetics can be used to carry cargo across the cellular membrane, but it is still difficult to find suitable sequences that operate efficiently for any particular type of cell. Here we report that BP100 (KKLFKKILKYL-amide), originally designed as an antimicrobial peptide against plant pathogens, can be employed as a fast and efficient cell-penetrating agent to transport fluorescent test cargoes into the cytosol of walled plant cells. The uptake of BP100 proceeds slightly more slowly than the endocytosis of fluorescent dextranes, but BP100 accumulates more efficiently and to much higher levels (by an order of magnitude). The entry of BP100 can be efficiently blocked by latrunculin B; this suggests that actin filaments are essential to the uptake mechanism. To test whether this novel transporter can also be used to deliver functional cargoes, we designed a fusion construct of BP100 with the actin-binding Lifeact peptide (MGVADLIKKFESISKEE). We demonstrated that the short BP100 could transport the attached 17-residue sequence quickly and efficiently into tobacco cells. The Lifeact construct retained its functionality as it successfully labeled the actin bundles that tether the nucleus in the cell center.
Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun
2016-01-01
Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282
Optical trapping of core-shell magnetic microparticles by cylindrical vector beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Min-Cheng; Gong, Lei; Li, Di
2014-11-03
Optical trapping of core-shell magnetic microparticles is experimentally demonstrated by using cylindrical vector beams. Second, we investigate the optical trapping efficiencies. The results show that radially and azimuthally polarized beams exhibit higher axial trapping efficiencies than the Gaussian beam. Finally, a trapped particle is manipulated to kill a cancer cell. The results make possible utilizing magnetic particles for optical manipulation, which is an important advantage for magnetic particles as labeling agent in targeted medicine and biological analysis.
Mayhew, Terry M; Lucocq, John M
2011-03-01
Various methods for quantifying cellular immunogold labelling on transmission electron microscope thin sections are currently available. All rely on sound random sampling principles and are applicable to single immunolabelling across compartments within a given cell type or between different experimental groups of cells. Although methods are also available to test for colocalization in double/triple immunogold labelling studies, so far, these have relied on making multiple measurements of gold particle densities in defined areas or of inter-particle nearest neighbour distances. Here, we present alternative two-step approaches to codistribution and colocalization assessment that merely require raw counts of gold particles in distinct cellular compartments. For assessing codistribution over aggregate compartments, initial statistical evaluation involves combining contingency table and chi-squared analyses to provide predicted gold particle distributions. The observed and predicted distributions allow testing of the appropriate null hypothesis, namely, that there is no difference in the distribution patterns of proteins labelled by different sizes of gold particle. In short, the null hypothesis is that of colocalization. The approach for assessing colabelling recognises that, on thin sections, a compartment is made up of a set of sectional images (profiles) of cognate structures. The approach involves identifying two groups of compartmental profiles that are unlabelled and labelled for one gold marker size. The proportions in each group that are also labelled for the second gold marker size are then compared. Statistical analysis now uses a 2 × 2 contingency table combined with the Fisher exact probability test. Having identified double labelling, the profiles can be analysed further in order to identify characteristic features that might account for the double labelling. In each case, the approach is illustrated using synthetic and/or experimental datasets and can be refined to correct observed labelling patterns to specific labelling patterns. These simple and efficient approaches should be of more immediate utility to those interested in codistribution and colocalization in multiple immunogold labelling investigations.
Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.
Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng
2018-01-01
Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.
Chamma, Ingrid; Rossier, Olivier; Giannone, Grégory; Thoumine, Olivier; Sainlos, Matthieu
2017-04-01
Recent progress in super-resolution imaging (SRI) has created a strong need to improve protein labeling with probes of small size that minimize the target-to-label distance, increase labeling density, and efficiently penetrate thick biological tissues. This protocol describes a method for labeling genetically modified proteins incorporating a small biotin acceptor peptide with a 3-nm fluorescent probe, monomeric streptavidin. We show how to express, purify, and conjugate the probe to organic dyes with different fluorescent properties, and how to label selectively biotinylated membrane proteins for SRI techniques (point accumulation in nanoscale topography (PAINT), stimulated emission depletion (STED), stochastic optical reconstruction microscopy (STORM)). This method is complementary to the previously described anti-GFP-nanobody/SNAP-tag strategies, with the main advantage being that it requires only a short 15-amino-acid tag, and can thus be used with proteins resistant to fusion with large tags and for multicolor imaging. The protocol requires standard molecular biology/biochemistry equipment, making it easily accessible for laboratories with only basic skills in cell biology and biochemistry. The production/purification/conjugation steps take ∼5 d, and labeling takes a few minutes to an hour.
HaloTag technology for specific and covalent labeling of fusion proteins.
Benink, Hélène A; Urh, Marjeta
2015-01-01
Appending proteins of interest to fluorescent protein tags such as GFP has revolutionized how proteins are studied in the cellular environment. Over the last few decades many varieties of fluorescent proteins have been generated, each bringing new capability to research. However, taking full advantage of standard fluorescent proteins with advanced and differential features requires significant effort on the part of the researcher. This approach necessitates that many genetic fusions be generated and confirmed to function properly in cells with the same protein of interest. To lessen this burden, a newer category of protein fusion tags termed "self-labeling protein tags" has been developed. This approach utilizes a single protein tag, the function of which can be altered by attaching various chemical moieties (fluorescent labels, affinity handles, etc.). In this way a single genetically encoded protein fusion can easily be given functional diversity and adaptability as supplied by synthetic chemistry. Here we present protein labeling methods using HaloTag technology; comprised of HaloTag protein and the collection of small molecules designed to bind it specifically and provide it with varied functionalities. For imaging purposes these small molecules, termed HaloTag ligands, contain distinct fluorophores. Due to covalent and rapid binding between HaloTag protein and its ligands, labeling is permanent and efficient. Many of these ligands have been optimized for permeability across cellular membranes allowing for live cell labeling and imaging analysis. Nonpermeable ligands have also been developed for specific labeling of surface proteins. Overall, HaloTag is a versatile technology that empowers the end user to label a protein of interest with the choice of different fluorophores while alleviating the need for generation of multiple genetic fusions.
Mayhew, T M; Desoye, G
2004-07-01
Colloidal gold-labelling, combined with transmission electron microscopy, is a valuable technique for high-resolution immunolocalization of identified antigens in different subcellular compartments. Whilst the technique has been applied to placental tissues, few quantitative studies have been made. Subcellular compartments exist in three main categories (viz. organelles, membranes, filaments/tubules) and this affects the possibilities for quantification. Generally, gold particles are counted in order to compare either (a) compartments within an experimental group or (b) compartmental labelling distributions between groups. For the former, recent developments make it possible to test whether or not there is differential (nonrandom) labelling of compartments. The methods (relative labelling index and labelling density) are ideally suited to analysing label in one category of compartment (organelle or membrane or filament) but may be adapted to deal with a mixture of categories. They also require information about compartment size (e.g. profile area or trace length). Here, a simple and efficient method for drawing between-group comparisons of labelling distributions is presented. The method does not require information about compartment size or specimen magnification. It relies on multistage random sampling of specimens and unbiased counting of gold particles associated with different compartments. Distributions of observed gold counts in different experimental groups are compared by contingency table analysis with degrees of freedom for chi-squared (chi(2)) values being determined by the numbers of compartments and experimental groups. Compartmental values of chi(2)which contribute substantially to total chi(2)identify the principal subcellular sites of between-group differences. The method is illustrated using datasets from immunolabelling studies on the localization of GLUT1 glucose transporters in cultured human trophoblast cells exposed to different treatments.
Robertson, A D; Matta, G; Basile, V S; Black, S E; Macgowan, C K; Detre, J A; MacIntosh, B J
2017-08-01
The relationship between extracranial large-artery characteristics and arterial spin-labeling MR imaging may influence the quality of arterial spin-labeling-CBF images for older adults with and without vascular pathology. We hypothesized that extracranial arterial blood velocity can explain between-person differences in arterial spin-labeling data systematically across clinical populations. We performed consecutive pseudocontinuous arterial spin-labeling and phase-contrast MR imaging on 82 individuals (20-88 years of age, 50% women), including healthy young adults, healthy older adults, and older adults with cerebral small vessel disease or chronic stroke infarcts. We examined associations between extracranial phase-contrast hemodynamics and intracranial arterial spin-labeling characteristics, which were defined by labeling efficiency, temporal signal-to-noise ratio, and spatial coefficient of variation. Large-artery blood velocity was inversely associated with labeling efficiency ( P = .007), temporal SNR ( P < .001), and spatial coefficient of variation ( P = .05) of arterial spin-labeling, after accounting for age, sex, and group. Correction for labeling efficiency on an individual basis led to additional group differences in GM-CBF compared to correction using a constant labeling efficiency. Between-subject arterial spin-labeling variance was partially explained by extracranial velocity but not cross-sectional area. Choosing arterial spin-labeling timing parameters with on-line knowledge of blood velocity may improve CBF quantification. © 2017 by American Journal of Neuroradiology.
Li, Lirong; Sun, Jin; Xia, Shufang; Tian, Xu; Cheserek, Maureen Jepkorir; Le, Guowei
2016-04-01
We investigated the antifungal properties and anti-candidal mechanism of antimicrobial peptide APP. The minimum inhibitory concentration of APP was 8 μM against Candida albicans and Aspeogillus flavus, the concentration against Saccharomyces cerevisiae and Cryptococcus neoformans was 16 μM, while 32 μM inhibited Aspergilla niger and Trichopyton rubrum. APP caused slight depolarization (12.32 ± 0.87%) of the membrane potential of intact C. albicans cells when it exerted its anti-candidal activity and only caused 21.52 ± 0.48% C. albicans cell membrane damage. APP interacted with cell wall membrane, caused potassium efflux and nucleotide leakage. However, confocal fluorescence microscopy experiment and flow cytometry confirmed that FITC-labeled APP penetrated C. albicans cell membrane with 52.31 ± 1.88% cell-penetrating efficiency and accumulated in the cytoplasm. Then, APP interact with C. albicans genomic DNA and completely suppressed DNA migration above weight ratio (peptide/DNA) of 2, and significantly arrested cell cycles during the S-phase (S-phase cell population was 27.09 ± 0.73%, p < 0.05) after penetrating the cell membrane. Results indicated that APP kills C. albicans for efficient cell-penetrating efficiency, strong DNA-binding affinity and significant physiological changes inducing S-phase arrest in intracellular environment.
Practical cell labeling with magnetite cationic liposomes for cell manipulation.
Ito, Hiroshi; Nonogaki, Yurika; Kato, Ryuji; Honda, Hiroyuki
2010-07-01
Personalization of the cell culture process for cell therapy is an ideal strategy to obtain maximum treatment effects. In a previous report, we proposed a strategy using a magnetic manipulation device that combined a palm-top size device and a cell-labeling method using magnetite cationic liposomes (MCLs) to enable feasible personalized cell processing. In the present study, we focused on optimizing the MCL-labeling technique with respect to cell manipulation in small devices. From detailed analysis with different cell types, 4 pg/cell of MCL-label was found to be obtained immediately after mixing with MCLs, which was sufficient for magnetic cell manipulation. The amount of label increased within 24 h depending on cell type, although in all cases it decreased along with cell doubling, indicating that the labeling potential of MCLs was limited. The role of free MCLs not involved in labeling was also investigated; MCLs' role was found to be a supportive one that maximized the manipulation performance up to 100%. We also determined optimum conditions to manipulate adherent cells by MCL labeling using the MCL dispersed in trypsin solution. Considering labeling feasibility and practical performance with 10(3)-10(5) cells for personalized cell processing, we determined that 10 microg/ml of label without incubation time (0 h incubation) was the universal MCL-labeling condition. We propose the optimum specifications for a device to be combined with this method. 2010. Published by Elsevier B.V.
An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis.
Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar
2015-12-01
Growth arrested 3T3 cells have been used as feeder cells in human epidermal keratinocyte cultures to produce cultured epidermal autografts for the treatment of burns. The feeder cells were ideally growth-arrested by gamma-irradiation. Alternatively, growth arrest by mitomycin C treatment is a cost effective option. We compared the functional efficacy of these two approaches in keratinocyte cultures by colony forming efficiency, the net growth area of colonies, BrdU labeling and histological features of cultured epidermal sheets. The growth area estimation involved a semi-automated digital technique using the Adobe Photoshop and comprised of isolation and enumeration of red pixels in Rhodamine B-stained keratinocyte colonies. A further refinement of the technique led to the identification of critical steps to increasing the degree of accuracy and enabling its application as an extension of colony formation assay. The results on feeder cell functionality revealed that the gamma irradiated feeders influenced significantly higher colony forming efficiency and larger growth area than the mitomycin C treated feeders. The BrdU labeling study indicated significant stimulation of the overall keratinocyte proliferation by the gamma irradiated feeders. The cultured epidermal sheets produced by gamma feeders were relatively thicker than those produced by mitomycin C feeders. We discussed the clinical utility of mitomycin C feeders from the viewpoint of cost-effective burn care in developing countries. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Sugiki, Toshihiko; Furuita, Kyoko; Fujiwara, Toshimichi; Kojima, Chojiro
2018-06-20
Amino acid selective isotope labeling is an important nuclear magnetic resonance technique, especially for larger proteins, providing strong bases for the unambiguous resonance assignments and information concerning the structure, dynamics, and intermolecular interactions. Amino acid selective 15 N labeling suffers from isotope dilution caused by metabolic interconversion of the amino acids, resulting in isotope scrambling within the target protein. Carbonyl 13 C atoms experience less isotope scrambling than the main-chain 15 N atoms do. However, little is known about the side-chain 13 C atoms. Here, the 13 C scrambling profiles of the Cα and side-chain carbons were investigated for 15 N scrambling-prone amino acids, such as Leu, Ile, Tyr, Phe, Thr, Val, and Ala. The level of isotope scrambling was substantially lower in 13 Cα and 13 C side-chain labeling than in 15 N labeling. We utilized this reduced scrambling-prone character of 13 C as a simple and efficient method for amino acid selective 13 C labeling using an Escherichia coli cold-shock expression system and high-cell density fermentation. Using this method, the 13 C labeling efficiency was >80% for Leu and Ile, ∼60% for Tyr and Phe, ∼50% for Thr, ∼40% for Val, and 30-40% for Ala. 1 H- 15 N heteronuclear single-quantum coherence signals of the 15 N scrambling-prone amino acid were also easily filtered using 15 N-{ 13 Cα} spin-echo difference experiments. Our method could be applied to the assignment of the 55 kDa protein.
Xu, Hongwei; Dong, Biao; Xiao, Qiaoqin; Sun, Xueke; Zhang, Xinran; Lyu, Jiekai; Yang, Yudan; Xu, Lin; Bai, Xue; Zhang, Shuang; Song, Hongwei
2017-09-13
Artificial fractal structures have attracted considerable scientific interest in circulating tumor cells (CTCs) detection and capture, which plays a pivotal role in the diagnosis and prognosis of cancer. Herein, we designed a bionic TiO 2 inverse opal photonic crystal (IOPC) structure for highly efficient immunocapture of CTCs by combination of a magnetic Fe 3 O 4 @C6@silane nanoparticles with anti-EpCAM (antiepithelial cell adhesion molecule) and microchannel structure. Porous structure and dimension of IOPC TiO 2 can be precisely controlled for mimicking cellular components, and anti-EpCAM antibody was further modified on IOPC interface by conjugating with polydopamine (PDA). The improvement of CTCs capture efficiency reaches a surprising factor of 20 for the IOPC interface compared to that on flat glass, suggesting that the IOPCs are responsible for the dramatic enhancement of the capture efficiency of MCF-7 cells. IOPC substrate with pore size of 415 nm leads to the optimal CTCs capture efficiency of 92% with 1 mL/h. Besides the cell affinity, IOPCs also have the advantage of light scattering property which can enhance the excitation and emission light of fluorescence labels, facilitating the real-time monitoring of CTCs capture. The IOPC-based platform demonstrates excellent performance in CTCs capture, which will take an important step toward specific recognition of disease-related rare cells.
Shen, Wei-Bin; Plachez, Celine; Chan, Amanda; Yarnell, Deborah; Puche, Adam C; Fishman, Paul S; Yarowsky, Paul
2013-01-01
Ultrasmall superparamagnetic iron-oxide particles (USPIOs) loaded into stem cells have been suggested as a way to track stem cell transplantation with magnetic resonance imaging, but the labeling, and post-labeling proliferation, viability, differentiation, and retention of USPIOs within the stem cells have yet to be determined for each type of stem cell and for each type of USPIO. Molday ION Rhodamine B™ (BioPAL, Worcester, MA, USA) (MIRB) has been shown to be a USPIO labeling agent for mesenchymal stem cells, glial progenitor cells, and stem cell lines. In this study, we have evaluated MIRB labeling in human neuroprogenitor cells and found that human neuroprogenitor cells are effectively labeled with MIRB without use of transfection reagents. Viability, proliferation, and differentiation properties are unchanged between MIRB-labeled neuroprogenitors cells and unlabeled cells. Moreover, MIRB-labeled human neuroprogenitor cells can be frozen, thawed, and replated without loss of MIRB or even without loss of their intrinsic biology. Overall, those results show that MIRB has advantageous properties that can be used for cell-based therapy. PMID:24348036
Ultrashort laser pulse cell manipulation using nano- and micro- materials
NASA Astrophysics Data System (ADS)
Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Diebold, Eric; Mazur, Eric; Bintig, Willem; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo; Junghanß, Christian; Lubatschowski, Holger; Heisterkamp, Alexander
2010-08-01
The delivery of extra cellular molecules into cells is essential for cell manipulation. For this purpose genetic materials (DNA/RNA) or proteins have to overcome the impermeable cell membrane. To increase the delivery efficiency and cell viability of common methods different nano- and micro material based approaches were applied. To manipulate the cells, the membrane is in contact with the biocompatible material. Due to a field enhancement of the laser light at the material and the resulting effect the cell membrane gets perforated and extracellular molecules can diffuse into the cytoplasm. Membrane impermeable dyes, fluorescent labelled siRNA, as well as plasmid vectors encoded for GFP expression were used as an indicator for successful perforation or transfection, respectively. Dependent on the used material, perforation efficiencies over 90 % with a cell viability of about 80 % can be achieved. Additionally, we observed similar efficiencies for siRNA transfection. Due to the larger molecule size and the essential transport of the DNA into the nucleus cells are more difficult to transfect with GFP plasmid vectors. Proof of principle experiments show promising and adequate efficiencies by applying micro materials for plasmid vector transfection. For all methods a weakly focused fs laser beam is used to enable a high manipulation throughput for adherent and suspension cells. Furthermore, with these alternative optical manipulation methods it is possible to perforate the membrane of sensitive cell types such as primary and stem cells with a high viability.
Magnetic manipulation device for the optimization of cell processing conditions.
Ito, Hiroshi; Kato, Ryuji; Ino, Kosuke; Honda, Hiroyuki
2010-02-01
Variability in human cell phenotypes make it's advancements in optimized cell processing necessary for personalized cell therapy. Here we propose a strategy of palm-top sized device to assist physically manipulating cells for optimizing cell preparations. For the design of such a device, we combined two conventional approaches: multi-well plate formatting and magnetic cell handling using magnetite cationic liposomes (MCLs). From our previous works, we showed the labeling applications of MCL on adhesive cells for various tissue engineering approaches. To feasibly transfer cells in multi-well plate, we here evaluated the magnetic response of MCL-labeled suspension type cells. The cell handling performance of Jurkat cells proved to be faster and more robust compared to MACS (Magnetic Cell Sorting) bead methods. To further confirm our strategy, prototype palm-top sized device "magnetic manipulation device (MMD)" was designed. In the device, the actual cell transportation efficacy of Jurkat cells was satisfying. Moreover, as a model of the most distributed clinical cell processing, primary peripheral blood mononuclear cells (PBMCs) from different volunteers were evaluated. By MMD, individual PBMCs indicated to have optimum Interleukin-2 (IL-2) concentrations for the expansion. Such huge differences of individual cells indicated that MMD, our proposing efficient and self-contained support tool, could assist the feasible and cost-effective optimization of cell processing in clinical facilities. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Design of biomimetic vascular grafts with magnetic endothelial patterning.
Fayol, Delphine; Le Visage, Catherine; Ino, Julia; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire
2013-01-01
The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.
Micromagnetic Cancer Cell Immobilization and Release for Real-Time Single Cell Analysis
NASA Astrophysics Data System (ADS)
Jaiswal, Devina; Rad, Armin Tahmasbi; Nieh, Mu-Ping; Claffey, Kevin P.; Hoshino, Kazunori
2017-04-01
Understanding the interaction of live cells with macromolecules is crucial for designing efficient therapies. Considering the functional heterogeneity found in cancer cells, real-time single cell analysis is necessary to characterize responses. In this study, we have designed and fabricated a microfluidic channel with patterned micromagnets which can temporarily immobilize the cells during analysis and release them after measurements. The microchannel is composed of plain coverslip top and bottom panels to facilitate easy microscopic observation and undisturbed application of analytes to the cells. Cells labeled with functionalized magnetic beads were immobilized in the device with an efficiency of 90.8±3.6%. Since the micromagnets are made of soft magnetic material (Ni), they released cells when external magnetic field was turned off from the channel. This allows the reuse of the channel for a new sample. As a model drug analysis, the immobilized breast cancer cells (MCF7) were exposed to fluorescent lipid nanoparticles and association and dissociation were measured through fluorescence analysis. Two concentrations of nanoparticles, 0.06 μg/ml and 0.08 μg/ml were tested and time lapse images were recorded and analyzed. The microfluidic device was able to provide a microenvironment for sample analysis, making it an efficient platform for real-time analysis.
McAtee, Allison G; Jazmin, Lara J; Young, Jamey D
2015-12-01
Isotope labeling experiments (ILEs) and (13)C flux analysis provide actionable information for metabolic engineers to identify knockout, overexpression, and/or media optimization targets. ILEs have been used in both academic and industrial labs to increase product formation, discover novel metabolic functions in previously uncharacterized organisms, and enhance the metabolic efficiency of host cell factories. This review highlights specific examples of how ILEs have been used in conjunction with enzyme or metabolic engineering to elucidate host cell metabolism and improve product titer, rate, or yield in a directed manner. We discuss recent progress and future opportunities involving the use of ILEs and (13)C flux analysis to characterize non-model host organisms and to identify and subsequently eliminate wasteful byproduct pathways or metabolic bottlenecks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optically enhanced acoustophoresis
NASA Astrophysics Data System (ADS)
McDougall, Craig; O'Mahoney, Paul; McGuinn, Alan; Willoughby, Nicholas A.; Qiu, Yongqiang; Demore, Christine E. M.; MacDonald, Michael P.
2017-08-01
Regenerative medicine has the capability to revolutionise many aspects of medical care, but for it to make the step from small scale autologous treatments to larger scale allogeneic approaches, robust and scalable label free cell sorting technologies are needed as part of a cell therapy bioprocessing pipeline. In this proceedings we describe several strategies for addressing the requirements for high throughput without labeling via: dimensional scaling, rare species targeting and sorting from a stable state. These three approaches are demonstrated through a combination of optical and ultrasonic forces. By combining mostly conservative and non-conservative forces from two different modalities it is possible to reduce the influence of flow velocity on sorting efficiency, hence increasing robustness and scalability. One such approach can be termed "optically enhanced acoustophoresis" which combines the ability of acoustics to handle large volumes of analyte with the high specificity of optical sorting.
Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform.
Hui, Jingjing; Bao, Lei; Li, Siqiao; Zhang, Yi; Feng, Yimei; Ding, Lin; Ju, Huangxian
2017-07-03
Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paramagnetic nanoparticles to track and quantify in vivo immune human therapeutic cells
NASA Astrophysics Data System (ADS)
Aspord, Caroline; Laurin, David; Janier, Marc F.; Mandon, Céline A.; Thivolet, Charles; Villiers, Christian; Mowat, Pierre; Madec, Anne-Marie; Tillement, Olivier; Perriat, Pascal; Louis, Cédric; Bérard, Frédéric; Marche, Patrice N.; Plumas, Joël; Billotey, Claire
2013-11-01
This study aims to investigate gadolinium-based nanoparticles (Gd-HNP) for in vitro labeling of human plasmacytoid dendritic cells (HuPDC) to allow for in vivo tracking and HuPDC quantifying using magnetic resonance imaging (MRI) following parenteral injection. Human plasmacytoid DC were labeled (LabHuPDC) with fluorescent Gd-HNP (Gd-FITC-HNP) and injected via intraperitoneal and intravenous routes in 4-5 NOD-SCID β2m-/-mice (treated mice = TM). Control mice (CM) were similarly injected with unlabeled HuPDC. In vivo 7 T MRI was performed 24 h later and all spleens were removed in order to measure Gd and fluorescence contents and identify HuPDC. Gd-FITC-HNP efficiently labeled HuPDC (0.05 to 0.1 pg per cell), without altering viability and activation properties. The magnetic resonance (MR) signal was exclusively due to HuPDC. The normalized MR splenic intensity for TM was significantly higher than for CM (p < 0.024), and highly correlated with the spleen Gd content (r = 0.97), and the number of HuPDC found in the spleen (r = 0.94). Gd-FITC-HNP allowed for in vivo tracking and HuPDC quantifying by means of MRI following parenteral injection, with very high sensitivity (<3000 cells per mm3). The safety of these new nanoparticle types must be confirmed via extensive toxicology tests including in vivo stability and biodistribution studies.This study aims to investigate gadolinium-based nanoparticles (Gd-HNP) for in vitro labeling of human plasmacytoid dendritic cells (HuPDC) to allow for in vivo tracking and HuPDC quantifying using magnetic resonance imaging (MRI) following parenteral injection. Human plasmacytoid DC were labeled (LabHuPDC) with fluorescent Gd-HNP (Gd-FITC-HNP) and injected via intraperitoneal and intravenous routes in 4-5 NOD-SCID β2m-/-mice (treated mice = TM). Control mice (CM) were similarly injected with unlabeled HuPDC. In vivo 7 T MRI was performed 24 h later and all spleens were removed in order to measure Gd and fluorescence contents and identify HuPDC. Gd-FITC-HNP efficiently labeled HuPDC (0.05 to 0.1 pg per cell), without altering viability and activation properties. The magnetic resonance (MR) signal was exclusively due to HuPDC. The normalized MR splenic intensity for TM was significantly higher than for CM (p < 0.024), and highly correlated with the spleen Gd content (r = 0.97), and the number of HuPDC found in the spleen (r = 0.94). Gd-FITC-HNP allowed for in vivo tracking and HuPDC quantifying by means of MRI following parenteral injection, with very high sensitivity (<3000 cells per mm3). The safety of these new nanoparticle types must be confirmed via extensive toxicology tests including in vivo stability and biodistribution studies. Corresponding address: Service de Médecine Nucléaire, Hôpital, Nord - CHU Saint-Etienne, Avenue Albert Raimond, 42270 Saint-Priest-en-Jarez, France. E-mail: claire.billotey@chu-st-etienne.fr
Biju, Vasudevanpillai; Muraleedharan, Damodaran; Nakayama, Ken-ichi; Shinohara, Yasuo; Itoh, Tamitake; Baba, Yoshinobu; Ishikawa, Mitsuru
2007-09-25
We identified an insect neuropeptide, namely, allatostatin 1 from Drosophila melanogaster, that transfects living NIH 3T3 and A431 human epidermoid carcinoma cells and transports quantum dots (QDs) inside the cytoplasm and even the nucleus of the cells. QD-conjugated biomolecules are valuable resources for visualizing the structures and functions of biological systems both in vivo and in vitro. Here, we selected allatostatin 1, Ala-Pro-Ser-Gly-Ala-Gln-Arg-Leu-Tyr-Gly-Phe-Gly-Leu-NH2, conjugated to streptavidin-coated CdSe-ZnS QDs. This was followed by investigating the transfection of live mammalian cells with QD-allatostatin conjugates, the transport of QDs by allatostatin inside the nucleus, and the proliferation of cells in the presence of allatostatin. Also, on the basis of dose-dependent proliferation of cells in the presence of allatostatin we identified that allatostatin is not cytotoxic when applied at nanomolar levels. Considering the sequence similarity between the receptors of allatostatin in D. melanogaster and somatostatin/galanin in mammalian cells, we expected interactions and localization of allatostatin to somatostatin/galanin receptors on the membranes of 3T3 and A431 cells. However, with QD conjugation we identified that the peptide was delivered inside the cells and localized mainly to the cytoplasm, microtubules, and nucleus. These results indicate that allatostatin is a promising candidate for high-efficiency cell transfection and nucleus-specific cell labeling. Also, the transport property of allatostatin is promising with respect to label/drug/gene delivery and high contrast imaging of live cells and cell organelles. Another promising application of allatostatin is that the transport of QDs inside the nucleus would lift the limit of general photodynamic therapy to nucleus-specific photodynamic therapy, which is expected to be more efficient than photosensitization at the cell membrane or in the cytoplasm as a result of the short lifetime of singlet oxygen.
Deslée, Gaëtan; Charbonnier, Anne-Sophie; Hammad, Hamida; Angyalosi, Gerhild; Tillie-Leblond, Isabelle; Mantovani, Alberto; Tonnel, André-Bernard; Pestel, Joël
2002-11-01
Immature dendritic cells (DCs) take up antigens in peripheral tissues and, after antigen processing, mature to efficiently stimulate T cells in secondary lymph nodes. In allergic airway diseases DCs have been shown to be involved in the induction and maintenance of a T(H)2-type profile. The present study was undertaken to determine pathways of Der p 1 (a house dust mite allergen) uptake by human DCs and to compare Der p 1 uptake between DCs from patients with house dust mite allergy and DCs from healthy donors. Monocyte-derived DCs (MD-DCs) were obtained from patients with house dust mite allergy (n = 13) and healthy donors (n = 11). Der p 1 was labeled with rhodamine. Der p 1 uptake by MD-DCs was analyzed by means of flow cytometry and confocal microscopy. Rhodamine- labeled Der p 1 was demonstrated to be taken up by MD-DCs in a dose-, time-, and temperature- dependent manner. The involvement of the mannose receptor (MR) in the Der p 1 uptake was demonstrated by using (1) inhibitors of the MR- mediated endocytosis (mannan and blocking anti-MR mAb), which inhibited the Der p 1 uptake from 40 % to 50 %, and (2) confocal microscopy showing the colocalization of rhodamine-labeled Der p 1 with FITC-dextran. Interestingly, compared with DCs from healthy donors, DCs from allergic patients expressed more MR and were more efficient in Der p 1 uptake. These results suggest that the MR could play a key role in the Der p 1 allergen uptake by DCs and in the pathogenesis of allergic diseases in dust mite -sensitive patients.
Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence.
de Jong, Ebbing P; Lucy, Charles A
2006-05-01
Fluorescence detectors are ever more frequently being used with light-emitting diodes (LEDs) as the light source. Technological advances in the solid-state lighting industry have produced LEDs which are also suitable tools in analytical measurements. LEDs are now available which deliver 700 mW of radiometric power. While this greater light power can increase the fluorescence signal, it is not trivial to make proper use of this light. This new generation of LEDs has a large emitting area and a highly divergent beam. This presents a classic problem in optics where one must choose between either a small focused light spot, or high light collection efficiency. We have selected for light collection efficiency, which yields a light spot somewhat larger than the emitting area of the LED. This light is focused onto a flow cell. Increasing the detector cell internal diameter (i.d.) produces gains in (sensitivity)3. However, since the detector cell i.d. is smaller than the LED spot size, scattering of excitation light towards the detector remains a significant source of background signal. This can be minimized through the use of spectral filters and spatial filters in the form of pinholes. The detector produced a limit of detection (LOD) of 3 pM, which is roughly three orders of magnitude lower than other reports of LED-based fluorescence detectors. Furthermore, this LOD comes within a factor of six of much more expensive laser-based fluorescence systems. This detector has been used to monitor a separation from a gel filtration column of fluorescently labeled BSA from residual labeling reagent. The LOD of fluorescently labeled BSA is 25 pM.
NASA Astrophysics Data System (ADS)
Bose, S.; Singh, R.; Hollatz, M. H.; Lee, C.-H.; Karp, J.; Karnik, R.
2012-02-01
Cell sorting serves an important role in clinical diagnosis and biological research. Most of the existing microscale sorting techniques are either non-specific to antigen type or rely on capturing cells making sample recovery difficult. We demonstrate a simple; yet effective technique for isolating cells in an antigen specific manner by using transient interactions of the cell surface antigens with asymmetric receptor patterned surface. Using microfluidic devices incorporating P-selectin patterns we demonstrate separation of HL60 cells from K562 cells. We achieved a sorting purity above 90% and efficiency greater than 85% with this system. We also present a mathematical model incorporating flow mediated and adhesion mediated transport of cells in the microchannel that can be used to predict the performance of these devices. Lastly, we demonstrate the clinical significance of the method by demonstrating single step separation of neutrophils from whole blood. When whole blood is introduced in the device, the granulocyte population gets separated exclusively yielding neutrophils of high purity (<10% RBC contamination). To our knowledge, this is the first ever demonstration of continuous label free sorting of neutrophils from whole blood. We believe this technology will be useful in developing point-of-care diagnostic devices and also for a host of cell sorting applications.
Megger, Dominik A; Pott, Leona L; Rosowski, Kristin; Zülch, Birgit; Tautges, Stephanie; Bracht, Thilo; Sitek, Barbara
2017-01-01
Tandem mass tags (TMT) are usually introduced at the levels of isolated proteins or peptides. Here, for the first time, we report the labeling of whole cells and a critical evaluation of its performance in comparison to conventional labeling approaches. The obtained results indicated that TMT protein labeling using intact cells is generally possible, if it is coupled to a subsequent enrichment using anti-TMT antibody. The quantitative results were similar to those obtained after labeling of isolated proteins and both were found to be slightly complementary to peptide labeling. Furthermore, when using NHS-based TMT, no specificity towards cell surface proteins was observed in the case of cell labeling. In summary, the conducted study revealed first evidence for the general possibility of TMT cell labeling and highlighted limitations of NHS-based labeling reagents. Future studies should therefore focus on the synthesis and investigation of membrane impermeable TMTs to increase specificity towards cell surface proteins.
Copper-free click chemistry in living animals
Chang, Pamela V.; Prescher, Jennifer A.; Sletten, Ellen M.; Baskin, Jeremy M.; Miller, Isaac A.; Agard, Nicholas J.; Lo, Anderson; Bertozzi, Carolyn R.
2010-01-01
Chemical reactions that enable selective biomolecule labeling in living organisms offer a means to probe biological processes in vivo. Very few reactions possess the requisite bioorthogonality, and, among these, only the Staudinger ligation between azides and triarylphosphines has been employed for direct covalent modification of biomolecules with probes in the mouse, an important model organism for studies of human disease. Here we explore an alternative bioorthogonal reaction, the 1,3-dipolar cycloaddition of azides and cyclooctynes, also known as “Cu-free click chemistry,” for labeling biomolecules in live mice. Mice were administered peracetylated N-azidoacetylmannosamine (Ac4ManNAz) to metabolically label cell-surface sialic acids with azides. After subsequent injection with cyclooctyne reagents, glycoconjugate labeling was observed on isolated splenocytes and in a variety of tissues including the intestines, heart, and liver, with no apparent toxicity. The cyclooctynes tested displayed various labeling efficiencies that likely reflect the combined influence of intrinsic reactivity and bioavailability. These studies establish Cu-free click chemistry as a bioorthogonal reaction that can be executed in the physiologically relevant context of a mouse. PMID:20080615
BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks.
Yan, Winston X; Mirzazadeh, Reza; Garnerone, Silvano; Scott, David; Schneider, Martin W; Kallas, Tomasz; Custodio, Joaquin; Wernersson, Erik; Li, Yinqing; Gao, Linyi; Federova, Yana; Zetsche, Bernd; Zhang, Feng; Bienko, Magda; Crosetto, Nicola
2017-05-12
Precisely measuring the location and frequency of DNA double-strand breaks (DSBs) along the genome is instrumental to understanding genomic fragility, but current methods are limited in versatility, sensitivity or practicality. Here we present Breaks Labeling In Situ and Sequencing (BLISS), featuring the following: (1) direct labelling of DSBs in fixed cells or tissue sections on a solid surface; (2) low-input requirement by linear amplification of tagged DSBs by in vitro transcription; (3) quantification of DSBs through unique molecular identifiers; and (4) easy scalability and multiplexing. We apply BLISS to profile endogenous and exogenous DSBs in low-input samples of cancer cells, embryonic stem cells and liver tissue. We demonstrate the sensitivity of BLISS by assessing the genome-wide off-target activity of two CRISPR-associated RNA-guided endonucleases, Cas9 and Cpf1, observing that Cpf1 has higher specificity than Cas9. Our results establish BLISS as a versatile, sensitive and efficient method for genome-wide DSB mapping in many applications.
Eichorst, Stephanie A.; Strasser, Florian; Woyke, Tanja; ...
2015-08-31
The combined approach of incubating environmental samples with stable isotope-labeled substrates followed by single-cell analyses through high-resolution secondary ion mass spectrometry (NanoSIMS) or Raman microspectroscopy provides insights into the in situ function of microorganisms. This approach has found limited application in soils presumably due to the dispersal of microbial cells in a large background of particles. We developed a pipeline for the efficient preparation of cell extracts from soils for subsequent single-cell methods by combining cell detachment with separation of cells and soil particles followed by cell concentration. The procedure was evaluated by examining its influence on cell recoveries andmore » microbial community composition across two soils. This approach generated a cell fraction with considerably reduced soil particle load and of sufficient small size to allow single-cell analysis by NanoSIMS, as shown when detecting active N2-fixing and cellulose-responsive microorganisms via 15N2 and 13C-UL-cellulose incubations, respectively. The same procedure was also applicable for Raman microspectroscopic analyses of soil microorganisms, assessed via microcosm incubations with a 13C-labeled carbon source and deuterium oxide (D2O, a general activity marker). Lastly, the described sample preparation procedure enables single-cell analysis of soil microorganisms using NanoSIMS and Raman microspectroscopy, but should also facilitate single-cell sorting and sequencing.« less
NASA Astrophysics Data System (ADS)
Sun, Ming-Y. i.; Aller, Robert C.; Lee, Cindy; Wakeham, Stuart G.
2002-06-01
Degradation patterns of sedimentary algal lipids were tracked with time under variable redox treatments designed to mimic conditions in organic-rich, bioturbated deposits. Uniformly 13C-labeled algae were mixed with Long Island Sound surface muddy sediments and exposed to different redox regimes, including continuously oxic and anoxic, and oscillated oxic: anoxic conditions. Concentrations of several 13C-labeled algal fatty acids (16:1, 16:0 and 18:1), phytol and an alkene were measured serially. Results showed a large difference (∼10×) in first-order degradation rate constants of cell-associated lipids between continuously oxic and anoxic conditions. Exposure to oxic conditions increased the degradation of cell-associated lipids, and degradation rate constants were positive functions (linear or nonlinear) of the fraction of time sediments were oxic. Production of two new 13C-labeled compounds (iso-15:0 fatty acid and hexadecanol) further indicated that redox conditions and oxic: anoxic oscillations strongly affect microbial degradation of algal lipids and net synthesis of bacterial biomass. Production of 13C-labeled iso-15:0 fatty acid (a bacterial biomarker) was inversely proportional to the fraction of time sediments were oxic, rapidly decreasing after 10 days of incubation under oxic and frequently oscillated conditions. Turnover of bacterial biomass was faster under continuously or occasionally oxic conditions than under continuously anoxic conditions. 13C-labeled hexadecanol, an intermediate degradation product, accumulated under anoxic conditions but not under oxic or periodically oxic conditions. The frequency of oxic: anoxic oscillation clearly alters both the rate and pathways of lipid degradation in surficial sediments. Terminal degradation efficiency and lipid products from degradation of algal material depend on specific patterns of redox fluctuations.
Wen, Ming; Li, Bibo; Ouyang, Yu; Luo, Yi; Li, Shaolin
2009-06-01
Molecular imaging of tumor antisense gene techniques have been applied to the study of magnetic resonance (MR) gene imaging associated with malignant tumors. In this study, we designed, synthesized, and tested a novel molecular probe, in which the antisense oligodeoxynucleotide (ASODN) was labeled with superparamagnetic iron oxide (SPIO), and its efficiency was examined by in vitro MR imaging after SK-Br-3 mammary carcinoma cell lines (oncocytes) transfection. The SPIO-labeled ASODN probe was prepared through SPIO conjugated to ASODN using a chemical cross linking method. Its morphology and size were detected by atomic force microscope, size distribution were detected by laser granulometer, the conjugating rate and biological activity were determined by high performance liquid chromatography, and the stability was determined by polyacrylamide gel electrophoresis. After that, the probes were transfected into the SK-Br-3 oncocytes, cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic absorption spectrometry, and the signal change of the transfected cells was observed and measured using MR imaging. The morphology of the SPIO-labeled ASODN probe was mostly spherical with well-distributed scattering, and the diameters were between 25 and 40 nm (95%) by atomic force microscope and laser granulometer, the conjugating rate of the probe was 99%. Moreover, this probe kept its activity under physiological conditions and could conjugate with antisense oligodeoxynucleotide. In addition, light microscopy revealed an intracellular uptake of iron oxides in the cytosol and electron microscopic studies revealed a lysosomal deposition of iron oxides in the transfected SK-Br-3 oncocytes by antisense probes, some of them gathered stacks, and the iron content of the group of transfected SK-Br-3 oncocytes by antisense probe is significantly higher (18.37 +/- 0.42 pg) than other contrast groups, the MR imaging showed that transfected SK-Br-3 oncocytes by antisense probe had the lowest signal of all. The SPIO-labeled ASODN probe shows unique features including well-distributed spherical morphology, high conjugating rate and loading efficiency, and the signal intensity of SPIO-labeled ASODN-transfected SK-Br-3 oncocytes is reduced in MR imaging. These results indicate that the SPIO-labeled ASODN probe is potentially useful as a MR targeting contrast enhancing agent to specifically diagnose tumors which had over-expression of the c-erbB2 oncogene at an early stage.
The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells
Henning, Tobias D; Sutton, Elizabeth J; Kim, Anne; Golovko, Daniel; Horvai, Andrew; Ackerman, Larry; Sennino, Barbara; McDonald, Donald; Lotz, Jeffrey; Daldrup-Link, Heike E
2010-01-01
For in vivo applications of magnetically labeled stem cells, biological effects of the labeling procedure have to be precluded. This study evaluates the effect of different Ferucarbotran cell labeling protocols on chondrogenic differentiation of human mesenchymal stem cells (hMSC) as well as their implications for MR imaging. hMSC were labeled with Ferucarbotran using various protocols: Cells were labeled with 100μg Fe/ml for 4h and 18h and additional samples were cultured for 6 or 12 days after the 18-hour labeling. Supplementary samples were labeled by transfection with protamine sulfate. Iron uptake was quantified by ICP-spectrometry and labeled cells were investigated by transmission electron microscopy and by immunostaining for ferucarbotran. The differentiation potential of labeled cells was compared to unlabeled controls by staining with alcian blue and hematoxylin & eosin, then quantified by measurements of glucosaminoglycans (GAG). Contrast agent effect at 3T was investigated on day 1 and day 14 of chondrogenic differentiation by measuring signal-to-noise ratios on T2-SE and T2*-GE-sequences. Iron uptake was significant for all labeling protocols (p< 0.05). The uptake was highest after transfection with protamine sulfate (25.65 ± 3.96 pg/cell) and lowest at an incubation time of 4h without transfection (3.21 ± 0.21 pg/cell). While chondrogenic differentiation was decreased using all labeling protocols, the decrease in GAG synthesis was not significant after labeling for 4h without transfection. After labeling by simple incubation, chondrogenesis was found to be dose-dependent. MR imaging showed markedly lower SNR values of all labeled cells compared to the unlabeled controls. This contrast agent effect persisted for 14 days and the duration of differentiation. Magnetic labeling of hMSC with ferucarbotran inhibits chondrogenesis in a dose-dependent manner when using simple incubation techniques. When decreasing the incubation time to 4h, inhibition of chondrogenesis was not significant. PMID:19670250
Single-neuron labeling with inducible cre-mediated knockout in transgenic mice
Young, Paul; Qiu, Li; Wang, Dongqing; Zhao, Shengli; Gross, James; Feng, Guoping
2011-01-01
To facilitate functional analysis of neuronal connectivity in a mammalian nervous system tightly packed with billions of cells, we developed a new technique that allows inducible genetic manipulations within fluorescently labeled single neurons in mice. We term this technique SLICK for Single-neuron Labeling with Inducible Cre-mediated Knockout. SLICK is achieved by co-expressing a drug-inducible form of cre recombinase and a fluorescent protein within the same small subsets of neurons. Thus, SLICK combines the powerful cre recombinase system for conditional genetic manipulation and the fluorescent labeling of single neurons for imaging. We demonstrate efficient inducible genetic manipulation in several types of neurons using SLICK. Furthermore, we apply SLICK to eliminate synaptic transmission in a small subset of neuromuscular junctions. Our results provide evidence for the long-term stability of inactive neuromuscular synapses in adult animals. More broadly, these studies demonstrate a cre-LoxP compatible system for dissecting gene functions in single identifiable neurons. PMID:18454144
Hofmann, Andreas; Wenzel, Daniela; Becher, Ulrich M; Freitag, Daniel F; Klein, Alexandra M; Eberbeck, Dietmar; Schulte, Maike; Zimmermann, Katrin; Bergemann, Christian; Gleich, Bernhard; Roell, Wilhelm; Weyh, Thomas; Trahms, Lutz; Nickenig, Georg; Fleischmann, Bernd K; Pfeifer, Alexander
2009-01-06
Targeting of viral vectors is a major challenge for in vivo gene delivery, especially after intravascular application. In addition, targeting of the endothelium itself would be of importance for gene-based therapies of vascular disease. Here, we used magnetic nanoparticles (MNPs) to combine cell transduction and positioning in the vascular system under clinically relevant, nonpermissive conditions, including hydrodynamic forces and hypothermia. The use of MNPs enhanced transduction efficiency of endothelial cells and enabled direct endothelial targeting of lentiviral vectors (LVs) by magnetic force, even in perfused vessels. In addition, application of external magnetic fields to mice significantly changed LV/MNP biodistribution in vivo. LV/MNP-transduced cells exhibited superparamagnetic behavior as measured by magnetorelaxometry, and they were efficiently retained by magnetic fields. The magnetic interactions were strong enough to position MNP-containing endothelial cells at the intima of vessels under physiological flow conditions. Importantly, magnetic positioning of MNP-labeled cells was also achieved in vivo in an injury model of the mouse carotid artery. Intravascular gene targeting can be combined with positioning of the transduced cells via nanomagnetic particles, thereby combining gene- and cell-based therapies.
Shen, Wei-Bin; Vaccaro, Dennis E; Fishman, Paul S; Groman, Ernest V; Yarowsky, Paul
2016-05-01
This is the first report of the synthesis of a new nanoparticle, sans iron oxide rhodamine B (SIRB), an example of a new class of nanoparticles. SIRB is designed to provide all of the cell labeling properties of the ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle Molday ION Rhodamine B (MIRB) without containing the iron oxide core. MIRB was developed to label cells and allow them to be tracked by MRI or to be manipulated by magnetic gradients. SIRB possesses a similar size, charge and cross-linked dextran coating as MIRB. Of great interest is understanding the biological and physiological changes in cells after they are labeled with a USPIO. Whether these effects are due to the iron oxide buried within the nanoparticle or to the surface coating surrounding the iron oxide core has not been considered previously. MIRB and SIRB represent an ideal pairing of nanoparticles to identify nanoparticle anatomy responsible for post-labeling cytotoxicity. Here we report the effects of SIRB labeling on the SH-SY5Y neuroblastoma cell line and primary human neuroprogenitor cells (hNPCs). These effects are contrasted with the effects of labeling SH-SY5Y cells and hNPCs with MIRB. We find that SIRB labeling, like MIRB labeling, (i) occurs without the use of transfection reagents, (ii) is packaged within lysosomes distributed within cell cytoplasm, (iii) is retained within cells with no loss of label after cell storage, and (iv) does not alter cellular viability or proliferation, and (v) SIRB labeled hNPCs differentiate normally into neurons or astrocytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Otake, Saya; Okuro, Kou; Bochicchio, Davide; Pavan, Giovanni M; Aida, Takuzo
2018-05-24
FL NBD-BAM PEG2k , bearing a nitrobenzoxadiazole (NBD) unit and an oleyl terminus conjugated via a poly(ethylene glycol) (PEG) spacer ( M n = 2,000), was designed to fluorescently label cell membranes by docking its hydrophobic oleyl terminus. During laser scanning microscopy in a minimal essential medium (MEM), human hepatocellular carcinoma Hep3B cells labeled with FL NBD-BAM PEG2k appeared to undergo optoporation at their plasma membrane. We confirmed this unprecedented possibility by a series of cellular uptake experiments using negatively charged and therefore membrane-impermeable quantum dots (QDs; D h = 4.7 nm). Detailed studies indicated that the photoexcited NBD unit can generate singlet oxygen ( 1 O 2 ), which oxidizes the constituent phospholipids to transiently deteriorate the cell membrane. Reference membrane modifiers FL NBD-Oleyl and FL NBD-BAM PEG8k having shorter or longer hydrophilic spacers between the NBD and oleyl units showed a little or substantially no optoporation. For understanding these results, one must consider the following contradictory factors: (1) The photosensitized 1 O 2 generation efficiently occurs only when the NBD unit is in aqueous media, and (2) the lifetime of 1 O 2 in aqueous media is very short (3.0-3.5 μs). As supported experimentally and computationally, the hydrophilic spacer length of FL NBD-BAM PEG2k is optimal for compromising these factors. Further to note, the optoporation using FL NBD-BAM PEG2k is not accompanied by cytotoxicity.
Stem Cell Monitoring with a Direct or Indirect Labeling Method.
Kim, Min Hwan; Lee, Yong Jin; Kang, Joo Hyun
2016-12-01
The molecular imaging techniques allow monitoring of the transplanted cells in the same individuals over time, from early localization to the survival, migration, and differentiation. Generally, there are two methods of stem cell labeling: direct and indirect labeling methods. The direct labeling method introduces a labeling agent into the cell, which is stably incorporated or attached to the cells prior to transplantation. Direct labeling of cells with radionuclides is a simple method with relatively fewer adverse events related to genetic responses. However, it can only allow short-term distribution of transplanted cells because of the decreasing imaging signal with radiodecay, according to the physical half-lives, or the signal becomes more diffuse with cell division and dispersion. The indirect labeling method is based on the expression of a reporter gene transduced into the cell before transplantation, which is then visualized upon the injection of an appropriate probe or substrate. In this review, various imaging strategies to monitor the survival and behavior change of transplanted stem cells are covered. Taking these new approaches together, the direct and indirect labeling methods may provide new insights on the roles of in vivo stem cell monitoring, from bench to bedside.
Wang, Chen; Ouyang, Jun; Ye, De-Kai; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua
2012-08-07
Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.
Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il
2011-03-21
Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications. This journal is © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Taik Lim, Yong; Cho, Mi Young; Noh, Young-Woock; Chung, Jin Woong; Chung, Bong Hyun
2009-11-01
This study describes the development of near-infrared optical imaging technology for the monitoring of immunotherapeutic cell-based cancer therapy using natural killer (NK) cells labeled with fluorescent nanocrystals. Although NK cell-based immunotherapeutic strategies have drawn interest as potent preclinical or clinical methods of cancer therapy, there are few reports documenting the molecular imaging of NK cell-based cancer therapy, primarily due to the difficulty of labeling of NK cells with imaging probes. Human natural killer cells (NK92MI) were labeled with anti-human CD56 antibody-coated quantum dots (QD705) for fluorescence imaging. FACS analysis showed that the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 have no effect on the cell viability. The effect of anti-human CD56 antibody-coated QD705 labeling on the NK92MI cell function was investigated by measuring interferon gamma (IFN- γ) production and cytolytic activity. Finally, the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 showed a therapeutic effect similar to that of unlabeled NK92MI cells. Images of intratumorally injected NK92MI cells labeled with anti-human CD56 antibody-coated could be acquired using near-infrared optical imaging both in vivo and in vitro. This result demonstrates that the immunotherapeutic cells labeled with fluorescent nanocrystals can be a versatile platform for the effective tracking of injected therapeutic cells using optical imaging technology, which is very important in cell-based cancer therapies.
Earhart, Christopher M.; Hughes, Casey E.; Gaster, Richard S.; Ooi, Chin Chun; Wilson, Robert J.; Zhou, Lisa Y.; Humke, Eric W.; Xu, Lingyun; Wong, Dawson J.; Willingham, Stephen B.; Schwartz, Erich J.; Weissman, Irving L.; Jeffrey, Stefanie S.; Neal, Joel W.; Rohatgi, Rajat; Wakelee, Heather A.; Wang, Shan X.
2014-01-01
Detection and characterization of circulating tumor cells (CTCs) may reveal insights into the diagnosis and treatment of malignant disease. Technologies for isolating CTCs developed thus far suffer from one or more limitations, such as low throughput, inability to release captured cells, and reliance on expensive instrumentation for enrichment or subsequent characterization. We report a continuing development of a magnetic separation device, the magnetic sifter, which is a miniature microfluidic chip with a dense array of magnetic pores. It offers high efficiency capture of tumor cells, labeled with magnetic nanoparticles, from whole blood with high throughput and efficient release of captured cells. For subsequent characterization of CTCs, an assay, using a protein chip with giant magnetoresistive nanosensors, has been implemented for mutational analysis of CTCs enriched with the magnetic sifter. The use of these magnetic technologies, which are separate devices, may lead the way to routine preparation and characterization of “liquid biopsies” from cancer patients. PMID:23969419
Becker, S; Klenk, H D; Mühlberger, E
1996-11-01
The surface protein (GP) of Marburg virus (MBG) is synthesized as a 90-kDa precursor protein which is cotranslationally modified by the addition of high-mannose sugars (140 kDa). This step is followed by the conversion of the N-linked sugars to endoglycosidase H (endo H)-resistant species and the addition of O-linked oliosaccharides leading to a mature protein of 170-200 kDa approximately 30 min after pulse labelling. The mature form of GP is efficiently transported to the plasma membrane. GP synthesized using the T7 polymerase-driven vaccinia virus expression system was transported with essentially the same kinetics as the authentic GP. However, the protein that is shown to appear 30 min after pulse labeling at the plasma membrane was slighly smaller (160 kDa) than GP incorporated into the virions (170 kDa). Using a recombinant baculovirus, GP was expressed at high levels in insect cells. Three different species could be identified: a 90-kDa unglycosylated GP localized in the cytoplasm and two 140-kDa glycosylated proteins. Characterization of the glycosylated GPs revealed that processing of the oligosaccharides of GP was less efficient in insect cells than in mammalian cells. The majority of GP remained endo H sensitive containing high-mannose type N-linked glycans, whereas only a small fraction became endo H resistant carrying processed N-glycans and O-glycans. Tunicamycin treatment of the GP-expressing cells demonstrated that N-glycosylation is essential for the transport of the MBG surface protein.
Metzele, Roxana; Alt, Christopher; Bai, Xiaowen; Yan, Yasheng; Zhang, Zhi; Pan, Zhizhong; Coleman, Michael; Vykoukal, Jody; Song, Yao-Hua; Alt, Eckhard
2011-03-01
Various types of stem cells have been shown to have beneficial effects on cardiac function. It is still debated whether fusion of injected stem cells with local resident cardiomyocytes is one of the mechanisms. To better understand the role of fusion in stem cell-based myocardial regeneration, the present study was designed to investigate the fate of human adipose tissue-derived stem cells (hASCs) fused with neonatal rat cardiomyocytes in vitro. hASCs labeled with the green fluorescent probe Vybrant DiO were cocultured with neonatal rat cardiomyocytes labeled with the red fluorescent probe Vybrant DiI and then treated with fusion-inducing hemagglutinating virus of Japan (HVJ). Cells that incorporated both red and green fluorescent signals were considered to be hASCs that had fused with rat cardiomyocytes. Fusion efficiency was 19.86 ± 4.84% at 5 d after treatment with HVJ. Most fused cells displayed cardiomyocyte-like morphology and exhibited spontaneous rhythmic contraction. Both immunofluorescence staining and lentiviral vector labeling showed that fused cells contained separate rat cardiomyocyte and hASC nuclei. Immunofluorescence staining assays demonstrated that human nuclei in fused cells still expressed the proliferation marker Ki67. In addition, hASCs fused with rat cardiomyocytes were positive for troponin I. Whole-cell voltage-clamp analysis demonstrated action potentials in beating fused cells. RT-PCR analysis using rat- or human-specific myosin heavy chain primers revealed that the myosin heavy-chain expression in fused cells was derived from rat cardiomyocytes. Real-time PCR identified expression of human troponin T in fused cells and the presence of rat cardiomyocytes induced a cardiomyogenic protein expression of troponin T in human ASCs. This study illustrates that hASCs exhibit both stem cell (proliferation) and cardiomyocyte properties (action potential and spontaneous rhythmic beating) after fusion with rat cardiomyocytes, supporting the theory that fusion, even if artificially induced in our study, could indeed be a mechanism for cardiomyocyte renewal in the heart.
Fink, Corby; Gaudet, Jeffrey M; Fox, Matthew S; Bhatt, Shashank; Viswanathan, Sowmya; Smith, Michael; Chin, Joseph; Foster, Paula J; Dekaban, Gregory A
2018-01-12
A 19 Fluorine ( 19 F) perfluorocarbon cell labeling agent, when employed with an appropriate cellular MRI protocol, allows for in vivo cell tracking. 19 F cellular MRI can be used to non-invasively assess the location and persistence of cell-based cancer vaccines and other cell-based therapies. This study was designed to determine the feasibility of labeling and tracking peripheral blood mononuclear cells (PBMC), a heterogeneous cell population. Under GMP-compliant conditions human PBMC were labeled with a 19 F-based MRI cell-labeling agent in a manner safe for autologous re-injection. Greater than 99% of PBMC labeled with the 19 F cell-labeling agent without affecting functionality or affecting viability. The 19 F-labeled PBMC were detected in vivo in a mouse model at the injection site and in a draining lymph node. A clinical cellular MR protocol was optimized for the detection of PBMC injected both at the surface of a porcine shank and at a depth of 1.2 cm, equivalent to depth of a human lymph node, using a dual 1 H/ 19 F dual switchable surface radio frequency coil. This study demonstrates it is feasible to label and track 19 F-labeled PBMC using clinical MRI protocols. Thus, 19 F cellular MRI represents a non-invasive imaging technique suitable to assess the effectiveness of cell-based cancer vaccines.
Mongera, Alessandro; Singh, Ajeet P; Levesque, Mitchell P; Chen, Yi-Yen; Konstantinidis, Peter; Nüsslein-Volhard, Christiane
2013-02-01
At the protochordate-vertebrate transition, a new predatory lifestyle and increased body size coincided with the appearance of a true head. Characteristic innovations of this head are a skull protecting and accommodating a centralized nervous system, a jaw for prey capture and gills as respiratory organs. The neural crest (NC) is a major ontogenetic source for the 'new head' of vertebrates and its contribution to the cranial skeleton has been intensively studied in different model organisms. However, the role of NC in the expansion of the respiratory surface of the gills has been neglected. Here, we use genetic lineage labeling to address the contribution of NC to specific head structures, in particular to the gills of adult zebrafish. We generated a sox10:ER(T2)-Cre line and labeled NC cells by inducing Cre/loxP recombination with tamoxifen at embryonic stages. In juvenile and adult fish, we identified numerous established NC derivatives and, in the cranium, we precisely defined the crest/mesoderm interface of the skull roof. We show the NC origin of the opercular bones and of multiple cell types contributing to the barbels, chemosensory organs located in the mouth region. In the gills, we observed labeled primary and secondary lamellae. Clonal analysis reveals that pillar cells, a craniate innovation that mechanically supports the filaments and forms gill-specific capillaries, have a NC origin. Our data point to a crucial role for the NC in enabling more efficient gas exchange, thus uncovering a novel, direct involvement of this embryonic tissue in the evolution of respiratory systems at the protochordate-vertebrate transition.
In vitro immunotoxicity assessment of culture-derived extracellular vesicles in human monocytes
Rosas, Lucia E.; Elgamal, Ola A.; Mo, Xiaokui; Phelps, Mitch A.; Schmittgen, Thomas D.; Papenfuss, Tracey L.
2016-01-01
The potential to engineer extracellular vesicles (EV) that target specific cells and deliver a therapeutic payload has propelled a growing interest in their development as promising therapeutics. These EV are often produced from cultured cells. Very little is known about the interaction of cell culture-derived EV with cells of the immune system and their potential immunomodulatory effects. The present study evaluated potential immunotoxic effects of HEK293T-derived EV on the human monocytic cell lines THP-1 and U937. Incubation of cells with different doses of EV for 16–24 h was followed by assessment of cytotoxicity and cell function by flow cytometry. Changes in cell functionality were evaluated by the capacity of cells to phagocytize fluorescent microspheres. In addition, the internalization of labeled EV in THP-1 and U937 cells was evaluated. Exposure to EV did not affect the viability of THP-1 or U937 cells. Although lower doses of the EV increased phagocytic capacity in both cell lines, phagocytic efficiency of individual cells was not affected by EV exposure at any of the doses evaluated. This study also demonstrated that THP-1 and U937 monocytic cells are highly permissive to EV entry in a dose-response manner. These results suggest that, although HEK293T-derived EV are efficiently internalized by human monocytic cells, they do not exert a cytotoxic effect or alter phagocytic efficiency on the cell lines evaluated. PMID:27075513
Jang, Hongje; Min, Dal-Hee
2015-03-24
The polyvinylpyrrolidone (PVP)-coated spherically clustered porous gold-silver alloy nanoparticle (PVP-SPAN) was prepared by low temperature mediated, partially inhibited galvanic replacement reaction followed by silver etching process. The prepared porous nanostructures exhibited excellent photothermal conversion efficiency under irradiation of near-infrared light (NIR) and allowed a high payload of both doxorubicin (Dox) and thiolated dye-labeled oligonucleotide, DNAzyme (FDz). Especially, PVP-SPAN provided 10 times higher loading capacity for oligonucleotide than conventional hollow nanoshells due to increased pore diameter and surface-to-volume ratio. We demonstrated highly efficient chemo-thermo-gene multitherapy based on codelivery of Dox and FDz with NIR-mediated photothermal therapeutic effect using a model system of hepatitis C virus infected human liver cells (Huh7 human hepatocarcinoma cell line containing hepatitis C virus NS3 gene replicon) compared to conventional hollow nanoshells.
Han, Guangmei; Liu, Renyong; Han, Ming-Yong; Jiang, Changlong; Wang, Jianping; Du, Shuhu; Liu, Bianhua; Zhang, Zhongping
2014-12-02
The molecular processes of drugs from cellular uptake to intracellular distribution as well as the intracellular interaction with the target molecule are critically important for the development of new antitumor drugs. In this work, we have successfully developed a label-free surface-enhanced Raman scattering (SERS) technique to monitor and visualize the metabolism of antitumor drug 6-mercaptopurine in living cells. It has been clearly demonstrated that Au@Ag NPs exhibit an excellent Raman enhancement effect to both 6-mercaptopurine and its metabolic product 6-mercaptopurine-ribose. Their different ways to absorb at the surface of Au@Ag NPs lead to the obvious spectral difference for distinguishing the antitumor drug and its metabolite by SERS spectra. The Au@Ag NPs can easily pass through cell membranes in a large amount and sensitively respond to the biological conversion of 6-mercaptopurine in tumor cells. The Raman imaging can visualize the real-time distribution of 6-mercaptopurine and its biotransformation with the concentrations in tumor cells. The SERS-based method reported here is simple and efficient for the assessments of drug efficacy and the understanding of the molecular therapeutic mechanism of antitumor drugs at the cellular level.
Vanpouille, Christophe; Denys, Agnès; Carpentier, Mathieu; Pakula, Rachel; Mazurier, Joël; Allain, Fabrice
2004-09-01
Cyclophilin B (CyPB) is a heparin-binding protein first identified as a receptor for cyclosporin A. In previous studies, we reported that CyPB triggers chemotaxis and integrin-mediated adhesion of T-lymphocytes by way of interaction with two types of binding sites. The first site corresponds to a signalling receptor; the second site has been identified as heparan sulphate (HS) and appears crucial to induce cell adhesion. Characterization of the HS-binding unit is critical to understand the requirement of HS in pro-adhesive activity of CyPB. By using a strategy based on gel mobility shift assays with fluorophore-labelled oligosaccharides, we demonstrated that the minimal heparin unit required for efficient binding of CyPB is an octasaccharide. The mutants CyPB(KKK-) [where KKK- refers to the substitutions K3A(Lys3-->Ala)/K4A/K5A] and CyPB(DeltaYFD) (where Tyr14-Phe-Asp16 has been deleted) failed to interact with octasaccharides, confirming that the Y14FD16 and K3KK5 clusters are required for CyPB binding. Molecular modelling revealed that both clusters are spatially arranged so that they may act synergistically to form a binding site for the octasaccharide. We then demonstrated that heparin-derived octasaccharides and higher degree of polymerization oligosaccharides inhibited the interaction between CyPB and fluorophore-labelled HS chains purified from T-lymphocytes, and strongly reduced the HS-dependent pro-adhesive activity of CyPB. However, oligosaccharides or heparin were unable to restore adhesion of heparinase-treated T-lymphocytes, indicating that HS has to be present on the cell membrane to support the pro-adhesive activity of CyPB. Altogether, these results demonstrate that the octasaccharide is likely to be the minimal length unit required for efficient binding of CyPB to cell surface HS and consequent HS-dependent cell responses.
2004-01-01
Cyclophilin B (CyPB) is a heparin-binding protein first identified as a receptor for cyclosporin A. In previous studies, we reported that CyPB triggers chemotaxis and integrin-mediated adhesion of T-lymphocytes by way of interaction with two types of binding sites. The first site corresponds to a signalling receptor; the second site has been identified as heparan sulphate (HS) and appears crucial to induce cell adhesion. Characterization of the HS-binding unit is critical to understand the requirement of HS in pro-adhesive activity of CyPB. By using a strategy based on gel mobility shift assays with fluorophore-labelled oligosaccharides, we demonstrated that the minimal heparin unit required for efficient binding of CyPB is an octasaccharide. The mutants CyPBKKK− [where KKK− refers to the substitutions K3A(Lys3→Ala)/K4A/K5A] and CyPBΔYFD (where Tyr14-Phe-Asp16 has been deleted) failed to interact with octasaccharides, confirming that the Y14FD16 and K3KK5 clusters are required for CyPB binding. Molecular modelling revealed that both clusters are spatially arranged so that they may act synergistically to form a binding site for the octasaccharide. We then demonstrated that heparin-derived octasaccharides and higher degree of polymerization oligosaccharides inhibited the interaction between CyPB and fluorophore-labelled HS chains purified from T-lymphocytes, and strongly reduced the HS-dependent pro-adhesive activity of CyPB. However, oligosaccharides or heparin were unable to restore adhesion of heparinase-treated T-lymphocytes, indicating that HS has to be present on the cell membrane to support the pro-adhesive activity of CyPB. Altogether, these results demonstrate that the octasaccharide is likely to be the minimal length unit required for efficient binding of CyPB to cell surface HS and consequent HS-dependent cell responses. PMID:15109301
Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells
NASA Astrophysics Data System (ADS)
Yan, Zhengyu; Qian, Jing; Gu, Yueqing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei
2014-03-01
A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuge, O.; Nishijima, M.; Akamatsu, Y.
1986-05-05
We reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine. In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with (/sup 32/P)phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with (/sup 32/P)phosphatidylethanolamine, the mutant incorporated themore » label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively.« less
The origin of mesoderm in phoronids
NASA Technical Reports Server (NTRS)
Freeman, Gary; Martindale, Mark Q.
2002-01-01
Descriptive studies of phoronid development have concluded that the mesoderm of these animals originates from the endoderm during gastrulation. This interpretation has been tested by labeling one blastomere of 4- through 16-cell embryos and examining the position and germ layers occupied by the labeled clones of cells in the larva. No 2 injections gave rise to identical clones of cells, suggesting that the cleavage program does not generate cells of unique identity and that cell fates are established at later developmental time points. In many cases, a relatively large sector composed of ectodermal cells was labeled. When these labeled cells were adjacent to the mouth or anus of the larva, muscle and mesenchyme cells originated from the labeled clones. Under these circumstances, nerve cells also originated from these labeled sectors. These labeling studies also showed that endodermal cells can give rise to mesodermal and neural cells. These results suggest that nerve and muscle cells are induced to form at ectodermal-endodermal boundaries from both germ layers. These marking experiments also confirmed the observation that nerve cells originate both from the apical organ and the trunk region and show for the first time that the intestine originates by ingression of posterior ectoderm.
Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells
Hong, Wooyoung; Liang, Feng; Schaak, Diane; Loncar, Marko; Quan, Qimin
2014-01-01
Fluorescent labeling techniques have been widely used in live cell studies; however, the labeling processes can be laborious and challenging for use in non-transfectable cells, and labels can interfere with protein functions. While label-free biosensors have been realized by nanofabrication, a method to track intracellular protein dynamics in real-time, in situ and in living cells has not been found. Here we present the first demonstration of label-free detection of intracellular p53 protein dynamics through a nanoscale surface plasmon-polariton fiber-tip-probe (FTP). PMID:25154394
Hitchens, T. Kevin; Liu, Li; Foley, Lesley M.; Simplaceanu, Virgil; Ahrens, Eric T.; Ho, Chien
2014-01-01
Purpose The ability to detect the migration of cells in living organisms is fundamental in understanding biological processes and important for the development of novel cell-based therapies to treat disease. MRI can be used to detect the migration of cells labeled with superparamagnetic iron-oxide (SPIO) or perfluorocarbon (PFC) agents. In this study, we explored combining these two cell-labeling approaches to overcome current limitations and enable new applications for cellular MRI. Methods We characterized 19F-NMR relaxation properties of PFC-labeled cells in the presence of SPIO and imaged cells both ex vivo and in vivo in a rodent inflammation model to demonstrate selective visualization of cell populations. Results We show that with UTE3D, RARE and FLASH 19F images one can uniquely identify PFC-labeled cells, co-localized PFC- and SPIO-labeled cells, and PFC/SPIO co-labeled cells. Conclusion This new methodology has the ability to improve and expand applications of MRI cell tracking. Combining PFC and SPIO strategies can potentially provide a method to quench PFC signal transferred from dead cells to macrophages, thereby eliminating false positives. In addition, combining these techniques could also be used to track two cell types simultaneously and probe cell-cell proximity in vivo with MRI. PMID:24478194
System and method for detecting cells or components thereof
Porter, Marc D [Ames, IA; Lipert, Robert J [Ames, IA; Doyle, Robert T [Ames, IA; Grubisha, Desiree S [Corona, CA; Rahman, Salma [Ames, IA
2009-01-06
A system and method for detecting a detectably labeled cell or component thereof in a sample comprising one or more cells or components thereof, at least one cell or component thereof of which is detectably labeled with at least two detectable labels. In one embodiment, the method comprises: (i) introducing the sample into one or more flow cells of a flow cytometer, (ii) irradiating the sample with one or more light sources that are absorbed by the at least two detectable labels, the absorption of which is to be detected, and (iii) detecting simultaneously the absorption of light by the at least two detectable labels on the detectably labeled cell or component thereof with an array of photomultiplier tubes, which are operably linked to two or more filters that selectively transmit detectable emissions from the at least two detectable labels.
Shields, C Wyatt; Reyes, Catherine D; López, Gabriel P
2015-03-07
Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.
Shields, C. Wyatt; Reyes, Catherine D.; López, Gabriel P.
2015-01-01
Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism. PMID:25598308
Long term imaging of living brain cancer cells
NASA Astrophysics Data System (ADS)
Farias, Patricia M. A.; Galembeck, André; Milani, Raquel; Andrade, Arnaldo C. D. S.; Stingl, Andreas
2018-02-01
QDs synthesized in aqueous medium and functionalized with polyethylene glycol were used as fluorescent probes. They label and monitor living healthy and cancer brain glial cells in culture. Physical-chemical characterization was performed. Toxicological studies were performed by in vivo short and long-term inhalation in animal models. Healthy and cancer glial living cells were incubated in culture media with highly controlled QDs. Specific features of glial cancer cells were enhanced by QD labelling. Cytoplasmic labelling pattern was clearly distinct for healthy and cancer cells. Labelled cells kept their normal activity for same period as non-labelled control samples.
Kang, Lei; Fan, Zhongyi; Sun, Hongwei; Feng, Yingying; Ma, Chao; Yan, Ping; Zhang, Chunli; Ma, Huan; Hao, Pan; Chen, Xueqi; Zheng, Zhibing; Xu, Xiaojie; Wang, Rongfu
2015-01-01
MicroRNAs (miRNAs) have been considered as important biomarkers for malignant tumors. In this study, we introduced an improved (99m)Tc labeling method for noninvasive visualization of overexpressed miRNAs in tumor-bearing mice. Anti-miRNA-21 oligonucleotide (AMO) with partial 2'-O-methyl and phosphorothioate modification was designed and chemically synthesized. After conjugated with NHS-MAG3, AMO was labeled with (99m)Tc. Optimization was made to shorten reaction time and to improve labeling efficiency. Labeling efficiency was 97%, and specific activity was 2.78 MBq/ng. During 12 h, (99m)Tc-AMO showed no significant degradation by gel electrophoresis. Its radiochemical purity was stable, between 95.8% and 99.1%. Further, (99m)Tc-AMO decreased the level of miR-21 and increased the expression of PTEN protein at cellular level, shown by qRT-PCR and Western blot. Fluorescent protein labeled AMO displayed specific distribution and good stability in tumor cells. After the administration in tumor-bearing mice, (99m)Tc-AMO showed more radioactive uptake in the miR-21 over-expressed tumors than scramble control. Biodistribution results further proved the significant difference of tumor uptake between (99m)Tc-AMO and (99m)Tc-control. Therefore, this study presents an improved method with shorten time to prepare a (99m)Tc radiolabeled AMO. In addition, it supports the role of (99m)Tc-AMO for noninvasive visualization of miR-21 in malignant tumors. Copyright © 2015 John Wiley & Sons, Ltd.
Mishra, Sushanta Kumar; Khushu, Subash; Singh, Ajay K; Gangenahalli, Gurudutta
2018-06-17
Stem cells transplantation has emerged as a promising alternative therapeutic due to its potency at injury site. The need to monitor and non-invasively track the infused stem cells is a significant challenge in the development of regenerative medicine. Thus, in vivo tracking to monitor infused stem cells is especially vital. In this manuscript, we have described an effective in vitro labelling method of MSCs, a serial in vivo tracking of implanted stem cells at traumatic brain injury (TBI) site through 7 T magnetic resonance imaging (MRI). Proper homing of infused MSCs was carried out at different time points using histological analysis and Prussian blue staining. Longitudinal in vivo tracking of infused MSCs were performed up to 21 days in different groups through MRI using relaxometry technique. Results demonstrated that MSCs incubated with iron oxide-poly-L-lysine complex (IO-PLL) at a ratio of 50:1.5 μg/ml and a time period of 6 h was optimised to increase labelling efficiency. T2*-weighted images and relaxation study demonstrated a significant signal loss and effective decrease in transverse relaxation time on day-3 at injury site after systemic transplantation, revealed maximum number of stem cells homing to the lesion area. MRI results further correlate with histological and Prussian blue staining in different time periods. Decrease in negative signal and increase in relaxation times were observed after day-14, may indicate damage tissue replacement with healthy tissue. MSCs tracking with synthesized negative contrast agent represent a great advantage during both in vitro and in vivo analysis. The proposed absolute bias correction based relaxometry analysis could be extrapolated for stem cell tracking and therapies in various neurodegenerative diseases.
Sato, Masahiro; Miyoshi, Kazuchika; Nakamura, Shingo; Ohtsuka, Masato; Sakurai, Takayuki; Watanabe, Satoshi; Kawaguchi, Hiroaki; Tanimoto, Akihide
2017-12-04
The recent advancement in genome editing such a CRISPR/Cas9 system has enabled isolation of cells with knocked multiple alleles through a one-step transfection. Somatic cell nuclear transfer (SCNT) has been frequently employed as one of the efficient tools for the production of genetically modified (GM) animals. To use GM cells as SCNT donor, efficient isolation of transfectants with mutations at multiple target loci is often required. The methods for the isolation of such GM cells largely rely on the use of drug selection-based approach using selectable genes; however, it is often difficult to isolate cells with mutations at multiple target loci. In this study, we used a novel approach for the efficient isolation of porcine cells with at least two target loci mutations by one-step introduction of CRISPR/Cas9-related components. A single guide (sg) RNA targeted to GGTA1 gene, involved in the synthesis of cell-surface α-Gal epitope (known as xenogenic antigen), is always a prerequisite. When the transfected cells were reacted with toxin-labeled BS-I-B₄ isolectin for 2 h at 37 C to eliminate α-Gal epitope-expressing cells, the surviving clones lacked α-Gal epitope expression and were highly expected to exhibit induced mutations at another target loci. Analysis of these α-Gal epitope-negative surviving cells demonstrated a 100% occurrence of genome editing at target loci. SCNT using these cells as donors resulted in the production of cloned blastocysts with the genotype similar to that of the donor cells used. Thus, this novel system will be useful for SCNT-mediated acquisition of GM cloned piglets, in which multiple target loci may be mutated.
Rabinovitch-Chable, H; Durand, J; Aldigier, J C; Chebroux, P; Gualde, N; Beneytout, J L; Rigaud, M
1984-01-01
Lipoxygenases are ubiquitous enzymes able to oxygenate polyunsaturated fatty acids. This metabolic pathway leads to hydroperoxides, hydroxyepoxyene compounds and leukotrienes. Using high performance gas chromatography prior to mass spectrometry, we studied the activity of the lipoxygenases from mouse peritoneal macrophages. Further studies on mechanism of biosynthesis of hydroxyepoxyene compounds were successfully carried out using 18O2 labelled precursors.
Hagen, S J; Trier, J S
1988-07-01
We used post-embedding immunocytochemical techniques and affinity-purified anti-actin antibody to evaluate localization of actin in epithelial cells of small intestine by fluorescence and electron microscopy. Small intestine was fixed with 2% formaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M. One-micron or thin sections were stained with antibody followed by rhodamine- or colloidal gold-labeled goat anti-rabbit IgG, respectively. Label was present overlying microvilli, the apical terminal web, and the cytoplasm directly adjacent to occluding and intermediate junctions. Label was associated with outer mitochondrial membranes of all cells and the supranuclear Golgi region of goblet cells. Lateral cytoplasmic interdigitations between mature cells and subplasmalemmal filaments next to intrusive cells were densely labeled. The cytoplasm adjacent to unplicated domains of lateral membrane was focally labeled. Label was prominent over organized filament bundles within the subplasmalemmal web at the base of mature cells, whereas there was focal labeling of the cytoplasm adjacent to the basal membrane of undifferentiated cells. Basolateral epithelial cell processes were labeled. Label was focally present overlying the cellular ground substance. Our results demonstrate that actin is distributed in a distinctive fashion within intestinal epithelial cells. This distribution suggests that in addition to its function as a structural protein, actin may participate in regulation of epithelial tight junction permeability, in motile processes including migration of cells from the crypt to the villus tip, in accommodation of intrusive intraepithelial cells and in adhesion of cells to one another and to their substratum.
Snap-, CLIP- and Halo-Tag Labelling of Budding Yeast Cells
Stagge, Franziska; Mitronova, Gyuzel Y.; Belov, Vladimir N.; Wurm, Christian A.; Jakobs, Stefan
2013-01-01
Fluorescence microscopy of the localization and the spatial and temporal dynamics of specifically labelled proteins is an indispensable tool in cell biology. Besides fluorescent proteins as tags, tag-mediated labelling utilizing self-labelling proteins as the SNAP-, CLIP-, or the Halo-tag are widely used, flexible labelling systems relying on exogenously supplied fluorophores. Unfortunately, labelling of live budding yeast cells proved to be challenging with these approaches because of the limited accessibility of the cell interior to the dyes. In this study we developed a fast and reliable electroporation-based labelling protocol for living budding yeast cells expressing SNAP-, CLIP-, or Halo-tagged fusion proteins. For the Halo-tag, we demonstrate that it is crucial to use the 6′-carboxy isomers and not the 5′-carboxy isomers of important dyes to ensure cell viability. We report on a simple rule for the analysis of 1H NMR spectra to discriminate between 6′- and 5′-carboxy isomers of fluorescein and rhodamine derivatives. We demonstrate the usability of the labelling protocol by imaging yeast cells with STED super-resolution microscopy and dual colour live cell microscopy. The large number of available fluorophores for these self-labelling proteins and the simplicity of the protocol described here expands the available toolbox for the model organism Saccharomyces cerevisiae. PMID:24205303
Magneto-optical labeling of fetal neural stem cells for in vivo MRI tracking.
Flexman, J A; Minoshima, S; Kim, Y; Cross, D J
2006-01-01
Neural stem cell therapy for neurological pathologies, such as Alzheimer's and Parkinson's disease, may delay the onset of symptoms, replace damaged neurons and/or support the survival of endogenous cells. Magnetic resonance imaging (MRI) can be used to track magnetically labeled cells in vivo to observe migration. Prior to transplantation, labeled cells must be characterized to show that they retain their intrinsic properties, such as cell proliferation into neurospheres in a supplemented environment. In vivo images must also be correlated to sensitive, histological markers. In this study, we show that fetus-derived neural stem cells can be co-labeled with superparamagnetic iron oxide and PKH26, a fluorescent dye. Labeled cells retain the ability to proliferate into neurospheres in culture, but labeling prevents neurospheres from merging in a non-adherent culture environment. After labeled NSCs were transplantation into the rat brain, their location and subsequent migration along the corpus callosum was detected using MRI. This study demonstrates an imaging paradigm with which to develop an in vivo assay for quantitatively evaluating fetal neural stem cell migration.
Antfolk, Maria; Magnusson, Cecilia; Augustsson, Per; Lilja, Hans; Laurell, Thomas
2015-09-15
Enrichment of rare cells from peripheral blood has emerged as a means to enable noninvasive diagnostics and development of personalized drugs, commonly associated with a prerequisite to concentrate the enriched rare cell population prior to molecular analysis or culture. However, common concentration by centrifugation has important limitations when processing low cell numbers. Here, we report on an integrated acoustophoresis-based rare cell enrichment system combined with integrated concentration. Polystyrene 7 μm microparticles could be separated from 5 μm particles with a recovery of 99.3 ± 0.3% at a contamination of 0.1 ± 0.03%, with an overall 25.7 ± 1.7-fold concentration of the recovered 7 μm particles. At a flow rate of 100 μL/min, breast cancer cells (MCF7) spiked into red blood cell-lysed human blood were separated with an efficiency of 91.8 ± 1.0% with a contamination of 0.6 ± 0.1% from white blood cells with a 23.8 ± 1.3-fold concentration of cancer cells. The recovery of prostate cancer cells (DU145) spiked into whole blood was 84.1 ± 2.1% with 0.2 ± 0.04% contamination of white blood cells with a 9.6 ± 0.4-fold concentration of cancer cells. This simultaneous on-chip separation and concentration shows feasibility of future acoustofluidic systems for rapid label-free enrichment and molecular characterization of circulating tumor cells using peripheral venous blood in clinical practice.
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)
1980-01-01
Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.
McCullough, D P; Gudla, P R; Harris, B S; Collins, J A; Meaburn, K J; Nakaya, M A; Yamaguchi, T P; Misteli, T; Lockett, S J
2008-05-01
Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection.
Protein Delivery into Plant Cells: Toward In vivo Structural Biology
Cedeño, Cesyen; Pauwels, Kris; Tompa, Peter
2017-01-01
Understanding the biologically relevant structural and functional behavior of proteins inside living plant cells is only possible through the combination of structural biology and cell biology. The state-of-the-art structural biology techniques are typically applied to molecules that are isolated from their native context. Although most experimental conditions can be easily controlled while dealing with an isolated, purified protein, a serious shortcoming of such in vitro work is that we cannot mimic the extremely complex intracellular environment in which the protein exists and functions. Therefore, it is highly desirable to investigate proteins in their natural habitat, i.e., within live cells. This is the major ambition of in-cell NMR, which aims to approach structure-function relationship under true in vivo conditions following delivery of labeled proteins into cells under physiological conditions. With a multidisciplinary approach that includes recombinant protein production, confocal fluorescence microscopy, nuclear magnetic resonance (NMR) spectroscopy and different intracellular protein delivery strategies, we explore the possibility to develop in-cell NMR studies in living plant cells. While we provide a comprehensive framework to set-up in-cell NMR, we identified the efficient intracellular introduction of isotope-labeled proteins as the major bottleneck. Based on experiments with the paradigmatic intrinsically disordered proteins (IDPs) Early Response to Dehydration protein 10 and 14, we also established the subcellular localization of ERD14 under abiotic stress. PMID:28469623
Traceless affinity labeling of endogenous proteins for functional analysis in living cells.
Hayashi, Takahiro; Hamachi, Itaru
2012-09-18
Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional affinity labeling method and allows for real-time monitoring of protein activity. With the high target specificity and biocompatibility of this technique, we have achieved individual labeling and imaging of endogenously expressed proteins in samples of high biological complexity. We also highlight applications in which our current approach enabled the monitoring of important biological events, such as ligand binding, in living cells. These novel chemical labeling techniques are expected to provide a molecular toolbox for studying a wide variety of proteins and beyond in living cells.
Proliferative Potentials of Bone Marrow and Blood Cells Studied by in vitro Uptake of H 3-Thymidine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, V. P.; Fliedner, T. M.; Cronkite, E. P.
1959-01-01
Cell proliferative activity and potential in the circulating blood and in the bone marrow of individuals with normal hematopoiesis, and in patients with hematopoietic dyscrasias was studied by means of in vitro one hour incubation with tritiated thymidine (H 3Th) and 6tripping film autoradiography. The labeled material is incorporated only into DNA during synthesis. In normal bone marrow, labeling was seen at 1 hour in all cell lineages, and in cells variously referred to as "reticulum," "stem,'' " stroma,'' etc., cells. Erythropoietic cells were labeled as far as the polychromatic normoblast; the myeloid series was labeled to the myelocyte state.more » Leukemia cells in the bone marrow and peripheral blood of patients with acute or chronic myelocytic leukemia incorporated label avidly; the small typical leukemia cell of chronic lymphocytic leukemia did not label at all. Less than 3 per cent of the myeloma cells in patients with multiple myeloma incorporated thymidine. Most striking was the finding of small numbers of labeled large mononuclear cells of different morphological types in the peripheral blood of normal human beings, and an increase in the number of morphologically identical cells in the blood of patients with infection and infectious mononucleosis. The labeling indicates active DNA synthesis and thus these cells presumably are capable of division. It is suggested that these cells may represent a mobile pool of primitive progenitor cells and are multipotential in their function.« less
Labeling of lectin receptors during the cell cycle.
Garrido, J
1976-12-01
Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... or end of the label, oustide of the main panel. (2) If washing the cells is required by the manufacturer, the container label shall include appropriate instructions; if the cells should not be washed...
Cell-selective metabolic labeling of biomolecules with bioorthogonal functionalities.
Xie, Ran; Hong, Senlian; Chen, Xing
2013-10-01
Metabolic labeling of biomolecules with bioorthogonal functionalities enables visualization, enrichment, and analysis of the biomolecules of interest in their physiological environments. This versatile strategy has found utility in probing various classes of biomolecules in a broad range of biological processes. On the other hand, metabolic labeling is nonselective with respect to cell type, which imposes limitations for studies performed in complex biological systems. Herein, we review the recent methodological developments aiming to endow metabolic labeling strategies with cell-type selectivity. The cell-selective metabolic labeling strategies have emerged from protein and glycan labeling. We envision that these strategies can be readily extended to labeling of other classes of biomolecules. Copyright © 2013 Elsevier Ltd. All rights reserved.
Peckys, Diana B; Dukes, Madeline J; de Jonge, Niels
2014-01-01
Correlative fluorescence microscopy and scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot (QD) nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, the microchip with the labeled cells and one with a spacer are assembled in a special microfluidic device and imaged with STEM.
Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.
Löschberger, Anna; Niehörster, Thomas; Sauer, Markus
2014-05-01
Reactive oxygen species (ROS), including hydrogen peroxide, are known to cause structural damage not only in living, but also in fixed, cells. Copper-catalyzed azide-alkyne cycloaddition (click chemistry) is known to produce ROS. Therefore, fluorescence imaging of cellular structures, such as the actin cytoskeleton, remains challenging when combined with click chemistry protocols. In addition, the production of ROS substantially weakens the fluorescence signal of fluorescent proteins. This led us to develop ClickOx, which is a new click chemistry protocol for improved conservation of the actin structure and better conservation of the fluorescence signal of green fluorescent protein (GFP)-fusion proteins. Herein we demonstrate that efficient oxygen removal by addition of an enzymatic oxygen scavenger system (ClickOx) considerably reduces ROS-associated damage during labeling of nascent DNA with ATTO 488 azide by Cu(I)-catalyzed click chemistry. Standard confocal and super-resolution fluorescence images of phalloidin-labeled actin filaments and GFP/yellow fluorescent protein-labeled cells verify the conservation of the cytoskeleton microstructure and fluorescence intensity, respectively. Thus, ClickOx can be used advantageously for structure preservation in conventional and most notably in super-resolution microscopy methods. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microfluidic size separation of cells and particles using a swinging bucket centrifuge.
Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck
2015-09-01
Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.
Microfluidic size separation of cells and particles using a swinging bucket centrifuge
Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck
2015-01-01
Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency. PMID:26487900
Mykhaylyk, Olga; Sobisch, Titus; Almstätter, Isabella; Sanchez-Antequera, Yolanda; Brandt, Sabine; Anton, Martina; Döblinger, Markus; Eberbeck, Dietmar; Settles, Marcus; Braren, Rickmer; Lerche, Dietmar; Plank, Christian
2012-05-01
To optimize silica-iron oxide magnetic nanoparticles with surface phosphonate groups decorated with 25-kD branched polyethylenimine (PEI) for gene delivery. Surface composition, charge, colloidal stabilities, associations with adenovirus, magneto-tranduction efficiencies, cell internalizations, in vitro toxicities and MRI relaxivities were tested for the particles decorated with varying amounts of PEI. Moderate PEI-decoration of MNPs results in charge reversal and destabilization. Analysis of space and time resolved concentration changes during centrifugation clearly revealed that at >5% PEI loading flocculation gradually decreases and sufficient stabilization is achieved at >10%. The association with adenovirus occurred efficiently at levels over 5% PEI, resulting in the complexes stable in 50% FCS at a PEI-to-iron w/w ratio of ≥7%; the maximum magneto-transduction efficiency was achieved at 9-12% PEI. Primary silica iron oxide nanoparticles and those with 11.5% PEI demonstrated excellent r(2)* relaxivity values (>600 s(-1)(mM Fe)(-1)) for the free and cell-internalized particles. Surface decoration of the silica-iron oxide nanoparticles with a PEI-to-iron w/w ratio of 10-12% yields stable aqueous suspensions, allows for efficient viral gene delivery and labeled cell detection by MRI.
Wu, Ling-Ling; Wen, Cong-Ying; Hu, Jiao; Tang, Man; Qi, Chu-Bo; Li, Na; Liu, Cui; Chen, Lan; Pang, Dai-Wen; Zhang, Zhi-Ling
2017-08-15
Detecting viable circulating tumor cells (CTCs) without disruption to their functions for in vitro culture and functional study could unravel the biology of metastasis and promote the development of personalized anti-tumor therapies. However, existing CTC detection approaches commonly include CTC isolation and subsequent destructive identification, which damages CTC viability and functions and generates substantial CTC loss. To address the challenge of efficiently detecting viable CTCs for functional study, we develop a nanosphere-based cell-friendly one-step strategy. Immunonanospheres with prominent magnetic/fluorescence properties and extraordinary stability in complex matrices enable simultaneous efficient magnetic capture and specific fluorescence labeling of tumor cells directly in whole blood. The collected cells with fluorescent tags can be reliably identified, free of the tedious and destructive manipulations from conventional CTC identification. Hence, as few as 5 tumor cells in ca. 1mL of whole blood can be efficiently detected via only 20min incubation, and this strategy also shows good reproducibility with the relative standard deviation (RSD) of 8.7%. Moreover, due to the time-saving and gentle processing and the minimum disruption of immunonanospheres to cells, 93.8±0.1% of detected tumor cells retain cell viability and proliferation ability with negligible changes of cell functions, capacitating functional study on cell migration, invasion and glucose uptake. Additionally, this strategy exhibits successful CTC detection in 10/10 peripheral blood samples of cancer patients. Therefore, this nanosphere-based cell-friendly one-step strategy enables viable CTC detection and further functional analyses, which will help to unravel tumor metastasis and guide treatment selection. Copyright © 2017 Elsevier B.V. All rights reserved.
A microfluidic device for label-free, physical capture of circulating tumor cell-clusters
Sarioglu, A. Fatih; Aceto, Nicola; Kojic, Nikola; Donaldson, Maria C.; Zeinali, Mahnaz; Hamza, Bashar; Engstrom, Amanda; Zhu, Huili; Sundaresan, Tilak K.; Miyamoto, David T.; Luo, Xi; Bardia, Aditya; Wittner, Ben S.; Ramaswamy, Sridhar; Shioda, Toshi; Ting, David T.; Stott, Shannon L.; Kapur, Ravi; Maheswaran, Shyamala; Haber, Daniel A.; Toner, Mehmet
2015-01-01
Cancer cells metastasize through the bloodstream either as single migratory circulating tumor cells (CTCs) or as multicellular groupings (CTC-clusters). Existing technologies for CTC enrichment are designed primarily to isolate single CTCs, and while CTC-clusters are detectable in some cases, their true prevalence and significance remain to be determined. Here, we developed a microchip technology (Cluster-Chip) specifically designed to capture CTC-clusters independent of tumor-specific markers from unprocessed blood. CTC-clusters are isolated through specialized bifurcating traps under low shear-stress conditions that preserve their integrity and even two-cell clusters are captured efficiently. Using the Cluster-Chip, we identify CTC-clusters in 30–40% of patients with metastatic cancers of the breast, prostate and melanoma. RNA sequencing of CTC-clusters confirms their tumor origin and identifies leukocytes within the clusters as tissue-derived macrophages. Together, the development of a device for efficient capture of CTC-clusters will enable detailed characterization of their biological properties and role in cancer metastasis. PMID:25984697
Knutson, Steve; Raja, Erum; Bomgarden, Ryan; Nlend, Marie; Chen, Aoshuang; Kalyanasundaram, Ramaswamy; Desai, Surbhi
2016-01-01
Antibodies are widely available and cost-effective research tools in life science, and antibody conjugates are now extensively used for targeted therapy, immunohistochemical staining, or in vivo diagnostic imaging of cancer. Significant advances in site-specific antibody labeling technologies have enabled the production of highly characterized and homogenous conjugates for biomedical purposes, and some recent studies have utilized site-specific labeling to synthesize bifunctional antibody conjugates with both imaging and drug delivery properties. While these advances are important for the clinical safety and efficacy of such biologics, these techniques can also be difficult, expensive, and time-consuming. Furthermore, antibody-drug conjugates (ADCs) used for tumor treatment generally remain distinct from conjugates used for diagnosis. Thus, there exists a need to develop simple dual-labeling methods for efficient therapeutic and diagnostic evaluation of antibody conjugates in pre-clinical model systems. Here, we present a rapid and simple method utilizing commercially available reagents for synthesizing a dual-labeled fluorescent ADC. Further, we demonstrate the fluorescent ADC’s utility for simultaneous targeted therapy and molecular imaging of cancer both in vitro and in vivo. Employing non-site-specific, amine-reactive chemistry, our novel biopharmaceutical theranostic is a monoclonal antibody specific for a carcinoembryonic antigen (CEA) biomarker conjugated to both paclitaxel and a near-infrared (NIR), polyethylene glycol modified (PEGylated) fluorophore (DyLight™ 680-4xPEG). Using in vitro systems, we demonstrate that this fluorescent ADC selectively binds a CEA-positive pancreatic cancer cell line (BxPC-3) in immunofluorescent staining and flow cytometry, exhibits efficient internalization kinetics, and is cytotoxic. Model studies using a xenograft of BxPC-3 cells in athymic mice also show the fluorescent ADC’s efficacy in detecting tumors in vivo and inhibiting tumor growth more effectively than equimolar amounts of unconjugated drug. Overall, our results demonstrate that non-selective, amine-targeting chemistry is an effective dual-labeling method for synthesizing and evaluating a bifunctional fluorescent antibody-drug conjugate, allowing concurrent detection, monitoring and treatment of cancer. PMID:27336622
Liu, Li-Ping; Deng, Zi-Niu; Qu, Jin-Wang; Yan, Jia-Wen; Catara, Vittoria; Li, Da-Zhi; Long, Gui-You; Li, Na
2012-09-01
Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker, an economically important disease to world citrus industry. To monitor the infection process of Xac in different citrus plants, the enhanced green florescent protein (EGFP) visualizing system was constructed to visualize the propagation and localization in planta. First, the wild-type Xac was isolated from the diseased leaves of susceptible 'Bingtang' sweet orange, and then the isolated Xac was labeled with EGFP by triparental mating. After PCR identification, the growth kinetics and pathogenicity of the transformants were analyzed in comparison with the wild-type Xac. The EGFP-labeled bacteria were inoculated by spraying on the surface and infiltration in the mesophyll of 'Bingtang' sweet orange leaves. The bacterial cell multiplication and diffusion processes were observed directly under confocal laser scanning microscope at different intervals after inoculation. The results indicated that the EGFP-labeled Xac releasing clear green fluorescence light under fluorescent microscope showed the infection process and had the same pathogenicity as the wild type to citrus. Consequently, the labeled Xac demonstrated the ability as an efficient tool to monitor the pathogen infection.
Metal containing polymeric functional microspheres
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)
1979-01-01
Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.
Method for producing a biological reagent
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)
1980-01-01
Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.
Shimizu, Kazunori; Ito, Akira; Honda, Hiroyuki
2007-09-01
Bone tissue engineering has been investigated as an alternative strategy for autograft transplantation. In the process of tissue engineering, cell seeding into three-dimensional (3-D) scaffolds is the first step for constructing 3-D tissues. We have proposed a methodology of cell seeding into 3-D porous scaffolds using magnetic force and magnetite nanoparticles, which we term Mag-seeding. In this study, we applied this Mag-seeding technique to bone tissue engineering using bone marrow stromal cells (BMSCs) and 3-D hydroxyapatite (HA) scaffolds. BMSCs were magnetically labeled with our original magnetite cationic liposomes (MCLs) having a positive surface charge to improve adsorption to cell surface. Magnetically labeled BMSCs were seeded onto a scaffold, and a 1-T magnet was placed under the scaffold. By using Mag-seeding, the cells were successfully seeded into the internal space of scaffolds with a high cell density. The cell seeding efficiency into HA scaffolds by Mag-seeding was approximately threefold larger than that by static-seeding (conventional method, without a magnet). After a 14-d cultivation period using the osteogenic induction medium by Mag-seeding, the level of two representative osteogenic markers (alkaline phosphatase and osteocalcin) were significantly higher than those by static-seeding. These results indicated that Mag-seeding of BMSCs into HA scaffolds is an effective approach to bone tissue engineering.
Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam
2018-06-06
Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.
Dye bias correction in dual-labeled cDNA microarray gene expression measurements.
Rosenzweig, Barry A; Pine, P Scott; Domon, Olen E; Morris, Suzanne M; Chen, James J; Sistare, Frank D
2004-01-01
A significant limitation to the analytical accuracy and precision of dual-labeled spotted cDNA microarrays is the signal error due to dye bias. Transcript-dependent dye bias may be due to gene-specific differences of incorporation of two distinctly different chemical dyes and the resultant differential hybridization efficiencies of these two chemically different targets for the same probe. Several approaches were used to assess and minimize the effects of dye bias on fluorescent hybridization signals and maximize the experimental design efficiency of a cell culture experiment. Dye bias was measured at the individual transcript level within each batch of simultaneously processed arrays by replicate dual-labeled split-control sample hybridizations and accounted for a significant component of fluorescent signal differences. This transcript-dependent dye bias alone could introduce unacceptably high numbers of both false-positive and false-negative signals. We found that within a given set of concurrently processed hybridizations, the bias is remarkably consistent and therefore measurable and correctable. The additional microarrays and reagents required for paired technical replicate dye-swap corrections commonly performed to control for dye bias could be costly to end users. Incorporating split-control microarrays within a set of concurrently processed hybridizations to specifically measure dye bias can eliminate the need for technical dye swap replicates and reduce microarray and reagent costs while maintaining experimental accuracy and technical precision. These data support a practical and more efficient experimental design to measure and mathematically correct for dye bias. PMID:15033598
MUC-1 aptamer-conjugated dye-doped silica nanoparticles for MCF-7 cells detection.
Cai, Li; Chen, Ze-Zhong; Chen, Min-Yan; Tang, Hong-Wu; Pang, Dai-Wen
2013-01-01
In this work, we have prepared three types of aptamer-conjugated Rubpy-doped silica nanoparticles for Human breast carcinoma MCF-7 cells labeling. Probe A is prepared through covalent conjugation between amine-labeled MUC-1 aptamer and carboxyl-modified Rubpy-doped NPs (NPs-aptamer). Probe B is prepared based on the interaction between biotin-labeled MUC-1 aptamer and avidin-conjugated Rubpy-doped NPs (NPs-avidin-biotin-aptamer). For Probe C, there is a PEG with flexible long chain as the bridge between avidin and the NPs (NPs-PEG-avidin-biotin-aptamer). In addition, we further investigate the practical number of MUC-1 aptamers on an NP of each probe using hoechst33258 dye. The binding efficiency of MUC-1 aptamer on the three types of probes as follows: Probe A < Probe B < Probe C. In addition, microscopic fluorescence imaging shows that Probe C containing the PEG molecules can be effectively applied for the recognition of MUC-1 protein in human breast carcinoma MCF-7 cells thus demonstrates that the PEG with flexible long chain as the bridge between the aptamer and NP can greatly enhances the freedom of MUC-1 aptamer. Compared with common organic dyes, the dye-doped silica nanoparticles serve as a stable bioprobe because of their facile conjugation with the desirable biomolecules, and have exhibited great potential in bioanalysis. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xin; Tian, Changhai; Liu, Miao
2012-04-06
Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using thismore » platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.« less
NASA Astrophysics Data System (ADS)
Asimakopoulou, Akrivi; Daskalos, Emmanouil; Lewinski, Nastassja; Riediker, Michael; Papaioannou, Eleni; Konstandopoulos, Athanasios G.
2013-04-01
In order to study the various health influencing parameters related to engineered nanoparticles as well as to soot emitted by Diesel engines, there is an urgent need for appropriate sampling devices and methods for cell exposure studies that simulate the respiratory system and facilitate associated biological and toxicological tests. The objective of the present work was the further advancement of a Multiculture Exposure Chamber (MEC) into a dose-controlled system for efficient delivery of nanoparticles to cells. It was validated with various types of nanoparticles (Diesel engine soot aggregates, engineered nanoparticles for various applications) and with state-of-the-art nanoparticle measurement instrumentation to assess the local deposition of nanoparticles on the cell cultures. The dose of nanoparticles to which cell cultures are being exposed was evaluated in the normal operation of the in vitro cell culture exposure chamber based on measurements of the size specific nanoparticle collection efficiency of a cell free device. The average efficiency in delivering nanoparticles in the MEC was approximately 82%. The nanoparticle deposition was demonstrated by Transmission Electron Microscopy (TEM). Analysis and design of the MEC employs Computational Fluid Dynamics (CFD) and true to geometry representations of nanoparticles with the aim to assess the uniformity of nanoparticle deposition among the culture wells. Final testing of the dose-controlled cell exposure system was performed by exposing A549 lung cell cultures to fluorescently labeled nanoparticles. Delivery of aerosolized nanoparticles was demonstrated by visualization of the nanoparticle fluorescence in the cell cultures following exposure. Also monitored was the potential of the aerosolized nanoparticles to generate reactive oxygen species (ROS) (e.g. free radicals and peroxides generation), thus expressing the oxidative stress of the cells which can cause extensive cellular damage or damage on DNA.
Koehler, Sybille; Brähler, Sebastian; Braun, Fabian; Hagmann, Henning; Rinschen, Markus M; Späth, Martin R; Höhne, Martin; Wunderlich, F Thomas; Schermer, Bernhard; Benzing, Thomas; Brinkkoetter, Paul T
2017-06-01
Podocyte injury is a key event in glomerular disease leading to proteinuria and opening the path toward glomerular scarring. As a consequence, glomerular research strives to discover molecular mechanisms and signaling pathways affecting podocyte health. The hNphs2.Cre mouse model has been a valuable tool to manipulate podocyte-specific genes and to label podocytes for lineage tracing and purification. Here we designed a novel podocyte-specific tricistronic Cre mouse model combining codon improved Cre expression and fluorescent cell labeling with mTomato under the control of the endogenous Nphs2 promoter using viral T2A-peptides. Independent expression of endogenous podocin, codon improved Cre, and mTomato was confirmed by immunofluorescence, fluorescent activated cell sorting and protein analyses. Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type mice developed normally and did not show any signs of glomerular disease or off-target effects under basal conditions and in states of disease. Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type -mediated gene recombination was superior to conventional hNphs2.Cre mice-mediated gene recombination. Last, we compared Cre efficiency in a disease model by mating Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type and hNphs2.Cre mice to Phb2 fl/fl mice. The podocyte-specific Phb2 knockout by Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type mice resulted in an aggravated glomerular injury as compared to a podocyte-specific Phb2 gene deletion triggered by hNphs2.Cre. Thus, we generated the first tricistronic podocyte mouse model combining enhanced Cre recombinase efficiency and fluorescent labeling in podocytes without the need for additional matings with conventional reporter mouse lines. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Solid-phase reductive amination for glycomic analysis.
Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George
2017-04-15
Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.
Arcones, Irene; Sacristán, Carlos; Roncero, Cesar
2016-01-01
The major chitin synthase activity in yeast cells, Chs3, has become a paradigm in the study of the intracellular traffic of transmembrane proteins due to its tightly regulated trafficking. This includes an efficient mechanism for the maintenance of an extensive reservoir of Chs3 at the trans-Golgi network/EE, which allows for the timely delivery of the protein to the plasma membrane. Here we show that this intracellular reservoir of Chs3 is maintained not only by its efficient AP-1–mediated recycling, but also by recycling through the retromer complex, which interacts with Chs3 at a defined region in its N-terminal cytosolic domain. Moreover, the N-terminal ubiquitination of Chs3 at the plasma membrane by Rsp5/Art4 distinctly labels the protein and regulates its retromer-mediated recycling by enabling Chs3 to be recognized by the ESCRT machinery and degraded in the vacuole. Therefore the combined action of two independent but redundant endocytic recycling mechanisms, together with distinct labels for vacuolar degradation, determines the final fate of the intracellular traffic of the Chs3 protein, allowing yeast cells to regulate morphogenesis, depending on environmental constraints. PMID:27798229
Hofmann, Andreas; Wenzel, Daniela; Becher, Ulrich M.; Freitag, Daniel F.; Klein, Alexandra M.; Eberbeck, Dietmar; Schulte, Maike; Zimmermann, Katrin; Bergemann, Christian; Gleich, Bernhard; Roell, Wilhelm; Weyh, Thomas; Trahms, Lutz; Nickenig, Georg; Fleischmann, Bernd K.; Pfeifer, Alexander
2009-01-01
Targeting of viral vectors is a major challenge for in vivo gene delivery, especially after intravascular application. In addition, targeting of the endothelium itself would be of importance for gene-based therapies of vascular disease. Here, we used magnetic nanoparticles (MNPs) to combine cell transduction and positioning in the vascular system under clinically relevant, nonpermissive conditions, including hydrodynamic forces and hypothermia. The use of MNPs enhanced transduction efficiency of endothelial cells and enabled direct endothelial targeting of lentiviral vectors (LVs) by magnetic force, even in perfused vessels. In addition, application of external magnetic fields to mice significantly changed LV/MNP biodistribution in vivo. LV/MNP-transduced cells exhibited superparamagnetic behavior as measured by magnetorelaxometry, and they were efficiently retained by magnetic fields. The magnetic interactions were strong enough to position MNP-containing endothelial cells at the intima of vessels under physiological flow conditions. Importantly, magnetic positioning of MNP-labeled cells was also achieved in vivo in an injury model of the mouse carotid artery. Intravascular gene targeting can be combined with positioning of the transduced cells via nanomagnetic particles, thereby combining gene- and cell-based therapies. PMID:19118196
Yu, Channing; Mannan, Aristotle M.; Yvone, Griselda Metta; Ross, Kenneth N.; Zhang, Yan-Ling; Marton, Melissa A.; Taylor, Bradley R.; Crenshaw, Andrew; Gould, Joshua Z.; Tamayo, Pablo; Weir, Barbara A.; Tsherniak, Aviad; Wong, Bang; Garraway, Levi A.; Shamji, Alykhan F.; Palmer, Michelle A.; Foley, Michael A.; Winckler, Wendy; Schreiber, Stuart L.; Kung, Andrew L.; Golub, Todd R.
2016-01-01
Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control1-4. Here, we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM displayed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo. PMID:26928769
Methods of cell purification: a critical juncture for laboratory research and translational science.
Amos, Peter J; Cagavi Bozkulak, Esra; Qyang, Yibing
2012-01-01
Research in cell biology and the development of translational technologies are driven by competition, public expectations, and regulatory oversight, putting these fields at a critical juncture. Success in these fields is quickly becoming dependent on the ability of researchers to identify and isolate specific cell populations from heterogeneous mixtures accurately and efficiently. Many methods for cell purification have been developed, and each has advantages and disadvantages that must be considered in light of the intended application. Current cell separation strategies make use of surface proteins, genetic expression, and physics to isolate specific cells by phenotypic traits. Cell purification is also dependent on the cellular reagents available for use and the intended application, as these factors may preclude certain mechanisms used in the processes of labeling and sorting cells. Copyright © 2011 S. Karger AG, Basel.
Taniguchi, Ryo; Shi, Lei; Fujii, Masae; Ueda, Katsura; Honma, Shiho; Wakisaka, Satoshi
2005-12-01
Lectin histochemistry of Jacalin (Artocarpus integrifolia) and peanut agglutinin (PNA), specific lectins for galactosyl (beta-1, 3) N-acetylgalactosamine (galactosyl (beta-1, 3) GalNAc), was applied to the gustatory epithelium of the adult rat. In the ordinary lingual epithelium, Jacalin and PNA labeled the cell membrane from the basal to granular cell layer. They also bound membranes of rounded-cells at the basal portion of taste buds, but the number of PNA labeled cells was smaller than that of Jacalin labeled cells. There was no apparent difference in the binding patterns of Jacalin and PNA among the taste buds of the lingual papillae and those of the palatal epithelium. Occasionally, a few spindle-shaped cells were labeled with Jacalin, but not with PNA. Double labeling of Jacalin and alpha-gustducin, a specific marker for type II cells, revealed that Jacalin-labeled spindle-shaped taste cells were immunonegative for alpha-gustducin. Spindle-shaped cells expressing protein gene product 9.5 (PGP 9.5) immunoreactivity lacked Jacalin labeling. During the development of taste buds in circumvallate papillae, the binding pattern of Jacalin became almost identical from postnatal day 5. The present results indicate that rounded cells at the basal portion of the taste buds cells (type IV cells) bind to Jacalin and PNA, and these lectins are specific markers for type IV cells of the rat taste cells.
NASA Astrophysics Data System (ADS)
Li, Jianhua; Qiu, Jichuan; Guo, Weibo; Wang, Shu; Ma, Baojin; Mou, Xiaoning; Tanes, Michael; Jiang, Huaidong; Liu, Hong
2016-03-01
Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy.Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00785f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fridley, David; Zheng, Nina; Zhou, Nan
Since the late 1970s, energy labeling programs and mandatory energy performance standards have been used in many different countries to improve the efficiency levels of major residential and commercial equipment. As more countries and regions launch programs covering a greater range of products that are traded worldwide, greater attention has been given to harmonizing the specific efficiency criteria in these programs and the test methods for measurements. For example, an international compact fluorescent light (CFL) harmonization initiative was launched in 2006 to focus on collaboration between Australia, China, Europe and North America. Given the long history of standards and labelingmore » programs, most major energy-consuming residential appliances and commercial equipment are already covered under minimum energy performance standards (MEPS) and/or energy labels. For these products, such as clothes washers and CFLs, harmonization may still be possible when national MEPS or labeling thresholds are revised. Greater opportunity for harmonization exists in newer energy-consuming products that are not commonly regulated but are under consideration for new standards and labeling programs. This may include commercial products such as water dispensers and vending machines, which are only covered by MEPS or energy labels in a few countries or regions. As China continues to expand its appliance standards and labeling programs and revise existing standards and labels, it is important to learn from recent international experiences with efficiency criteria and test procedures for the same products. Specifically, various types of standards and labeling programs already exist in North America, Europe and throughout Asia for products in China's 2010 standards and labeling programs, namely clothes washers, water dispensers, vending machines and CFLs. This report thus examines similarities and critical differences in energy efficiency values, test procedure specifications and other technical performance requirements in existing international programs in order to shed light on where Chinese programs currently stands and considerations for their 2010 programs.« less
1985-01-01
We have used quantitative electron microscope autoradiography to study uptake and distribution of arachidonate in HSDM1C1 murine fibrosarcoma cells and in EPU-1B, a mutant HSDM1C1 line defective in high affinity arachidonate uptake. Cells were labeled with [3H]arachidonate for 15 min, 40 min, 2 h, or 24 h. Label was found almost exclusively in cellular phospholipids; 92-96% of incorporated radioactivity was retained in cells during fixation and tissue processing. All incorporated radioactivity was found to be associated with cellular membranes. Endoplasmic reticulum (ER) contained the bulk of [3H]arachidonate at all time points in both cell types, while mitochondria, which contain a large portion of cellular membrane, were labeled slowly and to substantially lower specific activity. Plasma membrane (PM) also labeled slowly, achieving a specific activity only one-sixth that of ER at 15 min in HSDM1C1 cells (6% of total label) and one-third of ER in EPU-1B (10% of total label). Nuclear membrane (NM) exhibited the highest specific activity of labeling at 15 min in HSDM1C1 cells (twice that of ER) but was not preferentially labeled in the mutant. Over 24 h, PM label intensity increased to that of ER in both cell lines. However, NM activity diminished in HSDM1C1 cells by 24 h to a small fraction of that in ER. In response to agonists, HSDM1C1 cells release labeled arachidonate for eicosanoid synthesis most readily when they have been labeled for short times. Our results therefore suggest that NM and ER, sites of cyclooxygenase in murine fibroblasts, are probably sources for release of [3H]arachidonate, whereas PM and mitochondria are unlikely to be major sources of eicosanoid precursors. PMID:3926781
Zhou, Shiyue; Tello, Nadia; Harvey, Alex; Boyes, Barry; Orlando, Ron; Mechref, Yehia
2016-06-01
Glycans have numerous functions in various biological processes and participate in the progress of diseases. Reliable quantitative glycomic profiling techniques could contribute to the understanding of the biological functions of glycans, and lead to the discovery of potential glycan biomarkers for diseases. Although LC-MS is a powerful analytical tool for quantitative glycomics, the variation of ionization efficiency and MS intensity bias are influencing quantitation reliability. Internal standards can be utilized for glycomic quantitation by MS-based methods to reduce variability. In this study, we used stable isotope labeled IgG2b monoclonal antibody, iGlycoMab, as an internal standard to reduce potential for errors and to reduce variabililty due to sample digestion, derivatization, and fluctuation of nanoESI efficiency in the LC-MS analysis of permethylated N-glycans released from model glycoproteins, human blood serum, and breast cancer cell line. We observed an unanticipated degradation of isotope labeled glycans, tracked a source of such degradation, and optimized a sample preparation protocol to minimize degradation of the internal standard glycans. All results indicated the effectiveness of using iGlycoMab to minimize errors originating from sample handling and instruments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Chunxiao; Wang, Shu
2012-01-01
Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.
NASA Astrophysics Data System (ADS)
Ou, Zhongmin; Wu, Baoyan; Xing, Da; Zhou, Feifan; Wang, Huiying; Tang, Yonghong
2009-03-01
The application of single-walled carbon nanotubes (SWNTs) in the field of biomedicine is becoming an entirely new and exciting topic. In this study, a novel functional SWNT based on an integrin αvβ3 monoclonal antibody was developed and was used for cancer cell targeting in vitro. SWNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). The PL-PEG functionalized SWNTs were then conjugated with protein A. A SWNT-integrin αvβ3 monoclonal antibody system (SWNT-PEG-mAb) was thus constructed by conjugating protein A with the fluorescein labeled integrin αvβ3 monoclonal antibody. In vitro study revealed that SWNT-PEG-mAb presented a high targeting efficiency on integrin αvβ3-positive U87MG cells with low cellular toxicity, while for integrin αvβ3-negative MCF-7 cells, the system had a low targeting efficiency, indicating that the high targeting to U87MG cells was due to the specific integrin targeting of the monoclonal antibody. In conclusion, SWNT-PEG-mAb developed in this research is a potential candidate for cancer imaging and drug delivery in cancer targeting therapy.
Mohammadnejad, Javad; Rasaee, Mohammad Javad; Babaei, Mohammad Hosein; Paknejad, Malihe; Hasan, Zahir Mohammad; Salouti, Mojtaba; Gandomkar, Mostafa; Sadri, Keyvan
2010-01-01
PR81 is a monoclonal antibody that binds with high affinity to MUC1, which is over expressed on breast and other tumors. The objective of this study was to compare the two labeling methods (direct and indirect radioiodination) for application of this antibody against MUC1 as a radioimmunotherapeutical agent.Monoclonal antibody (PR81) against the tandem repeat of the core protein (MUC1) was prepared, characterized, purified, and labeled with 131I using the direct (chloramin-T) and indirect (Fmoc-D-Tyr (tBu)-D-Tyr (tBu)-D-Lys (Boc)-OH (YYK) attached to N-hydroxysuccinimide as a linker between PR81 and 131I) methods. The immunoreactivity of 131I-PR81 and 131I-TP-PR81 complexes with MUC1 (the native protein), BSA-P20 (a 20 amino acid corresponding the tandem repeat of MUC1) and MCF7 cell line were performed by RIA. In vitro stability of 131I-PR81 and 131I-YYK-peptide-PR81 complexes in human serum was determined by thin layer chromatography (TLC). Cell toxicity and in vitro internalization studies were performed with the MCF7 cell line, and the tissue biodistribution of the 131I-PR81 and 131I- YYK-peptide -PR81 complexes was evaluated in normal BALB/c mice at 4, 24 and 48 hrs. The labeling efficiency was determined by measuring the percentage recovery of radioactivity in the final product relative to the initial activity in the shipment vial, was found to be 59.9% +/- 7.9% for direct and 50% +/- 3.2% for indirect methods. 131I-PR81 and 131I- YYK- peptide -PR81 complexes showed high immunoreactivity towards MUC1 protein, BSA-P20 and MCF7 cell line. In vitro stability of the labeled products in human serum which was measured by thin layer chromatography (TLC) was found to be more than 50% over 24 hr for 131I-PR81 and 70% for 131I- YYK-peptide -PR81 complexes. Cell toxicity and in vitro internalization studies showed that the 131I-PR81 and 131I- YYK-peptide -PR81 complexes inhibited 80% growth of the MCF7 cultured cell lines in vitro in a high concentration and up to 40% of the 131I-PR81 and 60% of the 131I- YYK-peptide -PR81 complexes internalized after 24 h. Biodistribution studies were performed in normal BALB/c mice at 4, 24 and 48 hrs post-injection. Thyroid and stomach levels from PR81 labeled with 131I- YYK-peptide were two- to three- fold less than those with directly labeled 131I-PR81, suggesting low recognition of its D-iodotyrosine residue by endogenous deiodinase. These results show that the indirect labeling was better than the indirect labeling and 131I- YYK-peptide -PR81 may be considered as a promising candidate for therapy of breast cancer.
Navarro, Enrique; Méndez, Soco; Urrutia, Miren Begoñe; Arambalza, Udane; Ibarrola, Irrintzi
2016-09-01
Differential utilization of phytoplankton and detrital particles present in natural sediments of mud-flats was studied in a series of experiments performed on the infaunal bivalve Cerastoderma edule. In order to assess digestive selection, parameters of food processing (organic ingestion rate: OIR, gross absorption efficiency: GAE and gut passage time: GPT) were recorded for each organic component in different combinations of food particles radio-labelled with (14)C. Experimental design included the use of both labelled diets of a sole organic component and cross-labelled diets; i.e., mixed suspensions presenting alternatively labelled one of the various components tested: phytoplankton cells, sedimentary organic particles and particulate detritus from vascular salt-marsh plants. Preferential absorption of phytoplankton was accounted for by absorption efficiency values that were two-fold those for sedimentary detritus when recorded with mixed diets of both organic components. Two factors contributed to this difference: a) higher digestibility of microalgae, measured as the ratio of GAE to GPT, and b) faster gut passage of detrital particles that results from digestive selection likely involving the preferential incorporation of phytoplankton into the digestive gland. However, when diets based on a sole organic component (either phytoplankton or detritus) were compared, larger GPT were recorded for detrital particles that enabled improving GAE of this rather refractory food. Overall results of these experiments are consistent with most studies in trophic ecology based on stable isotopes enrichment, concerning both the diversity of trophic sources used by marine bivalves and its preferential utilization of phytoplankton over phyto-detritus. Copyright © 2016 Elsevier Ltd. All rights reserved.
Targeted Identification of Metastasis-associated Cell-surface Sialoglycoproteins in Prostate Cancer*
Yang, Lifang; Nyalwidhe, Julius O.; Guo, Siqi; Drake, Richard R.; Semmes, O. John
2011-01-01
Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC4ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells. PMID:21447706
Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer.
Yang, Lifang; Nyalwidhe, Julius O; Guo, Siqi; Drake, Richard R; Semmes, O John
2011-06-01
Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC(4)ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells.
NASA Astrophysics Data System (ADS)
Guo, Baoshan; Lei, Cheng; Ito, Takuro; Yaxiaer, Yalikun; Kobayashi, Hirofumi; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke
2017-02-01
The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, microalgal biofuel is expected to play a key role in reducing the detrimental effects of global warming since microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid contents and fail to characterize a diverse population of microalgal cells with single-cell resolution in a noninvasive and interference-free manner. Here we demonstrate high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy. In particular, we use Euglena gracilis - an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement) within lipid droplets. Our optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch phase-contrast microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase contents of every single cell at a high throughput of 10,000 cells/s. We characterize heterogeneous populations of E. gracilis cells under two different culture conditions to evaluate their lipid production efficiency. Our method holds promise as an effective analytical tool for microalgaebased biofuel production.
Photodynamic therapy and knocking out of single tumor cells by multiphoton excitation processes
NASA Astrophysics Data System (ADS)
Riemann, Iris; Fischer, Peter; Koenig, Karsten
2004-09-01
Near infrared (NIR) ultrashort laser pulses of 780 nm have been used to induce intracellular photodynamic reactions by nonlinear excitation of porphyrin photosensitizers. Intracellular accumulation and photobleaching of the fluorescent photosensitizers protoporphyrin IX and Photofrin (PF) have been studied by non-resonant two-photon fluorescence excitation of PF and aminolevulinic acid (ALA)-labeled Chinese hamster ovary (CHO) cells. To testify the efficacy of both substrates to induce irreversible destructive effects, the cloning efficiency (CE) of cells exposed to femtosecond pulses of a multiphoton laser scanning microscope (40x/1.3) was determined. In the case of Photofrin accumulation, CEs of 50% and 0% were obtained after 17 laserscans (2 mW?, 16 s/ frame) and 50 scans, respectively. All cells exposed to 50 scans died within 48h after laser exposure. 100 scans were required to induce lethal effects in ALA labeled cells. Sensitizer-free control cells could be scanned 250 times (1.1 h) and more without impact on the reproduction behavior, morphology, and vitality. In addition to the slow phototoxic effect by photooxidation processes, another destructive but immediate effect based on optical breakdown was induced when employing high intense NIR femtosecond laser beams. This was used to optically knock out single tumor cells in living mice (solid Ehrlich-Carcinoma) in a depth of 10 to 100 μm.
Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo
2016-01-01
Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. Copyright © 2015 Elsevier Ltd. All rights reserved.
In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images.
Christiansen, Eric M; Yang, Samuel J; Ando, D Michael; Javaherian, Ashkan; Skibinski, Gaia; Lipnick, Scott; Mount, Elliot; O'Neil, Alison; Shah, Kevan; Lee, Alicia K; Goyal, Piyush; Fedus, William; Poplin, Ryan; Esteva, Andre; Berndl, Marc; Rubin, Lee L; Nelson, Philip; Finkbeiner, Steven
2018-04-19
Microscopy is a central method in life sciences. Many popular methods, such as antibody labeling, are used to add physical fluorescent labels to specific cellular constituents. However, these approaches have significant drawbacks, including inconsistency; limitations in the number of simultaneous labels because of spectral overlap; and necessary perturbations of the experiment, such as fixing the cells, to generate the measurement. Here, we show that a computational machine-learning approach, which we call "in silico labeling" (ISL), reliably predicts some fluorescent labels from transmitted-light images of unlabeled fixed or live biological samples. ISL predicts a range of labels, such as those for nuclei, cell type (e.g., neural), and cell state (e.g., cell death). Because prediction happens in silico, the method is consistent, is not limited by spectral overlap, and does not disturb the experiment. ISL generates biological measurements that would otherwise be problematic or impossible to acquire. Copyright © 2018 Elsevier Inc. All rights reserved.
Cell Kinetic and Histomorphometric Analysis of Microgravitational Osteopenia: PARE.03B
NASA Technical Reports Server (NTRS)
Roberts, W. Eugene; Garetto, Lawrence P.
1998-01-01
Previous methods of identifying cells undergoing DNA synthesis (S-phase) utilized 3H-thymidine (3HT) autoradiography. 5-Bromo-2'-deoxyuridine (BrdU) immunohistochemistry is a nonradioactive alternative method. This experiment compared the two methods using the nuclear volume model for osteoblast histogenesis in two different embedding media. Twenty Sprague-Dawley rats were used, with half receiving 3HT (1 micro-Ci/g) and the other half BrdU (50 micro-g/g). Condyles were embedded (one side in paraffin, the other in plastic) and S-phase nuclei were identified using either autoradiography or immunohistochemistry. The fractional distribution of preosteoblast cell types and the percentage of labeled cells (within each cell fraction and label index) were calculated and expressed as mean +/- standard error. Chi-Square analysis showed only a minor difference in the fractional distribution of cell types. However, there were,significant differences (p less than 0.05) by ANOVA, in the nuclear labeling of specific cell types. With the exception of the less-differentiated A+A' cells, more BrdU label was consistently detected in paraffin than in plastic-embedded sections. In general, more nuclei were labeled with 3H-thymidine than with BrdU in both types of embedding media (Fig 2.). Labeling index data (labeled cells/total cells sampled x 100) indicated that BrdU in paraffin, but not plastic gave the same results as 3HT in either embedding method. Thus, we conclude that the two labeling methods do not yield the same results.
Zakrzewska, Karolina Ewa; Samluk, Anna; Wencel, Agnieszka; Dudek, Krzysztof; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz
2017-01-01
Cell-based therapies that could provide an alternative treatment for the end-stage liver disease require an adequate source of functional hepatocytes. There is little scientific evidence for the influence of patient's age, sex, and chemotherapy on the cell isolation efficiency and metabolic activity of the harvested hepatocytes. The purpose of this study was to investigate whether hepatocytes derived from different sources display differential viability and biosynthetic capacity. Liver cells were isolated from 41 different human tissue specimens. Hepatocytes were labeled using specific antibodies and analyzed using flow cytometry. Multiparametric analysis of the acquired data revealed statistically significant differences between some studied groups of patients. Generally, populations of cells isolated from the male specimens had greater percentage of biosynthetically active hepatocytes than those from the female ones regardless of age and previous chemotherapy of the patient. Based on the albumin staining (and partially on the α-1-antitrypsin labeling) after donor liver exclusion (6 out of 41 samples), our results indicated that: 1. samples obtained from males gave a greater percentage of active hepatocytes than those from females (p = 0.034), and 2. specimens from the males after chemotherapy greater than those from the treated females (p = 0.032).
Liu, Baodong; Liu, Xiaoling; Lai, Weiyi; Wang, Hailin
2017-06-06
DNA N 6 -methyl-2'-deoxyadenosine (6mdA) is an epigenetic modification in both eukaryotes and bacteria. Here we exploited stable isotope-labeled deoxynucleoside [ 15 N 5 ]-2'-deoxyadenosine ([ 15 N 5 ]-dA) as an initiation tracer and for the first time developed a metabolically differential tracing code for monitoring DNA 6mdA in human cells. We demonstrate that the initiation tracer [ 15 N 5 ]-dA undergoes a specific and efficient adenine deamination reaction leading to the loss the exocyclic amine 15 N, and further utilizes the purine salvage pathway to generate mainly both [ 15 N 4 ]-dA and [ 15 N 4 ]-2'-deoxyguanosine ([ 15 N 4 ]-dG) in mammalian genomes. However, [ 15 N 5 ]-dA is largely retained in the genomes of mycoplasmas, which are often found in cultured cells and experimental animals. Consequently, the methylation of dA generates 6mdA with a consistent coding pattern, with a predominance of [ 15 N 4 ]-6mdA. Therefore, mammalian DNA 6mdA can be potentially discriminated from that generated by infecting mycoplasmas. Collectively, we show a promising approach for identification of authentic DNA 6mdA in human cells and determine if the human cells are contaminated with mycoplasmas.
A cell sorting and trapping microfluidic device with an interdigital channel
NASA Astrophysics Data System (ADS)
Tu, Jing; Qiao, Yi; Xu, Minghua; Li, Junji; Liang, Fupeng; Duan, Mengqin; Ju, An; Lu, Zuhong
2016-12-01
The growing interest in cell sorting and trapping is driving the demand for high performance technologies. Using labeling techniques or external forces, cells can be identified by a series of methods. However, all of these methods require complicated systems with expensive devices. Based on inherent differences in cellular morphology, cells can be sorted by specific structures in microfluidic devices. The weir filter is a basic and efficient cell sorting and trapping structure. However, in some existing weir devices, because of cell deformability and high flow velocity in gaps, trapped cells may become stuck or even pass through the gaps. Here, we designed and fabricated a microfluidic device with interdigital channels for cell sorting and trapping. The chip consisted of a sheet of silicone elastomer polydimethylsiloxane and a sheet of glass. A square-wave-like weir was designed in the middle of the channel, comprising the interdigital channels. The square-wave pattern extended the weir length by three times with the channel width remaining constant. Compared with a straight weir, this structure exhibited a notably higher trapping capacity. Interdigital channels provided more space to slow down the rate of the pressure decrease, which prevented the cells from becoming stuck in the gaps. Sorting a mixture K562 and blood cells to trap cells demonstrated the efficiency of the chip with the interdigital channel to sort and trap large and less deformable cells. With stable and efficient cell sorting and trapping abilities, the chip with an interdigital channel may be widely applied in scientific research fields.
NASA Astrophysics Data System (ADS)
Kim, Youngho; Hong, Su; Lee, Sang Ho; Lee, Kangsun; Yun, Seok; Kang, Yuri; Paek, Kyeong-Kap; Ju, Byeong-Kwon; Kim, Byungkyu
2007-07-01
To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS—which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube—we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59940) of cells lost in the DMACS is much less than that (22360/59940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.
Wang, Hongbin; Hu, Gaofei; Zhang, Yongqian; Yuan, Zheng; Zhao, Xuan; Zhu, Yong; Cai, De; Li, Yujuan; Xiao, Shengyuan; Deng, Yulin
2010-07-15
The post-digestion (18)O labeling method decouples protein digestion and peptide labeling. This method allows labeling conditions to be optimized separately and increases labeling efficiency. A common method for protein denaturation in proteomics is the use of urea. Though some previous studies have used urea-based protein denaturation before post-digestion (18)O labeling, the optimal (18)O labeling conditions in this case have not been yet reported. Present study investigated the effects of urea concentration and pH on the labeling efficiency and obtained an optimized protocol. It was demonstrated that urea inhibited (18)O incorporation depending on concentration. However, a urea concentration between 1 and 2M had minimal effects on labeling. It was also demonstrated that the use of FA to quench the digestion reaction severely affected the labeling efficiency. This study revealed the reason why previous studies gave different optimal pH for labeling. They neglect the effects of different digestion conditions on the labeling conditions. Excellent labeling quality was obtained at the optimized conditions using urea 1-2 M and pH 4.5, 98.4+/-1.9% for a standard protein mixture and 97.2+/-6.2% for a complex biological sample. For a 1:1 mixture analysis of the (16)O- and (18)O-labeled peptides from the same protein sample, the average abundance ratios reached 1.05+/-0.31, demonstrating a good quantitation quality at the optimized conditions. This work will benefit other researchers who pair urea-based protein denaturation with a post-digestion (18)O labeling method. 2010 Elsevier B.V. All rights reserved.
Ideal regularization for learning kernels from labels.
Pan, Binbin; Lai, Jianhuang; Shen, Lixin
2014-08-01
In this paper, we propose a new form of regularization that is able to utilize the label information of a data set for learning kernels. The proposed regularization, referred to as ideal regularization, is a linear function of the kernel matrix to be learned. The ideal regularization allows us to develop efficient algorithms to exploit labels. Three applications of the ideal regularization are considered. Firstly, we use the ideal regularization to incorporate the labels into a standard kernel, making the resulting kernel more appropriate for learning tasks. Next, we employ the ideal regularization to learn a data-dependent kernel matrix from an initial kernel matrix (which contains prior similarity information, geometric structures, and labels of the data). Finally, we incorporate the ideal regularization to some state-of-the-art kernel learning problems. With this regularization, these learning problems can be formulated as simpler ones which permit more efficient solvers. Empirical results show that the ideal regularization exploits the labels effectively and efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.
Siloxane nanoprobes for labeling and dual modality imaging of neural stem cells
Addington, Caroline P.; Cusick, Alex; Shankar, Rohini Vidya; Agarwal, Shubhangi; Stabenfeldt, Sarah E.; Kodibagkar, Vikram D.
2015-01-01
Cell therapy represents a promising therapeutic for a myriad of medical conditions, including cancer, traumatic brain injury, and cardiovascular disease among others. A thorough understanding of the efficacy and cellular dynamics of these therapies necessitates the ability to non-invasively track cells in vivo. Magnetic resonance imaging (MRI) provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. We recently reported a new nanoprobe platform for cell labeling and imaging using fluorophore doped siloxane core nanoemulsions as dual modality (1H MRI/Fluorescence), dual-functional (oximetry/detection) nanoprobes. Here, we successfully demonstrate the labeling, dual-modality imaging, and oximetry of neural progenitor/stem cells (NPSCs) in vitro using this platform. Labeling at a concentration of 10 μl/104 cells with a 40%v/v polydimethylsiloxane core nanoemulsion, doped with rhodamine, had minimal effect on viability, no effect on migration, proliferation and differentiation of NPSCs and allowed for unambiguous visualization of labeled NPSCs by 1H MR and fluorescence and local pO2 reporting by labeled NPSCs. This new approach for cell labeling with a positive contrast 1H MR probe has the potential to improve mechanistic knowledge of current therapies, and guide the design of future cell therapies due to its clinical translatability. PMID:26597417
Projections from the dorsal and ventral cochlear nuclei to the medial geniculate body.
Schofield, Brett R; Motts, Susan D; Mellott, Jeffrey G; Foster, Nichole L
2014-01-01
Direct projections from the cochlear nucleus (CN) to the medial geniculate body (MG) mediate a high-speed transfer of acoustic information to the auditory thalamus. Anderson etal. (2006) used anterograde tracers to label the projection from the dorsal CN (DCN) to the MG in guinea pigs. We examined this pathway with retrograde tracers. The results confirm a pathway from the DCN, originating primarily from the deep layers. Labeled cells included a few giant cells and a larger number of small cells of unknown type. Many more labeled cells were present in the ventral CN (VCN). These cells, identifiable as multipolar (stellate) or small cells, were found throughout much of the VCN. Most of the labeled cells were located contralateral to the injection site. The CN to MG pathway bypasses the inferior colliculus (IC), where most ascending auditory information is processed. Anderson etal. (2006) hypothesized that CN-MG axons are collaterals of axons that reach the IC. We tested this hypothesis by injecting different fluorescent tracers into the MG and IC and examining the CN for double-labeled cells. After injections on the same side of the brain, double-labeled cells were found in the contralateral VCN and DCN. Most double-labeled cells were in the VCN, where they accounted for up to 37% of the cells labeled by the MG injection. We conclude that projections from the CN to the MG originate from the VCN and, less so, from the DCN. A significant proportion of the cells send a collateral projection to the IC. Presumably, the collateral projections send the same information to both the MG and the IC. The results suggest that T-stellate cells of the VCN are a major source of direct projections to the auditory thalamus.
Faraghat, Shabnam A; Hoettges, Kai F; Steinbach, Max K; van der Veen, Daan R; Brackenbury, William J; Henslee, Erin A; Labeed, Fatima H; Hughes, Michael P
2017-05-02
Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.
1988-01-01
To study microtubule (MT) dynamics in nerve cells, we microinjected biotin-labeled tubulin into the cell body of chemically fused and differentiated PC12 cells and performed the immunofluorescence or immunogold procedure using an anti-biotin antibody followed by secondary antibodies coupled to fluorescent dye or colloidal gold. Incorporation of labeled subunits into the cytoskeleton of neurites was observed within minutes after microinjection. Serial electron microscopic reconstruction revealed that existing MTs in PC12 neurites incorporated labeled subunits mainly at their distal ends and the elongation rate of labeled segments was estimated to be less than 0.3 micron/min. Overall organization of MTs in the nerve cells was different from that in undifferentiated cells such as fibroblasts. Namely, we have not identified any MT-organizing centers from which labeled MTs are emanating in the cell bodies of the injected cells. Stereo electron microscopy revealed that some fully labeled segments seemed to start in the close vicinity of electron dense material within the neurites. This suggests new nucleation off some structures in the neurites. We have also studied the overall pattern of the incorporation of labeled subunits which extended progressively from the proximal part of the neurites toward their tips. To characterize the mechanism of tubulin incorporation, we have measured mean density of gold labeling per unit length of labeled segments at different parts of the neurites. The results indicate access of free tubulin subunits into the neurites and local incorporation into the neurite cytoskeleton. Our results lead to the conclusion that MTs are not static polymers but dynamic structures that continue to elongate even within the differentiated nerve cell processes. PMID:3047145
Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study
Day, Chi-Ping; Carter, John; Bonomi, Carrie; Esposito, Dominic; Crise, Bruce; Ortiz-Conde, Betty; Hollingshead, Melinda; Merlino, Glenn
2009-01-01
SUMMARY Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase-GFP fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by FACS. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. SIGNIFICANCE In this study we have developed and identified lentiviral vectors that allow labeled mouse melanoma cells to maintain long-term and consistent expression of a bifunctional luciferase-GFP marker gene, even in syngeneic mice with an intact immune function. This cell-labeling system can be used to build immunocompetent mouse melanoma models that permit both tumor monitoring and FACS-based tumor cell isolation from tissues, greatly facilitating the in vivo study of melanoma. PMID:19175523
Manifold regularized matrix completion for multi-label learning with ADMM.
Liu, Bin; Li, Yingming; Xu, Zenglin
2018-05-01
Multi-label learning is a common machine learning problem arising from numerous real-world applications in diverse fields, e.g, natural language processing, bioinformatics, information retrieval and so on. Among various multi-label learning methods, the matrix completion approach has been regarded as a promising approach to transductive multi-label learning. By constructing a joint matrix comprising the feature matrix and the label matrix, the missing labels of test samples are regarded as missing values of the joint matrix. With the low-rank assumption of the constructed joint matrix, the missing labels can be recovered by minimizing its rank. Despite its success, most matrix completion based approaches ignore the smoothness assumption of unlabeled data, i.e., neighboring instances should also share a similar set of labels. Thus they may under exploit the intrinsic structures of data. In addition, the matrix completion problem can be less efficient. To this end, we propose to efficiently solve the multi-label learning problem as an enhanced matrix completion model with manifold regularization, where the graph Laplacian is used to ensure the label smoothness over it. To speed up the convergence of our model, we develop an efficient iterative algorithm, which solves the resulted nuclear norm minimization problem with the alternating direction method of multipliers (ADMM). Experiments on both synthetic and real-world data have shown the promising results of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.
Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin
A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less
Geburek, Florian; Mundle, Kathrin; Conrad, Sabine; Hellige, Maren; Walliser, Ulrich; van Schie, Hans T M; van Weeren, René; Skutella, Thomas; Stadler, Peter M
2016-02-01
Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are frequently used to treat equine tendinopathies. Up to now, knowledge about the fate of autologous AT-MSCs after intralesional injection into equine superficial digital flexor tendons (SDFTs) is very limited. The purpose of this study was to monitor the presence of intralesionally injected autologous AT-MSCs labelled with superparamagnetic iron oxide (SPIO) nanoparticles and green fluorescent protein (GFP) over a staggered period of 3 to 9 weeks with standing magnetic resonance imaging (MRI) and histology. Four adult warmblood horses received a unilateral injection of 10 × 10(6) autologous AT-MSCs into surgically created front-limb SDFT lesions. Administered AT-MSCs expressed lentivirally transduced reporter genes for GFP and were co-labelled with SPIO particles in three horses. The presence of AT-MSCs in SDFTs was evaluated by repeated examinations with standing low-field MRI in two horses and post-mortem in all horses with Prussian blue staining, fluorescence microscopy and with immunofluorescence and immunohistochemistry using anti-GFP antibodies at 3, 5, 7 and 9 weeks after treatment. AT-MSCs labelled with SPIO particles were detectable in treated SDFTs during each MRI in T2*- and T1-weighted sequences until the end of the observation period. Post-mortem examinations revealed that all treated tendons contained high numbers of SPIO- and GFP-labelled cells. Standing low-field MRI has the potential to track SPIO-labelled AT-MSCs successfully. Histology, fluorescence microscopy, immunofluorescence and immunohistochemistry are efficient tools to detect labelled AT-MSCs after intralesional injection into surgically created equine SDFT lesions. Intralesional injection of 10 × 10(6) AT-MSCs leads to the presence of high numbers of AT-MSCs in and around surgically created tendon lesions for up to 9 weeks. Integration of injected AT-MSCs into healing tendon tissue is an essential pathway after intralesional administration. Injection techniques have to be chosen deliberately to avoid reflux of the cell substrate injected. In vivo low-field MRI may be used as a non-invasive tool to monitor homing and engraftment of AT-MSCs in horses with tendinopathy of the SDFT.
Forced Unfolding of Proteins Within Cells
Johnson, Colin P.; Tang, Hsin-Yao; Carag, Christine; Speicher, David W.; Discher, Dennis E.
2009-01-01
To identify cytoskeletal proteins that change conformation or assembly within stressed cells, in situ labeling of sterically shielded cysteines with fluorophores was analyzed by fluorescence imaging, quantitative mass spectrometry, and sequential two-dye labeling. Within red blood cells, shotgun labeling showed that shielded cysteines in the two isoforms of the cytoskeletal protein spectrin were increasingly labeled as a function of shear stress and time, indicative of forced unfolding of specific domains. Within mesenchymal stem cells—as a prototypical adherent cell—nonmuscle myosin IIA and vimentin are just two of the cytoskeletal proteins identified that show differential labeling in tensed versus drug-relaxed cells. Cysteine labeling of proteins within live cells can thus be used to fluorescently map out sites of molecular-scale deformation, and the results also suggest means to colocalize signaling events such as phosphorylation with forced unfolding. PMID:17673662
Peckys, Diana B; Bandmann, Vera; de Jonge, Niels
2014-01-01
Correlative fluorescence microscopy combined with scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, STEM can be accomplished in two ways. The microchip with the labeled cells and one microchip with a spacer are assembled into a special microfluidic device and imaged with dedicated high-voltage STEM. Alternatively, thin edges of cells can be studied with environmental scanning electron microscopy with a STEM detector, by placing a microchip with cells in a cooled wet environment. © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Creasey, Rhiannon; Hook, Andrew; Thissen, Helmut; Voelcker, Nicolas H.
2007-12-01
Transfection cell microarrays (TCMs) are a high-throughput, miniaturised cell-culture system utilising reverse transfection, in which cells are seeded onto a DNA array resulting in localised regions of transfected cells. TCMs are useful for the analysis of gene expression, and can be used to identify genes involved in many cellular processes. This is of significant interest in fields such as tissue engineering, diagnostic screening, and drug testing [1, 2]. Low transfection efficiency has so far limited the application and utility of this technique. Recently, the transfection efficiency of TCMs was improved by an application of a high voltage for a short period of time to the DNA array resulting in the electroporation of cells attached to the surface [3, 4]. Furthermore, application of a low voltage for a longer period of time to the DNA array was shown to improve the transfection efficiency by stimulating the desorption of attached DNA, increasing the concentration of DNA available for cellular uptake [5]. In the present study, the optimisation of the uptake of adsorbed DNA vectors by adherent cells, utilising a voltage bias without compromising cell viability was investigated. This was achieved by depositing negatively charged DNA plasmids onto a positively charged allylamine plasma polymer (ALAPP) layer deposited on highly doped p-type silicon wafers either using a pipettor or a microarray contact printer. Surface-dependant human embryonic kidney (HEK 293 line) cells were cultured onto the DNA vector loaded ALAPP spots and the plasmid transfection events were detected by fluorescence microscopy. Cell viability assays, including fluorescein diacetate (FDA) / Hoechst DNA labelling, were carried out to determine the number of live adherent cells before and after application of a voltage. A protocol was developed to screen for voltage biases and exposure times in order to optimise transfection efficiency and cell viability. Cross-contamination between the microarray spots carrying different DNA vectors was also investigated. By application of a voltage of 286 V/cm for 10 ms, transfection efficiency was doubled compared to using only transfection reagent, whilst maintaining a cell viability of 60-70% of the positive control.
Fluorine-containing nanoemulsions for MRI cell tracking
Janjic, Jelena M.; Ahrens, Eric T.
2009-01-01
In this article we review the chemistry and nanoemulsion formulation of perfluorocarbons used for in vivo 19F MRI cell tracking. In this application, cells of interest are labeled in culture using a perfluorocarbon nanoemulsion. Labeled cells are introduced into a subject and tracked using 19F MRI or NMR spectroscopy. In the same imaging session, a high-resolution, conventional (1H) image can be used to place the 19F-labeled cells into anatomical context. Perfluorocarbon-based 19F cell tracking is a useful technology because of the high specificity for labeled cells, ability to quantify cell accumulations, and biocompatibility. This technology can be widely applied to studies of inflammation, cellular regenerative medicine, and immunotherapy. PMID:19920872
Mohammadnejad, J; Rasaee, M J; Babaei, M H; Paknejad, M; Zahir, M H; Salouti, M; Rajabi, A Bitarafan; Mazidi, M
2010-01-01
PR81 is a monoclonal antibody that binds with high affinity to MUC1, which is over expressed on breast and other tumors. The objective of this study was to evaluate the application of this antibody against MUC1 as a radioimmunotherapeutical agent. Monoclonal antibody (PR81) against MUC1 was prepared, characterized, purified, and labeled with 131I. The immunoreactivity of radiolabeled mAb PR81with MUC1 (the native protein), BSA-P20 (a 20 amino acid corresponding the tandem repeat of MUC1) and MCF7 cell line were performed by RIA. In vitro stability of radiolabeled mAb in human serum was determined by thin layer chromatography (TLC). Cell toxicity and in vitro internalization studies were performed with the MCF7 cell line, and the tissue biodistribution of the radioiodinated PR81 was evaluated in normal BALB/c mice at 4, 24 and 48 hrs. The tumor imaging was performed in BALB/c mice with breast xenograft tumors at 24 and 72 hr after the complex injection. The labeling efficiency was found to be 59.9% ± 7.9%. MAb-131I conjugates showed high immunoreactivity towards MUC1 protein, BSA-P20 and MCF7 cell line. In vitro stability of the labeled product in human serum was found to be more than %50 over 24 hr. Cell toxicity and in vitro internalization studies showed that the mAb-131I conjugate inhibited 80% growth of the MCF7 cultured cell lines in vitro in a high concentration and up to %60 of the conjugate internalized after 24 h. Biodistribution studies were performed in normal BALB/c mice at 4, 24 and 48 hrs post-injection and no important accumulation was observed in vital organs. The tumors were visualized with high sensitivity after 24 and 72 hr in radioimmunoscintographical studies. These results show that the new radiopharmaceutical may be considered as a promising candidate for therapy of breast cancer.
Albrecht, Simone; Kaisermayer, Christian; Reinhart, David; Ambrose, Monica; Kunert, Renate; Lindeberg, Anna; Bones, Jonathan
2018-05-01
The monitoring of protein biomarkers for the early prediction of cell stress and death is a valuable tool for process characterization and efficient biomanufacturing control. A representative set of six proteins, namely GPDH, PRDX1, LGALS1, CFL1, TAGLN2 and MDH, which were identified in a previous CHO-K1 cell death model using discovery LC-MS E was translated into a targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) platform and verified. The universality of the markers was confirmed in a cell growth model for which three Chinese hamster ovary host cell lines (CHO-K1, CHO-S, CHO-DG44) were grown in batch culture in two different types of basal media. LC-MRM-MS was also applied to spent media (n = 39) from four perfusion biomanufacturing series. Stable isotope-labelled peptide analogues and a stable isotope-labelled monoclonal antibody were used for improved protein quantitation and simultaneous monitoring of the workflow reproducibility. Significant increases in protein concentrations were observed for all viability marker proteins upon increased dead cell numbers and allowed for discrimination of spent media with dead cell densities below and above 1 × 10 6 dead cells/mL which highlights the potential of the selected viability marker proteins in bioprocess control. Graphical abstract Overview of the LC-MRM-MS workflow for the determination of proteomic markers in conditioned media from the bioreactor that correlate with CHO cell death.
Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.
Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy
2017-01-01
Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.
A rapid and fluorogenic TMP-AcBOPDIPY probe for covalent labeling of proteins in live cells.
Liu, Wei; Li, Fu; Chen, Xi; Hou, Jian; Yi, Long; Wu, Yao-Wen
2014-03-26
Protein labeling is enormously useful for characterizing protein function in cells and organisms. Chemical tagging methods have emerged as a new generation protein labeling strategy in live cells. Here we have developed a novel and versatile TMP-AcBOPDIPY probe for selective and turn-on labeling of proteins in live cells. A small monomeric tag, E. coli dihydrofolate reductase (eDHFR), was rationally designed to introduce a cysteine in the vicinity of the ligand binding site. Trimethoprim (TMP) that specifically binds to eDHFR was linked to the BOPDIPY fluorophore containing a mildly thiol-reactive acrylamide group. TMP-AcBOPDIPY rapidly labeled engineered eDHFR tags via a reaction termed affinity conjugation (a half-life of ca. 2 min), which is one of the top fast chemical probes for protein labeling. The probe displays 2-fold fluorescence enhancement upon labeling of proteins. We showed that the probe specifically labeled intracellular proteins in live cells without and with washing out the dye. We demonstrated its utility in visualizing intracellular processes by fluorescence-lifetime imaging microscopy (FLIM) measurements.
NASA Astrophysics Data System (ADS)
Vijaya Bharathi, M.; Maiti, Santanu; Sarkar, Bidisha; Ghosh, Kaustab; Paira, Priyankar
2018-03-01
This study addresses the cellular uptake of nanomaterials in the field of bio-applications. In the present study, we have synthesized water-soluble lead sulfide quantum dot (PbS QD) with glutathione and 3-MPA (mercaptopropionic acid) as the stabilizing ligand using a green approach. 3-MPA-capped QDs were further modified with streptavidin and then bound to biotin because of its high conjugation efficiency. Labelling and bio-imaging of cells with these bio-conjugated QDs were evaluated. The bright red fluorescence from these types of QDs in HeLa cells makes these materials suitable for deep tissue imaging.
Identification of secreted bacterial proteins by noncanonical amino acid tagging
Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.
2014-01-01
Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637
Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells
Lake, Michael P.; Bouchard, Louis-S.
2017-01-01
Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging. PMID:28636640
Single cell Enrichment with High Throughput Microfluidic Devices
NASA Astrophysics Data System (ADS)
Pakjesm Pourfard, Pedram
Microfluidics is a rapidly growing field of biomedical engineering with numerous applications such as diagnostic testing, therapeutics, and research preparation. Cell enrichment for automated diagnostic is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as, Shear migration, Lift force, Dean force, and many other label-free techniques, are advantageous since they don't require costly labeling or sample preparation. However, current passive techniques for enrichment had limited adoption in clinical and cell biology research applications. They generally require low flow rate and low cell volume fraction for high efficiency. The Control increment filtration, T-shaped microfluidic device, and spiral-shaped microfluidic devices will be studied for single-cell separation from aggregates. Control increment filtration works like the tangential filter; however, cells are separated based off of same amount of flow rate passing through large space gaps. Main microchannel of T-Shaped is connected to two perpendicular side channels. Based off Shear-modulated inertial migration, this device will enable selective enrichment of cells. The spiral shaped microfluidic device depends on different Dean and lift forces acting on cells to separate them based off different sizes. The spiral geometry of the microchannel will enable dominant inertial forces and the Dean Rotation force to cause larger cells to migrate to the inner side of the microchannel. Because manipulation of microchannel dimensions correlates to the degree of cell separation, versatility in design exists. Cell mixture samples will contain cells of different sizes and therefore design strategies could be utilized to maximize the effectiveness of single-cell separation.
Visualization of phage DNA degradation by a type I CRISPR-Cas system at the single-cell level.
Guan, Jingwen; Shi, Xu; Burgos, Roberto; Zeng, Lanying
2017-03-01
The CRISPR-Cas system is a widespread prokaryotic defense system which targets and cleaves invasive nucleic acids, such as plasmids or viruses. So far, a great number of studies have focused on the components and mechanisms of this system, however, a direct visualization of CRISPR-Cas degrading invading DNA in real-time has not yet been studied at the single-cell level. In this study, we fluorescently label phage lambda DNA in vivo , and track the labeled DNA over time to characterize DNA degradation at the single-cell level. At the bulk level, the lysogenization frequency of cells harboring CRISPR plasmids decreases significantly compared to cells with a non-CRISPR control. At the single-cell level, host cells with CRISPR activity are unperturbed by phage infection, maintaining normal growth like uninfected cells, where the efficiency of our anti-lambda CRISPR system is around 26%. During the course of time-lapse movies, the average fluorescence of invasive phage DNA in cells with CRISPR activity, decays more rapidly compared to cells without, and phage DNA is fully degraded by around 44 minutes on average. Moreover, the degradation appears to be independent of cell size or the phage DNA ejection site suggesting that Cas proteins are dispersed in sufficient quantities throughout the cell. With the CRISPR-Cas visualization system we developed, we are able to examine and characterize how a CRISPR system degrades invading phage DNA at the single-cell level. This work provides direct evidence and improves the current understanding on how CRISPR breaks down invading DNA.
A Fluorogenic TMP-tag for High Signal-to-Background Intracellular Live Cell Imaging
Jing, Chaoran
2013-01-01
Developed to compliment the use of fluorescent proteins in live cell imaging, chemical tags enjoy the benefit of modular incorporation of organic fluorophores, opening the possibility of high photon output and special photophysical properties. However, the theoretical challenge in using chemical tags as opposed to fluorescent proteins for high-resolution imaging is background noise from unbound and/or non-specifically bound ligand-fluorophore. We envisioned we could overcome this limit by engineering fluorogenic trimethoprim-based chemical tags (TMP-tags) in which the fluorophore is quenched until binding with E. coli dihydrofolate reductase (eDHFR) tagged protein displaces the quencher. Thus, we began by building a non-fluorogenic, covalent TMP-tag based on a proximity-induced reaction known to achieve rapid and specific labeling both in vitro and inside of living cells. Here we take the final step and render the covalent TMP-tag fluorogenic. In brief, we designed a trimeric TMP-fluorophore-quencher molecule (TMP-Q-Atto520) with the quencher attached to a leaving group that, upon TMP binding to eDHFR, would be cleaved by a cysteine residue (Cys) installed just outside the binding pocket of eDHFR. We present the in vitro experiments showing that the eDHFR:L28C nucleophile cleaves the TMP-Q-Atto520 rapidly and efficiently, resulting in covalent labeling and remarkable fluorescence enhancement. Most significantly, while only our initial design, TMP-Q-Atto520 achieved the demanding goal of not only labeling highly abundant, localized intracellular proteins, but also less abundant, more dynamic cytoplasmic proteins. These results suggest that fluorogenic TMP-tag can significantly impact highresolution live cell imaging and further establish the potential of proximity-induced reactivity and organic chemistry more broadly as part of the growing toolbox for synthetic biology and cell engineering. PMID:23745575
40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...
40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...
40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the specifications...
Passage of Trojan peptoids into plant cells.
Eggenberger, Kai; Birtalan, Esther; Schröder, Tina; Bräse, Stefan; Nick, Peter
2009-10-12
Efficient drug delivery is essential for many therapeutic applications. In this context, Trojan peptoids have attracted attention as powerful tools to deliver bioactive molecules into living cells. Certain cell-penetrating peptides, peptide mimetics, and peptoids have been shown to be endowed with a transport function and the structural features of this function have been characterized. However, most of the research has been done by using mammalian cell cultures as model organisms and the actual cellular mechanism of membrane passage has not been elucidated. Plant cells, which are encased in a cellulosic cell wall and differ in membrane composition, represent an alternative experimental system to address this issue, but so far, have attracted only little attention for both peptide- and peptoid-based carrier systems. Moreover, efficient delivery of nonproteinaceous bioactive macromolecules into living plant cells could complement genetic engineering in biotechnological applications, such as metabolic engineering and molecular farming. In the present study, we investigated carrier peptoids with or without guanidinium side chains with regard to their uptake into plant cells, the cellular mechanism of uptake, and intracellular localization. We can show that in contrast to polyamine peptoids (polylysine-like) fluorescently labeled polyguanidine peptoids (polyarginine-like) enter rapidly into tobacco BY-2 cells without affecting the viability of these cells. A quantitative comparison of this uptake with endocytosis of fluorescently labeled dextranes indicates that the main uptake of the guanidinium peptoids occurs between 30-60 min after the start of incubation and clearly precedes endocytosis. Dual visualization with the endosomal marker FM4-64 shows that the intracellular guanidinium peptoid is distinct from endocytotic vesicles. Once the polyguanidine peptoids have entered the cell, they associate with actin filaments and microtubules. By pharmacological manipulation of the cytoskeleton we tested whether the association with the cytoskeleton is necessary for uptake, and observed that the actin inhibitor latrunculin B as well as the microtubule inhibitor oryzalin impaired uptake and intracellular spread of the guanidinium carrier to a certain extent. These findings are discussed with respect to the potential mechanisms of uptake and with respect to the potential of Trojan peptoids as tools for metabolic engineering in plant biotechnology.
Affimer proteins for F-actin: novel affinity reagents that label F-actin in live and fixed cells.
Lopata, Anna; Hughes, Ruth; Tiede, Christian; Heissler, Sarah M; Sellers, James R; Knight, Peter J; Tomlinson, Darren; Peckham, Michelle
2018-04-26
Imaging the actin cytoskeleton in cells uses a wide range of approaches. Typically, a fluorescent derivative of the small cyclic peptide phalloidin is used to image F-actin in fixed cells. Lifeact and F-tractin are popular for imaging the cytoskeleton in live cells. Here we characterised novel affinity reagents called Affimers that specifically bind to F-actin in vitro to determine if they are suitable alternatives as eGFP-fusion proteins, to label actin in live cells, or for labeling F-actin in fixed cells. In vitro experiments showed that 3 out of the 4 Affimers (Affimers 6, 14 and 24) tested bind tightly to purified F-actin, and appear to have overlapping binding sites. As eGFP-fusion proteins, the same 3 Affimers label F-actin in live cells. FRAP experiments suggest that eGFP-Affimer 6 behaves most similarly to F-tractin and Lifeact. However, it does not colocalise with mCherry-actin in dynamic ruffles, and may preferentially bind stable actin filaments. All 4 Affimers label F-actin in methanol fixed cells, while only Affimer 14 labels F-actin after paraformaldehyde fixation. eGFP-Affimer 6 has potential for use in selectively imaging the stable actin cytoskeleton in live cells, while all 4 Affimers are strong alternatives to phalloidin for labelling F-actin in fixed cells.
Pavelic, Z. P.; Allen, L. M.; Mihich, E.
1981-01-01
The relation between the time of administration of tritiated thymidine and the proximity of cells to blood vessels and their labeling index, grain density per labeled cells, mitotic index, and growth fraction have been determined autoradiographically in a transplanted mammary tumor of mice. The tumor was rich in blood vessels, and the cells were densely packed, showing a few glandular structures. Shortly after tritiated thymidine administration, cells closer to the blood vessels (0-70 mu) showed a higher percentage of labeled and mitotic cells, more grains per labeled cells, and a higher growth fraction than the cells located in the outer zone (70-140 mu). Eight days later the values of these parameters were similar in both areas. The cell cycle time, the duration of mitosis, the S phase, the G1 phase and the G2 phase were essentially the same in both zones. These results could be attributed either to reutilization of nucleic acid metabolites or release of the original precursor from cells. It is suggested that label redistribution, which may perturb the measurement of the apparent turnover of labeled proliferating cellular systems in the body should be considered in all cases of autoradiographic or labeled purine-pyrimidine turnover studies. Images Figure 4 Figure 5 PMID:7468761
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min Hwan; School of Life Sciences and Biotechnology, Korea University, Seoul; Woo, Sang-Keun
Highlights: • We developed a safe, simple and appropriate stem cell labeling method with {sup 124}I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with {sup 124}I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via themore » hexadecyl-4-{sup 124}I-iodobenzoate ({sup 124}I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with {sup 124}I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of {sup 124}I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. In vivo tracking of the {sup 124}I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, {sup 124}I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials.« less
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Johnson, J. K.
1979-01-01
An efficient procedure which clusters data using a completely unsupervised clustering algorithm and then uses labeled pixels to label the resulting clusters or perform a stratified estimate using the clusters as strata is developed. Three clustering algorithms, CLASSY, AMOEBA, and ISOCLS, are compared for efficiency. Three stratified estimation schemes and three labeling schemes are also considered and compared.
Wolfs, Esther; Struys, Tom; Notelaers, Tineke; Roberts, Scott J; Sohni, Abhishek; Bormans, Guy; Van Laere, Koen; Luyten, Frank P; Gheysens, Olivier; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M
2013-03-01
Because of their extended differentiation capacity, stem cells have gained great interest in the field of regenerative medicine. For the development of therapeutic strategies, more knowledge on the in vivo fate of these cells has to be acquired. Therefore, stem cells can be labeled with radioactive tracer molecules such as (18)F-FDG, a positron-emitting glucose analog that is taken up and metabolically trapped by the cells. The aim of this study was to optimize the radioactive labeling of mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) in vitro with (18)F-FDG and to investigate the potential radiotoxic effects of this labeling procedure with a range of techniques, including transmission electron microscopy (TEM). Mouse MSCs and rat MAPCs were used for (18)F-FDG uptake kinetics and tracer retention studies. Cell metabolic activity, proliferation, differentiation and ultrastructural changes after labeling were evaluated using an Alamar Blue reagent, doubling time calculations and quantitative TEM, respectively. Additionally, mice were injected with MSCs and MAPCs prelabeled with (18)F-FDG, and stem cell biodistribution was investigated using small-animal PET. The optimal incubation period for (18)F-FDG uptake was 60 min. Significant early tracer washout was observed, with approximately 30%-40% of the tracer being retained inside the cells 3 h after labeling. Cell viability, proliferation, and differentiation capacity were not severely affected by (18)F-FDG labeling. No major changes at the ultrastructural level, considering mitochondrial length, lysosome size, the number of lysosomes, the number of vacuoles, and the average rough endoplasmic reticulum width, were observed with TEM. Small-animal PET experiments with radiolabeled MAPCs and MSCs injected intravenously in mice showed a predominant accumulation in the lungs and a substantial elution of (18)F-FDG from the cells. MSCs and MAPCs can be successfully labeled with (18)F-FDG for molecular imaging purposes. The main cellular properties are not rigorously affected. TEM confirmed that the cells' ultrastructural properties are not influenced by (18)F-FDG labeling. Small-animal PET studies confirmed the intracellular location of the tracer and the possibility of imaging injected prelabeled stem cell types in vivo. Therefore, direct labeling of MSCs and MAPCs with (18)F-FDG is a suitable technique to noninvasively assess cell delivery and early retention with PET.
Single-molecule fluorescence study of the inhibition of the oncogenic functionality of STAT3
NASA Astrophysics Data System (ADS)
Liu, Baoxu; Badali, Daniel; Fletcher, Steven; Avadisian, Miriam; Gunning, Patrick; Gradinaru, Claudiu
2009-06-01
Signal-Transducer-and-Activator-of-Transcription 3 (STAT3) protein plays an important role in the onset of cancers such as leukemia and lymphoma. In this study, we aim to test the effectiveness of a novel peptide drug designed to tether STAT3 to the phospholipid bilayer of the cell membrane and thus inhibit unwanted transcription. As a first step, STAT3 proteins were successfully labelled with tetramethylrhodamine (TMR), a fluorescent dye with suitable photostability for single molecule studies. The effectiveness of labelling was determined using fluorescence correlation spectroscopy in a custom built confocal microscope, from which diffusion times and hydrodynamic radii of individual proteins were determined. A newly developed fluorescein derivative label (F-NAc) has been designed to be incorporated into the structure of the peptide drug so that peptide-STAT3 interactions can be examined. This dye is spectrally characterized and is found to be well suited for its application to this project, as well as other single-molecule studies. The membrane localization via high-affinity cholesterol-bound small-molecule binding agents can be demonstrated by encapsulating TMR-labeled STAT3 and inhibitors within a vesicle model cell system. To this end, unilaminar lipid vesicles were examined for size and encapsulation ability. Preliminary results of the efficiency and stability of the STAT3 anchoring in lipid membranes obtained via quantitative confocal imaging and single-molecule spectroscopy using a custom-built multiparameter fluorescence microscope are reported here.
NASA Technical Reports Server (NTRS)
Lynes, Michael A. (Inventor); Fernandez, Salvador M. (Inventor)
2010-01-01
An assay technique for label-free, highly parallel, qualitative and quantitative detection of specific cell populations in a sample and for assessing cell functional status, cell-cell interactions and cellular responses to drugs, environmental toxins, bacteria, viruses and other factors that may affect cell function. The technique includes a) creating a first array of binding regions in a predetermined spatial pattern on a sensor surface capable of specifically binding the cells to be assayed; b) creating a second set of binding regions in specific spatial patterns relative to the first set designed to efficiently capture potential secreted or released products from cells captured on the first set of binding regions; c) contacting the sensor surface with the sample, and d) simultaneously monitoring the optical properties of all the binding regions of the sensor surface to determine the presence and concentration of specific cell populations in the sample and their functional status by detecting released or secreted bioproducts.
Segmentation and classification of cell cycle phases in fluorescence imaging.
Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan
2009-01-01
Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.
NASA Astrophysics Data System (ADS)
Zhu, Jingyi; Zhao, Lingzhou; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Shen, Mingwu; Zhao, Jinhua; Shi, Xiangyang
2015-10-01
We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer.We report the synthesis, characterization, and utilization of radioactive 131I-labeled multifunctional dendrimers for targeted single-photon emission computed tomography (SPECT) imaging and radiotherapy of tumors. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) were sequentially modified with 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO) and folic acid (FA) linked with polyethylene glycol (PEG), followed by acetylation modification of the dendrimer remaining surface amines and labeling of radioactive iodine-131 (131I). The generated multifunctional 131I-G5.NHAc-HPAO-PEG-FA dendrimers were characterized via different methods. We show that prior to 131I labeling, the G5.NHAc-HPAO-PEG-FA dendrimers conjugated with approximately 9.4 HPAO moieties per dendrimer are noncytotoxic at a concentration up to 20 μM and are able to target cancer cells overexpressing FA receptors (FAR), thanks to the modified FA ligands. In the presence of a phenol group, radioactive 131I is able to be efficiently labeled onto the dendrimer platform with good stability and high radiochemical purity, and render the platform with an ability for targeted SPECT imaging and radiotherapy of an FAR-overexpressing xenografted tumor model in vivo. The designed strategy to use the facile dendrimer nanotechnology may be extended to develop various radioactive theranostic nanoplatforms for targeted SPECT imaging and radiotherapy of different types of cancer. Electronic supplementary information (ESI) available: Part of the experimental details and additional experimental results. See DOI: 10.1039/c5nr05585g
Nano-biosensor for highly sensitive detection of HER2 positive breast cancer.
Salahandish, Razieh; Ghaffarinejad, Ali; Naghib, Seyed Morteza; Majidzadeh-A, Keivan; Zargartalebi, Hossein; Sanati-Nezhad, Amir
2018-05-25
Nanocomposite materials have provided a wide range of conductivity, sensitivity, selectivity and linear response for electrochemical biosensors. However, the detection of rare cells at single cell level requires a new class of nanocomposite-coated electrodes with exceptional sensitivity and specificity. We recently developed a construct of gold nanoparticle-grafted functionalized graphene and nanostructured polyaniline (PANI) for high-performance biosensing within a very wide linear response and selective performance. Further, replacing the expensive gold nanoparticles with low-cost silver nanoparticles as well as optimizing the nanocomposite synthesis and functionalization protocols on the electrode surface in this work enabled us to develop ultrasensitive nanocomposites for label-free detection of breast cancer cells. The sensor presented a fast response time of 30 min within a dynamic range of 10 - 5 × 10 6 cells mL -1 and with a detection limit of 2 cells mL -1 for the detection of SK-BR3 breast cancer cell. The nano-biosensor, for the first time, demonstrated a high efficiency of > 90% for the label-free detection of cancer cells in whole blood sample without any need for sample preparation and cell staining. The results demonstrated that the optimized nanocomposite developed in this work is a promising nanomaterial for electrochemical biosensing and with the potential applications in electro-catalysis and super-capacitances. Copyright © 2018 Elsevier B.V. All rights reserved.
Gambihler, S; Delius, M; Ellwart, J W
1994-09-01
Permeabilization of L1210 cells by lithotripter shock waves in vitro was monitored by evaluating the accumulation of fluorescein-labeled dextrans with a relative molecular mass ranging from 3,900-2,000,000. Incubation with labeled dextran alone caused a dose- and time-dependent increase in cellular fluorescence as determined by flow cytometry, with a vesicular distribution pattern in the cells consistent with endocytotic uptake. Shock wave exposure prior to incubation with labeled dextran revealed similar fluorescence intensities compared to incubation with labeled dextran alone. When cells were exposed to shock waves in the presence of labeled dextran, mean cellular fluorescence was further increased, indicating additional internalization of the probe. Confocal laser scanning microscopy confirmed intracellular fluorescence of labeled dextran with a diffuse distribution pattern. Fluorescence-activated cell sorting with subsequent determination of proliferation revealed that permeabilized cells were viable and able to proliferate. Permeabilization of the membrane of L1210 cells by shock waves in vitro allowed loading of dextrans with a relative molecular mass up to 2,000,000. Permeabilization of tumor cells by shock waves provides a useful tool for introducing molecules into cells which might be of interest for drug targeting in tumor therapy in vivo.
Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla
2016-08-01
Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Griessinger, Christoph M.; Maurer, Andreas; Kesenheimer, Christian; Kehlbach, Rainer; Reischl, Gerald; Ehrlichmann, Walter; Bukala, Daniel; Harant, Maren; Cay, Funda; Brück, Jürgen; Nordin, Renate; Kohlhofer, Ursula; Rammensee, Hans-Georg; Quintanilla-Martinez, Leticia; Schaller, Martin; Röcken, Martin; Pichler, Bernd J.; Kneilling, Manfred
2015-01-01
T cells are key players in inflammation, autoimmune diseases, and immunotherapy. Thus, holistic and noninvasive in vivo characterizations of the temporal distribution and homing dynamics of lymphocytes in mammals are of special interest. Herein, we show that PET-based T-cell labeling facilitates quantitative, highly sensitive, and holistic monitoring of T-cell homing patterns in vivo. We developed a new T-cell receptor (TCR)-specific labeling approach for the intracellular labeling of mouse T cells. We found that continuous TCR plasma membrane turnover and the endocytosis of the specific 64Cu-monoclonal antibody (mAb)–TCR complex enables a stable labeling of T cells. The TCR–mAb complex was internalized within 24 h, whereas antigen recognition was not impaired. Harmful effects of the label on the viability, DNA-damage and apoptosis-necrosis induction, could be minimized while yielding a high contrast in in vivo PET images. We were able to follow and quantify the specific homing of systemically applied 64Cu-labeled chicken ovalbumin (cOVA)-TCR transgenic T cells into the pulmonary and perithymic lymph nodes (LNs) of mice with cOVA-induced airway delayed-type hypersensitivity reaction (DTHR) but not into pulmonary and perithymic LNs of naïve control mice or mice diseased from turkey or pheasant OVA-induced DTHR. Our protocol provides consequent advancements in the detection of small accumulations of immune cells in single LNs and specific homing to the sites of inflammation by PET using the internalization of TCR-specific mAbs as a specific label of T cells. Thus, our labeling approach is applicable to other cells with constant membrane receptor turnover. PMID:25587131
Origin of tumor-promoter released fibronectin in fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrous, B.A.; Wolf, G.
1986-05-01
Previous work from the laboratory showed that the chemical tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated release of the cell surface glycoprotein, fibronectin (FN) from human lung fibroblasts (HLF), leading to depletion of cell surface FN, while FN synthesis is not altered by TPA. To further investigate the mechanism(s) by which TPA stimulates FN release, two types of experiments were performed. In the first, HLF were pulsed with /sup 35/S-methionine-labeled medium with or without TPA. In the second, cell-surface proteins were labeled by iodination (/sup 125/I) and then incubated in unlabeled medium with or without TPA. In both cases, the fate ofmore » labeled FN was followed over 12 hr. The /sup 35/S-meth-labeled HLF showed a rapid loss of labeled FN, first into a small, highly-labeled pool of cell surface FN (1 hr), later into the medium (4 hr or longer). Specific activities showed that this small pool in the cell surface turned over rapidly. TPA treatment resulted in more rapid movement of /sup 35/S-meth pulse-labeled FN to the cell surface and into the medium than in control cells. TPA thus affected the fate of intracellular FN. TPA treatment of HLF also resulted in more rapid removal of /sup 125/I-cell surface-labeled FN into the medium than in control cells. Thus, TPA affects the fate of preexisting cell surface FN in HLF. From these results, they hypothesize that TPA has two separate effects: it stimulates depletion of preexisting intracellular FN during the first hr of treatment, and it stimulates release of preexisting cell surface FN over all treatment times.« less
Poly(methyl methacrylate)-graft-oligoamines as low cytotoxic and efficient nonviral gene vectors.
Wang, Yong-Qiang; Sun, Yun-Xia; Hong, Xin-Lin; Zhang, Xian-Zheng; Zhang, Gao-Yong
2010-01-01
A series of poly(methyl methacrylate)-graft-oligoamines (PMMA-g-oligoamines), including PMMA-g-DETA, PMMA-g-TETA and PMMA-g-TEPA, were synthesized through aminolysis of the PMMA with diethylenetriamine, triethylenetetramine and tetraethylenepentamine. Agarose gel retardation assay indicated that PMMA-g-oligoamines had good binding capability with plasmid DNA, and the binding capability increased with increasing length of oligoamines and content of nitrogen (N%). The results of particle size, zeta potential and morphology observation further showed that the PMMA-g-oligoamines could condense DNA efficiently and the PMMA-g-oligoamine/DNA complexes were uniform nanospheres. The in vitro cell viability indicated that PMMA-g-oligoamines were less toxic than 25 kDa PEI, though the cytotoxicity of PMMA-g-oligoamines increased slightly with increasing length of oligoamines as well as the N% of PMMA-g-oligoamines. The transfection efficiency of PMMA-g-oligoamines/DNA complexes in 293 T and HeLa cells demonstrated that PMMA-g-oligoamines could transfect cells efficiently with increasing the length of oligoamines, especially PMMA-g-TEPA with highest N%, and showed similar transfection capability as 25 kDa PEI. The cellular uptake study showed that the distribution of YOYO-1 labeled DNA in the cytoplasm and nuclei increased gradually with increasing length of oligoamines.
Cholesterol and Morpholine Grafted Cationic Amphiphilic Copolymers for miRNA-34a Delivery.
Sharma, Saurabh; Mazumdar, Samrat; Italiya, Kishan S; Date, Tushar; Mahato, Ram I; Mittal, Anupama; Chitkara, Deepak
2018-06-04
miR-34a is a master tumor suppressor playing a key role in the several signaling mechanisms involved in cancer. However, its delivery to the cancer cells is the bottleneck in its clinical translation. Herein we report cationic amphiphilic copolymers grafted with cholesterol (chol), N, N-dimethyldipropylenetriamine (cation chain) and 4-(2-aminoethyl)morpholine (morph) for miR-34a delivery. The copolymer interacts with miR-34a at low N/P ratios (∼2/1) to form nanoplexes of size ∼108 nm and a zeta potential ∼ +39 mV. In vitro studies in 4T1 and MCF-7 cells indicated efficient transfection efficiency. The intracellular colocalization suggested that the copolymer effectively transported the FAM labeled siRNA into the cytoplasm within 2 h and escaped from the endo-/lysosomal environment. The developed miR-34a nanoplexes inhibited the breast cancer cell growth as confirmed by MTT assay wherein 28% and 34% cancer cell viability was observed in 4T1 and MCF-7 cells, respectively. Further, miR-34a nanoplexes possess immense potential to induce apoptosis in both cell lines.
Externally disposed plasma membrane proteins. I. Enzymatic iodination of mouse L cells
1975-01-01
The enzymatic iodination technique has been utilized in a study of the externally disposed membrane proteins of the mouse L cell. Iodination of cells in suspension results in lactoperoxidase-specific iodide incorporation with no loss of cell viability under the conditions employed, less than 3% lipid labeling, and more than 90% of the labeled species identifiable as monoiodotyrosine. 90% of the incorporated label is localized to the cell surface by electron microscope autoradiography, with 5-10% in the centrosphere region and postulated to represent pinocytic vesicles. Sodium dodecylsulfate-polyacrylamide gels of solubilized L-cell proteins reveals five to six labeled peaks ranging from 50,000 to 200,000 daltons. Increased resolution by use of gradient slab gels reveals 15-20 radioactive bands. Over 60% of the label resides in approximately nine polypeptides of 80,000 to 150,000 daltons. Various controls indicate that the labeling pattern reflects endogenous membrane proteins, not serum components. The incorporated 125-I, cholesterol, and one plasma membrane enzyme marker, alkaline phosphodiesterase I, are purified in parallel when plasma membranes are isolated from intact, iodinated L cells. The labeled components present in a plasma membrane-rich fraction from iodinated cells are identical to those of the total cell, with a 10- to 20-fold enrichment in specific activity of each radioactive peak in the membrane. PMID:163833
NASA Astrophysics Data System (ADS)
Suzuki, Y.; Wakisaka, Y.; Iwata, O.; Nakashima, A.; Ito, T.; Hirose, M.; Domon, R.; Sugawara, M.; Tsumura, N.; Watarai, H.; Shimobaba, T.; Suzuki, K.; Goda, K.; Ozeki, Y.
2017-02-01
Microalgae have been receiving great attention for their ability to produce biomaterials that are applicable for food supplements, drugs, biodegradable plastics, and biofuels. Among such microalgae, Euglena gracilis has become a popular species by virtue of its capability of accumulating useful metabolites including paramylon and lipids. In order to maximize the production of desired metabolites, it is essential to find ideal culturing conditions and to develop efficient methods for genetic transformation. To achieve this, understanding and controlling cell-to-cell variations in response to external stress is essential, with chemically specific analysis of microalgal cells including E. gracilis. However, conventional analytical tools such as fluorescence microscopy and spontaneous Raman scattering are not suitable for evaluation of diverse populations of motile microalgae, being restricted either by the requirement for fluorescent labels or a limited imaging speed, respectively. Here we demonstrate video-rate label-free metabolite imaging of live E. gracilis using stimulated Raman scattering (SRS) - an optical spectroscopic method for probing the vibrational signatures of molecules with orders of magnitude higher sensitivity than spontaneous Raman scattering. Our SRS's highspeed image acquisition (27 metabolite images per second) allows for population analysis of live E. gracilis cells cultured under nitrogen-deficiency - a technique for promoting the accumulation of paramylon and lipids within the cell body. Thus, our SRS system's fast imaging capability enables quantification and analysis of previously unresolvable cell-to-cell variations in the metabolite accumulation of large motile E. gracilis cell populations.
Homann, Stefanie; Hofmann, Christian; Gorin, Aleksandr M.; Nguyen, Huy Cong Xuan; Huynh, Diana; Hamid, Phillip; Maithel, Neil; Yacoubian, Vahe; Mu, Wenli; Kossyvakis, Athanasios; Sen Roy, Shubhendu; Yang, Otto Orlean
2017-01-01
Transfection is one of the most frequently used techniques in molecular biology that is also applicable for gene therapy studies in humans. One of the biggest challenges to investigate the protein function and interaction in gene therapy studies is to have reliable monospecific detection reagents, particularly antibodies, for all human gene products. Thus, a reliable method that can optimize transfection efficiency based on not only expression of the target protein of interest but also the uptake of the nucleic acid plasmid, can be an important tool in molecular biology. Here, we present a simple, rapid and robust flow cytometric method that can be used as a tool to optimize transfection efficiency at the single cell level while overcoming limitations of prior established methods that quantify transfection efficiency. By using optimized ratios of transfection reagent and a nucleic acid (DNA or RNA) vector directly labeled with a fluorochrome, this method can be used as a tool to simultaneously quantify cellular toxicity of different transfection reagents, the amount of nucleic acid plasmid that cells have taken up during transfection as well as the amount of the encoded expressed protein. Finally, we demonstrate that this method is reproducible, can be standardized and can reliably and rapidly quantify transfection efficiency, reducing assay costs and increasing throughput while increasing data robustness. PMID:28863132
smiFISH and FISH-quant - a flexible single RNA detection approach with super-resolution capability.
Tsanov, Nikolay; Samacoits, Aubin; Chouaib, Racha; Traboulsi, Abdel-Meneem; Gostan, Thierry; Weber, Christian; Zimmer, Christophe; Zibara, Kazem; Walter, Thomas; Peter, Marion; Bertrand, Edouard; Mueller, Florian
2016-12-15
Single molecule FISH (smFISH) allows studying transcription and RNA localization by imaging individual mRNAs in single cells. We present smiFISH (single molecule inexpensive FISH), an easy to use and flexible RNA visualization and quantification approach that uses unlabelled primary probes and a fluorescently labelled secondary detector oligonucleotide. The gene-specific probes are unlabelled and can therefore be synthesized at low cost, thus allowing to use more probes per mRNA resulting in a substantial increase in detection efficiency. smiFISH is also flexible since differently labelled secondary detector probes can be used with the same primary probes. We demonstrate that this flexibility allows multicolor labelling without the need to synthesize new probe sets. We further demonstrate that the use of a specific acrydite detector oligonucleotide allows smiFISH to be combined with expansion microscopy, enabling the resolution of transcripts in 3D below the diffraction limit on a standard microscope. Lastly, we provide improved, fully automated software tools from probe-design to quantitative analysis of smFISH images. In short, we provide a complete workflow to obtain automatically counts of individual RNA molecules in single cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Wang, Chao; Song, Xinbo; Chen, Lingcheng; Xiao, Yi
2017-05-15
Viscosity, as one of the major factors of intracellular microenvironment, influences the function of proteins. To detect local micro-viscosity of a protein, it is a precondition to apply a viscosity sensor for specifically target to proteins. However, all the reported small-molecule probes are just suitable for sensing/imaging of macro-viscosity in biological fluids of entire cells or organelles. To this end, we developed a hybrid sensor BDP-V BG by connecting a viscosity-sensitive boron-dipyrromethene (BODIPY) molecular rotor (BDP-V) to O 6 -benzylguanine (BG) for specific detection of local micro-viscosity of SNAP-tag fused proteins. We measured and calculated the reaction efficiency between the sensor and SNAP-tag protein in vitro to confirm the high labeling specificity. We also found that the labeling reaction results in a 53-fold fluorescence enhancement for the rotor, which qualifies it as a wash-free sensor with ignorable background fluorescence. The high sensitivity of protein labeled sensor (BDP-V-SNAP) to the changes of local viscosity was evaluated by detecting the enhancement of fluorescence lifetimes. Further, with the sensor BDP-V BG, we achieved high specific labeling of cells expressing two SNAP-tag fused proteins (nuclear histone H2B and mitochondrial COX8A). Two-photon excited fluorescence lifetime imaging revealed that, the micro-viscosities nearby the SNAP-tag fused two proteins are distinct. The different changes of local micro-viscosity of SNAP-tag fused histone protein in apoptosis induced by three nucleus-targeted drugs were also characterized for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.
Shamshirian, Danial; Erfani, Mostafa; Beiki, Davood; Fallahi, Babak; Shafiei, Mohammad
2015-10-01
Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target which has been used for melanoma imaging and therapy. In this work, a new lactam bridge α-MSH analog was labeled with (99m)Tc via HYNIC and EDDA/tricine as coligands including gamma aminobutyric acid (GABA) as a three carbon chain spacer between HYNIC and the N-terminus of the cyclic peptide. Also, stability in human serum, receptor bound internalization, in vivo tumor uptake, and tissue biodistribution were thoroughly investigated. HYNIC-GABA-Nle-CycMSHhept was synthesized using a standard Fmoc strategy. Labeling was performed at 95 °C and analysis involved instant thin layer chromatography and high performance liquid chromatography methods. The receptor bound internalization rate was studied in MC1 receptor expressing B16/F10 cells. Biodistribution of radiopeptide was studied in nude mice bearing B16/F10 tumor. Labeling yield of >98 % (n = 3) was obtained corresponding to a specific activity of 81 MBq/nmol. Peptide conjugate showed efficient stability in the presence of human serum. The radioligand showed specific internalization into B16/F10 cells (12.45 ± 1.1 % at 4 h). In biodistribution studies, a receptor-specific uptake was observed in MC1 receptor-positive organs so that after 2 h the uptake in mouse tumor was 5.10 ± 0.08 % ID/g, while low accumulation in the kidney uptake was observed (4.58 ± 0.68 % ID/g at 2 h after injection). The obtained results show that the presented new designed labeled peptide conjugate may be a suitable candidate for diagnosis of malignant tumors.
FISH-Flow: a quantitative molecular approach for describing mixed clade communities of Symbiodinium
NASA Astrophysics Data System (ADS)
McIlroy, S. E.; Smith, G. J.; Geller, J. B.
2014-03-01
Our understanding of reef corals and their fate in a changing climate is limited by our ability to monitor the diversity and abundance of the dinoflagellate endosymbionts that sustain them. This study combined two well-known methods in tandem: fluorescent in situ hybridization (FISH) for genotype-specific labeling of Symbiodinium and flow cytometry to quantify the abundance of each symbiont clade in a sample. This technique (FISH-Flow) was developed with cultured Symbiodinium representing four distinct clades (based on large subunit rDNA) and was used to distinguish and quantify these types with high efficiency and few false positives. This technique was also applied to freshly isolated symbionts of Orbicella faveolata and Orbicella annularis. Isolates from acutely bleached coral tissues had significantly lower labeling efficiency; however, isolates from healthy tissue had efficiencies comparable to cultured Symbiodinium trials. RNA degradation in bleaching samples may have interfered with labeling of cells. Nevertheless, we were able to determine that, with and without thermal stress, experimental columns of the coral O. annularis hosted a majority of clade B and B/C symbionts on the top and side of the coral column, respectively. We demonstrated that, for cultured Symbiodinium and Symbiodinium freshly isolated from healthy host tissues, the relative ratio of clades could be accurately determined for clades present at as low as 7 % relative abundance. While this method does not improve upon PCR-based techniques in identifying clades at background levels, FISH-Flow provides a high precision, flexible system for targeting, quantifying and isolating Symbiodinium genotypes of interest.
Liu, Haisong; Yang, Huan; Zhu, Dicong; Sui, Xin; Li, Juan; Liang, Zhen; Xu, Lei; Chen, Zeyu; Yao, Anzhi; Zhang, Long; Zhang, Xi; Yi, Xing; Liu, Meng; Xu, Shiqing; Zhang, Wenjian; Lin, Hua; Xie, Lan; Lou, Jinning; Zhang, Yong; Xi, Jianzhong; Deng, Hongkui
2014-10-01
The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP(+) cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.
Nawaz, Saima; Mullen, Gregory E D; Sunassee, Kavitha; Bordoloi, Jayanta; Blower, Philip J; Ballinger, James R
2017-10-25
Labelling proteins with gallium-68 using bifunctional chelators is often problematic because of unsuitably harsh labelling conditions such as low pH or high temperature and may entail post-labelling purification. To determine whether tris(hydroxypyridinone) (THP) bifunctional chelators offer a potential solution to this problem, we have evaluated the labelling and biodistribution of a THP conjugate with a new single-chain antibody against the prostate-specific membrane antigen (PSMA), an attractive target for staging prostate cancer (PCa). A single-chain variable fragment (scFv) of J591, a monoclonal antibody that recognises an external epitope of PSMA, was prepared in order to achieve biokinetics matched to the half-life of gallium-68. The scFv, J591c-scFv, was engineered with a C-terminal cysteine. J591c-scFv was produced in HEK293T cells and purified by size-exclusion chromatography. A maleimide THP derivative (THP-mal) was coupled site-specifically to the C-terminal cysteine residue. The THP-mal-J591c-scFv conjugate was labelled with ammonium acetate-buffered gallium-68 from a 68 Ge/ 68 Ga generator at room temperature and neutral pH. The labelled conjugate was evaluated in the PCa cell line DU145 and its PSMA-overexpressing variant in vitro and xenografted in SCID mice. J591c-scFv was produced in yields of 4-6 mg/l culture supernatant and efficiently coupled with the THP-mal bifunctional chelator. Labelling yields > 95% were achieved at room temperature following incubation of 5 μg conjugate with gallium-68 for 5 min without post-labelling purification. 68 Ga-THP-mal-J591c-scFv was stable in serum and showed selective binding to the DU145-PSMA cell line, allowing an IC50 value of 31.5 nM to be determined for unmodified J591c-scFv. Serial PET/CT imaging showed rapid, specific tumour uptake and clearance via renal elimination. Accumulation in DU145-PSMA xenografts at 90 min post-injection was 5.4 ± 0.5%ID/g compared with 0.5 ± 0.2%ID/g in DU145 tumours (n = 4). The bifunctional chelator THP-mal enabled simple, rapid, quantitative, one-step room temperature radiolabelling of a protein with gallium-68 at neutral pH without a need for post-labelling purification. The resultant gallium-68 complex shows high affinity for PSMA and favourable in vivo targeting properties in a xenograft model of PCa.
Calzi, Sergio Li; Kent, David L.; Chang, Kyung-Hee; Padgett, Kyle R.; Afzal, Aqeela; Chandra, Saurav B.; Caballero, Sergio; English, Denis; Garlington, Wendy; Hiscott, Paul S.; Sheridan, Carl M.; Grant, Maria B.; Forder, John R.
2013-01-01
Precise localization of exogenously delivered stem cells is critical to our understanding of their reparative response. Our current inability to determine the exact location of small numbers of cells may hinder optimal development of these cells for clinical use. We describe a method using magnetic resonance imaging to track and localize small numbers of stem cells following transplantation. Endothelial progenitor cells (EPC) were labeled with monocrystalline iron oxide nanoparticles (MIONs) which neither adversely altered their viability nor their ability to migrate in vitro and allowed successful detection of limited numbers of these cells in muscle. MION-labeled stem cells were also injected into the vitreous cavity of mice undergoing the model of choroidal neovascularization, laser rupture of Bruch’s membrane. Migration of the MION-labeled cells from the injection site towards the laser burns was visualized by MRI. In conclusion, MION labeling of EPC provides a non-invasive means to define the location of small numbers of these cells. Localization of these cells following injection is critical to their optimization for therapy. PMID:19345699
[Survival of bone marrow mesenchymal stem cells and periodontal ligament stem cells in cell sheets].
An, Kangkang; Liu, Hongwei
2014-11-01
To evaluate the survival of bone marrow mesenchymal stem cells (BMMSC) and periodontal ligament stem cells (PDLSC) in BMMSC/PDLSC cell sheets which transplanted ectopically into subcutaneous dorsum of nude mice. The canine BMMSC and PDLSC from primary culture were tranfected with lentiviral vectors carrying green fluorescent protein (GFP) gene (Lentivirus-GFP) or red fluorescent protein (RFP) gene (Lentivirus-RFP) respectively. The immunophenotypes of GFP-labeled BMMSC and RFP-labeled PDLSC were identified by flow cytometry. Adipogenic and osteogenic differentiation of them were detected by alizarin red or oil red O respectively. Then, both GFP-labeled BMMSC cell sheets and RFP-labeled PDLSC cell sheets were fabricated respectively using normal culture dish (6 cm) after stimulation of extracellular matrix formation. Each was enveloped by collagen membrane (Bio-Gide) and then transplanted into the subcutaneous dorsum of nude mice. In vivo non-invasive biofluorescence imaging(BFI) was performed at 1, 2, 4 and 8 w post-tranplantation to trace and quantify the survival and growth of RFP-labeled PDLSC and GFP-labeled BMMSC via the BFI system of the NightOWL. The fluorescence intensity change of GFP/RFP signal was monitored and compared. The mice were sacrificed 8 weeks after cell sheets transplantation and the survival of stem cells was verified by fluorescence immunohistochemistry. The flow cytometry showed that GFP-labeled BMMSC positively expressed CD29, CD44, CD34, STRO-1 were 93.07%, 92.84%, 3.23%, 67.67%, and RFP-labeled PDLSCs were 89.91%, 88.47%, 6.04%, 74.11%, respectively. Both of them had the potency of differentiating into osteoblasts and adipocytes. The stemness of both of them was almost same. After being transplanted into nude mice, the signal strength of GFP(BMMSC) was weaker and weaker in 1, 2, 4 and 8 w [(83.1±3.1)×10(6), (65.1±2.3)×10(6), (51.5 ± 2.3)×10(6), (33.8 ± 2.0)×10(6) ph/s, respectively.]. The signal strength of RFP(PDLSC) was weakenedin 1, 2 and 4 w [(53.8±3.0)×10(6), (42.2±2.6)×10(6), (34.5±2.1)×10(6) ph/s], then recovered in 8 w ([ 45.1±2.9)×10(6) ph/s]. The signal strength of RFP(PDLSC) was signifcantly stronger in 8 w than in 4 w(P < 0.01). The survival of RFP-labeled PDLSC was significant higher than that of GFP-labeled BMMSC. After 8 weeks, lots of RFP-labeled PDLSC were observed by microscope, but less GFP-labeled BMMSC were observed. Histometric analysis revealed that the survival of stem cells in the RFP-labeled PDLSC cell sheets was significantly higher than that of in the GFP-labeled BMMSCs cell sheets.
2016-01-01
Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics. PMID:27159569
Takahashi, Yuki; Nishikawa, Makiya; Shinotsuka, Haruka; Matsui, Yuriko; Ohara, Saori; Imai, Takafumi; Takakura, Yoshinobu
2013-05-20
The development of exosomes as delivery vehicles requires understanding how and where exogenously administered exosomes are distributed in vivo. In the present study, we designed a fusion protein consisting of Gaussia luciferase and a truncated lactadherin, gLuc-lactadherin, and constructed a plasmid expressing the fusion protein. B16-BL6 murine melanoma cells were transfected with the plasmid, and exosomes released from the cells were collected by ultracentrifugation. Strong luciferase activity was detected in the fraction containing exosomes, indicating their efficient labeling with gLuc-lactadherin. Then, the labeled B16-BL6 exosomes were intravenously injected into mice, and their tissue distribution was evaluated. Pharmacokinetic analysis of the exosome blood concentration-time profile revealed that B16-BL6 exosomes disappeared very quickly from the blood circulation with a half-life of approximately 2min. Little luciferase activity was detected in the serum at 4h after exosome injection, suggesting rapid clearance of B16-BL6 exosomes in vivo. Moreover, sequential in vivo imaging revealed that the B16-BL6 exosome-derived signals distributed first to the liver and then to the lungs. These results indicate that gLuc-lactadherin labeling is useful for tracing exosomes in vivo and that B16-BL6 exosomes are rapidly cleared from the blood circulation after systemic administration. Copyright © 2013 Elsevier B.V. All rights reserved.
Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications.
Cui, Chenghua; Shu, Wei; Li, Peining
2016-01-01
Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH techniques have visualized intra-nuclear genomic structure and sub-cellular transcriptional dynamics of many genes and revealed their functions in various biological processes.
Takezawa, R; Watanabe, Y; Akaike, T
1995-12-01
Controversy has surrounded origin and differentiation of tissue macrophages. We directly demonstrate the differentiation of bone marrow cells into macrophages in the liver in vivo using a cell-labeling fluorescence dye, PKH-26. Bone marrow cells labeled with PKH26 were intravenously injected into syngenic mice, and these cells were tracked by flow cytometric analysis. The majority of the labeled cells were detected only in the liver after 4 days. Interestingly, antigens specific for macrophage lineage cells (F4/80, Fc gamma RII, and CD14) were detected on the liver-accumulated cells only 4 h after the injection. The pattern of the antigen expression changed to that of Kupffer cells (F4/80+, Fc gamma RII+, Mac-1-) after 4 days and remained so thereafter. These labeled cells in the liver were esterase staining-positive and showed phagocytic activity at day 7. The number of labeled cells among the Kupffer cells in the liver increased with days after injection. This indicates that bone marrow cells accumulate in the liver and differentiate into liver macrophages on site. Roles of factors secreted from hepatocytes are also discussed.
Danhier, Pierre; Magat, Julie; Levêque, Philippe; De Preter, Géraldine; Porporato, Paolo E; Bouzin, Caroline; Jordan, Bénédicte F; Demeur, Gladys; Haufroid, Vincent; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard
2015-03-01
Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs. Following intracardiac injection, SPIO-labeled 4 T1-luc cells were imaged using multiple gradient-echo sequences. Ex vivo iron oxide quantification in the mouse brain was performed using EPR (9 GHz). The long-term fate of 4 T1-luc cells after injection was characterized using bioluminescence imaging (BLI), brain MRI and immunofluorescence. We observed hypointense spots due to SPIO-labeled cells in the mouse brain 4 h after injection on T2 *-weighted images. Histology studies showed that SPIO-labeled cancer cells were localized within blood vessels shortly after delivery. Ex vivo quantification of SPIOs showed that less than 1% of the injected cells were taken up by the mouse brain after injection. MRI experiments did not reveal the development of macrometastases in the mouse brain several days after injection, but immunofluorescence studies demonstrated that these cells found in the brain established micrometastases. Concerning the metastatic patterns of 4 T1-luc cells, an EPR biodistribution study demonstrated that SPIO-labeled 4 T1-luc cells were also entrapped in the lungs of mice after intracardiac injection. BLI performed 6 days after injection of 4 T1-luc cells showed that this cell line formed macrometastases in the lungs and in the bones. Conclusively, EPR and MRI were found to be complementary for cell tracking applications. MRI cell tracking at 11.7 T allowed sensitive detection of isolated SPIO-labeled cells in the mouse brain, whereas EPR allowed the assessment of the number of SPIO-labeled cells in organs shortly after injection. Copyright © 2015 John Wiley & Sons, Ltd.
Desired and Undesired Effects of Energy Labels--An Eye-Tracking Study.
Waechter, Signe; Sütterlin, Bernadette; Siegrist, Michael
2015-01-01
Saving energy is an important pillar for the mitigation of climate change. Electric devices (e.g., freezer and television) are an important player in the residential sector in the final demand for energy. Consumers' purchase decisions are therefore crucial to successfully reach the energy-efficiency goals. Putting energy labels on products is often considered an adequate way of empowering consumers to make informed purchase decisions. Consequently, this approach should contribute to reducing overall energy consumption. The effectiveness of its measurement depends on consumers' use and interpretation of the information provided. Despite advances in energy efficiency and a mandatory labeling policy, final energy consumption per capita is in many countries still increasing. This paper provides a systematic analysis of consumers' reactions to one of the most widely used eco-labels, the European Union (EU) energy label, by using eye-tracking methodology as an objective measurement. The study's results partially support the EU's mandatory policy, showing that the energy label triggers attention toward energy information in general. However, the energy label's effect on consumers' actual product choices seems to be rather low. The study's results show that the currently used presentation format on the label is insufficient. The findings suggest that it does not facilitate the integration of energy-related information. Furthermore, the current format can attract consumers to focus more on energy-efficiency information, leading them to disregard information about actual energy consumption. As a result, the final energy consumption may increase because excellent ratings on energy efficiency (e.g., A++) do not automatically imply little consumption. Finally, implications for policymakers and suggestions for further research are discussed.
RELATIONSHIP OF GERMINAL CENTERS IN LYMPHOID TISSUE TO IMMUNOLOGICAL MEMORY
Wakefield, J. D.; Thorbecke, G. J.
1968-01-01
The fate, proliferation, and developmental potentialities of cell suspensions made from white pulp containing large germinal centers have been studied in the mouse by transfer of cells labeled with thymidine-3H to lethally irradiated, syngeneic recipients. Radioautographic analyses were made using both smears and sections of a variety of tissues. Thymidine-3H-labeling patterns of white pulp showed that, initially, labeling occurred in a majority of blast and "intermediate cells" but in very few or no small lymphocytes. After intravenous transfer, most of the labeled cells localized in the lymphoid tissues of spleen, lymph nodes, and Peyer's patches. Few cells migrated to the thymus, lung, liver, and intestinal mucosa. Both after intravenous and after intraperitoneal transfer there was a rapid increase in the incidence of labeled small lymphocytes and a decrease of labeled blasts and intermediate cells. This was accompanied by an increase in the grain count of the small lymphocytes and a progressive decrease in the grain counts of the blast cells. Exposure of nonlabeled donor cells to thymidine-3H at various time intervals after transfer indicated that dividing cells were present early after transfer but that their incidence progressively decreased. Between 24 and 48 hr, very little cell division was detectable. PMID:5662013
Cell Kinetic and Histomorphometric Analysis of Microgravitational Osteopenia: PARE.03B
NASA Technical Reports Server (NTRS)
Roberts, W. Eugene; Garetto, Lawrence P.
1998-01-01
Previous methods of identifying cells undergoing DNA synthesis (S-phase) utilized H-3 thymidine (3HT) autoradiography. 5-Bromo-2'-deoxyuridine (BrdU) immunohistochemistry is a nonradioactive alternative method. This experiment compared the two methods using the nuclear volume model for osteoblast histogenesis in two different embedding media. Twenty Sprague-Dawley rats were used, with half receiving 3HT (1 micro Ci/g) and the other half BrdU (50 microgram/g). Condyies were embedded (one side in paraffin, the other in plastic) and S-phase nuclei were identified using either autoradiography or immunohistochemistry. The fractional distribution of preosteoblast cell types and the percentage of labeled cells (within each cell fraction and label index) were calculated and expressed as mean q standard error. Chi-Square analysis showed only a minor difference in the fractional distribution of cell types. However, there were significant differences (p less than 0.05) by ANOVA, in the nuclear labeling of specific cell types. With the exception of the less-differentiated A+A'cells, more BrdU label was consistently detected in paraffin than in plastic-embedded sections. In general, more nuclei were labeled with 3H-thymidine than with BrdU in both types of embedding media. Labeling index data (labeled cells/total cells sampled x 100) indicated that BrdU in paraffin, but not plastic gave the same results as 3HT in either embedding method. Thus, we conclude that the two labeling methods do not yield the same results for the nuclear volume model and that embedding media is an important factor whenusing BrdU. As a result of this work, 3HT was chosen for used in the PARE.03 flight experiments.
Isolating dividing neural and brain tumour cells for gene expression profiling.
Endaya, Berwini; Cavanagh, Brenton; Alowaidi, Faisal; Walker, Tom; de Pennington, Nicholas; Ng, Jin-Ming A; Lam, Paula Y P; Mackay-Sim, Alan; Neuzil, Jiri; Meedeniya, Adrian C B
2016-01-15
The characterisation of dividing brain cells is fundamental for studies ranging from developmental and stem cell biology, to brain cancers. Whilst there is extensive anatomical data on these dividing cells, limited gene transcription data is available due to technical constraints. We focally isolated dividing cells whilst conserving RNA, from culture, primary neural tissue and xenografted glioma tumours, using a thymidine analogue that enables gene transcription analysis. 5-ethynyl-2-deoxyuridine labels the replicating DNA of dividing cells. Once labelled, cultured cells and tissues were dissociated, fluorescently tagged with a revised click chemistry technique and the dividing cells isolated using fluorescence-assisted cell sorting. RNA was extracted and analysed using real time PCR. Proliferation and maturation related gene expression in neurogenic tissues was demonstrated in acutely and 3 day old labelled cells, respectively. An elevated expression of marker and pathway genes was demonstrated in the dividing cells of xenografted brain tumours, with the non-dividing cells showing relatively low levels of expression. BrdU "immune-labelling", the most frequently used protocol for detecting cell proliferation, causes complete denaturation of RNA, precluding gene transcription analysis. This EdU labelling technique, maintained cell integrity during dissociation, minimized copper exposure during labelling and used a cell isolation protocol that avoided cell lysis, thus conserving RNA. The technique conserves RNA, enabling the definition of cell proliferation-related changes in gene transcription of neural and pathological brain cells in cells harvested immediately after division, or following a period of maturation. Copyright © 2015 Elsevier B.V. All rights reserved.
Developments in label-free microfluidic methods for single-cell analysis and sorting.
Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L
2018-04-24
Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.
Fontanini, G.; Pingitore, R.; Bigini, D.; Vignati, S.; Pepe, S.; Ruggiero, A.; Macchiarini, P.
1992-01-01
Results generated by the immunohistochemical staining with PC10, a new monoclonal antibody recognizing PCNA (a nuclear protein associated with cell proliferation) in formalin-fixed and paraffin-embedded tissue were compared with those of Ki-67 labeling and DNA flow cytometry in 47 consecutive non-small cell lung cancer (NSCLC). PCNA reactivity was observed in all samples and confined to the nuclei of cancer cells. Its frequency ranged from 0 to 80% (37.7 +/- 23.6) and larger sized, early-staged and DNA aneuploid tumors expressed a significant higher number of PCNA-reactive cells. The PCNA and Ki-67 labeling rates were closely correlated (r = 0.383, P = 0.009). By flow cytometry, we observed a good correlation among PCNA labeling and S-phase fraction (r = 0.422, P = .0093) and G1 phase (r = 0.303, P = .051) of the cell cycle. Results indicate that PCNA labeling with PC10 is a simple method for assessing the proliferative activity in formalin-fixed, paraffin-embedded tissue of NSCLC and correlates well with Ki-67 labeling and S-phase fraction of the cell cycle. Images Figure 2 PMID:1361306
Cima, Igor; Wen Yee, Chay; Iliescu, Florina S; Phyo, Wai Min; Lim, Kiat Hon; Iliescu, Ciprian; Tan, Min Han
2013-01-01
This review will cover the recent advances in label-free approaches to isolate and manipulate circulating tumor cells (CTCs). In essence, label-free approaches do not rely on antibodies or biological markers for labeling the cells of interest, but enrich them using the differential physical properties intrinsic to cancer and blood cells. We will discuss technologies that isolate cells based on their biomechanical and electrical properties. Label-free approaches to analyze CTCs have been recently invoked as a valid alternative to "marker-based" techniques, because classical epithelial and tumor markers are lost on some CTC populations and there is no comprehensive phenotypic definition for CTCs. We will highlight the advantages and drawbacks of these technologies and the status on their implementation in the clinics.
NASA Astrophysics Data System (ADS)
Illien, Françoise; Rodriguez, Nicolas; Amoura, Mehdi; Joliot, Alain; Pallerla, Manjula; Cribier, Sophie; Burlina, Fabienne; Sagan, Sandrine
2016-11-01
The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.108 for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells.
Fluorescent Photo-conversion: A second chance to label unique cells.
Mellott, Adam J; Shinogle, Heather E; Moore, David S; Detamore, Michael S
2015-03-01
Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2 , allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2 -transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2 , offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.
Ferritin conjugates as specific magnetic labels. Implications for cell separation.
Odette, L L; McCloskey, M A; Young, S H
1984-01-01
Concanavalin A coupled to the naturally occurring iron storage protein ferritin is used to label rat erythrocytes and increase the cells' magnetic susceptibility. Labeled cells are introduced into a chamber containing spherical iron particles and the chamber is placed in a uniform 5.2 kG (gauss) magnetic field. The trajectory of cells in the inhomogeneous magnetic field around the iron particles and the polar distributions of cells bound to the iron particles compare well with the theoretical predictions for high gradient magnetic systems. On the basis of these findings we suggest that ferritin conjugated ligands can be used for selective magnetic separation of labeled cells. Images FIGURE 2 PMID:6743752
Homes built to meet EPA's specification can earn the WaterSense label. EPA criteria include WaterSense labeled plumbing fixtures, efficient hot water delivery systems, water-smart landscape design, and other features.
Büttner, Lea; Javadi-Zarnaghi, Fatemeh; Höbartner, Claudia
2014-06-04
A general and efficient single-step method was established for site-specific post-transcriptional labeling of RNA. Using Tb(3+) as accelerating cofactor for deoxyribozymes, various labeled guanosines were site-specifically attached to 2'-OH groups of internal adenosines in in vitro transcribed RNA. The DNA-catalyzed 2',5'-phosphodiester bond formation proceeded efficiently with fluorescent, spin-labeled, biotinylated, or cross-linker-modified guanosine triphosphates. The sequence context of the labeling site was systematically analyzed by mutating the nucleotides flanking the targeted adenosine. Labeling of adenosines in a purine-rich environment showed the fastest reactions and highest yields. Overall, practically useful yields >70% were obtained for 13 out of 16 possible nucleotide (nt) combinations. Using this approach, we demonstrate preparative labeling under mild conditions for up to ~160-nt-long RNAs, including spliceosomal U6 small nuclear RNA and a cyclic-di-AMP binding riboswitch RNA.
Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce
Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less
Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation
Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce; ...
2016-10-12
Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less
Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation
Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Holden, Patricia A.
2016-01-01
Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstrate separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. The optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation. PMID:27917301
Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications.
Piller, Friedrich; Mongis, Aline; Piller, Véronique
2015-01-01
By metabolic glyco-engineering cellular glycoconjugates are modified through the incorporation of synthetic monosaccharides which are usually analogues of naturally present sugars. In order to get incorporated, the monosaccharides need to enter the cytoplasm and to be substrates for the enzymes necessary for their transformation into activated sugars, most often nucleotide sugars. These have to be substrates for glycosyltransferases which finally catalyze their incorporation into glycans. Such pathways are difficult to reconstitute in vitro and therefore new monosaccharide analogues have to be tested in tissue culture for their suitability in metabolic glyco-engineering. For this, glycosylation mutants are the most appropriate since they are unable to synthesize specific glycans but through the introduction of the monosaccharide analogues they may express some glycans at the cell surface with the unnatural sugar incorporated. The presence of those glycans can be easily and quantitatively detected by lectin binding or by chemical methods identifying specific sugars. Monosaccharide analogues can also block the pathways leading to sugar incorporation, thus inhibiting the synthesis of glycan structures which is also easily detectable at the cell surface by lectin labeling. The most useful and most frequently employed application of metabolic glyco-engineering is the introduction of reactive groups which can undergo bio-orthogonal click reactions for the efficient labeling of glycans at the surface of live cells.
CELLULAR REACTIONS TO REINJECTION OF ANTIGEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speirs, R.S.; Speirs, E.E.
1963-01-01
Studies in mice showed that an injection of tritiated antigen resulted in an incorporation of radioactivity in neutrophils, eosinophils, and macrophages at different times during the inflammatory cycle. Necrosis of labeled cells was frequently observed, and the incorporated radioactive material was passed from cell to cell by phagocytosis. As the inflammation subsided, there was a marked decrease in the number of labeled cells in the exudate, and a concomitant appearance and persistence of labeled cells in lymph nodes, spleen, and bone marrow. The fate of these labeled cells was followed after re-exposure to antigen, using autoradiographic procedures. An intraperitoneal injectionmore » of tetanus or diphtheria toxoid at 10, 30, or 60 days after sensitization produced an increase in the total number of mononuclear cells and an increase in the mononuclear cells containing radioactive material. The labeled cells were found in all animals autopsied within 70 days of sensitization and in several animals autopsied approximately 270 days after sensitization. The labeled cells were macrophages or large lymphoid cells. Approximately 12% of these cells were multinucleated, usually binucleated. An attempt was made to develop a concept of antibody formation on a molecular level. It is postulated that lymphocytes, macrophages, and plasma cells act as carriers for the necessary template RNA and associated microsomes, whereas the eosinophiles, and possibly the neutrophiles, supply a means of transporting antigen and specific enzymatic material to the reacting cells, thereby initiating changes leading to hypersensitivity and antibody formation. (C.H.)« less
Sun, Mengjiao; Wang, Jun; Lu, Qin; Xia, Guohua; Zhang, Yu; Song, Lina; Fang, Yongjun
2015-01-01
The objective of this study was to investigate the anticancer efficacy of dimercaptosuccinic acid-modified iron oxide magnetic nanoparticles coloaded with anti-CD22 antibodies and doxorubicin (anti-CD22-MNPs-DOX) on non-Hodgkin's lymphoma cells. The physical properties of anti-CD22-MNPs-DOX were studied and its antitumor effect on Raji cells in vitro was evaluated using the Cell Counting Kit-8 assay. Furthermore, cell apoptosis and intracellular accumulation of doxorubicin were determined by flow cytometry. The results revealed that anti-CD22-MNPs-DOX inhibited the proliferation of Raji cells, significantly increased the uptake of doxorubicin, and induced apoptosis. Therefore, it was concluded that a coloaded antibody and chemotherapeutic drug with magnetic nanoparticles might be an efficient targeted treatment strategy for non-Hodgkin's lymphoma.
Sun, Mengjiao; Wang, Jun; Lu, Qin; Xia, Guohua; Zhang, Yu; Song, Lina; Fang, Yongjun
2015-01-01
The objective of this study was to investigate the anticancer efficacy of dimercaptosuccinic acid-modified iron oxide magnetic nanoparticles coloaded with anti-CD22 antibodies and doxorubicin (anti-CD22-MNPs-DOX) on non-Hodgkin’s lymphoma cells. The physical properties of anti-CD22-MNPs-DOX were studied and its antitumor effect on Raji cells in vitro was evaluated using the Cell Counting Kit-8 assay. Furthermore, cell apoptosis and intracellular accumulation of doxorubicin were determined by flow cytometry. The results revealed that anti-CD22-MNPs-DOX inhibited the proliferation of Raji cells, significantly increased the uptake of doxorubicin, and induced apoptosis. Therefore, it was concluded that a coloaded antibody and chemotherapeutic drug with magnetic nanoparticles might be an efficient targeted treatment strategy for non-Hodgkin’s lymphoma. PMID:26379425
Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L
2010-04-01
The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.
Choi, Jaeyeon; Vaidyanathan, Ganesan; Koumarianou, Eftychia; McDougald, Darryl; Pruszynski, Marek; Osada, Takuya; Lahoutte, Tony; Lyerly, H. Kim; Zalutsky, Michael R.
2014-01-01
Introduction N-succinimidyl 4-guanidinomethyl-3-[*I]iodobenzoate ([*I]SGMIB) has shown promise for the radioiodination of monoclonal antibodies (mAbs) and other proteins that undergo extensive internalization after receptor binding, enhancing tumor targeting compared to direct electrophilic radioiodination. However, radiochemical yields for [131I]SGMIB synthesis are low, which we hypothesize is due to steric hindrance from the Boc-protected guanidinomethyl group ortho to the tin moiety. To overcome this, we developed the isomeric compound, N-succinimidyl 3-guanidinomethyl-5-[131I]iodobenzoate (iso-[131I]SGMIB) wherein this bulky group was moved from ortho to meta position. Methods Boc2-iso-SGMIB standard and its tin precursor, N-succinimidyl 3-((1,2-bis(tert-butoxycarbonyl)guanidino)methyl)-5-(trimethylstannyl)benzoate (Boc2-iso-SGMTB), were synthesized using two disparate routes, and iso-[*I]SGMIB synthesized from the tin precursor. Two HER2-targeted vectors — trastuzumab (Tras) and a nanobody 5F7 (Nb) — were labeled using iso-[*I]SGMIB and [*I]SGMIB. Paired-label internalization assays in vitro with both proteins, and biodistribution in vivo with trastuzumab, labeled using the two isomeric prosthetic agents were performed. Results When the reactions were performed under identical conditions, radioiodination yields for the synthesis of Boc2-iso-[131I]SGMIB were significantly higher than those for Boc2-[131I]SGMIB (70.7 ± 2.0% vs 56.5 ± 5.5%). With both Nb and trastuzumab, conjugation efficiency also was higher with iso-[131I]SGMIB than with [131I]SGMIB (Nb, 33.1 ± 7.1% vs 28.9 ± 13.0%; Tras, 45.1 ± 4.5% vs 34.8 ± 10.3%); however, the differences were not statistically significant. Internalization assays performed on BT474 cells with 5F7 Nb indicated similar residualizing capacity over 6 h; however, at 24 h, radioactivity retained intracellularly for iso-[131I]SGMIB-Nb was lower than for [125I]SGMIB-Nb (46.4 ± 1.3% vs 56.5 ± 2.5%); similar results were obtained using Tras. Likewise, a paired-label biodistribution of Tras labeled using iso-[125I]SGMIB and [131I]SGMIB indicated an up to 22% tumor uptake advantage at later time points for [131I]SGMIB-Tras. Conclusion Given the higher labeling efficiency obtained with iso-SGMIB, this residualizing agent might be of value for use with shorter half-life radiohalogens. PMID:25156548
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mary E. lidstrom
Limitations in current isotopic labeling methods present a substantial bottleneck for the application of advanced structural techniques to many important biochemical problems. New tools are required to efficiently produce the necessary labeling patterns in biochemical precursors and incorporate them into protein molecules for structural studies. This project proposed involved one aspect of this problem, the development of expression vectors for a methylotrophic bacterium, Methylobacterium extorquens AM1. If high-level, efficient expression could be obtained in such a bacterium, it would be possible to use low-cost {sup 2}H- and/or {sup 13}C-labeled substrates such as methanol to label proteins. The Lidstrom laboratory atmore » the University of Washington worked closely with the collaborators at Los Alamos National Laboratories in the development and use of these vectors. (1) Overexpression of a target gene, bacterial dehalogenase--This enzyme was expressed in Methylobacterium extorquens AM1 using a high level methanol-inducible promoter, the mxaF promoter. High expression was achieved, but most was in an insoluble form. They expressed this protein in a mutant lacking polybetahydroxybutyrate granules, and high expression was achieved, up to 10% of the total soluble protein. The recombinant protein was purified and shown to be active, with characteristics similar to the enzyme produced in E. coli. (2) Development of regulated expression systems--A number of regulated promoters were tested in M. extorquens AM1, the most promising of which appeared to be the E. coli lac promoter coupled to the Laciq regulator. The repressor was shown to be active and a chromosomal insertion construct was generated that repressed the low-level lac promoter activity in M. extorquens AM1. However, IPTG induced this system only poorly. A number of studies were carried out leading to the conclusion that IPTG entered the cell but was exported by one or more export pumps. Target genes for such pumps were mutated but none of these showed increased induction. A number of methods were used to permeabilize the cell, and a 2-fold increase in induction was obtained with one of these. The activity of the lac promoter was increased by inserting a recently-identified M. extorquens AM1 enhancer element upstream. The promoter increased in activity 5-6 fold with this addition. In summary, they have developed a suite of expression tools and host mutant strains for expressing a variety of heterologous proteins in this methylotroph. These are now available for testing by the LANL collaborators in labeling reactors to obtain labeled proteins of interest.« less
Velikyan, Irina; Lindeberg, Gunnar; Sörensen, Jens; Larhed, Mats; Antoni, Gunnar; Sandström, Mattias; Tolmachev, Vladimir; Orlova, Anna
2013-01-01
Expression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) via a diethylene glycol (PEG2) spacer (NOTA-P2-RM26) labeled with 68Ga and 111In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a 18F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with 18F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50) of the [natF]AlF-NOTA-P2-RM26 was compared to that of the natGa-loaded peptide using 125I-Tyr4-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with 18F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol). The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [natF]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM). The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [18F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p.i. The initial biological results suggest that [18F]AlF-NOTA-P2-RM26 is a promising candidate for PET imaging of GRPR in vivo. PMID:24312607
Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down
Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander
2013-01-01
Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802
Chiotellis, Aristeidis; Mu, Linjing; Müller, Adrienne; Selivanova, Svetlana V; Keller, Claudia; Schibli, Roger; Krämer, Stefanie D; Ametamey, Simon M
2013-01-01
In the search for an efficient, fluorine-18 labeled amino acid based radiotracer for tumor imaging with positron emission tomography (PET), two new tryptophan analogs were synthesized and characterized in vitro and in vivo. Both are tryptophan alkyl-derivatives, namely 2-(3-[(18)F]fluoropropyl)-DL-tryptophan ([(18)F]2-FPTRP) and 5-(3-[(18)F]fluoro-propyl)-DL-tryptophan ([(18)F]5-FPTRP). Standard reference compounds and precursors were prepared by multi step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [(18)F]fluorination in 29-34% decay corrected yields with radiochemical purity over 99%. In vitro cell uptake assays showed that both compounds are substrates for amino acid transport and enter small cell lung cancer cells (NCI-H69) most probably almost exclusively via large neutral amino acids transporter(s) (LAT). Small animal PET imaging with xenograft bearing mice revealed high tumor/background ratios for [(18)F]2-FPTRP comparable to the well established tyrosine analog O-(2-[(18)F]fluroethyl)-L-tyrosine ([(18)F]FET). Radiometabolite studies showed no evidence of involvement of a biotransformation step in tumor accumulation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Meller, D; Pires, R T F; Tseng, S C G
2002-04-01
Amniotic membrane (AM) transplantation effectively expands the remaining limbal epithelial stem cells in patients with partial limbal stem cell deficiency. The authors investigated whether this action could be produced ex vivo. The outgrowth rate on AM was compared among explants derived from human limbus, peripheral cornea, and central cornea. For outgrowth of human limbal epithelial cells (HLEC), cell cycle kinetics were measured by BrdU labelling for 1 or 7 days, of which the latter was also chased in primary cultures, secondary 3T3 fibroblast cultures, and in athymic Balb/c mice following a brief treatment with a phorbol ester. Epithelial morphology was studied by histology and transmission electron microscopy, and phenotype was defined by immunostaining with monoclonal antibodies to keratins and mucins. Outgrowth rate was 0/22 (0%) and 2/24 (8.3%) for central and peripheral corneal explants, respectively, but was 77/80 (96.2%) for limbal explants (p <0.0001). 24 hour BrdU labelling showed a uniformly low (that is, less than 5%) labelling index in 65% of the limbal explants, but a mixed pattern with areas showing a high (that is, more than 40%) labelling index in 35% of limbal explants, and in all (100%) peripheral corneal explants. Continuous BrdU labelling for 7 days detected a high labelling index in 61.5% of the limbal explants with the remainder still retaining a low labelling index. A number of label retaining cells were noted after 7 day labelling followed by 14 days of chase in primary culture or by 21 days of chase after transplantation to 3T3 fibroblast feeder layers. After exposure to phorbol 12-myristate 13-acetate for 24 hours and 7 day labelling, HLEC transplanted in athymic mice still showed a number of label retaining basal cells after 9 days of chase. HLEC cultured on AM were strongly positive for K14 keratin and MUC4 and slightly positive in suprabasal cells for K3 keratin but negative for K12 keratin, AMEM2, and MUC5AC. After subcutaneous implantation in athymic mice, the resultant epithelium was markedly stratified and the basal epithelial cells were strongly positive for K14 keratin, while the suprabasal epithelial cells were strongly positive for K3 keratin and MUC4, and the entire epithelium was negative for K12 keratin and MUC5A/C. These data support the notion that AM cultures preferentially preserve and expand limbal epithelial stem cells that retain their in vivo properties of slow cycling, label retaining, and undifferentiation. This finding supports the feasibility of ex vivo expansion of limbal epithelial stem cells for treating patients with total limbal stem cell deficiency using a small amount of donor limbal tissue.
Decho, Alan W.; Luoma, Samuel N.
1991-01-01
Time courses for ingestion, retention and release via feces of microbial food was investigated using 2 bivalves with different feeding strategies, Potamocorbula amurensis and Macoma balthica. The results showed 2 pathways for the uptake of food material in these clams. The first is represented by an initial label pulse in the feces. The second pathway operates over longer time periods. Inert 51Cr-labeled beads were used to determine time frames for these pathways. The first pathway, involving extracellular digestion and intestinal uptake, is relatively inefficient in the digestion of bacterial cells by P. amurensis but more efficient in M. balthica. The second pathway, involving intracellular digestion within the digestive gland of both clams, was highly efficient in absorbing bacterial carbon, and was responsible for most chromium uptake. Differences in the overall retention of microbial 51Cr and 14C relate not to gut-passage times but to the processing and release strategies of the food material by these 2 clams..
Brom, Maarten; Joosten, Lieke; Oyen, Wim Jg; Gotthardt, Martin; Boerman, Otto C
2012-01-27
In single photon emission computed tomography [SPECT], high specific activity of 111In-labelled tracers will allow administration of low amounts of tracer to prevent receptor saturation and/or side effects. To increase the specific activity, we studied the effect of the buffer used during the labelling procedure: NaAc, NH4Ac, HEPES and MES buffer. The effect of the ageing of the 111InCl3 stock and cadmium contamination, the decay product of 111In, was also examined in these buffers. Escalating amounts of 111InCl3 were added to 1 μg of the diethylene triamine pentaacetic acid [DTPA]- and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA]-conjugated compounds (exendin-3, octreotide and anti-carbonic anhydrase IX [CAIX] antibody). Five volumes of 2-(N-morpholino)ethanesulfonic acid [MES], 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], NH4Ac or NaAc (0.1 M, pH 5.5) were added. After 20 min at 20°C (DTPA-conjugated compounds), at 95°C (DOTA-exendin-3 and DOTA-octreotide) or at 45°C (DOTA-anti-CAIX antibody), the labelling efficiency was determined by instant thin layer chromatography. The effect of the ageing of the 111InCl3 stock on the labelling efficiency of DTPA-exendin-3 as well as the effect of increasing concentrations of Cd2+ (the decay product of 111In) were also examined. Specific activities obtained for DTPA-octreotide and DOTA-anti-CAIX antibody were five times higher in MES and HEPES buffer. Radiolabelling of DTPA-exendin-3, DOTA-exendin-3 and DTPA-anti-CAIX antibody in MES and HEPES buffer resulted in twofold higher specific activities than that in NaAc and NH4Ac. Labelling of DTPA-exendin-3 decreased with 66% and 73% for NaAc and NH4Ac, respectively, at day 11 after the production date of 111InCl3, while for MES and HEPES, the maximal decrease in the specific activity was 10% and 4% at day 11, respectively. The presence of 1 pM Cd2+ in the labelling mixture of DTPA-exendin-3 in NaAc and NH4Ac markedly reduced the labelling efficiency, whereas Cd2+ concentrations up to 0.1 nM did not affect the labelling efficiency in MES and HEPES buffer. We showed improved labelling of DTPA- and DOTA-conjugated compounds with 111In in HEPES and MES buffer. The enhanced labelling efficiency appears to be due to the reduced competitive chelation of cadmium. The enhanced labelling efficiency will allow more sensitive imaging of the biomarkers with SPECT.
The Protein Corona around Nanoparticles Facilitates Stem Cell Labeling for Clinical MR Imaging.
Nejadnik, Hossein; Taghavi-Garmestani, Seyed-Meghdad; Madsen, Steven J; Li, Kai; Zanganeh, Saeid; Yang, Phillip; Mahmoudi, Morteza; Daldrup-Link, Heike E
2018-03-01
Purpose To evaluate if the formation of a protein corona around ferumoxytol nanoparticles can facilitate stem cell labeling for in vivo tracking with magnetic resonance (MR) imaging. Materials and Methods Ferumoxytol was incubated in media containing human serum (group 1), fetal bovine serum (group 2), StemPro medium (group 3), protamine (group 4), and protamine plus heparin (group 5). Formation of a protein corona was characterized by means of dynamic light scattering, ζ potential, and liquid chromatography-mass spectrometry. Iron uptake was evaluated with 3,3'-diaminobenzidine-Prussian blue staining, lysosomal staining, and inductively coupled plasma spectrometry. To evaluate the effect of a protein corona on stem cell labeling, human mesenchymal stem cells (hMSCs) were labeled with the above formulations, implanted into pig knee specimens, and investigated with T2-weighted fast spin-echo and multiecho spin-echo sequences on a 3.0-T MR imaging unit. Data in different groups were compared by using a Kruskal-Wallis test. Results Compared with bare nanoparticles, all experimental groups showed significantly increased negative ζ values (from -37 to less than -10; P = .008). Nanoparticles in groups 1-3 showed an increased size because of the formation of a protein corona. hMSCs labeled with group 1-5 media showed significantly shortened T2 relaxation times compared with unlabeled control cells (P = .0012). hMSCs labeled with group 3 and 5 media had the highest iron uptake after cells labeled with group 1 medium. After implantation into pig knees, hMSCs labeled with group 1 medium showed significantly shorter T2 relaxation times than hMSCs labeled with group 2-5 media (P = .0022). Conclusion The protein corona around ferumoxytol nanoparticles can facilitate stem cell labeling for clinical cell tracking with MR imaging. © RSNA, 2017 Online supplemental material is available for this article.
High-level fluorescence labeling of gram-positive pathogens.
Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara
2011-01-01
Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.
Patel, Chetan D; Agarwal, Snehlata; Seth, Sandeep; Mohanty, Sujata; Aggarwal, Himesh; Gupta, Namit
2014-01-01
Bone marrow stem cells having myogenic potential are promising candidates for various cell-based therapies for myocardial disease. We present here images showing homing of technetium-99m (Tc-99m) hexamethylpropyleneamine oxime (HMPAO) labeled stem cells in the infarcted myocardium from a pilot study conducted to radio-label part of the stem cells in patients enrolled in a stem cell clinical trial for recent myocardial infarction. PMID:25400375
10 CFR 431.30 - Applicability of labeling requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Applicability of labeling requirements. 431.30 Section 431.30 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Electric Motors Labeling § 431.30 Applicability of labeling requirements. The...
Dieu-Hang, To; Grafton, R Quentin; Martínez-Espiñeira, Roberto; Garcia-Valiñas, Maria
2017-07-15
Using a household-based data set of more than 12,000 households from 11 OECD countries, we analyse the factors underlying the decision by households to adopt energy-efficient and water-efficient equipment. We evaluate the roles of both attitudes and labelling schemes on the adoption of energy and water-efficient equipment, and also the interaction and complementarity between energy and water conservation behaviours. Our findings show: one, 'green' social norms and favourable attitudes towards the environment are associated with an increased likelihood of households' adoption of energy and water-efficient appliances; two, households' purchase decisions are positively affected by their awareness, understanding, and trust of labelling schemes; and three, there is evidence of complementarity between energy conservation and water conservation behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fate of 3H-thymidine labelled myogenic cells in regeneration of muscle isografts.
Gutmann, E; Mares, V; Stichová, J
1976-03-05
Intact and denervated extensor digitorum longus (EDL) muscles of 20-day-old inbred Lewis-Wistar rats were labelled with 3H-thymidine. Ninety minutes after the injection of the isotope 4.0% of the nuclei were labelled in the intact (i.e. innervated) and 9.6% in the muscles, denervated 3 days before administration of the isotope. The labelled EDL muscles were grafted into the bed of the previously removed EDL muscles of inbred animals and these isografts were studied 30 days later. In the EDL muscles, regenerated from innervated isografts only occasionally labelled endothelial cells were found whereas in the muscles regenerated from denervated isografts also parenchymal muscle nuclei were regularly labelled. The incidence of labelled nuclei in the regenerated EDL muscles was, however, about 20 times lower than in the donor EDL muscles. The presen experiments provide a direct proof of utilization of donor satelite cell nuclei for regeneration in grafted muscle tissue. With respect to the low incidence of labelled nuclei in regenerated EDL muscles, other sources of cells apparently also contribute to the regeneration process.
Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana
2015-11-02
In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.
Hydrophobic pocket targeting probes for enteroviruses
NASA Astrophysics Data System (ADS)
Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu
2015-10-01
Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content, the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells.Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content, the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells. Electronic supplementary information (ESI) available: Details of the synthesis of the probes, UV-Vis absorption spectra of the probe (2), PAGE separation and the absorption spectra of the gold labeled probe (3), details of the NMR experiments, determination of the cytotoxicity of the studied molecules, TEM micrographs of the gold labeled probe (3) with enteroviruses, live cell imaging of the fluorescent probe (4) in cells, and additional details of modeling of the hydrophobic pockets. See DOI: 10.1039/c5nr04139b
Messal, Hendrik A.; Andersson, Agneta B.; Ruiz, E. Josue; Gerling, Marco; Douagi, Iyadh; Spencer-Dene, Bradley; Musch, Alexandra; Mitter, Richard; Bhaw, Leena; Stone, Richard; Bornhorst, Dorothee; Sesay, Abdul K.; Jonkers, Jos; Stamp, Gordon; Malanchi, Ilaria; Toftgård, Rune; Behrens, Axel
2018-01-01
The mammary gland is composed of a complex cellular hierarchy with unusual postnatal plasticity. The identities of stem/progenitor cell populations, as well as tumour-initiating cells that give rise to breast cancer, are incompletely understood. Here we show that Lgr6 marks rare populations of cells in both basal and luminal mammary gland compartments in mice. Lineage tracing analysis showed that Lgr6+ cells are unipotent progenitors, which expand clonally during puberty but diminish in adulthood. In pregnancy or upon stimulation with ovarian hormones, adult Lgr6+ cells regained proliferative potency and their progeny formed alveoli over repeated pregnancies. Oncogenic mutations in Lgr6+ cells resulted in expansion of luminal cells, culminating in mammary gland tumours. Conversely, depletion of Lgr6+ cells in the MMTV-PyMT model of mammary tumourigenesis significantly impaired tumour growth. Thus, Lgr6 marks mammary gland progenitor cells that can initiate tumours, and cells of luminal breast tumours required for efficient tumour maintenance. PMID:27798604
Qiao, Xin; Ding, Song; Liu, Fang; Kucera, Gregory L.
2014-01-01
Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide–alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum–acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent. PMID:24407462
Magnetic poly(lactide-co-glycolide) (PLGA) and cellulose particles for MRI-based cell tracking
Nkansah, Michael K.; Thakral, Durga; Shapiro, Erik M.
2010-01-01
Biodegradable, superparamagnetic micro- and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into micro- and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt% for PLGA and 69.6 wt% for cellulose). While PLGA and cellulose nanoparticles displayed highest r2* values per millimole of iron (399 s-1mM-1 for cellulose and 505 s-1mM-1 for PLGA), micron-sized PLGA particles had a much higher r2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for non-invasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long term (cellulose-based particles) experiments. PMID:21404328
Labeling tetracysteine-tagged proteins with biarsenical dyes for live cell imaging.
Gaietta, Guido M; Deerinck, Thomas J; Ellisman, Mark H
2011-01-01
Correlation of real-time or time-lapse light microscopy (LM) with electron microscopy (EM) of cells can be performed with biarsenical dyes. These dyes fluorescently label tetracysteine-tagged proteins so that they can be imaged with LM and, upon fluorescent photoconversion of 3,3'-diaminobenzidine tetrahydrochloride (DAB), with EM as well. In the following protocol, cells expressing tetracysteine-tagged proteins are labeled for 1 h with biarsenical dyes. The volumes indicated are for a single 30-mm culture dish containing 2 mL of labeling medium. Scale the suggested volumes up or down depending upon the size of the culture dish used in the labeling. The same procedure can be adapted for longer labeling times by lowering the amount of dye used to 50-100 nM; however, the amount of the competing dithiol EDT is maintained at 10-20 μM. Longer labeling times often produce higher signal-to-noise ratios and cause less trauma to the treated cells prior to imaging.
10 CFR 431.31 - Labeling requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Labeling requirements. 431.31 Section 431.31 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL... be marked clearly with the following information: (i) The motor's nominal full load efficiency (as of...
Venkataramani, Varun; Kardorff, Markus; Herrmannsdörfer, Frank; Wieneke, Ralph; Klein, Alina; Tampé, Robert; Heilemann, Mike; Kuner, Thomas
2018-04-03
With continuing advances in the resolving power of super-resolution microscopy, the inefficient labeling of proteins with suitable fluorophores becomes a limiting factor. For example, the low labeling density achieved with antibodies or small molecule tags limits attempts to reveal local protein nano-architecture of cellular compartments. On the other hand, high laser intensities cause photobleaching within and nearby an imaged region, thereby further reducing labeling density and impairing multi-plane whole-cell 3D super-resolution imaging. Here, we show that both labeling density and photobleaching can be addressed by repetitive application of trisNTA-fluorophore conjugates reversibly binding to a histidine-tagged protein by a novel approach called single-epitope repetitive imaging (SERI). For single-plane super-resolution microscopy, we demonstrate that, after multiple rounds of labeling and imaging, the signal density is increased. Using the same approach of repetitive imaging, washing and re-labeling, we demonstrate whole-cell 3D super-resolution imaging compensated for photobleaching above or below the imaging plane. This proof-of-principle study demonstrates that repetitive labeling of histidine-tagged proteins provides a versatile solution to break the 'labeling barrier' and to bypass photobleaching in multi-plane, whole-cell 3D experiments.
In Vivo MR Imaging of Glioma Recruitment of Adoptive T-Cells Labeled with NaGdF4 -TAT Nanoprobes.
Zhang, Hua; Wu, Yue; Wang, Jing; Tang, Zhongmin; Ren, Yan; Ni, Dalong; Gao, Hongbo; Song, Ruixue; Jin, Teng; Li, Qiao; Bu, Wenbo; Yao, Zhenwei
2018-01-01
Adoptive T lymphocyte immunotherapy is one of the most promising methods to treat residual lesions after glioma surgery. However, the fate of the adoptively transferred T-cells in vivo is unclear, hampering the understanding of this emerging therapy. Thus, it is highly desirable to develop noninvasive and quantitative in vivo tracking of these T-cells to glioma for better identification of the migratory fate and to provide objective evaluation of outcomes of adoptive T-cell immunotherapy targeting glioma. In this work, ultrasmall T 1 MR-based nanoprobes, NaGdF 4 -TAT, as molecular probes with high longitudinal relaxivity (8.93 mm -1 s -1 ) are designed. By means of HIV-1 transactivator (TAT) peptides, nearly 95% of the adoptive T-cells are labeled with the NaGdF 4 -TAT nanoprobes without any measurable side effects on the labeled T-cells, which is remarkably superior to that of the control fluorescein isothiocyanate-NaGdF 4 concerning labeling efficacy. Labeled adoptive T-cell clusters can be sensitively tracked in an orthotopic GL261-glioma model 24 h after intravenous infusion of 10 7 labeled T-cells by T 1 -weighted MR imaging. Both in vitro and in vivo experiments show that the NaGdF 4 -TAT nanoprobes labeling of T-cells may be a promising method to track adoptive T-cells to improve our understanding of the pathophysiology in adoptive immunotherapy for gliomas. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells
NASA Astrophysics Data System (ADS)
Chandra, Subhash
2004-06-01
Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13C and 15N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13C15N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39K, 23Na and 40Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.
Thimm, Benjamin W; Hofmann, Sandra; Schneider, Philipp; Carretta, Roberto; Müller, Ralph
2012-03-01
Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required contrast for CT imaging. Within the present work, a novel cell-labeling method has been developed showing the feasibility of labeling fixed cells with iron oxide (FeO) particles for subsequent CT imaging and quantitative morphometry. A biotin-streptavidin detection system was exploited to bind FeO particles to its target endothelial cells. The binding of the particles was predominantly close to the cell centers on 2D surfaces as shown by light microscopy, scanning electron microscopy, and CT. When cells were cultured on porous, 3D polyurethane surfaces, significantly more FeO particles were detected compared with surfaces without cells and FeO particle labeling using CT. Here, we report on the implementation and evaluation of a novel cell detection method based on high-resolution CT. This system has potential in cell tracking for 3D in vitro imaging in the future.
Dual Nuclear/Fluorescence Imaging Potantial of Zinc(II) Phthalocyanine in MIA PaCa-2 Cell Line.
Lambrecht, Fatma Yurt; Ince, Mine; Er, Ozge; Ocakoglu, Kasim; Sarı, Fatma Aslıhan; Kayabasi, Cagla; Gunduz, Cumhur
2016-01-01
Pancreatic cancer is very common and difficult to diagnose in early stage. Imaging systems for diagnosing cancer have many disadvantages. However, combining different imaging modalities offers synergistic advantages. Optical imaging is the most multidirectional and widely used imaging modality in both clinical practice and research. In present study, Zinc(II) phthalocyanine [Zn(II)Pc] was synthesized, labeled with iodine- 131 and in vitro study was carried out. The intracellular uptake studies of radiolabeled Zn(II)Pc were performed in WI-38 [ATCC CCL-75™, tissue: human fibroblast lung] and MIA PaCa-2 [ATCC CRL-1420™, tissue: human epithelial pancreas carcinoma] cell lines. The intracellular uptake efficiency of radiolabeled Zn(II)Pc in MIA PaCa-2 cells was determined two times higher than WI-38 cells. Also, fluorescence imaging (FI) efficiency of synthesized Zn(II)Pc was investigated in MIA PaCa-2 cells and significant uptake was observed. Zn(II)Pc might be used as a new agent for dual fluorescence/nuclear imaging for pancreatic cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiel, Stephen; McMahon, James E.
2005-04-28
Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and several other organizations identified on the cover of this guidebook recognize the need to support policy makers in their efforts tomore » implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This second edition of the guidebook was prepared over the course of the past year, four years after the preparation of the first edition, with a significant contribution from the authors and reviewers mentioned previously. Their diligent participation helps maintain this book as the international guidance tool it has become. The lead authors would like to thank the members of the Communications Office of the Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory for their support in the development, production, and distribution of the guidebook. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsor to distribute copies of this book worldwide, at no charge, for the general public benefit. The guidebook is also available on the web at www.clasponline.org and may be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.« less
Li, Chao; Ruan, Jing; Yang, Meng; Pan, Fei; Gao, Guo; Qu, Su; Shen, You-Lan; Dang, Yong-Jun; Wang, Kan; Jin, Wei-Lin; Cui, Da-Xiang
2015-09-01
Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer.
Label-free high-throughput imaging flow cytometry
NASA Astrophysics Data System (ADS)
Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.
2014-03-01
Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.
Kanje, Sara; Hober, Sophia
2015-04-01
Antibodies are important molecules in many research fields, where they play a key role in various assays. Antibody labeling is therefore of great importance. Currently, most labeling techniques take advantage of certain amino acid side chains that commonly appear throughout proteins. This makes it hard to control the position and exact degree of labeling of each antibody. Hence, labeling of the antibody may affect the antibody-binding site. This paper presents a novel protein domain based on the IgG-binding domain C2 of streptococcal protein G, containing the unnatural amino acid BPA, that can cross-link other molecules. This novel domain can, with improved efficiency compared to previously reported similar domains, site-specifically cross-link to IgG at the Fc region. An efficient method for simultaneous in vivo incorporation of BPA and specific biotinylation in a flask cultivation of Escherichia coli is described. In comparison to a traditionally labeled antibody sample, the C2-labeled counterpart proved to have a higher proportion of functional antibodies when immobilized on a solid surface and the same limit of detection in an ELISA. This method of labeling is, due to its efficiency and simplicity, of high interest for all antibody-based assays where it is important that labeling does not interfere with the antibody-binding site. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cytological evidence for DNA chain elongation after UV irradiation in the S phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minka, D.F.; Nath, J.
1981-04-01
Human cells irradiated with UV light synthesize lower molecular weight DNA than unirradiated cells. This reduction in molecular weight is greater in xeroderma pigmentosum (XP) cells than in normal cells. The molecular weight of DNA is further reduced by the addition of caffeine to XP cells. By several hours after irradiation, DNA fragments are barely detectable. Cells from excision-proficient and excision-deficient XP patients were studied autoradiographically to produce cytological evidence of DNA chain elongation. Replicate cultures with and without caffeine were synchronized and irradiated with UV light during the S phase. Caffeine was removed in G2, and the cells weremore » labeled with /sup 3/H-thymidine. Results showed significantly increased labeling during G2 of excision-deficient XP cells. Labeling was dependent on the time of irradiation and presence of caffeine. The XP variant cells had no increase in labeling for any irradiation time.« less
NASA Astrophysics Data System (ADS)
Pan, Bifeng; Cui, Daxiang; Xu, Ping; Ozkan, Cengiz; Feng, Gao; Ozkan, Mihri; Huang, Tuo; Chu, Bingfeng; Li, Qing; He, Rong; Hu, Guohan
2009-03-01
With the aim of improving the amount and delivery efficiency of genes taken by carbon nanotubes into human cancer cells, different generations of polyamidoamine dendrimer modified multi-walled carbon nanotubes (dMNTs) were fabricated, and characterized by high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis, revealing the presence of dendrimer capped on the surface of carbon nanotubes. The dMNTs fully conjugated with FITC-labeled antisense c-myc oligonucleotides (asODN), those resultant asODN-dMNTs composites were incubated with human breast cancer cell line MCF-7 cells and MDA-MB-435 cells, and liver cancer cell line HepG2 cells, and confirmed to enter into tumor cells within 15 min by laser confocal microscopy. These composites inhibited the cell growth in time- and dose-dependent means, and down-regulated the expression of the c-myc gene and C-Myc protein. Compared with the composites of CNT-NH2-asODN and dendrimer-asODN, no. 5 generation of dendrimer-modified MNT-asODN composites exhibit maximal transfection efficiencies and inhibition effects on tumor cells. The intracellular gene transport and uptake via dMNTs should be generic for the mammalian cell lines. The dMNTs have potentials in applications such as gene or drug delivery for cancer therapy and molecular imaging.
Fluorescent Photo-conversion: A second chance to label unique cells
Mellott, Adam J.; Shinogle, Heather E.; Moore, David S.; Detamore, Michael S.
2014-01-01
Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the “unique” cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2, allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2-transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2, offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population. PMID:25914756
NASA Astrophysics Data System (ADS)
Lira, Rafael B.; de Sales Neto, Antonio T.; Carvalho, Kilmara K. H. G.; Leite, Elisa S.; Brasil, Aluizio G., Jr.; Azevedo, Denise P. L.; Cabral Filho, Paulo E.; Cavalcanti, Mariana B.; Amaral, Ademir J.; Farias, Patricía M. A.; Santos, Beate S.; Fontes, Adriana
2010-02-01
Quantum dots (QDs) are a promising class of fluorescent probes that can be conjugated to a variety of specific cell antibodies. For this reason, simple, cheap and reproducible routes of QDśs syntheses are the main goal of many researches in this field. The main objective of this work was to demonstrate the ability of QDs as biolabels for flow cell cytometry analysis. We have synthesized biocompatible water soluble CdS/Cd(OH)2 and CdTe/CdS QDs and applied them as fluorescent labels of hematologic cells. CdTe/CdS QDs was prepared using using a simple aqueous route with mercaptoacetic acid and mercaptopropionic acid as stabilizing agents. The resulting CdTe/CdS QDs can target biological membrane proteins and can also be internalized by cells. We applied the CdTe/CdS QDs as biolabels of human lymphocytes and compared the results obtained for lymphocytes treated and non-treated with permeabilizing agents for cell membranes. Permeabilized cells present higher fluorescence pattern than non permeabilized ones. We associated antibody A to the CdS/Cd(OH)2 QDs to label type A red blood cell (RBC). In this case, the O erythrocytes were used as the negative control. The results demonstrate that QDs were successfully functionalized with antibody A. There was a specific binding of QDs-antibody A to RBC membrane antigen only for A RBCs. We have also monitored QDs-hematologic cell interaction by using fluorescence microscopy. Our method shows that QDs can be conjugated to a variety of specific cell antibodies and can become a potential, highly efficient and low cost diagnostic tool for flow cell cytometry, very compatible with the lasers and filters used in this kind of equipments.