Leukemia Cutis Associated with Secondary Plasma Cell Leukemia.
DeMartinis, Nicole C; Brown, Megan M; Hinds, Brian R; Cohen, Philip R
2017-05-09
Plasma cell leukemia is an uncommon, aggressive variant of leukemia that may occur de novo or in association with multiple myeloma. Leukemia cutis is the cutaneous manifestation of leukemia, and indicates an infiltration of the skin by malignant leukocytes or their precursors. Plasma cell leukemia cutis is a rare clinical presentation of leukemia. We present a man who developed plasma cell leukemia cutis in association with multiple myeloma. Cutaneous nodules developed on his arms and legs 50 days following an autologous stem cell transplant. Histopathologic examination showed CD138-positive nodular aggregates of atypical plasma cells with kappa light chain restriction, similar to the phenotype of his myeloma. In spite of systemic treatment of his underlying disease, he died 25 days after the presentation of leukemia cutis. Pub-Med was searched for the following terms: cutaneous plasmacytomas, leukemia cutis, plasma cell leukemia nodules, plasma cell leukemia cutis, and secondary cutaneous plasmacytoma. Papers were reviewed and appropriate references evaluated. Leukemia cutis in plasma cell leukemia patients is an infrequent occurrence. New skin lesions in patients with plasma cell leukemia should be biopsied for pathology and for tissue cultures to evaluate for cancer or infection, respectively. The diagnosis plasma cell leukemia cutis is associated with a very poor prognosis.
2018-04-30
HLA-A*0201 HA-1 Positive Cells Present; Minimal Residual Disease; Recurrent Acute Biphenotypic Leukemia; Recurrent Acute Undifferentiated Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia
2017-10-24
CD19-Positive Neoplastic Cells Present; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Acute Lymphoblastic Leukemia; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma
2018-02-21
Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; CD45-Positive Neoplastic Cells Present; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome With Excess Blasts; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia
Reiffers, J; Bernard, P; Larrue, J; Dachary, D; David, B; Boisseau, M; Broustet, A
1985-01-01
This report describes two elderly patients with acute leukemia in which blast cells were undifferentiated with conventional light microscopy (L.M.) and cytochemistry. Blast cells were identified as belonging to the erythroblastic line by their ultrastructural features: glycogen deposits, lipidic vacuoles, cytoplasmic ferritin molecules and rhopheocytotic invagination. Moreover, blast cells were surrounding a central macrophage. Thus, these two patients had acute erythroblastic leukemia which differs from erythroleukemia (M6 of FAB classification) in which blast cells present myeloblastic characteristics.
Habberstad, Andreas Hanssønn; Tran, Hoa Thi Tuyet; Randen, Ulla; Spetalen, Signe; Dybedal, Ingunn; Tjønnfjord, Geir E; Dahm, Anders Erik Astrup
2018-04-24
Polycythemia vera is a myeloproliferative disease that sometimes evolves to myelofibrosis, causing splenomegaly and neutropenia. In this case report, we describe a patient with polycythemia vera and unexplained neutropenia who later turned out to also have hairy cell leukemia. A middle-aged Caucasian man with polycythemia vera presented to our hospital with chronic mouth ulcers. Later he developed leukopenia and pancytopenia. Bone marrow biopsies showed fibrosis. Further morphological analyses of bone marrow and blood smears revealed probable transformation into acute myeloid leukemia. However, there were also cells indicating hairy cell leukemia. Morphological and immunohistochemical analyses later confirmed the presence of hairy cell leukemia in biopsies that had been present for 3 years. Treatment with cladribine temporarily reversed the patient's neutropenia. Hairy cell leukemia may mimic development to myelofibrosis in patients with polycythemia vera.
2017-12-15
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Hodgkin Lymphoma; Adult Non-Hodgkin Lymphoma; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Cytomegaloviral Infection; Hematopoietic and Lymphoid Cell Neoplasm; HLA-A*0201 Positive Cells Present; Myelodysplastic Syndrome; Adult Lymphoblastic Lymphoma; Chronic Lymphocytic Leukemia; Myelofibrosis; Myeloproliferative Neoplasm
Xu, Xiangdong; Broome, Elizabeth H; Rashidi, Hooman H; South, Sarah T; Dell'Aquila, Marie L; Wang, Huan-You
2010-01-01
We report a CD20dim- positive T-cell large granular lymphocytic (T-LGL) leukemia in a patient with concurrent hairy cell leukemia and plasma cell myeloma. This patient was first diagnosed with T-LGL leukemia with dim CD20 expression, which by itself was a rare entity. He received no treatment for T-LGL leukemia. The patient later developed a hairy cell leukemia, which went into complete clinical remission after one cycle of 2-CdA. Five years later, he was diagnosed with a third malignancy, plasma cell myeloma. Complex cytogenetic aberrancies were present at the time when plasma cell myeloma was diagnosed. This is the first report, to the best of our knowledge, in the English literature with the aforementioned three distinct hematopoietic malignancies in one patient. PMID:21151394
Plasminogen activator inhibitor-2 in patients with monocytic leukemia.
Scherrer, A; Kruithof, E K; Grob, J P
1991-06-01
Plasma and tumor cells from 103 patients with leukemia or lymphoma at initial presentation were investigated for the presence of plasminogen activator inhibitor-2 (PAI-2) antigen, a potent inhibitor of urokinase. PAI-2 was detected in plasma and leukemic cells of the 21 patients with leukemia having a monocytic component [acute myelomonocytic (M4), acute monoblastic (M5), and chronic myelomonocytic leukemias], and in the three patients with acute undifferentiated myeloblastic leukemia (M0). In contrast, this serine protease inhibitor was undetectable in 79 patients with other subtypes of acute myeloid leukemia or other hematological malignancies. Serial serum PAI-2 determinations in 16 patients with acute leukemia at presentation, during therapy, remission, and relapse revealed that in the five patients with M4-M5, elevated PAI-2 levels rapidly normalized under therapy and during remission, but increased again in the patients with a relapse associated with an M4-M5 phenotype. Thus, PAI-2 seems to be a marker highly specific for the active stages of monocytic leukemia, i.e. presentation and relapse. The presence of PAI-2 in the plasma and cells of patients with M0 may give a clue to a monocytic origin of these cells.
Leukemia-associated antigens in man.
Brown, G; Capellaro, D; Greaves, M
1975-12-01
Rabbit antisera raised against acute lymphoblastic leukemia (ALL) cells were used to distinguish ALL from other leukemias, to identify rare leukemia cells in the bone marrow of patients in remission, and to define human leukemia-associated antigens. Antibody binding was studied with the use of immunofluorescence reagents and the analytic capacity of the Fluorescence Activated Cell Sorter-1 (FACS-1). The results indicated that most non-T-cell ALL have three leukemia-associated antigens on their surface which are absent from normal lymphoid cells: 1) an antigen shared with myelocytes, myeloblastic leukemia cells, and fetal liver (hematopoietic) cells; 2) an antigen shared with a subset of intermediate normoblasts in normal bone marrow and fetal liver; and 3) an antigen found thus far only on non-T-cell ALL and in some acute undifferentiated leukemias, which we therefore regard as a strong candidate for a leukemia-specific antigen. These antigens are absent from a subgroup of ALL patients in which the lymphoblasta express T-cell surface markers. Preliminary studies on the bone marrow samples of patients in remission indicated that rare leukemia cells were present in some samples. The implications of these findings with respect to the heterogeneity and cell origin(s) of ALL, its diagnosis, and its potential monitoring during treatment were discussed.
Recognition of unusual presentation of natural killer cell leukemia.
Gardiner, C M; Reen, D J; O'Meara, A
1995-10-01
Expansion of the natural killer (NK) subset of lymphocytes represents a rare leukemia phenotype with variations in clinical presentation, morphology, surface phenotype, and effector function. This paper reports on a 5-year-old male patient who had an unusual presentation of an NK cell leukemia that was initially diagnosed as neuroblastoma. A bone marrow (BM) aspirate showed clumps of undifferentiated cells with the following phenotype: CD56bright+, CD33dim+, CD45-, CD2-, CD19-, CD16-, and CD57-. Cytochemistry was noncontributory. The patient, having failed to respond to conventional neuroblastoma chemotherapy, was subsequently diagnosed as having NK cell leukemia based on functional in vitro assays. The patient responded to acute lymphoblastic leukemia (ALL) chemotherapy but relapsed 4 weeks into treatment and eventually died 25 weeks after initial presentation. The cell surface phenotype observed is consistent with a rare NK cell subset, the biology of which has not been well defined. Freshly isolated BM cells killed K562 cells in a conventional 51Cr-release assay. Both interleukin-2 (IL-2) and interferon-alpha (IFN-alpha) induced LAK activity against the Daudi cell line. IL-2 induced proliferation of the leukemic cells. TNF-alpha, IFN-gamma, IL-6, IL-1ra, and TGF-beta levels were assessed and found to be concentrated in BM, in contrast to plasma samples. TNF-alpha was present at a high concentration in BM (150.9 pg/ml), probably a reflection of the associated disease pathology of severe bone pain and pyrexia. In summary, this paper details clinical and laboratory investigations of a leukemia of a rare NK cell subset.
Childhood Leukemia--A Look at the Past, the Present and the Future.
ERIC Educational Resources Information Center
Findeisen, Regina; Barber, William H.
1997-01-01
Provides an overview of childhood leukemia. The causes, the survival period, different types (acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, and hairy cell leukemia), symptoms, treatment, side effects of treatment (including learning problems), and the expected future direction of…
Roberts, Evans; Oncale, Melody; Safah, Hana; Schmieg, John
2016-01-01
Mixed-phenotype acute leukemia is a rare form of leukemia that is associated with a poor prognosis. Most cases of mixed-phenotype acute leukemia are de novo. However, therapy-related mixed-phenotype acute leukemia can occur, and are often associated with exposure to topoisomerase-II inhibitors and alkylating agents. There are no known treatment guidelines for therapy-related mixed-phenotype acute leukemia. We present a patient with T/myeloid mixed-phenotype acute leukemia secondary to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone R-CHOP chemotherapy for primary cutaneous diffuse large B-cell lymphoma. The patient's leukemic cells express CD34, an immaturity marker, CD3, a T-cell marker, and myeloperoxidase, a myeloid marker, and her history of chemotherapy for previous lymphoma supports the diagnosis of therapy-related T/myeloid mixed phenotype acute leukemia. Clinicians should be aware that this entity could be associated with R-CHOP chemotherapy. Given the complexity in diagnosis, and lack of treatment guidelines, a further understanding of the pathological and genetic principles of therapy-related mixed-phenotype acute leukemia will assist in future efforts to treat and categorize these patients. Mixed phenotype acute leukemia is a rare entity that accounts for two to five percent of all acute leukemias. Therapy- related mixed phenotype acute leukemia is an exceedingly rare hematological neoplasm that accounts for less than one percent of acute leukemias. We describe a case of therapy-related T/myeloid mixed phenotype acute leukemia following rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone R-CHOP chemotherapy for primary cutaneous diffuse large B-cell lymphoma DLBCL. The patient is a 63-year-old female who presented with several cutaneous nodules diagnosed as primary cutaneous DLBCL. The patient received R-CHOP chemotherapy and achieved remission. She remained in remission for four years until she presented with dyspnea, night sweats, weakness, and diffuse lymphadenopathy. Her presentation was initially concerning for recurrent lymphoma; however, a bone marrow biopsy and aspirate and a lymph node biopsy revealed a distinct blast population consistent with T/myeloid mixed phenotype acute leukemia T/M-MPAL. Given the patient's history of previous chemotherapy exposure, our patient represents a case of therapy-related T/myeloid mixed phenotype acute leukemia t-MPAL.
Bellantuono, Ilaria; Gao, Liquan; Parry, Suzanne; Marley, Steve; Dazzi, Francesco; Apperley, Jane; Goldman, John M; Stauss, Hans J
2002-11-15
Using the allo-restricted T-cell approach to circumvent tolerance, we have previously identified a cytotoxic T-lymphocyte (CTL) epitope in the transcription factor Wilms tumor antigen 1 (WT1) presented by HLA-A0201 (A2) class I molecules. Here we describe an additional A2-presented epitope and show that CTLs against both epitopes kill WT1-expressing leukemia cell lines. Colony-forming assays demonstrated that both types of CTL killed CD34(+) progenitor cells from A2(+) leukemia patients, but not from A2(+) healthy individuals. The long-term culture-initiating cell (LTC-IC) assay was used to analyze the killing activity of WT1-specific CTLs against the more immature fraction of CD34(+) cells. The CTLs killed LTC-ICs of patients with chronic myelogenous leukemia (CML), whereas the function of normal CD34(+) progenitor/stem cells was not inhibited. Together, the data show that CTLs specific for 2 distinct peptide epitopes of WT1 can discriminate between normal and leukemia LTC-ICs, suggesting that such CTLs have the potential to selectively kill CML progenitor/stem cells.
Mullen, Craig A; Campbell, Andrew; Tkachenko, Olena; Jansson, Johan; Hsu, Yu-Chiao
2011-02-01
These experiments explored mechanisms of control of acute lymphoblastic leukemia (ALL) following allogeneic hematopoietic stem cell transplantation using a murine model of MHC-matched, minor histocompatibility antigen-mismatched transplantation. The central hypothesis examined was that addition of active vaccination against leukemia cells would substantially increase the effectiveness of allogeneic donor lymphocyte infusion (DLI) against ALL present in the host after transplantation. Although vaccination did increase the magnitude of type I T cell responses against leukemia cells associated with DLI, it did not lead to substantial improvement in long-term survival. Analysis of immunologic mechanisms of leukemia progression demonstrated that the failure of vaccination was not because of antigen loss in leukemia cells. However, analysis of survival provided surprising findings that, in addition to very modest type I T cell responses, a B cell response that produced antibodies that bind leukemia cells was found in long-term survivors. The risk of death from leukemia was significantly lower in recipients that had higher levels of such antibodies. These studies raise the hypothesis that stimulation of B cell responses after transplantation may provide a novel way to enhance allogeneic graft-versus-leukemia effects associated with transplantation. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Pathogenesis and treatment of leukemia: an Asian perspective.
Kwong, Yok-Lam
2012-03-01
Leukemias occur worldwide, but there are important geographic differences in incidences. Three leukemias with special Asian perspectives, acute promyelocytic leukemia (APL), T-cell large granular lymphocyte (T-LGL) leukemia and NK-cell leukemia. In APL, China has made contributions in discovering the efficacy of all-trans retinoic acid (ATRA) and arsenic trioxide. Some APL patients are potentially curable after treatment with ATRA or arsenic trioxide as a single agent. Combined treatment of APL with ATRA and arsenic trioxide induces remission with deeper molecular response. An oral formulation of arsenic trioxide is available, making outpatient treatment feasible. Future regimens for APL should examine how ATRA and arsenic trioxide can be optimally combined with other synergistic drugs. Asian patients with T-LGL leukemia present more frequently with pure red cell aplasia, but less frequently with neutropenia, recurrent infection, splenomegaly and rheumatoid arthritis as compared with Western patients. These differences have potential effects on treatment and disease pathogenesis. NK-cell leukemia is rapidly fatal and occurs almost exclusively in Asian and South American patients. Conventional anthracycline-based chemotherapy designed for B-cell lymphomas do not work in NK-cell leukemias. Novel therapeutic approaches targeting cellular signaling pathways or preferentially upregulated genes are needed to improve outcome.
Bauer, S R; Kubagawa, H; Maclennan, I; Melchers, F
1991-09-15
We show here that analysis of VpreB gene transcription can be a specific way to identify acute leukemias of cells at very early stages of B-cell development. Northern blot analysis of RNAs from 63 leukemia samples showed that VpreB RNA was present in malignancies of precursor B cells, the expression being a feature of both common acute lymphoblastic leukemia (ALL) (CD10+) and null ALL (CD10-). It was absent from malignancies of mature B cells (surface Ig positive), from acute leukemias of the T-cell lineage and granulocyte-macrophage lineages, and from normal tonsil B and T lymphocytes. Chronic myeloid leukemia blast crises of the B-precursor-cell type expressed the VpreB gene while myeloid blast crises did not. VpreB RNA was also expressed in the neoplastic cells of one of three patients with acute undifferentiated leukemias. These data show that VpreB RNA expression is a marker of the malignant forms of precursor B cells, and that it appears at least as early as cytoplasmic CD22 and CD19 in tumors of the B-cell lineage.
Periorbital edema as the initial presentation of T-cell prolymphocytic leukemia.
Nusz, Kevin J; Pang, Noelene K; Woog, John J
2006-01-01
A 57-year-old woman presented with a history of progressive bilateral upper and lower eyelid edema. Laboratory tests revealed T-cell prolymphocytic leukemia. Despite systemic treatment, she died 2 weeks after presentation. This life-threatening disorder should be added to the differential diagnosis of eyelid edema.
Leukemia mortality by cell type in petroleum workers with potential exposure to benzene.
Raabe, G K; Wong, O
1996-01-01
Workers in the petroleum industry are potentially exposed to a variety of petrochemicals, including benzene or benzene-containing liquids. Although a large number of studies of petroleum workers have been conducted to examine leukemia and other cancer risks, few existing studies have investigated cell-type-specific leukemias. One of the major reasons for the lack of cell-type-specific analysis was the small number of deaths by cell type in individual studies. In the present investigation, all cohort studies of petroleum workers in the United States and the United Kingdom were combined into a single database for cell-type-specific leukemia analysis. The majority of these workers were petroleum refinery employees, but production, pipeline, and distribution workers in the petroleum industry were also included. The combined cohort consisted of more than 208,000 petroleum workers, who contributed more than 4.6 million person-years of observation. Based on a meta-analysis of the combined data, cell-type-specific leukemia risks were expressed in terms of standardized mortality ratios (meta-SMRs). The meta-SMR for acute myeloid leukemia was 0.96. The lack of an increase of acute myeloid leukemia was attributed to the low levels of benzene exposure in the petroleum industry, particularly in comparison to benzene exposure levels in some previous studies of workers in other industries, who had been found to experience an increased risk of acute myeloid leukemia. Similarly, no increase in chronic myeloid, acute lymphocytic, or chronic lymphocytic leukemias was found in petroleum workers (meta-SMRs of 0.89, 1.16, and 0.84, respectively). Stratified meta-analyses restricted to refinery studies or to studies with at least 15 years of follow-up yielded similar results. The findings of the present investigation are consistent with those from several recent case-control studies of cell-type-specific leukemia. Patterns and levels of benzene exposure in the petroleum industry are reviewed. The results of the present epidemiologic investigation are discussed in conjunction with recent advances in leukemogenesis from other scientific disciplines. PMID:9118924
Natural killer cell therapy in children with relapsed leukemia.
Rubnitz, Jeffrey E; Inaba, Hiroto; Kang, Guolian; Gan, Kwan; Hartford, Christine; Triplett, Brandon M; Dallas, Mari; Shook, David; Gruber, Tanja; Pui, Ching-Hon; Leung, Wing
2015-08-01
Novel therapies are needed for children with relapsed or refractory leukemia. We therefore tested the safety and feasibility of haploidentical natural killer cell therapy in this patient population. Twenty-nine children who had relapsed or refractory leukemia were treated with chemotherapy followed by the infusion of haploidentical NK cells. Cohort 1 included 14 children who had not undergone prior allogeneic hematopoietic cell transplantation (HCT), whereas Cohort 2 included 15 children with leukemia that had relapsed after HCT. Twenty-six (90%) NK donors were KIR mismatched (14 with one KIR and 12 with 2 KIRs). The peak NK chimerism levels were >10% donor in 87% of the evaluable recipients. In Cohort 1, 10 had responsive disease and 12 proceeded to HCT thereafter. Currently, 5 (36%) are alive without leukemia. In Cohort 2, 10 had responsive disease after NK therapy and successfully proceeded to second HCT. At present, 4 (27%) are alive and leukemia-free. The NK cell infusions and the IL-2 injections were well-tolerated. NK cell therapy is safe, feasible, and should be further investigated in patients with chemotherapy-resistant leukemia. © 2015 Wiley Periodicals, Inc.
2018-05-14
B Acute Lymphoblastic Leukemia; B Acute Lymphoblastic Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; CD19-Positive Neoplastic Cells Present; Mixed Phenotype Acute Leukemia; Mixed Phenotype Acute Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; Recurrent B Acute Lymphoblastic Leukemia; Refractory B Acute Lymphoblastic Leukemia
Human Lyb-2 homolog CD72 is a marker for progenitor B-cell leukemias.
Schwarting, R; Castello, R; Moldenhauer, G; Pezzutto, A; von Hoegen, I; Ludwig, W D; Parnes, J R; Dörken, B
1992-11-01
S-HCL 2 is the prototype antibody of the recently defined CD72 cluster (human Lyb-2). Under nonreducing conditions, S-HCL 2 monoclonal antibody (mAb) precipitates a glycoprotein of 80-86 kDa. Under reducing conditions, a dimer of 43 and 39 kDa, with core proteins of 40 and 36 kDa, is precipitated. CD72 expression in normal and malignant tissues is different from expression of all other previously described human B-cell antigens. In peripheral blood and bone marrow, the antigen appears to be present on all B lymphocytes, with the exception of plasma cells. In tissue, immunohistochemical staining revealed positivity for all known B-cell compartments; however, pulpa macrophages of the spleen and von Kupffer cells exhibited distinct positivity for CD72 also. Among 83 malignant non-Hodgkin's lymphomas examined by immunohistochemistry (alkaline phosphatase anti-alkaline phosphatase technique), all 54 B-cell lymphomas, including precursor B-cell lymphomas, Burkitt's lymphomas, germinal center lymphomas, chronic lymphocytic leukemias, and hairy cell leukemias, were CD72 positive, but no T-cell lymphomas were. Flow cytometry study of more than 80 mainly acute leukemias (52 B-cell leukemias) showed reactivity with S-HCL 2 mAb over the full range of B-cell differentiation. In particular, very early B cells in cytoplasmic Ig (cIg)-negative, CD19-positive pre-pre-B-cell leukemias and hybrid leukemias (mixed myeloid and B-cell type) were consistently positive for CD72 on the cell surface. Therefore, CD72 may become an important marker for progenitor B-cell leukemias.
Donor Umbilical Cord Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
2015-12-18
Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Erythroleukemia (M6a); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Pure Erythroid Leukemia (M6b); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Burkitt Lymphoma; Childhood Acute Erythroleukemia (M6); Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Splenic Marginal Zone Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia
MK2206 in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Leukemia
2014-04-28
Accelerated Phase Chronic Myelogenous Leukemia; Acute Leukemias of Ambiguous Lineage; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Acute Undifferentiated Leukemia; Aggressive NK-cell Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Noncutaneous Extranodal Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
Chen, Xianling; Chen, Xiaole; Li, Ding; Fan, Yingjuan; Xu, Jianhua; Chen, Yuanzhong; Wu, Lixian
2017-01-01
Heat shock protein 90 (Hsp90) contains amino (N)–terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states. PMID:28036294
Wang, Huan-You; Huang, Lily Jun-shen; Garcia, Rolando; Li, Shiyong; Galliani, Carlos A.
2010-01-01
Pure erythroid leukemia is a rare subtype of acute erythroid leukemia that is characterized by a predominant erythroid population, and erythroblastic sarcoma has not yet been described in the English literature. Here we report a first case of erythroblastic sarcoma which presented as bilateral ovarian masses in a three and half month old baby girl with pure erythroid leukemia. Bone marrow aspirate and biopsy showed the marrow was completely replaced by large-sized blasts consistent with erythroblasts. Immunophenotypically, both the tumor cells from the ovarian mass and bone marrow blasts were positive for CD117, glycophorin A, and hemoglobin A, demonstrating erythroid differentiation. Reverse transcriptase polymerase chain reaction showed the tumor cells from ovarian mass expressed hemoglobin F and α1 spectrin, confirming their erythroid lineage. Conventional karyotype of the bone marrow aspirates revealed del(6) (q23q25) and trisomy 7 in all 21 cells examined. Fluorescence in situ hybridization of the ovarian mass demonstrated loss of C-MYB at 6q23 locus in 41% of the cells, and deletion of chromosome 7 and 7q in 37% and 66% of cells, respectively. Taken together, we showed, for the first time, that pure erythroid leukemia presented as a myeloid sarcoma in the form of ovarian masses. PMID:21237494
Yang, Jing; Ikezoe, Takayuki; Nishioka, Chie; Tasaka, Taizo; Taniguchi, Ayuko; Kuwayama, Yoshio; Komatsu, Naoki; Bandobashi, Kentaro; Togitani, Kazuto; Koeffler, H Phillip; Taguchi, Hirokuni; Yokoyama, Akihito
2007-09-15
Aurora kinases play an important role in chromosome alignment, segregation, and cytokinesis during mitosis. We have recently shown that hematopoietic malignant cells including those from acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) aberrantly expressed Aurora A and B kinases, and ZM447439, a potent inhibitor of Aurora kinases, effectively induced growth arrest and apoptosis of a variety of leukemia cells. The present study explored the effect of AZD1152, a highly selective inhibitor of Aurora B kinase, on various types of human leukemia cells. AZD1152 inhibited the proliferation of AML lines (HL-60, NB4, MOLM13), ALL line (PALL-2), biphenotypic leukemia (MV4-11), acute eosinophilic leukemia (EOL-1), and the blast crisis of chronic myeloid leukemia K562 cells with an IC50 ranging from 3 nM to 40 nM, as measured by thymidine uptake on day 2 of culture. These cells had 4N/8N DNA content followed by apoptosis, as measured by cell-cycle analysis and annexin V staining, respectively. Of note, AZD1152 synergistically enhanced the antiproliferative activity of vincristine, a tubulin depolymerizing agent, and daunorubicin, a topoisomerase II inhibitor, against the MOLM13 and PALL-2 cells in vitro. Furthermore, AZD1152 potentiated the action of vincristine and daunorubicin in a MOLM13 murine xenograft model. Taken together, AZD1152 is a promising new agent for treatment of individuals with leukemia. The combined administration of AZD1152 and conventional chemotherapeutic agent to patients with leukemia warrants further investigation.
Synchronous occurrence of neuroendocrine colon carcinoma and hairy cell leukemia.
Salemis, Nikolaos S; Pinialidis, Dionisios; Tsiambas, Evangelos; Gakis, Christos; Nakos, Georgios; Sambaziotis, Dimitrios; Christofyllakis, Charalambos
2011-09-01
BACKGROUND-PURPOSE: The risk of secondary malignancy development in patients with hairy cell leukemia has been evaluated in several studies with varying results. The aim of this study is to describe a case of synchronous occurrence of neuroendocrine colon carcinoma and hairy cell leukemia. A 69-year-old man presented with rectal bleeding. Colonoscopy revealed a rectal tumor, whereas biopsy specimens revealed a poorly differentiated carcinoma. During the preoperative evaluation, pancytopenia was detected. At laparotomy, a mass was detected 16 cm from the anal verge and an anterior resection of the rectum was performed. Detailed histological and immunohistochemical analyses revealed a poorly differentiated neuroendocrine carcinoma of the rectum. Postoperative evaluation of pancytopenia revealed hairy cell leukemia. The patient was initially treated with chemotherapy for hairy cell leukemia followed by chemotherapy for neuroendocrine colon carcinoma. Survival was 44 months. To our knowledge, synchronous occurrence of neuroendocrine colon carcinoma and hairy cell leukemia has not been previously reported in the literature. Given the rare incidence of both entities in the general population, it is highly unlikely that they occurred together by chance. Further research is needed to determine what would be the optimal management options of patients with simultaneous hairy cell leukemia and a neuroendocrine colon cancer.
Pajor, L; Matolcsy, A; Vass, J A; Méhes, G; Marton, E; Szabó, F; Iványi, J L
1998-01-01
The case history of a 70-year-old man with myelodysplastic syndrome terminated into acute leukemia in 22 months is presented. The leukemic cells exhibited multifocal acid phosphatase positivity and expressed TdT, CD45, CD34 and HLA-DR but not myeloid, monocytic or megakaryocytic differentiation antigenes. The genotypic analysis revealed clonal immunoglobulin heavy chain gene rearrangement. These phenotypic and genotypic analyses of the blastic cell population suggest that myelodysplastic syndrome may transform to pure acute lymphoblastic leukemia of B-cell origin.
Cunha, Burke A; Munoz-Gomez, Sigridh; Gran, Arthur; Raza, Muhammad; Irshad, Nadia
2015-01-01
Legionnaire's disease (LD) manifests most commonly as an atypical community acquired pneumonia (CAP) with systemic extrapulmonary manifestations. Disorders associated with impaired cell mediated immunity (CMI) are particularly predisposed to LD. Hairy cell leukemia (HCL) is a rare B-cell lymphoproliferative leukemia associated with decreased CMI. LD has only rarely been reported in HCL. We present a most interesting case of persistent LD in a elderly male with HCL who required prolonged antibiotic therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia
Tomuleasa, Ciprian; Fuji, Shigeo; Berce, Cristian; Onaciu, Anca; Chira, Sergiu; Petrushev, Bobe; Micu, Wilhelm-Thomas; Moisoiu, Vlad; Osan, Ciprian; Constantinescu, Catalin; Pasca, Sergiu; Jurj, Ancuta; Pop, Laura; Berindan-Neagoe, Ioana; Dima, Delia; Kitano, Shigehisa
2018-01-01
Chimeric antigen receptor (CAR) T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects. PMID:29515572
Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia.
Tomuleasa, Ciprian; Fuji, Shigeo; Berce, Cristian; Onaciu, Anca; Chira, Sergiu; Petrushev, Bobe; Micu, Wilhelm-Thomas; Moisoiu, Vlad; Osan, Ciprian; Constantinescu, Catalin; Pasca, Sergiu; Jurj, Ancuta; Pop, Laura; Berindan-Neagoe, Ioana; Dima, Delia; Kitano, Shigehisa
2018-01-01
Chimeric antigen receptor (CAR) T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects.
WANG, CHUNHUAI; XIANG, RU; ZHANG, XIANGZHONG; CHEN, YUNXIAN
2015-01-01
Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were evaluated using Matrigel® matrix-coated Transwell® chamber assays; leukemic cell lines treated with doxycycline (1 µg/ml) or anti-β1-integrin antibodies were added to the upper chamber, while untreated cells were included as controls. Reverse transcription quantitative polymerase chain reaction was performed in order to further understand the influence of doxycycline treatment on the expression of FAK and gelatinases in the KG1a and K562 leukemic cell lines. In addition, FAK protein expression and phosphorylation were determined using western blot analysis in order to investigate the mechanism by which doxycycline inhibited leukemic cell migration. The results revealed that doxycycline treatment significantly attenuated the migration of KG1a and K562 cells, which was demonstrated to be associated with inhibition of the expression and phosphorylation of FAK. In addition, doxycycline treatment inhibited matrix metalloproteinase (MMP)-2 and MMP-9 expression. Furthermore, incubation with blocking anti-β1-integrin antibodies had an analogous inhibitory effect on leukemic cell migration to that of doxycycline. In conclusion, the results of the present study suggested that doxycycline attenuated leukemic cell migration through inhibiting the FAK signaling pathway. Therefore, doxycycline may have potential for use as a novel strategy for the treatment of leukemia. PMID:26004127
2018-05-24
Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Mantle Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Noncontiguous Stage II Mantle Cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Stage 0 Chronic Lymphocytic Leukemia; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific
2017-11-20
Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Systemic Amyloidosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia
Dendritic Cell-Based Immunotherapy for Myeloid Leukemias
Schürch, Christian M.; Riether, Carsten; Ochsenbein, Adrian F.
2013-01-01
Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to “malignant” DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias. PMID:24427158
2017-10-09
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Chronic Lymphocytic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Childhood Renal Cell Carcinoma; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage III Renal Cell Cancer; Stage IV Renal Cell Cancer; T-cell Large Granular Lymphocyte Leukemia; Type 1 Papillary Renal Cell Carcinoma; Type 2 Papillary Renal Cell Carcinoma; Waldenström Macroglobulinemia
Sunitinib Malate in Treating HIV-Positive Patients With Cancer Receiving Antiretroviral Therapy
2014-03-14
Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Langerhans Cell Histiocytosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Aggressive NK-cell Leukemia; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Malignancies; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; HIV Infection; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Light Chain Deposition Disease; Mast Cell Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Osteolytic Lesions of Multiple Myeloma; Peripheral T-cell Lymphoma; Plasma Cell Neoplasm; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Renal Cell Cancer; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Stage IV Renal Cell Cancer; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
UCB Transplant for Hematological Diseases Using a Non Myeloablative Prep
2017-12-03
Acute Leukemia; Acute Myeloid Leukemia; Acute Lymphoblastic Leukemia/Lymphoma; Burkitt's Lymphoma; Natural Killer Cell Malignancies; Chronic Myelogenous Leukemia; Myelodysplastic Syndrome; Large-cell Lymphoma; Hodgkin Lymphoma; Multiple Myeloma; Relapsed Chronic Lymphocytic Leukemia; Relapsed Small Lymphocytic Lymphoma; Marginal Zone B-cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-cell Lymphoma; Prolymphocytic Leukemia; Bone Marrow Failure Syndromes; Myeloproliferative Neoplasms/Myelofibrosis; Biphenotypic/Undifferentiated/Prolymphocytic Leukemias; MRD Positive Leukemia; Leukemia or MDS in Aplasia; Relapsed T-Cell Lymphoma; Relapsed Multiple Myeloma; Plasma Cell Leukemia
2014-03-20
Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia
2017-10-30
Adult Acute Lymphoblastic Leukemia; Adult Acute Myeloid Leukemia; Adult Diffuse Large B-Cell Lymphoma; Adult Myelodysplastic Syndrome; Adult Non-Hodgkin Lymphoma; Aggressive Non-Hodgkin Lymphoma; Childhood Acute Lymphoblastic Leukemia; Childhood Acute Myeloid Leukemia; Childhood Diffuse Large B-Cell Lymphoma; Childhood Myelodysplastic Syndrome; Childhood Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Chronic Lymphocytic Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Hematopoietic and Lymphoid Cell Neoplasm; Mantle Cell Lymphoma; Plasma Cell Myeloma; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia; Waldenstrom Macroglobulinemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hodgkin Lymphoma
2017-04-25
Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
Sunitinib in Treating Patients With Idiopathic Myelofibrosis
2014-05-12
Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Primary Myelofibrosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Hairy Cell Leukemia
2018-05-14
Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; CD45-Positive Neoplastic Cells Present; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Refractory Anemia With Excess Blasts; Refractory Anemia With Ring Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ring Sideroblasts
Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia
La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J.; Mecucci, Cristina
2016-01-01
Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. PMID:27151989
Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia.
La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J; Mecucci, Cristina
2016-08-01
Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. Copyright© Ferrata Storti Foundation.
Myeloablative Allo HSCT With Related or Unrelated Donor for Heme Disorders
2018-05-18
Acute Leukemia; Acute Myeloid Leukemia; Acute Lymphoblastic Leukemia; Lymphoma; Chronic Myelogenous Leukemia; Plasma Cell Leukemia; Myeloproliferative Neoplasms; Myelofibrosis; Myelodysplasia; Refractory Anemia; High Risk Anemia; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Marginal Zone B-Cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Leukemia; Diffuse Large Cell Non Hodgkins Lymphoma; Lymphoblastic Lymphoma; Burkitt Lymphoma; High Grade Non-Hodgkin's Lymphoma, Adult; Multiple Myeloma; Juvenile Myelomonocytic Leukemia; Biphenotypic/Undifferentiated/Prolymphocytic Leukemias; MRD Positive Leukemia; Natural Killer Cell Malignancies; Acquired Bone Marrow Failure Syndromes
2016-07-13
Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia
NASA Astrophysics Data System (ADS)
Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.
1990-08-01
B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.
2017-12-11
Adult Acute Myeloid Leukemia in Remission; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndrome; Childhood Renal Cell Carcinoma; Chronic Myelomonocytic Leukemia; Clear Cell Renal Cell Carcinoma; de Novo Myelodysplastic Syndrome; Metastatic Renal Cell Cancer; Previously Treated Myelodysplastic Syndrome; Progression of Multiple Myeloma or Plasma Cell Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Non-Hodgkin Lymphoma; Refractory Anemia; Refractory Anemia With Ringed Sideroblasts; Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Renal Medullary Carcinoma; Type 1 Papillary Renal Cell Carcinoma; Type 2 Papillary Renal Cell Carcinoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia
2010-08-05
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With T(15;17)(q22;q12); Adult Acute Myeloid Leukemia With T(16;16)(p13;q22); Adult Acute Myeloid Leukemia With T(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Pure Erythroid Leukemia (M6b); Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Burkitt Lymphoma; Childhood Acute Erythroleukemia (M6); Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Childhood Acute Promyelocytic Leukemia (M3); Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; De Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-Cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia
Adoptive TReg Cell for Suppression of aGVHD After UCB HSCT for Heme Malignancies
2018-03-26
Acute Lymphoblastic Leukemia; Burkitt Lymphoma; Natural Killer Cell Malignancies; Chronic Myelogenous Leukemia; Myelodysplastic Syndromes; Large-cell Lymphoma; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Marginal Zone B-Cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Leukemia; Hodgkin Lymphoma; Multiple Myeloma; Acute Myelogenous Leukemia; Biphenotypic Leukemia; Undifferentiated Leukemia
2017-03-27
Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia
2017-05-17
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Myeloid Leukemia in Remission; Adult Erythroleukemia (M6a); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Pure Erythroid Leukemia (M6b); Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Philadelphia Chromosome Negative Chronic Myelogenous Leukemia; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Multiple Myeloma; Testicular Lymphoma; Waldenström Macroglobulinemia
2017-09-08
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Congenital Amegakaryocytic Thrombocytopenia; Diamond-Blackfan Anemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Paroxysmal Nocturnal Hemoglobinuria; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Severe Combined Immunodeficiency; Severe Congenital Neutropenia; Shwachman-Diamond Syndrome; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia; Wiskott-Aldrich Syndrome
[Acute liver failure in a patient with hairy cell leukemia].
Valero, Beatriz; Picó Sala, M Dolores; Palazón, José María; Payá, Artemio
2007-01-01
Acute liver failure as a manifestation of primary non-Hodkin's lymphoma is a rare phenomenon with a fatal prognosis. Hairy cell leukemia (HCL) is an uncommon chronic B-cell lymphoproliferative disorder, representing about 2 percent of all leukemies. We report a 78-year-old patient with a history of hairy cell leukemia since 10 years, presenting whith fulminant liver failure due to massive liver infiltration. He have reviewed several cases of infiltration of the liver by haematological malignancies, but we only have found after a review in MEDLINE between 1980 and 2006, one case of acute liver failure in a patient with hepatic invasion by hairy cell leukaemia.
Leukemic Oral Manifestations and their Management.
Francisconi, Carolina Favaro; Caldas, Rogerio Jardim; Oliveira Martins, Lazara Joyce; Fischer Rubira, Cassia Maria; da Silva Santos, Paulo Sergio
2016-01-01
Leukemia is the most common neoplastic disease of the white blood cells which is important as a pediatric malignancy. Oral manifestations occur frequently in leukemic patients and may present as initial evidence of the disease or its relapse. The symptoms include gingival enlargement and bleeding, oral ulceration, petechia, mucosal pallor, noma, trismus and oral infections. Oral lesions arise in both acute and chronic forms of all types of leukemia. These oral manifestations either may be the result of direct infiltration of leukemic cells (primary) or secondary to underlying thrombocytopenia, neutropenia, or impaired granulocyte function. Despite the fact that leukemia has long been known to be associated with oral lesions, the available literature on this topic consists mostly of case reports, without data summarizing the main oral changes for each type of leukemia. Therefore, the present review aimed at describing oral manifestations of all leukemia types and their dental management. This might be useful in early diagnosis, improving patient outcomes.
2017-12-05
B-Cell Prolymphocytic Leukemia; Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia
Abuelgasim, Khadega A; Rehan, Hinna; Alsubaie, Maha; Al Atwi, Nasser; Al Balwi, Mohammed; Alshieban, Saeed; Almughairi, Areej
2018-03-11
Chronic lymphocytic leukemia and chronic myeloid leukemia are the most common types of adult leukemia. However, it is rare for the same patient to suffer from both. Richter's transformation to diffuse large B-cell lymphoma is frequently observed in chronic lymphocytic leukemia. Purine analog therapy and the presence of trisomy 12, and CCND1 gene rearrangement have been linked to increased risk of Richter's transformation. The coexistence of chronic myeloid leukemia and diffuse large B-cell lymphoma in the same patient is extremely rare, with only nine reported cases. Here, we describe the first reported case of concurrent chronic myeloid leukemia and diffuse large B-cell lymphoma in a background of chronic lymphocytic leukemia. A 60-year-old Saudi man known to have diabetes, hypertension, and chronic active hepatitis B was diagnosed as having Rai stage II chronic lymphocytic leukemia, with trisomy 12 and rearrangement of the CCND1 gene in December 2012. He required no therapy until January 2016 when he developed significant anemia, thrombocytopenia, and constitutional symptoms. He received six cycles of fludarabine, cyclophosphamide, and rituximab, after which he achieved complete remission. One month later, he presented with progressive leukocytosis (mostly neutrophilia) and splenomegaly. Fluorescence in situ hybridization from bone marrow aspirate was positive for translocation (9;22) and reverse transcription polymerase chain reaction detected BCR-ABL fusion gene consistent with chronic myeloid leukemia. He had no morphologic or immunophenotypic evidence of chronic lymphocytic leukemia at the time. Imatinib, a first-line tyrosine kinase inhibitor, was started. Eight months later, a screening imaging revealed new liver lesions, which were confirmed to be diffuse large B-cell lymphoma. In chronic lymphocytic leukemia, progressive leukocytosis and splenomegaly caused by emerging chronic myeloid leukemia can be easily overlooked. It is unlikely that chronic myeloid leukemia arose as a result of clonal evolution secondary to fludarabine treatment given the very short interval after receiving fludarabine. It is also unlikely that imatinib contributed to the development of diffuse large B-cell lymphoma; rather, diffuse large B-cell lymphoma arose as a result of Richter's transformation. Fludarabine, trisomy 12, and CCND1 gene rearrangement might have increased the risk of Richter's transformation in this patient.
The incidence of leukemia, lymphoma, and multiple myeloma among atomic bomb survivors: 1950 – 2001
Hsu, Wan-Ling; Preston, Dale L.; Soda, Midori; Sugiyama, Hiromi; Funamoto, Sachiyo; Kodama, Kazunori; Kimura, Akiro; Kamada, Nanao; Dohy, Hiroo; Tomonaga, Masao; Iwanaga, Masako; Miyazaki, Yasushi; Cullings, Harry M.; Suyama, Akihiko; Ozasa, Kotaro; Shore, Roy E.; Mabuchi, Kiyohiko
2013-01-01
A marked increase in leukemia risks was the first and most striking late effect of radiation exposure seen among the Hiroshima and Nagasaki atomic bomb survivors. This paper presents analyses of radiation effects on leukemia, lymphoma, and multiple myeloma incidence in the Life Span Study cohort of atomic bomb survivors updated 14 years since the last comprehensive report on these malignancies. These analyses make use of tumor- and leukemia-registry-based incidence data on 113,011 cohort members with 3.6 million person-years of follow-up from late 1950 through the end of 2001. In addition to a detailed analysis of the excess risk for all leukemias other than chronic lymphocytic leukemia or adult T-cell leukemia (neither of which appear to be radiation-related), we present results for the major hematopoietic malignancy types: acute lymphoblastic leukemia, chronic lymphocytic leukemia, acute myeloid leukemia, chronic myeloid leukemia, adult T-cell leukemia, Hodgkin and non-Hodgkin lymphoma, and multiple myeloma. Poisson regression methods were used to characterize the shape of the radiation dose response relationship and, to the extent the data allowed, to investigate variation in the excess risks with sex, attained age, exposure age, and time since exposure. In contrast to the previous report that focused on describing excess absolute rates, we considered both excess absolute rate (EAR) and excess relative risk (ERR) models and found that ERR models can often provide equivalent and sometimes more parsimonious descriptions of the excess risk than EAR models. The leukemia results indicated that there was a non-linear dose response for leukemias other than chronic lymphocytic leukemia or adult T-cell leukemia, which varied markedly with time and age at exposure, with much of the evidence for this non-linearity arising from the acute myeloid leukemia risks. Although the leukemia excess risks generally declined with attained age or time since exposure, there was evidence that the radiation-associated excess leukemia risks, especially for acute myeloid leukemia, had persisted throughout the follow-up period out to – 55 years after the bombings. As in earlier analyses, there was a weak suggestion of a radiation dose response for non-Hodgkin lymphoma among men with no indication of such an effect among women. There was no evidence of radiation-associated excess risks for either Hodgkin lymphoma or multiple myeloma. PMID:23398354
Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia
Mosna, Federico
2016-01-01
Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease. PMID:26880987
2014-04-30
Acute Leukemias of Ambiguous Lineage; Acute Undifferentiated Leukemia; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific
Liu, Wai-Nam; Leung, Kwok-Nam
2014-11-01
Conjugated linolenic acids (CLNAs) are a group of naturally occurring positional and geometrical isomers of the C18 polyunsaturated essential fatty acid, linolenic acid (LNA), with three conjugated double bonds (C18:3). Although previous research has demonstrated the growth-inhibitory effects of CLNA on a wide variety of cancer cell lines in vitro, their action mechanisms and therapeutic potential on human myeloid leukemia cells remain poorly understood. In the present study, we found that jacaric acid (8Z,10E,12Z-octadecatrienoic acid), a CLNA isomer which is present in jacaranda seed oil, inhibited the in vitro growth of human eosinophilic leukemia EoL-1 cells in a time- and concentration-dependent manner. Mechanistic studies showed that jacaric acid triggered cell cycle arrest of EoL-1 cells at the G0/G1 phase and induced apoptosis of the EoL-1 cells, as measured by the Cell Death Detection ELISAPLUS kit, Annexin V assay and JC-1 dye staining. Notably, the jacaric acid-treated EoL-1 cells also underwent differentiation as revealed by morphological and phenotypic analysis. Collectively, our results demonstrated the capability of jacaric acid to inhibit the growth of EoL-1 cells in vitro through triggering cell cycle arrest and by inducing apoptosis and differentiation of the leukemia cells. Therefore, jacaric acid might be developed as a potential candidate for the treatment of certain forms of myeloid leukemia with minimal toxicity and few side effects.
Gyárfás, Tobias; Wintgens, Juergen; Biskup, Wolfgang; Oschlies, Ilske; Klapper, Wolfram; Siebert, Reiner; Bens, Susanne; Haferlach, Claudia; Meisel, Roland; Kuhlen, Michaela; Borkhardt, Arndt
2016-12-01
Neonatal leukemia is a rare disease with an estimated prevalence of about one to five in a million neonates. The majority being acute myeloid leukemia (AML), neonatal leukemia can present with a variety of symptoms including hyperleucocytosis, cytopenia, hepatosplenomegaly, and skin infiltrates. Chromosomal rearrangements including mixed lineage leukemia (MLL) translocations are common in neonatal AML. A female neonate born at 34 weeks gestation presented with cardiorespiratory failure, hepatosplenomegaly, pancytopenia, and coagulopathy. She required intensive care treatment including mechanical ventilation, high-dose catecholamine therapy, and multiple transfusions. Small intestinal biopsy obtained during laparotomy for meconium ileus revealed an infiltrate by an undifferentiated monoblastic, MLL-rearranged leukemia. No other manifestations of leukemia could be detected. After spontaneous clinical remission, lasting 5 months without any specific treatment, the patient presented with leukemia cutis and full-blown monoblastic leukemia. MLL-AF10-rearranged AML could be re-diagnosed and successfully treated with chemotherapy and hematopoietic stem cell transplantation. Our patient exhibited a unique manifestation of neonatal MLL-AF10 rearranged AML with cardiorespiratory failure and intestinal infiltration. It highlights the importance of leukemia in the differential diagnosis of neonatal distress, congenital hematological abnormalities, and skin lesions.
The role of natural killer cells in chronic myeloid leukemia
Danier, Anna Carolyna Araújo; de Melo, Ricardo Pereira; Napimoga, Marcelo Henrique; Laguna-Abreu, Maria Theresa Cerávolo
2011-01-01
Chronic myeloid leukemia is a neoplasia resulting from a translocation between chromosomes 9 and 22 producing the BCR-ABL hybrid known as the Philadelphia chromosome (Ph). In chronic myeloid leukemia a proliferation of malignant myeloid cells occurs in the bone marrow due to excessive tyrosine kinase activity. In order to maintain homeostasis, natural killer cells, by means of receptors, identify the major histocompatibility complex on the surface of tumor cells and subsequently induce apoptosis. The NKG2D receptor in the natural killer cells recognizes the transmembrane proteins related to major histocompatibility complex class I chain-related genes A and B (MICA and MICB), and it is by the interaction between NKG2D and MICA that natural killer cells exert cytotoxic activity against chronic myeloid leukemia tumor cells. However, in the case of chronic exposure of the NKG2D receptor, the MICA ligand releases soluble proteins called sMICA from the tumor cell surface, which negatively modulate NKG2D and enable the tumor cells to avoid lysis mediated by the natural killer cells. Blocking the formation of sMICA may be an important antitumor strategy. Treatment using tyrosine kinase inhibitors induces modulation of NKG2DL expression, which could favor the activity of the natural killer cells. However this mechanism has not been fully described in chronic myeloid leukemia. In the present study, we analyze the role of natural killer cells to reduce proliferation and in the cellular death of tumor cells in chronic myeloid leukemia. PMID:23049299
2016-11-30
B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia
CAR-pNK Cell Immunotherapy in CD7 Positive Leukemia and Lymphoma
2016-12-04
Acute Myeloid Leukemia; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma; T-cell Prolymphocytic Leukemia; T-cell Large Granular Lymphocytic Leukemia; Peripheral T-cell Lymphoma, NOS; Angioimmunoblastic T-cell Lymphoma; Extranodal NK/T-cell Lymphoma, Nasal Type; Enteropathy-type Intestinal T-cell Lymphoma; Hepatosplenic T-cell Lymphoma
2018-02-13
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Aggressive Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Diffuse Large B-Cell Lymphoma; Hematopoietic and Lymphoid Cell Neoplasm; Indolent Non-Hodgkin Lymphoma; Mantle Cell Lymphoma; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Plasma Cell Myeloma; Refractory Chronic Lymphocytic Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Hodgkin Lymphoma; Small Lymphocytic Lymphoma; T-Cell Chronic Lymphocytic Leukemia; Waldenstrom Macroglobulinemia
2017-12-11
Acute Undifferentiated Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia; Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies; Childhood Chronic Myelogenous Leukemia; Chronic Lymphocytic Leukemia; Hairy Cell Leukemia; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Neoplasm of Uncertain Malignant Potential; Prolymphocytic Leukemia; Secondary Acute Myeloid Leukemia; T-cell Large Granular Lymphocyte Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific
Li, Juntao; Wang, Yanyan; Jiang, Tao; Xiao, Huimin; Song, Xuekun
2018-05-09
Diagnosing acute leukemia is the necessary prerequisite to treating it. Multi-classification on the gene expression data of acute leukemia is help for diagnosing it which contains B-cell acute lymphoblastic leukemia (BALL), T-cell acute lymphoblastic leukemia (TALL) and acute myeloid leukemia (AML). However, selecting cancer-causing genes is a challenging problem in performing multi-classification. In this paper, weighted gene co-expression networks are employed to divide the genes into groups. Based on the dividing groups, a new regularized multinomial regression with overlapping group lasso penalty (MROGL) has been presented to simultaneously perform multi-classification and select gene groups. By implementing this method on three-class acute leukemia data, the grouped genes which work synergistically are identified, and the overlapped genes shared by different groups are also highlighted. Moreover, MROGL outperforms other five methods on multi-classification accuracy. Copyright © 2017. Published by Elsevier B.V.
Furlong, Suzanne J; Ridgway, Neale D; Hoskin, David W
2008-03-01
Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that selectively induces apoptosis in several different types of human cancer cells. However, the potential use of LfcinB as an anticancer agent is presently limited by the need for relatively high concentrations of the peptide to trigger apoptosis. Ceramide is a membrane sphingolipid that is believed to function as a second messenger during apoptosis. In this study, we investigated the role of ceramide in LfcinB-induced apoptosis in CCRF-CEM and Jurkat T-leukemia cell lines. Exposure to LfcinB caused nuclear condensation and fragmentation, poly(ADP-ribose) polymerase (PARP) cleavage, and DNA fragmentation in CCRF-CEM and Jurkat T-cell acute lymphoblastic leukemia cell lines. Treatment with C6 ceramide, a cell-permeable, short-chain ceramide analog, also induced apoptotic nuclear morphology, PARP cleavage, and DNA fragmentation in T-leukemia cells. Although LfcinB treatment did not cause ceramide to accumulate in CCRF-CEM or Jurkat cells, the addition of C6 ceramide to LfcinB-treated T-leukemia cells resulted in increased DNA fragmentation. Furthermore, modulation of cellular ceramide metabolism either by inhibiting ceramidases with D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol or N-oleoylethanolamine, or by blocking glucosylceramide synthase activity with 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, enhanced the ability of LfcinB to trigger apoptosis in both Jurkat and CCRF-CEM cells. In addition, LfcinB-induced apoptosis of T-leukemia cells was enhanced in the presence of the antiestrogen tamoxifen, which has multiple effects on cancer cells, including inhibition of glucosylceramide synthase activity. We conclude that manipulation of cellular ceramide levels in combination with LfcinB therapy warrants further investigation as a novel strategy for the treatment of T cell-derived leukemias.
Activity of single-agent decitabine in atypical chronic myeloid leukemia.
Hausmann, Heidi; Bhatt, Vijaya R; Yuan, Ji; Maness, Lori J; Ganti, Apar K
2016-12-01
Atypical chronic myeloid leukemia is a rare entity that presents diagnostic and therapeutic challenges. Traditionally utilized therapeutic agents such as hydroxyurea or interferon result in a median survival of approximately two years, thus warranting identification of better options. We report a 49-year-old Caucasian female, who presented with extreme leukocytosis (white blood cells of 148,300/µL) with left shift, severe anemia, and thrombocytopenia. Following a diagnosis of atypical chronic myeloid leukemia, she was started on intravenous decitabine. She subsequently developed paraneoplastic vasculitis of large arteries, which responded to high-dose glucocorticoid. Decitabine therapy resulted in an excellent hematologic response, transfusion independence, and successful transition to an allogeneic peripheral stem cell transplantation. However, the patient subsequently succumbed to the complications of acute graft-versus-host-disease. This case illustrates an association between atypical chronic myeloid leukemia and steroid-responsive paraneoplastic vasculitis and highlights the single-agent disease activity of decitabine in atypical chronic myeloid leukemia, which may be utilized as a bridging therapy to allogeneic stem cell transplantation. © The Author(s) 2015.
Antigen Loss Variants: Catching Hold of Escaping Foes.
Vyas, Maulik; Müller, Rolf; Pogge von Strandmann, Elke
2017-01-01
Since mid-1990s, the field of cancer immunotherapy has seen steady growth and selected immunotherapies are now a routine and preferred therapeutic option of certain malignancies. Both active and passive cancer immunotherapies exploit the fact that tumor cells express specific antigens on the cell surface, thereby mounting an immune response specifically against malignant cells. It is well established that cancer cells typically lose surface antigens following natural or therapy-induced selective pressure and these antigen-loss variants are often the population that causes therapy-resistant relapse. CD19 and CD20 antigen loss in acute lymphocytic leukemia and chronic lymphocytic leukemia, respectively, and lineage switching in leukemia associated with mixed lineage leukemia (MLL) gene rearrangements are well-documented evidences in this regard. Although increasing number of novel immunotherapies are being developed, majority of these do not address the control of antigen loss variants. Here, we review the occurrence of antigen loss variants in leukemia and discuss the therapeutic strategies to tackle the same. We also present an approach of dual-targeting immunoligand effectively retargeting NK cells against antigen loss variants in MLL-associated leukemia. Novel immunotherapies simultaneously targeting more than one tumor antigen certainly hold promise to completely eradicate tumor and prevent therapy-resistant relapses.
[Expression of cell adhesion molecules in acute leukemia cell].
Ju, Xiaoping; Peng, Min; Xu, Xiaoping; Lu, Shuqing; Li, Yao; Ying, Kang; Xie, Yi; Mao, Yumin; Xia, Fang
2002-11-01
To investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia. The expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR). The expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR. The cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.
2017-11-29
Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Fanconi Anemia; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Paroxysmal Nocturnal Hemoglobinuria; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia
Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
2017-12-11
Acute Biphenotypic Leukemia; Acute Erythroid Leukemia in Remission; Acute Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Inv(3) (q21.3;q26.2) or t(3;3) (q21.3;q26.2); GATA2, MECOM; Acute Myeloid Leukemia With Inv(3) (q21.3;q26.2); GATA2, MECOM; Acute Myeloid Leukemia With Multilineage Dysplasia; Acute Myeloid Leukemia With t(6;9) (p23;q34.1); DEK-NUP214; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Complete Remission; B Acute Lymphoblastic Leukemia With t(1;19)(q23;p13.3); E2A-PBX1 (TCF3-PBX1); B Acute Lymphoblastic Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Complete Remission; DS Stage II Plasma Cell Myeloma; DS Stage III Plasma Cell Myeloma; Myelodysplastic Syndrome; Recurrent Anaplastic Large Cell Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Plasma Cell Myeloma; Refractory Plasma Cell Myeloma; Secondary Acute Myeloid Leukemia; T Lymphoblastic Lymphoma
A Phase 1/2 Study To Evaluate ASN002 In Relapsed/Refractory Lymphoma And Advanced Solid Tumors
2018-04-30
Lymphoma, Large B-Cell, Diffuse; Lymphoma, Mantle-Cell; Lymphoma, Follicular; Cancer; Neoplasm; Tumor; Lymphoma, Malignant; Lymphoma, B-cell; Lymphoma, Non-Hodgkin; B-Cell Chronic Lymphocytic Leukemia; B-Cell Leukemia, Chronic; B-Lymphocytic Leukemia, Chronic; Chronic Lymphocytic Leukemia; Leukemia, Lymphocytic, Chronic; Leukemia, Lymphocytic, Chronic, B Cell; Myelofibrosis; Chronic Idiopathic Myelofibrosis; Idiopathic Myelofibrosis; Lymphoma, T Cell, Peripheral; Peripheral T-Cell Lymphoma; T-Cell Lymphoma, Peripheral
Sharif, Tanveer; Alhosin, Mahmoud; Auger, Cyril; Minker, Carole; Kim, Jong-Hun; Etienne-Selloum, Nelly; Bories, Pierre; Gronemeyer, Hinrich; Lobstein, Annelise; Bronner, Christian; Fuhrmann, Guy; Schini-Kerth, Valérie B
2012-01-01
Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G(2)/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells.
2018-03-02
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Cytopenia With Multilineage Dysplasia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
2013-06-03
Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia
Novel immunotherapeutic approaches for the treatment of acute leukemia (myeloid and lymphoblastic)
Ishii, Kazusa; Barrett, Austin J.
2016-01-01
There have been major advances in our understanding of the multiple interactions between malignant cells and the innate and adaptive immune system. While the attention of immunologists has hitherto focused on solid tumors, the specific immunobiology of acute leukemias is now becoming defined. These discoveries have pointed the way to immune interventions building on the established graft-versus-leukemia (GVL) effect from hematopoietic stem-cell transplant (HSCT) and extending immunotherapy beyond HSCT to individuals with acute leukemia with a diversity of immune manipulations early in the course of the leukemia. At present, clinical results are in their infancy. In the coming years larger studies will better define the place of immunotherapy in the management of acute leukemias and lead to treatment approaches that combine conventional chemotherapy, immunotherapy and HSCT to achieve durable cures. PMID:26834952
2018-03-02
Adult Acute Myeloid Leukemia in Remission; Acute Biphenotypic Leukemia; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Acute Myeloid Leukemia; Adult Acute Lymphoblastic Leukemia; Interleukin-3 Receptor Subunit Alpha Positive; Minimal Residual Disease; Refractory Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia
Angelova, Assia L.; Witzens-Harig, Mathias; Galabov, Angel S.; Rommelaere, Jean
2017-01-01
Non-Hodgkin lymphoma (NHL) and leukemia are among the most common cancers worldwide. While the treatment of NHL/leukemia of B-cell origin has much progressed with the introduction of targeted therapies, few treatment standards have been established for T-NHL/leukemia. As presentation in both B- and T-NHL/leukemia patients is often aggressive and as prognosis for relapsed disease is especially dismal, this cancer entity poses major challenges and requires innovative therapeutic approaches. In clinical trials, oncolytic viruses (OVs) have been used against refractory multiple myeloma (MM). In preclinical settings, a number of OVs have demonstrated a remarkable ability to suppress various types of hematological cancers. Most studies dealing with this approach have used MM or B- or myeloid-cell-derived malignancies as models. Only a few describe susceptibility of T-cell lymphoma/leukemia to OV infection and killing. The rat H-1 parvovirus (H-1PV) is an OV with considerable promise as a novel therapeutic agent against both solid tumors (pancreatic cancer and glioblastoma) and hematological malignancies. The present perspective article builds on previous reports of H-1PV-driven regression of Burkitt’s lymphoma xenografts and on unpublished observations demonstrating effective killing by H-1PV of cells from CHOP-resistant diffuse large B-cell lymphoma, cutaneous T-cell lymphoma, and T-cell acute lymphoblastic leukemia. On the basis of these studies, H-1PV is proposed for use as an adjuvant to (chemo)therapeutic regimens. Furthermore, in the light of a recently completed first parvovirus clinical trial in glioblastoma patients, the advantages of H-1PV for systemic application are discussed. PMID:28553616
2018-02-26
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Renal Cell Carcinoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Renal Cell Cancer; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Anemia; Refractory Anemia With Ringed Sideroblasts; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Renal Cell Cancer; T-cell Large Granular Lymphocyte Leukemia; Type 1 Papillary Renal Cell Carcinoma; Type 2 Papillary Renal Cell Carcinoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia
MHC class-I associated phosphopeptides are the targets of memory-like immunity in leukemia
Cobbold, Mark; De La Peña, Hugo; Norris, Andrew; Polefrone, Joy; Qian, Jie; English, A. Michelle; Cummings, Kara; Penny, Sarah; Turner, James E.; Cottine, Jennifer; Abelin, Jennifer G; Malaker, Stacy A; Zarling, Angela L; Huang, Hsing-Wen; Goodyear, Oliver; Freeman, Sylvie; Shabanowitz, Jeffrey; Pratt, Guy; Craddock, Charles; Williams, Michael E; Hunt, Donald F; Engelhard, Victor H
2014-01-01
Deregulation of signaling pathways involving phosphorylation is a hallmark of malignant transformation. Degradation of phosphoproteins generates cancer-specific phosphopeptides that are associated with MHC-I and II molecules and recognized by T-cells. We identified 95 phosphopeptides presented on the surface of primary hematological tumors and normal tissues, including 61 that were tumor-specific. Phosphopeptides were more prevalent on more aggressive and malignant samples. CD8 T-cell lines specific for these phosphopeptides recognized and killed both leukemia cell lines and HLA-matched primary leukemia cells ex vivo. Healthy individuals showed surprisingly high levels of CD8 T-cell responses against many of these phosphopeptides within the circulating memory compartment. This immunity was significantly reduced or absent in some leukemia patients, which correlated with clinical outcome, and was restored following allogeneic stem cell transplantation. These results suggest that phosphopeptides may be targets of cancer immune surveillance in humans, and point to their importance for development of vaccine-based and T-cell adoptive transfer immunotherapies.. PMID:24048523
2017-05-25
Adult Acute Lymphoblastic Leukemia; Adult Acute Myeloid Leukemia; Adult Burkitt Lymphoma; Adult Diffuse Large Cell Lymphoma; Adult Diffuse Mixed Cell Lymphoma; Adult Diffuse Small Cleaved Cell Lymphoma; Adult Hodgkin Lymphoma; Adult Immunoblastic Large Cell Lymphoma; Adult Lymphoblastic Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Breast Cancer; Chronic Eosinophilic Leukemia; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Cutaneous T-cell Non-Hodgkin Lymphoma; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Grade 1 Follicular Lymphoma; Grade 2 Follicular Lymphoma; Grade 3 Follicular Lymphoma; Malignant Testicular Germ Cell Tumor; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Multiple Myeloma; Mycosis Fungoides/Sezary Syndrome; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Neutropenia; Nodal Marginal Zone B-cell Lymphoma; Ovarian Epithelial Cancer; Ovarian Germ Cell Tumor; Plasma Cell Neoplasm; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Primary Myelofibrosis; Prolymphocytic Leukemia; Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma
Ho, Cheong-Yip; Kim, Chi-Fai; Leung, Kwok-Nam; Fung, Kwok-Pui; Tse, Tak-Fu; Chan, Helen; Lau, Clara Bik-San
2006-09-01
Coriolus versicolor (CV), also called Yunzhi, has been demonstrated to exert anti-tumor effects on various types of cancer cells. Our previous studies have demonstrated that a standardized aqueous ethanol extract prepared from CV inhibited the proliferation of human leukemia cells via induction of apoptosis. The present study aimed to evaluate the underlying mechanisms of apoptosis through modulation of Bax, Bcl-2 and cytochrome c protein expressions in a human pro-myelocytic leukemia (HL-60) cell line, as well as the potential of the CV extract as anti-leukemia agent using the athymic mouse xenograft model. Our results demonstrated that the CV extract dose-dependently suppressed the proliferation of HL-60 cells (IC50 = 150.6 microg/ml), with increased nucleosome production from apoptotic cells. Expression of pro-apoptotic protein Bax was significantly up-regulated in HL-60 cells treated with the CV extract, especially after 16 and 24 h. Meanwhile, expression of anti-apoptotic protein Bcl-2 was concomitantly down-regulated, as reflected by the increased Bax/Bcl-2 ratio. The CV extract markedly, but transiently, promoted the release of cytochrome c from mitochondria to cytosol after 24-h incubation. In vivo studies in the athymic nude mouse xenograft model also confirmed the growth-inhibitory activity of the CV extract on human leukemia cells. In conclusion, the CV extract attenuated the human leukemia cell proliferation in vivo, and in vitro possibly by inducing apoptosis through the mitochondrial pathway. The CV extract is likely to be valuable for the treatment of some forms of human leukemia.
Valletta, Simona; Dolatshad, Hamid; Bartenstein, Matthias; Yip, Bon Ham; Bello, Erica; Gordon, Shanisha; Yu, Yiting; Shaw, Jacqueline; Roy, Swagata; Scifo, Laura; Schuh, Anna; Pellagatti, Andrea; Fulga, Tudor A.; Verma, Amit; Boultwood, Jacqueline
2015-01-01
Recurrent somatic mutations of the epigenetic modifier and tumor suppressor ASXL1 are common in myeloid malignancies, including chronic myeloid leukemia (CML), and are associated with poor clinical outcome. CRISPR/Cas9 has recently emerged as a powerful and versatile genome editing tool for genome engineering in various species. We have used the CRISPR/Cas9 system to correct the ASXL1 homozygous nonsense mutation present in the CML cell line KBM5, which lacks ASXL1 protein expression. CRISPR/Cas9-mediated ASXL1 homozygous correction resulted in protein re-expression with restored normal function, including down-regulation of Polycomb repressive complex 2 target genes. Significantly reduced cell growth and increased myeloid differentiation were observed in ASXL1 mutation-corrected cells, providing new insights into the role of ASXL1 in human myeloid cell differentiation. Mice xenografted with mutation-corrected KBM5 cells showed significantly longer survival than uncorrected xenografts. These results show that the sole correction of a driver mutation in leukemia cells increases survival in vivo in mice. This study provides proof-of-concept for driver gene mutation correction via CRISPR/Cas9 technology in human leukemia cells and presents a strategy to illuminate the impact of oncogenic mutations on cellular function and survival. PMID:26623729
Valletta, Simona; Dolatshad, Hamid; Bartenstein, Matthias; Yip, Bon Ham; Bello, Erica; Gordon, Shanisha; Yu, Yiting; Shaw, Jacqueline; Roy, Swagata; Scifo, Laura; Schuh, Anna; Pellagatti, Andrea; Fulga, Tudor A; Verma, Amit; Boultwood, Jacqueline
2015-12-29
Recurrent somatic mutations of the epigenetic modifier and tumor suppressor ASXL1 are common in myeloid malignancies, including chronic myeloid leukemia (CML), and are associated with poor clinical outcome. CRISPR/Cas9 has recently emerged as a powerful and versatile genome editing tool for genome engineering in various species. We have used the CRISPR/Cas9 system to correct the ASXL1 homozygous nonsense mutation present in the CML cell line KBM5, which lacks ASXL1 protein expression. CRISPR/Cas9-mediated ASXL1 homozygous correction resulted in protein re-expression with restored normal function, including down-regulation of Polycomb repressive complex 2 target genes. Significantly reduced cell growth and increased myeloid differentiation were observed in ASXL1 mutation-corrected cells, providing new insights into the role of ASXL1 in human myeloid cell differentiation. Mice xenografted with mutation-corrected KBM5 cells showed significantly longer survival than uncorrected xenografts. These results show that the sole correction of a driver mutation in leukemia cells increases survival in vivo in mice. This study provides proof-of-concept for driver gene mutation correction via CRISPR/Cas9 technology in human leukemia cells and presents a strategy to illuminate the impact of oncogenic mutations on cellular function and survival.
2018-05-16
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Nodular Lymphocyte Predominant Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Isolated Plasmacytoma of Bone; Monoclonal Gammopathy of Undetermined Significance; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Primary Myelofibrosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia
2015-06-03
Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia
2018-06-13
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Acute Leukemia in Remission; Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Gene Mutations; Aplastic Anemia; B-Cell Non-Hodgkin Lymphoma; CD40 Ligand Deficiency; Chronic Granulomatous Disease; Chronic Leukemia in Remission; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Congenital Amegakaryocytic Thrombocytopenia; Congenital Neutropenia; Congenital Pure Red Cell Aplasia; Glanzmann Thrombasthenia; Immunodeficiency Syndrome; Myelodysplastic Syndrome; Myelofibrosis; Myeloproliferative Neoplasm; Paroxysmal Nocturnal Hemoglobinuria; Plasma Cell Myeloma; Polycythemia Vera; Recurrent Non-Hodgkin Lymphoma; Refractory Non-Hodgkin Lymphoma; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Severe Aplastic Anemia; Shwachman-Diamond Syndrome; Sickle Cell Disease; T-Cell Non-Hodgkin Lymphoma; Thalassemia; Waldenstrom Macroglobulinemia; Wiskott-Aldrich Syndrome
Sorafenib inhibits therapeutic induction of necroptosis in acute leukemia cells.
Feldmann, Friederike; Schenk, Barbara; Martens, Sofie; Vandenabeele, Peter; Fulda, Simone
2017-09-15
Induction of necroptosis has emerged as an alternative approach to trigger programmed cell death, in particular in apoptosis-resistant cancer cells. Recent evidence suggests that kinase inhibitors targeting oncogenic B-RAF can also affect Receptor-interacting serine/threonine-protein kinase (RIP)1 and RIP3. Sorafenib, a multi-targeting kinase inhibitor with activity against B-RAF, is used for the treatment of acute leukemia. In the present study, we therefore investigated whether Sorafenib interferes with therapeutic induction of necroptosis in acute leukemia. Here, we report that Sorafenib inhibits necroptotic signaling and cell death in two models of necroptosis in acute leukemia. Sorafenib significantly reduces Second mitochondria-derived activator of caspases (Smac) mimetic-induced necroptosis in apoptosis-resistant acute myeloid leukemia (AML) cells as well as Smac mimetic/Tumor Necrosis Factor (TNF)α-induced necroptosis in FADD-deficient acute lymphoblastic leukemia (ALL) cells. Sub- to low micromolar concentrations of Sorafenib corresponding to its plasma levels reported in cancer patients are sufficient to inhibit necroptosis, emphasizing the clinical relevance of our findings. Furthermore, Sorafenib blocks Smac mimetic-mediated phosphorylation of mixed-lineage kinase domain-like protein (MLKL) that marks its activation, indicating that Sorafenib targets components upstream of MLKL such as RIP1 and RIP3. Intriguingly, Sorafenib reduces the Smac mimetic/TNFα-stimulated interaction of RIP1 with RIP3 and MLKL, demonstrating that it interferes with the assembly of the necrosome complex. Importantly, Sorafenib significantly protects primary, patient-derived AML blasts from Smac mimetic-induced necroptosis. By demonstrating that Sorafenib limits the anti-leukemic activity of necroptosis-inducing drugs in acute leukemia cells, our study has important implications for the use of Sorafenib in the treatment of acute leukemia.
2012-07-05
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Plasma Cell Neoplasm; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Small Lymphocytic Lymphoma
2017-01-24
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, Breakpoint Cluster Region-abl Translocation (BCR-ABL) Negative; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Gastrointestinal Complications; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Childhood Rhabdomyosarcoma; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma
Yagita, M; Huang, C L; Umehara, H; Matsuo, Y; Tabata, R; Miyake, M; Konaka, Y; Takatsuki, K
2000-05-01
We present the establishment of a natural killer (NK) leukemia cell line, designated KHYG-1, from the blood of a patient with aggressive NK leukemia, which both possessed the same p53 point mutation. The immunophenotype of the primary leukemia cells was CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16+, CD56+, CD57+ and HLA-DR+. A new cell line (KHYG-1) was established by culturing peripheral leukemia cells with 100 units of recombinant interleukin (IL)-2. The KHYG-1 cells showed LGL morphology with a large nucleus, coarse chromatin, conspicuous nucleoli, and abundant basophilic cytoplasm with many azurophilic granules. The immunophenotype of KHYG-1 cells was CD1-, CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16-, CD25-, CD33+, CD34-, CD56+, CD57-, CD122+, CD132+, and TdT-. Southern blot analysis of these cells revealed a normal germline configuration for the beta, delta, and gamma chains of the T cell receptor and the immunoglobulin heavy-chain genes. Moreover, the KHYG-1 cells displayed NK cell activity and IL-2-dependent proliferation in vitro, suggesting that they are of NK cell origin. Epstein-Barr virus (EBV) DNA was not detected in KHYG-1 cells by Southern blot analysis with a terminal repeat probe from an EBV genome. A point mutation in exon 7 of the p53 gene was detected in the KHYG-1 cells by PCR/SSCP analysis, and direct sequencing revealed the conversion of C to T at nucleotide 877 in codon 248. The primary leukemia cells also carried the same point mutation. Although the precise role of the p53 point mutation in leukemogenesis remains to be clarified, the establishment of an NK leukemia cell line with a p53 point mutation could be valuable in the study of leukemogenesis.
Cytarabine-resistant leukemia cells are moderately sensitive to clofarabine in vitro.
Yamauchi, Takahiro; Uzui, Kanako; Nishi, Rie; Shigemi, Hiroko; Ueda, Takanori
2014-04-01
Clofarabine is transported into leukemic cells via the equilibrative nucleoside transporters (hENT) 1 and 2 and the concentrative nucleoside transporter (hCNT) 3, then phosphorylated by deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK) to an active triphosphate metabolite. Cytarabine uses hENT1 and dCK for its activation. We hypothesized that cytarabine-resistant leukemia cells retain sensitivity to clofarabine. Human myeloid leukemia HL-60 cells and cytarabine-resistant variant HL/ara-C20 cells were used in the present study. Despite 20-fold cytarabine resistance, the HL/ara-C20 cells exhibited only a 6-fold resistance to clofarabine compared to HL-60 cells. The intracellular concentration of the triphosphate metabolite of cytarabine was reduced to 1/10, and that of clofarabine was halved in the HL/ara-C20 cells. hENT1 and dCK were reduced, but hCNT3 and dGK were not altered in the HL/ara-C20 cells, which might contribute to their retained capability to produce intracellular triphosphate metabolite of clofarabine. Clofarabine was cytotoxic to leukemia cells that were resistant to cytarabine.
Gao, Ning; Cheng, Senping; Budhraja, Amit; Liu, E-Hu; Chen, Jieping; Chen, Deying; Yang, Zailin; Luo, Jia; Shi, Xianglin; Zhang, Zhuo
2012-01-01
3,3′-diindolylmethane (DIM), one of the active products derived from Brassica plants, is a promising antitumor agent. The present study indicated that DIM significantly induced apoptosis in U937 human leukemia cells in dose- and time-dependent manners. These events were also noted in other human leukemia cells (Jurkat and HL-60) and primary human leukemia cells (AML) but not in normal bone marrow mononuclear cells. We also found that DIM-induced lethality is associated with caspases activation, myeloid cell leukemia-1 (Mcl-1) down-regulation, p21cip1/waf1 up-regulation, and Akt inactivation accompanied by c-jun NH2-terminal kinase (JNK) activation. Enforced activation of Akt by a constitutively active Akt construct prevented DIM-mediated caspase activation, Mcl-1 down-regulation, JNK activation, and apoptosis. Conversely, DIM lethality was potentiated by the PI3K inhibitor LY294002. Interruption of the JNK pathway by pharmacologic or genetic approaches attenuated DIM-induced caspases activation, Mcl-1 down-regulation, and apoptosis. Lastly, DIM inhibits tumor growth of mouse U937 xenograft, which was related to induction of apoptosis and inactivation of Akt, as well as activation of JNK. Collectively, these findings suggest that DIM induces apoptosis in human leukemia cell lines and primary human leukemia cells, and exhibits antileukemic activity in vivo through Akt inactivation and JNK activation. PMID:22363731
Ding, Husheng; McDonald, Jennifer S.; Yun, Seongseok; Schneider, Paula A.; Peterson, Kevin L.; Flatten, Karen S.; Loegering, David A.; Oberg, Ann L.; Riska, Shaun M.; Huang, Shengbing; Sinicrope, Frank A.; Adjei, Alex A.; Karp, Judith E.; Meng, X. Wei; Kaufmann, Scott H.
2014-01-01
Although farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis. Similar Bax and Puma upregulation occurred in serial bone marrow samples harvested from a subset of acute myelogenous leukemia patients during tipifarnib treatment. Expression of FTI-resistant Rheb M184L, like knockdown of Bax or Puma, diminished tipifarnib-induced killing. Further analysis demonstrated that increased Bax and Puma levels reflect protein stabilization rather than increased gene expression. In U937 cells selected for tipifarnib resistance, neither inhibition of signaling downstream of Rheb nor Bax and Puma stabilization occurred. Collectively, these results not only identify a pathway downstream from Rheb that contributes to tipifarnib cytotoxicity in human acute myelogenous leukemia cells, but also demonstrate that FTI-induced killing of lymphoid versus myeloid cells reflects distinct biochemical mechanisms downstream of different farnesylated substrates. (ClinicalTrials.gov identifier NCT00602771) PMID:23996484
Zhelev, Zhivko; Ivanova, Donika; Lazarova, Desislava; Aoki, Ichio; Bakalova, Rumiana; Saga, Tsuneo
2016-04-01
The aim of the present study was: (i) to investigate the possibility of sensitizing leukemia lymphocytes to anticancer drugs using docosahexaenoic acid (DHA); (ii) to find combinations with synergistic cytotoxic effect on leukemia lymphocytes, without or with only very low cytotoxicity towards normal lymphocytes; (iii) and to clarify the role of reactive oxygen species (ROS) in the induction of apoptosis and cytotoxicity by such combinations. The study covered 15 anticancer drugs, conventional and new-generation. Well-expressed synergistic cytotoxic effects were observed after treatment of leukemia lymphocytes (Jurkat) with DHA in combination with: barasertib, lonafarnib, everolimus, and palbociclib. We selected two synergistic combinations, DHA with everolimus or barasertib, and investigated their effects on viability of normal lymphocytes, as well as on the production of ROS and induction of apoptosis in both cell lines (leukemia and normal). At the selected concentrations, DHA, everolimus and barasertib (applied separately) were cytotoxic towards leukemia lymphocytes, but not normal lymphocytes. In leukemia cells, the cytotoxicity of combinations was accompanied by strong induction of apoptosis and production of ROS. In normal lymphocytes, drugs alone and in combination with DHA did not affect the level of ROS and did not induce apoptosis. To our knowledge, the present study is the first to report synergistic ROS-dependent cytotoxicity between DHA and new-generation anticancer drugs, such as everolimus and barasertib, that is cancer cell-specific (particularly for acute lymphoblastic leukemia cells Jurkat). These combinations are harmless to normal lymphocytes and do not induce abnormal production of ROS in these cells. The data suggest that DHA could be used as a supplementary component in anticancer chemotherapy, allowing therapeutic doses of everolimus and barasertib to be reduced, minimizing their side-effects. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
2017-12-03
Acute Myeloid Leukemia (AML); Acute Lymphocytic Leukemia (ALL); Chronic Myelogenous Leukemia; Plasma Cell Leukemia; Myelofibrosis; Myelodysplasia; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Marginal Zone B-Cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Leukemia; Diffuse Large B Cell Lymphoma; Lymphoblastic Lymphoma; Burkitt's Lymphoma; Non-Hodgkin Lymphoma; Multiple Myeloma
2018-03-05
Acute Biphenotypic Leukemia; Acute Erythroid Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Blasts Under 10 Percent of Bone Marrow Nucleated Cells; Blasts Under 5 Percent of Bone Marrow Nucleated Cells; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Pancytopenia; Refractory Anemia; Secondary Acute Myeloid Leukemia
Dose- and Time-Dependent Response of Human Leukemia (HL-60) Cells to Arsenic Trioxide Treatment
Yedjou, Clement G.; Moore, Pamela; Tchounwou, Paul B.
2006-01-01
The treatment of acute promyelocytic leukemia (APL) has been based on the administration of all-trans retinoic acid plus anthracycline chemotherapy, which is very effective as first line therapy; however 25 to 30% of patients will relapse with their disease becoming refractory to conventional therapy. Recently, studies have shown arsenic trioxide to be effective in the treatment of acute promyelocytic leukemia. In this study, we used the human leukemia (HL-60) cell line as a model to evaluate the cytoxicity of arsenic trioxide based on the MTT assay. Data obtained from this assay indicated that arsenic trioxide significantly reduced the viability of HL-60 cells, showing LD50 values of 14.26 ± 0.5μg/mL, 12.54 ± 0.3μg/mL, and 6.4 ± 0.6μg/mL upon 6, 12, and 24 hours of exposure, respectively; indicating a dose- and time-dependent response relationship. Findings from the present study indicate that arsenic trioxide is highly cytotoxic to human leukemia (HL-60) cells, supporting its use as an effective therapeutic agent in the management of acute promyelocytic leukemia. PMID:16823087
CART19 to Treat B-Cell Leukemia or Lymphoma That Are Resistant or Refractory to Chemotherapy
2017-11-07
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
Adult T-Cell Leukemia/Lymphoma
... Adult T-Cell Leukemia/Lymphoma Adult T-Cell Leukemia/Lymphoma Adult T-cell A type of white ... immune responses by destroying harmful substances or cells. leukemia Disease generally characterized by the overproduction of abnormal ...
2018-06-07
B Acute Lymphoblastic Leukemia; Lymphoblasts 5 Percent or More of Bone Marrow Nucleated Cells; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Acute Lymphoblastic Leukemia; T Acute Lymphoblastic Leukemia
Liu, Qun; Peng, Yong-Bo; Zhou, Ping; Qi, Lian-Wen; Zhang, Mu; Gao, Ning; Liu, E-Hu; Li, Ping
2013-11-12
6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo. Three leukemia cell lines and primary leukemia cells were used to investigate the apoptosis effect of 6-shogaol. A shotgun approach based on label-free proteome with LC-CHIP Q-TOF MS/MS was employed to identify the cellular targets of 6-shogaol and the differentially expressed proteins were analyzed by bioinformatics protocols. The present study indicated that 6-shogaol selectively induced apoptosis in transformed and primary leukemia cells but not in normal cells. Eukaryotic translation initiation factor 2 alpha (eIF2α), a key regulator in apoptosis signaling pathway, was significantly affected in both Jurkat and U937 proteome profiles. The docking results suggested that 6-shogaol might bind well to eIF2α at Ser51 of the N-terminal domain. Immunoblotting data indicated that 6-shogaol induced apoptosis through a process involving dephosphorylation of eIF2α and caspase activation-dependent cleavage of eIF2α. Furthermore, 6-shogaol markedly inhibited tumor growth and induced apoptosis in U937 xenograft mouse model. The potent anti-leukemia activity of 6-shogaol found both in vitro and in vivo in our study make this compound a potential anti-tumor agent for hematologic malignancies.
2013-01-01
Background 6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo. Methods Three leukemia cell lines and primary leukemia cells were used to investigate the apoptosis effect of 6-shogaol. A shotgun approach based on label-free proteome with LC-CHIP Q-TOF MS/MS was employed to identify the cellular targets of 6-shogaol and the differentially expressed proteins were analyzed by bioinformatics protocols. Results The present study indicated that 6-shogaol selectively induced apoptosis in transformed and primary leukemia cells but not in normal cells. Eukaryotic translation initiation factor 2 alpha (eIF2α), a key regulator in apoptosis signaling pathway, was significantly affected in both Jurkat and U937 proteome profiles. The docking results suggested that 6-shogaol might bind well to eIF2α at Ser51 of the N-terminal domain. Immunoblotting data indicated that 6-shogaol induced apoptosis through a process involving dephosphorylation of eIF2α and caspase activation–dependent cleavage of eIF2α. Furthermore, 6-shogaol markedly inhibited tumor growth and induced apoptosis in U937 xenograft mouse model. Conclusion The potent anti-leukemia activity of 6-shogaol found both in vitro and in vivo in our study make this compound a potential anti-tumor agent for hematologic malignancies. PMID:24215632
Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R.
2009-01-01
Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cells (ETCs) mediate anti-leukemia effects only when primed on recipient-derived APCs. Loading of APCs in vitro with leukemia cell lysate, chimerism status of the recipient, and timing of adoptive transfer after HCT are important factors determining the outcome. Delayed transfer of ETCs resulted in strong GVL effects in leukemia-bearing full chimera (FC) and mixed chimera (MC) recipients, which were comparable with the GVL/GVHD rates observed after the transfer of naive donor lymphocyte infusion (DLI). Upon early transfer, GVL effects were more pronounced with ETCs but at the expense of significant GVHD. The degree of GVHD was most severe in MCs after transfer of ETCs that had been in vitro primed either on nonpulsed recipient-derived APCs or with donor-derived APCs. PMID:19182207
Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R; Sauer, Martin G
2009-04-30
Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cells (ETCs) mediate anti-leukemia effects only when primed on recipient-derived APCs. Loading of APCs in vitro with leukemia cell lysate, chimerism status of the recipient, and timing of adoptive transfer after HCT are important factors determining the outcome. Delayed transfer of ETCs resulted in strong GVL effects in leukemia-bearing full chimera (FC) and mixed chimera (MC) recipients, which were comparable with the GVL/GVHD rates observed after the transfer of naive donor lymphocyte infusion (DLI). Upon early transfer, GVL effects were more pronounced with ETCs but at the expense of significant GVHD. The degree of GVHD was most severe in MCs after transfer of ETCs that had been in vitro primed either on nonpulsed recipient-derived APCs or with donor-derived APCs.
2017-08-09
Acute Undifferentiated Leukemia; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Systemic Amyloidosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Renal Cell Cancer; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
Lepe-Zúñiga, José Luis; Jerónimo-López, Francisco Javier; Hernández-Orantes, Jorge Gregorio
Childhood acute leukemia cytological features are unknown in Chiapas, Mexico. Defining these features is important because this is a relatively isolated population with high consanguinity index, and these aspects could determine differences in responses to treatment and outcome. Eighty-one childhood acute leukemia cases treated at the Hospital de Especialidades Pediátricas in Chiapas were characterized by morphology, immunophenotype, genotype, initial risk assignment and status at the time of the study. The proportion of leukemic cell types found in this study was B cell, 75.3%; myeloid, 16%; T cell, 3.7% and NK 1.2%. In B cell leukemia, genetic alterations were present in 40.6% of cases and had a specific outcome regardless of initial risk assessment. Cases with MLL gene alteration died within a month from diagnosis. Translocations were present in 17.5% B cases; t(1;19) was present in those with a favorable outcome. The t(12;21) translocation was related to initial remission and midterm relapse and dead. Hyperdiploidy was present in 20% of B cell cases with good outcome. In 38.5%of myeloid cases were translocations and karyotypic abnormalities. Short-term outcome in this group has been poor; 69% have died or abandoned treatment in relapse from 15 days to 37 months after diagnosis. Relative frequency of different types of acute leukemia in patients treated at a tertiary level pediatric hospital in Chiapas, Mexico, was similar to the one found in other parts of the country. Patients' outcome, under a standardized treatment, differs according to the group, the subgroup and the presence and type of genetic alterations. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
2015-03-05
Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Disease, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma
KIT D816V Positive Acute Mast Cell Leukemia Associated with Normal Karyotype Acute Myeloid Leukemia.
Lopes, Marta; Teixeira, Maria Dos Anjos; Casais, Cláudia; Mesquita, Vanessa; Seabra, Patrícia; Cabral, Renata; Palla-García, José; Lau, Catarina; Rodrigues, João; Jara-Acevedo, Maria; Freitas, Inês; Vizcaíno, Jose Ramón; Coutinho, Jorge; Escribano, Luis; Orfao, Alberto; Lima, Margarida
2018-01-01
Mast cell (MC) leukemia (MCL) is extremely rare. We present a case of MCL diagnosed concomitantly with acute myeloblastic leukemia (AML). A 41-year-old woman presented with asthenia, anorexia, fever, epigastralgia, and diarrhea. She had a maculopapular skin rash, hepatosplenomegaly, retroperitoneal adenopathies, pancytopenia, 6% blast cells (BC) and 20% MC in the peripheral blood, elevated lactate dehydrogenase, cholestasis, hypoalbuminemia, hypogammaglobulinemia, and increased serum tryptase (184 μ g/L). The bone marrow (BM) smears showed 24% myeloblasts, 17% promyelocytes, and 16% abnormal toluidine blue positive MC, and flow cytometry revealed 12% myeloid BC, 34% aberrant promyelocytes, a maturation blockage at the myeloblast/promyelocyte level, and 16% abnormal CD2-CD25+ MC. The BM karyotype was normal, and the KIT D816V mutation was positive in BM cells. The diagnosis of MCL associated with AML was assumed. The patient received corticosteroids, disodium cromoglycate, cladribine, idarubicin and cytosine arabinoside, high-dose cytosine arabinoside, and hematopoietic stem cell transplantation (HSCT). The outcome was favorable, with complete hematological remission two years after diagnosis and one year after HSCT. This case emphasizes the need of an exhaustive laboratory evaluation for the concomitant diagnosis of MCL and AML, and the therapeutic options.
Clappier, Emmanuelle; Gerby, Bastien; Sigaux, François; Delord, Marc; Touzri, Farah; Hernandez, Lucie; Ballerini, Paola; Baruchel, André; Pflumio, Françoise; Soulier, Jean
2011-04-11
Genomic studies in human acute lymphoblastic leukemia (ALL) have revealed clonal heterogeneity at diagnosis and clonal evolution at relapse. In this study, we used genome-wide profiling to compare human T cell ALL samples at the time of diagnosis and after engraftment (xenograft) into immunodeficient recipient mice. Compared with paired diagnosis samples, the xenograft leukemia often contained additional genomic lesions in established human oncogenes and/or tumor suppressor genes. Mimicking such genomic lesions by short hairpin RNA-mediated knockdown in diagnosis samples conferred a selective advantage in competitive engraftment experiments, demonstrating that additional lesions can be drivers of increased leukemia-initiating activity. In addition, the xenograft leukemias appeared to arise from minor subclones existing in the patient at diagnosis. Comparison of paired diagnosis and relapse samples showed that, with regard to genetic lesions, xenograft leukemias more frequently more closely resembled relapse samples than bulk diagnosis samples. Moreover, a cell cycle- and mitosis-associated gene expression signature was present in xenograft and relapse samples, and xenograft leukemia exhibited diminished sensitivity to drugs. Thus, the establishment of human leukemia in immunodeficient mice selects and expands a more aggressive malignancy, recapitulating the process of relapse in patients. These findings may contribute to the design of novel strategies to prevent or treat relapse.
2017-12-04
Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Aplastic Anemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Essential Thrombocythemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Juvenile Myelomonocytic Leukemia; Mastocytosis; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Anemia; Refractory Anemia With Ringed Sideroblasts; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenström Macroglobulinemia
Allo HSCT Using RIC for Hematological Diseases
2017-12-03
Acute Myelogenous Leukemia; Acute Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Plasma Cell Leukemia; Myelodysplastic Syndromes; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; B-Cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Leukemia; Lymphoblastic Lymphoma; Burkitt's Lymphoma; Non-Hodgkin's Lymphoma; Multiple Myeloma; Myeloproliferative Syndromes; Hematological Diseases
Sang, Ming; Zhang, Jiaxin; Zhuge, Qiang
2017-05-15
Some cationic antibacterial peptides, with typical amphiphilic α-helical conformations in a membrane-mimicking environment, exhibit anticancer properties as a result of a similar mechanism of action towards both bacteria and cancer cells. We previously reported the cDNA sequence of the antimicrobial peptide ABP-dHC-Cecropin A precursor cloned from drury (Hyphantria cunea) (dHC). In the present study, we synthesized and structurally characterized ABP-dHC-Cecropin A and its analog, ABP-dHC-Cecropin A-K(24). Circular dichroism spectroscopy showed that ABP-dHC-Cecropin A and its analog adopt a well-defined α-helical structure in a 50% trifluorethanol solution. The cytotoxicity and cell selectivity of these peptides were further examined in three leukemia cell lines and two non-cancerous cell lines. The MTT assay indicated both of these peptides have a concentration-dependent cytotoxic effect in leukemia cells, although the observed cytotoxicity was greater with ABP-dHC-Cecropin A-K(24) treatment, whereas they were not cytotoxic towards the non-cancerous cell lines. Moreover, ABP-dHC-Cecropin A and its analog had a lower hemolytic effect in human red blood cells. Together, these results suggest the peptides are selectively cytotoxic towards leukemia cells. Confocal laser scanning microscopy determined that the peptides were concentrated at the surface of the leukemia cells, and changes in the cell membrane were determined with a permeability assay, which suggested that the anticancer activity of ABP-dHC-Cecropin A and its analog is a result of its presence at the leukemia cell membrane. ABP-dHC-Cecropin A and its analog may represent a novel anticancer agent for leukemia therapy, considering its cancer cell selectivity and relatively low cytotoxicity in normal cells. Copyright © 2017 Elsevier B.V. All rights reserved.
2016-09-21
Graft vs Host Disease; Myelodysplastic Syndromes; Leukemia; Leukemia, Myeloid; Leukemia, Myelomonocytic, Chronic; Leukemia, Lymphocytic; Lymphoma; Lymphoma, Mantle-cell; Lymphoma, Non-Hodgkin; Hodgkin Disease
Ebihara, Y; Manabe, A; Tanaka, R; Yoshimasu, T; Ishikawa, K; Iseki, T; Hayakawa, J; Maeda, M; Asano, S; Tsuji, K
2003-06-01
The optimal treatment for natural killer (NK) cell leukemia after chronic active Epstein-Barr virus (CAEBV) infection has not been determined. A 15-year-old boy presented with NK cell leukemia following CAEBV infection for 5 years. The peripheral blood and BM had an increased number of CD3(-)CD56(+) large granular lymphocytes and a monoclonal integration of the EBV genome was detected. Chemotherapy was not sufficiently effective to control the disease. Allogeneic BMT from an HLA-identical sister was performed using a conditioning regimen consisting of total body irradiation, cyclophosphamide and thiotepa. The patient is disease-free with a perfect performance status 24 months after BMT. This is the first report to show that allogeneic BMT is potentially able to cure NK cell leukemia after CAEBV infection.
2017-11-07
Iron Overload; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma
2018-01-24
Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage II Contiguous Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia
Chechik, B E; Jason, J; Shore, A; Baker, M; Dosch, H M; Gelfand, E W
1979-12-01
Using a radioimmunoassay, increased levels of a human thymus/leukemia-associated antigen (HThy-L) have been detected in leukemic cells and plasma from most patients with E-rosette-positive acute lymphoblastic leukemia (ALL) and a number of patients with E-rosette-negative ALL, acute myeloblastic leukemia (AML), acute monomyelocytic leukemia (AMML), and acute undifferentiated leukemia (AVL). Low levels of HThy-L have been demonstrated in white cells from patients with chronic myelocytic leukemia (stable phase) and in mononuclear cells from patients with chronic lymphatic leukemia. The relationship between HThy-L and differentiation of hematopoietic cells is discussed.
Ondansetron in Preventing Nausea and Vomiting in Patients Undergoing Stem Cell Transplant
2017-04-20
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma
2017-12-26
B-Cell Prolymphocytic Leukemia; Hypodiploidy; Loss of Chromosome 17p; Plasma Cell Leukemia; Progression of Multiple Myeloma or Plasma Cell Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Childhood Non-Hodgkin Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Non-Hodgkin Lymphoma; Refractory Plasma Cell Myeloma; Refractory Small Lymphocytic Lymphoma; t(14;16); t(4;14); T-Cell Prolymphocytic Leukemia; Waldenstrom Macroglobulinemia
2018-04-05
Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor (PNET); Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Plasma Cell Neoplasm; Primary Systemic Amyloidosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Neuroblastoma; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Regional Neuroblastoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
Seppänen, P; Alhonen-Hongisto, L; Siimes, M; Jänne, J
1980-11-15
Methylglyoxal bis(guanylhydrazone), a cytostatic compound which apparently interferes with the metabolism and/or functions of the natural polyamines (spermidine and spermine), was effectively taken up by cultured human lymphocytic leukemia cells, rapidly resulting in the formation of a concentration gradient of up to 1,000-fold across the cell membrane in cells grown in the presence of micromolar concentrations of the drug. For an anti-proliferative effect on the leukemia cells, an intracellular concentration of more than 0.5 mM was required. The uptake of methylglyoxal bis(guanylhydrazone) was critically dependent on the growth rate of the leukemia cells. Low intracellular concentrations of the drug were present in cells growing slowly, whereas in rapidly dividing cells the intracellular concentration of the drug approached 5mM. When given as repeated intravenous infusions to two leukemic children, methylglyoxal bis(guanylhydrazone) exhibited sharp and transient peaks of plasma concentration, the drug having an apparent half-life in plasma of only 1-2 h. However, as in cultured cells, the drug was rapidly concentrated in the leukemia cells, reaching concentrations that were distinctly anti-proliferative. In contrast to the rapid disappearance of methylglyoxal bis(guanylhydrazone) from plasma, the circulation leukemia cells retained the drug for a period of several days with only minimal decrease in the initial concentrations. Methylglyoxal bis(guanylhydrazone) was given to the patients for 1 to 2 months as intravenous infusions, the timing of which was determined by regular assays of the drug concentrations in the leukemia cells. In agreement with the results obtained with the cultured cells, and intracellular concentration of about 0.5 to 1mM was apparently required for growth-inhibitory action to occur. Regular determination of the cellular drug concentrations indicated that methylglyoxal bis(quanylhydrazone) could be given as weekly infusions. This treatment schedule represents much lower dosing of the drug than the earlier daily regimens which were commonly associated with unacceptable toxicity.
2018-05-09
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Aggressive Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Diffuse Large B-Cell Lymphoma; Hematopoietic Cell Transplantation Recipient; Loss of Chromosome 17p; Mantle Cell Lymphoma; Myelodysplastic Syndrome; Myelodysplastic/Myeloproliferative Neoplasm; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Recurrent Hodgkin Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Recurrent Waldenstrom Macroglobulinemia
Friesen, Claudia; Roscher, Mareike; Alt, Andreas; Miltner, Erich
2008-08-01
The therapeutic opioid drug methadone (d,l-methadone hydrochloride) is the most commonly used maintenance medication for outpatient treatment of opioid dependence. In our study, we found that methadone is also a potent inducer of cell death in leukemia cells and we clarified the unknown mechanism of methadone-induced cell killing in leukemia cells. Methadone inhibited proliferation in leukemia cells and induced cell death through apoptosis induction and activated apoptosis pathways through the activation of caspase-9 and caspase-3, down-regulation of Bcl-x(L) and X chromosome-linked inhibitor of apoptosis, and cleavage of poly(ADP-ribose) polymerase. In addition, methadone induced cell death not only in anticancer drug-sensitive and apoptosis-sensitive leukemia cells but also in doxorubicin-resistant, multidrug-resistant, and apoptosis-resistant leukemia cells, which anticancer drugs commonly used in conventional therapies of leukemias failed to kill. Depending on caspase activation, methadone overcomes doxorubicin resistance, multidrug resistance, and apoptosis resistance in leukemia cells through activation of mitochondria. In contrast to leukemia cells, nonleukemic peripheral blood lymphocytes survived after methadone treatment. These findings show that methadone kills leukemia cells and breaks chemoresistance and apoptosis resistance. Our results suggest that methadone is a promising therapeutic approach not only for patients with opioid dependence but also for patients with leukemias and provide the foundation for new strategies using methadone as an additional anticancer drug in leukemia therapy, especially when conventional therapies are less effective.
2014-02-19
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
2017-03-28
Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Juvenile Myelomonocytic Leukemia; Mucositis; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Childhood Rhabdomyosarcoma; Previously Treated Myelodysplastic Syndromes; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Recurrent/Refractory Childhood Hodgkin Lymphoma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Unspecified Childhood Solid Tumor, Protocol Specific
Treatment of Relapsed and/or Chemotherapy Refractory B-cell Malignancy by CART19
2016-01-26
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
Donor Umbilical Cord Blood Transplant in Treating Patients With Hematologic Cancer
2018-01-17
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Aggressive Non-Hodgkin Lymphoma; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Indolent Non-Hodgkin Lymphoma; Lymphoma; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Recurrent Chronic Lymphocytic Leukemia; Recurrent Follicular Lymphoma; Recurrent Lymphoplasmacytic Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Recurrent T-Cell Non-Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Follicular Lymphoma; Refractory Hodgkin Lymphoma; Refractory Lymphoplasmacytic Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Small Lymphocytic Lymphoma; T-Cell Non-Hodgkin Lymphoma
2018-02-08
Aggressive Non-Hodgkin Lymphoma; Blasts Under 5 Percent of Bone Marrow Nucleated Cells; Chronic Lymphocytic Leukemia; Loss of Chromosome 17p; Myelodysplastic/Myeloproliferative Neoplasm; Non-Hodgkin Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Aggressive Adult Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia
Allogeneic Stem Cell Transplantationin Relapsed Hematological Malignancy: Early GVHD Prophylaxis
2018-01-29
Hodgkin's Lymphoma; Lymphoid Leukemia; Lymphoma; Leukemia; Myeloma; Acute Lymphocytic Leukemia; Non Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Multiple Myeloma; Chronic Myelogenous Leukemia; Myelodysplastic Syndromes; Recurrent Acute Myeloid Leukemia, Adult; Recurrent Hodgkin Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Chronic Myelogenous Leukemia; Acute Myelogenous Leukemia
2017-10-25
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Acute Biphenotypic Leukemia; Acute Leukemia of Ambiguous Lineage; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Lymphoblastic Lymphoma; Myelodysplastic Syndrome With Excess Blasts; Myelodysplastic Syndrome With Excess Blasts-1; Myelodysplastic Syndrome With Excess Blasts-2; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Acute Lymphoblastic Leukemia; Refractory Acute Myeloid Leukemia
Goodwin, B J; Moore, J O; Weinberg, J B
1984-02-01
Freshly isolated human leukemia cells have been shown in the past to display varying in vitro responses to phorbol diesters, depending on their cell type. Specific receptors for the phorbol diesters have been demonstrated on numerous different cells. This study was designed to characterize the receptors for phorbol diesters on leukemia cells freshly isolated from patients with different kinds of leukemia and to determine if differences in binding characteristics for tritium-labeled phorbol 12,13-dibutyrate (3H-PDBu) accounted for the different cellular responses elicited in vitro by phorbol diesters. Cells from 26 patients with different kinds of leukemia were studied. PDBu or phorbol 12-myristate 13-acetate (PMA) caused cells from patients with acute myeloblastic leukemia (AML), acute promyelocytic (APML), acute myelomonocytic (AMML), acute monocytic (AMoL), acute erythroleukemia (AEL), chronic myelocytic leukemia (CML) in blast crisis (myeloid), acute undifferentiated leukemia (AUL), and hairy cell leukemia (HCL) (n = 15) to adhere to plastic and spread. However, they caused no adherence or spreading and only slight aggregation of cells from patients with acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), or CML-blast crisis (lymphoid) (n = 11). All leukemia cells studied, irrespective of cellular type, displayed specific receptors for 3H-PDBu. The time courses for binding by all leukemia types were similar, with peak binding at 5-10 min at 37 degrees C and 120 min at 4 degrees C. The binding affinities were similar for patients with ALL (96 +/- 32 nM, n = 4), CLL (126 +/- 32 nM, n = 6), and acute nonlymphoid leukemia (73 +/- 14 nM, n = 11). Likewise, the numbers of specific binding sites/cell were comparable for the patients with ALL (6.2 +/- 1.3 X 10(5) sites/cell, n = 4), CLL (5.0 +/- 2.0 X 10(5) sites/cell, n = 6), and acute nonlymphoid leukemia (4.4 +/- 1.9 X 10(5) sites/cell, n = 11). Thus, the differing responses to phorbol diesters of various types of freshly isolated leukemia cells appear to be due to differences other than initial ligand-receptor binding.
2017-03-26
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
2017-03-14
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
Baryshnikov, A Iu
1984-01-01
Mice were immunized with blood cells of a patient with chronic granulocytic leukemia, and their cells were subsequently used for the preparation of hybridoma ICO-02. This hybridoma is continuously producing monoclonal antibodies which reacted with cells in 4 out of 13 patients with blastic crisis of chronic granulocytic leukemia and in 6 out of 38 patients with acute lymphoblastic leukemia. Antibodies reacted with blast cells in 2 out of 3 patients with undifferentiated blastic crisis of chronic myelocytic leukemia and in 2 out of 5 patients with lymphoid variant of blastic crisis of chronic granulocytic leukemia. Cells of 6 patients with acute lymphoblastic leukemia which reacted with the monoclonal antibodies had immunological markers of T lymphocytes bone-marrow precursors. Monoclonal antibodies did not react with cells of blood and bone marrow from healthy people and from patients with chronic lymphocytic leukemia, acute myeloblastic leukemia, acute myelomonocytic leukemia, acute monoblastic leukemia and lymphosarcoma.
Chen, Yung-Liang; Chueh, Fu-Shin; Yang, Jai-Sing; Hsueh, Shu-Ching; Lu, Chi-Cheng; Chiang, Jo-Hua; Lee, Ching-Sung; Lu, Hsu-Feng; Chung, Jing-Gung
2015-07-01
Irinotecan HCl (CPT-11) is an anticancer prodrug, but there is no available information addressing CPT-11-inhibited leukemia cells in in vitro and in vivo studies. Therefore, we investigated the cytotoxic effects of CPT-11 in promyelocytic leukemia HL-60 cells and in vivo and tumor growth in a leukemia xenograft model. Effects of CPT-11 on HL-60 cells were determined using flow cytometry, immunofluorescence staining, comet assay, real-time PCR, and Western blotting. CPT-11 demonstrated a dose- and time-dependent inhibition of cell growth, induction of apoptosis, and cell-cycle arrest at G0/G1 phase in HL-60 cells. CPT-11 promoted the release of AIF from mitochondria and its translocation to the nucleus. Bid, Bax, Apaf-1, caspase-9, AIF, Endo G, caspase-12, ATF-6b, Grp78, CDK2, Chk2, and cyclin D were all significantly upregulated and Bcl-2 was down-regulated by CPT-11 in HL-60 cells. Induction of cell-cycle arrest by CPT-11 was associated with changes in expression of key cell-cycle regulators such as CDK2, Chk2, and cyclin D in HL-60 cells. To test whether CPT-11 could augment antitumor activity in vivo, athymic BALB/c(nu/nu) nude mice were inoculated with HL-60 cells, followed by treatment with either CPT-11. The treatments significantly inhibited tumor growth and reduced tumor weight and volume in the HL-60 xenograft mice. The present study demonstrates the schedule-dependent antileukemia effect of CPT-11 using both in vitro and in vivo models. CPT-11 could potentially be a promising agent for the treatment of promyelocytic leukemia and requires further investigation. © 2014 Wiley Periodicals, Inc.
Donor Peripheral Stem Cell Transplant in Treating Patients With Hematolymphoid Malignancies
2016-11-17
Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Waldenstrom Macroglobulinemia
Washio, Kana; Oka, Takashi; Abdalkader, Lamia; Muraoka, Michiko; Shimada, Akira; Oda, Megumi; Sato, Hiaki; Takata, Katsuyoshi; Kagami, Yoshitoyo; Shimizu, Norio; Kato, Seiichi; Kimura, Hiroshi; Nishizaki, Kazunori; Yoshino, Tadashi; Tsukahara, Hirokazu
2017-11-01
The human herpes virus, Epstein-Barr virus (EBV), is a known oncogenic virus and plays important roles in life-threatening T/NK-cell lymphoproliferative disorders (T/NK-cell LPD) such as hypersensitivity to mosquito bite (HMB), chronic active EBV infection (CAEBV), and NK/T-cell lymphoma/leukemia. During the clinical courses of HMB and CAEBV, patients frequently develop malignant lymphomas and the diseases passively progress sequentially. In the present study, gene expression of CD16 (-) CD56 (+) -, EBV (+) HMB, CAEBV, NK-lymphoma, and NK-leukemia cell lines, which were established from patients, was analyzed using oligonucleotide microarrays and compared to that of CD56 bright CD16 dim/- NK cells from healthy donors. Principal components analysis showed that CAEBV and NK-lymphoma cells were relatively closely located, indicating that they had similar expression profiles. Unsupervised hierarchal clustering analyses of microarray data and gene ontology analysis revealed specific gene clusters and identified several candidate genes responsible for disease that can be used to discriminate each category of NK-LPD and NK-cell lymphoma/leukemia.
Wang, Zeng; Hu, Wei; Zhang, Jia-Li; Wu, Xiu-Hua; Zhou, Hui-Jun
2012-01-01
Dihydroartemisinin (DHA), an active metabolite of artemisinin derivatives, is the most remarkable anti-malarial drug and has little toxicity to humans. Recent studies have shown that DHA effectively inhibits the growth of cancer cells. In the present study, we intended to elucidate the mechanisms underlying the inhibition of growth of iron-loaded human myeloid leukemia K562 cells by DHA. Mitochondria are important regulators of both autophagy and apoptosis, and one of the triggers for mitochondrial dysfunction is the generation of reactive oxygen species (ROS). We found that the DHA-induced autophagy of leukemia K562 cells, whose intracellular organelles are primarily mitochondria, was ROS dependent. The autophagy of these cells was followed by LC3-II protein expression and caspase-3 activation. In addition, we demonstrated that inhibition of the proliferation of leukemia K562 cells by DHA is also dependent upon iron. This inhibition includes the down-regulation of TfR expression and the induction of K562 cell growth arrest in the G2/M phase. PMID:23650588
Machado, Kátia da Conceição; Sousa, Lívia Queiroz de; Lima, Daisy Jereissati Barbosa; Soares, Bruno Marques; Cavalcanti, Bruno Coêlho; Maranhão, Sarah Sant'Anna; Noronha, Janaina da Costa de; Rodrigues, Domingos de Jesus; Militão, Gardenia Carmen Gadelha; Chaves, Mariana Helena; Vieira-Júnior, Gerardo Magela; Pessoa, Cláudia; Moraes, Manoel Odorico de; Sousa, João Marcelo de Castro E; Melo-Cavalcante, Ana Amélia de Carvalho; Ferreira, Paulo Michel Pinheiro
2018-03-15
Skin toad secretion present physiologically active molecules to protect them against microorganisms, predators and infections. This work detailed the antiproliferative action of marinobufagin on tumor and normal lines, investigate its mechanism on HL-60 leukemia cells and its toxic effects on Allium cepa meristematic cells. Initially, cytotoxic action was assessed by colorimetric assays. Next, HL-60 cells were analyzed by morphological and flow cytometry techniques and growing A. cepa roots were examined after 72 h exposure. Marinobufagin presented high antiproliferative action against all human tumor lines [IC 50 values ranging from 0.15 (leukemia) to 7.35 (larynx) μM] and it failed against human erythrocytes and murine lines. Human normal peripheral blood mononuclear cells (PBMC) were up to 72.5-fold less sensitive [IC 50: 10.88 μM] to marinobufagin than HL-60 line, but DNA strand breaks were no detected. Leukemia treaded cells exhibited cell viability reduction, DNA fragmentation, phosphatidylserine externalization, binucleation, nuclear condensation and cytoplasmic vacuoles. Marinobufagin also reduced the growth of A. cepa roots (EC 50 : 7.5 μM) and mitotic index, caused cell cycle arrest and chromosomal alterations (micronuclei, delays and C-metaphases) in meristematic cells. So, to find out partially targeted natural molecules on human leukemia cells, like marinobufagin, is an amazing and stimulating way to continue the battle against cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
[Acute hybrid leukemia. Review of the literature and presentation of a case].
Guzzini, F; Angelopoulos, N; Banfi, L; Coppetti, D; Ceppi, M; Camerone, G
1990-03-01
In the last years, the development of immunophenotypic and molecular analyses allowed to recognize several cases of hybrid acute leukemia (AL), whose blast cell display both lymphoid and myeloid features. Hybrid, or mixed-lineage, AL seems to have distinct clinical manifestations and hematological findings, and is mainly characterized by resistance to chemotherapy and poor prognosis. We report on a patient with AL, which showed a very rapid switch from the lymphoblastic phenotype exhibited at presentation to a myelomonoblastic one, appeared at first relapse, and lastly progressed to an undifferentiated leukemia in the terminal phase. Together with this morphologic and cytochemical evolution, leukemic cells expressed, besides the primary early-B antigens, new immunological markers related to T-lymphocytic and myeloid lineages. Based on this observation and current understanding of the ontogenesis of hematologic malignancies, we discuss biological mechanisms which are likely to underlie hybrid leukemia.
2012-03-05
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Cancer Survivor; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Depression; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Fatigue; Long-term Effects Secondary to Cancer Therapy in Adults; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Psychosocial Effects of Cancer and Its Treatment; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
2016-12-16
B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Graft Versus Host Disease; L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Certain Herbicide Agents (Hairy Cell Leukemia and Other Chronic B-Cell Leukemias, Parkinson's Disease and..., VA published in the Federal Register (75 FR 53202), an amendment to 38 CFR 3.309 to add hairy cell leukemia and other chronic B-cell leukemias, Parkinson's disease and ischemic heart disease to the list of...
2017-04-17
Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Aggressive NK-cell Leukemia; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; HIV Infection; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Central Nervous System Lymphoma; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia
Zuurbier, Linda; Petricoin, Emanuel F.; Vuerhard, Maartje J.; Calvert, Valerie; Kooi, Clarissa; Buijs-Gladdines, Jessica G.C.A.M.; Smits, Willem K.; Sonneveld, Edwin; Veerman, Anjo J.P.; Kamps, Willem A.; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.
2012-01-01
Background PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to γ-secretase inhibitors. Design and Methods The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. Results PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKT mutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1-activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). Conclusions PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to γ-secretase inhibitors. PMID:22491738
Hairy-cell leukemia: a rare blood disorder in Asia.
Josephine, F P; Nissapatorn, V
2006-01-01
We report a 68-year-old Indian man who was referred to the Hematology Unit for investigation for thrombocytopenia, an incidental finding during a pre-operative screening for prostatectomy. Physical examination was unremarkable. There was no splenomegaly, hepatomegaly or lymphadenopathy. Complete blood counts showed normal hemoglobin and total white cell count with moderate thrombocytopenia. Hairy-cell leukemia was diagnosed based on peripheral blood film, bone-marrow aspirate and trephine biopsy findings, supported by immunophenotyping results by flow cytometry. The purpose of this report is to create awareness of this uncommon presentation and to emphasize that a single-lineage cytopenia or absence of splenomegaly does not exclude the diagnosis of hairy-cell leukemia. Careful attention to morphological detail is important for early diagnosis, especially when low percentages of "hairy" cells are present in the peripheral blood and bone marrow. Early diagnosis is important to ensure that patients obtain maximum benefit from the newer therapeutic agents that have greatly improved the prognosis in this rare disorder.
2017-06-10
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-Cell Chronic Lymphocytic Leukemia in Relapse (Diagnosis); Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
2017-12-05
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia
Sharif, Tanveer; Alhosin, Mahmoud; Auger, Cyril; Minker, Carole; Kim, Jong-Hun; Etienne-Selloum, Nelly; Bories, Pierre; Gronemeyer, Hinrich; Lobstein, Annelise; Bronner, Christian; Fuhrmann, Guy; Schini-Kerth, Valérie B.
2012-01-01
Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G2/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells. PMID:22412883
CD19 CAR T Cells for B Cell Malignancies After Allogeneic Transplant
2017-02-14
Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia
Zunino, Susan J; Storms, David H; Newman, John W; Pedersen, Theresa L; Keen, Carl L; Ducore, Jonathan M
2012-12-01
Acute lymphoblastic leukemia (ALL) with translocation t(4;11) is a high-risk leukemia found in 60-85% of infants with ALL and is often refractory to conventional chemotherapeutics after relapse. To evaluate the efficacy of dietary resveratrol in vivo, 5-week-old NOD.CB17-Prkdcscid/J mice were fed a control diet or a diet containing 0.2% w/w resveratrol. After 3 weeks of dietary treatment, mice were engrafted with the human t(4;11) ALL line SEM by tail vein injection. Engraftment was monitored by evaluating the presence of human CD19+ cells in peripheral blood using flow cytometry. Relative to control diet, dietary resveratrol did not delay the engraftment of the leukemia cells. To determine if dietary resveratrol could increase efficacy of a chemotherapeutic agent, vincristine was injected intraperitoneally into leukemic mice fed the control or supplemented diet. Survival curves and monitoring the percentage of human leukemia cells in peripheral blood showed that resveratrol did not inhibit leukemia cell growth or influence the activity of vincristine. Mass spectrometric analysis of mouse serum revealed that the majority of resveratrol was present as glucuronidated and sulfated metabolites. These data do not support the concept that dietary resveratrol has potential as a preventative agent against the growth of high-risk t(4;11) ALL.
ZUNINO, SUSAN J.; STORMS, DAVID H.; NEWMAN, JOHN W.; PEDERSEN, THERESA L.; KEEN, CARL L.; DUCORE, JONATHAN M.
2012-01-01
Acute lymphoblastic leukemia (ALL) with translocation t(4;11) is a high-risk leukemia found in 60–85% of infants with ALL and is often refractory to conventional chemotherapeutics after relapse. To evaluate the efficacy of dietary resveratrol in vivo, 5-week-old NOD.CB17-Prkdcscid/J mice were fed a control diet or a diet containing 0.2% w/w resveratrol. After 3 weeks of dietary treatment, mice were engrafted with the human t(4;11) ALL line SEM by tail vein injection. Engraftment was monitored by evaluating the presence of human CD19+ cells in peripheral blood using flow cytometry. Relative to control diet, dietary resveratrol did not delay the engraftment of the leukemia cells. To determine if dietary resveratrol could increase efficacy of a chemotherapeutic agent, vincristine was injected intraperitoneally into leukemic mice fed the control or supplemented diet. Survival curves and monitoring the percentage of human leukemia cells in peripheral blood showed that resveratrol did not inhibit leukemia cell growth or influence the activity of vincristine. Mass spectrometric analysis of mouse serum revealed that the majority of resveratrol was present as glucuronidated and sulfated metabolites. These data do not support the concept that dietary resveratrol has potential as a preventative agent against the growth of high-risk t(4;11) ALL. PMID:23041950
2017-09-22
Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Adult Acute Promyelocytic Leukemia With PML-RARA; Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-Cell Lymphoma; Alkylating Agent-Related Acute Myeloid Leukemia; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Post-Transplant Lymphoproliferative Disorder; Primary Cutaneous B-Cell Non-Hodgkin Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Non-Hodgkin Lymphoma; Recurrent Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Richter Syndrome; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenstrom Macroglobulinemia
2018-04-10
Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Primary Cutaneous B-Cell Non-Hodgkin Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Non-Hodgkin Lymphoma; Recurrent Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenstrom Macroglobulinemia
T-cell lymphoma of the tympanic bulla in a feline leukemia virus-negative cat
de Lorimier, Louis-Philippe; Alexander, Suzanne D.; Fan, Timothy M.
2003-01-01
This report constitutes the first description of a T-cell lymphoma of the tympanic bulla in a cat. This feline leukemia virus (FeLV)-negative cat originally presented with signs referable to middle ear disease; it deteriorated rapidly after definitive diagnosis. Lymphoma of the middle ear is extremely rare in all species. PMID:14703086
Leukemic meningitis in a patient with hairy cell leukemia. A case report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, D.W.; Scopelliti, J.A.; Boselli, B.D.
1984-09-15
Central nervous system involvement has not previously been described in patients with hairy cell leukemia (HCL). A patient is reported who presented with meningeal involvement as his initial symptom of HCL. Diagnosis was established by morphologic and cytochemical studies of his cerebrospinal fluid (CSF) and bone marrow. Treatment with whole-brain irradiation and intrathecal chemotherapy was successful in clearing leukemic cells from the CSF with resolution of symptoms.
2018-03-13
Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Small Lymphocytic Lymphoma; Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Chronic Myeloid Leukemia; Chronic Myeloproliferative Disorders; Multiple Myeloma; Plasma Cell Neoplasm; Plasma Cell Dyscrasia; Myelofibrosis; Polycythemia Vera; Essential Thrombocythemia; Plasma Cell Leukemia
2017-06-26
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
Inhibitory effects of physalin B and physalin F on various human leukemia cells in vitro.
Chiang, H C; Jaw, S M; Chen, P M
1992-01-01
Physalins B and F were isolated and characterized from the ethanolic extract of the whole plant of Physalis angulata L. (Solanaceae). Both physalin B and physalin F inhibited the growth of several human leukemia cells: K562 (erythroleukemia), APM1840 (acute T lymphoid leukemia), HL-60 (acute promyelocytic leukemia), KG-1 (acute myeloid leukemia), CTV1 (acute monocytic leukemia) and B cell (acute B lymphoid leukemia). Physalin F showed a stronger activity against these leukemia cells than physalin B, especially against acute myeloid leukemia (KG-1) and acute B lymphoid leukemia (B cell). From the structural features, the active site seems to be the functional epoxy group for physalin F and the double bond for physalin B located at carbon 5 and 6; the former is much more active than the latter as regards anti-leukemic effects.
2015-09-27
Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
Haploidentical Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancer
2017-04-10
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hematopoietic/Lymphoid Cancer; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
Amir, El-ad David; Davis, Kara L; Tadmor, Michelle D; Simonds, Erin F; Levine, Jacob H; Bendall, Sean C; Shenfeld, Daniel K; Krishnaswamy, Smita; Nolan, Garry P; Pe'er, Dana
2013-06-01
New high-dimensional, single-cell technologies offer unprecedented resolution in the analysis of heterogeneous tissues. However, because these technologies can measure dozens of parameters simultaneously in individual cells, data interpretation can be challenging. Here we present viSNE, a tool that allows one to map high-dimensional cytometry data onto two dimensions, yet conserve the high-dimensional structure of the data. viSNE plots individual cells in a visual similar to a scatter plot, while using all pairwise distances in high dimension to determine each cell's location in the plot. We integrated mass cytometry with viSNE to map healthy and cancerous bone marrow samples. Healthy bone marrow automatically maps into a consistent shape, whereas leukemia samples map into malformed shapes that are distinct from healthy bone marrow and from each other. We also use viSNE and mass cytometry to compare leukemia diagnosis and relapse samples, and to identify a rare leukemia population reminiscent of minimal residual disease. viSNE can be applied to any multi-dimensional single-cell technology.
Non-seminomatous mediastinal germ cell tumor and acute megakaryoblastic leukemia.
Mukherjee, Sarbajit; Ibrahimi, Sami; John, Sonia; Adnan, Mohammed Muqeet; Scordino, Teresa; Khalil, Mohammad O; Cherry, Mohamad
2017-09-01
The association between mediastinal germ cell tumors (MGCT) and acute megakaryoblastic (M7) leukemia has been known for many years. We hereby present this review to better characterize the coexistence of these entities as well as the salient features, the treatment options, and the overall prognosis. A search of PUBMED, Medline, and EMBASE databases via OVID engine for primary articles and case reports under keywords "germ cell tumors" and "acute myeloid leukemia" revealed a total of 26 cases in English that reported MGCT and M7 leukemia. The median age at diagnosis of MGCT was 24 (13-36) years. All cases were stage III. All cases of MGCT were of non-seminomatous origin and one case was unclassified. MGCT occurred prior to the diagnosis of leukemia in 46% of cases and concomitantly in 31% of cases. M7 leukemia was never reported prior to the appearance of MGCT. Complex cytogenetics and hyperdiploidy were the most commonly reported cytogenetic abnormalities. In the 23 cases where the treatment regimen was available, platinum-based chemotherapy directed towards management of the germ cell tumors was used initially in 21 cases and leukemia-directed treatment was used initially in 2 cases only. The median time from diagnosis of MGCT to development of M7 leukemia was 5 (2.25-39) months. Median time to death from the initial diagnosis of MGCT was 6 (0.5-60) months. Patients with a history of MGCT are at higher risk of developing M7 leukemia. They need long-term follow-up with a particular attention to the development of hematological malignancies. The overall prognosis remains poor.
Jost, Tanja Rezzonico; Borga, Chiara; Radaelli, Enrico; Romagnani, Andrea; Perruzza, Lisa; Omodho, Lorna; Cazzaniga, Giovanni; Biondi, Andrea; Indraccolo, Stefano; Thelen, Marcus; Te Kronnie, Geertruy; Grassi, Fabio
2016-06-01
Infiltration of the central nervous system is a severe trait of T cell acute lymphoblastic leukemia. Inhibition of CXC chemokine receptor 4 significantly ameliorates T cell acute lymphoblastic leukemia in murine models of the disease; however, signaling by CXC chemokine receptor 4 is important in limiting the divagation of peripheral blood mononuclear cells out of the perivascular space into the central nervous system parenchyma. Therefore, Inhibition of CXC chemokine receptor 4 potentially may untangle T cell acute lymphoblastic leukemia cells from retention outside the brain. Here, we show that leukemic lymphoblasts massively infiltrate cranial bone marrow, with diffusion to the meninges without invasion of the brain parenchyma, in mice that underwent xenotransplantation with human T cell acute lymphoblastic leukemia cells or that developed leukemia from transformed hematopoietic progenitors. We tested the hypothesis that T cell acute lymphoblastic leukemia neuropathology results from meningeal infiltration through CXC chemokine receptor 4-mediated bone marrow colonization. Inhibition of leukemia engraftment in the bone marrow by pharmacologic CXC chemokine receptor 4 antagonism significantly ameliorated neuropathologic aspects of the disease. Genetic deletion of CXCR4 in murine hematopoietic progenitors abrogated leukemogenesis induced by constitutively active Notch1, whereas lack of CCR6 and CCR7, which have been shown to be involved in T cell and leukemia extravasation into the central nervous system, respectively, did not influence T cell acute lymphoblastic leukemia development. We hypothesize that lymphoblastic meningeal infiltration as a result of bone marrow colonization is responsible for the degenerative alterations of the neuroparenchyma as well as the alteration of cerebrospinal fluid drainage in T cell acute lymphoblastic leukemia xenografts. Therefore, CXC chemokine receptor 4 may constitute a pharmacologic target for T cell acute lymphoblastic leukemia neuropathology. © Society for Leukocyte Biology.
2017-09-01
Accelerated Phase Chronic Myelogenous Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Juvenile Myelomonocytic Leukemia; Previously Treated Childhood Rhabdomyosarcoma; Previously Treated Myelodysplastic Syndromes; Pulmonary Complications; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Neuroblastoma; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Recurrent/Refractory Childhood Hodgkin Lymphoma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes
Study of Akt Inhibitor MK2206 in Patients With Relapsed Lymphoma
2015-10-09
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
Yousefi, Bahman; Samadi, Nasser; Baradaran, Behzad; Shafiei-Irannejad, Vahid; Zarghami, Nosratollah
2016-07-01
Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail. © 2016 John Wiley & Sons A/S.
Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T
2017-04-01
Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.
2017-07-24
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.
2014-01-01
Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177
Zhu, Ling; Wang, Zhidong; Zheng, Xiaoli; Ding, Li; Han, Dongmei; Yan, Hongmin; Guo, Zikuan; Wang, Hengxiang
2015-05-01
In this study, 25 children with high-risk acute leukemia received haploidentical hematopoietic stem cell transplant (haplo-HSCT) with co-transfusion of umbilical cord multipotent mesenchymal cells (UC-MSCs). Adverse effects, hematopoietic recovery, complications and outcome were observed during a median follow-up of 12.8 months (range: 3-25 months). Myeloid engraftment was rapid, and the median time to neutrophil and platelet recovery was 15.12 days and 20.08 days, respectively. Eight patients developed grade I skin acute graft-versus-host disease (aGVHD) that responded well to standard steroid therapy. Of note, cytomegalovirus viremia was observed in most patients (23/25 cases). Patients died mainly of leukemia relapse and pulmonary complication. Fourteen patients are currently alive and remain with full donor chimerism at the time of reporting. The present results suggest further clinical trials to testify the effectiveness of UC-MSCs to prevent aGVHD in haplo-HSCT for treating children with high-risk leukemia.
Synthesis of Nanodiamond-Daunorubicin Conjugates to Overcome Multidrug Chemoresistance in Leukemia
Man, Han B.; Kim, Hansung; Kim, Ho-Joong; Robinson, Erik; Liu, Wing Kam; Chow, Edward Kai-Hua; Ho, Dean
2013-01-01
Nanodiamonds (NDs) are promising candidates in nanomedicine, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. We have synthesized ND vectors capable of chemotherapeutic loading and delivery with applications towards chemoresistant leukemia. The loading of Daunorubicin (DNR) onto NDs was optimized by adjusting reaction parameters such as acidity and concentration. The resulting conjugate, a novel therapeutic payload for NDs, was characterized extensively for size, surface charge, and loading efficiency. A K562 human myelogenous leukemia cell line, with multidrug resistance conferred by incremental DNR exposure, was used to demonstrate the efficacy enhancement resulting from ND-based delivery. While resistant K562 cells were able to overcome treatment from DNR alone, as compared with non-resistant K562 cells, NDs were able to improve DNR delivery into resistant K562 cells. By overcoming efflux mechanisms present in this resistant leukemia line, ND-enabled therapeutics have demonstrated the potential to improve cancer treatment efficacy, especially towards resistant strains. PMID:23916889
2015-06-30
Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult Hepatocellular Carcinoma; Adult Nasal Type Extranodal NK/T-Cell Lymphoma; Adult Solid Neoplasm; Adult T Acute Lymphoblastic Leukemia; Advanced Adult Hepatocellular Carcinoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Localized Non-Resectable Adult Liver Carcinoma; Localized Resectable Adult Liver Carcinoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Progressive Hairy Cell Leukemia Initial Treatment; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Liver Carcinoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides and Sezary Syndrome; Stage IIIB Mycosis Fungoides and Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides and Sezary Syndrome; Stage IVB Mycosis Fungoides and Sezary Syndrome; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenstrom Macroglobulinemia
2014-06-16
Childhood Acute Promyelocytic Leukemia (M3); Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Juvenile Myelomonocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Neuroblastoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Relapsing Chronic Myelogenous Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific
2018-04-20
Post-transplant Lymphoproliferative Disorder; B-Cell Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classical Hodgkin Lymphoma; Recurrent Lymphoplasmacytic Lymphoma
[Ultrastructure and Raman Spectral Characteristics of Two Kinds of Acute Myeloid Leukemia Cells].
Liang, Hao-Yue; Cheng, Xue-Lian; Dong, Shu-Xu; Zhao, Shi-Xuan; Wang, Ying; Ru, Yong-Xin
2018-02-01
To investigate the Raman spectral characteristics of leukemia cells from 4 patients with acute promyelocytic leukemia (M 3 ) and 3 patients with acute monoblastic leukemia (M 5 ), establish a novel Raman label-free method to distinguish 2 kinds of acute myeloid leukemia cells so as to provide basis for clinical research. Leukemia cells were collected from bone marrow of above-mentioned patients. Raman spectra were acquired by Horiba Xplora Raman spectrometer and Raman spectra of 30-50 cells from each patient were recorded. The diagnostic model was established according to principle component analysis (PCA), discriminant function analysis (DFA) and cluster analysis, and the spectra of leukemia cells from 7 patients were analyzed and classified. Characteristics of Raman spectra were analyzed combining with ultrastructure of leukemia cells. There were significant differences between Raman spectra of 2 kinds of leukemia cells. Compared with acute monoblastic leukemia cells, the spectra of acute promyelocytic leukemia cells showed stronger peaks in 622, 643, 757, 852, 1003, 1033, 1117, 1157, 1173, 1208, 1340, 1551, 1581 cm -1 . The diagnostic models established by PCA-DFA and cluster analysis could successfully classify these Raman spectra of different samples with a high accuracy of 100% (233/233). The model was evaluated by "Leave-one-out" cross-validation and reached a high accuracy of 97% (226/233). The level of macromolecules of M 3 cells is higher than that of M 5 . The diagnostic models established by PCA-DFA can classify these Raman spectra of different cells with a high accuracy. Raman spectra shows consistent result with ultrastructure by TEM.
2018-02-12
Prolymphocytic Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Childhood Non-Hodgkin Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hodgkin Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma; T-Cell Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia
Ph I/II Study of Subcutaneously Administered Veltuzumab (hA20) in NHL and CLL
2013-03-25
NHL; Lymphoma, Non-Hodgkin; Lymphoma, B-Cell; Lymphoma, Follicular; Lymphoma, Intermediate-Grade; Lymphoma, Large-Cell; Lymphoma, Low-Grade; Lymphoma, Mixed-Cell; Lymphoma, Small-Cell; Leukemia, Lymphocytic, Chronic; Leukemia, B-Cell, Chronic; Leukemia, Prolymphocytic; Leukemia, Small Lymphocytic; Lymphoma, Small Lymphocytic; Lymphoma, Lymphoplasmacytoid, CLL; Lymphoplasmacytoid Lymphoma, CLL; CLL; SLL
SONG, NINGXIA; GAO, LEI; QIU, HUIYING; HUANG, CHONGMEI; CHENG, HUI; ZHOU, HONG; LV, SHUQING; CHEN, LI; WANG, JIANMIN
2015-01-01
The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft-versus-host disease (aGVHD). However, the role of MSCs in graft-versus-leukemia remains to be determined. In the present study, we co-cultured C57BL/6 mouse bone marrow (BM)-derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit-8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)-10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies. PMID:25901937
Song, Ningxia; Gao, Lei; Qiu, Huiying; Huang, Chongmei; Cheng, Hui; Zhou, Hong; Lv, Shuqing; Chen, Li; Wang, Jianmin
2015-07-01
The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft‑versus‑host disease (aGVHD). However, the role of MSCs in graft‑versus‑leukemia remains to be determined. In the present study, we co‑cultured C57BL/6 mouse bone marrow (BM)‑derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit‑8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)‑10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies.
2018-02-15
Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; B-Cell Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Hematologic and Lymphocytic Disorder; Hematopoietic Cell Transplantation Recipient; Myelodysplastic Syndrome; Primary Myelofibrosis; Secondary Myelofibrosis; T-Cell Non-Hodgkin Lymphoma; Thrombocytopenia; Venous Thromboembolism
Esterase reactions in acute myelomonocytic leukemia.
Kass, L
1977-05-01
Specific and nonspecific esterase reactions of bone marrow cells from 14 patients with untreated acute myelomonocytic leukemia and six patients with acute histiomonocytic leukemia were examined. The technic for esterase determination permitted simultaneous visualization of both esterases on the same glass coverslip containing the marrow cells. In cases of acute histiomonocytic leukemia, monocytes, monocytoid hemohistioblasts and undifferentiated blasts stained intensely positive for nonspecific esterase, using alpha-naphthyl acetate as the substrate. No evidence of specific esterase activity using naphthol ASD-chloroacetate as the substrate and fast blue BBN as the dye coupler was apparent in these cells. In all of the cases of acute myelomonocytic leukemia, both specific and nonspecific esterases were visualized within monocytes, monocytoid cells, and granulocytic cells that had monocytoid-type nuclei. Nonspecific esterase activity was not observed in polymorphonuclear leukocytes in cases of myelomonocytic leukemia. The results support a current viewpoint that acute myelomonocytic leukemia may be a variant of acute myeloblastic leukemia, and that cytochemically, many of the leukemic cells in myelomonocytic leukemia share properties of both granulocytes and monocytes.
2018-06-01
Acute Lymphoblastic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia; Acute Myeloid Leukemia in Remission; Hematopoietic Cell Transplantation Recipient; Minimal Residual Disease; Myelodysplastic Syndrome; Secondary Acute Myeloid Leukemia
2018-04-26
Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia
Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia
Bongiovanni, Deborah; Saccomani, Valentina
2017-01-01
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy. PMID:28872614
2018-03-26
Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia in Remission; Blasts Under 10 Percent of Bone Marrow Nucleated Cells; Blasts Under 5 Percent of Bone Marrow Nucleated Cells; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Cytogenetic Abnormality; High Risk Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Pancytopenia; Refractory Anemia
[Application and usefulness of flowcytometry in the haematology laboratory].
Kubota, K; Makino, M
1991-02-01
Recent technological advances, in both hardware and software, and availability of various monoclonal antibodies (MoAb) for membrane antigens of blood cells have expanded the application of flow cytometry (FCM) in medicine. In the haematology laboratory, FCM has been used mainly for assessment of leukemia and lymphoma and for determination of lymphocyte subsets. In acute leukemia, FCM is useful to classify ALL accurately, particularly for bi phenotypic or mixed lineage leukemia. In lymphocyte subset determination, we found that the use of magnetic beads to remove contaminating monocytes and some granulocytes to purify the lymphocyte-population is helpful in clarify the subsets. We present data describing the age dependent variation in lymphocyte subsets in the pediatric population. In early life (up to 2 years old), CD4 (+) 2H4 (+) lymphocyte overwhelmed CD4 (+) 2H4 (-) cells, implying predominance of suppressor-inducer activity. We also presented some cases of markedly increased double negative T cells (gamma/delta TCR) and a rare case of double positive (CD4+, CD8+) T cells.
2015-02-10
Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma
Adoptive T-cell therapy for Leukemia.
Garber, Haven R; Mirza, Asma; Mittendorf, Elizabeth A; Alatrash, Gheath
2014-01-01
Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently undergoing preclinical testing with a foreseeable clinical endpoint.
Mejstrikova, Ester; Volejnikova, Jana; Fronkova, Eva; Zdrahalova, Katerina; Kalina, Tomas; Sterba, Jaroslav; Jabali, Yahia; Mihal, Vladimir; Blazek, Bohumir; Cerna, Zdena; Prochazkova, Daniela; Hak, Jiri; Zemanova, Zuzana; Jarosova, Marie; Oltova, Alexandra; Sedlacek, Petr; Schwarz, Jiri; Zuna, Jan; Trka, Jan; Stary, Jan; Hrusak, Ondrej
2010-01-01
Background Mixed phenotype acute leukemia (MPAL) represents a diagnostic and therapeutic dilemma. The European Group for the Immunological Classification of Leukemias (EGIL) scoring system unambiguously defines MPAL expressing aberrant lineage markers. Discussions surrounding it have focused on scoring details, and information is limited regarding its biological, clinical and prognostic significance. The recent World Health Organization classification is simpler and could replace the EGIL scoring system after transformation into unambiguous guidelines. Design and Methods Simple immunophenotypic criteria were used to classify all cases of childhood acute leukemia in order to provide therapy directed against acute lymphoblastic leukemia or acute myeloid leukemia. Prognosis, genotype and immunoglobulin/T-cell receptor gene rearrangement status were analyzed. Results The incidences of MPAL were 28/582 and 4/107 for children treated with acute lymphoblastic leukemia and acute myeloid leukemia regimens, respectively. In immunophenotypic principal component analysis, MPAL treated as T-cell acute lymphoblastic leukemia clustered between cases of non-mixed T-cell acute lymphoblastic leukemia and acute myeloid leukemia, while other MPAL cases were included in the respective non-mixed B-cell progenitor acute lymphoblastic leukemia or acute myeloid leukemia clusters. Analogously, immunoglobulin/T-cell receptor gene rearrangements followed the expected pattern in patients treated as having acute myeloid leukemia (non-rearranged, 4/4) or as having B-cell progenitor acute lymphoblastic leukemia (rearranged, 20/20), but were missing in 3/5 analyzed cases of MPAL treated as having T-cell acute lymphobastic leukemia. In patients who received acute lymphoblastic leukemia treatment, the 5-year event-free survival of the MPAL cases was worse than that of the non-mixed cases (53±10% and 76±2% at 5 years, respectively, P=0.0075), with a more pronounced difference among B lineage cases. The small numbers of MPAL cases treated as T-cell acute lymphoblastic leukemia or as acute myeloid leukemia hampered separate statistics. We compared prognosis of all subsets with the prognosis of previously published cohorts. Conclusions Simple immunophenotypic criteria are useful for therapy decisions in MPAL. In B lineage leukemia, MPAL confers poorer prognosis. However, our data do not justify a preferential use of current acute myeloid leukemia-based therapy in MPAL. PMID:20145275
2012-11-07
Acute Myeloid Leukemia; Myelodysplasia; Acute Lymphoblastic Leukemia; Chronic Lymphocytic Leukemia; Follicular Lymphoma; Multiple Myeloma; NHL; Myeloproliferative Diseases; Chronic Myeloid Leukemia; Renal Cell Carcinoma; Aplastic Anemia
Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiying; Rao, Qing, E-mail: raoqing@gmail.com; Wang, Min
2009-09-04
Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation,more » and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.« less
Tsao, C J; Cheng, T Y; Chang, S L; Su, W J; Tseng, J Y
1992-05-01
We examined the stimulatory effects of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL)-6 on the in vitro proliferation of leukemic blast cells from patients with acute leukemia. Bone marrow or peripheral blood leukemic blast cells were obtained from 21 patients, including 14 cases of acute myeloblastic leukemia (AML), four cases of acute lymphoblastic leukemia (ALL), two cases of acute undifferentiated leukemia, and one case of acute mixed-lineage leukemia. The proliferation of leukemic blast cells was evaluated by measuring the incorporation of 3H-thymidine into cells incubated with various concentrations of cytokines for 3 days. GM-CSF stimulated the DNA synthesis (with greater than 2.0 stimulation index) of blast cells in 9 of 14 (64%) AML cases, two cases of acute undifferentiated leukemia and one case of acute mixed-lineage leukemia. Only two cases of AML blasts responded to IL-6 to grow in the short-term suspension cultures. GM-CSF and IL-6 did not display a synergistic effect on the growth of leukemic cells. Moreover, GM-CSF and IL-6 did not stimulate the proliferation of ALL blast cells. Binding study also revealed the specific binding of GM-CSF on the blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia. Our results indicated that leukemic blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia possessed functional GM-CSF receptors.
2018-04-23
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Acute Biphenotypic Leukemia; Acute Leukemia of Ambiguous Lineage; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Myelodysplastic Syndrome With Excess Blasts-1; Myelodysplastic Syndrome With Excess Blasts-2; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia
Huang, An-Cheng; Cheng, Hsiu-Yueh; Lin, Tsu-Shun; Chen, Wen-Hsein; Lin, Ju-Hwa; Lin, Jen-Jyh; Lu, Chi-Cheng; Chiang, Jo-Hua; Hsu, Shu-Chun; Wu, Ping-Ping; Huang, Yi-Ping; Chung, Jing-Gung
2013-01-01
Epigallocatechin gallate (EGCG) is the major polyphenol in green tea, and has been reported to have anticancer effects on many types of cancer cells. However, there is no report to show its effects on the immune response in a murine leukemia mouse model. Thus, in the present study, we investigated the effects of EGCG on the immune responses of murine WEHI-3 leukemia cells in vivo. WEHI-3 cells were intraperitoneally injected into normal BALB/c mice to establish leukemic BALB/c mice, which were then oral-treated with or without EGCG at 5, 20 and 40 mg/kg for two weeks. The results indicated that EGCG did not change the weight of the animals, nor the liver or spleen when compared to vehicle (olive oil) -treated groups. Furthermore, EGCG increased the percentage of cluster of differentiation 3 (CD3) (T-cell), cluster of differentiation 19 (CD19) (B-cell) and Macrophage-3 antigen (Mac-3) (macrophage) but reduced the percentage of CD11b (monocyte) cell surface markers in EGCG-treated groups as compared with the untreated leukemia group. EGCG promoted the phagocytosis of macrophages from 5 mg/kg treatment and promoted natural killer cell activity at 40 mg/kg, increased T-cell proliferation at 40 mg/kg but promoted B-cell proliferation at all three doses. Based on these observations, it appears that EGCG might exhibit an immune response in the murine WEHI-3 cell line-induced leukemia in vivo.
2017-11-08
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Aggressive Non-Hodgkin Lymphoma; Diffuse Large B-Cell Lymphoma; Previously Treated Myelodysplastic Syndrome; Recurrent Chronic Lymphocytic Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Recurrent Indolent Adult Non-Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hodgkin Lymphoma; Refractory Plasma Cell Myeloma; Refractory Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia
Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...
2017-12-05
B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.
Chen, Yu Qing; Min, Cui; Sang, Ming; Han, Yang Yang; Ma, Xiao; Xue, Xiao Qing; Zhang, Shuang Quan
2010-08-01
Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent. Copyright 2010 Elsevier Inc. All rights reserved.
2018-03-23
Acute Biphenotypic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Adult Acute Lymphoblastic Leukemia in Complete Remission; Aggressive Non-Hodgkin Lymphoma; Beta-2-Microglobulin Greater Than 3 g/mL; Blasts Under 5 Percent of Bone Marrow Nucleated Cells; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Complete Remission; Chromosome 13 Abnormality; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Lymphoblastic Lymphoma; Mantle Cell Lymphoma; Myelodysplastic Syndrome With Excess Blasts; Myelofibrosis; Pancytopenia; Plasma Cell Myeloma; Prolymphocytic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Recurrent Follicular Lymphoma; Recurrent Lymphoplasmacytic Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma
T-Cell Depleted Allogeneic Stem Cell Transplantation for Patients With Hematologic Malignancies
2016-10-07
Acute Myelogenous Leukemia; Lymphoid Leukemia; Chronic Myelogenous Leukemia; Malignant Lymphoma; Hodgkin's Disease; Chronic Lymphocytic Leukemia; Myeloproliferative Disorder; Anemia, Aplastic; Myelodysplastic Syndromes
2018-03-26
Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma; T-Cell Large Granular Lymphocyte Leukemia
PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonen, Nitzan; Bram, Eran E.; Assaraf, Yehuda G.
2008-11-28
The proton-coupled folate transporter (PCFT/SLC46A1) displays optimal and prominent folate and antifolate transport activity at acidic pH in human carcinoma cells but poor activity in leukemia cells. Consistently herein, human leukemia cell lines expressed poor PCFT transcript levels, whereas various carcinoma cell lines showed substantial PCFT gene expression. We identified a CpG island with high density at nucleotides -200 through +100 and explored its role in PCFT promoter silencing. Leukemia cells with barely detectable PCFT transcripts consistently harbored 85-100% methylation of this CpG island, whereas no methylation was found in carcinoma cells. Treatment with 5-Aza-2'-deoxycytidine which induced demethylation but notmore » with the histone deacetylase inhibitor trichostatin A, restored 50-fold PCFT expression only in leukemia cells. These findings constitute the first demonstration of the dominant epigenetic silencing of the PCFT gene in leukemia cells. The potential translational implications of the restoration of PCFT expression in chemotherapy of leukemia are discussed.« less
2018-01-03
Acute Lymphoblastic Leukemia (ALL); Acute Myeloid Leukemia (AML); Myeloid Sarcoma; Chronic Myeloid Leukemia (CML); Juvenile Myelomonocytic Leukemia (JMML); Myelodysplastic Syndrome (MDS); Non-Hodgkin Lymphoma (NHL)
Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...
Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...
2018-05-24
Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenström Macroglobulinemia
Polliack, A; McKenzie, S; Gee, T; Lampen, N; de Harven, E; Clarkson, B D
1975-09-01
This report describes the surface architecture of leukemic cells, as seen by scanning electron microscopy in 34 patients with acute nonlymphoblastic leukemia. Six patients with myeloblastic, 4 with promyelocytic, 10 with myelomonocytic, 8 with monocytic, 4 with histiocytic and 2 with undifferentiated leukemia were studied. Under the scanning electron microscope most leukemia histiocytes and monocytes appeared similar and were characterized by the presence of large, well developed broad-based ruffled membranes or prominent raised ridge-like profiles, resembling ithis respect normal monocytes. Most cells from patients with acute promyelocytic or myeloblastic leukemia exhibited narrower ridge-like profiles whereas some showed ruffles or microvilli. Patients with myelomonocytic leukemia showed mixed populations of cells with ridge-like profiles and ruffled membranes whereas cells from two patients with undifferentiated leukemia had smooth surfaces, similar to those encountered in cells from patients with acute lymphoblastic leukemia. It appears that nonlymphoblastic and lymphoblastic leukemia cells (particularly histiocytes and monocytes) can frequently be distinquished on the basis of their surface architecture. The surface features of leukemic histiocytes and monocytes are similar, suggesting that they may belong to the same cell series. The monocytes seem to have characteristic surface features recognizable with the scanning electron microscope and differ from most cells from patients with acute granulocytic leukemia. Although overlap of surface features and misidentification can occur, scanning electron microscopy is a useful adjunct to other modes of microscopy in the study and diagnosis of acute leukemia.
2015-10-13
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Intraocular Lymphoma; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Chronic Lymphocytic Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Central Nervous System Hodgkin Lymphoma; Secondary Central Nervous System Non-Hodgkin Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
2017-09-29
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenström Macroglobulinemia
Burchenal, J H
1975-01-01
Essentially all the drugs which are active against human leukemias and lymphomas are active against one type or another of the rodent leukemias and lymphomas. Leukemia L1210 has been generally the most successful screening tool for clinically active compounds. Leukemia P388, however, seems to be better in detecting active antibiotics and natural products and P1534 is particularly sensitive to the Vinca alkaloids, while L5178Y, EARAD, and 6C3HED are useful in detecting the activities of various asparaginase containing fractions. Cell cultures of these leukemias can demonstrate mechanism of drug action and quantitate resistance. Spontaneous AKR leukemia is a model of the advanced human disease. In these leukemias vincristine and prednisone produce a 4 log cell kill. Cytoxan and arabinosyl cytosine (Ara-C) are also effective. On the other hand drugs such as mercaptopurine (6MP) and methotrexate which are highly active in the maintenance phase of acute lymphocytic leukemia (ALL) and in L1210 have little or no activity against the AKR spontaneous system. Mouse leukemias can also detect schedule dependence, synergistic combinations, cross resistance, oral activity, and the ability of drugs to pass the blood brain barrier. A case in point is the Ara-C analog 2,2'-anhydro-arabinofuranosyl-5-fluorocytosine (AAFC) which is not schedule dependent, is active orally, is potentiated by thioguanine, and is effective against intracerebrally inoculated mouse leukemia. AAFC and its analogs might thus be a considerable improvement over Ara-C which is at the present time the most important component of the combination treatment of acute myelogenous leukemia (AML).
Retroviral expression screening of oncogenes in natural killer cell leukemia.
Choi, Young Lim; Moriuchi, Ryozo; Osawa, Mitsujiro; Iwama, Atsushi; Makishima, Hideki; Wada, Tomoaki; Kisanuki, Hiroyuki; Kaneda, Ruri; Ota, Jun; Koinuma, Koji; Ishikawa, Madoka; Takada, Shuji; Yamashita, Yoshihiro; Oshimi, Kazuo; Mano, Hiroyuki
2005-08-01
Aggressive natural killer cell leukemia (ANKL) is an intractable malignancy that is characterized by the outgrowth of NK cells. To identify transforming genes in ANKL, we constructed a retroviral cDNA expression library from an ANKL cell line KHYG-1. Infection of 3T3 cells with recombinant retroviruses yielded 33 transformed foci. Nucleotide sequencing of the DNA inserts recovered from these foci revealed that 31 of them encoded KRAS2 with a glycine-to-alanine mutation at codon 12. Mutation-specific PCR analysis indicated that the KRAS mutation was present only in KHYG-1 cells, not in another ANKL cell line or in clinical specimens (n=8).
Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy
NASA Astrophysics Data System (ADS)
Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander
2005-04-01
We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.
Testicular myeloid sarcoma: case report.
Zago, Luzia Beatriz Ribeiro; Ladeia, Antônio Alexandre Lisbôa; Etchebehere, Renata Margarida; de Oliveira, Leonardo Rodrigues
2013-01-01
Myeloid sarcomas are extramedullary solid tumors composed of immature granulocytic precursor cells. In association with acute myeloid leukemia and other myeloproliferative disorders, they may arise concurrently with compromised bone marrow related to acute myeloid leukemia, as a relapsed presentation, or occur as the first manifestation. The testicles are considered to be an uncommon site for myeloid sarcomas. No therapeutic strategy has been defined as best but may include chemotherapy, radiotherapy and/or hematopoietic stem cell transplantation. This study reports the evolution of a patient with testicular myeloid sarcoma as the first manifestation of acute myeloid leukemia. The patient initially refused medical treatment and died five months after the clinical condition started.
2017-04-07
Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia in Remission; Aggressive Non-Hodgkin Lymphoma; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Diffuse Large B-Cell Lymphoma; Hematopoietic and Lymphoid Cell Neoplasm; Indolent Non-Hodgkin Lymphoma; Mantle Cell Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm; Plasma Cell Myeloma; Refractory Chronic Lymphocytic Leukemia; Refractory Hodgkin Lymphoma; Waldenstrom Macroglobulinemia
2017-10-27
Recurrent Adult Hodgkin Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Refractory Childhood Hodgkin Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult T-Cell Leukemia/Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-Cell Leukemia/Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Childhood Hodgkin Lymphoma
Hassoun, Mohamed; Rüger, Jan; Kirchberger-Tolstik, Tatiana; Schie, Iwan W; Henkel, Thomas; Weber, Karina; Cialla-May, Dana; Krafft, Christoph; Popp, Jürgen
2018-01-01
A new approach is presented for cell lysate identification which uses SERS-active silver nanoparticles and a droplet-based microfluidic chip. Eighty-nanoliter droplets are generated by injecting silver nanoparticles, KCl as aggregation agent, and cell lysate containing cell constituents, such as nucleic acids, carbohydrates, metabolites, and proteins into a continuous flow of mineral oil. This platform enables accurate mixing of small volumes inside the meandering channels of the quartz chip and allows acquisition of thousands of SERS spectra with 785 nm excitation at an integration time of 1 s. Preparation of three batches of three leukemia cell lines demonstrated the experimental reproducibility. The main advantage of a high number of reproducible spectra is to apply statistics for large sample populations with robust classification results. A support vector machine with leave-one-batch-out cross-validation classified SERS spectra with sensitivities, specificities, and accuracies better than 99% to differentiate Jurkat, THP-1, and MONO-MAC-6 leukemia cell lysates. This approach is compared with previous published reports about Raman spectroscopy for leukemia detection, and an outlook is given for transfer to single cells. A quartz chip was designed for SERS at 785 nm excitation. Principal component analysis of SERS spectra clearly separates cell lysates using variations in band intensity ratios.
Zhang, Bin; Zhang, Xia; Li, Minghuan; Kong, Li; Deng, Xiaoqin; Yu, Jinming
2016-01-01
The latest studies suggest that prophylactic chemotherapy or adjuvant chemotherapy for early stage breast cancer may increase the leukemia risk in patients. For patients with a low risk for breast cancer recurrence, physicians who make the choice for adjuvant therapy should consider the risk of its long-term side effects. Is the occurrence of lymphatic system cancer and leukemia after breast cancer treatment associated with chemotherapy? Can these types of leukemia be classified as therapy-related leukaemias? We believe that there may be correlations between any diseases, butwe cannot rush to conclusions or dismiss a correlation because we understand little about the diseases themselves.In this paper, we present a case of secondary diffuse large B-cell lymphoma and leukemia in patients after breast cancer chemotherapy, it is undeniable that this is a special event. For two distinct tumouroccurrences at different times, we cannot give a clear explanation because of thechanges in the genes that might link them together and we hope to attract the attention of other clinicians.
CD34+ (Malignant) Stem Cell Selection for Patients Receiving Allogenic Stem Cell Transplant
2017-07-13
Chronic Myeloid Leukemia (CML); Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome (MDS); Juvenile Myelomonocytic Leukemia (JMML); Acute Lymphoblastic Leukemia (ALL); Lymphoma (Hodgkin's and Non-Hodgkin's)
2018-03-05
Anemia; B-Cell Prolymphocytic Leukemia; Fatigue; Fever; Grade 1 Follicular Lymphoma; Grade 2 Follicular Lymphoma; Grade 3a Follicular Lymphoma; Hairy Cell Leukemia; Lymphadenopathy; Lymphocytosis; Lymphoplasmacytic Lymphoma; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Night Sweats; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Small Lymphocytic Lymphoma; Richter Syndrome; Splenomegaly; Thrombocytopenia; Weight Loss
2013-07-01
B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma
Mejía-Aranguré, Juan Manuel
Acute leukemias have a huge morphological, cytogenetic and molecular heterogeneity and genetic polymorphisms associated with susceptibility. Every leukemia presents causal factors associated with the development of the disease. Particularly, when three factors are present, they result in the development of acute leukemia. These phenomena are susceptibility, environmental exposure and a period that, for this model, has been called the period of vulnerability. This framework shows how the concepts of molecular epidemiology have established a reference from which it is more feasible to identify the environmental factors associated with the development of leukemia in children. Subsequently, the arguments show that only susceptible children are likely to develop leukemia once exposed to an environmental factor. For additional exposure, if the child is not susceptible to leukemia, the disease does not develop. In addition, this exposure should occur during a time window when hematopoietic cells and their environment are more vulnerable to such interaction, causing the development of leukemia. This model seeks to predict the time when the leukemia develops and attempts to give a context in which the causality of childhood leukemia should be studied. This information can influence and reduce the risk of a child developing leukemia. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
2016-08-01
at the bottom are: 1. acute myeloid leukemia ; 2. B-cell lymphoblastic leukemia ; 3. chronic myeloid leukemia ; 4. Burkitt’s lymphoma; 5. diffuse large...Liu PP, Jin J, Chen J. PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the...perturbations by Arg882-mutated DNMT3A potentiate aberrant stem cell gene expression program and acute leukemia development. Cancer Cell 2016 July
Hairy Cell Leukemia Treatment Option Overview
... Childhood ALL Treatment Childhood AML Treatment Research Hairy Cell Leukemia Treatment (PDQ®)–Patient Version General Information About Hairy Cell Leukemia Go to Health Professional Version Key Points ...
2013-08-13
Acute Myeloid Leukemia; Myelodysplasia; Acute Lymphoblastic Leukemia; Chronic Myelogenous Leukemia; Multiple Myeloma; Lymphoma, Large-Cell, Diffuse; Lymphoma, Mantle-Cell; Lymphoma, T-Cell, Peripheral; T-NK Cell Lymphoma; Hodgkin Disease
Shaw, M T
1980-05-01
The monocytic leukemias may be subdivided into acute monocytic leukemia, acute myelomonocytic leukemia, and subacute and chronic myelomonocytic leukemia. The clinical features of acute monocytic and acute myelomonocytic leukemias are similar and are manifestations of bone marrow failure. Gingival hypertrophy and skin infiltration are more frequent in acute monocytic leukemia. Cytomorphologically the blast cells in acute monocytic leukemia may be undifferentiated or differentiated, whereas in the acute myelomonocytic variety there are mixed populations of monocytic and myeloblastic cells. Cytochemical characteristics include strongly positive reactions for nonspecific esterase, inhibited by fluoride. The functional characteristics of acute monocytic and acute myelomonocytic cells resemble those of monocytes and include glass adherence and phagocytoses, the presence of Fc receptors for IgG and C'3, and the production of colony stimulating activity. Subacute and chronic myelomonocytic leukemias are insidious and slowly progressive diseases characterized by anemia and peripheral blood monocytosis. Atypical monocytes called paramyeloid cells are characteristic. The drugs used in the treatment of acute monocytic and acute myelomonocytic leukemias include cytosine arabinoside, the anthracyclines, and VP 16-213. Drug therapy in subacute and chronic myelomonocytic leukemias is not usually indicated, although VP 16-213 has been claimed to be effective.
García, Mario; Chicaíza, Liliana Alejandra; Quitián, Hoover; Linares, Adriana; Ramírez, Óscar
2015-01-01
Acute myeloid leukemia represents about 20% of leukemias in minors under 18 years old. At present, there are only two consolidation treatment alternatives: Chemotherapy and stem-cell transplantation. To evaluate the cost-effectiveness of unrelated and related hematopoietic stem cell transplantations, versus chemotherapy consolidation in pediatric patients with high-risk acute myeloid leukemia. A decision tree was constructed with life-years gained as the outcome. Costs and probabilities were extracted from the literature. Probabilistic sensitivity analyses and acceptability curves were computed. The cost-effectiveness threshold was three times the 2010 per capita gross domestic product. When compared to consolidation chemotherapy cycles, related and unrelated hematopoietic stem-cell transplantation had incremental cost-effectiveness ratios of COP$ 9,226,421 (USD$ 4,820) and COP$ 6,544,116 (USD$ 3,419) respectively, which are lower than the per capita gross domestic product (COP$ 12,047,418, USD$ 6,294). Transplant proved to be cost-effective in 70% of the simulations and had a higher probability of the willingness to pay being over than COP$ 7,200,000 (USD$ 3,762). In Colombia, related and unrelated hematopoietic stem-cell transplants are cost-effective alternatives to consolidation treatment for high-risk acute myeloid leukemia in pediatric patients.
2013-01-09
Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer
2018-01-22
Acute Myelogenous Leukemia; Acute Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Chronic Lymphocytic Leukemia; Myelodysplastic Syndromes; Multiple Myeloma; Non-Hodgkins Lymphoma; Hodgkins Disease; Peripheral T-cell Lymphoma
Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei
2012-07-05
The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.
Middlemiss, Shiloh M.C.; Wen, Victoria W.; Clifton, Molly; Kwek, Alan; Liu, Bing; Mayoh, Chelsea; Bongers, Angelika; Karsa, Mawar; Pan, Sukey; Cruikshank, Sarah; Scandlyn, Marissa; Hoang, Wendi; Imamura, Toshihiko; Kees, Ursula R.; Gudkov, Andrei V.; Chernova, Olga B.
2016-01-01
There is an urgent need for the development of less toxic, more selective and targeted therapies for infants with leukemia characterized by translocation of the mixed lineage leukemia (MLL) gene. In this study, we performed a cell-based small molecule library screen on an infant MLL-rearranged (MLL-r) cell line, PER-485, in order to identify selective inhibitors for MLL-r leukemia. After screening initial hits for a cytotoxic effect against a panel of 30 cell lines including MLL-r and MLL wild-type (MLL-wt) leukemia, solid tumours and control cells, small molecule CCI-007 was identified as a compound that selectively and significantly decreased the viability of a subset of MLL-r and related leukemia cell lines with CALM-AF10 and SET-NUP214 translocation. CCI-007 induced a rapid caspase-dependent apoptosis with mitochondrial depolarization within twenty-four hours of treatment. CCI-007 altered the characteristic MLL-r gene expression signature in sensitive cells with downregulation of the expression of HOXA9, MEIS1, CMYC and BCL2, important drivers in MLL-r leukemia, within a few hours of treatment. MLL-r leukemia cells that were resistant to the compound were characterised by significantly higher baseline gene expression levels of MEIS1 and BCL2 in comparison to CCI-007 sensitive MLL-r leukemia cells. In conclusion, we have identified CCI-007 as a novel small molecule that displays rapid toxicity towards a subset of MLL-r, CALM-AF10 and SET-NUP214 leukemia cell lines. Our findings suggest an important new avenue in the development of targeted therapies for these deadly diseases and indicate that different therapeutic strategies might be needed for different subtypes of MLL-r leukemia. PMID:27317766
2017-12-22
Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Langerhans Cell Histiocytosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Mast Cell Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelofibrosis; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenstrom Macroglobulinemia
Leukemia is cancer of the white blood cells. It is the most common type of childhood cancer. ... blood cells help your body fight infection. In leukemia, the bone marrow produces abnormal white blood cells. ...
2013-09-27
B-cell Chronic Lymphocytic Leukemia; Leukemia; Prolymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia
Clinical and pathological features of myeloid leukemia cutis*
Li, Li; Wang, Yanan; Lian, Christine Guo; Hu, Nina; Jin, Hongzhong; Liu, Yuehua
2018-01-01
Background Myeloid leukemia cutis is the terminology used for cutaneous manifestations of myeloid leukemia. Objective The purpose of this study was to study the clinical, histopathological and immunohistochemical features of myeloid leukemia cutis. Methods This was a retrospective study of clinical and pathological features of 10 patients with myeloid leukemia cutis. Results One patient developed skin lesions before the onset of leukemia, seven patients developed skin infiltration within 4-72 months after the onset of leukemia, and two patients developed skin lesions and systemic leukemia simultaneously. Of these patients, five presented with generalized papules or nodules, and five with localized masses. The biopsy of skin lesions showed a large number of tumor cells within the dermis and subcutaneous fat layer. Immunohistochemical analysis showed strong reactivity to myeloperoxidase (MPO), CD15, CD43 and CD45 (LCA) in most cases. NPM1 (nucleophosmin I) and FLT3-ITD (Fms-like tyrosine kinase 3-internal tandem duplication) mutations were identified in one case. Five patients with acute myelogenous leukemia and one patient with chronic myelomonocytic leukemia died within two months to one year after the onset of skin lesions. Study limitations This was a retrospective and small sample study. Conclusions In patients with myelogenous leukemia, skin infiltration usually occurs after, but occasionally before, the appearance of hemogram and myelogram abnormalities, and the presence of skin infiltration is often associated with a poor prognosis and short survival time. myeloid leukemia cutis often presents as generalized or localized nodules or masses with characteristic pathological and histochemical findings. PMID:29723350
2018-05-25
Adult B Acute Lymphoblastic Leukemia; BCL2 Gene Rearrangement; BCL6 Gene Rearrangement; CD19 Positive; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; MYC Gene Rearrangement; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent B-Cell Non-Hodgkin Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Adult Acute Lymphoblastic Leukemia; Refractory B-Cell Non-Hodgkin Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Transformed Recurrent Non-Hodgkin Lymphoma
Terminal deoxynucleotidyl transferase in the diagnosis of leukemia and malignant lymphoma.
Kung, P C; Long, J C; McCaffrey, R P; Ratliff, R L; Harrison, T A; Baltimore, D
1978-05-01
Neoplastic cells from 253 patients with leukemia and 46 patients with malignant lymphoma were studied for the presence of terminal deoxynucleotidyl transferase (TdT) by biochemical and fluorescent antibody technics. TdT was detected in circulating blast cells from 73 of 77 patients with acute lymphoblastic leukemia, 24 of 72 patients with chronic myelogenous leukemia examined during the blastic phase of the disorder and in cell suspensions of lymph nodes from nine of nine patients with diffuse lymphoblastic lymphoma. Blast cells from six of 10 patients with acute undifferentiated leukemia were TdT positive, but the enzyme was found in only two of 55 patients with acute myeloblastic leukemia. TdT was not detected in other lymphocytic or granulocytic leukemias or in other types of malignant lymphomas. The fluorescent antibody assay for TdT permits rapid and specific identification of the enzyme in single cells. The TdT assay is clinically useful in confirming the diagnosis of acute lymphoblastic leukemia, evaluating patients with blastic chronic myelogenous leukemia, and distinguishing patients with lymphoblastic lymphoma, whose natural history includes rapid extranodal dissemination, from patients with other poorly differentiated malignant lymphomas.
Phase 1 Study of Terameprocol (EM-1421) in Patients With Leukemia
2016-02-20
Leukemias; Acute Myeloid Leukemia (AML); Acute Lymphocytic Leukemia (ALL); Adult T Cell Leukemia (ATL); Chronic Myeloid Leukemia (CML-BP); Chronic Lymphocytic Leukemia (CLL); Myelodysplastic Syndrome (MDS); Chronic Myelomonocytic Leukemia (CMML)
Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...
Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...
Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M
2017-02-01
Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central nervous system positivity in T-cell acute lymphoblastic leukemia (odds ratio=11.00, 95% confidence interval, 2.00-60.62). We propose zeta-chain-associated protein kinase 70, CCR7 and CXCR4 as markers of central nervous system infiltration in acute lymphoblastic leukemia warranting prospective investigation. Copyright© Ferrata Storti Foundation.
Choi, Jung-Hye; Shin, Kyung-Min; Kim, Na-Young; Hong, Jung-Pyo; Lee, Yong Sup; Kim, Hyoung Ja; Park, Hee-Juhn; Lee, Kyung-Tae
2002-11-01
The present work was performed to elucidate the active moiety of a sesquiterpene lactone, taraxinic acid-1'-O-beta-D-glucopyranoside (1). from Taraxacum coreanum NAKAI on the cytotoxicity of various cancer cells. Based on enzymatic hydrolysis and MTT assay, the active moiety should be attributed to the aglycone taraxinic acid (1a). rather than the glycoside (1). Taraxinic acid exhibited potent antiproliferative activity against human leukemia-derived HL-60. In addition, this compound was found to be a potent inducer of HL-60 cell differentiation as assessed by a nitroblue tetrazolium reduction test, esterase activity assay, phagocytic activity assay, morphology change, and expression of CD 14 and CD 66 b surface antigens. These results suggest that taraxinic acid induces the differentiation of human leukemia cells to monocyte/macrophage lineage. Moreover, the expression level of c-myc was down-regulated during taraxinic acid-dependent HL-60 cell differentiation, whereas p21(CIP1) and p27(KIP1) were up-regulated. Taken together, our results suggest that taraxinic acid may have potential as a therapeutic agent in human leukemia.
Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies.
Ni, Ming; Hoffmann, Jean-Marc; Schmitt, Michael; Schmitt, Anita
2016-09-01
Dendritic cells (DCs) are the most professional antigen-presenting cells eliciting cellular and humoral immune responses against cancer cells by expressing these antigens on MHC class I/II complexes to T cells. Therefore, they have been employed in many clinical trials as cancer vaccines for patients with cancer. This review focuses on the use of DCs in leukemia patients expressing leukemia-associated antigens (LAAs). The contribution of both stimulating vs. tolerogenic DCs as well as of other factors to the milieu of anti-leukemia immune responses are discussed. Several DC vaccination strategies like leukemia lysate, proteins and peptides have been developed. Next generation DC vaccines comprise transduction of DCs with retroviral vectors encoding for LAAs, cytokines and costimulatory molecules as well as transfection of DCs with naked RNA encoding for LAAs. Published as well as ongoing clinical trials are reported and critically reviewed. Future results will demonstrate whether next-generation DCs are really superior to conventional pulsing with peptide, protein or tumor lysate. However, currently available methods based on nucleic acid transfection/transduction are tempting in terms of material production costs and time for clinical application according to good manufacturing practice (GMP).
The acute monocytic leukemias: multidisciplinary studies in 45 patients.
Straus, D J; Mertelsmann, R; Koziner, B; McKenzie, S; de Harven, E; Arlin, Z A; Kempin, S; Broxmeyer, H; Moore, M A; Menendez-Botet, C J; Gee, T S; Clarkson, B D
1980-11-01
The clinical and laboratory features of 37 patients with variants of acute monocytic leukemia are described. Three of these 37 patients who had extensive extramedullary leukemic tissue infiltration are examples of true histiocytic "lymphomas." Three additional patients with undifferentiated leukemias, one patient with refractory anemia with excess of blasts, one patient with chronic myelomonocytic leukemia, one patient with B-lymphocyte diffuse "histiocytic" lymphoma and one patient with "null" cell, terminal deoxynucleotidyl transferase-positive lymphoblastic lymphoma had bone marrow cells with monocytic features. Another patient had dual populations of lymphoid and monocytoid leukemic cells. The true monocytic leukemias, acute monocytic leukemia (AMOL) and acute myelomonocytic leukemia (AMMOL), are closely related to acute myelocytic leukemia (AML) morphologically and by their response to chemotherapy. like AML, the leukemic cells from the AMMOL and AMOL patients form leukemic clusters in semisolid media. Cytochemical staining of leukemic cells for nonspecific esterases, presence of Fc receptor on the cell surface, phagocytic ability, low TdT activity, presence of surface "ruffles" and "ridges" on scanning EM, elevations of serum lysozyme, and clinical manifestations of leukemic tissue infiltration are features which accompanied monocytic differentiation in these cases.
NASA Technical Reports Server (NTRS)
Irons, R. D.; Colagiovanni, D. B.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)
1996-01-01
Many strains of laboratory mouse are uniquely susceptible to the development of T cell lymphoma/leukemia, either spontaneously or as a result of chemical or radiation exposure. In contrast, T cell leukemias or lymphomas which are relatively uncommon in human populations, are not easily induced by radiation, and are not generally associated with chemotherapy or chemical exposure. Evidence is presented to suggest that differences in the susceptibility to the development of these malignancies is related to subtle but important variations in the regulation of hematopoietic stem cell differentiation between these two species.
2017-05-25
B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia
Salvia Hispanica Seed in Reducing Risk of Disease Recurrence in Patients With Non-Hodgkin Lymphoma
2018-02-05
Adult Nasal Type Extranodal NK/T-Cell Lymphoma; Adult T-Cell Leukemia/Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; B Lymphoblastic Leukemia/Lymphoma; Blastic Plasmacytoid Dendritic Cell Neoplasm; Burkitt Leukemia; Central Nervous System Lymphoma; Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma; Diffuse Large B-Cell Lymphoma; Enteropathy-Associated T-Cell Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Grade 1 Follicular Lymphoma; Grade 2 Follicular Lymphoma; Grade 3 Follicular Lymphoma; Hepatosplenic T-Cell Lymphoma; Lymphoplasmacytic Lymphoma; Mantle Cell Lymphoma; Mediastinal (Thymic) Large B-Cell Lymphoma; Mycosis Fungoides; Nasal Type Extranodal NK/T-Cell Lymphoma; Nodal Marginal Zone Lymphoma; Peripheral T-Cell Lymphoma, Not Otherwise Specified; Post-Transplant Lymphoproliferative Disorder; Primary Cutaneous Anaplastic Large Cell Lymphoma; Primary Effusion Lymphoma; Sezary Syndrome; Splenic Marginal Zone Lymphoma; Subcutaneous Panniculitis-Like T-Cell Lymphoma; Systemic Anaplastic Large Cell Lymphoma; T Lymphoblastic Leukemia/Lymphoma; Transformed Recurrent Non-Hodgkin Lymphoma
Zheng, Tingting; Fu, Jia-Ju; Hu, Lihui; Qiu, Fan; Hu, Minjin; Zhu, Jun-Jie; Hua, Zi-Chun; Wang, Hui
2013-06-04
The variable susceptibility to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment observed in various types of leukemia cells is related to the difference in the expression levels of death receptors, DR4 and DR5, on the cell surfaces. Quantifying the DR4/DR5 expression status on leukemia cell surfaces is of vital importance to the development of diagnostic tools to guide death receptor-based leukemia treatment. Taking the full advantages of novel nanobiotechnology, we have developed a robust electrochemical cytosensing approach toward ultrasensitive detection of leukemia cells with detection limit as low as ~40 cells and quantitative evaluation of DR4/DR5 expression on leukemia cell surfaces. The optimization of electron transfer and cell capture processes at specifically tailored nanobiointerfaces and the incorporation of multiple functions into rationally designed nanoprobes provide unique opportunities of integrating high specificity and signal amplification on one electrochemical cytosensor. The high sensitivity and selectivity of this electrochemical cytosensing approach also allows us to evaluate the dynamic alteration of DR4/DR5 expression on the surfaces of living cells in response to drug treatments. Using the TRAIL-resistant HL-60 cells and TRAIL-sensitive Jurkat cells as model cells, we have further verified that the TRAIL susceptibility of various types of leukemia cells is directly correlated to the surface expression levels of DR4/DR5. This versatile electrochemical cytosensing platform is believed to be of great clinical value for the early diagnosis of human leukemia and the evaluation of therapeutic effects on leukemia patients after radiation therapy or drug treatment.
2017-12-20
Adult Lymphocyte Depletion Hodgkin Lymphoma; Adult Lymphocyte Predominant Hodgkin Lymphoma; Adult Mixed Cellularity Hodgkin Lymphoma; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Nodular Sclerosis Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Hepatosplenic T-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia
Safety and Tolerability of HSC835 in Patients With Hematological Malignancies
2017-04-03
Acute Myelocytic Leukemia; Acute Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Myelodysplastic Syndrome; Chronic Lymphocytic Leukemia; Marginal Zone Lymphoma; Follicular Lymphomas; Large-cell Lymphoma; Lymphoblastic Lymphoma; Burkitt's Lymphoma; High Grade Lymphomas; Mantle-cell Lymphoma; Lymphoplasmacytic Lymphoma
Nonmyeloablative Allogeneic Transplant
2013-12-05
Aplastic Anemia; Paroxysmal Nocturnal Hemoglobinuria; Acute Myelogenous Leukemia; Acute Lymphocytic Leukemia; Myelodysplastic Syndrome; Chronic Myelogenous Leukemia; Chronic Lymphocytic Leukemia; Hodgkin's Lymphoma; Non-Hodgkin's Lymphoma; Mantle Cell Lymphoma; Multiple Myeloma; Waldenstrom Macroglobulinemia; Breast Cancer; Renal Cell Carcinoma; Melanoma; Sarcoma; Ovarian Cancer; Thymoma
Ahuja, Jaya; Kampani, Karan; Datta, Suman; Wigdahl, Brian; Flaig, Katherine E; Jain, Pooja
2006-02-01
Human T-cell leukemia virus type 1 (HTLV-1) is etiologically linked to adult T-cell leukemia and a progressive demyelinating disorder termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the most striking features of the immune response in HAM/TSP centers on the expansion of HTLV-1-specific CD8(+) cytotoxic T lymphocyte (CTL) compartment in the peripheral blood and cerebrospinal fluid. More than 90% of the HTLV-1-specific CTLs are directed against the viral Tax (11-19) peptide implying that Tax is available for immune recognition by antigen presenting cells, such as dendritic cells (DCs). DCs obtained from HAM/TSP patients have been shown to be infected with HTLV-1 and exhibit rapid maturation. Therefore, we hypothesized that presentation of Tax peptides by activated DCs to naIve CD8(+) T cells may play an important role in the induction of a Tax-specific CTL response and neurologic dysfunction. In this study, a pathway-specific antigen presenting cell gene array was used to study transcriptional changes induced by exposure of monocyte-derived DCs to extracellular HTLV-1 Tax protein. Approximately 100 genes were differentially expressed including genes encoding toll-like receptors, cell surface receptors, proteins involved in antigen uptake and presentation and adhesion molecules. The differential regulation of chemokines and cytokines characteristic of functional DC activation was also observed by the gene array analyses. Furthermore, the expression pattern of signal transduction genes was also significantly altered. These results have suggested that Tax-mediated DC gene regulation might play a critical role in cellular activation and the mechanisms resulting in HTLV-1-induced disease.
McIlwain, Laura; Sokol, Lubomir; Moscinski, Lynn C; Saba, Hussain I
2003-04-01
We describe a new unique case of acute myeloid leukemia (AML) in a 21-yr-old male presenting with abdominal pain, bilateral testicular masses and gynecomastia. Further work-up with computed tomography of the chest, abdomen and pelvis revealed massive retroperitoneal, peripancreatic and mediastinal lymphadenopathy, suggesting primary testicular neoplasm. The patient was subjected to right orchiectomy that showed infiltration of testicular tissue with malignant cells, originally misinterpreted as undifferentiated carcinoma. Immunohistochemistry studies, however, showed these cells to be strongly positive for myeloperoxidase and CD45, indicating a myeloid cell origin. Bone marrow (BM) aspirate and biopsy demonstrated replacement of marrow with immature myeloid cells. Both the morphology and immunophenotype of the blast cells were consistent with AML type M4 (acute myelo-monocytic leukemia), using French-American-British (FAB) classification. The patient received standard induction chemotherapy with cytosine arabinoside (ARA-C) and daunorubicin followed with two cycles of consolidation therapy with high dose ARA-C, which resulted in remission of BM disease and resolution of lymphadenopathy and left testicular masses. After the second cycle of consolidation therapy, the patient developed sepsis that was complicated by refractory disseminated intravascular coagulopathy. He expired with a clinical picture of multiple organ failure. The unique features of this case are presented and the related literature is reviewed.
mTORC1 is essential for leukemia propagation but not stem cell self-renewal
Hoshii, Takayuki; Tadokoro, Yuko; Naka, Kazuhito; Ooshio, Takako; Muraguchi, Teruyuki; Sugiyama, Naoyuki; Soga, Tomoyoshi; Araki, Kimi; Yamamura, Ken-ichi; Hirao, Atsushi
2012-01-01
Although dysregulation of mTOR complex 1 (mTORC1) promotes leukemogenesis, how mTORC1 affects established leukemia is unclear. We investigated the role of mTORC1 in mouse hematopoiesis using a mouse model of conditional deletion of Raptor, an essential component of mTORC1. Raptor deficiency impaired granulocyte and B cell development but did not alter survival or proliferation of hematopoietic progenitor cells. In a mouse model of acute myeloid leukemia (AML), Raptor deficiency significantly suppressed leukemia progression by causing apoptosis of differentiated, but not undifferentiated, leukemia cells. mTORC1 did not control cell cycle or cell growth in undifferentiated AML cells in vivo. Transplantation of Raptor-deficient undifferentiated AML cells in a limiting dilution revealed that mTORC1 is essential for leukemia initiation. Strikingly, a subset of AML cells with undifferentiated phenotypes survived long-term in the absence of mTORC1 activity. We further demonstrated that the reactivation of mTORC1 in those cells restored their leukemia-initiating capacity. Thus, AML cells lacking mTORC1 activity can self-renew as AML stem cells. Our findings provide mechanistic insight into how residual tumor cells circumvent anticancer therapies and drive tumor recurrence. PMID:22622041
Leukemia—Health Professional Version
There are different types of leukemia, including acute myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, and hairy cell leukemia. Find evidence-based information on leukemia treatment, research, genomics, and statistics.
General Information About Hairy Cell Leukemia
... Hairy Cell Leukemia Treatment (PDQ®)–Patient Version General Information About Hairy Cell Leukemia Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...
Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.
Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír
2007-09-01
Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine.
2018-03-20
B-Cell Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Lymphoplasmacytic Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma; Refractory Follicular Lymphoma; Refractory Lymphoplasmacytic Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Marginal Zone Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma; Richter Syndrome
2018-01-24
Acute Leukemia; Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Diffuse Large B-Cell Lymphoma; Follicular Lymphoma; Graft Versus Host Disease; Hodgkin Lymphoma; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Plasma Cell Myeloma; Refractory Plasma Cell Myeloma; Secondary Myelodysplastic Syndrome
Tanaka, M; Kimura, R; Matsutani, A; Zaitsu, K; Oka, Y; Oizumi, K
1998-01-01
A case report of simultaneous presentation of chronic myelogenous leukemia (CML) and multiple myeloma (MM) in a 72-year-old female is described. Our case was typical of Ph1-positive and chimeric bcr-abl messenger RNA-positive CML. Furthermore, a marked IgG (kappa-type) paraproteinemia was present. Fluorescence in situ hybridization showed that 97% of marrow nucleated cells were positive for bcr-abl fusion signal, when myeloma cells in the bone marrow amounted to 19.0%. In the literature survey, 4 similar cases with coexistence of CML and MM have been identified.
2018-04-26
Acute Myelogenous Leukemia; Acute Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Non-Hodgkin's Lymphoma; Hodgkin's Disease; Multiple Myeloma; Germ Cell Neoplasms; Myelodysplastic Syndromes; Chronic Lymphocytic Leukemia; Immunodeficiency Diseases
78 FR 59099 - Agency Information Collection (Disability Benefits Questionnaires) Under OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
.... Hairy Cell and Other B-Cell Leukemias Disability Benefits Questionnaire, VA Form 21-0960b-1. c... exposure: Hairy Cell and Other Chronic B-cell Leukemias, Parkinson's and Ischemic Heart diseases. Veterans...-1--13,750. b. Hairy Cell and Other B-Cell Leukemias Disability Benefits Questionnaire, VA Form 21...
2018-05-15
Acute Myeloid Leukemia; Blasts 10-19 Percent of Bone Marrow Nucleated Cells; Blasts 20 Percent or More of Bone Marrow Nucleated Cells; Blasts 5-19 Percent of Peripheral Blood White Cells; Chronic Myelomonocytic Leukemia-2; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Previously Treated Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia
Chemotactic Cues for NOTCH1-Dependent Leukemia
Piovan, Erich; Tosello, Valeria; Amadori, Alberto; Zanovello, Paola
2018-01-01
The NOTCH signaling pathway is a conserved signaling cascade that regulates many aspects of development and homeostasis in multiple organ systems. Aberrant activity of this signaling pathway is linked to the initiation and progression of several hematological malignancies, exemplified by T-cell acute lymphoblastic leukemia (T-ALL). Interestingly, frequent non-mutational activation of NOTCH1 signaling has recently been demonstrated in B-cell chronic lymphocytic leukemia (B-CLL), significantly extending the pathogenic significance of this pathway in B-CLL. Leukemia patients often present with high-blood cell counts, diffuse disease with infiltration of the bone marrow, secondary lymphoid organs, and diffusion to the central nervous system (CNS). Chemokines are chemotactic cytokines that regulate migration of cells between tissues and the positioning and interactions of cells within tissue. Homeostatic chemokines and their receptors have been implicated in regulating organ-specific infiltration, but may also directly and indirectly modulate tumor growth. Recently, oncogenic NOTCH1 has been shown to regulate infiltration of leukemic cells into the CNS hijacking the CC-chemokine ligand 19/CC-chemokine receptor 7 chemokine axis. In addition, a crucial role for the homing receptor axis CXC-chemokine ligand 12/CXC-chemokine receptor 4 has been demonstrated in leukemia maintenance and progression. Moreover, the CCL25/CCR9 axis has been implicated in the homing of leukemic cells into the gut, particularly in the presence of phosphatase and tensin homolog tumor suppressor loss. In this review, we summarize the latest developments regarding the role of NOTCH signaling in regulating the chemotactic microenvironmental cues involved in the generation and progression of T-ALL and compare these findings to B-CLL. PMID:29666622
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mader, Jamie S.; Richardson, Angela; Salsman, Jayme
2007-07-15
Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that kills Jurkat T-leukemia cells by the mitochondrial pathway of apoptosis. However, the process by which LfcinB triggers mitochondria-dependent apoptosis is not well understood. Here, we show that LfcinB-induced apoptosis in Jurkat T-leukemia cells was preceded by LfcinB binding to, and progressive permeabilization of the cell membrane. Colloidal gold electron microscopy revealed that LfcinB entered the cytoplasm of Jurkat T-leukemia cells prior to the onset of mitochondrial depolarization. LfcinB was not internalized by endocytosis because endocytosis inhibitors did not prevent LfcinB-induced cytotoxicity. Furthermore, intracellular delivery of LfcinB via fusogenic liposomes caused themore » death of Jurkat T-leukemia cells, as well as normal human fibroblasts. Collectively, these findings suggest that LfcinB caused damage to the cell membrane that allowed LfcinB to enter the cytoplasm of Jurkat T-leukemia cells and mediate cytotoxicity. In addition, confocal microscopy showed that intracellular LfcinB co-localized with mitochondria in Jurkat T-leukemia cells, while flow cytometry and colloidal gold electron microscopy showed that LfcinB rapidly associated with purified mitochondria. Furthermore, purified mitochondria treated with LfcinB rapidly lost transmembrane potential and released cytochrome c. We conclude that LfcinB-induced apoptosis in Jurkat T-leukemia cells resulted from cell membrane damage and the subsequent disruption of mitochondrial membranes by internalized LfcinB.« less
Discrimination and classification of acute lymphoblastic leukemia cells by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; De Luca, Anna Chiara
2015-05-01
Currently, a combination of technologies is typically required to identify and classify leukemia cells. These methods often lack the specificity and sensitivity necessary for early and accurate diagnosis. Here, we demonstrate the use of Raman spectroscopy to identify normal B cells, collected from healthy patients, and three ALL cell lines (RS4;11, REH and MN60 at different differentiation level, respectively). Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for leukemia cell identification. Principal Component Analysis was finally used to confirm the significance of these markers for identify leukemia cells and classifying the data. The obtained results indicate a sorting accuracy of 96% between the three leukemia cell lines.
Yang, Hong; Lin, Shan; Cui, Jingru
2014-02-10
Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua
2017-06-01
Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.
Zhuang, Jianjian; Liu, Yange; Yuan, Qingxia; Liu, Junsong; Liu, Yan; Li, Hongdong; Wang, Di
2018-05-01
Acute promyelocytic leukemia is frequently associated with dizziness, fever, nausea, hematochezia and anemia. Blue light, or light with wavelengths of 400-480 nm, transmits high levels of energy. The aim of the present study was to determine the pro-apoptotic effects of blue light (wavelength, 456 nm; radiation power, 0.25 mW/cm 2 ) and the underlying mechanisms in a human promyelocytic leukemia cell line (HL60). Blue light reduced the viability and enhanced the mortality of HL60 cells in a time-dependent manner. Exposure to blue light for 24 h caused depolarization of the mitochondrial membrane potential and the overproduction of reactive oxygen species in HL60 cells. In a nude mouse model, 9-day exposure to blue light markedly suppressed the growth of HL60-xenografted tumors; however, it had no effect on hepatic and renal tissues. In addition, blue light abrogated the expression of B-cell lymphoma (Bcl)-2 and Bcl extra-long, while enhancing the levels of Bcl-2-associated X protein, cytochrome c , and cleaved caspases-3 and -9 in tumor tissues. The results suggested that the pro-apoptotic effects of blue light in human promyelocytic leukemia cells may be associated with the mitochondrial apoptosis signaling pathway.
2018-04-19
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Splenic Marginal Zone Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; Waldenström Macroglobulinemia
2015-08-18
Adult B Acute Lymphoblastic Leukemia; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; HIV Infection; Intraocular Lymphoma; Multicentric Angiofollicular Lymphoid Hyperplasia; Nodal Marginal Zone Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Plasma Cell Myeloma; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia
Buddula, Aravind; Assad, Daniel
2011-01-01
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults and is associated with increased risk of malignancy. T-cell lymphoma associated with CLL has never been reported. The case report presents a unique case of peripheral T-cell lymphoma on the gingiva of a patient with CLL. A 66-year-old man with a history of CLL was referred to the Mayo Clinic, Department of Dental Specialties, for evaluation of swelling in the upper left posterior sextant. An intraoral examination revealed a soft tissue swelling in the area of teeth number 13 and 15, including the present edentulous ridge between number 13 and 15. An incisional biopsy was performed on the palatal aspect of tooth No. 15 and submitted for histologic evaluation. The histopathology revealed proliferation of large atypical cells beneath the epithelium, positive for antigens CD2, CD3, Beta-F1, TIA-1, and Granzyme B consistent for a diagnosis of a peripheral T-cell lymphoma. A team approach including the hematologist, general dentist and periodontist resulted in timely referrals leading to an early diagnosis and early intervention and treatment.
Shimoyama, M; Minato, K; Tobinai, K; Nagai, M; Setoya, T; Watanabe, S; Hoshino, H; Miwa, M; Nagoshi, H; Ichiki, N; Fukushima, N; Sugiura, K; Funaki, N
1983-01-01
Five cases of adult T-cell leukemia-lymphoma (ATL) having typical clinicohematologic and morphologic features but negative for anti-ATLA [antibody to ATL virus (ATLV)-associated antigen (ATLA)] are presented. Some differences in immunologic, epidemiologic, and serologic data between anti-ATLA-positive and -negative ATLs are also described. Expression of ATLA in early primary cultured leukemic cells was found to be negative in three patients tested (Cases 1, 2 and 4), however, a long-term cultured cell line, ATL-6A, derived from peripheral blood leukemia cells from Case 1, was found to express ATLA. Mother of Case 1 and a daughter of Case 2 were anti-ATLA negative. These results indicate that ATLV was involved in certain anti-ATLA-negative ATL patients, at least in Case 1, and that the patient had no detectable immune response against ATLV and ATLA. However, in other cases in which no ATLA reactivity of serum and no ATLA expression in cultured leukemic cells were observed, another possibility such as activation of an unknown cellular oncogene specific for ATL without ATLV involvement may be considered. In order to prove these possibilities definitely, it is necessary to elucidate whether or not proviral DNA of ATLV is integrated into chromosomal DNA of ATL cells and to find a cellular oncogene specific for ATL in the future.
Phase I Trial of Universal Donor NK Cell Therapy in Combination With ALT803
2018-01-20
Acute Myeloid Leukemia; Myelodysplastic Syndrome; Acute Lymphoblastic Leukemia; Chronic Myeloid Leukemia; Chronic Lymphocytic Leukemia; Non Hodgkin Lymphoma; Hodgkin Lymphoma; Myeloproliferative Syndromes; Plasma Cell Myeloma; Colon Carcinoma; Adenocarcinoma of Rectum; Soft Tissue Sarcoma; Ewing's Sarcoma; Rhabdomyosarcoma
2015-07-09
Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma
Redox Control of Leukemia: From Molecular Mechanisms to Therapeutic Opportunities
Irwin, Mary E.; Rivera-Del Valle, Nilsa
2013-01-01
Abstract Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability—some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients. Antioxid. Redox Signal. 18, 1349–1383. PMID:22900756
Graft-versus-Leukemia Effect Following Hematopoietic Stem Cell Transplantation for Leukemia
Dickinson, Anne M.; Norden, Jean; Li, Shuang; Hromadnikova, Ilona; Schmid, Christoph; Schmetzer, Helga; Jochem-Kolb, Hans
2017-01-01
The success of hematopoietic stem cell transplantation (HSCT) lies with the ability of the engrafting immune system to remove residual leukemia cells via a graft-versus-leukemia effect (GvL), caused either spontaneously post-HSCT or via donor lymphocyte infusion. GvL effects can also be initiated by allogenic mismatched natural killer cells, antigen-specific T cells, and activated dendritic cells of leukemic origin. The history and further application of this GvL effect and the main mechanisms will be discussed and reviewed in this chapter. PMID:28638379
Hairy Cell Leukemia Treatment (PDQ®)—Health Professional Version
Hairy cell leukemia treatment options include surveillance, chemotherapy, targeted therapy/immunotherapy, and splenectomy. The decision to treat is based on cytopenias, splenomegaly, or infectious complications. Get detailed information about hairy cell leukemia in this clinician summary.
Karjalainen, Katja; Pasqualini, Renata; Cortes, Jorge E.; Kornblau, Steven M.; Lichtiger, Benjamin; O'Brien, Susan; Kantarjian, Hagop M.; Sidman, Richard L.; Arap, Wadih; Koivunen, Erkki
2015-01-01
Background We introduce an ex vivo methodology to perform drug library screening against human leukemia. Method Our strategy relies on human blood or bone marrow cultures under hypoxia; under these conditions, leukemia cells deplete oxygen faster than normal cells, causing a hemoglobin oxygenation shift. We demonstrate several advantages: (I) partial recapitulation of the leukemia microenvironment, (ii) use of native hemoglobin oxygenation as real-time sensor/reporter, (iii) cost-effectiveness, (iv) species-specificity, and (v) format that enables high-throughput screening. Results As a proof-of-concept, we screened a chemical library (size ∼20,000) against human leukemia cells. We identified 70 compounds (“hit” rate=0.35%; Z-factor=0.71) with activity; we examined 20 to find 18 true-positives (90%). Finally, we show that carbonohydraxonic diamide group-containing compounds are potent anti-leukemia agents that induce cell death in leukemia cells and patient-derived samples. Conclusions This unique functional assay can identify novel drug candidates as well as find future applications in personalized drug selection for leukemia patients. PMID:24496871
Leukemia - B-Cell Prolymphocytic Leukemia and Hairy Cell Leukemia
... a 1-page fact sheet that offers an introduction to CLL. This fact sheet is available as a PDF, so it is easy to print out. Cancer.Net Patient Education Video: View a short video led by an ASCO expert in leukemia ...
2018-05-24
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Graft Versus Host Disease; Hodgkin Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm; Non-Hodgkin Lymphoma; Plasma Cell Myeloma; Waldenstrom Macroglobulinemia
Aoki, Yuki; Watanabe, Takashi; Saito, Yoriko; Kuroki, Yoko; Hijikata, Atsushi; Takagi, Masatoshi; Tomizawa, Daisuke; Eguchi, Mariko; Eguchi-Ishimae, Minenori; Kaneko, Akiko; Ono, Rintaro; Sato, Kaori; Suzuki, Nahoko; Fujiki, Saera; Koh, Katsuyoshi; Ishii, Eiichi; Shultz, Leonard D.; Ohara, Osamu; Mizutani, Shuki
2015-01-01
Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34+CD38+CD19+ and CD34−CD19+ cells initiated leukemia, and in MLL-AF9 patients, CD34−CD19+ cells were LICs. In MLL-ENL patients, either CD34+ or CD34− cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34+CD38−CD19−CD33− cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34+CD38−CD19−CD33− cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4+ single positive (SP), CD8+ SP, and CD4+CD8+ double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34+CD38+ and CD34− LICs but not in CD34+CD38−CD19−CD33− HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia. PMID:25538041
Cell death sensitization of leukemia cells by opioid receptor activation
Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich
2013-01-01
Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472
Wei, Wei; Shen, Chang; Deng, Xiaohui; Chen, Linjun; Ma, Liyuan; Hao, Siguo
2014-01-01
Dendritic cells (DCs) and tumor cell-derived exosomes have been used to develop antitumor vaccines. However, the biological properties and antileukemic effects of leukemia cell-derived exosomes (LEXs) are not well described. In this study, the biological properties and induction of antileukemic immunity of LEXs were investigated using transmission electron microscopy, western blot analysis, cytotoxicity assays, and animal studies. Similar to other tumor cells, leukemia cells release exosomes. Exosomes derived from K562 leukemia cells (LEXK562) are membrane-bound vesicles with diameters of approximately 50–100 μm and harbor adhesion molecules (e.g., intercellular adhesion molecule-1) and immunologically associated molecules (e.g., heat shock protein 70). In cytotoxicity assays and animal studies, LEXs-pulsed DCs induced an antileukemic cytotoxic T-lymphocyte immune response and antileukemic immunity more effectively than did LEXs and non-pulsed DCs (P<0.05). Therefore, LEXs may harbor antigens and immunological molecules associated with leukemia cells. As such, LEX-based vaccines may be a promising strategy for prolonging disease-free survival in patients with leukemia after chemotherapy or hematopoietic stem cell transplantation. PMID:24622345
Ivanova, Donika; Zhelev, Zhivko; Lazarova, Dessislava; Getsov, Plamen; Bakalova, Rumiana; Aoki, Ichio
2018-03-01
Recent studies provided convincing evidence for the anticancer activity of combined application of vitamin C and pro-vitamin K3 (menadione). The molecular pathways underlying this process are still not well established. The present study aimed to investigate the effect of the combination of vitamin C plus pro-vitamin K3 on the redox status of leukemia and normal lymphocytes, as well as their sensitizing effect for a variety of anticancer drugs. Cytotoxicity of the substances was analyzed by trypan blue staining and automated counting of live and dead cells. Apoptosis was analyzed by fluorescein isothiocyanate-annexin V test. Oxidative stress was evaluated by the intracellular levels of reactive oxygen and nitrogen species and protein-carbonyl products. Combined administration of 300 μM vitamin C plus 3 μM pro-vitamin K3 reduced the viability of leukemia lymphocytes by ~20%, but did not influence the viability of normal lymphocytes. All combinations of anticancer drug plus vitamins C and K3 were characterized by synergistic cytotoxicity towards Jurkat cells, compared to cells treated with drug alone for 24 h. In the case of barasertib and everolimus, this synergistic cytotoxicity increased within 72 hours. It was accompanied by strong induction of apoptosis, but a reduction of level of hydroperoxides and moderately increased protein-carbonyl products in leukemia cells. Leukemia lymphocytes were more sensitive to combined administration of anticancer drug (everolimus or barasertib) plus vitamins C and K3, compared to normal lymphocytes. The combination of vitamin C plus K3 seems to be a powerful redox system that could specifically influence redox homeostasis of leukemia cells and sensitize them to conventional chemotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
2013-03-26
Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Myelodysplastic Syndromes; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Disseminated Neuroblastoma; Malignant Neoplasm; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Immature Teratoma; Ovarian Mature Teratoma; Ovarian Mixed Germ Cell Tumor; Ovarian Monodermal and Highly Specialized Teratoma; Ovarian Polyembryoma; Ovarian Yolk Sac Tumor; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Ovarian Epithelial Cancer; Testicular Choriocarcinoma; Testicular Choriocarcinoma and Embryonal Carcinoma; Testicular Choriocarcinoma and Seminoma; Testicular Choriocarcinoma and Teratoma; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma; Testicular Embryonal Carcinoma and Seminoma; Testicular Embryonal Carcinoma and Teratoma; Testicular Embryonal Carcinoma and Teratoma With Seminoma; Testicular Embryonal Carcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma and Yolk Sac Tumor With Seminoma; Testicular Teratoma; Testicular Yolk Sac Tumor; Testicular Yolk Sac Tumor and Teratoma; Testicular Yolk Sac Tumor and Teratoma With Seminoma
Cario, Gunnar; Rhein, Peter; Mitlöhner, Rita; Zimmermann, Martin; Bandapalli, Obul R.; Romey, Renja; Moericke, Anja; Ludwig, Wolf-Dieter; Ratei, Richard; Muckenthaler, Martina U.; Kulozik, Andreas E.; Schrappe, Martin; Stanulla, Martin; Karawajew, Leonid
2014-01-01
Further improvement of outcome in childhood acute lymphoblastic leukemia could be achieved by identifying additional high-risk patients who may benefit from intensified treatment. We earlier identified PTPRC (CD45) gene expression as a potential new stratification marker and now analyzed the prognostic relevance of CD45 protein expression. CD45 was measured by flow cytometry in 1065 patients treated according to the ALL-BFM-2000 protocol. The 75th percentile was used as cut-off to distinguish a CD45-high from a CD45-low group. As mean CD45 expression was significantly higher in T-cell acute lymphoblastic leukemia than in B-cell-precursor acute lymphoblastic leukemia (P<0.0001), the analysis was performed separately in both groups. In B-cell-precursor acute lymphoblastic leukemia we observed a significant association of a high CD45 expression with older age, high initial white blood cell count, ETV6/RUNX1 negativity, absence of high hyperdiploidy (P<0.0001), MLL/AF4 positivity (P=0.002), BCR/ABL1 positivity (P=0.007), prednisone poor response (P=0.002) and minimal residual disease (P<0.0001). In T-cell acute lymphoblastic leukemia we observed a significant association with initial white blood cell count (P=0.0003), prednisone poor response (P=0.01), and minimal residual disease (P=0.02). Compared to CD45-low patients, CD45-high patients had a lower event-free survival rate (B-cell-precursor acute lymphoblastic leukemia: 72±3% versus 86±1%, P<0.0001; T-cell acute lymphoblastic leukemia: 60±8% versus 78±4%, P=0.02), which was mainly attributable to a higher cumulative relapse incidence (B-cell-precursor acute lymphoblastic leukemia: 22±3% versus 11±1%, P<0.0001; T-cell acute lymphoblastic leukemia: 31±8% versus 11±3%, P=0.003) and kept its significance in multivariate analysis considering sex, age, initial white blood cell count, and minimal residual disease in B-cell-precursor- and T-cell acute lymphoblastic leukemia, and additionally presence of ETV6/RUNX1, MLL/AF4 and BCR/ABL1 rearrangements in B-cell-precursor acute lymphoblastic leukemia (P=0.002 and P=0.025, respectively). Consideration of CD45 expression may serve as an additional stratification tool in BFM-based protocols. (ClinicalTrials.gov identifier: NCT00430118) PMID:23911702
Cario, Gunnar; Rhein, Peter; Mitlöhner, Rita; Zimmermann, Martin; Bandapalli, Obul R; Romey, Renja; Moericke, Anja; Ludwig, Wolf-Dieter; Ratei, Richard; Muckenthaler, Martina U; Kulozik, Andreas E; Schrappe, Martin; Stanulla, Martin; Karawajew, Leonid
2014-01-01
Further improvement of outcome in childhood acute lymphoblastic leukemia could be achieved by identifying additional high-risk patients who may benefit from intensified treatment. We earlier identified PTPRC (CD45) gene expression as a potential new stratification marker and now analyzed the prognostic relevance of CD45 protein expression. CD45 was measured by flow cytometry in 1065 patients treated according to the ALL-BFM-2000 protocol. The 75(th) percentile was used as cut-off to distinguish a CD45-high from a CD45-low group. As mean CD45 expression was significantly higher in T-cell acute lymphoblastic leukemia than in B-cell-precursor acute lymphoblastic leukemia (P<0.0001), the analysis was performed separately in both groups. In B-cell-precursor acute lymphoblastic leukemia we observed a significant association of a high CD45 expression with older age, high initial white blood cell count, ETV6/RUNX1 negativity, absence of high hyperdiploidy (P<0.0001), MLL/AF4 positivity (P=0.002), BCR/ABL1 positivity (P=0.007), prednisone poor response (P=0.002) and minimal residual disease (P<0.0001). In T-cell acute lymphoblastic leukemia we observed a significant association with initial white blood cell count (P=0.0003), prednisone poor response (P=0.01), and minimal residual disease (P=0.02). Compared to CD45-low patients, CD45-high patients had a lower event-free survival rate (B-cell-precursor acute lymphoblastic leukemia: 72 ± 3% versus 86 ± 1%, P<0.0001; T-cell acute lymphoblastic leukemia: 60 ± 8% versus 78 ± 4%, P=0.02), which was mainly attributable to a higher cumulative relapse incidence (B-cell-precursor acute lymphoblastic leukemia: 22 ± 3% versus 11 ± 1%, P<0.0001; T-cell acute lymphoblastic leukemia: 31 ± 8% versus 11 ± 3%, P=0.003) and kept its significance in multivariate analysis considering sex, age, initial white blood cell count, and minimal residual disease in B-cell-precursor- and T-cell acute lymphoblastic leukemia, and additionally presence of ETV6/RUNX1, MLL/AF4 and BCR/ABL1 rearrangements in B-cell-precursor acute lymphoblastic leukemia (P=0.002 and P=0.025, respectively). Consideration of CD45 expression may serve as an additional stratification tool in BFM-based protocols. (ClinicalTrials.gov identifier: NCT00430118).
Reduced Intensity Preparative Regimen Followed by Stem Cell Transplant (FAB)
2016-03-29
Myelodysplastic and Myeloproliferative Disorders; Acute Myelogenous Leukemia; Acute Lymphoblastic Leukemia; Chronic Myelogenous Leukemia; Multiple Myeloma; Plasma Cell Dyscrasia; Lymphoproliferative Disorders; Hematologic Diseases
Foo, Wen-Chi; Huang, Qin; Sebastian, Siby; Hutchinson, Charles B; Burchette, Jim; Wang, Endi
2010-12-01
A small fraction of patients with chronic lymphocytic leukemia/small lymphocytic lymphoma develop Epstein-Barr virus-positive B-cell lymphoproliferative disorders. These Epstein-Barr virus-B-cell lymphoproliferative disorders are thought to be related to immune suppression induced by fludarabine/other chemotherapeutic regimens. As in other immunodeficiency-associated lymphoproliferative disorders, these disorders demonstrate a heterogeneous histological spectrum that ranges from polymorphic to monomorphic to classical Hodgkin lymphoma-like lesions. We report a case of concurrent classical Hodgkin lymphoma and plasmablastic lymphoma in a patient with chronic lymphocytic leukemia/small lymphocytic lymphoma treated with fludarabine. Both classical Hodgkin lymphoma and plasmablastic lymphoma were positive for Epstein-Barr virus-encoded RNA, whereas classical Hodgkin lymphoma was also positive for Epstein-Barr virus- latent membrane protein 1, suggesting a different viral latency. Immunoglobulin gene rearrangement studies demonstrated distinct clones in the plasmablastic lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma. These findings suggest biclonal secondary lymphomas associated with iatrogenic immunodeficiency. Epstein-Barr virus-B-cell lymphoproliferative disorders in the setting of chronic lymphocytic leukemia/small lymphocytic lymphoma, in particular those arising after chemotherapy, should be separated from true Richter's transformation, and be categorized as (iatrogenic) immunodeficiency-associated lymphoproliferative disorder. Copyright © 2010 Elsevier Inc. All rights reserved.
Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor
2016-01-01
A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938
... classification is by how fast the leukemia progresses: Acute leukemia. In acute leukemia, the abnormal blood cells are immature blood ... they multiply rapidly, so the disease worsens quickly. Acute leukemia requires aggressive, timely treatment. Chronic leukemia. There ...
Liu, Ting; Men, Qiuxu; Wu, Guixian; Yu, Chunrong; Huang, Zan; Liu, Xin; Li, Wenhua
2015-01-01
All-trans retinoic acid (ATRA) is a differentiating agent for the treatment of acute promyelocytic leukemia (APL). However, the therapeutic efficacy of ATRA has limitations. Tetrandrine is a traditional Chinese medicinal herb extract with antitumor effects. In this study, we investigated the effects of tetrandrine on human PML-RARα-positive acute promyelocytic leukemia cells. Tetrandrine inhibited tumors in vivo. It induced autophagy and differentiation by triggering ROS generation and activating Notch1 signaling. Tetrandrine induced autophagy and differentiation in M5 type patient primary leukemia cells. The in vivo results indicated that low concentrations of tetrandrine inhibited leukemia cells proliferation and induced autophagy and then facilitated their differentiation, by activating ROS and Notch1 signaling. We suggest that tetrandrine is a potential agent for the treatment of APL by inducing differentiation of leukemia cells. PMID:25797266
Wafa, Abdulsamad; As'sad, Manar; Liehr, Thomas; Aljapawe, Abdulmunim; Al Achkar, Walid
2017-04-07
The translocation t(1;19)(q23;p13), which results in the TCF3-PBX1 chimeric gene, is one of the most frequent rearrangements observed in B cell acute lymphoblastic leukemia. It appears in both adult and pediatric patients with B cell acute lymphoblastic leukemia at an overall frequency of 3 to 5%. Most cases of pre-B cell acute lymphoblastic leukemia carrying the translocation t(1;19) have a typical immunophenotype with homogeneous expression of CD19, CD10, CD9, complete absence of CD34, and at least diminished CD20. Moreover, the translocation t(1;19) correlates with known clinical high risk factors, such as elevated white blood cell count, high serum lactate dehydrogenase levels, and central nervous system involvement; early reports indicated that patients with translocation t(1;19) had a poor outcome under standard treatment. We report the case of a 15-year-old Syrian boy with pre-B cell acute lymphoblastic leukemia with abnormal karyotype with a der(19)t(1;19)(q21.1;p13.3) and two yet unreported chromosomal aberrations: an interstitial deletion 6q12 to 6q26 and a der(13)t(1;13)(q21.1;p13). According to the literature, cases who are translocation t(1;19)-positive have a significantly higher incidence of central nervous system relapse than patients with acute lymphoblastic leukemia without the translocation. Of interest, central nervous system involvement was also seen in our patient. To the best of our knowledge, this is the first case of childhood pre-B cell acute lymphoblastic leukemia with an unbalanced translocation t(1;19) with two additional chromosomal aberrations, del(6)(q12q26) and t(1;13)(q21.3;p13), which seem to be recurrent and could influence clinical outcome. Also the present case confirms the impact of the translocation t(1;19) on central nervous system relapse, which should be studied for underlying mechanisms in future.
Fiorcari, Stefania; Martinelli, Silvia; Bulgarelli, Jenny; Audrito, Valentina; Zucchini, Patrizia; Colaci, Elisabetta; Potenza, Leonardo; Narni, Franco; Luppi, Mario; Deaglio, Silvia; Marasca, Roberto; Maffei, Rossana
2015-01-01
Lenalidomide is an immunomodulatory agent clinically active in chronic lymphocytic leukemia patients. The specific mechanism of action is still undefined, but includes modulation of the microenvironment. In chronic lymphocytic leukemia patients, nurse-like cells differentiate from CD14+ mononuclear cells and protect chronic lymphocytic leukemia cells from apoptosis. Nurse-like cells resemble M2 macrophages with potent immunosuppressive functions. Here, we examined the effect of lenalidomide on the monocyte/macrophage population in chronic lymphocytic leukemia patients. We found that lenalidomide induces high actin polymerization on CD14+ monocytes through activation of small GTPases, RhoA, Rac1 and Rap1 that correlated with increased adhesion and impaired monocyte migration in response to CCL2, CCL3 and CXCL12. We observed that lenalidomide increases the number of nurse-like cells that lost the ability to nurture chronic lymphocytic leukemia cells, acquired properties of phagocytosis and promoted T-cell proliferation. Gene expression signature, induced by lenalidomide in nurse-like cells, indicated a reduction of pivotal pro-survival signals for chronic lymphocytic leukemia, such as CCL2, IGF1, CXCL12, HGF1, and supported a modulation towards M1 phenotype with high IL2 and low IL10, IL8 and CD163. Our data provide new insights into the mechanism of action of lenalidomide that mediates a pro-inflammatory switch of nurse-like cells affecting the protective microenvironment generated by chronic lymphocytic leukemia into tissues. PMID:25398834
2018-02-16
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia in Remission; Bone Marrow Transplantation Recipient; Chronic Lymphocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Hematopoietic Cell Transplantation Recipient; Hodgkin Lymphoma; Myelodysplastic Syndrome; Myelofibrosis; Myeloproliferative Neoplasm; Non-Hodgkin Lymphoma
Lian, Xiaolan; Lin, Yu-Min; Kozono, Shingo; Herbert, Megan K; Li, Xin; Yuan, Xiaohong; Guo, Jiangrui; Guo, Yafei; Tang, Min; Lin, Jia; Huang, Yiping; Wang, Bixin; Qiu, Chenxi; Tsai, Cheng-Yu; Xie, Jane; Cao, Ziang Jeff; Wu, Yong; Liu, Hekun; Zhou, Xiaozhen; Lu, Kunping; Chen, Yuanzhong
2018-05-30
The increasing genomic complexity of acute myeloid leukemia (AML), the most common form of acute leukemia, poses a major challenge to its therapy. To identify potent therapeutic targets with the ability to block multiple cancer-driving pathways is thus imperative. The unique peptidyl-prolyl cis-trans isomerase Pin1 has been reported to promote tumorigenesis through upregulation of numerous cancer-driving pathways. Although Pin1 is a key drug target for treating acute promyelocytic leukemia (APL) caused by a fusion oncogene, much less is known about the role of Pin1 in other heterogeneous leukemia. The mRNA and protein levels of Pin1 were detected in samples from de novo leukemia patients and healthy controls using real-time quantitative RT-PCR (qRT-PCR) and western blot. The establishment of the lentiviral stable-expressed short hairpin RNA (shRNA) system and the tetracycline-inducible shRNA system for targeting Pin1 were used to analyze the biological function of Pin1 in AML cells. The expression of cancer-related Pin1 downstream oncoproteins in shPin1 (Pin1 knockdown) and Pin1 inhibitor all-trans retinoic acid (ATRA) treated leukemia cells were examined by western blot, followed by evaluating the effects of genetic and chemical inhibition of Pin1 in leukemia cells on transformed phenotype, including cell proliferation and colony formation ability, using trypan blue, cell counting assay, and colony formation assay in vitro, as well as the tumorigenesis ability using in vivo xenograft mouse models. First, we found that the expression of Pin1 mRNA and protein was significantly increased in both de novo leukemia clinical samples and multiple leukemia cell lines, compared with healthy controls. Furthermore, genetic or chemical inhibition of Pin1 in human multiple leukemia cell lines potently inhibited multiple Pin1 substrate oncoproteins and effectively suppressed leukemia cell proliferation and colony formation ability in cell culture models in vitro. Moreover, tetracycline-inducible Pin1 knockdown and slow-releasing ATRA potently inhibited tumorigenicity of U937 and HL-60 leukemia cells in xenograft mouse models. We demonstrate that Pin1 is highly overexpressed in human AML and is a promising therapeutic target to block multiple cancer-driving pathways in AML.
Protothecosis in a patient with T cell lymphocytic leukemia.
Fernández, Mariana S; Rojas, Florencia D; Cattana, María E; Mussin, Javier E; de Los Ángeles Sosa, María; Benzoni, Carlos D; Giusiano, Gustavo E
Human protothecosis is a rare infection caused by algae of the genus Prototheca. Prototheca wickerhamii has been recognized as the main species that causes infection in immunocompromised hosts with deficits in innate or cellular immunity. We report a case of persisting subcutaneous protothecosis in a patient with T-cell large granular lymphocyte leukemia, who also presented a history of disseminated histoplasmosis. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Walz, Christoph; Ahmed, Wesam; Lazarides, Katherine; Betancur, Monica; Patel, Nihal; Hennighausen, Lothar; Zaleskas, Virginia M.
2012-01-01
STAT5 proteins are constitutively activated in malignant cells from many patients with leukemia, including the myeloproliferative neoplasms (MPNs) chronic myeloid leukemia (CML) and polycythemia vera (PV), but whether STAT5 is essential for the pathogenesis of these diseases is not known. In the present study, we used mice with a conditional null mutation in the Stat5a/b gene locus to determine the requirement for STAT5 in MPNs induced by BCR-ABL1 and JAK2V617F in retroviral transplantation models of CML and PV. Loss of one Stat5a/b allele resulted in a decrease in BCR-ABL1–induced CML-like MPN and the appearance of B-cell acute lymphoblastic leukemia, whereas complete deletion of Stat5a/b prevented the development of leukemia in primary recipients. However, BCR-ABL1 was expressed and active in Stat5-null leukemic stem cells, and Stat5 deletion did not prevent progression to lymphoid blast crisis or abolish established B-cell acute lymphoblastic leukemia. JAK2V617F failed to induce polycythemia in recipients after deletion of Stat5a/b, although the loss of STAT5 did not prevent the development of myelofibrosis. These results demonstrate that STAT5a/b is essential for the induction of CML-like leukemia by BCR-ABL1 and of polycythemia by JAK2V617F, and validate STAT5a/b and the genes they regulate as targets for therapy in these MPNs. PMID:22234689
Naunheim, Matthew R; Nahed, Brian V; Walcott, Brian P; Kahle, Kristopher T; Soupir, Chad P; Cahill, Daniel P; Borges, Lawrence F
2010-09-01
Intracerebral hemorrhage (ICH) contributes significantly to the morbidity and mortality of patients suffering from acute leukemia. While ICH is often identified in autopsy studies of leukemic patients, it is rare for ICH to be the presenting sign that ultimately leads to the diagnosis of leukemia. We report a patient with previously undiagnosed acute precursor B-cell lymphoblastic leukemia (ALL) who presented with diffuse encephalopathy due to ICH in the setting of an acute blast crisis. The diagnosis of ALL was initially suspected, because of the hyperleukocytosis observed on presentation, then confirmed with a bone marrow biopsy and flow cytometry study of the peripheral blood. Furthermore, detection of the BCR/ABL Philadelphia translocation t(9:22)(q34:q11) in this leukemic patient by fluorescent in situ hybridization permitted targeted therapy of the blast crisis with imatinib (Gleevec). Understanding the underlying etiology of ICH is pivotal in its management. This case demonstrates that the presence of hyperleukocytosis in a patient with intracerebral hemorrhage should raise clinical suspicion for acute leukemia as the cause of the ICH.
Stem Cell Transplantation as Immunotherapy for Hematologic Malignancies
2009-01-28
Leukemia; Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Chronic Myeloid Leukemia; Juvenile Myelomonocytic Leukemia; Myelodysplastic Syndrome; Paroxysmal Nocturnal Hemoglobinuria; Hodgkin's Lymphoma; Non-Hodgkin Lymphoma
Gopalakrishnapillai, Anilkumar; Kolb, E Anders; Dhanan, Priyanka; Mason, Robert W; Napper, Andrew; Barwe, Sonali P
2015-01-01
The bone marrow microenvironment plays an important role in acute lymphoblastic leukemia (ALL) cell proliferation, maintenance, and resistance to chemotherapy. Annexin II (ANX2) is abundantly expressed on bone marrow cells and complexes with p11 to form ANX2/p11-hetero-tetramer (ANX2T). We present evidence that p11 is upregulated in refractory ALL cell lines and patient samples. A small molecule inhibitor that disrupts ANX2/p11 interaction (ANX2T inhibitor), an anti-ANX2 antibody, and knockdown of p11, abrogated ALL cell adhesion to osteoblasts, indicating that ANX2/p11 interaction facilitates binding and retention of ALL cells in the bone marrow. Furthermore, ANX2T inhibitor increased the sensitivity of primary ALL cells co-cultured with osteoblasts to dexamethasone and vincristine induced cell death. Finally, in an orthotopic leukemia xenograft mouse model, the number of ALL cells homing to the bone marrow was reduced by 40-50% in mice injected with anti-ANX2 antibody, anti-p11 antibody or ANX2T inhibitor compared to respective controls. In a long-term engraftment assay, the percentage of ALL cells in mouse blood, bone marrow and spleen was reduced in mice treated with agents that disrupt ANX2/p11 interaction. These data show that disruption of ANX2/p11 interaction results in reduced ALL cell adhesion to osteoblasts, increased ALL cell sensitization to chemotherapy, and suppression of ALL cell homing and engraftment.
Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okabe, Seiichi, E-mail: okabe@tokyo-med.ac.jp; Tauchi, Tetsuzo; Tanaka, Yuko
2013-06-07
Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzedmore » the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.« less
Vu, Ly P.; Prieto, Camila; Amin, Elianna M.; Chhangawala, Sagar; Krivtsov, Andrei; Calvo-Vidal, M. Nieves; Chou, Timothy; Chow, Arthur; Minuesa, Gerard; Park, Sun Mi; Barlowe, Trevor S.; Taggart, James; Tivnan, Patrick; Deering, Raquel P.; Chu, Lisa P; Kwon, Jeong-Ah; Meydan, Cem; Perales-Paton, Javier; Arshi, Arora; Gönen, Mithat; Famulare, Christopher; Patel, Minal; Paietta, Elisabeth; Tallman, Martin S.; Lu, Yuheng; Glass, Jacob; Garret-Bakelman, Francine; Melnick, Ari; Levine, Ross; Al-Shahrour, Fatima; Järås, Marcus; Hacohen, Nir; Hwang, Alexia; Garippa, Ralph; Lengner, Christopher J.; Armstrong, Scott A; Cerchietti, Leandro; Cowley, Glenn S; Root, David; Doench, John; Leslie, Christina; Ebert, Benjamin L; Kharas, Michael G.
2017-01-01
The identity of the RNA binding proteins (RBPs) that govern cancer stem cell remains poorly characterized. The MSI2 RBP is a central regulator of translation of cancer stem cell programs. Through proteomics analysis of the MSI2 interacting RBP network and functional shRNA screening, we identified 24 genes required for in vivo leukemia and SYNCRIP was the most differentially required gene between normal and myeloid leukemia cells. SYNCRIP depletion increased apoptosis and differentiation while delaying leukemogenesis. Gene expression profiling of SYNCRIP depleted cells demonstrated a loss of the MLL and HOXA9 leukemia stem cell gene associated program. SYNCRIP and MSI2 interact indirectly though shared mRNA targets. SYNCRIP maintains HOXA9 translation and MSI2 or HOXA9 overexpression rescued the effects of SYNCRIP depletion. We validated SYNCRIP as a novel RBP that controls the myeloid leukemia stem cell program and propose that targeting these functional complexes might provide a novel therapeutic strategy in leukemia. PMID:28436985
Adult T-cell leukemia/lymphoma with EBV-positive Hodgkin-like cells
Venkataraman, Girish; Berkowitz, Jonathan; Morris, John C.; Janik, John E.; Raffeld, Mark A.; Pittaluga, Stefania
2011-01-01
SUMMARY Hodgkin-like cells (HLC) have been described in a variety of non-Hodgkin lymphomas (NHL) including chronic lymphocytic leukemia (CLL) and peripheral T-cell lymphoma (PTCL). There have been rare reports in the Japanese population of human T-cell lymphotrophic virus-1 (HTLV-1)-associated adult T-cell leukemia/lymphoma (ATLL) harboring HLC; however, no similar cases have been described in western patients. We report a 53-year-old African-American man that presented with progressive weakness and lethargy, and was found to have generalized lymphadenopathy and hypercalcemia. A lymph node biopsy showed involvement by ATLL with scattered Epstein-Barr virus (EBV)-positive cells, some of which resembled Hodgkin cells that had a B-cell phenotype, consistent with an Epstein-Barr virus-lymphoproliferative disorder (LPD). The patient had stage 4 disease with bone marrow involvement. In light of the associated B-cell lymphoproliferative process, the patient was treated with six cycles of intensive chemotherapy that targeted both the ATLL and the EBV-LPD that resulted in a complete response. An awareness of the association of EBV-LPD with Hodgkin-like cells in the context of ATLL is necessary to avoid potential misdiagnosis and to aid in therapeutic decisions. PMID:21315416
Immunogenicity moderation effect of interleukin-24 on myelogenous leukemia cells.
Yu, Xin; Miao, Jingcheng; Xia, Wei; Gu, Zong-Jiang
2018-04-01
Previous studies have shown that interleukin-24 (IL-24) has tumor-suppressing activity by multiple pathways. However, the immunogenicity moderation effect of IL-24 on malignant cells has not been explored extensively. In this study, we investigated the role of IL-24 in immunogenicity modulation of the myelogenous leukemia cells. Data show that myelogenous leukemia cells express low levels of immunogenicity molecules. Treatment with IL-24 could enhance leukemia cell immunogenicity, predominantly regulate leukemia cells to produce immune-associated cytokines, and improve the cytotoxic sensitivity of these cells to immune effector cells. IL-24 expression could retard transplanted leukemia cell tumor growth in vivo in athymic nude mice. Moreover, IL-24 had marked effects on downregulating the expression of angiogenesis-related proteins vascular endothelial growth factor, cluster of differentiation (CD) 31, CD34, collagen IV and metastasis-related factors CD147, membrane type-1 matrix metalloproteinase (MMP), and MMP-2 and MMP-9 in transplanted tumors. These findings indicated novel functions of this antitumor gene and characterized IL-24 as a promising agent for further clinical trial for hematologic malignancy immunotherapy.
Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl
Gregory, Mark A.; Phang, Tzu L.; Neviani, Paolo; Alvarez-Calderon, Francesca; Eide, Christopher A.; O’Hare, Thomas; Zaberezhnyy, Vadym; Williams, Richard T.; Druker, Brian J.; Perrotti, Danilo; DeGregori, James
2010-01-01
Summary Although Bcr-Abl kinase inhibitors have proven effective in the treatment of chronic myeloid leukemia (CML), they generally fail to completely eradicate Bcr-Abl+ leukemia cells. To identify genes whose inhibition sensitizes Bcr-Abl+ leukemias to killing by Bcr-Abl inhibitors, we performed an RNAi-based synthetic lethal screen with imatinib in CML cells. This screen identified numerous components of a Wnt/Ca2+/NFAT signaling pathway. Antagonism of this pathway led to impaired NFAT activity, decreased cytokine production and enhanced sensitivity to Bcr-Abl inhibition. Furthermore, NFAT inhibition with cyclosporin A facilitated leukemia cell elimination by the Bcr-Abl inhibitor dasatinib and markedly improved survival in a mouse model of Bcr-Abl+ acute lymphoblastic leukemia (ALL). Targeting this pathway in combination with Bcr-Abl inhibition could improve treatment of Bcr-Abl+ leukemias. PMID:20609354
A case of hairy cell leukemia variant.
Găman, Amelia Maria; Dobrea, Camelia Marioara; Găman, Mihnea Alexandru
2015-01-01
Hairy cell leukemia variant (HCLv) is a rare B-cell chronic lymphoproliferative disorder with features of the classic HCL but presenting some particularities, a poor response to conventional therapy of classic HCL and a more aggressive course of disease with shorter survival than classic HCL. We present a case of a 52-year-old man hospitalized in July 2012 in the Clinic of Hematology of Craiova, Romania, having splenomegaly, leukocytosis with lymphocytosis, anemia and thrombocytopenia, without monocytopenia, which exposed, in the peripheral blood and bone marrow cells, intermediate morphology between hairy cells and prolymphocytes and immunophenotype of mature B-cell phenotype CD19, CD20, CD22, CD11c, CD103, low positive for CD25 and negative for CD3, diagnosed with HCL variant, with no response to conventional chemotherapy and interferon-alpha, an aggressive course of disease and a survival of less than a year from diagnosis.
Hairy Cell Leukemia Treatment (PDQ®)—Patient Version
Hairy cell leukemia treatment options include watchful waiting when there are no symptoms, chemotherapy, biologic therapy, surgery, and targeted therapy. Learn more about the diagnosis and treatment of newly diagnosed and recurrent hairy cell leukemia in this expert-reviewed summary.
Sánchez-Martínez, Diego; Lanuza, Pilar M; Gómez, Natalia; Muntasell, Aura; Cisneros, Elisa; Moraru, Manuela; Azaceta, Gemma; Anel, Alberto; Martínez-Lostao, Luis; Villalba, Martin; Palomera, Luis; Vilches, Carlos; García Marco, José A; Pardo, Julián
2016-01-01
Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV ) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.
2018-02-08
Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Refractory Chronic Lymphocytic Leukemia; Refractory Plasma Cell Myeloma; Waldenstrom Macroglobulinemia; Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Lymphoma; Childhood Myelodysplastic Syndrome; Stage II Contiguous Adult Burkitt Lymphoma; Stage II Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Contiguous Immunoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Contiguous Follicular Lymphoma; Stage II Grade 2 Contiguous Follicular Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Contiguous Mantle Cell Lymphoma; Stage II Non-Contiguous Adult Burkitt Lymphoma; Stage II Non-Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Non-Contiguous Immunoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Non-Contiguous Follicular Lymphoma; Stage II Grade 2 Non-Contiguous Follicular Lymphoma; Stage II Grade 3 Non-Contiguous Follicular Lymphoma; Stage II Non-Contiguous Mantle Cell Lymphoma; Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Burkitt Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Myelodysplastic Syndrome; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Burkitt Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Burkitt Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Burkitt Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Burkitt Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
Gonzalez, Maria M; Kidd, Laura; Quesada, Jorge; Nguyen, Nghia; Chen, Lei
2013-01-01
Multiple myeloma (MM) is a plasma cell neoplasm involving the bone marrow with organ damage and/or a monoclonal protein (M-spike in the serum and/or urine). This neoplasm typically affects adults over the age of 50. Acute lymphoblastic leukemia (ALL) is a hematological disorder involving at least 20% lymphoblasts in the bone marrow of the B-cell lineage. Acute lymphoblastic leukemia most commonly affects young children with 75% of cases occurring in children less than 6 years old. This case report describes a patient diagnosed with MM in 2000 who achieved a complete remission in 2006 after chemotherapy. Four years later, the patient presented with sudden pancytopenia. A bone marrow biopsy was obtained revealing a B lymphoblastic leukemia in an extensively fibrotic marrow without evidence of MM. A diagnosis of ALL with myelofibrosis is rare in the adult population, acute myelofibrosis (AMF) is more commonly associated with myeloproliferative disorders, and the development of acute leukemia in myeloma is rare. To the best of our knowledge, the presence of MM, ALL, and myelofibrosis in one patient has never been reported.
Marchesi, F; Minucci, S; Pelicci, P G; Gobbi, A; Scanziani, E
2006-09-01
An 8-month-old PML/RARalpha knock-in female mouse developed a promyelocytic-like myeloid leukemia with an expected latency. At necropsy, besides the typical findings associated with myeloid leukemia, a severe unilateral hydronephrosis was observed. By histopathologic examination, 2 polypoid adenomas arising from the transitional epithelium of the renal pelvis and ureter were detected. The epithelial cells of the polypoid adenomas showed accumulation of hyaline eosinophilic material within the cytoplasm. Large amounts of extracellular eosinophilic crystals were also associated with the transitional cell adenomas. Immunohistochemical analysis revealed that the eosinophilic intracytoplasmic material and the extracellular eosinophilic crystals were composed of Ym proteins. A unilateral hyaline droplet tubular nephropathy was associated with the myeloid leukemia. Expression of Ym proteins characterized both the neoplastic myeloid infiltrates and the tubular hyaline droplets. In the present PML/RARalpha knock-in female mouse, the accumulation of Ym proteins associated with the myeloid leukemia and with the polypoid adenomas of the transitional epithelium underlies 2 distinct pathogenetic mechanisms.
Expression of HER2/Neu in B-Cell Acute Lymphoblastic Leukemia.
Rodriguez-Rodriguez, Sergio; Pomerantz, Alan; Demichelis-Gomez, Roberta; Barrera-Lumbreras, Georgina; Barrales-Benitez, Olga; Aguayo-Gonzalez, Alvaro
2016-01-01
The expression of HER2/neu in B-cell acute lymphoblastic leukemia has been reported in previous studies. The objective of this research was to study the expression of HER2/neu on the blasts of patients with acute leukemia from the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran. From June 2015 to February 2016, a HER2/neu monoclonal antibody was added to the panel of antibodies that we routinely use in patients with acute leukemia. An expression of ≥ 30% was considered positive. We studied 33 patients: 19 had de novo leukemia (57.6%), three (9.1%) were in relapse, and in 11 (33.3%) their status could not be specified. Seventeen patients (51.5%) were classified as B-cell acute lymphoblastic leukemia with a median expression of HER2/neu of 0.3% (range 0-90.2). Three patients with B-cell acute lymphoblastic leukemia were positive for HER2/neu: 89.4%, 90.9%, and 62.4%. The first and third patient had de novo B-cell acute lymphoblastic leukemia. The second patient was in second relapse after allogeneic stem cell transplant. All three patients were categorized as high-risk at the time of diagnosis. In the studied Mexican population, we found a positive expression of HER2/neu in 17% of the B-cell acute lymphoblastic leukemia patients, similar to previous studies in which the expression was found in 15-50%.
Elevated expression of pleiotrophin in lymphocytic leukemia CD19+ B cells.
Du, Chun-Xian; Wang, Lan; Li, Yan; Xiao, Wei; Guo, Qin-Lian; Chen, Fei; Tan, Xin-Ti
2014-10-01
Pleiotrophin (PTN) has been demonstrated to be strongly expressed in many fetal tissues, but seldom in healthy adult tissues. While PTN has been reported to be expressed in many types of tumors as well as at high serum concentrations in patients with many types of cancer, to date, there has been no report that PTN is expressed in leukemia, especially in lymphocytic leukemia. We isolated the CD19(+) subset of B cells from peripheral blood from healthy adults, B-cell acute lymphocytic leukemia (B-ALL) patients, and B-cell chronic lymphocytic leukemia (B-CLL) patients and examined these cells for PTN mRNA and protein expression. We used immunocytochemistry, western blotting, and enzyme-linked immunosorbent assay to show that PTN protein is highly expressed in CD19(+) B cells from B-ALL and B-CLL patients, but barely expressed in B cells from healthy adults. We also examined PTN expression at the nucleic acid level using reverse transcription polymerase chain reaction (RT-PCR) and northern blotting and detected a high levels of PTN transcripts in the CD19(+) B cells from both groups of leukemia patients, but very few in the CD19(+) B cells from the healthy controls. Interestingly, the quantity of the PTN transcripts correlated with the severity of disease. Moreover, suppression of PTN activity with an anti-PTN antibody promoted apoptosis of cells from leukemia patients and cell lines SMS-SB and JVM-2. This effect of the anti-PTN antibody suggests that PTN may be a new target for the treatment of lymphocytic leukemia. © 2014 APMIS. Published by John Wiley & Sons Ltd.
The development of targeted new agents to improve the outcome for children with leukemia.
Bautista, Francisco; Van der Lugt, Jasper; Kearns, Pamela R; Mussai, Francis J; Zwaan, C Michel; Moreno, Lucas
2016-11-01
Survival rates in pediatric leukemia have greatly improved in the last decades but still a substantial number of patients will relapse and die. New agents are necessary to overcome the limitations of conventional chemotherapy and hematopoietic stem cell transplantation and to reduce their undesirable long-term toxicities. The identification of driving molecular alterations of leukemogenesis in subsets of patients will allow the incorporation of new-targeted therapies. Areas covered: In this article the authors present a detailed review of the most recent advances in targeted therapies for pediatric leukemias. A comprehensive description of the biological background, adult data and early clinical trials in pediatrics is provided. Expert opinion: Clinical trials are the way to evaluate new agents in pediatric cancer. The development of new drugs in pediatric leukemia must be preceded by a solid biological rationale. Agents in development exploit all possible vulnerabilities of leukemic cells. Drugs targeting cell surface antigens, intracellular signaling pathways and cell cycle inhibitors or epigenetic regulators are most prominent. Major advances have occurred thanks to new developments in engineering leading to optimized molecules such as anti-CD19 bi-specific T-cell engagers (e.g. blinatumomab) and antibody-drug conjugates. The integration of new-targeted therapies in pediatric chemotherapy-based regimens will lead to improved outcomes.
Xu, Hongwei; Wen, Quan
2018-05-23
MicroRNA‑135a (miR‑135a) has been shown to exert important roles in various human cancer types, such as glioblastoma, thyroid carcinoma and renal carcinoma. However, the function of miR‑135a in acute myeloid leukemia (AML) remains largely unknown. In the present study, it was demonstrated that miR‑135a expression was significantly downregulated in AML cells compared with normal control cells. Furthermore, the downregulation of miR‑135a in patients with AML predicted poor prognosis. Through functional experiments, overexpression of miR‑135a was demonstrated to significantly inhibit the proliferation and cell cycle of AML cells, while it promoted cellular apoptosis. miR‑135a directly targeted HOXA10 in AML cells. miR‑135a overexpression significantly suppressed the mRNA and protein levels of HOXA10 in AML cells. Moreover, there was an inverse association between miR‑135a expression and HOXA10 level in AML samples. Additionally, by ectopic expression of HOXA10, restoration of HOXA10 significantly abolished the effects of miR‑135a overexpression on AML cell proliferation, cell cycle and apoptosis. In conclusion, the present study demonstrated that miR‑135a serves as a tumor suppressor in AML by targeting HOXA10, and miR‑135a may be a promising prognostic biomarker for AML patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara, H.; Seon, B.K.
1987-05-01
In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Asciticmore » and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment.« less
Targeting forkhead box transcription factors FOXM1 and FOXO in leukemia (Review).
Zhu, Hong
2014-10-01
Deregulation of forkhead box (FOX) proteins has been found in many genetic diseases and malignancies including leukemia. Leukemia is a common neoplastic disease of the blood or bone marrow characterized by the presence of immature leukocytes and is one of the leading causes of death due to cancer. Forkhead transcription factors, FOXM1 and FOXO family members (FOXOs), are important mediators in leukemia development. Aberrant expression of FOXM1 and FOXOs results in leukemogenesis. Usually the expression of FOXM1 is upregulated, whereas the expression of FOXOs is downregulated due to phosphorylation, nuclear exclusion and degradation in leukemia. On the one hand, FOXOs are bona fide tumor suppressors, on the other hand, active FOXOs maintain leukemia stem cells and stimulate drug resistance genes, contributing to leukemogenesis. FOXM1 and FOXOs have been proven to be potential targets for the development of leukemia therapeutics. They are also valuable diagnostic and prognostic markers in leukemia for clinical applications. This review summarizes the present knowledge concerning the molecular mechanisms by which FOXM1 and FOXOs modulate leukemogenesis and leukemia development, the clinical relevance of these FOX proteins in leukemia and related areas that warrant further investigation.
Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng
2013-01-01
The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581
Pure erythroid leukemia following precursor B-cell lymphoblastic leukemia.
Xu, Min; Finn, Laura S; Tsuchiya, Karen D; Thomson, Blythe; Pollard, Jessica; Rutledge, Joe
2012-01-01
Therapy-related acute myeloid leukemia is an unfortunate sequel to current multimodal intensive chemotherapy. The patient described was diagnosed with pure erythroleukemia, AML-M6b, during therapy for precursor B-cell acute lymphoblastic leukemia. To the best of our knowledge, this is the first report of this unusual association.
2016-12-06
Adult Acute Lymphoblastic Leukemia in Remission; Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
González, María Laura; Joray, Mariana Belén; Laiolo, Jerónimo; Crespo, María Inés; Palacios, Sara María; Ruiz, Gustavo Miguel
2018-01-01
Plants are a significant reservoir of cytotoxic agents, including compounds with the ability to interfere with multidrug-resistant (MDR) cells. With the aim of finding promising candidates for chemotherapy, 91 native and naturalized plants collected from the central region of Argentina were screened for their cytotoxic effect toward sensitive and MDR P-glycoprotein (P-gp) overexpressing human leukemia cells by means of MTT assays. The ethanol extracts obtained from Aldama tucumanensis, Ambrosia elatior, Baccharis artemisioides, Baccharis coridifolia, Dimerostemma aspilioides, Gaillardia megapotamica, and Vernonanthura nudiflora presented outstanding antiproliferative activity at 50 μg/mL, with inhibitory values from 93 to 100%, when tested on the acute lymphoblastic leukemia (ALL) cell line CCRF-CEM and the resistant derivative CEM-ADR5000, while 70–90% inhibition was observed against the chronic myelogenous leukemia (CML) cell K562 and its corresponding resistant subline, Lucena 1. Subsequent investigation showed these extracts to possess marked cytotoxicity with IC50 values ranging from 0.37 to 29.44 μg/mL, with most of them being below 7 μg/mL and with ALL cells, including the drug-resistant phenotype, being the most affected. G. megapotamica extract found to be one of the most effective and bioguided fractionation yielded helenalin (1). The sesquiterpene lactone displayed IC50 values of 0.63, 0.19, 0.74, and 0.16 μg/mL against K562, CCRF-CEM, Lucena 1, and CEM/ADR5000, respectively. These results support the potential of these extracts as a source of compounds for treating sensitive and multidrug-resistant leukemia cells and support compound 1 as a lead for developing effective anticancer agents. PMID:29861776
2013-06-03
Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma
Leukemia cell-rhabdovirus vaccine: personalized immunotherapy for acute lymphoblastic leukemia.
Conrad, David P; Tsang, Jovian; Maclean, Meaghan; Diallo, Jean-Simon; Le Boeuf, Fabrice; Lemay, Chantal G; Falls, Theresa J; Parato, Kelley A; Bell, John C; Atkins, Harold L
2013-07-15
Acute lymphoblastic leukemia (ALL) remains incurable in most adults. It has been difficult to provide effective immunotherapy to improve outcomes for the majority of patients. Rhabdoviruses induce strong antiviral immune responses. We hypothesized that mice administered ex vivo rhabdovirus-infected ALL cells [immunotherapy by leukemia-oncotropic virus (iLOV)] would develop robust antileukemic immune responses capable of controlling ALL. Viral protein production, replication, and cytopathy were measured in human and murine ALL cells exposed to attenuated rhabdovirus. Survival following injection of graded amounts of ALL cells was compared between cohorts of mice administered γ-irradiated rhabdovirus-infected ALL cells (iLOV) or multiple control vaccines to determine key immunotherapeutic components and characteristics. Host immune requirements were assessed in immunodeficient and bone marrow-transplanted mice or by adoptive splenocyte transfer from immunized donors. Antileukemic immune memory was ascertained by second leukemic challenge in long-term survivors. Human and murine ALL cells were infected and killed by rhabdovirus; this produced a potent antileukemia vaccine. iLOV protected mice from otherwise lethal ALL by developing durable leukemia-specific immune-mediated responses (P < 0.0001), which required an intact CTL compartment. Preexisting antiviral immunity augmented iLOV potency. Splenocytes from iLOV-vaccinated donors protected 60% of naïve recipients from ALL challenge (P = 0.0001). Injecting leukemia cells activated by, or concurrent with, multiple Toll-like receptor agonists could not reproduce the protective effect of iLOV. Similarly, injecting uninfected irradiated viable, apoptotic, or necrotic leukemia cells with/without concurrent rhabdovirus administration was ineffective. Rhabdovirus-infected leukemia cells can be used to produce a vaccine that induces robust specific immunity against aggressive leukemia.
Lowal, Kholoud A; Alaizari, Nader Ahmed; Tarakji, Bassel; Petro, Waleed; Hussain, Khaja Amjad; Altamimi, Mohamed Abdullah Alsakran
2015-10-01
The early signs of leukemia can usually manifest in the oral cavity due to infiltration of leukemic cells or due to associated decline in normal marrow elements, especially in the acute phase of leukemia, as common lesions at this stage of the disease can be screened and diagnosed by the dentist. Therefore, the dental community should be aware of the oral manifestations of leukemia and oral complications of anticancer treatment. This can eliminate the oral symptoms of the disease and to improve quality of life for these patients. An extensive search in PubMed line using a combination of terms like "leukemia, children, dental, Acute lymphoblastic leukemia, pediatric" for last ten years was made. Reviews and case reports concerned about acute lymphoblastic leukemia in children were all collected and analyzed and data were extracted. Accordingly, the aim of this review is to highlight on the oral presentations of leukemia in children attending dental clinics and the management of its undesirable side effects.
Yano, Yoko; Kobayashi, Seiichi; Yasumizu, Ryoji; Tamaki, Junko; Kubo, Mitsumasa; Sasaki, Akio; Hasan, Shahid; Okuyama, Harue; Inaba, Muneo; Ikehara, Susumu; Hiai, Hiroshi; Kakinuma, Mitsuaki
1991-01-01
Among 18 thymic leukemia cell lines which have been established from spontaneous thymic lym‐phomas in AKR mice as well as in bone marrow chimeras which were constructed by transplanting allogeneic bone marrow cells into irradiated AKR mice, three proviral integration sites were identified; near c‐myc, N‐myc and pim‐l loci. No integration site specific for chimeric leukemia cell lines was found. In three thymic leukemia cell lines which contained rearranged N‐myc, genes, insertions of long terminal repeats (LTRs) of murine leukemia viruses were detected at 18 or 20 bp downstream of the translational termination codon. These results demonstrate that the 3’region of the N‐myc gene is one of the integration targets for murine leukemia viruses in spontaneous thymic lymphomas. In these three cell lines, N‐myc mRNA was stably transcribed and transcription of c‐myc mRNA was down‐regulated. The integrated murine leukemia viruses in AKR thymic leukemia were most likely AKV, though the DNA sequence of the LTR inserted in the genome of a leukemic cell line from [(BALB/c × B6)F1‐AKR], CAK20, was different from LTRs of murine leukemia viruses so far reported. PMID:1900822
2013-10-07
L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Non-T, Non-B Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajasingh, Johnson; Raikwar, Himanshu P.; Muthian, Gladson
2006-02-10
Adult T cell leukemia is an aggressive and frequently fatal malignancy that expressess constitutively activated growth-signaling pathways in association with deregulated growth and resistance to apoptosis. Curcumin (diferuloylmethane) is a naturally occurring yellow pigment, isolated from the rhizomes of the plant Curcuma longa that has traditionally been used in the treatment of injury and inflammation. But the effect and mechanism of action of curcumin on T cell leukemia is not known. To investigate the antitumor activity of curcumin in T cell leukemia, we examined its effect on constitutive phosphorylation of JAK and STAT proteins, proliferation, and apoptosis in HTLV-I-transformed Tmore » cell lines. HTLV-I-transformed T cell leukemia lines, MT-2, HuT-102, and SLB-1, express constitutively phosphorylated JAK3, TYK2, STAT3, and STAT5 signaling proteins. In vitro treatment with curcumin induced a dose-dependent decrease in JAK and STAT phosphorylation resulting in the induction of growth-arrest and apoptosis in T cell leukemia. The induction of growth-arrest and apoptosis in association with the blockade of constitutively active JAK-STAT pathway suggests this be a mechanism by which curcumin induces antitumor activity in T cell leukemia.« less
Human monoclonal antibodies reactive with human myelomonocytic leukemia cells.
Posner, M R; Santos, D J; Elboim, H S; Tumber, M B; Frackelton, A R
1989-04-01
Peripheral blood mononuclear cells from a patient with chronic myelogenous leukemia (CML), in remission, were depleted of CD8-positive T-cells and cultured with Epstein-Barr virus. Four of 20 cultures (20%) secreted human IgG antibodies selectively reactive with the cell surfaces of certain human leukemia cell lines. Three polyclonal, Epstein-Barr virus-transformed, B-cell lines were expanded and fused with the human-mouse myeloma analogue HMMA2.11TG/O. Antibody from secreting clones HL 1.2 (IgG1), HL 2.1 (IgG3), and HL 3.1 (IgG1) have been characterized. All three react with HL-60 (promyelocytic), RWLeu4 (CML promyelocytic), and U937 (monocytic), but not with KG-1 (myeloblastic) or K562 (CML erythroid). There is no reactivity with T-cell lines, Burkitt's cell lines, pre-B-leukemia cell lines, or an undifferentiated CML cell line, BV173. Leukemic cells from two of seven patients with acute myelogenous leukemia and one of five with acute lymphocytic leukemia react with all three antibodies. Normal lymphocytes, monocytes, polymorphonuclear cells, red blood cells, bone marrow cells, and platelets do not react. Samples from patients with other diverse hematopoietic malignancies showed no reactivity. Immunoprecipitations suggest that the reactive antigen(s) is a lactoperoxidase iodinatable series of cell surface proteins with molecular weights of 42,000-54,000 and a noniodinatable protein with a molecular weight of 82,000. Based on these data these human monoclonal antibodies appear to react with myelomonocytic leukemic cells and may detect a leukemia-specific antigen or a highly restricted differentiation antigen.
2018-03-30
Acute Leukemia; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Diffuse Large B-Cell Lymphoma; Follicular Lymphoma; Graft Versus Host Disease; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Myelodysplastic Syndrome; Myelofibrosis; Myeloproliferative Neoplasm; Small Lymphocytic Lymphoma
2018-06-27
B-Cell Chronic Lymphocytic Leukemia; Monoclonal B-Cell Lymphocytosis; Lymhoma, Small Lymphocytic; Chronic Lymphocytic Leukemia; Lymphoplasmacytic Lymphoma; Waldenstrom Macroglobulinemia; Splenic Marginal Zone Lymphoma
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
2017-06-29
Acute Leukemia of Ambiguous Lineage; Adult Acute Myeloid Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia
2015-10-29
B-cell Adult Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia
Bone Marrow Transplantation of Patients in Remission Using Partially Matched Relative Donor
2016-10-19
Acute Myeloid Leukemia; Myelodysplastic Syndromes; Biphenotypic Leukemia; Acute Lymphocytic Leukemia; Chronic Myeloid Leukemia; Chronic Lymphocytic Leukemia; Plasma Cell Neoplasms; Lymphoma; Hodgkin's Disease; Aplastic Anemia
Haploidentical Allogeneic Transplant With Post-transplant Infusion of Regulatory T-cells
2018-06-01
Leukemia, Acute; Chronic Myelogenous Leukemia (CML); Myelodysplastic Syndrome (MDS); Non-Hodgkin Lymphoma (NHL); Chronic Lymphocytic Leukemia (CLL); Acute Myelogenous Leukemia (AML); Acute Lymphoblastic Leukemia (ALL)
NASA Astrophysics Data System (ADS)
Liopo, Anton; Conjusteau, André; Konopleva, Marina; Andreeff, Michael; Oraevsky, Alexander
2011-03-01
In the present work, we demonstrate a potential use of gold nanorods as a contrast agent for selective photothermal therapy of human acute leukemia cells (HL-60) using a near-infrared laser. Gold Nanorods (GNR) are synthesized and conjugated to CD33, a 67 kDa glycoprotein found on the surface of myeloid cells that belongs to the sialoadhesin family of proteins. After pegylation, or conjugation with CD33 antibody, GNR were non-toxic for acute and chronic leukemia cells. We used a Quanta System q-switched titanium sapphire laser emitting at a center wavelength of 755 nm. Each sample was illuminated with 1 laser shot at either high or low fluence. Both laser modes were used in 3 independent cell probes. HL-60 cells were treated for 45 min with GNR conjugated with mAb CD33, or with GNR-Pegylated particles. After laser application, the cells were resuspended and analyzed to cell viability with Trypan blue exclusion assay. GNR-CD33 conjugates significantly increase the percentage of cell death as compared with a control group after laser illumination: a 3 fold increase is observed.
The Perceived Threat in Adults with Leukemia Undergoing Hematopoietic Stem Cell Transplantation
Farsi, Zahra; Dehghan Nayeri, Nahid; Negarandeh, Reza
2013-01-01
Background: Leukemia and hematopoietic stem cell transplantation (HSCT) create physical, psychological, social, and spiritual distresses in patients. Understanding this threatening situation in adults with leukemia undergoing HSCT will assist health care professionals in providing holistic care to the patients. Objectives: The aim of the present study was exploring the perceived threat in adults with leukemia undergoing HSCT. Patients and Methods: This article is part of a longitudinal qualitative study which used the grounded theory approach and was conducted in 2009-2011. Ten adults with acute leukemia scheduled for HSCT were recruited from the Hematology–Oncology Research Center and Stem Cell Transplantation, Shariati Hospital in Tehran, Iran. A series of pre-transplant and post-transplant in-depth interviews were held in the hospital’s HSCT wards. Totally, 18 interviews were conducted. Three written narratives were also obtained from the participants. The Corbin and Strauss approach was used to analyze the data. Results: Perceived threat was one of the main categories that emerged from the data. This category included four subcategories, "inattention to the signs and symptoms", "doubt and anxiety", "perception of danger and time limitation" and "change of life conditions", which occurred in linear progression over time. Conclusion: Suffering from leukemia and experiencing HSCT are events that are uniquely perceived by patients. This threatening situation can significantly effect perception of patients and cause temporary or permanent alterations in patients' lives. Health care professionals can help these patients by deeper understanding of their experiences and effective interventions. PMID:25414863
Epidemiology, Treatment, and Prevention of Human T-Cell Leukemia Virus Type 1-Associated Diseases
Gonçalves, Denise Utsch; Proietti, Fernando Augusto; Ribas, João Gabriel Ramos; Araújo, Marcelo Grossi; Pinheiro, Sônia Regina; Guedes, Antônio Carlos; Carneiro-Proietti, Anna Bárbara F.
2010-01-01
Summary: Human T-cell leukemia virus type 1 (HTLV-1), the first human retrovirus to be discovered, is present in diverse regions of the world, where its infection is usually neglected in health care settings and by public health authorities. Since it is usually asymptomatic in the beginning of the infection and disease typically manifests later in life, silent transmission occurs, which is associated with sexual relations, breastfeeding, and blood transfusions. There are no prospects of vaccines, and screening of blood banks and in prenatal care settings is not universal. Therefore, its transmission is active in many areas such as parts of Africa, South and Central America, the Caribbean region, Asia, and Melanesia. It causes serious diseases in humans, including adult T-cell leukemia/lymphoma (ATL) and an incapacitating neurological disease (HTLV-associated myelopathy/tropical spastic paraparesis [HAM/TSP]) besides other afflictions such as uveitis, rheumatic syndromes, and predisposition to helminthic and bacterial infections, among others. These diseases are not curable as yet, and current treatments as well as new perspectives are discussed in the present review. PMID:20610824
Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis.
Knapp, W; Strobl, H; Majdic, O
1994-12-15
New technology allows highly sensitive flow cytometric detection and quantitative analysis of intracellular antigens in normal and malignant hemopoietic cells. With this technology, the earliest stages of myeloid and lymphoid differentiation can easily and reliably be identified using antibodies directed against (pro-)myeloperoxidase/MPO, CD22 and CD3 antigens, respectively. Particularly for the analysis of undifferentiated acute myeloblastic leukemia (AML) cells, the immunological demonstration of intracellular MPO or its enzymatically inactive proforms is highly relevant, since other myeloid marker molecules such as CD33, CD13, or CDw65 are either not restricted to the granulomonocytic lineage or appear later in differentiation. By combining MPO staining with staining for lactoferrin (LF), undifferentiated cells can be distinguished from the granulomonocytic maturation compartment in bone marrow, since LF is selectively expressed from the myelocyte stage of differentiation onward. The list of informative intracellular antigens to be used in leukemia cell analysis will certainly expand in the near future. One candidate, intracellular CD68, has already been tested by us, and results are presented. Also dealt within this article are surface marker molecules not (as yet) widely used in leukemia cell analysis but with the potential to provide important additional information. Among them are the surface structures CD15, CD15s, CDw65, CD79a (MB-1), CD79b (B29), CD87 (uPA-R), and CD117 (c-kit).
Qian, Lu; Zhang, Wanggang; Lei, Bo; He, Aili; Ye, Lianhong; Li, Xingzhou; Dong, Xin
2016-11-01
The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention.
Genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia cell line
STOCZYNSKA-FIDELUS, EWELINA; PIASKOWSKI, SYLWESTER; PAWLOWSKA, ROZA; SZYBKA, MALGORZATA; PECIAK, JOANNA; HULAS-BIGOSZEWSKA, KRYSTYNA; WINIECKA-KLIMEK, MARTA; RIESKE, PIOTR
2016-01-01
Thorough examination of genetic heterogeneity of cell lines is uncommon. In order to address this issue, the present study analyzed the genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia (T-ALL) cell line. For this purpose, traditional techniques such as fluorescence in situ hybridization and immunocytochemistry were used, in addition to more advanced techniques, including cell sorting, Sanger sequencing and massive parallel sequencing. The results indicated that the RPMI-8402 cell line consists of several genetically different cell subpopulations. Furthermore, massive parallel sequencing of RPMI-8402 provided insight into the evolution of T-ALL carcinogenesis, since this cell line exhibited the genetic heterogeneity typical of T-ALL. Therefore, the use of cell lines for drug testing in future studies may aid the progress of anticancer drug research. PMID:26870252
S100A8 Contributes to Drug Resistance by Promoting Autophagy in Leukemia Cells
Yang, Minghua; Zeng, Pei; Kang, Rui; Yu, Yan; Yang, Liangchun; Tang, Daolin; Cao, Lizhi
2014-01-01
Autophagy is a double-edged sword in tumorigenesis and plays an important role in the resistance of cancer cells to chemotherapy. S100A8 is a member of the S100 calcium-binding protein family and plays an important role in the drug resistance of leukemia cells, with the mechanisms largely unknown. Here we report that S100A8 contributes to drug resistance in leukemia by promoting autophagy. S100A8 level was elevated in drug resistance leukemia cell lines relative to the nondrug resistant cell lines. Adriamycin and vincristine increased S100A8 in human leukemia cells, accompanied with upregulation of autophagy. RNA interference-mediated knockdown of S100A8 restored the chemosensitivity of leukemia cells, while overexpression of S100A8 enhanced drug resistance and increased autophagy. S100A8 physically interacted with the autophagy regulator BECN1 and was required for the formation of the BECN1-PI3KC3 complex. In addition, interaction between S100A8 and BECN1 relied upon the autophagic complex ULK1-mAtg13. Furthermore, we discovered that exogenous S100A8 induced autophagy, and RAGE was involved in exogenous S100A8-regulated autophagy. Our data demonstrated that S100A8 is involved in the development of chemoresistance in leukemia cells by regulating autophagy, and suggest that S100A8 may be a novel target for improving leukemia therapy. PMID:24820971
2018-04-05
Acute Leukemia; Chronic Myelogenous Leukemia; Myelodysplasia; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Lymphoma, B-Cell; Lymphoma, Follicular; Lymphoma, Large B-Cell, Diffuse; Hodgkin's Lymphoma
What You Need to Know about Leukemia
... Publications Reports What You Need To Know About™ Leukemia This booklet is about leukemia. Leukemia is cancer of the blood and bone marrow ( ... This book covers: Basics about blood cells and leukemia Types of doctors who treat leukemia Treatments for ...
Miyano-Kurosaki, Naoko; Ikegami, Kou; Kurosaki, Kunihiko; Endo, Takahiko; Aoyagi, Hoshimi; Hanami, Mari; Yasumoto, Jun; Tomoda, Akio
2009-05-01
Adult T-cell leukemia (ATL) is a malignant tumor of human CD4(+) T cells infected with a human retrovirus, T lymphotropic virus type-1 (HTLV-1). The aim of the present study was to investigate the apoptotic effects of phenoxazines, 2-amino-4,4alpha-dihydro-4alpha,7-dimethyl-3H-phenoxazine-3-one (Phx-1), 3-amino-1,4alpha-dihydro-4alpha,8-dimethyl-2H-phenoxazine-2-one (Phx-2), and 2-aminophenoxazine-3-one (Phx-3) on a T cell leukemia cell line from ATL patients, MT-1 cells; HTLV-1 transformed T-cell lines, HUT-102 cells and MT-2 cells; and an HTLV-1-negative rat sarcoma cell line, XC cells. Among these phenoxazines, Phx-3 at concentrations of less than 10 microg/ml extensively inhibited growth and cell viability; arrested cell cycles at sub G(0)/G(1) phase; and augmented apoptosis of MT-1, HUT-102, and MT-2 cells. However, these phenoxazines did not affect the cell viability of an HTLV-1-negative rat sarcoma cell line, XC cells, and phytohemaggutinin-activated human peripheral blood mononuclear cells, although they markedly inhibited the growth of these cells. The transmission of HTLV-1 from HTLV-1-positive cells (MT-2 cells) to HTLV-1-negative cells (XC cells) was considered to be prevented by Phx-1, Phx-2, or Phx-3 because the syncytium formation between these cells was inhibited markedly in the presence of these phenoxazines. The present results suggest that Phx-1, Phx-2, and, in particular, Phx-3 may be useful as therapeutic agents against ATL, which is extremely refractory to current therapies.
Muroi, K; Suda, T; Nakamura, M; Okada, S; Nojiri, H; Amemiya, Y; Miura, Y; Hakomori, S
1994-01-01
The epitopes Tn and sialosyl-Tn are expressed on erythrocytes of individuals with a very rare blood group, who often suffer from "Tn syndrome." We surveyed expression of Tn and sialosyl-Tn in normal blood cells, malignant transformed cells, and progenitor stem cells from bone marrow (BM). An anti-Tn antibody, IE3, and an anti-sialosyl-Tn antibody, TKH2, were used in this study. TKH2 reacted with erythroblasts, B cells, and a subset of CD4+ cells; but not with erythrocytes. Erythroblastic cell lines (K562, HEL, and UT7/EPO) and B-cell lines (Daudi, Raji, and B-cell lines transformed by Epstein-Barr virus) showed reactivity to TKH2. Similar results from the reactivity of TKH2 with transformed cells from leukemia patients and lymphoma patients were obtained; TKH2 reacted with blasts from erythroleukemia (M6; for 4 of 4 cases) and with lymphocytes from B-cell chronic lymphocytic leukemia (3 of 3), B-cell lymphoma (5 of 5), and CD4+ adult T-cell leukemia (4 of 4), but did not react with blasts from acute myeloid leukemia (M0 to M5; 0 of 22) or acute lymphoid leukemia (B-lymphoid leukemia, 0 of 11; T-lymphoid leukemia, 0 of 2; undifferentiated leukemia, 0 of 1). IE3 did not react with all of the tested cells. CD2-CD19-TKH2+ normal BM cells (BMC) contained blasts and various maturation stages of erythroblasts. The TKH2+ cells produced a large number of colony-forming unit-erythroid (CFU-E) colonies, whereas they produced a small number of burst-forming unit-erythroid colonies and CFU-granulocyte-macrophage colonies. CD34+ normal BMC did not express Tn and sialosyl-Tn. These findings suggest that sialosyl-Tn expresses in CFU-E to erythroblasts.
Tao, Yan-Fang; Wang, Na-Na; Xu, Li-Xiao; Li, Zhi-Heng; Li, Xiao-Lu; Xu, Yun-Yun; Fang, Fang; Li, Mei; Qian, Guang-Hui; Li, Yan-Hong; Li, Yi-Ping; Wu, Yi; Ren, Jun-Li; Du, Wei-Wei; Lu, Jun; Feng, Xing; Wang, Jian; He, Wei-Qi; Hu, Shao-Yan; Pan, Jian
2017-01-01
Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by β-galactosidase staining and p16 INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G 1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. β-Galactosidase staining analysis and p16 INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G 1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.
2018-02-06
Blasts 10 Percent or More of Bone Marrow Nucleated Cells; Chronic Myelomonocytic Leukemia-2; High Grade Malignant Neoplasm; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts-2; Myeloid Neoplasm; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia
2017-07-11
Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Positive Adult Acute Lymphoblastic Leukemia; Philadelphia Positive Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia
2018-04-20
Acute Lymphoblastic Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia
Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph
2015-01-01
Objectives: To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Materials and methods: Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. Results: 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Conclusion: Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs. PMID:26069372
Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph
2015-01-01
To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs.
Leu-9 (CD 7) positivity in acute leukemias: a marker of T-cell lineage?
Ben-Ezra, J; Winberg, C D; Wu, A; Rappaport, H
1987-01-01
Monoclonal antibody Leu-9 (CD 7) has been reported to be a sensitive and specific marker for T-cell lineage in leukemic processes, since it is positive in patients whose leukemic cells fail to express other T-cell antigens. To test whether Leu-9 is indeed specific for T-cell leukemias, we examined in detail 10 cases of acute leukemia in which reactions were positive for Leu-9 and negative for other T-cell-associated markers including T-11, Leu-1, T-3, and E-rosettes. Morphologically and cytochemically, 2 of these 10 leukemias were classified as lymphoblastic, 4 as myeloblastic, 2 as monoblastic, 1 as megakaryoblastic, and 1 as undifferentiated. The case of acute megakaryoblastic leukemia is the first reported case to be Leu-9 positive. None of the 10 were TdT positive. Of six cases (two monoblastic, one lymphoblastic, one myeloblastic, one megakaryoblastic, and one undifferentiated) in which we evaluated for DNA gene rearrangements, only one, a peroxidase-positive leukemia, showed a novel band on study of the T-cell-receptor beta-chain gene. We therefore conclude that Leu-9 is not a specific marker to T-cell lineage and that, in the absence of other supporting data, Leu-9 positivity should not be used as the sole basis of classifying an acute leukemia as being T-cell derived.
Nieborowska-Skorska, Margaret; Sullivan, Katherine; Dasgupta, Yashodhara; Podszywalow-Bartnicka, Paulina; Maifrede, Silvia; Di Marcantonio, Daniela; Bolton-Gillespie, Elisabeth; Cramer-Morales, Kimberly; Lee, Jaewong; Li, Min; Slupianek, Artur; Gritsyuk, Daniel; Cerny-Reiterer, Sabine; Seferynska, Ilona; Bullinger, Lars; Gorbunova, Vera; Piwocka, Katarzyna; Valent, Peter; Civin, Curt I.; Muschen, Markus; Dick, John E.; Wang, Jean C.Y.; Bhatia, Smita; Bhatia, Ravi; Eppert, Kolja; Minden, Mark D.; Sykes, Stephen M.
2017-01-01
Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase–mediated (DNA-PK–mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK–deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK–deficient quiescent leukemia cells and BRCA/DNA-PK–deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients. PMID:28481221
Bovine leukemia virus infection in a juvenile alpaca with multicentric lymphoma
Lee, Laura C.; Scarratt, William K.; Buehring, Gertrude C.; Saunders, Geoffrey K.
2012-01-01
A 13-month-old alpaca (Vicugna pacos) was presented for mandibular masses and weight loss. Histopathology of biopsy tissue was consistent with lymphoma. The alpaca was euthanized and necropsy revealed lymphoma masses in multiple organs. Immunohistochemistry for T- and B-cell typing was inconclusive. Serology and in-situ polymerase chain reaction hybridization were positive for bovine leukemia virus. PMID:22942445
Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity?
Dorantes-Acosta, Elisa; Pelayo, Rosana
2012-01-01
Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development. PMID:22852088
Marovca, Blerim; Vonderheit, Andreas; Grotzer, Michael A.; Eckert, Cornelia; Cario, Gunnar; Wollscheid, Bernd; Horvath, Peter
2014-01-01
Interactions with the bone marrow microenvironment are essential for leukemia survival and disease progression. We developed an imaging-based RNAi platform to identify protective cues from bone marrow derived mesenchymal stromal cells (MSC) that promote survival of primary acute lymphoblastic leukemia (ALL) cells. Using a candidate gene approach, we detected distinct responses of individual ALL cases to RNA interference with stromal targets. The strongest effects were observed when interfering with solute carrier family 3 member 2 (SLC3A2) expression, which forms the cystine transporter xc− when associated with SLC7A11. Import of cystine and metabolism to cysteine by stromal cells provides the limiting substrate to generate and maintain glutathione in ALL. This metabolic interaction reduces oxidative stress in ALL cells that depend on stromal xc−. Indeed, cysteine depletion using cysteine dioxygenase resulted in leukemia cell death. Thus, functional evaluation of intercellular interactions between leukemia cells and their microenvironment identifies a selective dependency of ALL cells on stromal metabolism for a relevant subgroup of cases, providing new opportunities to develop more personalized approaches to leukemia treatment. PMID:25415224
Myeloid sarcoma of the oral cavity: A case report and review of 89 cases from the literature
Farneze, Renan-de Barros; Agostini, Michelle; Cortezzi, Ellen-Brilhante; Abrahão, Aline-Corrêa; Cabral, Marcia-Grillo; Rumayor, Alicia; Romañach, Mário-José
2017-01-01
Myeloid sarcoma is a tumor mass of immature myeloid or granulocytic cells that affects extramedullary anatomic sites, including uncommonly the oral cavity. A 24-year-old female was referred for evaluation of a fast growing painful gingival swelling lasting 2 weeks, associated with fever, fatigue, and cervical lymphadenopathy. Intraoral examination showed a bluish swelling on the right posterior lower gingiva exhibiting necrotic surface. Incisional biopsy of the gingival lesion displayed diffuse infiltration of undifferentiated tumor cells with granulocytic appearance, strongly immunopositive for CD99, myeloperoxidase and Ki-67 (60%), and negative for CD20, CD3, CD34 and TdT. Blood tests presented a severe pancytopenia, and genetic analysis confirmed the diagnosis of acute promyelocytic leukemia. The final diagnosis was of oral myeloid sarcoma associated with acute promyelocytic leukemia with t(15;17). The patient was submitted to chemotherapy but died of the disease one month later. The clinicopathologic and immunohistochemical features of the present case are compared with the 89 cases of oral myeloid sarcoma previously reported in the English-language literature. Key words:Myeloid sarcoma, chloroma, granulocytic sarcoma, gingiva, oral, acute promyelocytic leukemia, acute myeloid leukemia. PMID:29075423
Lung, H L; Ip, W K; Wong, C K; Mak, N K; Chen, Z Y; Leung, K N
2002-12-06
A novel approach for the treatment of leukemia is the differentiation therapy in which immature leukemia cells are induced to attain a mature phenotype when exposed to differentiation inducers, either alone or in combinations with other chemotherapeutic or chemopreventive drugs. Over the past decade, numerous studies indicated that green tea catechins (GTC) could suppress the growth and induce apoptosis on a number of human cancer cell lines. However, the differentiation-inducing activity of GTC on human tumors remains poorly understood. In the present study, the effect of the major GTC epigallocatechin-3-gallate (EGCG) on the proliferation and differentiation of a human eosinophilc leukemic cell line, EoL-1, was examined. Our results showed that EGCG suppressed the proliferation of the EoL-1 cells in a dose-dependent manner, with an estimated IC(50) value of 31.5 microM. On the other hand, EGCG at a concentration of 40 microM could trigger the EoL-1 cells to undergo morphological differentiation into mature eosinophil-like cells. Using RT-PCR and flow cytometry, it was found that EGCG upregulated the gene and protein expression of two eosinophil-specific granule proteins, the major basic protein (MBP) and eosinophil peroxidase (EPO), in EoL-1 cells. Taken together, our findings suggest that EGCG can exhibit anti-leukemic activity on a human eosinophilic cell line EoL-1 by suppressing the proliferation and by inducing the differentiation of the leukemia cells.
Cham, Elaine; Siegel, Dawn; Ruben, Beth S
2010-01-01
The development of xanthogranulomas has been linked to hematologic malignancies in children and adults, based on a number of reports in the literature. In children, a specific association between juvenile xanthogranuloma, neurofibromatosis 1, and juvenile myelomonocytic leukemia has been described. We report a case of a 9-month-old child, without a known diagnosis of neurofibromatosis 1, who presented with hepatosplenomegaly, anemia, thrombocytopenia, and multiple cutaneous nodules, which were confirmed to be juvenile xanthogranulomas upon biopsy. A concurrent work-up showed that the child had juvenile myelomonocytic leukemia. Although cutaneous juvenile xanthogranulomas are benign lesions, in several reported cases they have been shown to herald leukemia. This association between xanthogranulomas and hematologic malignancy is poorly understood. Juvenile xanthogranulomas have a number of morphologic variants and clinical presentations that can be confused with the cutaneous lesions of Langerhans cell histiocytosis and dermatofibroma. Recognition of the broad clinicopathologic spectrum of juvenile xanthogranulomas is critical for proper diagnosis.
NASA Astrophysics Data System (ADS)
Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; Circolo, Diego; Basile, Filomena; Corda, Daniela; de Luca, Anna Chiara
2016-04-01
Acute lymphoblastic leukemia type B (B-ALL) is a neoplastic disorder that shows high mortality rates due to immature lymphocyte B-cell proliferation. B-ALL diagnosis requires identification and classification of the leukemia cells. Here, we demonstrate the use of Raman spectroscopy to discriminate normal lymphocytic B-cells from three different B-leukemia transformed cell lines (i.e., RS4;11, REH, MN60 cells) based on their biochemical features. In combination with immunofluorescence and Western blotting, we show that these Raman markers reflect the relative changes in the potential biological markers from cell surface antigens, cytoplasmic proteins, and DNA content and correlate with the lymphoblastic B-cell maturation/differentiation stages. Our study demonstrates the potential of this technique for classification of B-leukemia cells into the different differentiation/maturation stages, as well as for the identification of key biochemical changes under chemotherapeutic treatments. Finally, preliminary results from clinical samples indicate high consistency of, and potential applications for, this Raman spectroscopy approach.
A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.
Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin
2014-06-01
The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.
Gupta, Monica; Chauhan, Kriti; Singhvi, Tanvi; Kumari, Manisha; Grover, Rajesh Kumar
2018-01-21
Automated cell counters have become more and more sophisticated with passing years. The numerical and graphic data both provide useful clues for suspecting a diagnosis especially when the workload is very high. We present our experience of useful information provided by graphic displays of an automated cell counter in hematological malignancies in a cancer hospital where a large number of complete blood count (CBC) requests are received either before or during chemotherapy. This study was conducted to assess the usefulness of hematology cell counter, viz. WBC-Diff (WBC differential), WBC/BASO (WBC basophil) and IMI (immature myeloid information) channel scatter plots, and the flaggings generated in various hematological malignancies. The graphic displays have been compiled over a period of 1 year (October 2015-September 2016) from blood samples of various solid and hematological malignancies (approximately 400 per day) received for routine CBC in the laboratory. Approximately 50 000 scattergrams have been analyzed during the study period. The findings were confirmed by peripheral blood smear examination. The scattergram analysis on XE-2100 is very sensitive as well as specific for diagnosing acute leukemia, viz. acute myeloid leukemia, acute lymphoblastic leukemia; chronic myeloproliferative disorders, viz. chronic myeloid leukemia; and chronic lymphoproliferative disorder especially chronic lymphocytic leukemia. It is suggested that the laboratories using the hematology analyzers be aware of graphic display patterns in addition to flaggings generated which provide additional information and give clue toward the diagnosis even before peripheral smear examination. © 2018 Wiley Periodicals, Inc.
Niu, Jihong; Li, Henan; Zhang, Yao; Li, Jinlan; Xie, Min; Li, Lingdi; Qin, Xiaoying; Qin, Yazhen; Guo, Xiaohuan; Jiang, Qian; Liu, Yanrong; Chen, Shanshan; Huang, Xiaojun; Han, Wenling; Ruan, Guorui
2011-06-01
CMTM5 has been shown to exhibit tumor suppressor activities, however, its role in leukemia is unclear. Herein we firstly reported the expression and function of CMTM5 in myeloid leukemia. CMTM5 was down-regulated, or undetectable, in leukemia cell lines and bone marrow cells from leukemia patients with promoter methylation. Ectopic expression of CMTM5-v1 strongly inhibited the proliferation of K562 and MEG-01 cells. In addition, significant negative correlations were observed between CMTM5 and three leukemia-specific fusion genes (AML1-ETO, PML-RARα and BCR/ABL1). CMTM5 expression was up-regulated in patients who had undergone treatment. Therefore, CMTM5 may be involved in the pathomechanism of myeloid leukemias. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yassin, Alaa; Dixon, Douglas R; Oda, Dolphine; London, Robert M
2016-02-01
Close clinical inspection for intraoral lesions in patients with leukemia that develop chronic graft-versus-host disease (cGVHD) is critical. Additionally, neoplasias developing in bone marrow transplant patients after treatment for leukemia represent a significant obstacle for long-term patient survival, necessitating lifetime follow-up by health care providers. This case report describes the identification, diagnosis, and treatment of gingival squamous cell carcinoma (SCC) in a patient with leukemia who was treated previously with a stem cell transplant and referred for routine periodontal care. A 53-year-old male was referred to the Department of Periodontics for an assessment of tooth #10 with 2+ mobility and associated cross-bite occlusion. The patient was diagnosed with acute myeloid leukemia at age 39 years, received hematopoietic stem cell transplantation (HSCT), and later developed cGVHD followed by human papilloma virus (HPV) infections. During the periodontal evaluation, a large, non-painful, exophytic, alveolar gingival mass was identified and later diagnosed as SCC. It is unusual that oral SCC presents as an exophytic, gingival swelling. The patient received comprehensive periodontal management in coordination with his otolaryngology team before and during the diagnosis of SCC secondary to cGVHD and HPV infection. Patients with a history of HSCT treatment for leukemia and subsequent cGVHD are at a high risk of developing second primary oral malignancies, including SCC. Exposure to oncogenic HPV infection may compound this risk. Therefore, it is important for dentists to be aware of special treatment concerns and to frequently screen these patients to achieve early diagnosis and treatment of these neoplasms.
Unrelated Donor Stem Cell Transplantation
2013-12-05
Severe Aplastic Anemia; Paroxysmal Nocturnal Hemoglobinuria; Acute Myelogenous Leukemia; Acute Lymphoblastic Leukemia; Myelodysplastic Syndromes; Myeloproliferative Syndromes; Chronic Myelogenous Leukemia; Hodgkin's Lymphoma; Non-Hodgkin's Lymphoma; Multiple Myeloma; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Large Granulocytic Leukemia
Lee, Sang-Guk; Park, Tae Sung; Cho, Sun Young; Lim, Gayoung; Park, Gwang Jin; Oh, Seung Hwan; Cho, Eun Hae; Chong, So Young; Huh, Ji Young
2011-01-01
SET-NUP214 rearrangements have been rarely reported in T-cell acute lymphoblastic leukemia (T-ALL), acute undifferentiated leukemia, and acute myeloid leukemia, and most documented cases have been associated with normal karyotypes in conventional cytogenetic analyses. Here, we describe a novel case of T-ALL associated with a mediastinal mass and a SET-NUP214 rearrangement, which was masked by a complex karyotype at the time of initial diagnosis. Using multiplex reverse transcriptase-polymerase chain reaction analysis, we detected a cryptic SET-NUP214 rearrangement in our patient. As only 11 cases (including the present study) of T-ALL with SET-NUP214 rearrangement have been reported, the clinical features and treatment outcomes have not been fully determined. Further studies are necessary to evaluate the incidence of SET-NUP214 rearrangement in T-ALL patients and the treatment responses as well as prognosis of these patients.
Wu, Yong; Chen, Ping; Huang, Hui-Fang; Huang, Mei-Juan; Chen, Yuan-Zhong
2012-01-01
The expression of transforming growth factor-β1 (TGF-β1) in leukemic cells and sera from patients with leukemia and its possible role in leukemia development were studied. TGF-β1 levels in culture supernatants from leukemic cells were significantly lower than those from normal bone marrow mononuclear cells. Serum TGF-β1 levels in leukemic patients were significantly lower compared with healthy controls, but returned to normal in patients achieving complete remission, and decreased when patients relapsed. TGF-β1 mRNA expression levels were significantly higher in normal bone marrow mononuclear cells but lower in leukemic cells compared with normal CD34 + cells. After transfection of the TGF-β1 gene to HL-60 cells, cell apoptosis was detected. Moreover, by flow cytometry analysis, cells arrested in G1 phase were 62% for TGF-β1 transfected cells and 44% for controls. Transfection of exogenous TGF-β1 gene inhibited HL60 cells xenograft growth in nude mice, and prolonged survival of tumor-bearing mice compared with the controls. Decreased endogenous TGF-β1 expression in leukemia cells may be involved in leukemia development, Transfection of exogenous TGF-B1 gene to HL60 can inhibit the proliferation of the cells and induce cell apoptosis by down regulating bcl-2, hTERT (human telomerase reverse transcriptase) and c-myc expression.
Chromatin Redistribution of the DEK Oncoprotein Represses hTERT Transcription in Leukemias12
Karam, Maroun; Thenoz, Morgan; Capraro, Valérie; Robin, Jean-Philippe; Pinatel, Christiane; Lancon, Agnès; Galia, Perrine; Sibon, David; Thomas, Xavier; Ducastelle-Lepretre, Sophie; Nicolini, Franck; El-Hamri, Mohamed; Chelghoun, Youcef; Wattel, Eric; Mortreux, Franck
2014-01-01
Although numerous factors have been found to modulate hTERT transcription, the mechanism of its repression in certain leukemias remains unknown. We show here that DEK represses hTERT transcription through its enrichment on the hTERT promoter in cells from chronic and acute myeloid leukemias, chronic lymphocytic leukemia, but not acute lymphocytic leukemias where hTERT is overexpressed. We isolated DEK from the hTERT promoter incubated with nuclear extracts derived from fresh acute myelogenous leukemia (AML) cells and from cells expressing Tax, an hTERT repressor encoded by the human T cell leukemia virus type 1. In addition to the recruitment of DEK, the displacement of two potent known hTERT transactivators from the hTERT promoter characterized both AML cells and Tax-expressing cells. Reporter and chromatin immunoprecipitation assays permitted to map the region that supports the repressive effect of DEK on hTERT transcription, which was proportionate to the level of DEK-promoter association but not with the level of DEK expression. Besides hTERT repression, this context of chromatin redistribution of DEK was found to govern about 40% of overall transcriptional modifications, including those of cancer-prone genes. In conclusion, DEK emerges as an hTERT repressor shared by various leukemia subtypes and seems involved in the deregulation of numerous genes associated with leukemogenesis. PMID:24563617
Yamamoto, N; Schneider, J; Hinuma, Y; Hunsmann, G
1982-01-01
A glycoprotein of an apparent molecular mass of 46,000, gp 46, was enriched by affinity chromatography from the virus- and cell-free culture medium of adult T-cell leukemia virus (ATLV) infected cells. gp 46 was specifically precipitated with sera from patients with adult T-cell leukemia associated antigen (ATLA). Thus, gp 46 is a novel component of the ATLA antigen complex.
2017-04-06
For Donors; Related Donors Giving Peripheral Blood Stem Cells (PBSC) to a Sibling; For Recipients; Acute Myelogenous Leukemia (AML); Acute Lymphoblastic Leukemia (ALL); Myelodysplastic Syndrome (MDS); Chronic Myelogenous Leukemia (CML); Non-Hodgkins Lymphoma (NHL); Hodgkins Disease (HD); Chronic Lymphocytic Leukemia (CLL)
Jawhar, Mohamad; Schwaab, Juliana; Meggendorfer, Manja; Naumann, Nicole; Horny, Hans-Peter; Sotlar, Karl; Haferlach, Torsten; Schmitt, Karla; Fabarius, Alice; Valent, Peter; Hofmann, Wolf-Karsten; Cross, Nicholas C.P.; Metzgeroth, Georgia; Reiter, Andreas
2017-01-01
Mast cell leukemia is a rare variant of advanced systemic mastocytosis characterized by at least 20% of mast cells in a bone marrow smear. We evaluated clinical and molecular characteristics of 28 patients with (n=20, 71%) or without an associated hematologic neoplasm. De novo mast cell leukemia was diagnosed in 16 of 28 (57%) patients and secondary mast cell leukemia evolving from other advanced systemic mastocytosis subtypes in 12 of 28 (43%) patients, of which 7 patients progressed while on cytoreductive treatment. Median bone marrow mast cell infiltration was 65% and median serum tryptase was 520 μg/L. C-findings were identified in 26 of 28 (93%) patients. Mutations in KIT (D816V, n=19; D816H/Y, n=5; F522C, n=1) were detected in 25 of 28 (89%) patients and prognostically relevant additional mutations in SRSF2, ASXL1 or RUNX1 (S/A/Rpos) in 13 of 25 (52%) patients. Overall response rate in 18 treatment-naïve patients was 5 of 12 (42%) on midostaurin and 1 of 6 (17%) on cladribine, and after switch 1 of 4 (25%) on midostaurin and 0 of 3 on cladribine, respectively. S/A/Rpos adversely affected response to treatment and progression to secondary mast cell leukemia (n=6) or acute myeloid leukemia (n=3) while on treatment (P<0.05). The median overall survival from mast cell leukemia diagnosis was 17 months as compared to 44 months in a control group of 124 patients with advanced systemic mastocytosis but without mast cell leukemia (P=0.03). In multivariate analyses, S/A/Rpos remained the only independent poor prognostic variable predicting overall survival (P=0.007). In conclusion, the molecular signature should be determined in all patients with mast cell leukemia because of its significant clinical and prognostic relevance. PMID:28255023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tashiro, Haruko; Mizutani-Noguchi, Mitsuho; Shirasaki, Ryosuke
2010-01-01
Bone marrow-myofibroblasts, a major component of bone marrow-stroma, are reported to originate from hematopoietic stem cells. We show in this paper that non-adherent leukemia blasts can change into myofibroblasts. When myeloblasts from two cases of acute myelogenous leukemia with a fusion product comprising mixed lineage leukemia and RNA polymerase II elongation factor, were cultured long term, their morphology changed to that of myofibroblasts with similar molecular characteristics to the parental myeloblasts. The original leukemia blasts, when cultured on the leukemia blast-derived myofibroblasts, grew extensively. Leukemia blasts can create their own microenvironment for proliferation.
Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J; Rivière, Isabelle
2009-01-01
On the basis of promising preclinical data demonstrating the eradication of systemic B-cell malignancies by CD19-targeted T lymphocytes in vivo in severe combined immunodeficient-beige mouse models, we are launching phase I clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia. We present here the validation of the bioprocess which we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semiclosed culture system using the Wave Bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in severe combined immunodeficient-beige mice bearing disseminated tumors. The validation requirements in terms of T-cell expansion, T-cell transduction with the 1928z CAR, biologic activity, quality control testing, and release criteria were met for all 4 validation runs using apheresis products from patients with CLL. Additionally, after expansion of the T cells, the diversity of the skewed Vbeta T-cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemorefractory CLL and in patients with relapsed acute lymphoblastic leukemia. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any CAR or T-cell receptor.
NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells.
Di Ianni, Mauro; Baldoni, Stefano; Del Papa, Beatrice; Aureli, Patrizia; Dorillo, Erica; De Falco, Filomena; Albi, Elisa; Varasano, Emanuela; Di Tommaso, Ambra; Giancola, Raffaella; Accorsi, Patrizia; Rotta, Gianluca; Rompietti, Chiara; Silva Barcelos, Estevão Carlos; Campese, Antonio Francesco; Di Bartolomeo, Paolo; Screpanti, Isabella; Rosati, Emanuela; Falzetti, Franca; Sportoletti, Paolo
2018-01-01
To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1- mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.
2017-10-23
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; Testicular Lymphoma; Waldenström Macroglobulinemia
Fimognari, Carmela; Turrini, Eleonora; Sestili, Piero; Calcabrini, Cinzia; Carulli, Giovanni; Fontanelli, Giulia; Rousseau, Martina; Cantelli-Forti, Giorgio; Hrelia, Patrizia
2014-01-01
Sulforaphane is a dietary isothiocyanate found in cruciferous vegetables showing antileukemic activity. With the purpose of extending the potential clinical impact of sulforaphane in the oncological field, we investigated the antileukemic effect of sulforaphane on blasts from patients affected by different types of leukemia and, taking into account the intrinsically hypoxic nature of bone marrow, on a leukemia cell line (REH) maintained in hypoxic conditions. In particular, we tested sulforaphane on patients with chronic lymphocytic leukemia, acute myeloid leukemia, T-cell acute lymphoblastic leukemia, B-cell acute lymphoblastic leukemia, and blastic NK cell leukemia. Sulforaphane caused a dose-dependent induction of apoptosis in blasts from patients diagnosed with acute lymphoblastic or myeloid leukemia. Moreover, it was able to cause apoptosis and to inhibit proliferation in hypoxic conditions on REH cells. As to its cytotoxic mechanism, we found that sulforaphane creates an oxidative cellular environment that induces DNA damage and Bax and p53 gene activation, which in turn helps trigger apoptosis. On the whole, our results raise hopes that sulforaphane might set the stage for a novel therapeutic principle complementing our growing armature against malignancies and advocate the exploration of sulforaphane in a broader population of leukemic patients.
Targeting neuropilin-1 in human leukemia and lymphoma.
Karjalainen, Katja; Jaalouk, Diana E; Bueso-Ramos, Carlos E; Zurita, Amado J; Kuniyasu, Akihiko; Eckhardt, Bedrich L; Marini, Frank C; Lichtiger, Benjamin; O'Brien, Susan; Kantarjian, Hagop M; Cortes, Jorge E; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata
2011-01-20
Targeted drug delivery offers an opportunity for the development of safer and more effective therapies for the treatment of cancer. In this study, we sought to identify short, cell-internalizing peptide ligands that could serve as directive agents for specific drug delivery in hematologic malignancies. By screening of human leukemia cells with a combinatorial phage display peptide library, we isolated a peptide motif, sequence Phe-Phe/Tyr-Any-Leu-Arg-Ser (F(F)/(Y)XLRS), which bound to different leukemia cell lines and to patient-derived bone marrow samples. The motif was internalized through a receptor-mediated pathway, and we next identified the corresponding receptor as the transmembrane glycoprotein neuropilin-1 (NRP-1). Moreover, we observed a potent anti-leukemia cell effect when the targeting motif was synthesized in tandem to the pro-apoptotic sequence (D)(KLAKLAK)₂. Finally, our results confirmed increased expression of NRP-1 in representative human leukemia and lymphoma cell lines and in a panel of bone marrow specimens obtained from patients with acute lymphoblastic leukemia or acute myelogenous leukemia compared with normal bone marrow. These results indicate that NRP-1 could potentially be used as a target for ligand-directed therapy in human leukemias and lymphomas and that the prototype CGFYWLRSC-GG-(D)(KLAKLAK)₂ is a promising drug candidate in this setting.
Kozako, Tomohiro; Soeda, Shuhei; Yoshimitsu, Makoto; Arima, Naomichi; Kuroki, Ayako; Hirata, Shinya; Tanaka, Hiroaki; Imakyure, Osamu; Tone, Nanako; Honda, Shin-Ichiro; Soeda, Shinji
2016-05-01
Adult T-cell leukemia/lymphoma (ATL), an aggressive T-cell malignancy that develops after long-term infection with human T-cell leukemia virus (HTLV-1), requires new treatments. Drug repositioning, reuse of a drug previously approved for the treatment of another condition to treat ATL, offers the possibility of reduced time and risk. Among clinically available angiotensin II receptor blockers, telmisartan is well known for its unique ability to activate peroxisome proliferator-activated receptor-γ, which plays various roles in lipid metabolism, cellular differentiation, and apoptosis. Here, telmisartan reduced cell viability and enhanced apoptotic cells via caspase activation in ex vivo peripheral blood monocytes from asymptomatic HTLV-1 carriers (ACs) or via caspase-independent cell death in acute-type ATL, which has a poor prognosis. Telmisartan also induced significant growth inhibition and apoptosis in leukemia cell lines via caspase activation, whereas other angiotensin II receptor blockers did not induce cell death. Interestingly, telmisartan increased the LC3-II-enriched protein fraction, indicating autophagosome accumulation and autophagy. Thus, telmisartan simultaneously caused caspase activation and autophagy. A hypertension medication with antiproliferation effects on primary and leukemia cells is intriguing. Patients with an early diagnosis of ATL are generally monitored until the disease progresses; thus, suppression of progression from AC and indolent ATL to acute ATL is important. Our results suggest that telmisartan is highly effective against primary cells and leukemia cell lines in caspase-dependent and -independent manners, and its clinical use may suppress acute transformation and improve prognosis of patients with this mortal disease. This is the first report demonstrating a cell growth-inhibitory effect of telmisartan in fresh peripheral blood mononuclear cells from leukemia patients.
2017-11-22
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Chronic Myeloid Leukemia; Myelodysplastic Syndrome; Lymphomas; Bone Marrow Failure; Hemoglobinopathy; Immune Deficiency; Osteopetrosis; Cytopenias; Leukocyte Disorders; Anemia Due to Intrinsic Red Cell Abnormality
T Cell Depletion for Recipients of HLA Haploidentical Related Donor Stem Cell Grafts
2017-08-29
Acute Lymphoblastic Leukemia; Non Hodgkins Lymphoma; Myelodysplastic Syndrome; Acute Myeloid Leukemia; Chronic Myelogenous Leukemia; Hemophagocytic Lymphohistiocytosis (HLH); Familial Hemophagocytic Lymphohistiocytosis (FLH); Viral-associated Hemophagocytic Syndrome (VAHS); X-linked Lymphoproliferative Disease (XLP)
2018-03-22
Anemia; Fatigue; Fever; Lymphadenopathy; Lymphocytosis; Night Sweats; Recurrent Chronic Lymphocytic Leukemia; Recurrent Plasma Cell Myeloma; Refractory Chronic Lymphocytic Leukemia; Refractory Plasma Cell Myeloma; Splenomegaly; Thrombocytopenia; Weight Loss
Expression and role of DJ-1 in leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Hang; Wang Min; Li Min
2008-10-24
DJ-1 is a multifunctional protein that has been implicated in pathogenesis of some solid tumors. In this study, we found that DJ-1 was overexpressed in acute leukemia (AL) patient samples and leukemia cell lines, which gave the first clue that DJ-1 overexpression might be involved in leukemogenesis and/or disease progression of AL. Inactivation of DJ-1 by RNA-mediated interference (RNAi) in leukemia cell lines K562 and HL60 resulted in inhibition of the proliferation potential and enhancement of the sensitivity of leukemia cells to chemotherapeutic drug etoposide. Further investigation of DJ-1 activity revealed that phosphatase and tensin homolog (PTEN), as well asmore » some proliferation and apoptosis-related genes, was regulated by DJ-1. Thus, DJ-1 might be involved in leukemogesis through regulating cell growth, proliferation, and apoptosis. It could be a potential therapeutic target for leukemia.« less
Lin, Jaung-Geng; Fan, Ming-Jen; Tang, Nou-Ying; Yang, Jai-Sing; Hsia, Te-Chun; Lin, Jen-Jyh; Lai, Kuang-Chi; Wu, Rick Sai-Chuen; Ma, Chia-Yu; Wood, W Gibson; Chung, Jing-Gung
2012-03-01
The edible mushroom (fungus) Agaricus blazei Murill (ABM) is a health food in many countries. Importantly, it has been shown to have antitumor and immune effects. There is no available information on ABM-affected immune responses in leukemia mice in vivo. Experimental Design. In this study, the authors investigated the immunopotentiating activities of boiled water-soluble extracts from desiccated ABM in WEHI-3 leukemia mice. The major characteristic of WEHI-3 leukemia mice are enlarged spleens and livers after intraperitoneal injection with murine leukemia WEHI-3 cells. Isolated T cells from spleens of ABM-treated mice resulted in increased T-cell proliferation compared with the untreated control with concanavalin A stimulation. ABM decreased the spleen and liver weights when compared with WEHI-3 leukemia mice and this effect was a dose-dependent response. ABM promoted natural killer cell activity and phagocytosis by macrophage/monocytes in leukemia mice in a dose-dependent manner. ABM also enhanced cytokines such as interleukin (IL)-1β, IL-6, and interferon-γ levels but reduced the level of IL-4 in WEHI-3 leukemia mice. Moreover, ABM increased the levels of CD3 and CD19 but decreased the levels of Mac-3 and CD11b in leukemia mice. The ABM extract is likely to stimulate immunocytes and regulate immune response in leukemia mice in vivo.
2018-03-22
Adult Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Myelodysplastic Syndrome; Secondary Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Therapy-Related Myelodysplastic Syndrome
2018-05-07
Acute Leukemias of Ambiguous Lineage; Bacterial Infection; Diarrhea; Fungal Infection; Musculoskeletal Complications; Neutropenia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies
2018-05-16
Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia in Remission; Hematopoietic Cell Transplantation Recipient; JAK2 Gene Mutation; Loss of Chromosome 17p; Mantle Cell Lymphoma; Minimal Residual Disease; Myelodysplastic Syndrome; Non-Hodgkin Lymphoma; Plasma Cell Myeloma; RAS Family Gene Mutation; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hematologic Malignancy; Recurrent Mature T- and NK-Cell Non-Hodgkin Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Therapy-Related Acute Myeloid Leukemia; Therapy-Related Myelodysplastic Syndrome; TP53 Gene Mutation
Sapanisertib in Treating Patients With Relapsed and/or Refractory Acute Lymphoblastic Leukemia
2018-05-23
Acute Lymphoblastic Leukemia in Remission; B Acute Lymphoblastic Leukemia; B Acute Lymphoblastic Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; B Acute Lymphoblastic Leukemia, Philadelphia Chromosome Negative; Blasts 10 Percent or More of Bone Marrow Nucleated Cells; Recurrent Adult Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; T Acute Lymphoblastic Leukemia
Yu, Jiang Hong; Nakajima, Ayako; Nakajima, Hiroshi; Diller, Lisa R; Bloch, Kenneth D; Bloch, Donald B
2004-02-01
Neuroblastoma is the most common solid tumor of infancy and is believed to result from impaired differentiation of neuronal crest embryonal cells. The promyelocytic leukemia protein (PML)-nuclear body is a cellular structure that is disrupted during the pathogenesis of acute promyelocytic leukemia, a disease characterized by impaired myeloid cell differentiation. During the course of studies to examine the composition and function of PML-nuclear bodies, we observed that the human neuroblastoma cell line SH-SY5Y lacked these structures and that the absence of PML-nuclear bodies was a feature of N- and I-type, but not S-type, neuroblastoma cell lines. Induction of neuroblastoma cell differentiation with 5-bromo-2'deoxyuridine, all-trans-retinoic acid, or IFN-gamma induced PML-nuclear body formation. PML-nuclear bodies were not detected in tissue sections prepared from undifferentiated neuroblastomas but were present in neuroblasts in differentiating tumors. Expression of PML in neuroblastoma cells restored PML-nuclear bodies, enhanced responsiveness to all-trans-retinoic acid, and induced cellular differentiation. Pharmacological therapies that increase PML expression may prove to be important components of combined modalities for the treatment of neuroblastoma.
Ma, Weina; Zhu, Man; Yang, Liu; Yang, Tianfeng; Zhang, Yanmin
2017-09-01
TPD7, a novel biphenyl urea taspine derivative, and berberine have presented inhibition on VEGFR2 that can be regulated by ephrin-B2 reverse signaling through interactions with the PDZ domain. The purpose of this study is to investigate the inhibitory effect of the combination of TPD7 and berberine (TAB) on T-cell acute lymphoblastic leukemia cell growth. TPD7 and berberine together synergistically inhibited the proliferation of Jurkat cells. Also, the combination of TAB induced G 1 -phase cell-cycle arrest by downregulating the level of cyclin D1, cyclin E, and CDC2. Furthermore, the combination of TAB significantly enhanced apoptosis in Jurkat cells, and the apoptosis most likely resulted from the modulation of the level of Bcl-2 family members. Most importantly, the concomitant treatment simultaneously regulated the ephrin-B2 and VEGFR2 signaling, as well as modulated the MEK/ERK and PTEN/PI3K/AKT/mTOR signaling. Therefore, the combination treatment of TAB may be a promising therapeutic method in treating T-cell acute lymphoblastic leukemia. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang
2016-06-01
A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.
BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes.
Kessler, J H; Bres-Vloemans, S A; van Veelen, P A; de Ru, A; Huijbers, I J G; Camps, M; Mulder, A; Offringa, R; Drijfhout, J W; Leeksma, O C; Ossendorp, F; Melief, C J M
2006-10-01
For immunotherapy of residual disease in patients with Philadelphia-positive leukemias, the BCR-ABL fusion regions are attractive disease-specific T-cell targets. We analyzed these regions for the prevalence of cytotoxic T lymphocyte (CTL) epitopes by an advanced reverse immunology procedure. Seventeen novel BCR-ABL fusion peptides were identified to bind efficiently to the human lymphocyte antigen (HLA)-A68, HLA-B51, HLA-B61 or HLA-Cw4 HLA class I molecules. Comprehensive enzymatic digestion analysis showed that 10 out of the 28 HLA class I binding fusion peptides were efficiently excised after their C-terminus by the proteasome, which is an essential requirement for efficient cell surface expression. Therefore, these peptides are prime vaccine candidates. The other peptides either completely lacked C-terminal liberation or were only inefficiently excised by the proteasome, rendering them inappropriate or less suitable for inclusion in a vaccine. CTL raised against the properly processed HLA-B61 epitope AEALQRPVA from the BCR-ABL e1a2 fusion region, expressed in acute lymphoblastic leukemia (ALL), specifically recognized ALL tumor cells, proving cell surface presentation of this epitope, its applicability for immunotherapy and underlining the accuracy of our epitope identification strategy. Our study provides a reliable basis for the selection of optimal peptides to be included in immunotherapeutic BCR-ABL vaccines against leukemia.
Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells
Zhang, Bin; Li, Ling; Ho, Yinwei; Li, Min; Marcucci, Guido
2016-01-01
Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL–expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL–expressing CML stem cells are potential targets for therapy. PMID:26878174
Aghebati-Maleki, Leili; Shabani, Mahdi; Baradaran, Behzad; Motallebnezhad, Morteza; Majidi, Jafar; Yousefi, Mehdi
2017-04-01
Chronic lymphocytic leukemia (CLL) is characterized by reposition of malignant B cells in the blood, bone marrow, spleen and lymph nodes. It remains the most common leukemia in the Western world. Within the recent years, major breakthroughs have been made to prolong the survival and improve the health of patients. Despite these advances, CLL is still recognized as a disease without definitive cure. New treatment approaches, based on unique targets and novel drugs, are highly desired for CLL therapy. The Identification and subsequent targeting of molecules that are overexpressed uniquely in malignant cells not normal ones play critical roles in the success of anticancer therapeutic strategies. In this regard, ROR family proteins are known as a subgroup of protein kinases which have gained huge popularity in the scientific community for the diagnosis and treatment of different cancer types. ROR1 as an antigen exclusively expressed on the surface of tumor cells can be a target for immunotherapy. ROR-1 targeting using different approaches such as siRNA, tyrosine kinase inhibitors, cell therapy and antibody induces tumor growth suppression in cancer cells. In the current review, we aim to present an overview of the efforts and scientific achievements in targeting ROR family, particularly ROR-1, for the diagnosis and treatment of chronic lymphocytic leukemia (CLL). Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumari, Priti; Kumari, Niraj; Jha, Anal K.; Singh, K. P.; Prasad, K.
2018-05-01
Green synthesis, characterizations and applications of nanoparticles have become an important branch of nanotechnology now a day. In this paper, green synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Nyctanthes arbortristis as a reducing and stabilizing agent, has been discussed. Present synthetic method is very handy, cost-effective and reproducible. Formation of AgNPs was characterized by X-ray diffraction, dynamic light scattering, scanning electron microscopy and UV-visible spectroscopy techniques. The phytochemicals responsible for nano-transformation were principally flavonoids, phenols and glycosides present in the leaves. Further, the dose dependent cytotoxicity assay of biosynthesized AgNPs against THP-1 human leukemia cell lines showed the encouraging results.
Adachi, Kristina; Song, Sophie X; Kao, Roy L; Van Dyne, Elizabeth; Kempert, Pamela; Deville, Jaime G
2016-08-01
A 19-year-old girl with a history of precursor B acute lymphoblastic leukemia in remission presented with fever, headache, and a skin rash. Cerebrospinal fluid (CSF) examination reported pleocytosis with blast-like cells concerning for a central nervous system leukemic relapse. After the patient showed significant improvement on intravenous acyclovir, a repeat lumbar puncture revealed normalization of CSF. The abnormal CSF cells were reviewed and ultimately determined to be activated and atypical lymphocytes. The patient recovered uneventfully. Atypical lymphocytes resembling leukemic blasts are an unusual finding in viral meningitis. Varicella zoster virus reactivation should be considered during initial evaluation for central nervous system relapse of leukemia.
Gupta, Rakesh K; Saran, Ravindra K; Srivastava, Arvind K; Jagetia, Anita; Garg, Lalit; Sharma, Mehar C
2017-08-01
We present a rare case of primary pituitary T cell lymphoma/leukemia (T-LBL) in association with adrenocorticotropic hormone (ACTH) and thyroid stimulating hormone (TSH) expressing pituitary adenoma in a 55-year-old woman highlighting the importance of intra-operative squash smears examination. The patient presented with complaints of headache, diminution of vision and recent onset altered sensorium. MRI revealed a mass lesion in the sellar-suprasellar region with non-visualization of pituitary gland separately, extending to involve adjacent structures diagnosed as invasive pituitary macroadenoma. Intra-operative tissue was sent for squash smear examination. The cytology showed a tumor comprising of sheets of immature lymphoid cells intermixed with clusters of pituitary acinar cells with many mitoses and tingible body macrophages. A diagnosis of presence of immature lymphoid cells within the pituitary was offered and differentials of infiltration by lymphoma cells from systemic disease versus primary central nervous lymphoma-like lymphoma arising in the pituitary adenoma were considered. Later paraffin section examination and immunohistochemistry corroborated with the squash findings and a final diagnosis of primary pituitary T cell lymphoma/leukemia in association with ACTH and TSH expressing pituitary adenoma was made. To date, only six cases of primary pituitary T cell lymphomas, including three T-LBL cases, have been reported. This is the seventh case and first one additionally describing cytohistological correlation and importance of intra-operative cytology. © 2017 Japanese Society of Neuropathology.
2018-04-09
Acute Leukemias of Ambiguous Lineage; B-cell Adult Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma
Craddock, Charles; Hoelzer, Dieter; Komanduri, Krishna V
2018-05-31
In recent years we have seen a dramatic evolution of therapeutic approaches in the management of acute leukemia with hematopoietic stem cell transplantation (HCT). For both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), alloHCT provides the best chance of long-term disease-free survival for significant subsets of patients. During this interval, we have witnessed an evolution of HCT from a therapy based on high-dose conditioning to our current understanding that its success depends both on cytoreduction and graft-versus-leukemia (GVL) effects mediated by adoptively transferred donor immune cells. Improvements in conditioning, infectious disease monitoring and management, histocompatibility testing and graft selection have successively improved outcomes, primarily due to a reduction in non-relapse mortality. Unfortunately, disease relapse remains a significant cause of treatment failure in both AML and ALL. Here, two distinguished experts, Prof. Charles Craddock and Prof. Dieter Hoelzer, reflect on the significant challenge of disease relapse following allogeneic HCT for AML and ALL, respectively. This is a review of the biology, current approaches, and future directions in the field and reflects concepts that were presented at the Third International Workshop on Biology, Prevention, and Treatment of Relapse after Stem Cell Transplantation held in Hamburg, Germany in November 2016 under the auspices of the EBMT and the ASBMT.
Acute erythroid neoplastic proliferations. A biological study based on 62 patients.
Domingo-Claros, Alicia; Larriba, Itziar; Rozman, Maruja; Irriguible, Dolors; Vallespí, Teresa; Aventin, Anna; Ayats, Ramon; Millá, Fuensanta; Solé, Francesc; Florensa, Lourdes; Gallart, Miquel; Tuset, Esperanza; Lopez, Carmen; Woessner, Soledad
2002-02-01
The terms acute erythroleukemia and AML-M6 are defined in the FAB classification as proliferations of dysplastic erythroid elements mixed with blasts of myeloid origin, but pure erythroid leukemias are not included. The recent WHO classification has a category of acute myeloid leukemia not otherwise categorized, which includes acute erythroid leukemia (M6) of two subtypes: M6a-erythroleukemia (erythroid/myeloid) and M6b-pure erythroid leukemia. The aims of this co-operative study were to discover the incidences of these different subtypes, and pay special attention to the morphology of these entities. We reviewed a series of 62 patients with erythroid neoplastic proliferations. Previous medical history, age, sex, peripheral blood and bone marrow cell counts, cytochemical stains, immunophenotype, and cytogenetics were evaluated at presentation. We analyzed the incidence of erythrocyte, leukocyte and platelet abnormalities in the peripheral blood. In bone marrow we analyzed dysplastic features of erythroblasts, granulocytic elements and the megakaryocytic lineage. Fifty-three patients met the criteria of M6a subtype of the WHO classification, and 2 were classified as having pure erythremia (M6b); 7 cases could not be classified according to the WHO criteria. Fifty-five patients presented with de novo acute leukemia, and seven patients had secondary acute leukemia. The most frequent dysplastic features in blood smears were: schistocytes, tear-drop and pincered cells in erythrocytes; hypogranulation and hyposegmentation in leukocytes; gigantism and hypogranulation in platelets. In bone marrow, megaloblastic changes, multinuclearity, karyorrhexis and basophilic stippling in erythroblasts; hypogranulation and gigantism in granulocytic series, and micromegakaryocytes and unconnected nuclei in megakarocytes were the most dysplastic features. A positive PAS reaction and increase of bone marrow iron with ring sideroblasts were common features. Trilineage dysplasia was present in 54% of cases. Dysplastic features in granulocytic elements were absent in 26% of patients and minimal erythroblastic dysplasia was observed in seven patients. A complex karyotype was seen in 27% of patients; chromosomes 5 and 7 were the most frequently involved. De novo acute erythroid leukemia was more frequent than secondary cases in our series. The most frequent type of acute erythroid proliferation was the WHO M6a subtype and the least the pure erythroid leukemia. We found a group of seven patients (11%) who could not be classified according to the WHO criteria. Morphologic findings of erythrocytes in peripheral blood, such as schistocytes, tear-drop and pincered cells, were outstanding features. Morphologic aspects remain one of the most important tools for diagnosing these entities.
2018-06-18
Acute Myeloid Leukemia; Blasts 5 Percent or More of Bone Marrow Nucleated Cells; Recurrent Adult Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; TP53 wt Allele; Untreated Adult Acute Myeloid Leukemia
2018-05-08
Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Blasts 5 Percent or More of Bone Marrow Nucleated Cells; Myelodysplastic/Myeloproliferative Neoplasm; Philadelphia Chromosome Positive; Recurrent Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Acute Lymphoblastic Leukemia; Refractory Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; T Acute Lymphoblastic Leukemia
Leukemia is a broad term for cancers of the blood cells. The type of leukemia depends on the type of blood cell that becomes cancer and whether it grows quickly or slowly. Start here to find information on leukemia treatment, research, and statistics.
Léglise, M C; Rivière, D; Brière, J
1990-01-01
We present a cytogenetic clonal evolution that correlates morphological and immunological shifts in a case of a patient with a t(4;11) (q21;q23) acute leukemia. We take this opportunity to review 146 cases reported so far, with special reference to morphology, immunophenotyping, cytogenetics, clinical characteristics and evolution. Particular features are underlined, and prognosis, leukemic stem cell origin, chromosomal breakpoints and genes involved are discussed. A relationship between this type of leukemia and exposure to carcinogens is suggested by a high rate of secondary leukemia in adults and a high frequency in newborns and infants.
Karyotype of cryopreserved bone marrow cells.
Chauffaille, M L L F; Pinheiro, R F; Stefano, J T; Kerbauy, J
2003-07-01
The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases) to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis). Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively) were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05). Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05). GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.
DeFilipp, Zachariah; Huynh, Donny V; Fazal, Salman; Sahovic, Entezam
2012-01-01
The development of hematologic malignancy in the presence of chronic lymphocytic leukemia (CLL) is rare. We present a case of acute myeloid leukemia (AML) with del(7q) occurring in a patient with a 4-year history of untreated CLL. Application of flow cytometry and immunohistochemistry allowed for characterization of two distinct coexisting malignant cell populations. After undergoing induction and consolidation chemotherapy, the patient achieved complete remission of AML with the persistence of CLL. Allogeneic transplantation was pursued given his unfavorable cytogenetics. Subsequent matched unrelated donor allogeneic stem cell transplantation resulted in full engraftment and complete remission, with no evidence of AML or CLL. Due to a scarcity of reported cases, insight into treatment and prognosis in cases of concurrent AML and CLL is limited. However, prognosis seems dependent on the chemosensitivity of AML. CLL did not have a detrimental effect on treatment or transplant outcome in our case. This is the first reported case of concomitant de novo AML and CLL to undergo allogeneic transplantation. The patient remained in complete hematologic and cytogenetic remission of both malignancies over a year after transplantation.
Cruz, C. Russell; Bollard, Catherine M.
2015-01-01
Hematopoietic stem cell transplantation has revolutionized the treatment of hematologic malignancies, but infection, graft-versus-host disease and relapse are still important problems. Calcineurin inhibitors, T-cell depletion strategies, and immunomodulators have helped to prevent graft-versus-host disease, but have a negative impact on the graft-versus-leukemia effect. T cells and natural killer cells are both thought to be important in the graft-versus-leukemia effect, and both cell types are amenable to ex vivo manipulation and clinical manufacture, making them versatile immunotherapeutics. We provide an overview of these immunotherapeutic strategies following hematopoietic stem cell transplantation, with discussions centered on natural killer and T-cell biology. We discuss the contributions of each cell type to graft-versus-leukemia effects, as well as the current research directions in the field as related to adoptive cell therapy after hematopoietic stem cell transplantation. PMID:26034113
Ford, James B; Baturin, Dmitry; Burleson, Tamara M; Van Linden, Annemie A; Kim, Yong-Mi; Porter, Christopher C
2015-09-29
While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (γH2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine and that mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia.
Burleson, Tamara M.; Van Linden, Annemie A.; Kim, Yong-Mi; Porter, Christopher C.
2015-01-01
While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (γH2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine. Mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia. PMID:26334102
2017-02-21
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia
Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*
Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.
2013-01-01
The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526
T-cell lymphoblastic leukemia/lymphoma syndrome with eosinophilia and acute myeloid leukemia.
Lamb, Lawrence S; Neuberg, Ronnie; Welsh, Jeff; Best, Robert; Stetler-Stevenson, Maryalice; Sorrell, April
2005-05-01
This case represents an example of an unusual T-cell lymphoblastic leukemia/lymphoma syndrome associated with eosinophilia and myeloid malignancy in a young boy. This case is one of only five reported "leukemic" variants of the disease and demonstrates the importance of considering this poor prognostic diagnosis in pediatric acute lymphoblastic leukemia. This case also illustrates the importance of an interactive multidisciplinary approach to the laboratory evaluation of a leukemia patient. Copyright 2005 Wiley-Liss, Inc.
2018-06-27
Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia
A role for GPx3 in activity of normal and leukemia stem cells
Herault, Olivier; Hope, Kristin J.; Deneault, Eric; Mayotte, Nadine; Chagraoui, Jalila; Wilhelm, Brian T.; Cellot, Sonia; Sauvageau, Martin; Andrade-Navarro, Miguel A.; Hébert, Josée
2012-01-01
The determinants of normal and leukemic stem cell self-renewal remain poorly characterized. We report that expression of the reactive oxygen species (ROS) scavenger glutathione peroxidase 3 (GPx3) positively correlates with the frequency of leukemia stem cells (LSCs) in Hoxa9+Meis1-induced leukemias. Compared with a leukemia with a low frequency of LSCs, a leukemia with a high frequency of LSCs showed hypomethylation of the Gpx3 promoter region, and expressed high levels of Gpx3 and low levels of ROS. LSCs and normal hematopoietic stem cells (HSCs) engineered to express Gpx3 short hairpin RNA (shRNA) were much less competitive in vivo than control cells. However, progenitor cell proliferation and differentiation was not affected by Gpx3 shRNA. Consistent with this, HSCs overexpressing Gpx3 were significantly more competitive than control cells in long-term repopulation experiments, and overexpression of the self-renewal genes Prdm16 or Hoxb4 boosted Gpx3 expression. In human primary acute myeloid leukemia samples, GPX3 expression level directly correlated with adverse prognostic outcome, revealing a potential novel target for the eradication of LSCs. PMID:22508837
2018-03-19
Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Acute Myeloid Leukemia
NASA Astrophysics Data System (ADS)
Ryland, Lindsay K.
Large granular lymphocyte (LGL) leukemia is a rare lymphoproliferative malignancy that involves blood, bone marrow and spleen infiltration. Clinically, LGL leukemia can manifest as a chronic lymphocytosis or as an aggressive leukemia that is fatal within a short period of time. A segment of LGL leukemia patients are unresponsive to immunosuppressive therapy and currently there is no known curative treatment for this disease. Another hematological malignancy, chronic lymphocytic leukemia (CLL) is the most prevalent leukemia in adults in Western countries and accounts for approximately 30% of all diagnosed leukemia cases. Around 95% of all CLL cases involve clonal expansion and abnormal proliferation of neoplastic B lymphocytes in lymphoid organs, bone marrow and peripheral blood. Similar to LGL leukemia, CLL is also incurable with current therapies. Therefore, this represents a need for new therapeutic approaches for treatment of these diseases. Recent advances in nanotechnology have illustrated the feasibility of generating nanoliposomes that encapsulate hydrophobic compounds, like ceramide, to facilitate treatment of LGL leukemia and CLL. Ceramide is an anti-proliferative sphingolipid metabolite that has been shown to selectively induce cell death in cancer cells. However, the use of ceramide as a chemotherapeutic agent is limited due to hydrophobicity. While it is understood how nanoliposomal ceramide induces cell death in several types of cancers and hematological malignancies, the effect of nanoliposomal ceramide treatment in LGL leukemia and CLL remains unclear. In this study, we investigate the differential mechanisms of cell death induction following nanoliposomal C6-ceramide treatment in both LGL leukemia and CLL. We show that nanoliposomal C6-ceramide displays minimal cytotoxicity in normal donors. peripheral blood mononuclear cells (PBMCs) and is a well-tolerated therapy during in vivo treatment in these leukemia models. To further examine this mechanism of selectivity, we utilize CLL as a cancer model which has an increased dependency on glycolysis. As most tumors exhibit a preferential switch to glycolysis, as described in the "Warburg effect," we hypothesize that ceramide nanoliposomes selectively target this activated glycolytic pathway in cancer. We demonstrate that nanoliposomal ceramide inhibits both the RNA and protein expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an intermediate enzyme in the glycolytic pathway, which is overexpressed in a subset of CLL patients. Taken together, our results suggest that C6-ceramide nanoliposomes preferentially inhibit the enhanced metabolism of glucose in leukemic CLL cells, which results in induction of cell death. We conclude that selective inhibition of the glycolytic pathway in CLL cells with nanoliposomal C6-ceramide could potentially be an effective therapy for this leukemia by targeting the Warburg effect. In addition, we conclude that nanoliposomal C6-ceramide could also be an effective therapy for patients with LGL leukemia. Collectively, the results of this dissertation emphasize exploitation of sphingolipids and sphingolipid metabolism in design and development of novel chemotherapeutics.
Moritake, Hiroshi; Kamimura, Sachiyo; Nunoi, Hiroyuki; Nakayama, Hideki; Suminoe, Aiko; Inada, Hiroko; Inagaki, Jiro; Yanai, Fumio; Okamoto, Yasuhiro; Shinkoda, Yuichi; Shimomura, Maiko; Itonaga, Nobuyoshi; Hotta, Noriko; Hidaka, Yasufumi; Ohara, Osamu; Yanagimachi, Masakatsu; Nakajima, Noriko; Okamura, Jun; Kawano, Yoshifumi
2014-07-01
This present study sought to analyze acute lymphoblastic leukemia (ALL) patients with hemophagocytic lymphohistiocytosis (HLH) registered in Kyushu-Yamaguchi Children's Cancer Study Group studies conducted between 1996 and 2007. Four of 357 patients, including two of 318 patients with B cell precursor acute lymphoblastic leukemia (BCP-ALL) and two of 39 of those with T cell acute lymphoblastic leukemia (T-ALL), were identified. HLH was observed more frequently in the T-ALL patients than in the BCP-ALL patients (P = 0.061). The mean age of 13.0 years at the diagnosis of leukemia in the HLH + ALL group was significantly higher than the 6.05 years observed in the remaining ALL groups (P = 0.001). A female predisposition was noted, as all four patients were female (P = 0.043). In two of four patients, the leukemic cells exhibited deletions on the long arm of chromosome 6 (P = 0.003). Three patients suffered from HLH during maintenance therapy. Parvovirus B19 infection and cytomegalovirus reactivation were identified as causes of HLH in one and two patients, respectively. All four patients are currently in complete remission, although one developed relapse of leukemia after receiving maintenance therapy. Based on the genetic analyses, non-synonymous single nucleotide polymorphisms (SNPs) in UNC13D, syntaxin 11, and STXBP2 were identified in all patients. Clinicians should therefore be aware of the risk of HLH during maintenance therapy, especially in older T-ALL patients with SNPs in familial HLH causative genes.
2015-11-10
Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma
Cryptochrome-1 expression: a new prognostic marker in B-cell chronic lymphocytic leukemia.
Lewintre, Eloisa Jantus; Martín, Cristina Reinoso; Ballesteros, Carlos García; Montaner, David; Rivera, Rosa Farrás; Mayans, José Ramón; García-Conde, Javier
2009-02-01
Chronic lymphocytic leukemia is an adult-onset leukemia with a heterogeneous clinical behavior. When chronic lymphocytic leukemia cases were divided on the basis of IgV(H) mutational status, widely differing clinical courses were revealed. Since IgV(H) sequencing is difficult to perform in a routine diagnostic laboratory, finding a surrogate for IgV(H) mutational status seems an important priority. In the present study, we proposed the use of Cryptochrome-1 as a new prognostic marker in early-stage chronic lymphocytic leukemia. Seventy patients (Binet stage A, without treatment) were included in the study. We correlated Cryptochrome-1 mRNA with well established prognostic markers such as IgV(H) mutations, ZAP70, LPL or CD38 expression and chromosomal abnormalities. High Cryptochrome-1 expression correlated with IgV(H) unmutated samples. In addition, Cryptochrome-1 was a valuable predictor of disease progression in early-stage chronic lymphocytic leukemia, therefore it can be introduced in clinical practice with the advantage of a simplified method of quantification.
In vitro cytotoxic activity evaluation of phenytoin derivatives against human leukemia cells.
Śladowska, Katarzyna; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna; Mazur, Lidia
2016-09-01
Hydantoin derivatives, including phenytoin (5,5-diphenylhydantoin), have recently gained attention as they possess a variety of important biochemical and pharmacological properties. Nevertheless, available information on anticancer activity of hydantoin derivatives is still scarce. Here, we evaluated possible antileukemic potential of four phenytoin analogs, namely: methyl 2-(2,4-dioxo-5,5-diphenylimidazolidin-3-yl)propanoate (1), methyl 2-(1-(3-bromopropyl)-2,4-dioxo-5,5-diphenylimidazolidin-3-yl)propanoate (2), 1-(3-bromopropyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (3) and 1-(3-bromobutyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (4). The experiments were performed on human acute histiocytic lymphoma U937 cells and human promyelocytic leukemia HL-60 cells. The present study was conducted using spectrophotometric 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and the electronic Beckman-Coulter method. We observed temporary changes in the leukemia cell viability, volume and count. The effects of the four 5,5-diphenylhydantoin derivatives on U937 and HL-60 cells depended on the agent tested and its concentration, the time intervals after the compound application, and the leukemia cell line used. HL-60 cells were more sensitive than U937 cells to the action of the phenytoin analogs (1-4). The antileukemic activities of the three bromoalkyl diphenylhydantoin derivatives (2, 3, and 4) were stronger than that of the compound 1 [methyl 2-(2,4-dioxo-5,5-diphenylimidazolidin-3-yl) propanoate], with no bromoalkyl substituent. The structural modifications of 5,5-diphenylhydantoin are responsible for such varied antileukemic potential of its four derivatives.
Single-cell genomic profiling of acute myeloid leukemia for clinical use: A pilot study
Yan, Benedict; Hu, Yongli; Ban, Kenneth H.K.; Tiang, Zenia; Ng, Christopher; Lee, Joanne; Tan, Wilson; Chiu, Lily; Tan, Tin Wee; Seah, Elaine; Ng, Chin Hin; Chng, Wee-Joo; Foo, Roger
2017-01-01
Although bulk high-throughput genomic profiling studies have led to a significant increase in the understanding of cancer biology, there is increasing awareness that bulk profiling approaches do not completely elucidate tumor heterogeneity. Single-cell genomic profiling enables the distinction of tumor heterogeneity, and may improve clinical diagnosis through the identification and characterization of putative subclonal populations. In the present study, the challenges associated with a single-cell genomics profiling workflow for clinical diagnostics were investigated. Single-cell RNA-sequencing (RNA-seq) was performed on 20 cells from an acute myeloid leukemia bone marrow sample. Putative blasts were identified based on their gene expression profiles and principal component analysis was performed to identify outlier cells. Variant calling was performed on the single-cell RNA-seq data. The present pilot study demonstrates a proof of concept for clinical single-cell genomic profiling. The recognized limitations include significant stochastic RNA loss and the relatively low throughput of the current proposed platform. Although the results of the present study are promising, further technological advances and protocol optimization are necessary for single-cell genomic profiling to be clinically viable. PMID:28454300
Yun, Xinming; Rao, Wenbing; Xiao, Ciying; Huang, Qingchun
2017-06-01
Leukemia threatens millions of people's health and lives, and the pesticide-induced leukemia has been increasingly concerned because of the etiologic exposure. In this paper, cytotoxic effect of emamectin benzoate (EMB), an excellent natural-product insecticide, was evaluated through monitoring cell viability, cell apoptosis, mitochondrial membrane potential and intracellular Ca 2+ concentration ([Ca 2+ ] i ) in leukemia K562 and Molt-4 cells. Following the exposure to EMB, cell viability was decreased and positive apoptosis of K562 and Molt-4 cells was increased in a concentration- and time- dependent fashion. In the treatment of 10μM EMB, apoptotic cells accounted for 93.0% to K562 cells and 98.9% to Molt-4 cells based on the control, meanwhile, 63.47% of K562 cells and 81.15% of Molt-4 cells exhibited late apoptotic and necrotic features with damaged cytoplasmic membrane. 48h exposure to 10μM EMB increased significantly the great number of cells with mitochondrial membrane potential (MMP) loss, and the elevation of [Ca 2+ ] i level was peaked and persisted within 70s in K562 cells whilst 50s in Molt-4 cells. Moreover, a stronger cytotoxicity of EMB was further observed than that of imatinib. The results authenticate the efficacious effect of EMB as a potential anti-leukemia agent and an inconsistency with regard to insecticide-induced leukemia. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiation-induced leukemia: Comparative studies in mouse and man
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, M.
1991-01-01
We now have a clear understanding of the mechanism by which radiation-induced (T-cell) leukemia occurs. In irradiated mice (radiation-induced thymic leukemia) and in man (acute lymphoblastic T-cell leukemia, T-ALL) the mechanism of leukemogenesis is surprisingly similar. Expressed in the most elementary terms, T-cell leukemia occurs when T-cell differentiation is inhibited by a mutation, and pre-T cells attempt but fail to differentiate in the thymus. Instead of leaving the thymus for the periphery as functional T-cells they continue to proliferate in the thymus. The proliferating pre- (pro-) T-cells constitute the (early) acute T-cell leukemia (A-TCL). This model for the mechanism ofmore » T-cell leukemogenesis accounts for all the properties of both murine and human A-TCL. Important support for the model has recently come from work by Ilan Kirsch and others, who have shown that mutations/deletions in the genes SCL (TAL), SIL, and LCK constitute primary events in the development of T-ALL, by inhibiting differentiation of thymic pre- (pro-) T-cells. This mechanism of T-cell leukemogenesis brings several specific questions into focus: How do early A-TCL cells progress to become potently tumorigenic and poorly treatable Is it feasible to genetically suppress early and/or progressed A-TCL cells What is the mechanism by which the differentiation-inhibited (leukemic) pre-T cells proliferate During the first grant year we have worked on aspects of all three questions.« less
Han, Shengli; Huang, Jing; Cui, Ronghua; Zhang, Tao
2015-02-01
Carthamus tinctorius, used in traditional Chinese medicine, has many pharmacological effects, such as anticoagulant effects, antioxidant effects, antiaging effects, regulation of gene expression, and antitumor effects. However, there is no report on the antiallergic effects of the components in C. tinctorius. In the present study, we investigated the antiallergic components of C. tinctorius and its mechanism of action. A rat basophilic leukemia 2H3/cell membrane chromatography coupled online with high-performance liquid chromatography and tandem mass spectrometry method was developed to screen antiallergic components from C. tinctorius. The screening results showed that Hydroxysafflor yellow A, from C. tinctorius, was the targeted component that retained on the rat basophilic leukemia 2H3/cell membrane chromatography column. We measured the amount of β-hexosaminidase and histamine released in mast cells and the key markers of degranulation. The release assays showed that Hydroxysafflor yellow A could attenuate the immunoglobulin E induced release of allergic cytokines without affecting cell viability from 1.0 to 50.0 μM. In conclusion, the established rat basophilic leukemia 2H3 cell membrane chromatography coupled with online high-performance liquid chromatography and tandem mass spectrometry method successfully screened and identified Hydroxysafflor yellow A from C. tinctorius as a potential antiallergic component. Pharmacological analysis elucidated that Hydroxysafflor yellow A is an effective natural component for inhibiting immunoglobulin E-antigen-mediated degranulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Papaxanthos-Roche, A; Taupin, J L; Mayer, G; Daniel, J Y; Moreau, J F
1994-09-01
In the light of the newly discovered implications of human interleukin for DA cells and leukemia inhibitory factor in embryology, we searched for the presence of this soluble cytokine in the supernatant of Vero cell coculture systems. Using a bioassay as well as a specific ELISA, we demonstrated that Vero cells are able to release large quantities of human interleukin for DA cells and leukemia inhibitory factor in the embryo-growing medium of such cocultures.
Peng, Xing-Xiang; Tiwari, Amit K.; Wu, Hsiang-Chun; Chen, Zhe-Sheng
2012-01-01
Imatinib, a breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) tyrosine kinase inhibitor (TKI), has revolutionized the treatment of chronic myelogenous leukemia (CML). However, development of multidrug resistance (MDR) limits the use of imatinib. In the present study, we aimed to investigate the mechanisms of cellular resistance to imatinib in CML. Therefore, we established an imatinib-resistant human CML cell line (K562-imatinib) through a stepwise selection process. While characterizing the phenotype of these cells, we found that K562-imatinib cells were 124.6-fold more resistant to imatinib than parental K562 cells. In addition, these cells were cross-resistant to second- and third-generation BCR-ABL TKIs. Western blot analysis and reverse transcription-polymerase chain reaction(RT-PCR) demonstrated that P-glycoprotein (P-gp) and MDR1 mRNA levels were increased in K562-imatinib cells. In addition, accumulation of [14C]6-mercaptopurine (6-MP) was decreased, whereas the ATP-dependent efflux of [14C] 6-MP and [3H]methotrexate transport were increased in K562-imatinib cells. These data suggest that the overexpression of P-gp may play a crucial role in acquired resistance to imatinib in CML K562-imatinib cells. PMID:22098951
Haploidentical Stem Cell Transplantation for Patients With Hematologic Malignancies
2009-01-28
Leukemia, Acute Lymphocytic (ALL); Leukemia, Myeloid, Acute(AML); Leukemia, Myeloid, Chronic(CML); Juvenile Myelomonocytic Leukemia(JMML); Hemoglobinuria, Paroxysmal Nocturnal (PNH); Lymphoma, Non-Hodgkin (NHL); Myelodysplastic Syndrome (MDS)
Cornea, Mihaela I Precup; Levrat, Emmanuel; Pugin, Paul; Betticher, Daniel C
2015-04-08
The World Health Organization classification of chronic myeloproliferative disease encompasses eight entities of bone marrow neoplasms, among them Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1-positive chronic myeloid leukemia and polycythemia vera. Polycythemia vera requires, in the majority of cases (95%), the negativity of Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 rearrangement and the presence of the Janus kinase 2 mutation. We report a case of erythrocytosis as the primary manifestation of a chronic myeloid leukemia, with the presence of the Philadelphia chromosome and the Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 fusion gene, and in the absence of any Janus kinase 2 mutation. A 68-year-old Caucasian woman, with a history of cigarette consumption and obstructive sleep apnoea syndrome (undergoing continuous positive airway pressure treatment) had presented to our institution with fatigue and a hemoglobin level of 18.6g/L, with slight leukocytosis at 16G/L, and no other anomalies on her complete blood cell count. Examination of her arterial blood gases found only a slight hypoxemia; erythropoietin and ferritin levels were very low and could not explain a secondary erythrocytosis. Further analyses revealed the absence of any Janus kinase 2 mutation, thus excluding polycythemia vera. Taken together with a high vitamin B12 level, we conducted a Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 gene analysis and bone marrow cytogenetic analysis, both of which returned positive, leading to the diagnosis of chronic myeloid leukemia. To date, this case is the first description of a Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1-positive chronic myeloid leukemia, presenting with erythrocytosis as the initial manifestation, and mimicking a Janus kinase 2 V617F-negative polycythemia vera. Her impressive response to imatinib therapy underscores the importance of not missing this diagnosis.
Nishikawa, Satoshi; Arai, Shunya; Masamoto, Yosuke; Kagoya, Yuki; Toya, Takashi; Watanabe-Okochi, Naoko; Kurokawa, Mineo
2014-12-04
Ecotropic viral integration site 1 (Evi1) is a transcription factor that is highly expressed in hematopoietic stem cells and is crucial for their self-renewal capacity. Aberrant expression of Evi1 is observed in 5% to 10% of de novo acute myeloid leukemia (AML) patients and predicts poor prognosis, reflecting multiple leukemogenic properties of Evi1. Here, we show that thrombopoietin (THPO) signaling is implicated in growth and survival of Evi1-expressing cells using a mouse model of Evi1 leukemia. We first identified that the expression of megakaryocytic surface molecules such as ITGA2B (CD41) and the THPO receptor, MPL, positively correlates with EVI1 expression in AML patients. In agreement with this finding, a subpopulation of bone marrow and spleen cells derived from Evi1 leukemia mice expressed both CD41 and Mpl. CD41(+) Evi1 leukemia cells induced secondary leukemia more efficiently than CD41(-) cells in a serial bone marrow transplantation assay. Importantly, the CD41(+) cells predominantly expressing Mpl effectively proliferated and survived on OP9 stromal cells in the presence of THPO via upregulating BCL-xL expression, suggesting an essential role of the THPO/MPL/BCL-xL cascade in enhancing the progression of Evi1 leukemia. These observations provide a novel aspect of the diverse functions of Evi1 in leukemogenesis. © 2014 by The American Society of Hematology.
Cell cycle control in acute myeloid leukemia
Schnerch, Dominik; Yalcintepe, Jasmin; Schmidts, Andrea; Becker, Heiko; Follo, Marie; Engelhardt, Monika; Wäsch, Ralph
2012-01-01
Acute myeloid leukemia (AML) is the result of a multistep transforming process of hematopoietic precursor cells (HPCs) which enables them to proceed through limitless numbers of cell cycles and to become resistant to cell death. Increased proliferation renders these cells vulnerable to acquiring mutations and may favor leukemic transformation. Here, we review how deregulated cell cycle control contributes to increased proliferation in AML and favors genomic instability, a prerequisite to confer selective advantages to particular clones in order to adapt and independently proliferate in the presence of a changing microenvironment. We discuss the connection between differentiation and proliferation with regard to leukemogenesis and outline the impact of specific alterations on response to therapy. Finally, we present examples, how a better understanding of cell cycle regulation and deregulation has already led to new promising therapeutic strategies. PMID:22957304
Antileukemic Activity of Tillandsia recurvata and Some of its Cycloartanes
LOWE, HENRY I.C.; TOYANG, NGEH J.; WATSON, CHARAH T.; AYEAH, KENNETH N.N.; BRYANT, JOSEPH
2015-01-01
Background Approximately 250,000 deaths were caused by leukemia globally in 2012 and about 40%-50% of all leukemia diagnoses end-up in death. Medicinal plants are a rich source for the discovery of new drugs against leukemia and other types of cancers. To this end, we subjected the Jamaican ball moss (Tillandsia recurvata) and its cycloartanes, as well as some analogs, to in vitro screening against a number of leukemia cell lines. The WST-1 anti-proliferation assay was used to determine the anticancer activity of ball moss and two cycloartanes isolated from ball moss and four of their analogs against four leukemia cell lines (HL-60, K562, MOLM-14, monoMac6). Ball moss crude methanolic extract showed activity with a 50% inhibition concentration (IC50) value of 3.028 μg/ml against the Molm-14 cell line but was ineffective against HL-60 cells. The six cycloartanes tested demonstrated varying activity against the four leukemia cancer cell lines with IC50 values ranging from 1.83 μM to 18.3 μM. Five out of the six cycloartanes demonstrated activity, while one was inactive against all four cell lines. The preliminary activity demonstrated by the Jamaican ball moss and its cycloartanes against selected leukemia cell lines continues to throw light on the broad anticancer activity of ball moss. Further studies to evaluate the efficacy of these molecules in other leukemia cell lines are required in order to validate the activity of these molecules, as well as to determine their mechanisms of action and ascertain the activity in vivo in order to establish efficacy and safety profiles. PMID:24982361
Antileukemic activity of Tillandsia recurvata and some of its cycloartanes.
Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Ayeah, Kenneth N N; Bryant, Joseph
2014-07-01
Approximately 250,000 deaths were caused by leukemia globally in 2012 and about 40%-50% of all leukemia diagnoses end-up in death. Medicinal plants are a rich source for the discovery of new drugs against leukemia and other types of cancers. To this end, we subjected the Jamaican ball moss (Tillandsia recurvata) and its cycloartanes, as well as some analogs, to in vitro screening against a number of leukemia cell lines. The WST-1 anti-proliferation assay was used to determine the anticancer activity of ball moss and two cycloartanes isolated from ball moss and four of their analogs against four leukemia cell lines (HL-60, K562, MOLM-14, monoMac6). Ball moss crude methanolic extract showed activity with a 50% inhibition concentration (IC50) value of 3.028 μg/ml against the Molm-14 cell line but was ineffective against HL-60 cells. The six cycloartanes tested demonstrated varying activity against the four leukemia cancer cell lines with IC50 values ranging from 1.83 μM to 18.3 μM. Five out of the six cycloartanes demonstrated activity, while one was inactive against all four cell lines. The preliminary activity demonstrated by the Jamaican ball moss and its cycloartanes against selected leukemia cell lines continues to throw light on the broad anticancer activity of ball moss. Further studies to evaluate the efficacy of these molecules in other leukemia cell lines are required in order to validate the activity of these molecules, as well as to determine their mechanisms of action and ascertain the activity in vivo in order to establish efficacy and safety profiles. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Shumak, K H; Baker, M A; Taub, R N; Coleman, M S
1980-11-01
Blast cells were obtained from 17 patients with acute undifferentiated leukemia and 13 patients with chronic myelogenous leukemia in blast crisis. The blasts were tested with anti-i serum in cytotoxicity tests and with antisera to myeloblastic leukemia-associated antigens in immunofluorescence tests. The terminal deoxynucleotidyl transferase (TDT) content of the blasts was also measured. Lymphoblasts react strongly with anti-i, do not react with anti-myeloblast serum, and have high levels of TDT; myeloblasts react weakly with anti-i, do not react with anti-myeloblast serum, and have very low levels of TDT. Of the 17 patients with acute undifferentiated leukemia, there were six with blasts which reacted like lymphoblasts, six with blasts which reacted like myeloblasts, and five with blasts bearing different combinations of these lymphoblastic and myeloblastic markers. Eight of the 11 patients with lymphoblastic or mixed lymphoblastic-myeloblastic markers, but only one of the six with myeloblastic markers, achieved complete or partial remission in response to therapy. Thus, in acute undifferentiated leukemia, classification of blasts with these markers may be of prognostic value. Of the 13 patients with chronic myelogenous leukemia in blast crises, the markers were concordant (for myeloblasts) in only two cases. Three of the 13 patients had TDT-positive blasts, but the reactions of these cells with anti-i and with anti-myeloblast serum differed from those seen with lymphoblasts from patients with acute lymphoblastic leukemia. Although the cell involved in "lymphoid" blast crisis of chronic myelogenous leukemia is similar in many respects to that involved in acute lymphoblastic leukemia, these cells are not identical.
Xiao, Haowen; Wang, Li-Mengmeng; Luo, Yi; Lai, Xiaoyu; Li, Caihua; Shi, Jimin; Tan, Yamin; Fu, Shan; Wang, Yebo; Zhu, Ni; He, Jingsong; Zheng, Weiyan; Yu, Xiaohong; Cai, Zhen; Huang, He
2016-01-19
Although steady improvements to chemotherapeutic treatments has helped cure 80% of childhood acute lymphoblastic leukemia (ALL) cases, chemotherapy has proven to be less effective in treating the majority of adult patients, leaving allogeneic hematopoietic stem cell transplantation (allo-HSCT) as the primary adult treatment option. Nevertheless relapse are the leading cause of death following allo-HSCT. The genetic pathogenesis of relapse following allo-HSCT in Philadelphia chromosome- negative ALL (Ph- ALL) remains unexplored. We performed longitudinal whole-exome sequencing analysis in three adult patients with Ph- B-cell ALL (Ph- B-ALL) on samples collected from diagnosis to relapse after allo-HSCT. Based on these data, we performed target gene sequencing on 23 selected genes in 58 adult patients undergoing allo-HSCT with Ph- B-ALL. Our results revealed a significant enrichment of mutations in epigenetic regulators from relapsed samples, with recurrent somatic mutations in SETD2, CREBBP, KDM6A and NR3C1. The relapsed samples were also enriched in signaling factor mutations, including KRAS, PTPN21, MYC and USP54. Furthermore, we are the first to reveal the clonal evolution patterns during leukemia relapse after allo-HSCT. Cells present in relapsed specimens were genetically related to the diagnosed tumor, these cells therefore arose from either an existing subclone that was not eradicated by allo-HSCT therapy, or from the same progenitor that acquired new mutations. In some cases, however, it is possible that leukemia recurrence following allo-HSCT could result from a secondary malignancy with a distinct set of mutations. We identified novel genetic causes of leukemia relapse after allo-HSCT using the largest generated data set to date from adult patients with Ph- B-ALL.
Lai, Xiaoyu; Li, Caihua; Shi, Jimin; Tan, Yamin; Fu, Shan; Wang, Yebo; Zhu, Ni; He, Jingsong; Zheng, Weiyan; Yu, Xiaohong; Cai, Zhen; Huang, He
2016-01-01
Although steady improvements to chemotherapeutic treatments has helped cure 80% of childhood acute lymphoblastic leukemia (ALL) cases, chemotherapy has proven to be less effective in treating the majority of adult patients, leaving allogeneic hematopoietic stem cell transplantation (allo-HSCT) as the primary adult treatment option. Nevertheless relapse are the leading cause of death following allo-HSCT. The genetic pathogenesis of relapse following allo-HSCT in Philadelphia chromosome- negative ALL (Ph− ALL) remains unexplored. We performed longitudinal whole-exome sequencing analysis in three adult patients with Ph− B-cell ALL (Ph− B-ALL) on samples collected from diagnosis to relapse after allo-HSCT. Based on these data, we performed target gene sequencing on 23 selected genes in 58 adult patients undergoing allo-HSCT with Ph− B-ALL. Our results revealed a significant enrichment of mutations in epigenetic regulators from relapsed samples, with recurrent somatic mutations in SETD2, CREBBP, KDM6A and NR3C1. The relapsed samples were also enriched in signaling factor mutations, including KRAS, PTPN21, MYC and USP54. Furthermore, we are the first to reveal the clonal evolution patterns during leukemia relapse after allo-HSCT. Cells present in relapsed specimens were genetically related to the diagnosed tumor, these cells therefore arose from either an existing subclone that was not eradicated by allo-HSCT therapy, or from the same progenitor that acquired new mutations. In some cases, however, it is possible that leukemia recurrence following allo-HSCT could result from a secondary malignancy with a distinct set of mutations. We identified novel genetic causes of leukemia relapse after allo-HSCT using the largest generated data set to date from adult patients with Ph− B-ALL. PMID:26527318
Hematopoietic Stem Cell and Its Growth Factor
1988-02-16
Bamberger and AS Felin . 1981. A multipotential leukemia cell line (K562) of human origin. Proc Soc Exp Biol Med 166:546. 40. Marie JP, CA Izaquirre, CI...at day 12 due to the degeneration of cells in the colonies. Monoclonal antibodies against human nonlymphoid leukemia cell lines which have...granulocyte mAb with acute myclocytic and myelomonocytic and lymphocytic leukemia ................................... 18 A-4 Antigen ML143 is expressed on
Lu, Benjamin Y; Kojima, Lisa; Huang, Mary S; Friedmann, Alison M; Ferry, Judith A; Weinstein, Howard J
2016-11-01
Epstein-Barr virus-related lymphoproliferative disease (EBV-LPD) rarely occurs in patients with acute lymphoblastic leukemia (ALL), who have not received hematopoietic transplantation. We describe EBV-LPD manifesting as facial lesions in two children with ALL in remission. One patient was a 16-year-old male with T-cell ALL with an EBV-positive angiocentric polymorphous lip lesion presenting as right-sided facial swelling. The other patient was a 12-year-old male with B-cell ALL with an EBV-positive polymorphous lymphoplasmacytic infiltrate presenting as bilateral dacryoadenitis. Neither patient had known primary immunodeficiencies. Both cases improved with immunosuppressant de-escalation. These cases suggest that immunosuppression induced by maintenance chemotherapy is sufficient to promote EBV-LPD. © 2016 Wiley Periodicals, Inc.
Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis
Jacob, Bindya; Yamashita, Namiko; Wang, Chelsia Qiuxia; Taniuchi, Ichiro; Littman, Dan R.; Asou, Norio
2010-01-01
The RUNX1/AML1 gene is the most frequently mutated gene in human leukemia. Conditional deletion of Runx1 in adult mice results in an increase of hematopoietic stem cells (HSCs), which serve as target cells for leukemia; however, Runx1−/− mice do not develop spontaneous leukemia. Here we show that maintenance of Runx1−/− HSCs is compromised, progressively resulting in HSC exhaustion. In leukemia development, the stem cell exhaustion was rescued by additional genetic changes. Retroviral insertional mutagenesis revealed Evi5 activation as a cooperating genetic alteration and EVI5 overexpression indeed prevented Runx1−/− HSC exhaustion in mice. Moreover, EVI5 was frequently overexpressed in human RUNX1-related leukemias. These results provide insights into the mechanism for maintenance of pre-leukemic stem cells and may provide a novel direction for therapeutic applications. PMID:20008790
2018-03-15
B-Cell Non-Hodgkin Lymphoma; Chemotherapy-Related Nausea and/or Vomiting; Childhood Acute Myeloid Leukemia; Childhood Burkitt Lymphoma; Childhood Neoplasm; Febrile Neutropenia; Hematopoietic Cell Transplantation Recipient; Recurrent Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia
2017-06-26
Chronic Myelogenous Leukemia; Acute Myelogenous Leukemia; Acute Lymphoblastic Leukemia; Myelodysplastic Syndrome; Non-Hodgkin's Lymphoma; Hodgkin's Disease; Multiple Myeloma; Chronic Lymphocytic Leukemia
Acute Lymphoblastic Leukemia (ALL) (For Parents)
... October 2012 More on this topic for: Parents Kids Teens Acute Myeloid Leukemia (AML) Chronic Myelogenous Leukemia (CML) Cancer Center Leukemia Neutropenia Stem Cell Transplants Cancer Center Chemotherapy When Cancer Keeps ...
2017-06-05
Leukemia, Myeloid, Acute; Leukemia, Myelogenous, Chronic; Leukemia, Lymphoblastic, Acute; Lymphocytic Leukemia, Chronic; Myelodysplastic Syndromes; Multiple Myeloma; Lymphoma, Non-Hodgkin; Hodgkin Disease
... Cancer of white blood cell called a lymphoblast ( acute lymphoblastic leukemia ) Cancer of white blood cells called ... cell count may be due to: HIV/AIDS Acute lymphoblastic leukemia Immunodeficiency disorders Risks Veins and arteries ...
Chronic Myelogenous Leukemia (CML)
... del paciente Transplant process Diseases treated by transplant Acute myeloid leukemia Adrenoleukodystrophy (ALD) Chronic Lymphocytic Leukemia (CLL) ... SCID) Sickle cell disease (SCD) Wiskott-Aldrich syndrome Acute lymphoblastic leukemia (ALL) Other diseases Treatment decisions Learn ...
2017-05-03
Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia
Shumak, K H; Rachkewich, R A
1983-01-01
An antibody to human granulocytes was raised in rabbits by immunization with granulocytes pretreated with rabbit antibody to contaminating antigens. The antibody reacted not only with granulocytes but also with monocytes and bone marrow granulocyte precursors including colony-forming units in culture (CFU-C). In tests with leukemic cells, the antibody reacted with blasts from most (8 of 9) patients with acute myelomonoblastic leukemia and from some patients with acute myeloblastic leukemia, morphologically undifferentiated acute leukemia and chronic myelogenous leukemia in blast crisis. The antibody did not react with blasts from patients with acute lymphoblastic leukemia nor with leukemic cells from patients with chronic lymphocytic leukemia.
Arsenic Trioxide in Treating Patients With Relapsed or Refractory Lymphoma or Leukemia
2013-01-31
Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia
Examining the Origins of Myeloid Leukemia | Center for Cancer Research
Acute myeloid leukemia or AML, a cancer of the white blood cells, is the most common type of rapidly-growing leukemia in adults. The over-production of white blood cells in the bone marrow inhibits the development of other necessary blood components including red blood cells, which carry oxygen throughout the body, and platelets, which are required for clot formation. The
ZFX controls propagation and prevents differentiation of acute T-lymphoblastic and myeloid leukemia
Weisberg, Stuart P.; Smith-Raska, Matthew R.; Esquilin, Jose M.; Zhang, Ji; Arenzana, Teresita L.; Lau, Colleen M.; Churchill, Michael; Pan, Haiyan; Klinakis, Apostolos; Dixon, Jack E.; Mirny, Leonid A.; Mukherjee, Siddhartha; Reizis, Boris
2014-01-01
Summary Tumor-propagating cells in acute leukemia maintain a stem/progenitor-like immature phenotype and proliferative capacity. Acute myeloid leukemia (AML) and acute T-lymphoblastic leukemia (T-ALL) originate from different lineages through distinct oncogenic events such as MLL fusions and Notch signaling, respectively. We found that Zfx, a transcription factor that controls hematopoietic stem cell self-renewal, controls the initiation and maintenance of AML caused by MLL-AF9 fusion and of T-ALL caused by Notch1 activation. In both leukemia types, Zfx prevents differentiation and activates gene sets characteristic of immature cells of the respective lineages. In addition, endogenous Zfx contributes to gene induction and transformation by Myc overexpression in myeloid progenitors. Key Zfx target genes include the mitochondrial enzymes Ptpmt1 and Idh2, whose overexpression partially rescues the propagation of Zfx-deficient AML. These results show that distinct leukemia types maintain their undifferentiated phenotype and self-renewal by exploiting a common stem cell-related genetic regulator. PMID:24485662
Murphy, Edwin C.; Wills, Norma; Arlinghaus, Ralph B.
1980-01-01
The effect of suppressor tRNA's on the cell-free translation of several leukemia and sarcoma virus RNAs was examined. Yeast amber suppressor tRNA (amber tRNA) enhanced the synthesis of the Rauscher murine leukemia virus and clone 1 Moloney murine leukemia virus Pr200gag-pol polypeptides by 10- to 45-fold, but at the same time depressed the synthesis of Rauscher murine leukemia virus Pr65gag and Moloney murine leukemia virus Pr63gag. Under suppressor-minus conditions, Moloney murine leukemia virus Pr70gag was present as a closely spaced doublet. Amber tRNA stimulated the synthesis of the “upper” Moloney murine leukemia virus Pr70gag polypeptide. Yeast ochre suppressor tRNA appeared to be ineffective. Quantitative analyses of the kinetics of viral precursor polypeptide accumulation in the presence of amber tRNA showed that during linear protein synthesis, the increase in accumulated Moloney murine leukemia virus Pr200gag-pol coincided closely with the molar loss of Pr63gag. Enhancement of Pr200gag-pol and Pr70gag by amber tRNA persisted in the presence of pactamycin, a drug which blocks the initiation of protein synthesis, thus arguing for the addition of amino acids to the C terminus of Pr63gag as the mechanism behind the amber tRNA effect. Moloney murine sarcoma virus 124 30S RNA was translated into four major polypeptides, Pr63gag, P42, P38, and P23. In the presence of amber tRNA, a new polypeptide, Pr67gag, appeared, whereas Pr63gag synthesis was decreased. Quantitative estimates indicated that for every 1 mol of Pr67gag which appeared, 1 mol of Pr63gag was lost. Images PMID:7373716
2015-08-12
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Chronic Lymphocytic Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia
Severson, Eric; Arnett, Kelly L.; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S.; Liu, X. Shirley; Blacklow, Stephen C.; Aster, Jon C.
2018-01-01
Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and are linked to the Notch-responsiveness of a few genes, but their overall contribution to Notch-dependent gene regulation is unknown. To address this issue, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay, and applied insights from these in vitro studies to Notch-“addicted” leukemia cells. We find that SPSs contribute to the regulation of approximately a third of direct Notch target genes. While originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5. Our work provides a general method for identifying sequence-paired sites in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. PMID:28465412
Premature chromosome condensation studies in human leukemia. I. Pretreatment characteristics.
Hittelman, W N; Broussard, L C; McCredie, K
1979-11-01
The phenomenon of premature chromosome condensation (PCC) was used to compare the bone marrow proliferation characteristics of 163 patients with various forms of leukemia prior to the initiation of new therapy. The proliferative potential index (PPI, or fraction of G1 cells in late G1 phase) and the fraction of cells in S phase was determined and compared to the type of disease and the bone marrow blast infiltrate for each patient. Previously untreated patients with acute leukemia exhibited an average PPI value three times that of normal bone marrow (37.5% for acute myeloblastic leukemia [AML], acute monomyeloblastic leukemia [AMML], or acute promyelocytic leukemia [APML] and 42% for acute lymphocytic leukemia [ALL] or acute undifferentiated leukemia [AUL]). Untreated chronic myelogenous leukemia (CML) patients showed intermediate PPI values (25.2%), whereas CML patients with controlled disease exhibited nearly normal PPI values (14.6%). On the other hand, blastic-phase CML patients exhibited PPI values closer to that observed in patients with acute leukemia (35.4%). Seven patients with chronic lymphocytic leukemia (CLL) exhibited even higher PPI values. No correlations were observed between PPI values, fraction of cells in S phase, and marrow blast infiltrate. For untreated acute disease patients, PPI values were prognostic for response only at low and high PPI values. These results suggest that the PCC-determined proliferative potential is a biologic reflection of the degree of malignancy within the bone marrow.
2018-03-05
Acute Myeloid Leukemia in Remission; Adult Acute Lymphoblastic Leukemia in Complete Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive in Remission; Chronic Myelomonocytic Leukemia in Remission; Graft Versus Host Disease; Hodgkin Lymphoma; Minimal Residual Disease; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Non-Hodgkin Lymphoma; Plasma Cell Myeloma; Severe Aplastic Anemia; Waldenstrom Macroglobulinemia
Li, Guang-Yao; Zhang, Li; Liu, Ji-Zhu; Chen, Shou-Guo; Xiao, Tai-Wu; Liu, Guo-Zhen; Wang, Jing-Xia; Wang, Le-Xin; Hou, Ming
2016-07-01
Pharmacological management of acute leukemia remains a challenge. A seashell protein Haishengsu (HSS) has been found to exert anticancer activities in recent in vitro studies. The aim of this study was to determine whether the addition of HSS to the conventional chemotherapies would increase chemosensitivity and improves quality of life in patients with acute leukemia. Two hundred and forty-eight patients with acute leukemia were enrolled in a double-blind, and placebo-controlled study. In addition to conventional chemotherapy, 142 patients received HSS and 106 received placebo. In an in vitro study, the expression of P-gp was evaluated by flow cytometry in a drug-resistant leukemia cell line (K562/ADM cells). Sorcin was examined by Western blot. The complete remission rates in the HSS treatment group were all higher than in the placebo group with non-relapsing leukemia and relapsed leukemia (p<0.05). Less patients in the HSS group experienced gastrointestinal side effects from chemotherapy, whereas more patients had increased food take and an increase in Karnofsky performance status (KPS) score (p<0.01). In vitro, the expression of P-gp and sorcin in the HSS treated cells were lower than in the control group cells (p<0.01). When added to conventional chemotherapy, HSS improves the complete remission rates and quality of life in patients with acute leukemia. The in vitro findings indicate that suppression of P-gp and sorcin genes in leukemia cells may be involved in the beneficial effects of HSS. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Battula, V. Lokesh; Chen, Ye; Cabreira, Maria da Graca; Ruvolo, Vivian; Wang, Zhiqiang; Ma, Wencai; Konoplev, Sergej; Shpall, Elizabeth; Lyons, Karen; Strunk, Dirk; Bueso-Ramos, Carlos; Davis, Richard Eric; Konopleva, Marina
2013-01-01
Mesenchymal stromal cells (MSCs) are a major component of the leukemia bone marrow (BM) microenvironment. Connective tissue growth factor (CTGF) is highly expressed in MSCs, but its role in the BM stroma is unknown. Therefore, we knocked down (KD) CTGF expression in human BM-derived MSCs by CTGF short hairpin RNA. CTGF KD MSCs exhibited fivefold lower proliferation compared with control MSCs and had markedly fewer S-phase cells. CTGF KD MSCs differentiated into adipocytes at a sixfold higher rate than controls in vitro and in vivo. To study the effect of CTGF on engraftment of leukemia cells into BM, an in vivo model of humanized extramedullary BM (EXM-BM) was developed in NOD/SCID/IL-2rgnull mice. Transplanted Nalm-6 or Molm-13 human leukemia cells engrafted at a threefold higher rate in adipocyte-rich CTGF KD MSC-derived EXM-BM than in control EXM-BM. Leptin was found to be highly expressed in CTGF KD EXM-BM and in BM samples of patients with acute myeloid and acute lymphoblastic leukemia, whereas it was not expressed in normal controls. Given the established role of the leptin receptor in leukemia cells, the data suggest an important role of CTGF in MSC differentiation into adipocytes and of leptin in homing and progression of leukemia. PMID:23741006
Rahman, Heshu Sulaiman; Rasedee, Abdullah; How, Chee Wun; Zeenathul, Nazariah Allaudin; Chartrand, Max Stanley; Yeap, Swee Keong; Abdul, Ahmad Bustamam; Tan, Sheau Wei; Othman, Hemn Hassan; Ajdari, Zahra; Namvar, Farideh; Arulselvan, Palanisamy; Fakurazi, Sharida; Mehrbod, Parvaneh; Daneshvar, Nasibeh; Begum, Hasina
2015-01-01
Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers. PMID:25767386
Karjalainen, Katja; Jaalouk, Diana E.; Bueso-Ramos, Carlos; Bover, Laura; Sun, Yan; Kuniyasu, Akihiko; Driessen, Wouter H. P.; Cardó-Vila, Marina; Rietz, Cecilia; Zurita, Amado J.; O’Brien, Susan; Kantarjian, Hagop M.; Cortes, Jorge E.; Calin, George A.; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata
2015-01-01
Purpose The interleukin-11 receptor (IL-11R) is an established molecular target in primary tumors of bone, such as osteosarcoma, and in secondary bone metastases from solid tumors such as prostate cancer. However, its potential role in management of hematopoietic malignancies has not yet been determined. Here we evaluated the IL-11R as a candidate therapeutic target in human leukemia and lymphoma. Experimental Design and Results First, we show that the IL-11R protein is expressed in a variety of human leukemia- and lymphoma derived cell lines and in a large panel of bone marrow samples from leukemia and lymphoma patients, while expression is absent from non-malignant control bone marrow. Moreover, a targeted peptidomimetic prototype (termed BMTP-11) specifically bound to leukemia and lymphoma cell membranes, induced ligand-receptor internalization mediated by the IL-11R, and resulted in a specific dose-dependent cell death induction in these cells. Finally, a pilot drug lead-optimization program yielded a new myristoylated BMTP-11 analog with an apparent improved anti-leukemia cell profile. Conclusion These results indicate (i) that the IL-11R is a suitable cell surface target for ligand-directed applications in human leukemia and lymphoma and (ii) that BMTP-11 and its derivatives have translational potential against this group of malignant diseases. PMID:25779950
Rahman, Heshu Sulaiman; Rasedee, Abdullah; How, Chee Wun; Zeenathul, Nazariah Allaudin; Chartrand, Max Stanley; Yeap, Swee Keong; Abdul, Ahmad Bustamam; Tan, Sheau Wei; Othman, Hemn Hassan; Ajdari, Zahra; Namvar, Farideh; Arulselvan, Palanisamy; Fakurazi, Sharida; Mehrbod, Parvaneh; Daneshvar, Nasibeh; Begum, Hasina
2015-01-01
Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.
Meckenstock, G; Heyll, A; Schneider, E M; Hildebrandt, B; Runde, V; Aul, C; Bartram, C R; Ludwig, W D; Schneider, W
1995-02-01
Coexpression of myeloid, B-, and T-lineage associated markers was found in a patient with morphologically and cytochemically undifferentiated acute leukemia. Surface marker analysis using two-color immunofluorescence staining characterized blast cells to express CD34, CD38, CD117, and class II antigens, coexpressing TdT, CD4, CD7, CD13, CD19, and CD33. Cytoplasmic expression of myeloperoxidase, CD3, and CD22 could not be demonstrated. Monosomy for chromosome 7 was found by cytogenetic analysis. The absence of clonal rearrangements of immunoglobulin or T-cell receptor genes was shown by Southern blot analysis. Using a 3H-thymidine incorporation assay, DNA synthesis of leukemic blasts could be stimulated by IL-3, IL-6 and G-CSF in vitro. The present case did not offer specific criteria of lineage commitment. Corresponding to an equivalent counterpart in normal hematopoiesis, the involved cell population may reflect an early, most immature developmental stage within a multipotent progenitor cell compartment.
Severson, Eric; Arnett, Kelly L; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S; Shirley Liu, X; Blacklow, Stephen C; Aster, Jon C
2017-05-02
Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and have been linked to the Notch responsiveness of a few genes. To assess the overall contribution of SPSs to Notch-dependent gene regulation, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay and applied insights from these in vitro studies to Notch-"addicted" T cell acute lymphoblastic leukemia (T-ALL) cells. We found that SPSs contributed to the regulation of about a third of direct Notch target genes. Although originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5 expression. Our work provides a general method for identifying SPSs in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. Copyright © 2017, American Association for the Advancement of Science.
The non-coding RNA landscape of human hematopoiesis and leukemia.
Schwarzer, Adrian; Emmrich, Stephan; Schmidt, Franziska; Beck, Dominik; Ng, Michelle; Reimer, Christina; Adams, Felix Ferdinand; Grasedieck, Sarah; Witte, Damian; Käbler, Sebastian; Wong, Jason W H; Shah, Anushi; Huang, Yizhou; Jammal, Razan; Maroz, Aliaksandra; Jongen-Lavrencic, Mojca; Schambach, Axel; Kuchenbauer, Florian; Pimanda, John E; Reinhardt, Dirk; Heckl, Dirk; Klusmann, Jan-Henning
2017-08-09
Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy.While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy.
Myelogenous leukemia in a bearded dragon (Acanthodraco vitticeps).
Tocidlowski, M E; McNamara, P L; Wojcieszyn, J W
2001-03-01
A 3-yr-old bearded dragon (Acanthodraco vitticeps) presented with lethargy, a swollen right elbow joint, inability to move its rear limbs normally, and marked leukocytosis. The majority of leukocytes were an abnormal mononuclear lymphoid-type cell with a high nuclear to cytoplasmic ratio, a slightly blue cytoplasm, nuclei with coarsely granular chromatin, and some nuclear clefts. Acute leukemia of lymphoid or myeloid origin was tentatively diagnosed. The abnormal mononuclear leukocyte cell population stained positively for the myeloid cytochemical stains: peroxidase, chloroacetate esterase, and L1-calprotectin. The abnormal cell population of the peripheral blood did not stain with the lymphoid cytochemical stains: alpha-naphthyl butyrate esterase, CD3, and CD79a.
Ruiz-Delgado, Guillermo José; Cantero-Fortiz, Yahveth; León-Peña, Andrés Aurelio; León-González, Mónica; Nuñez-Cortés, Ana Karen; Ruiz-Argüelles, Guillermo José
2016-01-01
In B-cell acute lymphoblastic leukemia, one of the most frequent cytogenetic alterations is the presence of the Philadelphia chromosome. Recently, newly identified genetic alterations have been studied, among them the IKZF1 deletion. IKZF1 encodes IKAROS, a zinc finger protein that plays an important role in hematopoiesis involving the regulation process of adhesion, cellular migration, and as a tumor suppressor. We aimed to study the impact of IKAROS deletion in the evolution and prognosis of B-cell acute lymphoblastic leukemia. At a single center we prospectively studied patients diagnosed with B-cell acute lymphoblastic leukemia and screened for IKZF1 deletion using the multiplex ligation-dependent probe amplification method. We did a descriptive analysis of patients positive for the IKZF1 deletion to determine its impact on the evolution of the disease and survival rate. Between 2010 and 2015, 16 Mexican mestizo patients with B-cell acute lymphoblastic leukemia were prospectively screened for IKZF1 deletion; seven (43%) were positive and were included for further analysis. The age range of patients was 13-60 years; six were males and one female. All cases had type B acute lymphoblastic leukemia. Of the seven patients, two died, three were lost to follow-up, and two continue in complete remission with treatment. Results are worse than those in a group of patients with non-mutated IKAROS B-cell acute lymphoblastic leukemia previously studied in our center. Although this is a small sample, the presence of IKAROS deletion in acute lymphoblastic leukemia patients could represent a poor-prognosis marker and was probably related to therapy failure. It is also possible that this variant of leukemia may be more prevalent in Mexico. More studies are needed to define the role of IKZF1 deletion in acute lymphoblastic leukemia and the real prevalence of the disease in different populations.
Haploidentical Stem Cell Transplant for Treatment Refractory Hematological Malignancies
2009-02-12
Acute Lymphoblastic Leukemia (ALL); Acute Myeloid Leukemia (AML); Secondary AML; Myelodysplastic Syndrome (MDS); Secondary MDS; Chronic Myeloid Leukemia; Juvenile Myelomonocytic Leukemia (JMML); Paroxysmal Nocturnal Hemoglobinuria (PNH); Lymphoma, Non-Hodgkin; Hodgkin Disease
Safety and Tolerability Study of PCI-32765 in B Cell Lymphoma and Chronic Lymphocytic Leukemia
2018-04-03
B-cell Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Diffuse Well-differentiated Lymphocytic Lymphoma; B Cell Lymphoma; Follicular Lymphoma; Mantle Cell Lymphoma; Non-Hodgkin's Lymphoma; Waldenstrom Macroglobulinemia; Burkitt Lymphoma; B-Cell Diffuse Lymphoma
Cytogenetic basis of acute myeloid leukemia.
Ford, J H; Pittman, S M; Singh, S; Wass, E J; Vincent, P C; Gunz, F W
1975-10-01
The chromosomes of 12 adult patients with acute leukemia were analyzed by conventional means and by Giemsa and centromeric banding techniques. Acute myeloblastic leukemia was diagnosed in 7, acute myelomonocytic leukemia in 2, and acute undifferentiated leukemia in 3. Bone marrow was aspirated from patients when in relapse or remission, and both euploid and aneuploid cells were examined. All patients showed trisomy no. 9 and many showed additional numerical or structural changes in some or all their cells. These changes included monosomy no. 21 and/or monosomy no. 8. The proportion of trisomy no. 9 cells was 30-50% in patients in full remission and up to 100% in patients in relapse; thus trisomy no. 9 might be an important marker of leukemic cells. A mechanism was proposed to explain the induction and selection of the trisomy no. 9 karotype.
MLL duplication in a pediatric patient with B-cell lymphoblastic lymphoma.
Mater, David Van; Goodman, Barbara K; Wang, Endi; Gaca, Ana M; Wechsler, Daniel S
2012-04-01
Lymphoblastic lymphoma is the second most common type of non-Hodgkin lymphoma seen in children. Approximately, 90% of lymphoblastic lymphomas arise from T cells, with the remaining 10% being B-cell-lineage derived. Although T-cell lymphoblastic lymphoma most frequently occurs in the anterior mediastinum (thymus), B-cell lymphoblastic lymphoma (B-LBL) predominates in extranodal sites such as skin and bone. Here, we describe a pediatric B-LBL patient who presented with extensive abdominal involvement and whose lymphoma cells displayed segmental duplication of the mixed lineage leukemia (MLL) gene. MLL duplication/amplification has been described primarily in acute myeloid leukemia and myelodysplastic syndrome with no published reports of discrete MLL duplication/amplification events in B-LBL. The MLL gene duplication noted in this case may represent a novel mechanism for tumorigenesis in B-LBL.
Wang, Rui; Liu, Changda; Xia, Lijuan; Zhao, Guisen; Gabrilove, Janice; Waxman, Samuel; Jing, Yongkui
2012-01-01
Purpose Arsenic trioxide (ATO) as a single agent is used for treatment of acute promyelocytic leukemia (APL) with minimal toxicity but therapeutic effect of ATO in other types of malignancies has not been achieved. We tested whether a combination with ethacrynic acid (EA), a glutathione S-transferase P1-1 (GSTP1-1) inhibitor and a reactive oxygen species (ROS) inducer will extend the therapeutic effect of ATO beyond APL. Experimental Design The combined apoptotic effects of ATO plus EA were tested in non-APL leukemia and lymphoma cell lines. The role of ROS, GSTP1-1, glutathione, and Mcl-1 in apoptosis was determined. The selective response to this combination of cells with and without GSTP1-1 expression was compared. Results ATO/EA combination synergistically induced apoptosis in myeloid leukemia and lymphoma cells. This treatment produced high ROS levels, activated c-jun-NH2-terminal kinase and reduced Mcl-1 protein. This led to the decrease of mitochondrial transmembrane potential, release of cytochrome c and, subsequently, to activation of caspase 3 and 9. Induction of apoptosis in leukemia and lymphoma cells expressing GSTP1-1 required that high EA concentrations be combined with ATO. Silencing of GSTP1 in leukemia cells sensitized them to ATO/EA-induced apoptosis. In a sub-group of B-cell lymphoma which do not express GSTP1-1, lower concentrations of EA and its more potent derivative, ethacrynic acid butyl-ester, decreased intracellular glutathione levels and synergistically induced apoptosis when combined with ATO. Conclusion B-cell lymphoma cells lacking GSTP1-1 are more sensitive than myeloid leukemia cells to ATO/EA-induced apoptosis. PMID:23082001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, M.
1991-12-31
We now have a clear understanding of the mechanism by which radiation-induced (T-cell) leukemia occurs. In irradiated mice (radiation-induced thymic leukemia) and in man (acute lymphoblastic T-cell leukemia, T-ALL) the mechanism of leukemogenesis is surprisingly similar. Expressed in the most elementary terms, T-cell leukemia occurs when T-cell differentiation is inhibited by a mutation, and pre-T cells attempt but fail to differentiate in the thymus. Instead of leaving the thymus for the periphery as functional T-cells they continue to proliferate in the thymus. The proliferating pre- (pro-) T-cells constitute the (early) acute T-cell leukemia (A-TCL). This model for the mechanism ofmore » T-cell leukemogenesis accounts for all the properties of both murine and human A-TCL. Important support for the model has recently come from work by Ilan Kirsch and others, who have shown that mutations/deletions in the genes SCL (TAL), SIL, and LCK constitute primary events in the development of T-ALL, by inhibiting differentiation of thymic pre- (pro-) T-cells. This mechanism of T-cell leukemogenesis brings several specific questions into focus: How do early A-TCL cells progress to become potently tumorigenic and poorly treatable? Is it feasible to genetically suppress early and/or progressed A-TCL cells? What is the mechanism by which the differentiation-inhibited (leukemic) pre-T cells proliferate? During the first grant year we have worked on aspects of all three questions.« less
Kenderian, Saad S.; Shen, Feng; Ruella, Marco; Shestova, Olga; Kozlowski, Miroslaw; Li, Yong; Schrank-Hacker, April; Morrissette, Jennifer J. D.; Carroll, Martin; June, Carl H.; Grupp, Stephan A.; Gill, Saar
2017-01-01
We and others previously reported potent antileukemia efficacy of CD123-redirected chimeric antigen receptor (CAR) T cells in preclinical human acute myeloid leukemia (AML) models at the cost of severe hematologic toxicity. This observation raises concern for potential myeloablation in patients with AML treated with CD123-redirected CAR T cells and mandates novel approaches for toxicity mitigation. We hypothesized that CAR T-cell depletion with optimal timing after AML eradication would preserve leukemia remission and allow subsequent hematopoietic stem cell transplantation. To test this hypothesis, we compared 3 CAR T-cell termination strategies: (1) transiently active anti-CD123 messenger RNA–electroporated CART (RNA-CART123); (2) T-cell ablation with alemtuzumab after treatment with lentivirally transduced anti–CD123-4-1BB-CD3ζ T cells (CART123); and (3) T-cell ablation with rituximab after treatment with CD20-coexpressing CART123 (CART123-CD20). All approaches led to rapid leukemia elimination in murine xenograft models of human AML. Subsequent antibody-mediated depletion of CART123 or CART123-CD20 did not impair leukemia remission. Time-course studies demonstrated that durable leukemia remission required CAR T-cell persistence for 4 weeks prior to ablation. Upon CAR T-cell termination, we further demonstrated successful hematopoietic engraftment with a normal human donor to model allogeneic stem cell rescue. Results from these studies will facilitate development of T-cell depletion strategies to augment the feasibility of CAR T-cell therapy for patients with AML. PMID:28246194
2014-05-07
B-cell Chronic Lymphocytic Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Malignant Neoplasm; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia
Lymphomas or leukemia presenting as ovarian tumors. An analysis of 42 cases.
Osborne, B M; Robboy, S J
1983-11-15
Forty cases of ovarian lymphoma and two of extramedullary leukemia were examined with emphasis on histologic types correlated with age, modes of presentation, operative findings, including frequency of bilaterality and omental spread, clinical course following therapy, and problems in differential diagnosis. Although most cases were referred with diagnoses other than lymphoma (granulosa cell tumor or dysgerminoma, occasionally anaplastic tumor, Krukenberg tumor, or metastatic breast carcinoma), utilization of sections cut at 4 mu and stained with hematoxylin and eosin, or sections stained by the methyl green pyronine (MGP), naphthol-ASD esterase (NASD) or periodic acid-Schiff (PAS) methods helped bring out the lymphoid or hematopoietic nature of the cells. Sixteen patients were under 20 years of age. They had small noncleaved cell lymphoma (undifferentiated Burkitt's and non-Burkitt's, 10 cases), diffuse immunoblastic large cell lymphoma (4 cases), or acute granulocytic leukemia (2 cases). Twenty-six patients were 29 to 74 years of age and had diffuse large cell lymphoma (10 cases), diffuse immunoblastic large cell lymphoma (9 cases), follicular (nodular) lymphoma (6 cases) or small noncleaved cell lymphoma (1 case). Pain with an abdominal or pelvic mass was the most common presentation. Nine tumors were discovered during investigation of other gynecologic complaints. At laparotomy, the tumors in 55% of cases involved both ovaries, and in 64% also involved extragonadal sites (usually omentum, fallopian tubes, or lymph nodes). Seventeen patients had tumor affecting one ovary, seven of these without any evidence of extragonadal spread. Forty-two percent (15) of 37 patients with follow-up were alive after 2 years. Only nine patients survived more than 5 years; two subsequently died of lymphoma. Favorable prognostic features included: (1) FIGO stage IA; (2) unilateral ovarian involvement; (3) focal involvement of one ovary; and (4) follicular (nodular) lymphoma.
Mahbub, Amani; Le Maitre, Christine; Haywood-Small, Sarah; Cross, Neil; Jordan-Mahy, Nicola
2017-01-01
Polyphenols have been previously shown to sensitize leukemia cell lines to topoisomerase inhibitors. Here, we assess the effects of five polyphenols when used alone and in combination with antimetabolites: methotrexate, 6-mercaptopurine and 5-fluorouracil; in lymphoid and myeloid leukemia cells lines, and non-tumor control cells. The effects of combined treatments were investigated on ATP and glutathione levels, cell-cycle progression, DNA damage and apoptosis. Polyphenols antagonized methotrexate and 6-mercaptopurine induced cell-cycle arrest and apoptosis in most leukemia cell lines. This was associated with reduced DNA damage and increased glutathione levels, greater than that seen following individual treatments alone. In contrast, 5-fluorouracil when combined with quercetin, apigenin and rhein caused synergistic decrease in ATP levels, induction of cell-cycle arrest and apoptosis in some leukemia cell lines. However, antagonistic effects were observed when 5-fluorouracil was combined with rhein and cis-stilbene in myeloid cell lines. The effects were dependant on polyphenol type and chemotherapy agent investigated, and cell type treated. Interestingly treatment of non-tumor control cells with polyphenols protected cells from antimetabolite treatments. This suggests that polyphenols modulate the action of antimetabolite agents; more importantly they antagonized methotrexate and 6-mercaptopurine actions, thus suggesting the requirement of polyphenol-exclusion during their use. PMID:29285220
2017-11-20
B Acute Lymphoblastic Leukemia; CD19 Positive; Minimal Residual Disease; Philadelphia Chromosome Positive; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Acute Lymphoblastic Leukemia
Acute myeloid leukemia targets for bispecific antibodies
Hoseini, S S; Cheung, N K
2017-01-01
Despite substantial gains in our understanding of the genomics of acute myelogenous leukemia (AML), patient survival remains unsatisfactory especially among the older age group. T cell-based therapy of lymphoblastic leukemia is rapidly advancing; however, its application in AML is still lagging behind. Bispecific antibodies can redirect polyclonal effector cells to engage chosen targets on leukemia blasts. When the effector cells are natural-killer cells, both antibody-dependent and antibody-independent mechanisms could be exploited. When the effectors are T cells, direct tumor cytotoxicity can be engaged followed by a potential vaccination effect. In this review, we summarize the AML-associated tumor targets and the bispecific antibodies that have been studied. The potentials and limitations of each of these systems will be discussed. PMID:28157217
Scheijen, Blanca; Boer, Judith M; Marke, René; Tijchon, Esther; van Ingen Schenau, Dorette; Waanders, Esmé; van Emst, Liesbeth; van der Meer, Laurens T; Pieters, Rob; Escherich, Gabriele; Horstmann, Martin A; Sonneveld, Edwin; Venn, Nicola; Sutton, Rosemary; Dalla-Pozza, Luciano; Kuiper, Roland P; Hoogerbrugge, Peter M; den Boer, Monique L; van Leeuwen, Frank N
2017-03-01
Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia ( P =0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival ( P =0.0003) and a higher 5-year cumulative incidence of relapse ( P =0.005), when compared with IKZF1 -deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1 , did not affect the outcome of IKZF1 -deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1 -deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1 +/- mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1 +/- displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function. Copyright© Ferrata Storti Foundation.
Juvenile Myelomonocytic Leukemia (JMML) (For Parents)
... Radiation Chemotherapy Acute Lymphoblastic Leukemia (ALL) Leukemia Neutropenia Stem Cell Transplants Caring for a Seriously Ill Child Acute Myeloid Leukemia (AML) Cancer Center Chemotherapy Some Kinds of Cancer Kids Get When Cancer Keeps You Home Cancer: Readjusting ...
Structural characteristics of Tla products
1985-01-01
Biochemical study of thymus leukemia antigen (TL) from thymocytes of various Tla genotypes and from leukemia cells revealed features that, given present evidence, are peculiar to TL among class I products of the H-2:Qa:Tla region of chromosome 17. Sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) of TL from thymocytes of all TL+ mouse strains, precipitated by anti-TL antiserum or monoclonal antibodies, showed two closely migrating bands of equal intensity in the heavy (H) chain position (45-50,000 mol wt). Comparison of these two bands by two-dimensional isoelectric focusing (2D IEF)-SDS-PAGE and 2D chymotryptic peptide mapping showed no differences indicative of protein dissimilarity. Thus, the two components of the H chain doublet may differ only in a feature of glycosylation that does not affect charge. The two leukemias studied gave only a single band in the H chain position. On 2D peptide mapping and 2D IEF-SDS-PAGE, the patterns for TL of Tlaa and Tlae thymocytes, which are closely related serologically, were broadly similar, but clearly different from the pattern typical of Tlac and Tlad thymocytes. 2D peptide maps of TL from Tlaa thymocytes and Tlaa leukemia cells did not differ. Leukemia cells of Tlab origin (thymocytes TL-) gave 2D peptide and 2D IEF-SDS-PAGE patterns of a third type. With the exception of Tlaa, thymocytes of TL+ mice yielded additional TL products of higher molecular weight than the TL H chain. PMID:3875681
2018-03-15
Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia
75 FR 33897 - Agency Request for Emergency Approval of an Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... Leukemias Disability Benefits Questionnaire, VA Form 21-0960B. c. Parkinson's Disease Disability Benefits...: Hairy cell leukemia and other chronic B-cell leukemias, Parkinson's disease, and ischemic heart disease... Form 21-0960B--500. c. Parkinson's Disease Disability Benefits Questionnaire, VA Form 21-0960C--1,250...
76 FR 1181 - Oncologic Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... lymphoblastic leukemia (ALL) whose disease has not responded to or has relapsed following treatment with at..., application submitted by GlaxoSmithKline, indicated for the treatment of patients with types of leukemia or lymphoma known as T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma whose disease has...
Differential growth of allogeneic bone marrow and leukemia cells in irradiated guinea pigs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhan, A,K.; Kumar, V.; Bennett, M.
1979-11-01
Growth of normal bone marrow and L/sub 2/C leukemia cell grafts was studied in lethally irradiated strain 2 and strain 13 guinea pigs. Allogeneic bone marrow cells proliferated as well as syngeneic cells in both strain 2 and 13 animals. This observation indicates that Ia disparities are not relevant to marrow graft rejection in the guinea pig. Both Ia positive and Ia negative L/sub 2/C leukemia cells of strain 2 origin grew well in the spleen of irradiated strain 2 animals. However, irradiated strain 13 animals showed resistance to the growth of both leukemia cell lines. F/sub 1/ hybrids (2more » x 13) also showed resistance to the growth of the leukemia cells. These observations suggest the existence of an effector system capable of mediating natural resistance to L/sub 2/C cells in unimmunized strain 13 and F/sub 1/ guinea pigs. The nature of antigens recognized by these radiation resistant effector cells are not entirely clear. However, Ia antigens, or tumor-associated antigens dependent upon Ia antigens for immunogenicity, do not seem to be the primary targets in this phenomenon.« less
Graft-versus-leukemia effects of transplantation and donor lymphocytes.
Kolb, Hans-Jochem
2008-12-01
Allogeneic transplantation of hematopoietic cells is an effective treatment of leukemia, even in advanced stages. Allogeneic lymphocytes produce a strong graft-versus-leukemia (GVL) effect, but the beneficial effect is limited by graft-versus-host disease (GVHD). Depletion of T cells abrogates GVHD and GVL effects. Delayed transfusion of donor lymphocytes into chimeras after T cell-depleted stem cell transplantation produces a GVL effect without necessarily producing GVHD. Chimerism and tolerance provide a platform for immunotherapy using donor lymphocytes. The allogeneic GVL effects vary from one disease to another, the stage of the disease, donor histocompatibility, the degree of chimerism, and additional treatment. Immunosuppressive therapy before donor lymphocyte transfusions may augment the effect as well as concomitant cytokine treatment. Possible target antigens are histocompatibility antigens and tumor-associated antigens. Immune escape of tumor cells and changes in the reactivity of T cells are to be considered. Durable responses may be the result of the elimination of leukemia stem cells or the establishment of a durable immune control on their progeny. Recently, we have learned from adoptive immunotherapy of viral diseases and HLA-haploidentical stem cell transplantation that T-cell memory may be essential for the effective treatment of leukemia and other malignancies.
2014-10-30
Hematopoietic/Lymphoid Cancer; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma
Martín-Martín, Lourdes; López, Antonio; Vidriales, Belén; Caballero, María Dolores; Rodrigues, António Silva; Ferreira, Silvia Inês; Lima, Margarida; Almeida, Sérgio; Valverde, Berta; Martínez, Pilar; Ferrer, Ana; Candeias, Jorge; Ruíz-Cabello, Francisco; Buadesa, Josefa Marco; Sempere, Amparo; Villamor, Neus
2015-01-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56− phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment. PMID:26056082
Methotrexate induces high level of apoptosis in canine lymphoma/leukemia cell lines.
Pawlak, Aleksandra; Kutkowska, Justyna; Obmińska-Mrukowicz, Bożena; Rapak, Andrzej
2017-10-01
Methotrexate is an antimetabolite used in the treatment of cancer and non-malignant diseases including rheumatoid arthritis, psoriasis and graft vs. host disease. Combination therapy with methotrexate was successful in the treatment of canine lymphoma, mammary tumor and invasive urinary bladder cancer. Lymphoma, the most common hematopoietic cancer in dogs, and leukemia are sensitive to chemotherapy, which is why methotrexate may be an important treatment option for these diseases. Although methotrexate is already used in veterinary oncology its effects on canine cancer cells has not been tested. The aim of the study was to evaluate for the first time methotrexate concentration-dependent cytotoxicity and its capability of inducing apoptosis in selected canine lymphoma/leukemia cell lines: CLBL-1, GL-1 and CL-1 as a first step before the in vitro development of new therapeutic options with the use of methotrexate. Methotrexate exhibited concentration-dependent inhibitory effect on proliferation of all the examined cell lines with different degree of apoptosis induction. The most methotrexate sensitive cells belonged to CL-1 cell line derived from T cell neoplasia and previously characterized by high resistance to the majority of anticancer drugs used in the therapy of lymphoma/leukemia in dogs. Canine lymphoma and leukemia cell lines are sensitive to methotrexate, and this drug may be useful in effective treatment of canine neoplasms and especially of T-type leukemia/lymphoma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F
2004-07-01
Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.
Moreno, Luis
2017-01-01
Abstract Background: Adult T-cell Leukemia/Lymphoma (ATLL) is classified as a peripheral CD4+ T-cell neoplasm caused by the human T-cell lymphotropic virus type 1 (HTLV-1). Typical symptoms are associated with leukemic infiltration; however, atypical and exaggerated manifestations of verrucous carcinoma have also been described. Case report: We present here the case of a patient with multiple skin lesions, ischemic necrosis in the hallux and lymphadenopathies. Biopsies were taken, which showed verrucous epidermal carcinoma and cutaneous lymphoma. Splenomegaly and adenopathy in mesentery, retro peritoneum and lymph node chains in the limbs were observed. Bone marrow examination showed findings compatible with T-cell leukemia/lymphoma; and it was ELISA positive for HTLV-1/2. Treatment and outcome: The patient had a good initial response to a CHOP scheme (cyclophosphamide, doxorubicin, vincristine and prednisone) with filgrastim. However, the patient had a relapse and died before the second cycle. Clinical relevance: Comorbidity could lead to the associated risk factors model. According to this model, secondary immunodeficiency caused by HTLV-1 may induce the development of verrucous carcinomas; alternatively, the disease could be due to a correlation between HTLV-1 and the human papillomavirus (HPV). PMID:28559645
2018-03-02
Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia
Hussain, Naveen; Thickett, Kelly R; Na, Hong; Leung, Cherry; Tailor, Chetankumar S
2011-12-01
Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.
Fitzgerald, Julie C; Weiss, Scott L; Maude, Shannon L; Barrett, David M; Lacey, Simon F; Melenhorst, J Joseph; Shaw, Pamela; Berg, Robert A; June, Carl H; Porter, David L; Frey, Noelle V; Grupp, Stephan A; Teachey, David T
2017-02-01
Initial success with chimeric antigen receptor-modified T cell therapy for relapsed/refractory acute lymphoblastic leukemia is leading to expanded use through multicenter trials. Cytokine release syndrome, the most severe toxicity, presents a novel critical illness syndrome with limited data regarding diagnosis, prognosis, and therapy. We sought to characterize the timing, severity, and intensive care management of cytokine release syndrome after chimeric antigen receptor-modified T cell therapy. Retrospective cohort study. Academic children's hospital. Thirty-nine subjects with relapsed/refractory acute lymphoblastic leukemia treated with chimeric antigen receptor-modified T cell therapy on a phase I/IIa clinical trial (ClinicalTrials.gov number NCT01626495). All subjects received chimeric antigen receptor-modified T cell therapy. Thirteen subjects with cardiovascular dysfunction were treated with the interleukin-6 receptor antibody tocilizumab. Eighteen subjects (46%) developed grade 3-4 cytokine release syndrome, with prolonged fever (median, 6.5 d), hyperferritinemia (median peak ferritin, 60,214 ng/mL), and organ dysfunction. Fourteen (36%) developed cardiovascular dysfunction treated with vasoactive infusions a median of 5 days after T cell therapy. Six (15%) developed acute respiratory failure treated with invasive mechanical ventilation a median of 6 days after T cell therapy; five met criteria for acute respiratory distress syndrome. Encephalopathy, hepatic, and renal dysfunction manifested later than cardiovascular and respiratory dysfunction. Subjects had a median of 15 organ dysfunction days (interquartile range, 8-20). Treatment with tocilizumab in 13 subjects resulted in rapid defervescence (median, 4 hr) and clinical improvement. Grade 3-4 cytokine release syndrome occurred in 46% of patients following T cell therapy for relapsed/refractory acute lymphoblastic leukemia. Clinicians should be aware of expanding use of this breakthrough therapy and implications for critical care units in cancer centers.