Sample records for cell line anticancer

  1. Prioritization of anticancer drugs against a cancer using genomic features of cancer cells: A step towards personalized medicine

    PubMed Central

    Gupta, Sudheer; Chaudhary, Kumardeep; Kumar, Rahul; Gautam, Ankur; Nanda, Jagpreet Singh; Dhanda, Sandeep Kumar; Brahmachari, Samir Kumar; Raghava, Gajendra P. S.

    2016-01-01

    In this study, we investigated drug profile of 24 anticancer drugs tested against a large number of cell lines in order to understand the relation between drug resistance and altered genomic features of a cancer cell line. We detected frequent mutations, high expression and high copy number variations of certain genes in both drug resistant cell lines and sensitive cell lines. It was observed that a few drugs, like Panobinostat, are effective against almost all types of cell lines, whereas certain drugs are effective against only a limited type of cell lines. Tissue-specific preference of drugs was also seen where a drug is more effective against cell lines belonging to a specific tissue. Genomic features based models have been developed for each anticancer drug and achieved average correlation between predicted and actual growth inhibition of cell lines in the range of 0.43 to 0.78. We hope, our study will throw light in the field of personalized medicine, particularly in designing patient-specific anticancer drugs. In order to serve the scientific community, a webserver, CancerDP, has been developed for predicting priority/potency of an anticancer drug against a cancer cell line using its genomic features (http://crdd.osdd.net/raghava/cancerdp/). PMID:27030518

  2. Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.

    PubMed

    Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng

    2014-01-01

    Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.

  3. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line.

    PubMed

    Salahuddin, H; Mansoor, Q; Batool, R; Farooqi, A A; Mahmood, T; Ismail, M

    2016-04-30

    Bioactive chemicals isolated from plants have attracted considerable attention over the years and overwhelmingly increasing laboratory findings are emphasizing on tumor suppressing properties of these natural agents in genetically and chemically induced animal carcinogenesis models. We studied in vitro anticancer activity of organic extracts of Cynodon dactylon and Oxalis corniculata on Hep2 cell line and it was compared with normal human corneal epithelial cells (HCEC) by using MTT assay. Real Time PCR was conducted for p53 and PTEN genes in treated cancer cell line. DNA fragmentation assay was also carried out to note DNA damaging effects of the extracts. The minimally effective concentration of ethanolic extract of Cynodon dactylon and methanolic extract of Oxalis corniculata that was nontoxic to HCEC but toxic to Hep2 was recorded (IC50) at a concentration of 0.042mg/ml (49.48 % cell death) and 0.048mg/ml (47.93% cell death) respectively, which was comparable to the positive control. Our results indicated dose dependent increase in cell death. P53 and PTEN did not show significant increase in treated cell line. Moreover, DNA damaging effects were also not detected in treated cancer cell line. Anticancer activity of these plants on the cancer cell line showed the presence of anticancer components which should be characterized to be used as anticancer therapy.

  4. The use of human tumour cell lines in the discovery of new cancer chemotherapeutic drugs.

    PubMed

    Baguley, Bruce C; Marshall, Elaine S

    2008-02-01

    Human tumour cell lines have played a major role in anticancer drug discovery, but cell lines may model only some aspects of tumour behaviour in cancer patients. Growing evidence supports a theory that stem cells with self-renewing properties sustain tumours. This review considers the extent to which a deeper understanding of the origin and properties of tumour cell lines might lead to new strategies for anticancer drug discovery. Recent literature on normal and tumour stem cells is reviewed and placed in the context of a discussion on the derivation and properties of tumour cell lines. Early-passage cell lines may model the more rapidly proliferating cells in human tumours and, thus, retain some of the properties of tumour stem cells. The effects of anticancer drugs on cell lines should be considered not only with regards to the induction of apoptosis, but also to the induction of senescence or other pathways that lead to host immune and inflammatory responses.

  5. Synthesis and Anti-cancer Activity of 3-substituted Benzoyl-4-substituted Phenyl-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiaoping; Qin, Weixi; Wang, Shuai; Zhao, Kai; Xin, Yuxuan; Wang, Yaolin; Qi, Qi; Mao, Zhenmin

    2017-01-01

    Cancer is considered a major public health problem worldwide. The aim of this paper is to design and synthesis of novel anticancer agents with potent anticancer activity and minimum side effects. A series of pyrrole derivatives were synthesized, their anti-cancer activity against nine cancer cell lines and two non-cancer cell lines were evaluated by MTT assay, and their cell cycle progression were determined by flow cytometry analysis. The study of the structure-activity relationships revealed that the introduction of the electron-donation groups at the 4th position of the pyrrole ring increased the anti-cancer activity. Among the synthesized compounds, specially the compounds bearing 3,4-dimethoxy phenyl at the 4th position of the pyrrole ring showed potent anti-cancer activity, cpd 19 was the most potent against MGC 80-3, HCT-116 and CHO cell lines (IC50s = 1.0-1.7 μM), cpd 21 was the most potent against HepG2, DU145 and CT-26 cell lines (IC50s = 0.5-0.9 μM), and cpd 15 was the most potent against A549 (IC50 = 3.6 μM). Moreover, these potent compounds showed weak cytotoxicity against HUVEC and NIH/3T3. Thus, the cpds 15, 19 and 21 show potential anti-cancer for further investigation. Furthermore, the flow cytometry analysis revealed that cpd 21 arrested the CT-26 cells at S phase, and induced the cell apoptosis. Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. The Influence of Different Oregano Species on the Antioxidant Activity Determined Using HPLC Postcolumn DPPH Method and Anticancer Activity of Carvacrol and Rosmarinic Acid

    PubMed Central

    Kubiliene, Asta; Marksa, Mindaugas; Petrikaite, Vilma; Vitkevičius, Konradas; Baranauskas, Algirdas

    2017-01-01

    The aim of this study was to evaluate concentration-dependent antioxidant and anticancer activities of CA and RA in ethanol extracts of three different Oregano species (Origanum onites L., Origanum vulgare L., and Origanum vulgare ssp. hirtum). The study revealed the highest RA antioxidant activity in O. vulgare ssp. hirtum (9550 ± 95 mmol/g) and the lowest in O. vulgare L. (2605 ± 52 mmol/g) (p < 0.05). The highest CA amount was present in O. onites L., which was 1.8 and 4.7 times higher (p < 0.05) than in O. vulgare ssp. hirtum and O. vulgare L., respectively. The anticancer activity was evaluated on human glioblastoma (U87) and triple-negative breast cancer (MDA-MB231) cell lines in vitro. RA anticancer activity was negligible. CA and the extracts were about 1.5–2 times more active against MDA-MB231 cell line (p < 0.05) compared to U87 cell line. The anticancer activities of three tested extracts were similar against U87 cell line (p > 0.05) but they had different activities against MDA-MB231 cell line. PMID:29181386

  7. Synthesis, DNA binding ability and anticancer activity of 2-heteroaryl substituted benzimidazoles linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates.

    PubMed

    Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda

    2013-08-01

    As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.

  8. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    PubMed

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast and colorectal cancers.

  9. In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-dione.

    PubMed

    Sufi, Shamim Akhtar; Adigopula, Lakshmi Narayana; Syed, Safiulla Basha; Mukherjee, Victor; Coumar, Mohane S; Rao, H Surya Prakash; Rajagopalan, Rukkumani

    2017-01-01

    Previously we showed that BDMC, an analogue of curcumin suppresses growth of human breast and laryngeal cancer cell line by causing apoptosis. Here, we demonstrate the enhanced anti-cancer activity of a heterocyclic ring (indole) incorporated curcumin analogue ((1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-Dione), ICA in short, in comparison to curcumin. ICA was synthesized by a one pot condensation reaction. Anti-cancer potential of ICA was assessed in three human cancer cell lines of different origin (Lung adenocarcinoma (A549), leukemia (K562) and colon cancer (SW480)) by MTT assay. Mode of cell death was determined by acridine orange-ethidium bromide (Ao-Eb) staining. Putative cellular targets of ICA were investigated by molecular docking studies. Cell cycle analysis following curcumin or ICA treatment in SW480 cell line was carried out by flow cytometry. Expression levels of Cyclin D1 and apoptotic markers, such as Caspase 3, 8 and 9 were studied by western blot analysis in SW480 cell line treated with or without ICA and curcumin. The yield of ICA synthesis was found to be 69% with a purity of 98%. ICA demonstrated promising anti-cancer activity compared to curcumin alone, as discerned by MTT assay. ICA was non-toxic to the cell line of normal origin. We further observed that ICA is ∼2 fold more potent than curcumin in inhibiting the growth of SW480 cells. Ao-Eb staining revealed that ICA could induce apoptosis in all the cell lines tested. Molecular docking studies suggest that ICA may possibly exhibit its anticancer effect by inhibiting EGFR in A549, Bcr-Abl in K562 and GSK-3β kinase in SW480 cell line. Moreover, ICA showed strong binding avidity for Bcl-2 protein in silico, which could result in induction of apoptosis. Cell cycle analysis revealed that both curcumin and ICA induced concomitant cell cycle arrest at G0/G1 and G2/M phase. Western blot shows that ICA could effectively down regulate the expression of cell cycle protein cyclin D1, while promoting the activation of Caspase 3, 8 and 9 when compared to curcumin in human colon cancer cell line SW480. The result of this study indicates that ICA could hold promise to be a potential anti-cancer agent. Since ICA has shown encouraging results in terms of its anti-cancer activity compared to curcumin, further research is necessary to fully delineate the underlying molecular mechanism of its anticancer potential. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Synthesis, Characterization, and Anti-Cancer Activity of Some New N'-(2-Oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazones Derivatives.

    PubMed

    El-Faham, Ayman; Farooq, Muhammad; Khattab, Sherine N; Abutaha, Nael; Wadaan, Mohammad A; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-08-13

    Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 μM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.

  11. Investigating the Role of Radiation Therapy Breast Cancer Clinical and Translational Research

    DTIC Science & Technology

    2006-05-01

    radiosensitizing and anticancer properties of green tea and curcumin and found a complex response cascade in cell lines. For example, the anticancer ...this fall. 5. Arber Kodra: Effect of Green Tea and Curcumin on Breast Cancer Cell Lines Mentor: Gary Kao, MD PhD Arber examined the...Breast Cancer Elizabeth Gurney Mentor: Gary Kao, MD, PhD Effect of Green Tea and Curcumin on Breast Cancer Cell Lines Arber Kodra Mentor

  12. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions.

    PubMed

    E-Kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote

    2016-01-01

    Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  13. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70–90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2–3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast and colorectal cancers. PMID:26288313

  14. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo

    PubMed Central

    Hashemzaei, Mahmoud; Far, Amin Delarami; Yari, Arezoo; Heravi, Reza Entezari; Tabrizian, Kaveh; Taghdisi, Seyed Mohammad; Sadegh, Sarvenaz Ekhtiari; Tsarouhas, Konstantinos; Kouretas, Dimitrios; Tzanakakis, George; Nikitovic, Dragana; Anisimov, Nikita Yurevich; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Rezaee, Ramin

    2017-01-01

    The present study focused on the elucidation of the putative anticancer potential of quercetin. The anticancer activity of quercetin at 10, 20, 40, 80 and 120 µM was assessed in vitro by MMT assay in 9 tumor cell lines (colon carcinoma CT-26 cells, prostate adenocarcinoma LNCaP cells, human prostate PC3 cells, pheocromocytoma PC12 cells, estrogen receptor-positive breast cancer MCF-7 cells, acute lymphoblastic leukemia MOLT-4 T-cells, human myeloma U266B1 cells, human lymphoid Raji cells and ovarian cancer CHO cells). Quercetin was found to induce the apoptosis of all the tested cancer cell lines at the utilized concentrations. Moreover, quercetin significantly induced the apoptosis of the CT-26, LNCaP, MOLT-4 and Raji cell lines, as compared to control group (P<0.001), as demonstrated by Annexin V/PI staining. In in vivo experiments, mice bearing MCF-7 and CT-26 tumors exhibited a significant reduction in tumor volume in the quercetin-treated group as compared to the control group (P<0.001). Taken together, quercetin, a naturally occurring compound, exhibits anticancer properties both in vivo and in vitro. PMID:28677813

  15. Suppression of tumor growth by Pleurotus ferulae ethanol extract through induction of cell apoptosis, and inhibition of cell proliferation and migration.

    PubMed

    Wang, Weilan; Chen, Kaixu; Liu, Qing; Johnston, Nathan; Ma, Zhenghai; Zhang, Fuchun; Zheng, Xiufen

    2014-01-01

    Cancer is the second leading cause of death worldwide. Edible medicinal mushrooms have been used in traditional medicine as regimes for cancer patients. Recently anti-cancer bioactive components from some mushrooms have been isolated and their anti-cancer effects have been tested. Pleurotus ferulae, a typical edible medicinal mushroom in Xinjiang China, has also been used to treat cancer patients in folk medicine. However, little studies have been reported on the anti-cancer components of Pleurotus ferulae. This study aims to extract bioactive components from Pleurotus ferulae and to investigate the anti-cancer effects of the extracts. We used ethanol to extract anti-cancer bioactive components enriched with terpenoids from Pleurotus ferulae. We tested the anti-tumour effects of ethanol extracts on the melanoma cell line B16F10, the human gastric cancer cell line BGC 823 and the immortalized human gastric epithelial mucosa cell line GES-1 in vitro and a murine melanoma model in vivo. Cell toxicity and cell proliferation were measured by MTT assays. Cell cycle progression, apoptosis, caspase 3 activity, mitochondrial membrane potential (MMP), migration and gene expression were studied in vitro. PFEC suppressed tumor cell growth, inhibited cell proliferation, arrested cells at G0/G1 phases and was not toxic to non-cancer cells. PFEC also induced cell apoptosis and necrosis, increased caspase 3 activity, reduced the MMP, prevented cell invasion and changed the expression of genes associated with apoptosis and the cell cycle. PFEC delayed tumor formation and reduced tumor growth in vivo. In conclusion, ethanol extracted components from Pleurotus ferulae exert anti-cancer effects through direct suppression of tumor cell growth and invasion, demonstrating its therapeutic potential in cancer treatment.

  16. Bis-demethoxy curcumin analog nanoparticles: synthesis, characterization, and anticancer activity in vitro.

    PubMed

    Francis, Arul Prakash; Murthy, Prakhya Balakishna; Devas, Thiyagarajan

    2014-07-01

    We have optimized a protocol for the preparation of bisdemethoxy curcumin analog nanoparticles (BDMCA-NP) by the solvent assisted process. The structural similarities between bulk and nano BDMCA were determined by Co-TLC, NMR and F-TIR. This shows that our synthesis protocol enhanced the dispersibility and reduce the size of BDMCA without altering the integrity of functional moieties and structure, which is crucial for anticancer and antioxidant activities. The morphology and size of BDMCA-NP as determined by SEM, HRTEM and DLS was found to be around 80 nm. BDMCA-NP treated breast cancer cell lines (MCF 7) showed cell death as characterized by MTT assay. Flow cytometric analysis of BDMCA-NP treated MCF 7 cell lines showed an increase of cell count in G2/M phase indicates the cell cycle arrest. Western blot analysis revealed the presence of caspase 3, caspase 9, cleaved fragments of PARP and Bax proteins in the BDMCA-NP treated MCF 7 cell lines, but not in untreated cell lines. To recap, we have prepared BDMCA-NP by solvent assisted process, which exerted anticancer activity against breast cancer cells, which may be due to (i) enhanced dispersibility and surface: volume ratio, (ii) apoptosis (iii) mitochondrial pathway induced cell death, (iv) G2/M phase cell cycle arrest and (v) disassembly of mitotic spindle of the cancer cells. Thus, nano BDMCA can be used as a potent anticancer agent.

  17. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.

    PubMed

    Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata

    2018-01-01

    A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.

  18. The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines.

    PubMed

    Doi, Toshifumi; Ishikawa, Takeshi; Okayama, Tetsuya; Oka, Kaname; Mizushima, Katsura; Yasuda, Tomoyo; Sakamoto, Naoyuki; Katada, Kazuhiro; Kamada, Kazuhiro; Uchiyama, Kazuhiko; Handa, Osamu; Takagi, Tomohisa; Naito, Yuji; Itoh, Yoshito

    2017-03-01

    Although improvements in the chemotherapy modalities for pancreatic cancer have been realized, pancreatic cancer remains one of the most lethal malignancies. New-generation cancer immunotherapy methods, such as blocking of the PD-1/PD-L1 pathway, are consistently being investigated to improve the survival of pancreatic cancer patients. In the present study, we evaluated the influence of anticancer agents 5-fluorouracil, gemcitabine and paclitaxel on PD-L1 expression in human pancreatic cancer cell lines MIA PaCa-2 and AsPC-1 and in murine pancreatic cancer cell line Pan02. Additionally, we analyzed the molecular mechanisms that facilitated the regulation of PD-L1 expression in these cell lines. We observed that when AsPC-1, MIA PaCa-2 and Pan02 cells were stimulated by 5-fluorouracil, gemcitabine or paclitaxel, PD-L1 surface protein expression was enhanced. Similarly, the mRNA level of PD-L1 was upregulated in the AsPC-1 and Pan02 cells when stimulated by each of the three anticancer agents. The phosphorylation of STAT1 and an increase in total STAT1 were also observed in the AsPC-1 cells when stimulated by each anticancer agent. In response to JAK2 inhibitor treatment, PD-L1 upregulation induced by the anticancer agents was reduced in a dose-dependent manner. These results suggest that i) the JAK2/STAT1 pathway is involved in the anticancer agent-mediated PD-L1 transcription; and ii) the anticancer agents altered the tumor immune response which may induce tumor immune escape. These findings can have an influence on the design of treatments that combine chemotherapy and immunotherapy.

  19. Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus.

    PubMed

    Ahsan, Mohamed Jawed; Ahsan, Mohamed Jawed

    2016-01-01

    We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration 10 μM) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and 100 μM) and three dose related parameters GI50, TGI and LC50 were calculated for each (3a-g) in micro molar drug concentrations (μM). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a GI50 of 0.03 μM. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with GI50 values between 0.23 and 2.67 μM.

  20. Synthesis and biological evaluation of 3-substituted-4-(4-methylthio phenyl)-1H-pyrrole derivatives as potential anticancer agents.

    PubMed

    Lan, Lan; Qin, Weixi; Zhan, Xiaoping; Liu, Zenglu; Mao, Zhenmin

    2014-01-01

    A novel series of 3-substituted-4-(4-methylthio phenyl)-1H-pyrrole derivatives were synthesized via Van Leusen pyrrole synthesis. The in vitro anticancer activity against a panel of 16 cancer cell lines and 2 normal cell lines was investigated by MTT assay. It was found that some of the pyrrole compounds showed similar antiproliferative activity against cancer cells compared with Paclitaxel, but little impact on normal cell lines, which indicated that the novel pyrrole derivatives could be used as potential anticancer candidates for possessing both selectivity and good therapeutic efficacy. Structure-activity relationship analysis found that 3-phenylacetyl-4- (4-methylthio phenyl)-1H-pyrrole derivatives displayed the most strong anticancer activity, among which [4-(4-methylthio phenyl)-1H-pyrrol- 3-yl] (4-methoxy phenyl) methanone (3j) was employed to investigate the effect of these pyrrole analogues on cell cycle by propidium iodide (PI) staining on cell flow cytometry. Cell necrotic effect of 10.0 µM 3j against MGC80-3 cells were also observed under fluorescence microscope and transmission electron microscope by ultrathin sections observation.

  1. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549.

    PubMed

    Wu, Jun; Gao, Weiping; Song, Zhuoyue; Xiong, Qingping; Xu, Yingtao; Han, Yun; Yuan, Jun; Zhang, Rong; Cheng, Yunbo; Fang, Jiansong; Li, Weirong; Wang, Qi

    2018-01-01

    The purpose of this study was to investigate the anticancer activity of polysaccharide (PGL) from Glehnia littoralis on human lung cancer cell line A549. Based on MTT assay, the results suggested that PGL could significantly reduce A549 cells proliferation in a time- and dose-dependent manner. In addition, PGL displayed an inhibitory activity for the A549 cells migration in Transwell migration assay. The results from both flow cytometry analysis and Hochst 3342 staining of apoptotic cells indicated that PGL could promote apoptosis, and induce cycle arrest of A549 cells. Moreover, immunofluorescence assay elucidated PGL could also down-regulate expression of proliferating cell nuclear antigen (PCNA). Overall, these results showed that PGL exerts a strong anticancer action through inhibiting the A549 cells migration, proliferation and inducing cell apoptosis. It could be a new source of natural anticancer agent against lung cancer with potential value in supplements and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The vitamin C:vitamin K3 system - enhancers and inhibitors of the anticancer effect.

    PubMed

    Lamson, Davis W; Gu, Yu-Huan; Plaza, Steven M; Brignall, Matthew S; Brinton, Cathy A; Sadlon, Angela E

    2010-12-01

    The oxidizing anticancer system of vitamin C and vitamin K₃ (VC:VK₃, producing hydrogen peroxide via superoxide) was combined individually with melatonin, curcumin, quercetin, or cholecalciferol (VD₃) to determine interactions. Substrates were LNCaP and PC-3 prostate cancer cell lines. Three of the tested antioxidants displayed differences in cell line cytotoxicity. Melatonin combined with VC:VK₃ quenched the oxidizing effect, while VC:VK₃ applied 24 hours after melatonin showed no quenching. With increasing curcumin concentrations, an apparent combined effect of VC:VK₃ and curcumin occurred in LNCaP cells, but not PC-3 cells. Quercetin alone was cytotoxic on both cell lines, but demonstrated an additional 50-percent cytotoxicity on PC-3 cells when combined with VC:VK₃. VD₃ was effective against both cell lines, with more effect on PC-3. This effect was negated on LNCaP cells with the addition of VC:VK₃. In conclusion, a natural antioxidant can enhance or decrease the cytotoxicity of an oxidizing anticancer system in vitro, but generalizations about antioxidants cannot be made.

  3. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

    PubMed

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A; Kim, Sungjoon; Wilson, Christopher J; Lehár, Joseph; Kryukov, Gregory V; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F; Monahan, John E; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H; Cheng, Jill; Yu, Guoying K; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P; Gabriel, Stacey B; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E; Weber, Barbara L; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L; Meyerson, Matthew; Golub, Todd R; Morrissey, Michael P; Sellers, William R; Schlegel, Robert; Garraway, Levi A

    2012-03-28

    The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

  4. Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium.

    PubMed

    Nair, P K Raveedran; Melnick, Steven J; Wnuk, Stanislaw F; Rapp, Magdalena; Escalon, Enrique; Ramachandran, Cheppail

    2009-04-21

    The fruits and seeds of Semecarpus anacardium are used widely for the treatment of human cancers and other diseases in the Ayurvedic and Sidda systems of medicine in India. The principal aim of this investigation was to isolate and characterize the anticancer compound from the kernel of Semecarpus anacardium nut. The bioactivity-tailored isolation and detailed chemical characterization were used to identify the active compound. Cytotoxicity, apoptosis, cell cycle arrest as well as synergism between the identified anticancer compound and doxorubicin in human tumor cell lines were analyzed. GC/MS, IR, proton NMR, carbon NMR and collisionally induced dissociation (CID) spectra analysis showed that the isolated active compound is 3-(8'(Z),11'(Z)-pentadecadienyl) catechol (SA-3C). SA-3C is cytotoxic to tumor cell lines with IC(50) values lower than doxorubicin and even multidrug resistant tumor cell lines were equally sensitive to SA-3C. SA-3C induced apoptosis in human leukemia cell lines in a dose-dependent manner and showed synergistic cytotoxicity with doxorubicin. The cell cycle arrest induced by SA-3C at S- and G(2)/M-phases correlated with inhibition of checkpoint kinases. SA-3C isolated from the kernel of Semecarpus anacardium can be developed as an important anticancer agent for single agent and/or multiagent cancer therapy.

  5. 12-Chloracetyl-PPD, a novel dammarane derivative, shows anti-cancer activity via delay the progression of cell cycle G2/M phase and reactive oxygen species-mediate cell apoptosis.

    PubMed

    Wang, Xu De; Sun, Yuan Yuan; Zhao, Chen; Qu, Fan Zhi; Zhao, Yu Qing

    2017-03-05

    (20R)-Dammarane-3β, 12β, 20, 25-tetrol (25-OH-PPD) is a ginsenoside isolated from Panax ginseng (C. A. Meyer). This compound exhibits anti-cancer activities on many human cancer cell lines. In this study, we investigated anti-cancer mechanisms of 12β-O-( L -Chloracetyl)-dammar-20(22)-ene-3β,25-diol(12-Chloracetyl-PPD), a modified 25-OH-PPD. We found that compound 12-Chloracetyl-PPD resulted in a concentration-dependent inhibition of viability in prostate, breast, and gastric cancer cells, without affecting the viability of normal cell (human gastric epithelial cell line-GES-1, hair follicle dermal papilla cell line-HHDPC and rat myocardial cell line-H9C2). In MDA-MB-435 and C4-2B cancer cells, 12-Chloracetyl-PPD induced G2/M cell cycle arrest, down-regulated mouse double minute 2 (MDM2) expression, up-regulated p53 expression, triggered apoptosis, and stimulated reactive oxygen species production. Apoptosis can be attenuated by the reactive oxygen species scavenger N-acetylcysteine. Our results suggested that compound 12-Chloracetyl-PPD showed obvious anti-cancer activity based on delaying cell cycle arrest and inducing cell apoptosis by reactive oxygen species production, which supported development of 12-Chloracetyl-PPD as a potential agent for cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wairagu, Peninah M.; Institute of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do 220-701; Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do 220-701

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where eachmore » pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.« less

  7. Cytotoxic, Antiproliferative and Apoptotic Effects of Perillyl Alcohol and Its Biotransformation Metabolite on A549 and HepG2 Cancer Cell Lines.

    PubMed

    Oturanel, Ceren E; Kıran, İsmail; Özşen, Özge; Çiftçi, Gülşen A; Atlı, Özlem

    2017-01-01

    A monoterpene, perillyl alcohol, has attracted attention in medicinal chemistry since it exhibited chemo-preventive and therapeutic properties against a variety of cancers. In the present work, it was aimed to obtain derivatives of perillyl alcohol through microbial biotransformation and investigate their anticancer activities against A549 and HepG2 cancer cell lines. Biotransformation studies were carried out in a α-medium for 7 days at 25oC. XTT assay was performed to investigate the anticancer activities of perillyl alcohol and its biotransformation metabolite, dehydroperillic acid, against A549 and HepG2 cell lines and their selectivity using healthy cell line, NIH/3T3. Cell proliferation ELISA, BRDU (colorimetric) assay was used for measurement of proliferation in replicative cells in which DNA synthesis occurs. Flow cytometric analyses were also carried out for measuring apoptotic cell percentages, caspase 3 activation and mitochondrial membrane potential. Biotransformation of perillyl alcohol with Fusarium culmorum yielded dehydroperillic acid in a yield of 20.4 %. In in vitro anticancer studies, perillyl alcohol was found to exert cytotoxicity against HepG2 cell line with an IC50 value of 409.2 μg/mL. However, this effect was not found to be selective because of its higher IC50 (250 μg/mL) value against NIH/3T3 cell line. On the other hand, dehydroperillic acid was found to be effective and also selective against A549 cell line with an IC50 value of 125 μg/mL and a selectivity index (SI) value of 400. Apoptosis inducing effects of dehydroperillic acid was better in A549 cell line. Dehydroperillic acid may be a good candidate for therapy of lung adenocarcinoma and may show this anticancer activity by inducing apoptosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line

    NASA Astrophysics Data System (ADS)

    Yadav, Sanjeev Kumar; Srivastava, Anup Kumar; Dev, Atul; Kaundal, Babita; Choudhury, Subhasree Roy; Karmakar, Surajit

    2017-09-01

    Melatonin (MEL) has promising medicinal value as an anticancer agent in a variety of malignancies, but there are difficulties in achieving a therapeutic dose due to its short half-life, low bioavailability, poor solubility and extensive first-pass metabolism. In this study chitosan/tripolyphosphate (TPP) nanoparticles were prepared by an ionic gelation method to overcome the therapeutic challenges of melatonin and to improve its anticancer efficacy. Characterization of the melatonin-loaded chitosan (MEL-CS) nanoformulation was performed using transmission and scanning electron microscopies, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy and x-ray diffraction. In vitro release, cellular uptake and efficacy studies were tested for their enhanced anticancer potential in human U87MG glioblastoma cells. Confocal studies revealed higher cellular uptake of MEL-CS nanoparticles and enhanced anticancer efficacy in human malignant glioblastoma cancer cells than in healthy non-malignant human HEK293T cells in mono- and co-culture models. Our study has shown for the first time that MEL-CS nanocomposites are therapeutically more effective as compared to free MEL at inducing functional anticancer efficacy in the human brain tumour U87MG cell line.

  9. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii.

    PubMed

    Bhandari, Jaya; Muhammad, BushraTaj; Thapa, Pratiksha; Shrestha, Bhupal Govinda

    2017-02-08

    There is growing interest in the use of plants for the treatment and prevention of cancer. Medicinal plants are currently being evaluated as source of promising anticancer agents. In this paper, we have investigated the anticancer potential of plant Allium wallichii, a plant native to Nepal and growing at elevations of 2300-4800 m. This is the first study of its kind for the plant mentioned. The dried plant was extracted in aqueous ethanol. Phytochemical screening, anti-microbial assay, anti-oxidant assay, cytotoxicity assay and the flow-cytometric analysis were done for analyzing different phytochemicals present, anti-microbial activity, anti-oxidant activity and anti-cancer properties of Allium wallichii. We observed the presence of steroids, terpenoids, flavonoids, reducing sugars and glycosides in the plant extract and the plant showed moderate anti-microbial and anti-oxidant activity. The IC 50 values of Allium wallichii in different cancer cell lines are 69.69 μg/ml for Prostate cancer (PC3) cell line, 55.29 μg/ml for Breast Cancer (MCF-7) cell line and 46.51 μg/ml for cervical cancer (HeLa) cell line as compared to Doxorubicin (0.85 μg/ml). The cell viability assay using FACS showed that the IC 50 value of Allium wallichii for Burkitt's lymphoma (B-Lymphoma) cell line was 3.817 ± 1.99 mg/ml. Allium wallichii can be an important candidate to be used as an anticancer agent. Separation of pure compounds with bioassay guided extraction, spectrometric analysis and subsequent cytotoxicity assay of the pure bioactive compounds from Allium wallichii is highly recommended as the crude extract itself showed promising cytotoxicity.

  10. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity

    PubMed Central

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A.; Kim, Sungjoon; Wilson, Christopher J.; Lehár, Joseph; Kryukov, Gregory V.; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F.; Monahan, John E.; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A.; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H.; Cheng, Jill; Yu, Guoying K.; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D.; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C.; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P.; Gabriel, Stacey B.; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E.; Weber, Barbara L.; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L.; Meyerson, Matthew; Golub, Todd R.; Morrissey, Michael P.; Sellers, William R.; Schlegel, Robert; Garraway, Levi A.

    2012-01-01

    The systematic translation of cancer genomic data into knowledge of tumor biology and therapeutic avenues remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacologic annotation is available1. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our results suggest that large, annotated cell line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of “personalized” therapeutic regimens2. PMID:22460905

  11. Design and synthesis of aminocoumarin derivatives as DPP-IV inhibitors and anticancer agents.

    PubMed

    Soni, Rina; Soman, Shubhangi S

    2018-09-01

    DPP-IV "a moonlighting protein" has immerged as promising pathway to control Type 2 diabetes as well as found to play key role in earlier stages of cancer. Here we have reported design, synthesis and applications of aminocoumarin derivatives as DPP-IV inhibitors. Compounds have been synthesized and studied for their DPP-IV inhibition activity. Three compounds have shown moderate inhibition at 100 µM concentration. All compounds were also screened for their anticancer activity against A549 (Lung cancer cell line), MCF-7 (Breast cancer cell line) using MTT assay. One of the compounds has shown very good anticancer activity with IC 50 value 24 ± 0.1 nM against A549 cell line. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Anticancer drugs are synergistic with freezing in induction of apoptosis in HCC cells.

    PubMed

    Yuan, FangJun; Zhou, Wenbo; Zhang, Jifa; Zhang, Zhiyun; Zou, Can; Huang, Ling; Zhang, YouShun; Dai, Zongqing

    2008-08-01

    Cryotherapy has been shown to be an important therapeutic alternative to surgery in the treatment of hepatocellular carcinoma (HCC). Here, the influence of cryo-chemotherapy on HCC was examined in vitro using the human HCC cell line Bel-7402, a drug-resistant HCC cell line originating from Bel-7402 cells (Bel-7402/R), as well as two control cell lines, the HCC cell line SMMC-7721 and a colorectal tumor cell line HIC-251. Cells were treated with either exposure to different freezing temperatures (ranging from -15 to -80 degrees C for 20 min), exposure to sub-lethal concentrations of anticancer chemotherapy drugs or a combination of cryotherapy and chemotherapy. Cell viability and apoptosis under each condition were investigated. We found that the combined treatment resulted in increases in both cell death and apoptosis compared to either treatment alone. The increased level of apoptosis observed in Bel-7402 cells after cryo-chemotherapy was inhibited in the presence of caspase inhibitors. Furthermore, Bax expression was increased 2- to 3-fold in cells exposed to the combination treatment compared with cells treated by freezing or drugs alone. In contrast, Bcl-2 levels remained constant. Although Bel-7402/R cells originated from the Bel-7402 cell line, they were more sensitive to the freezing procedure than the parental cell line. The level of Bax expression in Bel-7402/R cells was also higher than that observed in the parental cell line. In addition, we found that Bel-7402/R cells had lower levels of survivin mRNA than the parental Bel-7402 cells, in both untreated and treated cells. In conclusion, our data show that in HCC cells, apoptosis induced by cryotherapy can be synergistically enhanced using anticancer drugs.

  13. Anti-Cancer Effects of Imperata cylindrica Leaf Extract on Human Oral Squamous Carcinoma Cell Line SCC-9 in Vitro.

    PubMed

    Keshava, Rohini; Muniyappa, Nagesh; Gope, Rajalakshmi; Ramaswamaiah, Ananthanarayana Saligrama

    2016-01-01

    Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.

  14. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    NASA Astrophysics Data System (ADS)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  15. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth.

    PubMed

    Jiao, Yang; Ge, Chun-min; Meng, Qing-hui; Cao, Jian-ping; Tong, Jian; Fan, Sai-jun

    2007-07-01

    To investigate the anticancer activity of dihydroartemisinin (DHA), a derivative of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cytotoxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  16. Enhanced anti-cancer activities of a gold(III) pyrrolidinedithiocarbamato complex incorporated in a biodegradable metal-organic framework.

    PubMed

    Sun, Raymond Wai-Yin; Zhang, Ming; Li, Dan; Li, Mian; Wong, Alice Sze-Tsai

    2016-10-01

    An anti-cancer active gold(III) pyrrolidinedithiocarbamato complex [(PDTC)Au III Cl 2 ] (1) has been synthesized and characterized by means of X-ray crystallography. Compared to the pyrrolidinedithiocarbamate ligand itself, this gold(III) complex displays an up to 33-fold higher anti-cancer potency towards a panel of cancer cell lines including the cisplatin-resistant ovarian carcinoma cell line (A2780cis). As demonstrated by a set of Transwell® assay-based cytotoxicity experiments, incorporating this gold(III) complex in a zinc-based biodegradable metal-organic framework (MOF) displays a significant enhancement in anti-cancer activity towards A2780cis than the gold(III) complex alone. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Synthesis and characterization of 2-substituted benzimidazoles and their evaluation as anticancer agent

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I.; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal

    2015-05-01

    In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, 1H- and 13C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity.

  18. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    PubMed

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. © The Author(s) 2014.

  19. Tricaproin Isolated From Simarouba glauca Inhibits the Growth of Human Colorectal Carcinoma Cell Lines by Targeting Class-1 Histone Deacetylases

    PubMed Central

    Jose, Asha; Chaitanya, Motamari V. N. L.; Kannan, Elango; Madhunapantula, SubbaRao V.

    2018-01-01

    While anticancer properties of Simarouba glauca (SG, commonly known as Paradise tree) are well documented in ancient literature, the underlying mechanisms leading to cancer cell death begin to emerge very recently. The leaves of SG have been used as potential source of anticancer agents in traditional medicine. Recently attempts have been made to isolate anticancer agents from the leaves of SG using solvent extraction, which identified quassinoids as the molecules with tumoricidal activity. However, it is not known whether the anti-cancer potential of SG leaves is just because of quassinoids alone or any other phytochemicals also contribute for the potency of SG leaf extracts. Therefore, SG leaves were first extracted with hexane, chloroform, ethyl acetate, 70% ethanol, water and anti-cancer potential (for inhibiting colorectal cancer (CRC) cells HCT-116 and HCT-15 proliferation) determined using Sulforhodamine-B (SRB) assay. The chloroform fraction with maximal anticancer activity was further fractionated by activity-guided isolation procedure and structure of the most potent compound determined using spectral analysis. Analysis of the structural characterization data showed the presence of tricaproin (TCN). TCN inhibited CRC cells growth in a time- and dose dependent manner but not the normal cell line BEAS-2B. Mechanistically, TCN reduced oncogenic Class-I Histone deacetylases (HDACs) activity, followed by inducing apoptosis in cells. In conclusion, the anti-cancer potential of SG is in part due to the presence of TCN in the leaves. PMID:29593526

  20. Synthesis and biological evaluation of some novel triazole hybrids of curcumin mimics and their selective anticancer activity against breast and prostate cancer cell lines.

    PubMed

    Mandalapu, Dhanaraju; Saini, Karan S; Gupta, Sonal; Sharma, Vikas; Yaseen Malik, Mohd; Chaturvedi, Swati; Bala, Veenu; Hamidullah; Thakur, Subhadra; Maikhuri, Jagdamba P; Wahajuddin, Muhammad; Konwar, Rituraj; Gupta, Gopal; Sharma, Vishnu Lal

    2016-09-01

    The anti-cancer property of curcumin, an active component of turmeric, is limited due to its poor solubility, stability and bioavailability. To enhance its efficacy, we designed a novel series of twenty-four monocarbonyl curcumin analogue-1,2,3-triazole conjugates and evaluated their anti-cancer activity towards endocrine related cancers. The new compounds (17-40) were synthesized through CuAAC click reaction and SAR analysis carried out. Out of these all, compound 17 showed most significant anti-cancer activity against prostate cancer cells with IC50 values of 8.8μM and 9.5μM in PC-3 and DU-145 cells, respectively. Another compound 26 showed significant anti-cancer activity against breast cancer cells with IC50 of 6μM, 10μM and 6.4μM in MCF-7, MDA-MB-231 and 4T1 cells, respectively while maintaining low toxicity towards non-cancer originated cell line, HEK-293. Compounds 17 and 26 arrested cell cycle and induced mitochondria-mediated apoptosis in cancer cells. Further, both of these compounds significantly down-regulated cell proliferation marker (PCNA), inhibited activation of cell survival protein (Akt phosphorylation), upregulated pro-apoptotic protein (Bax) and down-regulated anti-apoptotic protein (Bcl-2) in their respective cell lines. In addition, in vitro stability, solubility and plasma binding studies of the compounds 17 and 26 showed them to be metabolically stable. Thus, this study identified two new curcumin monocarbonyl-1,2,3-triazole conjugate compounds with more potent activity than curcumin against breast and prostate cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.

  2. Transportan 10 improves the anticancer activity of cisplatin.

    PubMed

    Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić

    2016-05-01

    The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a complex. Additionally, the complex was relatively safe for non-cancer cells. What is more, TP10 also produced an anticancer effect on HeLa and OS143B cell lines.

  3. Study on Anticancer Activity of Extracts of Sponges Collected from Biak Water, Indonesia

    NASA Astrophysics Data System (ADS)

    Trianto, A.; Ridhlo, A.; Triningsih, D. W.; Tanaka, J.

    2017-02-01

    Indonesia is center of biodiversity where marine sponges are abundant. a source of bioactive compounds with various pharmaceutical properties such as anticancer, antifungal, antibacterial, antioxidants, anti-inflammatory, and anti-malarial. In a continuation of a search for biologically active molecules from marine organisms we investigated the potency of marine sponges as anticancer. A total of 106 sponge specimens were collected between 3-40 m depths by SCUBA diving in Biak waters during August 2005. The specimens were extracted with methanol to provided crude extracts. The methanolic extracts were tested against NBT-T2 cell line. The assay result showed that 8.5 %, 29.2 % and 46.2 % of the extract have activity against the cell line at 0.1, 1.0 and 10.0 μg/mL. While, a 16.0 % of the extract did not showed activity against the cell line.

  4. Mechanistic Insight of Probiotics Derived Anticancer Pharmaceuticals: A Road Forward for Cancer Therapeutics.

    PubMed

    Kumar, Raman; Dhanda, Suman

    2017-04-01

    Probiotics are living organisms that confer health benefits when administered in adequate amounts. Probiotics are continuously being explored for their different health beneficiary activities. Anticancer activity is one of the most important benefits both from a preventive and therapeutic point of view. Though not many studies have been conducted to date in this area, a number suggest using laboratory animal models and different cell lines that there may be a mechanistic basis for the anticancer effects of probiotics and require more scientific justification and clinical trials. Most studies of probiotics are conducted for colon cancer associated with inflammatory bowel disease. Studies are also being extended to other types of cancer in different cell lines. This review summarizes studied probiotics considered for treatment of colon cancer and some other cancers (in cancer cell lines) and also proposed mechanism how probiotics are inhibiting cancer growth along with some challenges and future perspectives.

  5. HU-331, a novel cannabinoid-based anticancer topoisomerase II inhibitor.

    PubMed

    Kogan, Natalya M; Schlesinger, Michael; Priel, Esther; Rabinowitz, Ruth; Berenshtein, Eduard; Chevion, Mordechai; Mechoulam, Raphael

    2007-01-01

    Anthracyclines, a large group of quinonoid compounds, are used to treat some forms of cancer. Although highly effective in cancer therapy, the mechanism of action of these compounds is not specific; they act on cancer and other cells by numerous mechanisms. A new anticancer quinone (HU-331) was synthesized from cannabidiol. It shows significant high efficacy against human cancer cell lines in vitro and against in vivo tumor grafts in nude mice. In this study, we investigated its mode of action and present evidence on its unique mechanism. HU-331 does not cause cancer cell cycle arrest, cell apoptosis, or caspase activation. HU-331-caused cell death of human cancer cell lines is not mediated by reactive oxygen intermediates/species, as exposure to HU-331 failed to elicit the generation of reactive oxygen species. HU-331 inhibits DNA topoisomerase II even at nanomolar concentrations but has only a slight nonsignificant effect on DNA topoisomerase I action. The cannabinoid quinone HU-331 is a highly specific inhibitor of topoisomerase II, compared with most known anticancer quinones. It might represent a new potent anticancer drug.

  6. Marine Cyanobacteria Compounds with Anticancer Properties: A Review on the Implication of Apoptosis

    PubMed Central

    Costa, Margarida; Costa-Rodrigues, João; Fernandes, Maria Helena; Barros, Piedade; Vasconcelos, Vitor; Martins, Rosário

    2012-01-01

    Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed. PMID:23170077

  7. Synthesis and characterization of 2-substituted benzimidazoles and their evaluation as anticancer agent.

    PubMed

    Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal

    2015-05-05

    In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, (1)H- and (13)C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Facile synthesis and biological evaluation of novel symmetrical biphenyls as antitumor agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Chen; Hu, Zhigang; Wang, Sicen; He, Langchong

    2012-03-01

    As a continuation to our previous work in developing anticancer agents, eighteen symmetrical biphenyl derivatives structurally related to taspine were synthesized and evaluated in vitro and in vivo. All the compounds were prepared with varied substitutions in the phenyl ring of aniline moiety. The cytotoxicity and anticancer activity of biphenyls was evaluated against various human tumor and normal cell line. Antiproliferative assays indicated that some of them exhibited potent anticancer activity. The potent antiproliferative activity of these compounds against ECV304 suggested that these biphenyls could be served as antiangiogenic agents. The highly active compound (2) also exhibited potent growth inhibition against cancer cell lines in vivo. Our findings demonstrated that these symmetrical biphenyl derivatives would be a promising candidate as novel anticancer agents.

  9. Synergistic anticancer activity of curcumin and catechin: an in vitro study using human cancer cell lines.

    PubMed

    Manikandan, R; Beulaja, M; Arulvasu, C; Sellamuthu, S; Dinesh, D; Prabhu, D; Babu, G; Vaseeharan, B; Prabhu, N M

    2012-02-01

    The most practical approach to reduce morbidity and mortality of cancer is to delay the process of carcinogenesis by usage of anticancer agents. This necessitates that safer compounds are to be critically examined for anticancer activity especially, those derived from natural sources. A spice commonly found in India and the surrounding regions, is turmeric, derived from the rhizome of Curcuma longa and the major active component is a phytochemical termed curcumin. Green tea is one of the most popular beverages used worldwide, produced from the leaves of evergreen plant Camellia sinensis and the major active ingredients are polyphenolic compounds known as catechins. In this study, synergistic anticancer activity of curcumin and catechin was evaluated in human colon adenocarcinoma HCT 15, HCT 116, and human larynx carcinoma Hep G-2 cell lines. Although, both curcumin or catechin inhibited the growth of above cell lines, interestingly, in combination of both these compounds highest level of growth control was observed. The anticancer activity shown is due to cytotoxicity, nuclear fragmentation as well as condensation, and DNA fragmentation associated with the appearance of apoptosis. These results suggest that curcumin and catechin in combination can inhibit the proliferation of HCT 15, HCT 116, as well as Hep G-2 cells efficiently through induction of apoptosis. Copyright © 2011 Wiley Periodicals, Inc.

  10. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells

    PubMed Central

    2011-01-01

    Background Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin (LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS. PMID:21453492

  11. Synthesis and Evaluation of Cytotoxic Activity of Some Pyrroles and Fused Pyrroles.

    PubMed

    Fatahala, Samar S; Mohamed, Mosaad S; Youns, Mahmoud; Abd-El Hameed, Rania H

    2017-01-01

    Pyrrole derivatives represent a very interesting class as biologically active compounds. The objective of our study was to investigate the cytotoxic and apoptotic effects and antioxidant activity of the newly synthesized pyrrole derivatives. A series of novel pyrroles and fused pyrroles (tetrahydroindoles, pyrrolopyrimidines, pyrrolopyridines and pyrrolotriazines) were synthesized and characterized using IR, 1H NMR, 13C NMR, MS and elemental analysis techniques. The antiproliferative activity of our synthesized compounds and their modulatory effect apoptotic pathway were investigated. The effect on cellular proliferation and viability was monitored by resazurin assay. Apoptotic effect was evaluated by caspase glo 3/7 assay. Synthesized compounds are then tested for their anticancer activities against three different cell lines representing three different tumor types, namely; the HepG-2 (Human hepatocellular liver carcinoma cell line), the human MCF-7 cell line (breast cancer) and the pancreatic resistant Panc-1 cells. Compounds Ia-e, IIe, and IXc, d showed a promising anti-cancer activity on all tested cell lines. Antioxidant and wound healing invasion assays were examined for promising anticancer candidate compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate and its 4-formyl analog-Ultrasound assisted synthesis and in-vitro anticancer evaluation against human tumor cell lines.

    PubMed

    Bhosale, Sachin K; Deshpande, Shreenivas R; Wagh, Rajendra D

    2017-03-01

    The title compound, 3-(4-chlorophenyl)-4-formyl-[1, 2, 3] oxadiazol-3-ium-5-olate 5 was synthesized under ultrasonication by formylation of 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate 4 and characterized by spectral studies. The ultrasonic method of synthesis was found to be simple, ecofriendly, economical, reduces reaction time and gave good yield when compared with traditional methods of synthesis. Anticancer activity of the compounds were tested against 60 human tumor cell lines and compared with standard drug vincristine sulphate. Compound 5 was found to be active against CNS (SNB-75, %GI=46.71), renal (UO-31, %GI=31.52), non small cell lung (NCI-H522, %GI=25.65), leukemia (MOLT-4, %GI=23.02) human tumor cell lines whereas, compound 4 against breast (MDA-MB-231/ATCC, %GI=19.90, T-47D %GI=16.50, MCF-7 15.10) and ovarian (IGROV1 %GI=19.30, OVCAR-4 %GI=17.90) human tumor cell lines. Compound 5 showed higher cytotoxicity against NCI-H23 cells (non small lung cancer cell panel) as compared to standard drug vincristine sulphate. Further structural modification of these compounds may lead to potent anticancer activity.

  13. Cytotoxic, anti-cancer, and anti-microbial effects of different extracts obtained from Artemisia rupestris.

    PubMed

    Nokerbek, Shamshabanu; Sakipova, Zuriyadda; Chalupová, Marta; Nejezchlebová, Marcela; Hošek, Jan

    2017-01-01

    Artemisia rupestris is a part of traditional Kazakh folk medicine. Extracts obtained from this plant are used to treat various diseases, including cancer. This study evaluates the anti-microbial, cytotoxic, and anti-cancer effects of different extracts of the plant. Different extraction techniques were used and the resultant activities were compared. Extracts of A. rupestris were prepared from the flowers plus the leaves and from the stems. The antimicrobial activity against Candida albicans and Staphylococcus aureus was quantified. Cell lines L1210 and THP-1 were used to evaluate the cytotoxic potential of these extracts in vitro. The anti-cancer effect was tested using L1210-induced tumorgenesis in mouse model. The aqueous extract of stems was the most active against C. albicans, whereas the methanolic extract of flowers plus leaves especially inhibited the growth of S. aureus. The aqueous extracts were found to be non-cytotoxic for both cell lines, whereas the lipophilic extracts showed cytotoxic effects. The extract obtained from flowers plus leaves was more cytotoxic than that from stems. The tested extracts showed no anti-cancer potential. The results obtained testify to the relatively safe consumption of aqueous extracts of A. rupestris, but lipophilic extracts showed toxic effects and their consumption should be considered more carefully.Key words: L1210 cell line THP-1 cell line microwave-assisted extraction ultrasonic-assisted extraction Candida albicans Staphylococcus aureus.

  14. Synthesis and Anticancer Activity of 3-(Substituted Aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiao-Ping; Lan, Lan; Wang, Shuai; Zhao, Kai; Xin, Yu-Xuan; Qi, Qi; Wang, Yao-Lin; Mao, Zhen-Min

    2017-02-01

    A series of 3-(substituted aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT-26, HeLa, MGC80-3, NCI-H460 and SGC-7901 cells (IC 50  = 8.2 - 31.7 μm); 3g, 3n and 3a were the most potent compounds against CHO (IC 50  = 8.2 μm), HCT-15 (IC 50  = 21 μm) and MCF-7 cells (IC 50  = 18.7 μm), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC 50  > 100 μm). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  15. Quinazoline clubbed 1,3,5-triazine derivatives as VEGFR2 kinase inhibitors: design, synthesis, docking, in vitro cytotoxicity and in ovo antiangiogenic activity.

    PubMed

    Pathak, Prateek; Shukla, Parjanya Kumar; Kumar, Vikas; Kumar, Ankit; Verma, Amita

    2018-04-16

    A series of quinazoline clubbed 1,3,5-triazine derivatives (QCT) were synthesized and evaluated for their in vitro anticancer activity against HeLa (human cervical cancer), MCF-7 (human breast cancer cell), HL-60 (human promyelocytic leukemia cell), HepG2 (human Hepatocellular carcinoma cell), and one normal cell line HFF (human foreskin fibroblasts). In vitro assay result encouraged to further move towards in ovo anticancer evaluation using chick embryo. The series of QCT derivatives showed higher anticancer and antiangiogenic activity against HeLa and MCF-7 cell lines. In the series, synthetic molecule 8d, 8l, and 8m displayed significant activity. Further, these results substantiated by docking study on VGFR2. SAR study concluded that the potency of drugs depends on the nature of aliphatic substitution and the heterocyclic ring system.

  16. Study of small-cell lung cancer cell-based sensor and its applications in chemotherapy effects rapid evaluation for anticancer drugs.

    PubMed

    Guohua, Hui; Hongyang, Lu; Zhiming, Jiang; Danhua, Zhu; Haifang, Wan

    2017-11-15

    Small cell lung cancer (SCLC) is a smoking-related cancer disease. Despite improvement in clinical survival, SCLC outcome remains extremely poor. Cisplatin (DDP) is the first-line chemotherapy drug for SCLC, but the choice of second-line chemotherapy drugs is not clear. In this paper, a SCLC cell-based sensor was proposed, and its applications in chemotherapy effects rapid evaluation for anticancer drugs were investigated. SCLC cell lines lung adenocarcinoma cell (LTEP-P) and DDP-resistant lung adenocarcinoma cell (LTEP-P/DDP-1.0) are cultured on carbon screen-printed electrode (CSPE) to fabricate integrated cell-based sensor. Several chemotherapy anticancer drugs, including cisplatin, ifosmamide, gemcitabine, paclitaxel, docetaxel, vinorelbine, etoposide, camptothecin, and topotecan, are selected as experimental chemicals. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests are conducted to evaluate chemotherapy drug effects on LTEP-P and LTEP-P/DDP-1.0 cell lines. Electrical cell-substrate impedance sensing (ECIS) responses to anti-tumor chemicals are measured and processed by double-layered cascaded stochastic resonance (DCSR). Cisplatin solutions in different concentrations measurement results demonstrate that LTEP-P cell-based sensor presents quantitative analysis abilities for cisplatin and topotecan. Cisplatin and its mixtures can also be discriminated. Results demonstrate that LTEP-P cell-based sensor sensitively evaluates chemotherapy drugs' apoptosis function to SCLC cells. LTEP-P/DDP-1.0 cell-based sensor responses demonstrate that gemcitabine, vinorelbine, and camptothecin are ideal second-line drugs for clinical post-cisplatin therapy than other drugs according to MTT test results. This work provides a novel way for SCLC second-line clinical chemotherapy drug screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Reverse Transcription Inhibitor Abacavir Shows Anticancer Activity in Prostate Cancer Cell Lines

    PubMed Central

    Molinari, Agnese; Parisi, Chiara; Bozzuto, Giuseppina; Toccacieli, Laura; Formisano, Giuseppe; De Orsi, Daniela; Paradisi, Silvia; Grober, OlÌ Maria Victoria; Ravo, Maria; Weisz, Alessandro; Arcieri, Romano; Vella, Stefano; Gaudi, Simona

    2010-01-01

    Background Transposable Elements (TEs) comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1) and Human Endogenous Retroviruses (HERVs) that code for their own endogenous reverse transcriptase (RT). Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs) induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC), a nucleoside reverse transcription inhibitor (NRTI), on PC3 and LNCaP prostate cancer cell lines. Principal Findings ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. Conclusions Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications. PMID:21151977

  18. Extraction, fractionation and re-fractionation of Artemisia nilagirica for anticancer activity and HPLC-ESI-QTOF-MS/MS determination.

    PubMed

    Sahu, Neha; Meena, Sanjeev; Shukla, Vijaya; Chaturvedi, Priyank; Kumar, Brijesh; Datta, Dipak; Arya, K R

    2018-03-01

    Medicinal plants used in traditional medicines are affordable, easily accessible, safer, less toxic and considered as a rich or efficient source of bioactive molecules for modern therapeutics. Artemisia nilagirica (AR) has a long history of use in Indian traditional medicine to combat a wide variety of diseases including cancer. Considering the vast potential of traditional healing plants to deliver safer, less toxic and efficient chemotherapeutics, we have examined anticancer activity of ethanolic extract, bioactive fractions and sub-fractions of AR against different human cancer cell lines along with their phytochemical analysis to understand the insights of novel anticancer activities for further preclinical studies. Fresh plant material of AR was procured from the wild, dried and ground. The grinded materials was extracted in ethanol (AR-01) and fractionated into butanol (AR-02), ethyl acetate (AR-03), hexane (AR-04) and water (AR-05). The cytotoxicity was evaluated against three different human cancer cell lines, i.e. colon (DLD-1), lung (A-549), and breast (MCF-7) using Sulforhodamine B (SRB) assay along with non-cancerous VERO cells as control and doxorubicin (DOX) as positive control. As we observed strong cytotoxicity of AR-03 and AR-04 fractions against tested cells and marked cytotoxic effects particularly in colon cancer cell lines, we further re-fractionated, AR-03 into (AR-03A, AR-03B, AR-03C, AR-03D, AR-03E) and AR-04 into (AR-04A, AR-04B, AR-04C) sub-fractions by column chromatography and investigated against the same panel of cell lines in addition to one more colon cancer cell line (HT-29). Phytochemical analysis was performed through HPLC-ESI-QTOF-MS/MS fragmentation. Ethyl acetate (AR-03) and hexane (AR-04) fractions were found to be the most cytotoxic against all the tested cell lines. Further, AR-03E and AR-04A sub-fractions were found more specific cytotoxic selectively against DLD-1 cancer cell lines at 100µg/ml concentration. HPLC-ESI-QTOF-MS/MS determination revealed the presence of 17 compounds in AR-01. Among them, 4 compounds were reported for the first time in this species. However, 3 identified compounds (artemorin, β-santonin and caryophyllene oxide) in AR-03E sub-fraction were commonly present in each bioactive fraction and may be considered as potential and safest cytotoxic agents for anticancer activity. Experimental evidences reported in this paper for anticancer activity validate the traditional wisdom of Artemisia nilagirica as an anticancer herbal drug. To our knowledge, this is our first novel observation of cytotoxicity and selectivity of ethyl acetate and hexane sub-fraction of AR-01 i.e. AR-03E and AR-04A respectively against DLD-1 human cancer cell lines. HPLC-ESI-QTOF-MS/MS determination attributes the identification of cytotoxic compounds which may be used for further preclinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Inhibition of Intracellular ROS Accumulation by Formononetin Attenuates Cisplatin-Mediated Apoptosis in LLC-PK1 Cells

    PubMed Central

    Lee, Haesol; Lee, Dahae; Kang, Ki Sung; Song, Ji Hoon; Choi, You-Kyoung

    2018-01-01

    Cisplatin is a well-known anticancer drug frequently used for treating solid tumors, including ovarian, testicular, bladder, and cervical tumors. However, usage of cisplatin has been limited because of its adverse effects, particularly nephrotoxicity. Therefore, the present study sought to investigate the protective effect of formononetin against cisplatin-induced cytotoxicity in LLC-PK1 pig kidney epithelial cells as well as the anticancer effect of cisplatin in three different human cervical cancer cell lines, including HeLa, SiHa, and CaSKi cells. We first demonstrated that formononetin strongly prevented cisplatin-induced LLC-PK1 cell death. Although formononetin had no anticancer effect, it did not interrupt the anticancer effect of cisplatin in human cervical carcinoma cell lines. Furthermore, the treatment with formononetin reduced reactive oxygen species (ROS) accumulation and chromatin condensation. The percentage of Annexin V-positive cells also increased following cisplatin treatment. Finally, formononetin-inhibited c-Jun N-terminal kinase (JNK) phosphorylation, cleavage of caspase-8 and caspase-3, and the ratio of Bax to Bcl-2 increased with cisplatin. Taken together, these findings suggest that formononetin may be a possible option to prevent nephrotoxicity induced by cisplatin during treatment for cervical cancer. PMID:29534504

  20. Inhibition of Intracellular ROS Accumulation by Formononetin Attenuates Cisplatin-Mediated Apoptosis in LLC-PK1 Cells.

    PubMed

    Lee, Haesol; Lee, Dahae; Kang, Ki Sung; Song, Ji Hoon; Choi, You-Kyoung

    2018-03-12

    Cisplatin is a well-known anticancer drug frequently used for treating solid tumors, including ovarian, testicular, bladder, and cervical tumors. However, usage of cisplatin has been limited because of its adverse effects, particularly nephrotoxicity. Therefore, the present study sought to investigate the protective effect of formononetin against cisplatin-induced cytotoxicity in LLC-PK1 pig kidney epithelial cells as well as the anticancer effect of cisplatin in three different human cervical cancer cell lines, including HeLa, SiHa, and CaSKi cells. We first demonstrated that formononetin strongly prevented cisplatin-induced LLC-PK1 cell death. Although formononetin had no anticancer effect, it did not interrupt the anticancer effect of cisplatin in human cervical carcinoma cell lines. Furthermore, the treatment with formononetin reduced reactive oxygen species (ROS) accumulation and chromatin condensation. The percentage of Annexin V-positive cells also increased following cisplatin treatment. Finally, formononetin-inhibited c-Jun N-terminal kinase (JNK) phosphorylation, cleavage of caspase-8 and caspase-3, and the ratio of Bax to Bcl-2 increased with cisplatin. Taken together, these findings suggest that formononetin may be a possible option to prevent nephrotoxicity induced by cisplatin during treatment for cervical cancer.

  1. Phloretin exhibits an anticancer effect and enhances the anticancer ability of cisplatin on non-small cell lung cancer cell lines by regulating expression of apoptotic pathways and matrix metalloproteinases.

    PubMed

    Ma, Lijie; Wang, Ruixuan; Nan, Yandong; Li, Wangping; Wang, Qingwei; Jin, Faguang

    2016-02-01

    Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer cases and the prognosis of NSCLC patients is unsatisfactory since 5-year survival rate of NSCLC is still as low as 11%. Natural compounds derived from plants with few or no side effects have been recognized as alternative or auxiliary cure for cancer patients. Phloretin is such an agent possessing various pharmacological activities; however, there is scarce information on its anticancer effects on NSCLC. It was evaluated and confirmed, in the present study, that phloretin inhibited proliferation and induced apoptosis in A549, Calu-1, H838 and H520 cells in a dose-dependent manner, phloretin also suppressed the invasion and migration of NSCLC cells. We further confirmed that phloretin dose-dependently suppressed the expression of Bcl-2, increased the protein expression of cleaved-caspase-3 and -9, and deregulated the expression of matrix metalloproteinases (MMP)-2 and -9 on gene and protein levels. Besides, evaluations revealed that phloretin enhanced the anticancer effects of cisplatin on inhibition of proliferation and induction of apoptosis in NSCLC cells. Moreover, phloretin facilitated the effects of cisplatin on deregulation of Bcl-2, MMP-2 and -9, and upregulation of cleaved-caspase-3 and -9. In conclusion, the present study demonstrated that phloretin possessed anticancer effects and enhanced the anticancer effects of cisplatin on NSCLC cell lines by suppressing proliferation, inducing apoptosis and inhibiting invasion and migration of the cells through regulating apoptotic pathways and MMPs.

  2. Design, synthesis and molecular modeling studies of novel thiazolidine-2,4-dione derivatives as potential anti-cancer agents

    NASA Astrophysics Data System (ADS)

    Asati, Vivek; Bharti, Sanjay Kumar

    2018-02-01

    A series of novel thiazolidine-2,4-dione derivatives 4a-x have been designed, synthesized and evaluated for potential anti-cancer activity. The anti-cancer activity of synthesized compounds 4a-x were evaluated against selected human cancer cell line of breast (MCF-7) using sulforhodamine B (SRB) method. Among the synthesized compounds, 4x having 2-cyano phenyl group showed significant cytotoxic activity which is comparable to that of adriamycin as standard anti-cancer drug. The SAR study revealed that the substituted phenyl group on oxadiazole ring attached to thiazolidine-2,4-dione moiety showed significant growth inhibitory activity against MCF-7 cell line. The result of molecular modeling studies showed that compounds 4f, 4o and 4x having similar structural alignment as crystal ligand of protein.

  3. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure.

    PubMed

    Keskin, O; Bahar, I; Jernigan, R L; Beutler, J A; Shoemaker, R H; Sausville, E A; Covell, D G

    2000-04-01

    An analysis of the growth inhibitory potency of 122 anticancer agents available from the National Cancer Institute anticancer drug screen is presented. Methods of singular value decomposition (SVD) were applied to determine the matrix of distances between all compounds. These SVD-derived dissimilarity distances were used to cluster compounds that exhibit similar tumor growth inhibitory activity patterns against 60 human cancer cell lines. Cluster analysis divides the 122 standard agents into 25 statistically distinct groups. The first eight groups include structurally diverse compounds with reactive functionalities that act as DNA-damaging agents while the remaining 17 groups include compounds that inhibit nucleic acid biosynthesis and mitosis. Examination of the average activity patterns across the 60 tumor cell lines reveals unique 'fingerprints' associated with each group. A diverse set of structural features are observed for compounds within these groups, with frequent occurrences of strong within-group structural similarities. Clustering of cell types by their response to the 122 anticancer agents divides the 60 cell types into 21 groups. The strongest within-panel groupings were found for the renal, leukemia and ovarian cell panels. These results contribute to the basis for comparisons between log(GI(50)) screening patterns of the 122 anticancer agents and additional tested compounds.

  4. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams.

    PubMed

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-06-06

    In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.

  5. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams

    PubMed Central

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-01-01

    Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328

  6. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents

    NASA Astrophysics Data System (ADS)

    Ghanbarimasir, Zahra; Bekhradnia, Ahmadreza; Morteza-Semnani, Katayoun; Rafiei, Alireza; Razzaghi-Asl, Nima; Kardan, Mostafa

    2018-04-01

    In a search for novel antiproliferative agents, a series of quinoxaline derivatives containing 2-aminoimidazole (8a-8x) were designed and synthesized. The structures of synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, Mass Spectroscopy and analyzed using HSQC, COSY, ROESY, HMBC techniques. The anticancer activity of all derivatives were evaluated for colon cancer and breast cancer cell lines by the MTT assay and acridine orange/ethidium bromide double staining method. The anti-cancer effect in human colon cancer (HCT-116) and breast cancer (MCF-7) cell lines exhibited that compounds 8a, 8s, 8t, 8w, 8x appeared as potent antiproliferative agents and especially inhibited the human colon cancer cell proliferation with percentage of inhibition by over 50%. The most active compound was (E)-4-phenyl-1-((quinoxalin-2-ylmethylene)amino)-1H-imidazol-2-amine (8a) with the highest inhibition for MCF-7 (83.3%) and HCT-116 (70%) cell lines after 48 and 24 h, respectively. Molecular docking studies of these derivatives within c-kit active site as a validated target might be suggested them as appropriate candidates for further efforts toward more potent anticancer compounds.

  7. Anticancer Activity of Indian Stingless Bee Propolis: An In Vitro Study

    PubMed Central

    Choudhari, Milind K.; Haghniaz, Reihaneh; Rajwade, Jyutika M.; Paknikar, Kishore M.

    2013-01-01

    Indian stingless bee propolis has a complex chemical nature and is reported to possess various medicinal properties. In the present study, anticancer activity of the ethanolic extract of propolis (EEP) was explored by testing the cytotoxic and apoptotic effect in four different cancer cell lines, namely, MCF-7 (human breast cancer), HT-29 (human colon adenocarcinoma), Caco-2 (human epithelial colorectal adenocarcinoma), and B16F1 (murine melanoma), at different concentrations. Cytotoxicity was evaluated by MTT assay and Trypan blue dye exclusion assay. EEP at a concentration of 250 μg/mL exhibited ≥50% mortality in all cell lines tested (i.e., IC50 value). EEP revealed a concentration and time dependent cytotoxic effect. Apoptosis was estimated by differential staining (ethidium bromide/acridine orange) and TUNEL (deoxynucleotidyl transferase-dUTP nick end labeling) assay. Light microscopy and atomic force microscopy demonstrated morphological features of apoptosis in all the cell lines after treatment with 250 μg/mL EEP for 24 h. Thus, early onset of apoptosis is the reason for anticancer activity of Indian stingless bee propolis. Further, the antioxidant potential of Indian stingless bee propolis was demonstrated to substantiate its anticancer activity. PMID:23762169

  8. Anticancer activity of Indian stingless bee propolis: an in vitro study.

    PubMed

    Choudhari, Milind K; Haghniaz, Reihaneh; Rajwade, Jyutika M; Paknikar, Kishore M

    2013-01-01

    Indian stingless bee propolis has a complex chemical nature and is reported to possess various medicinal properties. In the present study, anticancer activity of the ethanolic extract of propolis (EEP) was explored by testing the cytotoxic and apoptotic effect in four different cancer cell lines, namely, MCF-7 (human breast cancer), HT-29 (human colon adenocarcinoma), Caco-2 (human epithelial colorectal adenocarcinoma), and B16F1 (murine melanoma), at different concentrations. Cytotoxicity was evaluated by MTT assay and Trypan blue dye exclusion assay. EEP at a concentration of 250 μg/mL exhibited ≥50% mortality in all cell lines tested (i.e., IC50 value). EEP revealed a concentration and time dependent cytotoxic effect. Apoptosis was estimated by differential staining (ethidium bromide/acridine orange) and TUNEL (deoxynucleotidyl transferase-dUTP nick end labeling) assay. Light microscopy and atomic force microscopy demonstrated morphological features of apoptosis in all the cell lines after treatment with 250 μg/mL EEP for 24 h. Thus, early onset of apoptosis is the reason for anticancer activity of Indian stingless bee propolis. Further, the antioxidant potential of Indian stingless bee propolis was demonstrated to substantiate its anticancer activity.

  9. Synthesis and antitumoral activity of novel 3-(2-substituted-1,3,4-oxadiazol-5-yl) and 3-(5-substituted-1,2,4-triazol-3-yl) beta-carboline derivatives.

    PubMed

    Formagio, Anelise S Nazari; Tonin, Lilian T Düsman; Foglio, Mary Ann; Madjarof, Christiana; de Carvalho, João Ernesto; da Costa, Willian Ferreira; Cardoso, Flávia P; Sarragiotto, Maria Helena

    2008-11-15

    Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.

  10. Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs

    PubMed Central

    2013-01-01

    A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP–NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy. PMID:23663277

  11. Antileukemic activity of Tillandsia recurvata and some of its cycloartanes.

    PubMed

    Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Ayeah, Kenneth N N; Bryant, Joseph

    2014-07-01

    Approximately 250,000 deaths were caused by leukemia globally in 2012 and about 40%-50% of all leukemia diagnoses end-up in death. Medicinal plants are a rich source for the discovery of new drugs against leukemia and other types of cancers. To this end, we subjected the Jamaican ball moss (Tillandsia recurvata) and its cycloartanes, as well as some analogs, to in vitro screening against a number of leukemia cell lines. The WST-1 anti-proliferation assay was used to determine the anticancer activity of ball moss and two cycloartanes isolated from ball moss and four of their analogs against four leukemia cell lines (HL-60, K562, MOLM-14, monoMac6). Ball moss crude methanolic extract showed activity with a 50% inhibition concentration (IC50) value of 3.028 μg/ml against the Molm-14 cell line but was ineffective against HL-60 cells. The six cycloartanes tested demonstrated varying activity against the four leukemia cancer cell lines with IC50 values ranging from 1.83 μM to 18.3 μM. Five out of the six cycloartanes demonstrated activity, while one was inactive against all four cell lines. The preliminary activity demonstrated by the Jamaican ball moss and its cycloartanes against selected leukemia cell lines continues to throw light on the broad anticancer activity of ball moss. Further studies to evaluate the efficacy of these molecules in other leukemia cell lines are required in order to validate the activity of these molecules, as well as to determine their mechanisms of action and ascertain the activity in vivo in order to establish efficacy and safety profiles. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. The green tea catechin epigallocatechin gallate induces cell cycle arrest and shows potential synergism with cisplatin in biliary tract cancer cells.

    PubMed

    Mayr, Christian; Wagner, Andrej; Neureiter, Daniel; Pichler, Martin; Jakab, Martin; Illig, Romana; Berr, Frieder; Kiesslich, Tobias

    2015-06-23

    The green tea catechin epigallocatechin gallate (EGCG) was shown to effectively inhibit tumor growth in various types of cancer including biliary tract cancer (BTC). For most BTC patients only palliative therapy is possible, leading to a median survival of about one year. Chemoresistance is a major problem that contributes to the high mortality rates of BTC. The aim of this study was to investigate the cytotoxic effect of EGCG alone or in combination with cisplatin on eight BTC cell lines and to investigate the cellular anti-cancer mechanisms of EGCG. The effect of EGCG treatment alone or in combination with the standard chemotherapeutic cisplatin on cell viability was analyzed in eight BTC cell lines. Additionally, we analyzed the effects of EGCG on caspase activity, cell cycle distribution and gene expression in the BTC cell line TFK-1. EGCG significantly reduced cell viability in all eight BTC cell lines (p < 0.05 or p < 0.01, respectively, for most cell lines and EGCG concentrations > 5 μM). Combined EGCG and cisplatin treatment showed a synergistic cytotoxic effect in five cell lines and an antagonistic effect in two cell lines. Furthermore, EGCG reduced the mRNA levels of various cell cycle-related genes, while increasing the expression of the cell cycle inhibitor p21 and the apoptosis-related death receptor 5 (p < 0.05). This observation was accompanied by an increase in caspase activity and cells in the sub-G1 phase of the cell cycle, indicating induction of apoptosis. EGCG also induced a down-regulation of expression of stem cell-related genes and genes that are associated with an aggressive clinical character of the tumor, such as cd133 and abcg2. EGCG shows various anti-cancer effects in BTC cell lines and might therefore be a potential anticancer drug for future studies in BTC. Additionally, EGCG displays a synergistic cytotoxic effect with cisplatin in most tested BTC cell lines. Graphical abstract Summary illustration.

  13. Acetonic Extract of Buxus sempervirens Induces Cell Cycle Arrest, Apoptosis and Autophagy in Breast Cancer Cells

    PubMed Central

    Ait-Mohamed, Ouardia; Battisti, Valentine; Joliot, Véronique; Fritsch, Lauriane; Pontis, Julien; Medjkane, Souhila; Redeuilh, Catherine; Lamouri, Aazdine; Fahy, Christine; Rholam, Mohamed; Atmani, Djebbar; Ait-Si-Ali, Slimane

    2011-01-01

    Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer. PMID:21935420

  14. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents.

    PubMed

    Chaves, Joana Darc S; Tunes, Luiza Guimarães; de J Franco, Chris Hebert; Francisco, Thiago Martins; Corrêa, Charlane Cimini; Murta, Silvane M F; Monte-Neto, Rubens Lima; Silva, Heveline; Fontes, Ana Paula S; de Almeida, Mauro V

    2017-02-15

    The current anticancer and antileishmanial drug arsenal presents several limitations concerning their specificity, efficacy, costs and the emergence of drug-resistant cells lines, which encourages the urgent need to search for new alternatives. Inspired by the fact that gold(I)-based compounds are promising antitumoral and antileishmanial drug candidates, we synthesized novel gold(I) complexes containing phosphine and 5-phenyl-1,3,4-oxadiazole-2-thione and evaluated their anticancer and antileishmanial activities. Synthesis was performed by reacting 5-phenyl-1,3,4-oxadiazole-2-thione derivatives with chloro(triphenylphosphine)gold(I) and chloro(triethylphosphine)gold(I). The novel compounds were characterized by infrared, Raman, 1 H, 13 C nuclear magnetic resonance, high-resolution mass spectra, and x-ray crystallography. The coordination of the ligands to gold(I) occurred through the exocyclic sulfur atom. All gold(I) complexes were active at low micromolar or nanomolar range with IC 50 values ranging from <0.10 to 1.66 μM against cancer cell lines and from 0.9 to 4.2 μM for Leishmania infantum intracellular amastigotes. Compound (6-A) was very selective against murine melanoma B16F10, colon cancer CT26.WT cell lines and L. infantum intracellular amastigotes. Compound (7-B) presented the highest anticancer activity against both cancer cell lines while the promising antileishmanial lead was compound (6-A). Tiethylphosphine gold(I) complexes were more active than the conterparts triphenylphosphine derivatives for both anticancer and antileishmanial activities. Triethylphosphine gold(I) derivatives presented antimony cross-resistance in L. guyanensis demonstrating their potential to be used as chemical tools to better understand mechanisms of drug resistance and action. These findings revealed the anticancer and antileishmanial potential of gold(I) oxadiazole phosphine derivatives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    PubMed Central

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550

  16. Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines.

    PubMed

    Ravikumar, S; Fredimoses, M; Gnanadesigan, M

    2012-02-01

    To investigate the anticancer property of marine sediment actinomycetes against two different breast cancer cell lines. In vitro anticancer activity was carried out against breast (MCF-7 and MDA-MB-231) cancer cell lines. Partial sequences of the 16s rRNA gene, phylogenetic tree construction, multiple sequence analysis and secondary structure analysis were also carried out with the actinomycetes isolates. Of the selected five actinomycete isolates, ACT01 and ACT02 showed the IC50 value with (10.13±0.92) and (22.34±5.82) µg/mL concentrations, respectively for MCF-7 cell line at 48 h, but ACT01 showed the minimum (18.54±2.49 µg/mL) level of IC50 value with MDA-MB-231 cell line. Further, the 16s rRNA partial sequences of ACT01, ACT02, ACT03, ACT04 and ACT05 isolates were also deposited in NCBI data bank with the accession numbers of GQ478246, GQ478247, GQ478248, GQ478249 and GQ478250, respectively. The phylogenetic tree analysis showed that, the isolates of ACT02 and ACT03 were represented in group I and III, respectively, but ACT01 and ACT02 were represented in group II. The multiple sequence alignment of the actinomycete isolates showed that, the maximum identical conserved regions were identified with the nucleotide regions of 125 to 221st base pairs, 65 to 119th base pairs and 55, 48 and 31st base pairs. Secondary structure prediction of the 16s rRNA showed that, the maximum free energy was consumed with ACT03 isolate (-45.4 kkal/mol) and the minimum free energy was consumed with ACT04 isolate (-57.6 kkal/mol). The actinomycete isolates of ACT01 and ACT02 (GQ478246 and GQ478247) which are isolated from sediment sample can be further used as anticancer agents against breast cancer cell lines.

  17. Exploring the influence of culture conditions on kefir's anticancer properties.

    PubMed

    Hatmal, Ma'mon M; Nuirat, Abeer; Zihlif, Malek A; Taha, Mutasem O

    2018-05-01

    Cancer is a major health problem in many parts of the world. Conventional anticancer treatments are painful, expensive, and unsafe. Therefore, demand is increasing for cancer treatments preferentially in the form of functional foods or nutritional supplements. Kefir, a traditional fermented milk dairy product, has significant antimutagenic and antitumor properties. This research addresses the hypothesis that kefir's anticancer properties are affected by fermentation conditions. Initially, kefir extracts prepared under standard conditions were screened against 7 cancer cell lines using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Colon cancer and chronic myelogenous leukemia cells were found to be most susceptible to kefir extracts. Subsequently, a factorial design was implemented to assess the effects of 3 fermentation times (24, 48, and 72 h), 3 kefir-to-milk ratios (2, 5, and 10% wt/vol), and 3 fermentation temperatures (4, 25, and 40°C) on kefir's anticancer properties. Remarkably, exploration of the fermentation conditions allowed the anticancer properties of kefir to be enhanced by 5- to 8-fold against susceptible cell lines. Overall, these results demonstrate the possibility of optimizing the anticancer properties of kefir as a functional food in cancer therapy. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Anticancer effects of oligomeric proanthocyanidins on human colorectal cancer cell line, SNU-C4

    PubMed Central

    Kim, Youn-Jung; Park, Hae-Jeong; Yoon, Seo-Hyun; Kim, Mi-Ja; Leem, Kang-Hyun; Chung, Joo-Ho; Kim, Hye-Kyung

    2005-01-01

    AIM: Oligomeric proanthocyanidins (OPC), natural polyphenolic compounds found in plants, are known to have antioxidant and anti-cancer effects. We investigated whether the anti-cancer effects of the OPC are induced by apoptosis on human colorectal cancer cell line, SNU-C4. METHODS: Colorectal cancer cell line, SNU-C4 was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum. The cytotoxic effect of OPC was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylt-etrazolium bromide (MTT) assay. To find out the apoptotic cell death, 4, 6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, reverse transcription-polymerase chain reaction (RT-PCR), and caspase-3 enzyme assay were performed. RESULTS: In this study, cytotoxic effect of OPC on SNU-C4 cells appeared in a dose-dependent manner. OPC treatment (100 µg/mL) revealed typical morphological apoptotic features. Additionally OPC treatment (100 µg/mL) increased level of BAX and CASPASE-3, and decreased level of BCL-2 mRNA expression. Caspase-3 enzyme activity was also significantly increased by treatment of OPC (100 µg/mL) compared with control. CONCLUSION: These data indicate that OPC caused cell death by apoptosis through caspase pathways on human colorectal cancer cell line, SNU-C4. PMID:16094708

  19. Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents.

    PubMed

    Qin, Hua-Li; Leng, Jing; Youssif, Bahaa G M; Amjad, Muhammad Wahab; Raja, Maria Abdul Ghafoor; Hussain, Muhammad Ajaz; Hussain, Zahid; Kazmi, Syeda Naveed; Bukhari, Syed Nasir Abbas

    2017-09-01

    The incidence of cancer can be decreased by chemoprevention using either natural or synthetic agents. Apart from synthetic compounds, numerous natural products have exhibited promising potential to inhibit carcinogenesis in vivo. In this study, α, β-unsaturated carbonyl-based anticancer compounds were used as starting materials to synthesize new oxime analogs. The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship. The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines. The mechanistic effects of compounds on EGFR-TK kinases and tubulin polymerization and BRAF V 600E were investigated. In addition, the efficacy of compounds in reversing the efflux-mediated resistance developed by cancer cells was also studied. The compounds 5a and 6a displayed potent activity on various targets such as BRAF V 600E and EGFR-TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents. © 2017 John Wiley & Sons A/S.

  20. Indole-based hydrazide-hydrazones and 4-thiazolidinones: synthesis and evaluation as antitubercular and anticancer agents.

    PubMed

    Cihan-Üstündağ, Gökçe; Şatana, Dilek; Özhan, Gül; Çapan, Gültaze

    2016-01-01

    A new series of indolylhydrazones (6) and indole-based 4-thiazolidinones (7, 8) have been designed, synthesized and screened for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. 4-Thiazolidinone derivatives 7g-7j, 8g, 8h and 8j displayed notable antituberculosis (anti-TB) activity showing 99% inhibition at MIC values ranging from 6.25 to 25.0 µg/ml. Compounds 7g, 7h, 7i, 8h and 8j demonstrated anti-TB activity at concentrations 10-fold lower than those cytotoxic for the mammalian cell lines. The indolylhydrazone derivative 6b has also been evaluated for antiproliferative activity against human cancer cell lines at the National Cancer Institute (USA). Compound 6b showed an interesting anticancer profile against different human tumor-derived cell lines at sub-micromolar concentrations with obvious selectivity toward colon cancer cell line COLO 205.

  1. Hepatic artery infusion therapy is effective for chemotherapy-resistant liver metastatic colorectal cancer.

    PubMed

    Goi, Takanori; Naruse, Takayuki; Kimura, Youhei; Fujimoto, Daisuke; Morikawa, Mitsuhiro; Koneri, Kenji; Yamaguchi, Akio

    2015-10-09

    Systemic FOLFOX (folinic acid (leucovorin (LV)), 5-fluorouracil (5-FU), and oxaliplatin), FOLFIRI (LV, 5-FU, and irinotecan), or FOLFOXIRI (5-FU, leucovorin, oxaliplatin, and irinotecan) chemotherapy regimens and additional molecular-target treatments, including anti-vascular endothelial growth factor, anti-epidermal growth factor receptor, and anti-multi-kinase antibodies, have been recommended for unresectable recurrent colorectal cancers. However, no effective treatments are currently available for cases refractory to these therapies. Therefore, the development of alternative therapies is desired. In the present study, we administered and observed the effectiveness of hepatic artery infusion therapy (HAIC) in patients with unresectable liver metastatic colorectal cancers refractory to systemic chemotherapy. In addition, we observed that in an experimental system with anticancer drug-resistant colorectal cancer lines, apoptosis and cell death could be induced by increasing anticancer drug concentrations. The subjects had liver metastatic colorectal cancers that were unresponsive to systemic chemotherapy (FOLFOX/FOLFIRI) or to additional molecular-target therapies for progressive disease. Hepatic infusion tube placement was conducted according to the Seldinger method to insert a catheter with a side hole via the right femoral artery. A coiling procedure was performed to prevent drug influx into the gastroduodenal artery. Ten subjects were selected, and the results were evaluated after HAIC (5-FU and LV administered once weekly). Moreover, anticancer drug-resistant colorectal cancer lines were subsequently prepared to investigate whether increased anticancer drug concentrations could induce apoptosis or cell death. Of the 10 subjects, 3 (30 %) showed partial response and 4 (40 %) showed no change according to computed tomography imaging findings obtained after hepatic artery infusion. The disease control rate was 70 %. Eight subjects had improved quality of life. Survival time ranged from 2 to 16 months (median, 9 months). Meanwhile, we found that higher anticancer drug concentrations induced apoptosis and cell death in an anticancer drug-resistant colorectal cancer cell line. HAIC was effective in some systemic chemotherapy-resistant colorectal cancers with liver metastases and should be considered as an effective palliative therapy. This supports the finding that apoptosis and cell death could be induced in anticancer drug-resistant colorectal cancer cells in a drug concentration-dependent manner.

  2. Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer.

    PubMed

    Jain, K; Jain, N K

    2014-07-01

    The present research work describes the formulation of arginine conjugated 3.0G Poly(propylene) imine (PPI) dendrimers, mimicking the surface structure of an endogenous angiogenesis-inhibitor endostatin; for tumor specific delivery of a model anticancer drug, doxorubicin hydrochloride (Dox). Synthesis of PPI dendrimers and conjugation of arginine to surface groups was confirmed by FTIR, NMR, TEM and mass spectrometry. Drug was loaded by equilibrium dialysis method and developed formulation was evaluated for entrapment efficiency, hemolytic toxicity, in vitro drug release, stability, anti-angiogenic activity via in vivo chick embryo chorioallantoic membrane (CAM) assay, and anticancer activity and cell uptake using MCF-7 cancer cell lines. The system exhibited the initial rapid release followed by sustained release of Dox with significant antiangiogenic activity in the CAM assay. Further, the arginine conjugated dendrimers was found to inhibit growth of cancer cells in ex vivo studies with MCF-7 cell lines. Cell uptake studies suggested that in comparison to free drug the formulation was preferably taken up by the tumor cells. Thus the two pronged attack on cancerous tissue i.e., inhibition of angiogenesis and killing of cancer cells by anticancer drug, might prove to be a promising approach in the treatment of fatal disease, cancer.

  3. Synthesis of novel forskolin isoxazole derivatives with potent anti-cancer activity against breast cancer cell lines.

    PubMed

    Burra, Srinivas; Voora, Vani; Rao, Ch Prasad; Vijay Kumar, P; Kancha, Rama Krishna; David Krupadanam, G L

    2017-09-15

    Forskolin C 1 -isoxazole derivatives (3,5-regioisomers) (11a-e, 14, 15a-h and 15, 16a-g) were synthesized regioselectively by adopting 1,3-dipolar cycloadditions. These derivatives were tested using estrogen receptor positive breast cancer cell lines MCF-7 and BT-474. Majority of the compounds exhibited activity against the p53-positive MCF-7 breast cancer cells but not against the p53-negative BT-474 breast cancer cells. Among forskolin derivatives, compounds 11a, 11c, 14a, 14f, 14g, 14h, 15b, 16g and 17b exhibited higher anti-cancer activity against MCF-7 cell line with an IC 50 ≤1µM. The derivative 14f exhibited highest activity in both p53-positive (MCF-7) and p53-negative (BT-474) breast cancer cell lines with an IC 50 of 0.5µM. Copyright © 2017. Published by Elsevier Ltd.

  4. A Systematic Review of Iran's Medicinal Plants With Anticancer Effects.

    PubMed

    Asadi-Samani, Majid; Kooti, Wesam; Aslani, Elahe; Shirzad, Hedayatollah

    2016-04-01

    Increase in cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. This study is a review of medicinal plants in Iran with already investigated anticancer effects on various cell lines. Thirty-six medicinal plants alongside their products with anticancer effects as well as the most important plant compounds responsible for the plants' anticancer effect were introduced. Phenolic and alkaloid compounds were demonstrated to have anticancer effects on various cancers in most studies. The plants and their active compounds exerted anticancer effects by removing free radicals and antioxidant effects, cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis. The investigated plants in Iran contain the compounds that are able to contribute effectively to fighting cancer cells. Therefore, the extract and active compounds of the medicinal plants introduced in this review article could open a way to conduct clinical trials on cancer and greatly help researchers and pharmacists develop new anticancer drugs. © The Author(s) 2015.

  5. Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells.

    PubMed

    Srivastava, Janmejai K; Gupta, Sanjay

    2007-11-14

    Chamomile (Matricaria chamomilla), a popular herb valued for centuries as a traditional medicine, has been used to treat various human ailments; however, its anticancer activity is unknown. We evaluated the anticancer properties of aqueous and methanolic extracts of chamomile against various human cancer cell lines. Exposure of chamomile extracts caused minimal growth inhibitory responses in normal cells, whereas a significant decrease in cell viability was observed in various human cancer cell lines. Chamomile exposure resulted in differential apoptosis in cancer cells but not in normal cells at similar doses. HPLC analysis of chamomile extract confirmed apigenin 7-O-glucoside as the major constituent of chamomile; some minor glycoside components were also observed. Apigenin glucosides inhibited cancer cell growth but to a lesser extent than the parent aglycone, apigenin. Ex vivo experiments suggest that deconjugation of glycosides occurs in vivo to produce aglycone, especially in the small intestine. This study represents the first reported demonstration of the anticancer effects of chamomile. Further investigations of the mechanism of action of chamomile are warranted in evaluating the potential usefulness of this herbal remedy in the management of cancer patients.

  6. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies.

    PubMed

    Kumar, Bhupinder; Sharma, Praveen; Gupta, Vivek Prakash; Khullar, Madhu; Singh, Sandeep; Dogra, Nilambra; Kumar, Vinod

    2018-08-01

    A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC 50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC 50 values of 4.67 µM & 3.38 µM and 4.63 µM & 3.71 µM against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Apoptosis induction and anti-cancer activity of LeciPlex formulations.

    PubMed

    Dhawan, Vivek V; Joshi, Ganesh V; Jain, Ankitkumar S; Nikam, Yuvraj P; Gude, Rajiv P; Mulherkar, Rita; Nagarsenker, Mangal S

    2014-10-01

    Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.

  8. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zhang, Bei; Xia, Fei; Xie, Yunchang; Jiang, Sifan; Su, Rui; Lu, Yi; Wu, Wei

    2016-03-01

    Breaking the natural barriers of cell membranes achieves fast entry of therapeutics, which leads to enhanced efficacy and helps overcome multiple drug resistance. Herein, transmembrane delivery of a series of small molecule anticancer drugs was achieved by the construction of artificial transmembrane nanochannels formed by self-assembly of cyclic peptide (cyclo[Gln-(d-Leu-Trp)4-d-Leu], CP) nanotubes (CPNTs) in the lipid bilayers. Our in vitro study in liposomes indicated that the transport of molecules with sizes smaller than 1.0 nm, which is the internal diameter of the CPNTs, could be significantly enhanced by CPNTs in a size-selective and dose-dependent manner. Facilitated uptake of 5-fluorouracil (5-FU) was also confirmed in the BEL7402 cell line. On the contrary, CPs could facilitate neither the transport across liposomal membranes nor the uptake by cell lines of cytarabine, a counterevidence drug with a size of 1.1 nm. CPs had a very weak anticancer efficacy, but could significantly reduce the IC50 of 5-FU in BEL7402, HeLa and S180 cell lines. Analysis by a q test revealed that a combination of 5-FU and CP had a synergistic effect in BEL7402 at all CP levels, in S180 at CP levels higher than 64 μg mL-1, but not in HeLa, where an additive effect was observed. Temporarily, intratumoral injection is believed to be the best way for CP administration. In vivo imaging using 125I radio-labelled CP confirmed that CPNPTs were completely localized in the tumor tissues, and translocation to other tissues was negligible. In vivo anticancer efficacy was studied in the grafted S180 solid tumor model in mice, and the results indicated that tumor growth was greatly inhibited by the combinatory use of 5-FU and CP, and a synergistic effect was observed at CP doses of 0.25 mg per kg bw. It is concluded that facilitated transmembrane delivery of anticancer drugs with sizes smaller than 1.0 nm was achieved, and the synergistic anticancer effect was confirmed both in cell lines and in vivo through the combinatory use of 5-FU and CP.Breaking the natural barriers of cell membranes achieves fast entry of therapeutics, which leads to enhanced efficacy and helps overcome multiple drug resistance. Herein, transmembrane delivery of a series of small molecule anticancer drugs was achieved by the construction of artificial transmembrane nanochannels formed by self-assembly of cyclic peptide (cyclo[Gln-(d-Leu-Trp)4-d-Leu], CP) nanotubes (CPNTs) in the lipid bilayers. Our in vitro study in liposomes indicated that the transport of molecules with sizes smaller than 1.0 nm, which is the internal diameter of the CPNTs, could be significantly enhanced by CPNTs in a size-selective and dose-dependent manner. Facilitated uptake of 5-fluorouracil (5-FU) was also confirmed in the BEL7402 cell line. On the contrary, CPs could facilitate neither the transport across liposomal membranes nor the uptake by cell lines of cytarabine, a counterevidence drug with a size of 1.1 nm. CPs had a very weak anticancer efficacy, but could significantly reduce the IC50 of 5-FU in BEL7402, HeLa and S180 cell lines. Analysis by a q test revealed that a combination of 5-FU and CP had a synergistic effect in BEL7402 at all CP levels, in S180 at CP levels higher than 64 μg mL-1, but not in HeLa, where an additive effect was observed. Temporarily, intratumoral injection is believed to be the best way for CP administration. In vivo imaging using 125I radio-labelled CP confirmed that CPNPTs were completely localized in the tumor tissues, and translocation to other tissues was negligible. In vivo anticancer efficacy was studied in the grafted S180 solid tumor model in mice, and the results indicated that tumor growth was greatly inhibited by the combinatory use of 5-FU and CP, and a synergistic effect was observed at CP doses of 0.25 mg per kg bw. It is concluded that facilitated transmembrane delivery of anticancer drugs with sizes smaller than 1.0 nm was achieved, and the synergistic anticancer effect was confirmed both in cell lines and in vivo through the combinatory use of 5-FU and CP. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06804e

  9. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach.

    PubMed

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom-liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when compared with their free counterpart.

  10. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach

    PubMed Central

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom–liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when compared with their free counterpart. PMID:28144138

  11. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  12. Anticancer Effects of Extracts from the Fruit of Morinda Citrifolia (Noni) in Breast Cancer Cell Lines.

    PubMed

    Sharma, K; Pachauri, S D; Khandelwal, K; Ahmad, H; Arya, A; Biala, P; Agrawal, S; Pandey, R R; Srivastava, A; Srivastav, A; Saxena, J K; Dwivedi, A K

    2016-03-01

    Morinda citrifolia L. (NONI) fruits have been used for thousands of years for the treatment of many health problems including cancer, cold, diabetes, flu, hypertension, and pain. Plant extracts have reported several therapeutic benefits, but extraction of individual compound from the extract often exhibits limited clinical utility as the synergistic effect of various natural ingredients gets lost. They generally constitute polyphenols and flavonoids. Studies have suggested that these phytochemicals, especially polyphenols, display high antioxidant properties, which help to reduce the risk of degenerative diseases, such as cancer and cardiovascular diseases. Several in-vitro and in-vivo studies have shown that Noni fruits have antioxidant, anti-inflammatory, anti-dementia, liver-protective, anticancer, analgesic, and immunomodulatory effects. Till date about 7 in vitro cancer studies have been done, but a detailed in vitro study including cell cycle and caspase activation assay on breast cancer cell line has not been done. In the present study different Noni fruit fractions have tested on cancer cell lines MCF-7, MDA-MB-231 (breast adenocarcinoma) and one non-cancer cell line HEK-293 (Human embryonic kidney). Out of which ethylacetate extract showed a higher order of in vitro anticancer activity profile. The ethylacetate extract strongly inhibited the proliferation of MCF-7, MDA-MB-231 and HEK-293 cell lines with IC50 values of 25, 35, 60 µg/ml respectively. The extract showed increase in apoptotic cells in MCF-7 and MDA-MB-231 cells and arrested the cell cycle in the G1/S phase in MCF-7 and G0/G1 phase in MDA-MB-231 cells. Noni extract also decreases the intracellular ROS generation and mitochondrial membrane potential. © Georg Thieme Verlag KG Stuttgart · New York.

  13. A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells.

    PubMed

    Lee, Hyunseung; Kim, Soo Jung; Jung, Kyung Hee; Son, Mi Kwon; Yan, Hong Hua; Hong, Sungwoo; Hong, Soon-Sun

    2013-08-01

    Lung cancer is the leading cause of cancer-related mortality in the world, and non-small cell lung cancer (NSCLC) accounts for approximately 85% of all cases. Since more than 60% of NSCLC cases express the epidermal growth factor receptor (EGFR), EGFR tyrosine kinase inhibitors are used to treat NSCLC. However, due to the acquired resistance associated with EGFR-targeted therapy, other strategies for the treatment of NSCLC are urgently needed. Therefore, we investigated the anticancer effects of a novel phosphatidylinositol 3-kinase α (PI3Kα) inhibitor, HS-173, in human NSCLC cell lines. HS-173 demonstrated anti-proliferative effects in NSCLC cells and effectively inhibited the PI3K signaling pathway in a dose‑dependent manner. In addition, it induced cell cycle arrest at G2/M phase as well as apoptosis. Taken together, our results demonstrate that HS-173 exhibits anticancer activities, including the induction of apoptosis, by blocking the PI3K/Akt/mTOR pathway in human NSCLC cell lines. We, therefore, suggest that this novel drug could potentially be used for targeted NSCLC therapy.

  14. Mangiferin enhances the sensitivity of human multiple myeloma cells to anticancer drugs through suppression of the nuclear factor κB pathway.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Kawamura, Ayako; Isoyama, Shota; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Matsuda, Hideaki; Satou, Takao; Nishida, Shozo

    2016-06-01

    Multiple myeloma (MM) is still an incurable hematological malignancy with a 5-year survival rate of ~35%, despite the use of various treatment options. The nuclear factor κB (NF-κB) pathway plays a crucial role in the pathogenesis of MM. Thus, inhibition of the NF-κB pathway is a potential target for the treatment of MM. In a previous study, we showed that mangiferin suppressed the nuclear translocation of NF-κB. However, the treatment of MM involves a combination of two or three drugs. In this study, we examined the effect of the combination of mangiferin and conventional anticancer drugs in an MM cell line. We showed that the combination of mangiferin and an anticancer drug decreased the viability of MM cell lines in comparison with each drug used separately. The decrease in the combination of mangiferin and an anticancer drug induced cell viability was attributed to increase the expression of p53 and Noxa and decreases the expression of XIAP, survivin, and Bcl-xL proteins via inhibition of NF-κB pathway. In addition, the combination treatment caused the induction of apoptosis, activation of caspase-3 and the accumulation of the cells in the sub-G1 phase of the cell cycle. Our findings suggest that the combination of mangiferin and an anticancer drug could be used as a new regime for the treatment of MM.

  15. Synthesis and Anticancer Activity of Epipolythiodiketopiperazine Alkaloids

    PubMed Central

    Boyer, Nicolas; Morrison, Karen C.; Kim, Justin; Hergenrother, Paul J.; Movassaghi, Mohammad

    2013-01-01

    The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure–activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines, and kill cancer cellsviainduction of apoptosis. Several traits thatbode well for the translational potential of the ETP class of natural products includeconcise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sitesthat should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo. PMID:23914293

  16. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System)

    PubMed Central

    Mukherjee, Sudip; Chowdhury, Debabrata; Kotcherlakota, Rajesh; Patra, Sujata; B, Vinothkumar; Bhadra, Manika Pal; Sreedhar, Bojja; Patra, Chitta Ranjan

    2014-01-01

    In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future. PMID:24505239

  17. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felthaus, O.; Department of Oral and Maxillofacial Surgery, University of Regensburg; Ettl, T.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simplemore » method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.« less

  18. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid.

    PubMed

    Barahuie, Farahnaz; Saifullah, Bullo; Dorniani, Dena; Fakurazi, Sharida; Karthivashan, Govindarajan; Hussein, Mohd Zobir; Elfghi, Fawzi M

    2017-05-01

    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.

    PubMed

    Dong, Zuoli; Zhang, Naiqian; Li, Chun; Wang, Haiyun; Fang, Yun; Wang, Jun; Zheng, Xiaoqi

    2015-06-30

    An enduring challenge in personalized medicine is to select right drug for individual patients. Testing drugs on patients in large clinical trials is one way to assess their efficacy and toxicity, but it is impractical to test hundreds of drugs currently under development. Therefore the preclinical prediction model is highly expected as it enables prediction of drug response to hundreds of cell lines in parallel. Recently, two large-scale pharmacogenomic studies screened multiple anticancer drugs on over 1000 cell lines in an effort to elucidate the response mechanism of anticancer drugs. To this aim, we here used gene expression features and drug sensitivity data in Cancer Cell Line Encyclopedia (CCLE) to build a predictor based on Support Vector Machine (SVM) and a recursive feature selection tool. Robustness of our model was validated by cross-validation and an independent dataset, the Cancer Genome Project (CGP). Our model achieved good cross validation performance for most drugs in the Cancer Cell Line Encyclopedia (≥80% accuracy for 10 drugs, ≥75% accuracy for 19 drugs). Independent tests on eleven common drugs between CCLE and CGP achieved satisfactory performance for three of them, i.e., AZD6244, Erlotinib and PD-0325901, using expression levels of only twelve, six and seven genes, respectively. These results suggest that drug response could be effectively predicted from genomic features. Our model could be applied to predict drug response for some certain drugs and potentially play a complementary role in personalized medicine.

  20. Pharmacogenomic agreement between two cancer cell line data sets.

    PubMed

    2015-12-03

    Large cancer cell line collections broadly capture the genomic diversity of human cancers and provide valuable insight into anti-cancer drug response. Here we show substantial agreement and biological consilience between drug sensitivity measurements and their associated genomic predictors from two publicly available large-scale pharmacogenomics resources: The Cancer Cell Line Encyclopedia and the Genomics of Drug Sensitivity in Cancer databases.

  1. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides.

    PubMed

    Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-11-25

    A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  2. The Anti-cancer Activity of Vernonia divaricata Sw against Leukaemia, Breast and Prostate Cancers In Vitro

    PubMed Central

    Lowe, HIC; Daley-Beckford, D; Toyang, NJ; Watson, C; Hartley, S; Bryant, J

    2014-01-01

    Background: Vernonia divaricata is one of five endemic Vernonia species of Jamaica. The ethnomedicinal uses of other species have been established, however, scientific validation of this species has not yet been done and as such this paper is aimed at identifying the anti-cancer activity of V divaricata against leukaemia, breast and prostate cancer cell lines. Methods: Leaves and stems of V divaricata were dried and milled into powder. The crude hexane and methanol extracts of the leaves and stems were obtained and bio-assayed using WST-1 cell proliferation assay against leukaemia, breast and prostate cancer cell lines. Results: The crude hexane and methanol extracts of V divaricata were able to significantly retard the growth of the MCF-7 (breast), HL-60 (leukaemia) and the PC-3 (prostate) cancer cell lines. The crude methanol extract of the stem was the strongest, exhibiting anti-proliferation activity with IC50 values of 10.14, 12.63 and 9.894 μg/ml for the HL-60, MCF-7 and PC-3 cancer cell lines, respectively, with the most potent toward prostate cancer. Conclusion: The medicinal use of V divaricata as an anti-cancer agent was corroborated as the crude hexane and methanol extracts demonstrated potent anti-proliferation activity and as such hold potential for further research and development into a drug to prevent or treat various cancers. PMID:25429469

  3. Polyketide Derivatives from Annona muricata Linn Leaves as Potencial Anticancer Material by Combination Treatment With Doxorubicin on Hela Cell Line

    NASA Astrophysics Data System (ADS)

    Artanti, A. N.; Astirin, O. P.; Prayito, A.; Widiyaningsih, R. F.; Prihapsara, F.

    2017-02-01

    One of the compounds found effication as an anticancer agent on cervical cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on hela cell line. An approach recently develop to overcome side effect of chemoterapeutic agent is used of combined chemoterapeutic agent, i.e doxorubicin. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). The expression of p53 profile was evaluated by immunohistochemistry on hela cell line. Data analysis showed that combination of polyketide derivative from Annona muricata L. (38,5 µg/ml) and doxorubicin with all of concentration performed synergistic effect on hela cell line with CI value from 0,33 - 0,65. The analysis on immucytochemistry showed that polyketide derivative from Annona muricata L. leaves could enhance p53 pathway significantly on hela cell line.

  4. Design, synthesis and in vitro evaluation of 18β-glycyrrhetinic acid derivatives for anticancer activity against human breast cancer cell line MCF-7.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Singh, Abhishek K; Khan, Feroz; Srivastava, Santosh K; Pant, Aditya B

    2014-01-01

    In the present work, QSAR model was derived by multiple linear regression method for the prediction of anticancer activity of 18β-glycyrrhetinic acid derivatives against the human breast cancer cell line MCF-7. The QSAR model for anti-proliferative activity against MCF-7 showed high correlation (r(2)=0.90 and rCV(2)=0.83) and indicated that chemical descriptors namely, dipole moment (debye), steric energy (kcal/mole), heat of formation (kcal/mole), ionization potential (eV), LogP, LUMO energy (eV) and shape index (basic kappa, order 3) correlate well with activity. The QSAR virtually predicted that active derivatives were first semi-synthesized and characterized on the basis of their (1)H and (13)C NMR spectroscopic data and then were in-vitro tested against MCF-7 cancer cell line. In particular, octylamide derivative of glycyrrhetinic acid GA-12 has marked cytotoxic activity against MCF-7 similar to that of standard anticancer drug paclitaxel. The biological assays of active derivative selected by virtual screening showed significant experimental activity.

  5. Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities.

    PubMed

    Zhang, Ning; Yu, Zhimei; Yang, Xiaohong; Hu, Ping; He, Yun

    2018-04-25

    Artemisinin is a potential anticancer agent with an interesting trioxane sesquiterpene structure. In order to improve the biological activity and metabolic stability of artemisinin, a series of novel ring-contracted artemisinin dimers were synthesized. These dimers were evaluated by MTT assay against six cancer cell lines. Most of the dimmers exhibited improved antiproliferative activities over artemisinin. Especially, compound 8b showed the most pronounced anti-cancer activity for PC12 cancer cells with an IC 50 value of 1.56 μM. Thus, PC12 cancer cells were used to further investigate the mechanism of antiproliferation for this series of compounds. Compound 8b arrested cell cycle at G1 phase and induced cell apoptosis via up-regulation of Bad, Bax, caspase-3 and caspase-9 protein expressions while inhibiting the expression of Bcl-xL. The present studies are the first to synthesize the ring-contracted artemisinin as dimers and show that these dimers have potent anti-tumor activities against several cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. A phenotypic screening approach to identify anticancer compounds derived from marine fungi.

    PubMed

    Ellinger, Bernhard; Silber, Johanna; Prashar, Anjali; Landskron, Johannes; Weber, Jonas; Rehermann, Sarah; Müller, Franz-Josef; Smith, Stephen; Wrigley, Stephen; Taskén, Kjetil; Gribbon, Philip; Labes, Antje; Imhoff, Johannes F

    2014-04-01

    This study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions. From these producers, isolated compounds were screened for their effect on the viability and proliferation of a subset of the NCI60 panel of cancer cell lines. Active compounds of interest were identified and selected for detailed assessments and structural elucidation using nuclear magnetic resonance. This revealed the majority of fungal-derived compounds represented known anticancer chemotypes, confirming the integrity of the process and the ability to identify suitable compounds. Examination of effects of selected compounds on cancer-associated cell signaling pathways used phospho flow cytometry in combination with 3D fluorescent cell barcoding. In parallel, the study addressed the logistical aspects of maintaining multiple cancer cell lines in culture simultaneously. A potential solution involving microbead-based cell culture was investigated (BioLevitator, Hamilton). Selected cell lines were cultured in microbead and 2D methods and cell viability tests showed comparable compound inhibition in both methods (R2=0.95). In a further technology assessment, an image-based assay system was investigated for its utility as a possible complement to ATP-based detection for quantifying cell growth and viability in a label-free manner.

  7. In vitro cytotoxic screening of selected Saudi medicinal plants.

    PubMed

    Almehdar, Hussein; Abdallah, Hossam M; Osman, Abdel-Moneim M; Abdel-Sattar, Essam A

    2012-04-01

    Many natural products from plants have been identified to exert anticancer activity. It might be expected to be a challenge to look at the Saudi plants in order to discover new sources for new molecules which may have anticancer activity. The methanolic extracts of forty species of plants traditionally used in Saudi Arabia for the treatment of a variety of diseases were tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the methanolic extracts of the tested plants were determined using three human cancer cell lines, namely, breast cancer (MCF7), hepatocellular carcinoma (HEPG2), and cervix cancer (HELA) cells. In addition, human normal melanocyte (HFB4) was used as normal nonmalignant cells. Sulforhodamine B colorimetric assay was used to evaluate the in vitro cytotoxic activity of the different extracts. The growth inhibition of 50% (IC(50)) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug, was used as the positive control. Nine plant extracts were chosen for further fractionation based on their activity and availability. Interesting cytotoxic activity was observed for Hypoestes forskaolii, Withania somnifera, Solanum glabratum, Adenium obesum, Pistacia vera oleoresin, Caralluma quadrangula, Eulophia petersii, Phragmanthera austroarabica, and Asparagus officinalis. Other extracts showed poor activity.

  8. Cisplatin binds to pre-miR-200b and impairs its processing to mature microRNA.

    PubMed

    Mezencev, R; Wartell, R M

    2018-01-01

    Cisplatin is an important anticancer drug with a complex mode of action, a variety of possible targets, and numerous resistance mechanisms. While genomic DNA has traditionally been considered to be its most critical anticancer target, several lines of evidence suggest that various RNAs and other biomolecules may play a role in its anticancer mode of action. In this report we demonstrate that cisplatin modifies pre-miR-200b, impairs its processing to mature miRNA, and decreases miR-200b expression in ovarian cancer cells. Considering the role of miR-200b in epithelial-to-mesenchymal transition and cancer chemosensitivity, cisplatin-induced modification of pre-miR-200b and subsequent deregulation of mature miR-200b may, depending on cell context, limit anticancer activity of this important anticancer drug. More gener- ally, precursor miRNAs may be important targets of cisplatin and play a role in this drug's anticancer activity or modulate cell responses to this drug.

  9. Effects of Plants and Isolates of Celastraceae Family on Cancer Pathways.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Seyed, Mohamed Ali

    2015-01-01

    The evaluation of crude drugs of natural origin as sources of new effective anticancer agents continues to be important due to the lack of effective anticancer drugs currently used in practice which are generally accompanied with adverse effects at different levels of severity. The aim of this concise review is to gather existing literature on anticancer potential of extracts and compounds isolated from Celastraceae species. This review covers six genera (Maytenus, Tripterygium, Hippocratea, Gymnosporia, Celastrus and Austroplenckia) belonging to this family and their 33 isolates. Studies carried out by using different cell lines have shown remarkable indication of anticancer activity, however, only a restricted number of studies have been reported using in vivo tumor models. Some of the compounds, such as triptolide, celastrol and demethylzeylasteral from T. wilfordii, have been extensively studied on their mechanisms of action due to their potent activity on various cancer cell lines. Such promising lead compounds should generate considerable interest among scientists to improve their therapeutic potential with fewer side effects by molecular modification.

  10. Drug-eluting biodegradable ureteral stent: New approach for urothelial tumors of upper urinary tract cancer.

    PubMed

    Barros, Alexandre A; Browne, Shane; Oliveira, Carlos; Lima, Estevão; Duarte, Ana Rita C; Healy, Kevin E; Reis, Rui L

    2016-11-20

    Upper urinary tract urothelial carcinoma (UTUC) accounts for 5-10% of urothelial carcinomas and is a disease that has not been widely studied as carcinoma of the bladder. To avoid the problems of conventional therapies, such as the need for frequent drug instillation due to poor drug retention, we developed a biodegradable ureteral stent (BUS) impregnated by supercritical fluid CO 2 (scCO 2 ) with the most commonly used anti-cancer drugs, namely paclitaxel, epirubicin, doxorubicin, and gemcitabine. The release kinetics of anti-cancer therapeutics from drug-eluting stents was measured in artificial urine solution (AUS). The in vitro release showed a faster release in the first 72h for the four anti-cancer drugs, after this time a plateau was achieved and finally the stent degraded after 9days. Regarding the amount of impregnated drugs by scCO 2 , gemcitabine showed the highest amount of loading (19.57μg drug /mg polymer: 2% loaded), while the lowest amount was obtained for paclitaxel (0.067μg drug /mg polymer : 0.01% loaded). A cancer cell line (T24) was exposed to graded concentrations (0.01-2000ng/ml) of each drugs for 4 and 72h to determine the sensitivities of the cells to each drug (IC 50 ). The direct and indirect contact study of the anti-cancer biodegradable ureteral stents with the T24 and HUVEC cell lines confirmed the anti-tumoral effect of the BUS impregnated with the four anti-cancer drugs tested, reducing around 75% of the viability of the T24 cell line after 72h and demonstrating minimal cytotoxic effect on HUVECs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Comprehensive List of Cancer-Related Genetic Variations of the NCI-60 Panel | Center for Cancer Research

    Cancer.gov

    The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. The panel of cell lines represents nine different types of cancer: breast, ovary, prostate, colon, lung, kidney, brain, leukemia, and melanoma. Originally developed to screen anticancer compounds by the NCI Developmental Therapeutics Program (DTP), the NCI-60 panel has generated

  12. Anticancer Effects of Sandalwood (Santalum album).

    PubMed

    Santha, Sreevidya; Dwivedi, Chandradhar

    2015-06-01

    Effective management of tumorigenesis requires development of better anticancer agents with greater efficacy and fewer side-effects. Natural products are important sources for the development of chemotherapeutic agents and almost 60% of anticancer drugs are of natural origin. α-Santlol, a sesquiterpene isolated from Sandalwood, is known for a variety of therapeutic properties including anti-inflammatory, anti-oxidant, anti-viral and anti-bacterial activities. Cell line and animal studies reported chemopreventive effects of sandalwood oil and α-santalol without causing toxic side-effects. Our laboratory identified its anticancer effects in chemically-induced skin carcinogenesis in CD-1 and SENCAR mice, ultraviolet-B-induced skin carcinogenesis in SKH-1 mice and in vitro models of melanoma, non-melanoma, breast and prostate cancer. Its ability to induce cell-cycle arrest and apoptosis in cancer cells is its most reported anticancer mechanism of action. The present review discusses studies that support the anticancer effect and the mode of action of sandalwood oil and α-santalol in carcinogenesis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro

    2014-06-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00019f

  14. Anticancer drugs and the regulation of Hedgehog genes GLI1 and PTCH1, a comparative study in nonmelanoma skin cancer cell lines.

    PubMed

    Olesen, Uffe H; Bojesen, Sophie; Gehl, Julie; Haedersdal, Merete

    2017-11-01

    Nonmelanoma skin cancer is the most common cancer in humans, comprising mainly basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC proliferation is highly dependent on the Hedgehog signaling pathway. We aimed to investigate a panel of anticancer drugs with known activity against skin cancer for their therapeutic potential in localized, enhanced topical treatment of SCC and BCC. Cytotoxicity profiles for vismodegib, 5-fluorouracil (5-FU), methotrexate (MTX), cisplatin, bleomycin, and vorinostat were established in terms of half maximal inhibitory concentration values in a panel of immortalized keratinocytes (HaCaT), BCC (UWBCC1 and BCC77015), and SCC (A431 and SCC25) cell lines. The impact of treatment on the regulation of Hedgehog pathway target genes (GLI1 and PTCH1), measured by real-time PCR, was compared between UWBCC1 and HaCaT. Varying cell line sensitivity profiles to the examined anticancer drugs were observed. Generally, 24-h drug exposure was sufficient to reduce cell viability. We found that 5-FU, MTX, and cisplatin significantly downregulated the expression of two genes controlled by the Hedgehog pathway (≤25-, 2.9-, and 12.5-fold, respectively, for GLI1 in UWBCC1 cells at 48 h, P<0.0001). The gene regulation showed clear concentration dependence and correlated with cytotoxicity for both 5-FU and MTX. We find a potential for the use of anticancer drugs in localized and enhanced topical treatment of nonmelanoma skin cancer. Of importance in the clinical setting, 24-h drug exposure may be sufficient for significant cytotoxicity for vismodegib, 5-FU, cisplatin, and bleomycin. MTX, 5-FU, and cisplatin may offer particular promise through combined cytotoxicity and downregulation of Hedgehog pathway genes GLI1 and PTCH1.

  15. Polyphyllin G exhibits antimicrobial activity and exerts anticancer effects on human oral cancer OECM-1 cells by triggering G2/M cell cycle arrest by inactivating cdc25C-cdc2.

    PubMed

    Cai, Xiaoqing; Guo, Lele; Pei, Fei; Chang, Xiaoyun; Zhang, Rui

    2018-04-15

    Plant natural products have long been considered to be important sources of bioactive molecules. A large number of antimicrobial and anticancer agents have been isolated form plants. In the present study we evaluated the antimicrobial and anticancer activity of a plant derived secondery metabolite, Polyphyllin G. The results of antibacterial assays showed that Polyphyllin G prevented the growth of both Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) ranging from 13.1 to 78 μg/ml. Antifungal activity measured as inhibition of mycelium growth ranged between 38.32 and 56.50%. Further Polyphyllin G was also evaluated against a panel of cancer cell lines. The IC 50 of Polyphyllin G ranged from 10 to 65 μM. However the IC 50 of Polyphyllin G was found to be comparatively high (120 μM) against the normal FR2 cancer cell line. The lowest IC 50 of 10 μM was found against the oral cancer cell line OECM-1. Therefore further studies were carried out on this cell line only. Our results indicated that Polyphyllin G induced cell arrest in oral cancer OECM-1 cells by inactivation of cdc25C-cdc22 via ATM-Chk 1/2 stimulation. Therefore, we propose that Polyphyllin G might prove a lead molecule in the management of oral cancers and at the same time may prevent the growth of opportunistic microbes. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: a systematic review

    PubMed Central

    Moloudizargari, Milad; Mortaz, Esmaeil; Asghari, Mohammad Hossein; Adcock, Ian M.; Redegeld, Frank A.; Garssen, Johan

    2018-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) have well established anti-cancer properties. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are among this biologically active family of macromolecules for which various anti-cancer effects have been explained. These PUFAs have a high safety profile and can induce apoptosis and inhibit growth of cancer cells both in vitro and in vivo, following a partially selective manner. They also increase the efficacy of chemotherapeutic agents by increasing the sensitivity of different cell lines to specific anti-neoplastic drugs. Various mechanisms have been proposed for the anti-cancer effects of these omega-3 PUFAs; however, the exact mechanisms still remain unknown. While numerous studies have investigated the effects of DHA and EPA on solid tumors and the responsible mechanisms, there is no consensus regarding the effects and mechanisms of action of these two FAs in hematological malignancies. Here, we performed a systematic review of the beneficial effects of EPA and DHA on hematological cell lines as well as the findings of related in vivo studies and clinical trials. We summarize the key underlying mechanisms and the therapeutic potential of these PUFAs in the treatment of hematological cancers. Differential expression of apoptosis-regulating genes and Glutathione peroxidase 4 (Gp-x4), varying abilities of different cancerous and healthy cells to metabolize EPA into its more active metabolites and to uptake PUFAS are among the major factors that determine the sensitivity of cells to DHA and EPA. Considering the abundance of data on the safety of these FAs and their proven anti-cancer effects in hematological cell lines and the lack of related human studies, further research is warranted to find ways of exploiting the anticancer effects of DHA and EPA in clinical settings both in isolation and in combination with other therapeutic regimens. PMID:29545942

  17. Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: a systematic review.

    PubMed

    Moloudizargari, Milad; Mortaz, Esmaeil; Asghari, Mohammad Hossein; Adcock, Ian M; Redegeld, Frank A; Garssen, Johan

    2018-02-20

    Omega-3 polyunsaturated fatty acids (PUFAs) have well established anti-cancer properties. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are among this biologically active family of macromolecules for which various anti-cancer effects have been explained. These PUFAs have a high safety profile and can induce apoptosis and inhibit growth of cancer cells both in vitro and in vivo , following a partially selective manner. They also increase the efficacy of chemotherapeutic agents by increasing the sensitivity of different cell lines to specific anti-neoplastic drugs. Various mechanisms have been proposed for the anti-cancer effects of these omega-3 PUFAs; however, the exact mechanisms still remain unknown. While numerous studies have investigated the effects of DHA and EPA on solid tumors and the responsible mechanisms, there is no consensus regarding the effects and mechanisms of action of these two FAs in hematological malignancies. Here, we performed a systematic review of the beneficial effects of EPA and DHA on hematological cell lines as well as the findings of related in vivo studies and clinical trials. We summarize the key underlying mechanisms and the therapeutic potential of these PUFAs in the treatment of hematological cancers. Differential expression of apoptosis-regulating genes and Glutathione peroxidase 4 (Gp-x4), varying abilities of different cancerous and healthy cells to metabolize EPA into its more active metabolites and to uptake PUFAS are among the major factors that determine the sensitivity of cells to DHA and EPA. Considering the abundance of data on the safety of these FAs and their proven anti-cancer effects in hematological cell lines and the lack of related human studies, further research is warranted to find ways of exploiting the anticancer effects of DHA and EPA in clinical settings both in isolation and in combination with other therapeutic regimens.

  18. Process optimization and photostability of silymarin nanostructured lipid carriers: effect on UV-irradiated rat skin and SK-MEL 2 cell line.

    PubMed

    Singh, Pooja; Singh, Mahendra; Kanoujia, Jovita; Arya, Malti; Saraf, Shailendra K; Saraf, Shubhini A

    2016-10-01

    The objective of the present work was to formulate a novel stable delivery system which would not only overcome the solubility issue of silymarin, but also help to increase the therapeutic value by better permeation, anticancer action and reduced toxicity. This was envisaged through the recent developments in nanotechnology, combined with the activity of the phytoconstituent silymarin. A 2(3) full factorial design based on three independent variables was used for process optimization of nanostructured lipid carriers (NLC). Developed formulations were evaluated on the basis of particle size, morphology, in vitro drug release, photostability and cell line studies. Optimized silymarin-NLC was incorporated into carbopol gel and further assessed for rheological parameters. Stable behaviour in presence of light was proven by photostability testing of formulation. Permeability parameters were significantly higher in NLC as compared to marketed phytosome formulation. The NLC based gel described in this study showed faster onset, and prolonged activity up to 24 h and better action against edema as compared to marketed formulation. In case of anticancer activity of silymarin-NLC against SK-MEL 2 cell lines, silymarin-NLC proved to possess anticancer activity in a dose-dependent manner (10-80 μM) and induced apoptosis at 80 μM in SK-MEL 2 cancer cells. This work documents for the first time that silymarin can be formulated into nanostructured lipoidal carrier system for enhanced permeation, greater stability as well as anticancer activity for skin.

  19. Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system

    NASA Astrophysics Data System (ADS)

    Oh, Jae-Min; Park, Man; Kim, Sang-Tae; Jung, Jin-Young; Kang, Yong-Gu; Choy, Jin-Ho

    2006-05-01

    We have been successful to intercalate anticancer drug, methotrexate (MTX), into layered double hydroxides (LDHs), Mg2Al(OH)6(NO3)·0.1H2O, through conventional co-precipitation method. Layered double hydroxides (LDHs) are endowed with great potential for delivery vector, since their cationic layers lead to safe reservation of biofunctional molecules such as drug molecules or genes. And their ion exchangeability and solubility in acidic media (pH<4) give rise to the controlled release of drug molecules. Moreover, it has been partly confirmed that LDH itself is non-toxic and facilitate the cellular permeation. To check the toxicity of LDHs, the osteosarcoma cell culture lines (Saos-2 and MG-63) and the normal one (human fibroblast) were used for in vitro test. The anticancer efficacy of MTX intercalated LDHs (MTX-LDH nanohybrids) was also estimated in vitro by the bioassay such as MTT and BrdU (5-bromo-2-deoxyuridine) with the bone cancer cell culture lines (Saos-2 and MG-63). According to the toxicity test results, LDHs do not harm to both the normal and cancer cells upto the concentration of 500 ug/mL. The anticancer efficacy test for the MTX-LDH nanohybrids turn out to be much more effective in cell suppression compared to the MTX itself. According to the cell-line tests, the MTX-LDH shows same drug efficacy to the MTX itself in spite of the low concentration by ˜5000 times. Such a high cancer suppression effect of MTX-LDH hybrid is surely due to the excellent delivery efficiency of inorganic delivery vector, LDHs.

  20. Anticancer substances of mushroom origin.

    PubMed

    Ivanova, T S; Krupodorova, T A; Barshteyn, V Y; Artamonova, A B; Shlyakhovenko, V A

    2014-06-01

    The present status of investigations about the anticancer activity which is inherent to medicinal mushrooms, as well as their biomedical potential and future prospects are discussed. Mushroom products and extracts possess promising immunomodulating and anticancer effects, so the main biologically active substances of mushrooms responsible for immunomodulation and direct cytoto-xicity toward cancer cell lines (including rarely mentioned groups of anticancer mushroom proteins), and the mechanisms of their antitumor action were analyzed. The existing to date clinical trials of mushroom substances are mentioned. Mushroom anticancer extracts, obtained by the different solvents, are outlined. Modern approaches of cancer treatment with implication of mushroom products, including DNA vaccinotherapy with mushroom immunomodulatory adjuvants, creation of prodrugs with mushroom lectins that can recognize glycoconjugates on the cancer cell surface, development of nanovectors etc. are discussed. The future prospects of mushroom anticancer substances application, including chemical modification of polysaccharides and terpenoids, gene engineering of proteins, and implementation of vaccines are reviewed.

  1. Extracellular cholesterol oxidase production by Streptomyces aegyptia, in vitro anticancer activities against rhabdomyosarcoma, breast cancer cell-lines and in vivo apoptosis.

    PubMed

    El-Naggar, Noura El-Ahmady; Soliman, Hoda M; El-Shweihy, Nancy M

    2018-02-09

    In recent years, microbial cholesterol oxidases have gained great attention due to its widespread use in medical applications for serum cholesterol determination. Streptomyces aegyptia strain NEAE-102 exhibited high level of extracellular cholesterol oxidase production using a minimum medium containing cholesterol as the sole source of carbon. Fifteen variables were screened using Plackett-Burman design for the enhanced cholesterol oxidase production. The most significant variables affecting enzyme production were further optimized by using the face-centered central composite design. The statistical optimization resulted in an overall 4.97-fold increase (15.631 UmL -1 ) in cholesterol oxidase production in the optimized medium as compared with the unoptimized medium before applying Plackett Burman design (3.1 UmL -1 ). The purified cholesterol oxidase was evaluated for its in vitro anticancer activities against five human cancer cell lines. The selectivity index values on rhabdomyosarcoma and breast cancer cell lines were 3.26 and 2.56; respectively. The in vivo anticancer activity of cholesterol oxidase was evaluated against Ehrlich solid tumor model. Compared with control mice, tumors growth was significantly inhibited in the mice injected with cholesterol oxidase alone, doxorubicin alone and cholesterol oxidase/doxorubicin combination by 60.97%, 72.99% and 97.04%; respectively. These results demonstrated that cholesterol oxidase can be used as a promising natural anticancer drug.

  2. Fucoidan cytotoxicity against human breast cancer T47D cell line increases with higher level of sulfate ester group

    NASA Astrophysics Data System (ADS)

    Saepudin, Endang; Alfita Qosthalani, Fildzah; Sinurat, Ellya

    2018-01-01

    The anticancer activity of different sulfate ester group content in different molecular weight was examined. The anticancer activity was achieved in vitro on human breast cancer T47D cell line. Fucoidan with lower molecular weight (5.79 kDa) tends to have lower sulfate ester group content (8.69%) and resulted in higher IC50 value (184.22 μg/mL). While fucoidan with higher molecular weight (785.12 kDa) tends to have higher sulfate level (18.63%) and achieved lower IC50 value (75.69 μg/mL). The result showed that in order to maintain fucoidan cytotoxic activity against human breast cancer T47D cell line, the sulfate content should be remain high. Keywords: fucoidan, sulfate ester group, human breast cancer

  3. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines.

    PubMed

    Balakrishna, Acharya; Kumar, M Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  4. Long-Circulating Curcumin-Loaded Liposome Formulations with High Incorporation Efficiency, Stability and Anticancer Activity towards Pancreatic Adenocarcinoma Cell Lines In Vitro.

    PubMed

    Mahmud, Mohamed; Piwoni, Adriana; Filipczak, Nina; Janicka, Martyna; Gubernator, Jerzy

    2016-01-01

    The incorporation of hydrophobic drugs into liposomes improve their bioavailability and leads to increased stability and anticancer activity, along with decreased drug toxicity. Curcumin (Cur) is a natural polyphenol compound with a potent anticancer activity in pancreatic adenocarcinoma (PA). In the present study, different types of Cur-loaded liposomal formulations were prepared and characterized in terms of size, shape, zeta potential, optimal drug-to-lipid ratio and stability at 4°C, 37°C; and in human plasma in vitro. The best formulation in terms of these parameters was PEGylated, cholesterol-free formulation based upon hydrogenated soya PC (HSPC:DSPE-PEG2000:Cur, termed H5), which had a 0.05/10 molar ratio of drug-to-lipid, was found to be stable and had a 96% Cur incorporation efficiency. All Cur-loaded liposomal formulations had potent anticancer activity on the PA cancer cell lines AsPC-1 and BxPC-3, and were less toxic to a normal cell line (NHDF). Furthermore, apoptosis-induction induced by Cur in PA cells was associated with morphological changes including cell shrinkage, cytoplasmic blebbing, irregularity in shape and the externalization of cell membrane phosphatidylserine, which was preceded by an increase in intracellular reactive oxygen species (ROS) generation and caspase 3/7 activation. Because the liposomal formulations tested here, especially the H5 variant which exhibited slow release of the Cur in the human plasma test, the formulation may be stable enough to facilitate the accumulation of pharmacologically active amounts of Cur in target cancer tissue by EPR. Therefore, our formulations could serve as a promising therapeutic approach for pancreatic cancer and other cancers.

  5. Synergistically enhanced selective intracellular uptake of anticancer drug carrier comprising folic acid-conjugated hydrogels containing magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Haneul; Jo, Ara; Baek, Seulgi; Lim, Daeun; Park, Soon-Yong; Cho, Soo Kyung; Chung, Jin Woong; Yoon, Jinhwan

    2017-01-01

    Targeted drug delivery has long been extensively researched since drug delivery and release at the diseased site with minimum dosage realizes the effective therapy without adverse side effects. In this work, to achieve enhanced intracellular uptake of anticancer drug carriers for efficient chemo-therapy, we have designed targeted multifunctional anticancer drug carrier hydrogels. Temperature-responsive poly(N-isopropylacrylamide) (PNIPAm) hydrogel core containing superparamagnetic magnetite nanoparticles (MNP) were prepared using precipitation polymerization, and further polymerized with amine-functionalized copolymer shell to facilitate the conjugation of targeting ligand. Then, folic acid, specific targeting ligand for cervical cancer cell line (HeLa), was conjugated on the hydrogel surface, yielding the ligand conjugated hybrid hydrogels. We revealed that enhanced intracellular uptake by HeLa cells in vitro was enabled by both magnetic attraction and receptor-mediated endocytosis, which were contributed by MNP and folic acid, respectively. Furthermore, site-specific uptake of the developed carrier was confirmed by incubating with several other cell lines. Based on synergistically enhanced intracellular uptake, efficient cytotoxicity and apoptotic activity of HeLa cells incubated with anticancer drug loaded hybrid hydrogels were successfully achieved. The developed dual-targeted hybrid hydrogels are expected to provide a platform for the next generation intelligent drug delivery systems.

  6. Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex.

    PubMed

    Yang, Li; Tan, Jun; Wang, Bo-Chu; Zhu, Lian-Cai

    2014-12-01

    To synthesize and characterize a novel metal complex of Mn (II) with emodin, and evaluate its anti-cancer activity. The elemental analyses, IR, UV-vis, atomic absorption spectroscopy, TG-DSC, (1)H NMR, and (13)C NMR data were used to characterize the structure of the complex. The cytotoxicity of the complex against the human cancer cell lines HepG2, HeLa, MCF-7, B16, and MDA-MB-231 was tested by the MTT assay and flow cytometry. Emodin was coordinated with Mn(II) through the 9-C=O and 1-OH, and the general formula of the complex was Mn(II) (emodin)2·2H2O. In studies of the cytotoxicity, the complex exhibited significant activity, and the IC50 values of the complex against five cancer cell lines improved approximately three-fold compared with those of emodin. The complex could induce cell morphological changes, decrease the percentage of viability, and induce G0/G1 phase arrest and apoptosis in cancer cells. The coordination of emodin with Mn(II) can improve its anticancer activity, and the complex Mn(II) (emodin)2·2H2O could be studied further as a promising anticancer drug. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. Cytotoxic and apoptotic effects of bortezomib and gefitinib compared to alkylating agents on human glioblastoma cells.

    PubMed

    Pédeboscq, Stéphane; L'Azou, Béatrice; Passagne, Isabelle; De Giorgi, Francesca; Ichas, François; Pometan, Jean-Paul; Cambar, Jean

    2008-01-01

    Glioblastoma is a malignant astrocytic tumor with a median survival of about 12 months for which new therapeutic strategies are required. We therefore examined the cytotoxicity of anticancer drugs with different mechanisms of action on two human glioblastoma cell lines expressing various levels of EGFR (epidermal growth factor receptor). Apoptosis induced by these anticancer agents was evaluated by flow cytometry. The cytotoxicity of alkylating drugs followed a dose-effect curve and cytotoxicity index values were lower with carboplatin than with BCNU and temozolomide. Anti-EGFR gefitinib (10 microM) cytotoxicity on DBTRG.05-MG expressing high levels of EGFR was significantly higher than on U87-MG expressing low levels of EGFR. Carboplatin and temozolomide cytotoxicity was potentiated with the addition of gefitinib on DBTRG.05-MG. Among the anticancer agents tested, the proteasome inhibitor bortezomib was the most cytotoxic with very low IC50 on the two cell lines. Moreover, all anticancer drugs tested induced apoptosis in a concentration-dependent manner. Bortezomib proved to be a more potent inductor of apoptosis than gefitinib and alkylating agents. These results show the efficacy of bortezomib and of the association between conventional chemotherapy and gefitinib on glioblastoma cells and therefore suggest the interest of these molecules in the treatment of glioblastoma.

  8. New orally active DNA minor groove binding small molecule CT-1 acts against breast cancer by targeting tumor DNA damage leading to p53-dependent apoptosis.

    PubMed

    Saini, Karan Singh; Hamidullah; Ashraf, Raghib; Mandalapu, Dhanaraju; Das, Sharmistha; Siddiqui, Mohd Quadir; Dwivedi, Sonam; Sarkar, Jayanta; Sharma, Vishnu Lal; Konwar, Rituraj

    2017-04-01

    Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Anti-cancer Effects of a Novel Quinoline Derivative 83b1 on Human Esophageal Squamous Cell Carcinoma through Down-Regulation of COX-2 mRNA and PGE2.

    PubMed

    Pun, Ivan Ho Yuen; Chan, Dessy; Chan, Sau Hing; Chung, Po Yee; Zhou, Yuan Yuan; Law, Simon; Lam, Alfred King Yin; Chui, Chung Hin; Chan, Albert Sun Chi; Lam, Kim Hung; Tang, Johnny Cheuk On

    2017-01-01

    83b1 is a novel quinoline derivative that has been shown to inhibit cancer growth in human esophageal squamous cell carcinoma (ESCC). This study was conducted to comprehensively evaluate the cytotoxic effects of 83b1 on a series of ESCC cell lines and investigate the mechanisms by which 83b1 suppresses cancer growth based on molecular docking analysis. A series of ESCC and nontumor immortalized cell lines were exposed to 83b1 and cisplatin (CDDP) in a dose-dependent manner, and the cytotoxicity was examined by a MTS assay kit. Prediction of the molecular targets of 83b1 was conducted by molecular docking analysis. Expression of cyclooxygenase 2 (COX-2) mRNA and COX-2-derived prostaglandin E 2 (PGE 2 ) were measured by quantitative real-time polymerase chain reaction and enzymelinked immuno-sorbent assay, respectively. In vivo anti-tumor effect was determined using a nude mice xenografted model transplanted with an ESCC cell line, KYSE-450. 83b1 showed the significant anti-cancer effects on all ESCC cell lines compared to CDDP; however, 83b1 revealed much lower toxic effects on non-tumor cell lines than CDDP. The predicted molecular target of 83b1 is peroxisome proliferator-activated receptor delta (PPARδ), which is a widely known oncoprotein. Additionally the expression of COX-2 mRNA and COX-2-derived PGE 2 were down-regulated by 83b1 in a dose-dependent manner in ESCC cell lines. Furthermore, 83b1 was shown to significantly reduce the tumor size in nude mice xenograft. The results of this study suggest that the potential anti-cancer effects of 83b1 on human esophageal cancers occur through the possible oncotarget, PPARδ, and down-regulation of the cancer related genes and molecules.

  10. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage.

    PubMed

    Yadav, Dharmendra K; Rai, Reeta; Kumar, Naresh; Singh, Surjeet; Misra, Sanjeev; Sharma, Praveen; Shaw, Priyanka; Pérez-Sánchez, Horacio; Mancera, Ricardo L; Choi, Eun Ha; Kim, Mi-Hyun; Pratap, Ramendra

    2016-12-06

    The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage.

  11. Combination of Osthole and Cisplatin Against Rhabdomyosarcoma TE671 Cells Yielded Additive Pharmacologic Interaction by Means of Isobolographic Analysis.

    PubMed

    Jarząb, Agata; Łuszczki, Jarogniew; Guz, Małgorzata; Skalicka-Woźniak, Krystyna; Hałasa, Marta; Smok-Kalwat, Jolanta; Polberg, Krzysztof; Stepulak, Andrzej

    2018-01-01

    Osthole is a simple coumarin that has been found to have anticancer, anti-inflammatory, antiviral, anticoagulant, anticonvulsant and antiallergic activities. The aim of this study was to analyze the combined anti-proliferative effect of cisplatin (CDDP) and osthole on a rhabdomyosarcoma cell line, and assess the pharmacology of drug-drug interaction between these drugs using isobolographic analysis. The anticancer actions of osthole in combination with CDDP were evaluated using the tetrazolium dye-based MTT cell proliferation assay. Osthole and CDDP applied together augmented their anti-cancer activities and yielded an additive type of pharmacologic interaction by means of isobolographic analysis. Combined therapy using osthole and cisplatin could be suggested as a potential chemotherapy regimen against rhabdomyosarcoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents.

    PubMed

    Agarwal, Devesh S; Anantaraju, Hasitha Shilpa; Sriram, Dharmarajan; Yogeeswari, Perumal; Nanjegowda, Shankara H; Mallu, P; Sakhuja, Rajeev

    2016-03-01

    A series of bile acid (Cholic acid and Deoxycholic acid) aryl/heteroaryl amides linked via α-amino acid were synthesized and tested against 3 human cancer cell-lines (HT29, MDAMB231, U87MG) and 1 human normal cell line (HEK293T). Some of the conjugates showed promising results to be new anticancer agents with good in vitro results. More specifically, Cholic acid derivatives 6a (1.35 μM), 6c (1.41 μM) and 6m (4.52 μM) possessing phenyl, benzothiazole and 4-methylphenyl groups showed fairly good activity against the breast cancer cell line with respect to Cisplatin (7.21 μM) and comparable with respect to Doxorubicin (1 μM), while 6e (2.49μM), 6i (2.46 μM) and 6m (1.62 μM) showed better activity against glioblastoma cancer cell line with respect to both Cisplatin (2.60 μM) and Doxorubicin (3.78 μM) drugs used as standards. Greater than 65% of the compounds were found to be safer on human normal cell line. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Autumn Royal and Ribier Grape Juice Extracts Reduced Viability and Metastatic Potential of Colon Cancer Cells.

    PubMed

    Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio; Párraga, Mario; Villena, Joan

    2018-01-01

    Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions . These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.

  14. Synthesis and in vitro anti-proliferative effects of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives on various cancer cell lines.

    PubMed

    Reddy Chamakura, Upendar; Sailaja, E; Dulla, Balakrishna; Kalle, Arunasree M; Bhavani, S; Rambabu, D; Kapavarapu, Ravikumar; Rao, M V Basaveswara; Pal, Manojit

    2014-03-01

    A series of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives were designed as potential anticancer agents. These compounds were conveniently prepared by using Pd/C-Cu mediated Sonogashira type coupling as a key step. Many of these compounds were found to be promising when tested for their in vitro anti-proliferative properties against six cancer cell lines. All these compounds were found to be selective towards the growth inhibition of cancer cells with IC50 values in the range of 0.9-1.7 μM (against MDA-MB 231 and MCF7 cells), comparable to the known anticancer drug doxorubicin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Autumn Royal and Ribier Grape Juice Extracts Reduced Viability and Metastatic Potential of Colon Cancer Cells

    PubMed Central

    Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio

    2018-01-01

    Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells. PMID:29552079

  16. Methanol extract from Vietnamese Caesalpinia sappan induces apoptosis in HeLa cells.

    PubMed

    Hung, Tran Manh; Dang, Nguyen Hai; Dat, Nguyen Tien

    2014-05-27

    This study evaluated the cytotoxic activity of extracts from Caesalpinia sappan heartwood against multiple cancer cell lines using an MTT cell viability assay. The cell death though induction of apoptosis was as indicated by DNA fragmentation and caspase-3 enzyme activation. A methanol extract from C. sappan (MECS) showed cytotoxic activity against several of the cancer cell lines. The most potent activity exhibited by the MECS was against HeLa cells with an IC50 value of 26.5 ± 3.2 μg/mL. Treatment of HeLa cells with various MECS concentrations resulted in growth inhibition and induction of apoptosis, as indicated by DNA fragmentation and caspase-3 enzyme activation. This study is the first report of the anticancer properties of the heartwood of C. sappan native to Vietnam. Our findings demonstrate that C. sappan heartwood may have beneficial applications in the field of anticancer drug discovery.

  17. Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity

    NASA Astrophysics Data System (ADS)

    Kathiravan, V.; Ravi, S.; Ashokkumar, S.

    2014-09-01

    Silver nanoparticles have a significant role in the pharmaceutical science. Especially, silver nanoparticles synthesized by the plant extracts lead a significant role in biological activities such as antimicrobial, antioxidant and anticancer. Keeping this in mind, the present work investigation has been taken up with the synthesized silver nanoparticles using the plant extract of Melia dubia and it characterizes by using UV-visible, XRD and SEM-EDS. The effect of the silver nanoparticles on human breast cancer (KB) cell line has been tested. Silver nanoparticles showed remarkable cytotoxicity activity against KB cell line with evidence of high therapeutic index value are the results are discussed.

  18. Design, synthesis and biological evaluation of arylcinnamide hybrid derivatives as novel anticancer agents

    PubMed Central

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Chayah, Mariem; Camacho, M. Encarnacion; Prencipe, Filippo; Hamel, Ernest; Consolaro, Francesca; Basso, Giuseppe; Viola, Giampietro

    2014-01-01

    The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. A series of novel antiproliferative agents designed by a pharmacophore hybridization approach, combining the arylcinnamide skeleton and an α-bromoacryloyl moiety, was synthesized and evaluated for its antiproliferative activity against a panel of seven human cancer cell lines. In addition, the new derivatives were also active on multidrug-resistant cell lines over-expressing P-glycoprotein. The biological effects of various substituents on the N-phenyl ring of the benzamide portion were also described. In order to study the possible mechanism of action, we observed that 4p slightly increased the Reactive Oxygen Species (ROS) production in HeLa cells, but, more importantly, a remarkable decrease of intracellular reduced glutathione content was detected in treated cells compared with controls. These results were confirmed by the observation that only thiol-containing antioxidants were able to significantly protect the cells from induced cell death. Altogether our results indicate that the new derivatives are endowed with good anticancer activity in vitro, and their properties may result in the development of new cancer therapeutic strategies. PMID:24858544

  19. Anti-cancer, anti-inflammatory and anti-microbial activities of plant extracts used against hematological tumors in traditional medicine of Jordan.

    PubMed

    Assaf, Areej M; Haddadin, Randa N; Aldouri, Nedhal A; Alabbassi, Reem; Mashallah, Sundus; Mohammad, Mohammad; Bustanji, Yasser

    2013-02-13

    Mercurialis annua L., Bongardia chrysogonum L., and Viscum cruciatum Sieb have been traditionally used by local herbalists in Jordan for the treatment of hematopoietic neoplasms. To determine the anti-cancer, anti-inflammatory and anti-microbial potentials of the three extracts against two of the most common hematopoietic malignancies in the Jordanian populations; Burkitt's lymphoma and Multiple myeloma. The anti-cancer activity was tested against the two cell lines (BJAB Burkitt's lymphoma and U266 multiple myeloma) using the MTT and trypan blue assays. The agar dilution assay was used to study the anti-microbial activity against Gram-positive bacteria, Gram-negative bacteria, anaerobic bacteria and yeast. The pro-inflammatory cytokines interleukin (IL) -1β, IL-8 and tumor necrosis factor-α (TNF-α) were measured in the pretreated cell lines using ELISA assay to determine the anti-inflammatory activity of Viscum cruciatum Sieb against the two cell lines. The results show no evidence of stimulation of tumor growth by any of the three extracts comprising cell lines from hematological malignancies, but Viscum cruciatum Sieb showed a selective anticancer activity against BJAB cells, with IC(50) value of 14.21μg/ml. The antimicrobial effect was only noticed with Viscum cruciatum extract by inhibiting Staphylococcus aureus, Candida albicans and Propionibacterium acne, but not Pseudomonas aeruginosa at MIC of 1.25, 1.25, 0.625 and <5mg/ml, respectively. The highest activity was against the anaerobic bacteria Propionibacterium acne. Viscum cruciatum Sieb extract showed an inhibitory effect on the pro-inflammatory cytokine IL-8, but it increased TNF-α and IL-1β secretions in BJAB cells. Whereas, it had an inhibitory effect on TNF-α and IL-1β cytokines while it enhanced IL-8 secretions in U266 cells. Among the three tested herbal extracts used in the traditional medicine in Jordan, only Viscum cruciatum Sieb showed high anti-cancer and anti-microbial potentials. They also had an anti-inflammatory effect. These observations raise the prospects of using Viscum cruciatum Sieb for treatment of diseases associated with some bacterial and fungal infections, for imbalanced cytokine production and for enhancing cancer and other immunotherapies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties.

    PubMed

    Noratto, Giuliana D; Bertoldi, Michele C; Krenek, Kimberley; Talcott, Stephen T; Stringheta, Paulo C; Mertens-Talcott, Susanne U

    2010-04-14

    Many polyphenolics contained in mango have shown anticancer activity. The objective of this study was to compare the anticancer properties of polyphenolic extracts from several mango varieties (Francis, Kent, Ataulfo, Tommy Atkins, and Haden) in cancer cell lines, including Molt-4 leukemia, A-549 lung, MDA-MB-231 breast, LnCap prostate, and SW-480 colon cancer cells and the noncancer colon cell line CCD-18Co. Cell lines were incubated with Ataulfo and Haden extracts, selected on the basis of their superior antioxidant capacity compared to the other varieties, where SW-480 and MOLT-4 were statistically equally most sensitive to both cultivars followed by MDA-MB-231, A-549, and LnCap in order of decreasing efficacy as determined by cell counting. The efficacy of extracts from all mango varieties in the inhibition of cell growth was tested in SW-480 colon carcinoma cells, where Ataulfo and Haden demonstrated superior efficacy, followed by Kent, Francis, and Tommy Atkins. At 5 mg of GAE/L, Ataulfo inhibited the growth of colon SW-480 cancer cells by approximately 72% while the growth of noncancer colonic myofibroblast CCD-18Co cells was not inhibited. The growth inhibition exerted by Ataulfo and Haden polyphenolics in SW-480 was associated with an increased mRNA expression of pro-apoptotic biomarkers and cell cycle regulators, cell cycle arrest, and a decrease in the generation of reactive oxygen species. Overall, polyphenolics from several mango varieties exerted anticancer effects, where compounds from Haden and Ataulfo mango varieties possessed superior chemopreventive activity.

  1. HLBT-100: a highly potent anti-cancer flavanone from Tillandsia recurvata (L.) L.

    PubMed

    Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Ayeah, Kenneth N; Bryant, Joseph

    2017-01-01

    The incidence and mortalities from cancers remain on the rise worldwide. Despite significant efforts to discover and develop novel anticancer agents, many cancers remain in the unmet need category. As such, efforts to discover and develop new and more effective and less toxic agents against cancer remain a top global priority. Our drug discovery approach is natural products based with a focus on plants. Tillandsia recurvata (L.) L. is one of the plants selected by our research team for further studies based on previous bioactivity findings on the anticancer activity of this plant. The plant biomass was extracted using supercritical fluid extraction technology with CO 2 as the mobile phase. Bioactivity guided isolation was achieved by use of chromatographic technics combined with anti-proliferative assays to determine the active fraction and subsequently the pure compound. Following in house screening, the identified molecule was submitted to the US National Cancer Institute for screening on the NCI60 cell line panel using standard protocols. Effect of HLBT-100 on apoptosis, caspase 3/7, cell cycle and DNA fragmentation were assessed using standard protocols. Antiangiogenic activity was carried out using the ex vivo rat aortic ring assay. A flavonoid of the flavanone class was isolated from T. recurvata (L.) L. with potent anticancer activity. The molecule was code named as HLBT-100 (also referred to as HLBT-001). The compound inhibited brain cancer (U87 MG), breast cancer (MDA-MB231), leukemia (MV4-11), melanoma (A375), and neuroblastoma (IMR-32) with IC 50 concentrations of 0.054, 0.030, 0.024, 0.003 and 0.05 µM, respectively. The molecule also exhibited broad anticancer activity in the NCI60 panel inhibiting especially hematological, colon, CNS, melanoma, ovarian, breast and prostate cancers. Twenty-three of the NCI60 cell lines were inhibited with GI 50 values <0.100 µM. In terms of potential mechanisms of action, the molecule demonstrated effect on the cell cycle as evidenced by the accumulation of cells with 

  2. A newly isolated probiotic Enterococcus faecalis strain from vagina microbiota enhances apoptosis of human cancer cells.

    PubMed

    Nami, Y; Abdullah, N; Haghshenas, B; Radiah, D; Rosli, R; Yari Khosroushahi, A

    2014-08-01

    This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract. The Enterococcus faecalis strain was originally isolated from the vaginal microbiota of Iranian women and was molecularly identified using 16SrDNA gene sequencing. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of Ent. faecalis, including antibiotic susceptibility, antimicrobial activity, as well as acid and bile resistance. The bio-therapeutic effects of this strain's secreted metabolites on four human cancer cell lines (AGS, HeLa, MCF-7 and HT-29) and one normal cell line (HUVEC) were evaluated by cytotoxicity assay and apoptosis scrutiny. The characterization results demonstrated into the isolated bacteria strain revealed probiotic properties, such as antibiotic susceptibility, antimicrobial activity and resistance under conditions similar to those in the gastrointestinal tract. Results of bio-therapeutic efficacy assessments illustrated acceptable apoptotic effects on four human cancer cell lines and negligible side effects on assayed normal cell line. Our findings revealed that the apoptotic effect of secreted metabolites mainly depended on proteins secreted by Ent. faecalis on different cancer cells. These proteins can induce the apoptosis of cancer cells. The metabolites produced by this vaginal Ent. faecalis strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. Accordingly, the physicochemical, structural and functional properties of the secreted anticancer substances should be further investigated before using them as anticancer therapeutics. This study aim to screen total bacterial secreted metabolites as a wealthy source to find the new active compounds to introduce as anticancer therapeutics in the future. © 2014 The Society for Applied Microbiology.

  3. Characterization of the Apoptotic Response Induced by the Cyanine Dye D112: A Potentially Selective Anti-Cancer Compound

    PubMed Central

    Yang, Ning; Gilman, Paul; Mirzayans, Razmik; Sun, Xuejun; Touret, Nicolas; Weinfeld, Michael; Goping, Ing Swie

    2015-01-01

    Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation. PMID:25927702

  4. A nanocomplex of Cu(II) with theophylline drug; synthesis, characterization, and anticancer activity against K562 cell line

    NASA Astrophysics Data System (ADS)

    Sahlabadi, Maryam; Daryanavard, Marzieh; Hadadzadeh, Hassan; Amirghofran, Zahra

    2018-03-01

    A new mononuclear of copper (II), [Cu(theophylline)2(H2O)3]·2H2O, has been synthesized by reaction of theophylline (1,3-dimethyl-7H-purine-2,6-dione) with copper (II) nitrate in water. Further, its nanocomplex has been prepared through the three different methods including sonication, grinding, and a combination thereof, sonication-grinding. The prepared nanocomplex was characterized using different techniques including FT-IR, UV-Vis, X-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy (FE-SEM). Moreover, the anticancer activity of the precursor complex, nanocomplex, free theophylline ligand, and the starting copper salt (Cu(NO3)2·3H2O) was investigated against the K562 cell line. The results show that the nanocomplex is an effective nano metal-based anticancer agent with IC50 = 11.7 μM.

  5. Modulation of butyrate anticancer activity by solid lipid nanoparticle delivery: an in vitro investigation on human breast cancer and leukemia cell lines.

    PubMed

    Foglietta, Federica; Serpe, Loredana; Canaparo, Roberto; Vivenza, Nicoletta; Riccio, Giovanna; Imbalzano, Erica; Gasco, Paolo; Zara, Gian Paolo

    2014-01-01

    Histone modification has emerged as a promising approach to cancer therapy. The short-chain fatty acid, butyric acid, a histone deacetylase (HD) inhibitor, has shown anticancer activity. Butyrate transcriptional activation is indeed able to withdraw cancer cells from the cell cycle, leading to programmed cell death. Since butyrate's clinical use is hampered by unfavorable pharmacokinetic and pharmacodynamic properties, delivery systems, such as solid lipid nanoparticles (SLN), have been developed to overcome these constraints. In order to outline the influence of butyrate delivery on its anticancer activity, the effects of butyrate as a free (sodium butyrate, NB) or nanoparticle (cholesteryl butyrate solid lipid nanoparticles, CBSLN) formulation on the growth of different human cancer cell lines, such as the promyelocytic leukemia, HL-60, and the breast cancer, MCF-7 was investigated. A detailed investigation into the mechanism of the induced cytotoxicity was also carried out, with a special focus on the modulation of HD and cyclin-dependent kinase (CDK) mRNA gene expression by real time PCR analysis. In HL-60 cells, CBSLN induced a higher and prolonged expression level of the butyrate target genes at lower concentrations than NB. This led to a significant decrease in cell proliferation, along with considerable apoptosis, cell cycle block in the G0/G1 phase, significant inhibition of total HD activity and overexpression of the p21 protein. Conversely, in MCF-7 cells, CBSLN did not enhance the level of expression of the butyrate target genes, leading to the same anticancer activity as that of NB. Solid lipid nanoparticles were able to improve butyrate anticancer activity in HL-60, but not in MCF-7 cells. This is consistent with difference in properties of the cells under study, such as expression of the TP53 tumor suppressor, or the transporter for short-chain fatty acids, SLC5A8.

  6. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities

    PubMed Central

    Shanab, Sanaa MM; Mostafa, Soha SM; Shalaby, Emad A; Mahmoud, Ghada I

    2012-01-01

    Objective To investigate the antioxidant and anticancer activities of aqueous extracts of nine microalgal species. Methods Variable percentages of major secondary metabolites (total phenolic content, terpenoids and alkaloids) as well as phycobiliprotein pigments (phycocyanin, allophycocyanin and phycoerythrin) in the aqueous algal extracts were recorded. Antioxidant activity of the algal extracts was performed using 2, 2 diphenyl-1-picrylhydrazyl (DPPH) test and 2,2′- azino-bis (ethylbenzthiazoline-6-sulfonic acid (ABTS.+) radical cation assay. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma cell (EACC) and Human hepatocellular cancer cell line (HepG2). Results Antioxidant activity of the algal extracts was performed using DPPH test and ABTS.+ radical cation assays which revealed 30.1-72.4% and 32.0-75.9% respectively. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma Cell (EACC) and Human Hepatocellular cancer cell line (HepG2) with an activity ranged 87.25% and 89.4% respectively. Culturing the promising cyanobacteria species; Nostoc muscorum and Oscillatoria sp. under nitrogen stress conditions (increasing and decreasing nitrate content of the normal BG11 medium, 1.5 g/L), increased nitrate concentration (3, 6 and 9 g/L) led to a remarkable increase in phycobilin pigments followed by an increase in both antioxidant and anticancer activities in both cyanobacterial species. While the decreased nitrate concentration (0.75, 0.37 and 0.0 g/L) induced an obvious decrease in phycobilin pigments with complete absence of allophycocyanin in case of Oscillatoria sp. Conclusions Nitrogen starvation (0.00 g/L nitrate) induced an increase and comparable antioxidant and anticancer activities to those cultured in the highest nitrate content. PMID:23569980

  7. Saudi anti-human cancer plants database (SACPD): A collection of plants with anti-human cancer activities

    PubMed Central

    Al-Zahrani, Ateeq Ahmed

    2018-01-01

    Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd PMID:29774137

  8. Saudi anti-human cancer plants database (SACPD): A collection of plants with anti-human cancer activities.

    PubMed

    Al-Zahrani, Ateeq Ahmed

    2018-01-30

    Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd.

  9. Giant Lysosomes as a Chemotherapy Resistance Mechanism in Hepatocellular Carcinoma Cells.

    PubMed

    Colombo, Federico; Trombetta, Elena; Cetrangolo, Paola; Maggioni, Marco; Razini, Paola; De Santis, Francesca; Torrente, Yvan; Prati, Daniele; Torresani, Erminio; Porretti, Laura

    2014-01-01

    Despite continuous improvements in therapeutic protocols, cancer-related mortality is still one of the main problems facing public health. The main cause of treatment failure is multi-drug resistance (MDR: simultaneous insensitivity to different anti-cancer agents), the underlying molecular and biological mechanisms of which include the activity of ATP binding cassette (ABC) proteins and drug compartmentalisation in cell organelles. We investigated the expression of the main ABC proteins and the role of cytoplasmic vacuoles in the MDR of six hepatocellular carcinoma (HCC) cell lines, and confirmed the accumulation of the yellow anti-cancer drug sunitinib in giant (four lines) and small cytoplasmic vacuoles of lysosomal origin (two lines). ABC expression analyses showed that the main ABC protein harboured by all of the cell lines was PGP, whose expression was not limited to the cell membrane but was also found on lysosomes. MTT assays showed that the cell lines with giant lysosomes were more resistant to sorafenib treatment than those with small lysosomes (p<0.01), and that verapamil incubation can revert this resistance, especially if it is administered after drug pre-incubation. The findings of this study demonstrate the involvement of PGP-positive lysosomes in drug sequestration and MDR in HCC cell lines. The possibility of modulating this mechanism using PGP inhibitors could lead to the development of new targeted strategies to enhance HCC treatment.

  10. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    PubMed

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Fisetin Reduces Cell Viability Through Up-Regulation of Phosphorylation of ERK1/2 in Cholangiocarcinoma Cells.

    PubMed

    Kim, Nayoung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Jae Min; Kang, Min-Jung; Kim, Bo Hye; Lee, Jung-Su; Ryu, Ji Kon; Kim, Yong-Tae

    2016-11-01

    Cholangiocarcinoma (CCA) is a malignancy with poor prognosis and limited therapeutic options. Effective prevention and treatment of CCA require developing novel anticancer agents and improved therapeutic regimens. As natural products are concidered a rich source of potential anticancer agents, we investigated the anticancer effect of fisetin in combination with gemcitabine. Cytotoxic effect of fisetin and gemcitabine on a human CCA cell line SNU-308 was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptosis assay using propidium iodine and annexin V. Molecular mechanisms of fisetin action in CCA were investigated by western blotting. Fisetin was found to inhibit survival of CCA cells, through strongly phosphorylating ERK. It also induced cellular apoptosis additively in combination with gemcitabine. Expression of cellular proliferative markers, such as phospho-p65 and myelocytomatosis (MYC), were reduced by fisetin. These results suggest fisetin in combination with gemcitabine as a candidate for use in improved anticancer regimens. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Yessotoxin, a Marine Toxin, Exhibits Anti-Allergic and Anti-Tumoural Activities Inhibiting Melanoma Tumour Growth in a Preclinical Model

    PubMed Central

    Tobío, Araceli; Alfonso, Amparo; Madera-Salcedo, Iris; Botana, Luis M.

    2016-01-01

    Yessotoxins (YTXs) are a group of marine toxins produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. They may have medical interest due to their potential role as anti-allergic but also anti-cancer compounds. However, their biological activities remain poorly characterized. Here, we show that the small molecular compound YTX causes a slight but significant reduction of the ability of mast cells to degranulate. Strikingly, further examination revealed that YTX had a marked and selective cytotoxicity for the RBL-2H3 mast cell line inducing apoptosis, while primary bone marrow derived mast cells were highly resistant. In addition, YTX exhibited strong cytotoxicity against the human B-chronic lymphocytic leukaemia cell line MEC1 and the murine melanoma cell line B16F10. To analyse the potential role of YTX as an anti-cancer drug in vivo we used the well-established B16F10 melanoma preclinical mouse model. Our results demonstrate that a few local application of YTX around established tumours dramatically diminished tumour growth in the absence of any significant toxicity as determined by the absence of weight loss and haematological alterations. Our data support that YTX may have a minor role as an anti-allergic drug, but reveals an important potential for its use as an anti-cancer drug. PMID:27973568

  13. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4

    PubMed Central

    Karuppiah, Valliappan; Aarthi, Chandramohan; Sivakumar, Kannan; Kannan, Lakshmanan

    2013-01-01

    Objective To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Methods Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Results Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. Conclusions The study revealed that the maximum amount of pigment could be produced to treat cancer. PMID:23905024

  14. Statistical optimization and anticancer activity of a red pigment isolated from Streptomyces sp. PM4.

    PubMed

    Karuppiah, Valliappan; Aarthi, Chandramohan; Sivakumar, Kannan; Kannan, Lakshmanan

    2013-08-01

    To enhance the pigment production by Streptomyces sp. PM4 for evaluating its anticancer activity. Response surface methodology was employed to enhance the production of red pigment from Streptomyces sp. PM4. Optimized pigment was purified and evaluated for the anticancer activity against HT1080, Hep2, HeLa and MCF7 cell lines by MTT assay. Based on the response surface methodology, it could be concluded that maltose (4.06 g), peptone (7.34 g), yeast extract (4.34 g) and tyrosine (2.89 g) were required for the maximum production of pigment (1.68 g/L) by the Streptomyces sp. PM4. Optimization of the medium with the above tested features increased the pigment yield by 4.6 fold. Pigment showed the potential anticancer activity against HT1080, HEp-2, HeLa and MCF-7 cell lines with the IC50 value of 18.5, 15.3, 9.6 and 8.5 respectively. The study revealed that the maximum amount of pigment could be produced to treat cancer.

  15. Daucosterol inhibits cancer cell proliferation by inducing autophagy through reactive oxygen species-dependent manner.

    PubMed

    Zhao, Chuanke; She, Tiantian; Wang, Lixin; Su, Yahui; Qu, Like; Gao, Yujing; Xu, Shuo; Cai, Shaoqing; Shou, Chengchao

    2015-09-15

    This study aims to evaluate the anti-cancer effect of daucosterol and explore its possible mechanism. MTT and colony formation assay were performed to determine the effect of daucosterol on cancer cell proliferation in vitro. H22 allograft model was used for the assessment of its anti-cancer activity in vivo. Intracellular generation of reactive oxygen species (ROS) was measured using DCFH-DA probe with flow cytometry system and a laser scanning confocal microscope. LC3 (microtubule-associated protein 1 light chain 3)-II conversion was monitored with immunofluorescence and immunoblotting to demonstrate daucosterol-induced autophagy. We found that daucosterol inhibits the proliferation of human breast cancer cell line MCF-7 and gastric cancer cell lines MGC803, BGC823 and AGS in a dose-dependent manner. Furthermore, daucosterol inhibits murine hepatoma H22 cell growth in ICR mice. Daucosterol treatment induces intracellular ROS generation and autophagy, but not apoptotic cell death. Treatment with ROS scavenger GSH (reduced glutathione), NAC (N-acetyl-l-cysteine) or autophagy inhibitor 3-Methyladenine (3-MA) counteracted daucosterol-induced autophagy and growth inhibition in BGC823 and MCF-7 cancer cells. Daucosterol inhibits cancer cell proliferation by inducing autophagy through ROS-dependent manner and could be potentially developed as an anti-cancer agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Anti-proliferative and apoptosis induction activities of extracts from Thai medicinal plant recipes selected from MANOSROI II database.

    PubMed

    Manosroi, Jiradej; Sainakham, Mathukorn; Manosroi, Worapaka; Manosroi, Aranya

    2012-05-07

    ETHONOPHARMACOLOGICAL RELEVANCES: Traditional medicines have long been used by the Thai people. Several medicinal recipes prepared from a mixture of plants are often used by traditional medicinal practitioners for the treatment of many diseases including cancer. The recipes collected from the Thai medicinal text books were recorded in MANOSROI II database. Anticancer recipes were searched and selected by a computer program using the recipe indication keywords including Ma-reng and San which means cancer in Thai, from the database for anticancer activity investigation. To investigate anti-cancer activities of the Thai medicinal plant recipes selected from the "MANOSROI II" database. Anti-proliferative and apoptotic activities of extracts from 121 recipes selected from 56,137 recipes in the Thai medicinal plant recipe "MANOSROI II" database were investigated in two cancer cell lines including human mouth epidermal carcinoma (KB) and human colon adenocarcinoma (HT-29) cell lines using sulforhodamine B (SRB) assay and acridine orange (AO) and ethidium bromide (EB) staining technique, respectively. In the SRB assay, recipes NE028 and, S003 gave the highest anti-proliferation activity on KB and HT29 with the IC(50) values of 2.48±0.24 and 6.92±0.49μg/ml, respectively. In the AO/EB staining assay, recipes S016 and NE028 exhibited the highest apoptotic induction in KB and HT-29 cell lines, respectively. This study has demonstrated that the three Thai medicinal plant recipes selected from "MANOSROI II" database (NE028, S003 and S016) gave active anti-cancer activities according to the NCI classification which can be further developed for anti-cancer treatment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. [Different effects of anticancer drugs on two human thyroid cell lines with different stages of differentiation].

    PubMed

    Yamanaka, T; Hishinuma, A

    1995-01-20

    We established two human thyroid tumor cell lines. One cell line (hPTC) was established from the tissue of a papillary thyroid carcinoma surgically excised from a 27-year-old female patient. The other cell line (hAG) was established from the tissue of an adenomatous goiter excised from a 59-year old female patient. Synthesis of cAMP by hPTC and hAG increased when they were stimulated by TSH. hPTC and hAG continued to divide as a monolayer in a tissue culture for three years and two years, respectively. We assessed the efficacy of anticancer drugs (doxorubicin:ADR, cisplatin:CDDP, nimustine:ACNU, bleomycin:BLM, cyclophosphamide:CPA, aclarubicin:ACR) with resard to hPTC. The hPTC cells were cultured in 24-well plates in the presence of the anticancer drugs for 48 hours, and the cellular DNA of the live cells was measured with diaminobenzoic acid. ADR had the lowest ED50 (0.029 mu g/ml) and the clinical blood concentration was 13.8 times that of the ED50. The clinical blood concentration divided by ED50 for the other anticancer drugs are, in order of higher values, 2.3 for CPA, 1.7 for BLM, 1.2 for CDDP, 0.5 for ACR, and less than 0.1 for ACNU. ADR showed time-independent effects since a 2-hour exposure of ADR to the hPTC cells resulted in the significant reduction of the cellular DNA content of the live cells even after 48 hours. The effects of the other anticancer drugs were time-dependent. We then studied the difference of the effects of ADR on hPTC and hAG. ED50 for hPTC was significantly low (0.035 mu g/ml) compared to that for hAG (0.460 mu g/ml). Since free radical formation is one of the major anticancer mechanisms of ADR the effects of free radicals on ED50's for hPTC and hAG were measured by adding glutathione (GSH), N-acetylcystein (NAC), buthionine sulfoximine (BSO), and alpha-tocopherol (alpha-toco) into the culture media. GSH catches up with free radicals in the extracellular fluid. NAC promotes production of GSH in the cytoplasm, but BSO interferes with the production of GSH in the cytoplasm. alpha-toco catches up with free radicals on the plasma membrane. GSH and alpha-toco did not effect ED50 for hPTC and hAG. However, NAC increased ED50 for hPTC and hAG, and BSO reduced ED50 for hPTC and hAG. The effects of NAC and BSO on ED50 for hPTC were greater than those for hAG.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. In vitro and in vivo anti-cancer effects of tillandsia recurvata (ball moss) from Jamaica.

    PubMed

    Lowe, H I C; Toyang, N J; Bryant, J

    2013-03-01

    Tillandsia recurvata, also commonly known as Ball Moss, is endemic to Jamaica and some parts of the Caribbean and South America. The plant, despite being reported to be used in folk medicine, had not previously been evaluated for its anti-cancer potential. The aim of this study was to evaluate the anti-cancer activity ofBall Moss. The anti-proliferation activity of the crude methanolic extract of the T recurvata was evaluated in vitro in five different histogenic cancer cell lines (prostate cancer - PC-3, breast cancer Kaposi sarcoma, B-16 melanoma and a B-cell lymphoma from a transgenic mouse strain) using the trypan blue assay. The crude extract was also evaluated in vivo in tumour-bearing mice. Immunohistochemistry staining with Apoptag was used for histology and determination of apoptosis. The crude methanolic extract of T recurvata demonstrated anti-proliferation activity against all the cell lines, killing > 50% of the cells at a concentration of 2.5 microg/ml. Kaposi sarcoma xenograft tumours were inhibited by up to 75% compared to control in the in vivo study (p < 0.05). There was evidence of DNA fragmentation and a decrease in cell viability on histological studies. The methanolic extract showed no toxic effect in the mice at a dose of 200 mg/kg. Our data suggest that T recurvata has great potential as an anti-cancer agent and that one of its mechanisms of cell kill and tumour inhibition is by the induction of apoptosis.

  19. Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines.

    PubMed

    Silva, Dulcelena Ferreira; Vidal, Flávia Castello Branco; Santos, Debora; Costa, Maria Célia Pires; Morgado-Díaz, José Andrés; do Desterro Soares Brandão Nascimento, Maria; de Moura, Roberto Soares

    2014-05-29

    Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 μg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett's or Tukey's post hoc tests, as appropriate. We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p<0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the development of chemopreventive drugs and may have therapeutic effects in the treatment of breast cancer.

  20. Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines

    PubMed Central

    2014-01-01

    Background Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Methods Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 μg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett’s or Tukey’s post hoc tests, as appropriate. Results We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p < 0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. Conclusions The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the development of chemopreventive drugs and may have therapeutic effects in the treatment of breast cancer. PMID:24886139

  1. Phenylpropanoids from Phragmipedium calurum and their antiproliferative activity

    PubMed Central

    Starks, Courtney M.; Williams, Russell B.; Norman, Vanessa L.; Lawrence, Julie A.; O’Neil-Johnson, Mark; Eldridge, Gary R.

    2012-01-01

    Two new and five known stilbenes and one new alkylresorcinol were isolated from the orchid Phragmipedium calurum during a screen for new anticancer compounds. The compounds were evaluated for antiproliferative activity against multiple human cancer cell lines. Two of the compounds (1 and 7) displayed moderate activity against several cell lines. PMID:22805176

  2. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo.

    PubMed

    Denicolaï, Emilie; Baeza-Kallee, Nathalie; Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-11-15

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na(+)/K(+) ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers.

  3. Biological activities and chemical composition of lichens from Serbia

    PubMed Central

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  4. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    PubMed

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  5. Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity.

    PubMed

    Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K

    2013-04-01

    Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells. Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits. Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis. Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines. © 2013 Blackwell Publishing Ltd.

  6. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential.

    PubMed

    Souza, Ricardo Basto; Frota, Annyta Fernandes; Silva, Joana; Alves, Celso; Neugebauer, Agnieszka Zofia; Pinteus, Susete; Rodrigues, José Ariévilo Gurgel; Cordeiro, Edna Maria Silva; de Almeida, Raimundo Rafael; Pedrosa, Rui; Benevides, Norma Maria Barros

    2018-06-01

    This study assessed the antioxidant, antimicrobial, anticancer and neuroprotective activities of the kappa(k)-carrageenan isolated from the red alga Hypnea musciformis (Hm-SP). The chemical spectrum of the k-carrageenan from Hm-SP was confirmed by Fourier transform infrared (FT-IR) spectroscopy. Hm-SP revealed an antibacterial and antifungal action against Staphylococcus aureus and Candida albicans, respectively. Hm-SP did not promoted cytotoxic effects against Human breast cancer (MCF-7) and Human neuroblastoma (SH-SY5Y) cell-lines. However, it was observed a significant reduction of the cellular proliferation capacity in these cancer cells in presence of the Hm-SP. Furthermore, Hm-SP showed neuroprotective activity in 6-hydroxydopamine-induced neurotoxicity on SH-SY5Y cells by modulation of the mitochondria transmembrane potential and reducing Caspase 3 activity. In addition, Hm-SP demonstrates low antioxidant potential and did not induce significant cytotoxic effects or changes in the cell proliferation on Balb/c 3T3 mouse fibroblast cell-line. In summary, our data suggest that Hm-SP shows antimicrobial, anticancer and neuprotective activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Anti-cancer Effects of Polyphenolic Compounds in Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor-resistant Non-small Cell Lung Cancer

    PubMed Central

    Jeong, Hyungmin; Phan, Ai N. H.; Choi, Jong-Whan

    2017-01-01

    Background: Polyphenolic phytochemicals are natural compounds, easily found in fruits and vegetables. Importantly, polyphenols have been intensively studied as excellent antioxidant activity which contributes to anticancer function of the natural compounds. Lung cancer has been reported to mainly account for cancer-related deaths in the world. Moreover, epidermal growth factor receptor tyrosine kinase inhibitor (TKI) resistance is one of the biggest issues in cancer treatment, especially in nonsmall cell lung cancer (NSCLC). Even though several studies both in preclinical and clinical trials have showed promising therapeutic effects of polyphenolic compounds in anticancer therapy, the function of the natural compounds in TKI-resistant (TKIR) lung cancer remains poorly studied. Objective: The aim of this study is to screen polyphenolic compounds as potential anticancer adjuvants which suppress TKIR lung cancer. Materials and Methods: Colony formation and thiazolyl blue tetrazolium blue assay were performed in the pair-matched TKI-sensitive (TKIS) versus TKIR tumor cell lines to investigate the therapeutic effect of polyphenolic compounds in TKIR NSCLC. Results: Our data show that equol, kaempferol, resveratrol, and ellagic acid exhibit strong anticancer effect in HCC827 panel. Moreover, the inhibitory effect of most of tested polyphenolic compounds was highly selective for TKIR lung cancer cell line H1993 while sparing the TKIS one H2073. Conclusion: This study provides an important screening of potential polyphenolic compounds for drug development to overcome TKI resistance in advanced lung cancer. SUMMARY The study provides an important screening of potential polyphenolic compounds for drug development to overcome tyrosine kinase inhibitor (TKI) resistance in advance lung cancerEquol, kaempferol, resveratrol, and ellagic acid show strong anticancer effect in HCC827 panel, including TKI-sensitive (TKIS) and TKI-resistant clonesThe inhibitory effect of polyphenolic compounds such as equol, kaempferol, resveratrol, ellagic acid, gallic acid, p-Coumaric, and hesperidin is highly selective for TKI-resistant lung cancer cell line H1993 while sparing the TKIS one H2073. Abbreviations used: EGFR: Epidermal growth factor receptor, EMT: Epithelial-to-mesenchymal transition, GTP: Green tea polyphenols, IGF1R: Insulin-like growth factor 1 receptor, MET: Met proto-oncogene, MTT: Thiazolyl blue tetrazolium blue, NSCLC: Non-small cell lung cancer, ROS: Reactive oxygen species, RTK: Receptor tyrosine kinase, STAT3: Signal transducer and activator of transcription 3, TKIR: TKI-resistant, TKIs: Tyrosine kinase inhibitors, TKIS: TKI-sensitive. PMID:29200719

  8. Synergistic Anti-Cancer Effect of Phenformin and Oxamate

    PubMed Central

    Miskimins, W. Keith; Ahn, Hyun Joo; Kim, Ji Yeon; Ryu, Sun; Jung, Yuh-Seog; Choi, Joon Young

    2014-01-01

    Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively. PMID:24465604

  9. Synergistic anti-cancer effect of phenformin and oxamate.

    PubMed

    Miskimins, W Keith; Ahn, Hyun Joo; Kim, Ji Yeon; Ryu, Sun; Jung, Yuh-Seog; Choi, Joon Young

    2014-01-01

    Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and (18)F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively.

  10. Cytotoxic Activities of Physalis minima L. Chloroform Extract on Human Lung Adenocarcinoma NCI-H23 Cell Lines by Induction of Apoptosis

    PubMed Central

    Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza

    2011-01-01

    Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug. PMID:19541726

  11. Hybrid anticancer 1,2-diazine derivatives with multiple mechanism of action. Part 3.

    PubMed

    Antoci, Vasilichia; Mantu, Dorina; Cozma, Danut Gabriel; Usru, Cornelia; Mangalagiu, Ionel I

    2014-01-01

    Antitumour chemotherapy is nowadays a very active field of research, DNA targeting drugs being the most widely used group in therapy. The design, synthesis and anticancer activity of a new class of anticancer derivatives with pyrrolo-1,2-diazine and benzoquinone skeleton is presented. The synthesis is direct and efficient, involving an alkylation followed by a [3+2] dipolar cycloaddition. The penta- and tetra-cyclic pyrrolo-1,2-diazine were evaluated for their in vitro anticancer activity against an NCI 60 human tumour cell line panel. The pentacyclic-1,2-diazine exhibit a significant anticancer activity against Non-Small Cell Lung Cancer NCI-H460, Leukemia MOLT-4, Leukemia CCRF-CEM and Breast Cancer MCF7. We hypothesize that these molecules will exert their anticancer activity through multiple mechanisms of action: intercalating the DNA, inhibiting the topoisomerase enzymes and, destroying the DNA strands via electron transfer mechanism. However, the intercalation with the DNA seems to prevail in competition with the others mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Creatine supplementation with methylglyoxal: a potent therapy for cancer in experimental models.

    PubMed

    Pal, Aparajita; Roy, Anirban; Ray, Manju

    2016-08-01

    The anti-cancer effect of methylglyoxal (MG) is now well established in the literature. The main aim of this study was to investigate the effect of creatine as a supplement in combination with MG both in vitro and in vivo. In case of the in vitro studies, two different cell lines, namely MCF-7 (human breast cancer cell line) and C2C12 (mouse myoblast cell line) were chosen. MG in combination with creatine showed enhanced apoptosis as well as higher cytotoxicity in the breast cancer MCF-7 cell line, compared to MG alone. Pre-treatment of well-differentiated C2C12 myotubes with cancerogenic 3-methylcholanthrene (3MC) induced a dedifferentiation of these myotubes towards cancerous cells (that mimic the effect of 3MC observed in solid fibro-sarcoma animal models) and subsequent exposure of these induced cancer cells with MG proved to be cytotoxic. Thus, creatine plus ascorbic acid enhanced the anti-cancer effects of MG. In contrast, when normal C2C12 muscle cells or myotubes (mouse normal myoblast cell line) were treated with MG or MG plus creatine and ascorbic acid, no detrimental effects were seen. This indicated that cytotoxic effects of MG are specifically limited towards cancer cells and are further enhanced when MG is used in combination with creatine and ascorbic acid. For the in vivo studies, tumors were induced by injecting Sarcoma-180 cells (2 × 10(6) cells/mouse) in the left hind leg. After 7 days of tumor inoculation, treatments were started with MG (20 mg/kg body wt/day, via the intravenous route), with or without creatine (150 mg/kg body wt/day, fed orally) and ascorbic acid (50 mg/kg body wt/day, fed orally) and continued for 10 consecutive days. Significant regression of tumor size was observed when Sarcoma-180 tumor-bearing mice were treated with MG and even more so with the aforesaid combination. The creatine-supplemented group demonstrated better overall survival in comparison with tumor-bearing mice without creatine. In conclusion, it may be stated that the anti-cancer effect of MG is enhanced by concomitant creatine supplementation, both in chemically transformed (by 3MC) muscle cells in vitro as well as in sarcoma animal model in vivo. These data strongly suggest that creatine supplementation may gain importance as a safe and effective supplement in therapeutic intervention with the anti-cancer agent MG.

  13. Synthesis of novel anticancer iridoid derivatives and their cell cycle arrest and caspase dependent apoptosis.

    PubMed

    Pandeti, Sukanya; Sharma, Komal; Bathula, Surendar Reddy; Tadigoppula, Narender

    2014-02-15

    Nyctanthes arbortristis Linn (Oleaceae) is widely distributed in sub-Himalayan regions and southwards to Godavari, India commonly known as Harsingar and Night Jasmine. In continuation of our drug discovery programme on Indian medicinal plants, we isolated arbortristoside-A (1) and 7-O-trans-cinnamoyl 6β-hydroxyloganin (2) from the seeds of N. Arbortristis, which exhibited moderate in vitro anticancer activity. Chemical transformation of 2 led to significant improvement in the activity in derivative 8 and 15 against HepG2 (human hepatocellular carcinoma), MCF-7 (breast adenocarcinoma) cell lines. The compounds 8 and 15 were also capable of cell cycle arrest and caspase dependent apoptosis in HepG2 cell lines. These iridoid derivatives hold promise for developing safer alternatives to the marketed drugs. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Identification of small molecule Hes1 modulators as potential anticancer chemotherapeutics.

    PubMed

    Sail, Vibhavari; Hadden, M Kyle

    2013-03-01

    Hes1 is a key transcriptional regulator primarily controlled by the Notch signaling pathway, and recent studies have demonstrated both an oncogenic and tumor suppressor role for Hes1, depending on the cell type. Small molecules that activate and inhibit Hes1 activity hold promise as future anticancer chemotherapeutics. We have utilized a cell-based dual luciferase assay to identify modulators of Hes1 expression in a medium-throughput format. A modest screen was performed in HCT-116 colon cancer cell lines, and two small molecules were identified and characterized as Hes1 regulators. Compound 3 induced Hes1 expression and exhibited anticancer effects in pulmonary carcinoid tumor cells, a cell type in which the upregulated Notch/Hes1 signaling plays a tumor suppressive role. Treatment of HCT-116 cells with compound 12 resulted in Hes1 downregulation and antitumor effects. © 2012 John Wiley & Sons A/S.

  15. NPCARE: database of natural products and fractional extracts for cancer regulation.

    PubMed

    Choi, Hwanho; Cho, Sun Young; Pak, Ho Jeong; Kim, Youngsoo; Choi, Jung-Yun; Lee, Yoon Jae; Gong, Byung Hee; Kang, Yeon Seok; Han, Taehoon; Choi, Geunbae; Cho, Yeeun; Lee, Soomin; Ryoo, Dekwoo; Park, Hwangseo

    2017-01-01

    Natural products have increasingly attracted much attention as a valuable resource for the development of anticancer medicines due to the structural novelty and good bioavailability. This necessitates a comprehensive database for the natural products and the fractional extracts whose anticancer activities have been verified. NPCARE (http://silver.sejong.ac.kr/npcare) is a publicly accessible online database of natural products and fractional extracts for cancer regulation. At NPCARE, one can explore 6578 natural compounds and 2566 fractional extracts isolated from 1952 distinct biological species including plants, marine organisms, fungi, and bacteria whose anticancer activities were validated with 1107 cell lines for 34 cancer types. Each entry in NPCARE is annotated with the cancer type, genus and species names of the biological resource, the cell line used for demonstrating the anticancer activity, PubChem ID, and a wealth of information about the target gene or protein. Besides the augmentation of plant entries up to 743 genus and 197 families, NPCARE is further enriched with the natural products and the fractional extracts of diverse non-traditional biological resources. NPCARE is anticipated to serve as a dominant gateway for the discovery of new anticancer medicines due to the inclusion of a large number of the fractional extracts as well as the natural compounds isolated from a variety of biological resources.

  16. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549

    PubMed Central

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-01-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin. PMID:28928819

  17. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549.

    PubMed

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-09-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin.

  18. Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications.

    PubMed

    Gangwar, Rajesh K; Tomar, Geetanjali B; Dhumale, Vinayak A; Zinjarde, Smita; Sharma, Rishi B; Datar, Suwarna

    2013-10-09

    Curcumin, a yellow bioactive component of Indian spice turmeric, is known to have a wide spectrum of biological applications. In spite of various astounding therapeutic properties, it lacks in bioavailability mainly due to its poor solubility in water. In this work, we have conjugated curcumin with silica nanoparticles to improve its aqueous solubility and hence to make it more bioavailable. Conjugation and loading of curcumin with silica nanoparticles was further examined with transmission electron microscope (TEM) and thermogravimetric analyzer. Cytotoxicity analysis of synthesized silica:curcumin conjugate was studied against HeLa cell lines as well as normal fibroblast cell lines. This study shows that silica:curcumin conjugate has great potential for anticancer application.

  19. Studies on novel 4beta-[(4-substituted)-1,2,3-triazol-1-yl] podophyllotoxins as potential anticancer agents.

    PubMed

    Bhat, Bilal A; Reddy, P Bhaskar; Agrawal, Satyam Kumar; Saxena, A K; Kumar, H M Sampath; Qazi, G N

    2008-10-01

    A series of 4beta-[(4-substituted)-1,2,3-triazol-1-yl] podophyllotoxin congeners have been designed and synthesized with significant regioselectivity by employing Cu(I) catalyzed 1,3-dipolar cycloaddition reaction of C4beta-azido podophyllotoxin and C4beta-azido-4'-O-demethyl podophyllotoxin with N-prop-2-yn-1-ylanilines. These compounds were evaluated for anticancer activity against a panel of seven human cancer cell lines. It was interesting to note that all the compounds exhibited promising activity especially against SF-295 (CNS), HCT-15 (colon) and 502713 (colon) cell lines. Compound 11e was found to be the most promising in this study.

  20. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs.

    PubMed

    Butt, Adeel Masood; Mohd Amin, Mohd Cairul Iqbal; Katas, Haliza

    2015-01-01

    Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay. The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.

  1. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    PubMed Central

    Butt, Adeel Masood; Mohd Amin, Mohd Cairul Iqbal; Katas, Haliza

    2015-01-01

    Background Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. Methods FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake. PMID:25709451

  2. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells12

    PubMed Central

    Rothweiler, Florian; Michaelis, Martin; Brauer, Peter; Otte, Jürgen; Weber, Kristoffer; Fehse, Boris; Doerr, Hans Wilhelm; Wiese, Michael; Kreuter, Jörg; Al-Abed, Yousef; Nicoletti, Ferdinando; Cinatl, Jindrich

    2010-01-01

    The human immunodeficiency virus (HIV) protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO) was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein 1 (BCRP1) in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors. PMID:21170266

  3. Principles of using Cold Atmospheric Plasma Stimulated Media for Cancer Treatment

    PubMed Central

    Yan, Dayun; Talbot, Annie; Nourmohammadi, Niki; Cheng, Xiaoqian; Canady, Jerome; Sherman, Jonathan; Keidar, Michael

    2015-01-01

    To date, the significant anti-cancer capacity of cold atmospheric plasma (CAP) on dozens of cancer cell lines has been demonstrated in vitro and in mice models. Conventionally, CAP was directly applied to irradiate cancer cells or tumor tissue. Over past three years, the CAP irradiated media was also found to kill cancer cells as effectively as the direct CAP treatment. As a novel strategy, using the CAP stimulated (CAPs) media has become a promising anti-cancer tool. In this study, we demonstrated several principles to optimize the anti-cancer capacity of the CAPs media on glioblastoma cells and breast cancer cells. Specifically, using larger wells on a multi-well plate, smaller gaps between the plasma source and the media, and smaller media volume enabled us to obtain a stronger anti-cancer CAPs media composition without increasing the treatment time. Furthermore, cysteine was the main target of effective reactive species in the CAPs media. Glioblastoma cells were more resistant to the CAPs media than breast cancer cells. Glioblastoma cells consumed the effective reactive species faster than breast cancer cells did. In contrast to nitric oxide, hydrogen peroxide was more likely to be the effective reactive species. PMID:26677750

  4. Marine Microalgae with Anti-Cancer Properties.

    PubMed

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  5. Synthesis, crystal structure, and biological evaluation of a series of phloretin derivatives.

    PubMed

    Wang, Li; Li, Zheng-Wei; Zhang, Wei; Xu, Rui; Gao, Fei; Liu, Yang-Feng; Li, Ya-Jun

    2014-10-13

    A one-step synthesis of phloretin derivatives 2-11 from phloretin in good to excellent yields is reported. Their structures were characterized by 1H-NMR, 13C-NMR and MS, and the structures of 8 and 11 were determined by X-ray diffraction analysis. A mechanism for the formation of 9-11 is proposed. Compared with the anticancer drug docetaxel, phloretin, phloretin derivatives and phlorizin exhibited moderate cytotoxicity toward the MDA-MB-231, SPC-A1, A549, MCF-7 and EC109 cell lines. Among all of the tested compounds, 7 exhibited the strongest cytotoxicity toward the five cell lines and was more active than docetaxel in MDA-MB-231 cells. Our findings suggest that these derivatives hold great promise for further development as anticancer agents.

  6. Cytotoxic activity of some medicinal plants from hamedan district of iran.

    PubMed

    Behzad, Sahar; Pirani, Atefeh; Mosaddegh, Mahmoud

    2014-01-01

    Medicinal plants have been investigated for possible anti-cancer effects. The aim of the present study was to examine the cytotoxic activity of several medicinal plants on different tumor cell lines. 11 selected plant species which have been used in folkloric prescriptions were collected from different sites of Hamedan district of Iran. The methanolic extracts of the plants were prepared and their cytotoxic effects on four human cancer cell lines (A549, human lung adenocarcinoma; MCF7, human breast adenocarcinoma; HepG2, hepatocellular carcinoma and HT-29, human colon carcinoma) and one normal cell line (MDBK, bovine kidney) were examined using the MTT assay. Three of these were exhibited antiproliferative activity against one or more of the cell lines. The extract from Primula auriculata demonstrated the highest cytotoxicity with IC50 of 25.79, 35.79 and 43.34 μg.mL-1 against MCF7, HepG2 and HT- 29 cells, respectively. For some of the plants, their traditional use was correlated with the cytotoxic results, whereas for others the results may support the non-cytotoxicity of species used traditionally as natural remedies. The cytotoxic species could be considered as potential of anticancer compounds.

  7. Snake venom causes apoptosis by increasing the reactive oxygen species in colorectal and breast cancer cell lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Riyasdeen, Anvarbatcha; Al-Shahrani, Mohammad Hamed; Islam, Mozaffarul

    2016-01-01

    Snake venom possesses various kinds of proteins and neurotoxic polypeptides, which can negatively interfere with the neurotransmitter signaling cascade. This phenomenon occurs mainly due to the blocking of ion channels in the body system. Envenomation prevents or severely interrupts nerve impulses from being transmitted, inhibition of adenosine triphosphate synthesis, and proper functioning of the cardiac muscles. However, some beneficial properties of venoms have also been reported. The aim of this study was to examine the snake venom as an anticancer agent due to its inhibitory effects on cancer progression such as cell motility, cell invasion, and colony formation. In this study, the effect of venoms on phenotypic changes and the change on molecular level in colorectal and breast cancer cell lines were examined. A reduction of 60%–90% in cell motility, colony formation, and cell invasion was observed when these cell lines were treated with different concentrations of snake venom. In addition, the increase in oxidative stress that results in an increase in the number of apoptotic cancer cells was significantly higher in the venom-treated cell lines. Further analysis showed that there was a decrease in the expression of pro-inflammatory cytokines and signaling proteins, strongly suggesting a promising role for snake venom against breast and colorectal cancer cell progression. In conclusion, the snake venoms used in this study showed significant anticancer properties against colorectal and breast cancer cell lines. PMID:27799796

  8. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy.

    PubMed

    Pastorek, Michal; Simko, Veronika; Takacova, Martina; Barathova, Monika; Bartosova, Maria; Hunakova, Luba; Sedlakova, Olga; Hudecova, Sona; Krizanova, Olga; Dequiedt, Franck; Pastorekova, Silvia; Sedlak, Jan

    2015-07-01

    One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.

  9. Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship.

    PubMed

    Li, Feng; Awale, Suresh; Tezuka, Yasuhiro; Kadota, Shigetoshi

    2008-05-15

    Several classes of flavonoids [flavanoids (1-10), flavonol (11), isoflavones (12-18), isoflavanones (19-22), isoflavans (23-26), chalcones (27-30), auronol (31), pterocarpans (32-37), 2-arylbenzofuran (38), and neoflavonoid (39)] and lignans (40-42) isolated from the MeOH extract of Brazilian red propolis were investigated for their cytotoxic activity against a panel of six different cancer cell lines including murine colon 26-L5 carcinoma, murine B16-BL6 melanoma, murine Lewis lung carcinoma, human lung A549 adenocarcinoma, human cervix HeLa adenocarcinoma, and human HT-1080 fibrosarcoma cell lines. Based on the observed results, structure-activity relationships were discussed. Among the tested compounds, 7-hydroxy-6-methoxyflavanone (3) exhibited the most potent activity against B16-BL6 (IC(50), 6.66microM), LLC (IC(50), 9.29microM), A549 (IC(50), 8.63microM), and HT-1080 (IC(50), 7.94microM) cancer cell lines, and mucronulatol (26) against LLC (IC(50), 8.38microM) and A549 (IC(50), 9.9microM) cancer cell lines. These activity data were comparable to those of the clinically used anticancer drugs, 5-fluorouracil and doxorubicin, against the tested cell lines, suggesting that 3 and 26 are the good candidates for future anticancer drug development.

  10. Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: in vitro and in vivo effects.

    PubMed

    Tang, Huadong; Murphy, Caitlin J; Zhang, Bo; Shen, Youqing; Sui, Meihua; Van Kirk, Edward Alva; Feng, Xiaowen; Murdoch, William J

    2010-08-01

    Curcumin has been shown to have high cytotoxicity towards various cancer cell lines, but its water insolubility and instability make its bioavailability exceedingly low and, thus, it is generally inactive in in vivo anticancer tests. Here, we report an intracellular-labile amphiphilic surfactant-like curcumin prodrug--curcumin conjugated with two short oligo(ethylene glycol) (Curc-OEG) chains via beta-thioester bonds that are labile in the presence of intracellular glutathione and esterase. Curc-OEG formed stable nanoparticles in aqueous conditions and served two roles--as an anticancer prodrug and a drug carrier. As an anticancer prodrug, the formed nanoparticles had a high and fixed curcumin-loading content of 25.3 wt%, and released active curcumin in the intracellular environment. Curc-OEG had high inhibition ability to several cancer cell lines due to apoptosis. Intravenously injected Curc-OEG significantly reduced the tumor weights and tumor numbers in the athymic mice xenografted with intraperitoneal SKOV-3 tumors and subcutaneous (mammary fat pad) MDA-MB-468 tumors. Preliminary systemic toxicity studies found that Curc-OEG did not cause acute and subchronic toxicities to mouse visceral organs at high doses. As drug carriers, Curc-OEG nanoparticles could carry other anticancer drugs, such as doxorubicin and camptothecin, and ship them into drug-resistant cells, greatly enhancing the cytotoxicity of the loaded drug. Thus, Curc-OEG is a promising prototype that merits further study for cancer therapy.

  11. Paris saponin-induced autophagy promotes breast cancer cell apoptosis via the Akt/mTOR signaling pathway.

    PubMed

    Xie, Zhan-Zhi; Li, Man-Mei; Deng, Peng-Fei; Wang, Sheng; Wang, Lei; Lu, Xue-Ping; Hu, Liu-Bing; Chen, Zui; Jie, Hui-Yang; Wang, Yi-Fei; Liu, Xiao-Xiao; Liu, Zhong

    2017-02-25

    Paris saponins possess anticancer, anti-inflammatory, and antiviral effects. However, the anticancer effect of Paris saponins has not been well elucidated and the mechanisms underlying the potential function of Paris saponins in cancer therapy are needed to be further identify. In this study, we report that saponin compounds isolated from Paris polyphylla exhibited antitumor activity against breast cancer cell lines, MCF-7 and MDA-MB-231. Paris saponin XA-2 induced apoptosis in both cell lines, as evidenced by the activation of caspases and cleavage of Poly (ADP-ribose) polymerase. The ability of XA-2 to induce autophagy was confirmed by acridine orange staining, accumulation of autophagosome-bound Long chain 3 (LC3)-II, and measurement of autophagic flux. XA-2-induced autophagy was observed to promote apoptosis by the combined treatment of breast cancer cell lines with XA-2 and autophagy inhibitors 3-methyladenine and bafilomycin A1, respectively. Moreover, we report a decrease in the levels of Akt/mTOR signaling pathway proteins, such as the phosphorylated forms of Akt, mTOR, P70S6K, and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). Taken together, these results provide important insights explaining the anticancer activity of Paris saponins and the potential development of XA-2 as a new therapeutic agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Anticancer activity of flavonoids isolated from Achyrocline satureioides in gliomas cell lines.

    PubMed

    Souza, Priscila Oliveira de; Bianchi, Sara Elis; Figueiró, Fabrício; Heimfarth, Luana; Moresco, Karla Suzana; Gonçalves, Rosângela Mayer; Hoppe, Juliana Bender; Klein, Caroline Peres; Salbego, Christianne Gazzana; Gelain, Daniel Pens; Bassani, Valquíria Linck; Zanotto Filho, Alfeu; Moreira, José Claudio Fonseca

    2018-05-04

    Achyrocline satureioides, popularly known as "marcela", is a medicinal plant found in South America. This plant is rich in flavonoids, which have been reported to exert numerous biological activities. The aim of this study was to purify, identify and evaluate the mechanisms underlining anticancer activity of A. satureioides flavonoids in glioma cell lines (U87, U251 and C6) as well as their comparative toxicity in normal brain cells (primary astrocytes, neurons and organotypic hippocampal cultures). The main flavonoids present in A. satureioides are luteolin, quercetin, 3-O-methyl-quercetin and achyrobichalcone, the later a very unique metabolite present in this plant. Isolated flavonoids as well as A. satureioides extracts reduced proliferation and clonogenic survival, and induced apoptosis of glioma cell lines. In addition, A. satureioides flavonoids potentiated the cytotoxic effect and apoptosis induction by the glioma chemotherapeutic temozolomide (TMZ). Importantly, A. satureioides flavonoids were less cytotoxic to astrocytes, neuron:astrocytes co-cultures and hippocampal cultures if compared to gliomas. Investigation of 10 cancer-related pathways showed a reduced activation of MYC and the Map kinases ERK and JNK by A. satureioides flavonoid-enriched extract, an effect not observed when individual flavonoids were evaluated. Altogether, the herein presented results show that A. satureioides extract possesses a combination of flavonoids, some unique for this plant, which have synergistic anticancer activity and potential for further studies in vivo. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. In vitro α-glucosidase inhibition, antioxidant, anticancer, and antimycobacterial properties of ethyl acetate extract of Aegle tamilnadensis Abdul Kader (Rutaceae) leaf.

    PubMed

    R, Pratap Chandran; S, Nishanth Kumar; S, Manju; S, Abdul Kader; B S, Dileep Kumar

    2015-01-01

    The present study was aimed to investigate in vitro α-glucosidase inhibition, antioxidant, anticancer, and antimycobacterial activities of the ethyl acetate extract of A. tamilnadensis leaves. The extract recorded strong α-glucosidase inhibition with an IC50 value of 100 μg/ml. The antioxidant potential of the extract was evaluated by nitric oxide radical inhibition, lipid peroxidation inhibition, ferric thiocyanate, and ABTS radical scavenging assay, and the extract recorded significant antioxidant activity. The ferric thiocyanate activity of extract was superior to butylated hydroxyl anisol (BHA), the standard antioxidant agent. The anticancer activity of the extract was evaluated against (1) breast cancer cell lines (MDAM B-231), (2) cervical cancer cell lines (HeLa), and (3) lung cancer cell line (A 549) using MTT assay, and significant activity was recorded against A 549 with an IC50 value of 64 μg/ml. Further studies on the morphology, acridine orange/ethidium bromide staining, and cell cycle analysis by flow cytometry confirm the extract-induced apoptosis in A 549. This extract also recorded significant anti-tuberculosis activity against Mycobacterium smegmatis. The current study suggests that the ethyl acetate extract of A. tamilnadensis is a potential source of natural α-glucosidase inhibitor and antioxidant for protection as well as prevention of life-threatening diseases like cancer.

  14. Role of reactive oxygen species in the anticancer activity of botanicals: Comparing sensitivity profiles

    PubMed Central

    Cohen, Zoya; Maimon, Yair; Samuels, Noah; Berger, Raanan

    2017-01-01

    Numerous botanicals have been shown to exhibit in vitro and in vivo anticancer activity, some of which is the result of the induction of reactive oxygen species (ROS) in cancer cells with a high ROS content. The present study compared sensitivities to a series of botanicals among cancer cell lines, using an XTT viability test, in order to create a specific cancer-herb profile. Of the 27 botanicals screened, 10 exhibited a cytotoxic effect, 7 of which were ROS-mediated. The sensitivity profiles of the ROS-inducing botanicals in 10 cancer cell lines were similar, unlike 3 cytotoxic ROS-independent botanicals that displayed divergent botanical-specific profiles. The correlation between sensitivity profiles of ROS-inducing botanicals suggests a common mechanism of action, in contrast to the varied mechanism of ROS-independent botanicals. This implies that the investigation of the anticancer activity of botanicals should start with the examination of ROS-mediated activity. Further investigation of ROS sensitivity among various tumor types is required in order to guide research into developing evidence-based guidelines in the use of botanicals for cancer treatment. PMID:28454445

  15. Selective effects of quercetin on the cell growth and antioxidant defense system in normal versus transformed mouse hepatic cell lines.

    PubMed

    Son, Young-Ok; Lee, Kyung-Yeol; Kook, Sung-Ho; Lee, Jeong-Chae; Kim, Jong-Ghee; Jeon, Young-Mi; Jang, Yong-Suk

    2004-10-19

    Quercetin is a dietary anticancer chemical that is capable of inducing apoptosis in tumor cells. However, little is known about its biological effect on nonmalignant cells, although the effect is one of the critical criteria to evaluate the clinical efficacy of the anticancer agent. In this study, we investigated the effects of quercetin on cell growth and apoptosis using embryonic normal hepatic cell line (BNL CL.2) and its SV40-transformed cell line (BNL SV A.8). We also evaluated the effects of quercetin on the antioxidant defense system in those cells. BNL SV A.8 cells were more sensitive to quercetin-mediated cytotoxicity than BNL CL.2 cells. In addition, the enzyme assays showed that quercetin actively stimulated the antioxidant defense systems including superoxide dismutase, catalase, glutathione, and glutathione reductase only in the BNL CL.2 cells. In particular, quercetin significantly reduced superoxide dismutase activity and increased the malonaldehyde content in BNL SV A.8 cells. These are thought to be closely related to quercetin-mediated apoptosis. Our findings suggest that quercetin is a dietary flavonoid that is capable of inducing selective growth inhibition and apoptosis in hepatic tumor cells, but not in normal cells.

  16. Discovery of a drug targeting microenvironmental support for lymphoma cells by screening using patient-derived xenograft cells

    PubMed Central

    Sugimoto, Keiki; Hayakawa, Fumihiko; Shimada, Satoko; Morishita, Takanobu; Shimada, Kazuyuki; Katakai, Tomoya; Tomita, Akihiro; Kiyoi, Hitoshi; Naoe, Tomoki

    2015-01-01

    Cell lines have been used for drug discovery as useful models of cancers; however, they do not recapitulate cancers faithfully, especially in the points of rapid growth rate and microenvironment independency. Consequently, the majority of conventional anti-cancer drugs are less sensitive to slow growing cells and do not target microenvironmental support, although most primary cancer cells grow slower than cell lines and depend on microenvironmental support. Here, we developed a novel high throughput drug screening system using patient-derived xenograft (PDX) cells of lymphoma that maintained primary cancer cell phenotype more than cell lines. The library containing 2613 known pharmacologically active substance and off-patent drugs were screened by this system. We could find many compounds showing higher cytotoxicity than conventional anti-tumor drugs. Especially, pyruvinium pamoate showed the highest activity and its strong anti-tumor effect was confirmed also in vivo. We extensively investigated its mechanism of action and found that it inhibited glutathione supply from stromal cells to lymphoma cells, implying the importance of the stromal protection from oxidative stress for lymphoma cell survival and a new therapeutic strategy for lymphoma. Our system introduces a primary cancer cell phenotype into cell-based phenotype screening and sheds new light on anti-cancer drug development. PMID:26278963

  17. Synthesis, anti-proliferative activity, SAR study, and preliminary in vivo toxicity study of substituted N,N'-bis(arylmethyl)benzimidazolium salts against a panel of non-small cell lung cancer cell lines.

    PubMed

    Shelton, Kerri L; DeBord, Michael A; Wagers, Patrick O; Southerland, Marie R; Williams, Travis M; Robishaw, Nikki K; Shriver, Leah P; Tessier, Claire A; Panzner, Matthew J; Youngs, Wiley J

    2017-01-01

    A series of N,N'-bis(arylmethyl)benzimidazolium salts have been synthesized and evaluated for their in vitro anti-cancer activity against select non-small cell lung cancer cell lines to create a structure activity relationship profile. The results indicate that hydrophobic substituents on the salts increase the overall anti-proliferative activity. Our data confirms that naphthylmethyl substituents at the nitrogen atoms (N 1 (N 3 )) and highly lipophilic substituents at the carbon atoms (C 2 and C 5 (C 6 )) can generate benzimidazolium salts with anti-proliferative activity that is comparable to that of cisplatin. The National Cancer Institute's Developmental Therapeutics Program tested 1, 3-5, 10, 11, 13-18, 20-25, and 28-30 in their 60 human tumor cell line screen. Results were supportive of data observed in our lab. Compounds with hydrophobic substituents have higher anti-cancer activity than compounds with hydrophilic substituents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia cell line

    PubMed Central

    STOCZYNSKA-FIDELUS, EWELINA; PIASKOWSKI, SYLWESTER; PAWLOWSKA, ROZA; SZYBKA, MALGORZATA; PECIAK, JOANNA; HULAS-BIGOSZEWSKA, KRYSTYNA; WINIECKA-KLIMEK, MARTA; RIESKE, PIOTR

    2016-01-01

    Thorough examination of genetic heterogeneity of cell lines is uncommon. In order to address this issue, the present study analyzed the genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia (T-ALL) cell line. For this purpose, traditional techniques such as fluorescence in situ hybridization and immunocytochemistry were used, in addition to more advanced techniques, including cell sorting, Sanger sequencing and massive parallel sequencing. The results indicated that the RPMI-8402 cell line consists of several genetically different cell subpopulations. Furthermore, massive parallel sequencing of RPMI-8402 provided insight into the evolution of T-ALL carcinogenesis, since this cell line exhibited the genetic heterogeneity typical of T-ALL. Therefore, the use of cell lines for drug testing in future studies may aid the progress of anticancer drug research. PMID:26870252

  19. Synthesis and preliminary biological evaluation of novel taspine derivatives as anticancer agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Shan, Yuanyuan; Li, Na; Ma, Wei; He, Langchong

    2010-07-01

    Antiangiogenic therapy might represent a new promising anticancer therapeutic strategy. Taspine can significantly inhibit cell proliferation of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor-165, which is crucial for angiogenesis. In this study, a series of novel taspine derivatives were synthesized and screened for in vitro anticancer and antiangiogenesis activities. The majority of the derivatives demonstrated a moderate degree of cytotoxicity against human cancer cell lines. One of them (14) exhibited much better antiproliferative activity against CACO-2 (IC(50)=52.5microM) and ECV304 (IC(50)=2.67microM) cells than taspine did. Some of them were also effective in antiproliferative assays against HUVECs. The in silico estimate of solubility of title compounds were higher than that of taspine. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  20. Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G0/G1cell cycle arrest and regulation of STAT3 signalling pathway.

    PubMed

    Bi, Yi-Liang; Min, Min; Shen, Wei; Liu, Yan

    2018-01-15

    Genistein is a natural flavonoid that has been reported to exhibit anticancer effects against different types of cancers which include, but are not limited to, breast and oral squamous cell carcinoma. The present study was designed to evaluate the anticancer effects of the natural flavonoid genistein against pancreatic cancer cell lines and to explore the underlying mechanism. Antiproliferative activity was investigated by MTT assay. Apoptosis was detected by DAPI and annexin V/PI staining. DNA damage was assessed by comet assay. Reactive oxygen species (ROS) and reduction of mitochondrial membrane potential (MMP) were determined by flow cytometry. Cell migration was examined by wound healing assay. Protien expressions were determined by western blotting. Antiproliferative assay revealed that genistein reduced the cell viability of pancreatic cancer cells in a dose dependent manner with an IC 50 of 20 and 25 µM against Mia-PaCa2 and PANC-1 cancer cell lines respectively. However, its antiproliferative effects were less pronounced against non-cancerous pancreatic ductal epithelial cell line (H6C7) as evident from the IC 50 of 120 µM. Genistein induced significant morphological changes in pancreatic cancer cells and triggered cell cycle arrest in G 0 /G 1 phase. DAPI staining and flow cytometric analysis revealed that genistein induced apoptosis in a dose dependent manner through generation of substantial amounts of ROS and reduction of MMP. However, treatment of the pancreatic cancer with genistein and ascorbic acid could abrogate the effects of genistein on cell viability. Protien expression analysis revealed that genistein upregulated cytosolic cytochrome c, Bax, cleaved Caspase-3 and cleaved caspase-9 expressions with concomitant downregulation of Bcl-2 expression. Moreover, genistein inhibited the phosphorylation of signal transducer and activator of transcription STAT3 proteins and downregulated the expression of survivin, cyclin D1 and ALDH1A1 in Mia-PaCa2 cells in a dose dependent manner. Interestingly, genistein could inhibit the cell migration potential of the Mia-PaCa2 cells which was further associated with the downregulation of metalloproteinases (MPP-2 and MPP-9). Taken together, we propose that genistein exerts anticancer activity in pancreatic cancer cells through induction of ROS mediated mitochondrial apoptosis, cell cycle arrest and regulation of STAT3 and may therefore prove beneficial in the management of pancreatic cancers cancer. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Synthesis of 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone as a candidate anticancer against cervical (WiDr), colon (HeLa), and breast (T47d) cancer cell lines in vitro

    NASA Astrophysics Data System (ADS)

    Matsjeh, Sabirin; Swasono, Respati Tri; Anwar, Chairil; Solikhah, Eti Nurwening; Lestari, Endang

    2017-03-01

    The compound 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone have been synthesized through Claisen-Schmidt reaction from 2-hydroxyacetophenone and 2,4-dihydroxyacetophenone with 4-hydroxy-3-methoxy benzaldehida (vanillin) in aqueous KOH 40% and KSF montmorillonite as catalyst in methanol. All these products were characterized by FT-IR, TLC Scanner, GC-MS, MS-Direct, and 1H-NMR and 13C-NMR spectrometer. Both of these compounds were tested citotoxycity activity as an anticancer against cervical, colon, and breast cancer cells (Hela, WiDr, and T47D cell lines) using MTT assay in vitro. Dose series given test solution concentration on Hela, WiDr, and T47D cells started from 6,25; 25; 50 and 100 µg/mL with incubation treatment for 24 hours. The result of study showed that the 2',4-dihydroxy-3-methoxychalcone as bright yellow crystal with the melting point of 114-115 °C and the yield of 13.77% and the 2',4',4-trihydroxy-3-methoxychalcone as bright yellow crystals with the melting point of 195-197 °C and the yield of 6%. Other 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone also exhibited cytotoxic activity against the cancer cell lines, with the 2',4',4-trihydroxy-3-methoxychalcone showed greater activities than the 2',4-dihydroxy-3-methoxychalcone in WiDr cell lines. The 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone exhibited strong anticancer activities with IC50 value below 20 µg/mL. The activity of 2',4',4-trihydroxy-3-methoxychalcone showed the most active against Hela and WiDr cell lines with IC50 value 8.53 and 2.66 µg/mL respectively, than T47D cell lines with IC50 value 24.61 µg/mL. The test results cytotoxic of 2',4-dihydroxy-3-methoxychalcone showed the most active against Hela and WiDr cell lines with IC50 value 12.80, 19.57 µg/mL than T47D cell lines with IC50 value of 20.73 µg/mL. IC50 value indicated that 2',4-dihydroxy-3-methoxychalcone and 2',4',4-trihydroxy-3-methoxychalcone potential as inhibitors in Hela, WiDr and T47D cell lines.

  2. A Novel Method to Improve the Anticancer Activity of Natural-Based Hydroxyapatite against the Liver Cancer Cell Line HepG2 Using Mesoporous Magnesia as a Micro-Carrier.

    PubMed

    2017-11-24

    Micro-carriers are the best known vehicles to transport different kinds of drugs to achieve high impact. In this study, mesoporous magnesium oxide has been harnessed as a micro-carrier to encapsulate the anticancer candidate drug natural-based cubic hydroxyapatite (HAP). HAP@MgO composites with different HAP loading (0-60 wt %), were prepared by a hydrothermal treatment method using triethanol amine as a template. The characterization of the prepared composites were achieved by using XRD, Raman spectroscopy, FTIR and SEM. Characterization data confirm the formation of sphere-like structures of MgO containing HAP particles. It was observed that the size of the spheres increased with HAP loading up to 40 wt %, then collapsed. Furthermore, the anticancer property of the prepared composites was evaluated against the HepG2 liver cancer cell line. The HAP@MgO composites exhibited higher activity than neat MgO or HAP. The 20 wt % of HAP was the optimum loading to control cell proliferation by inducing apoptosis. Apoptosis was determined by typical apoptotic bodies produced by the cell membrane.

  3. Synergetic Effect of SLN-Curcumin and LDH-5-Fu on SMMC-7721 Liver Cancer Cell Line

    PubMed Central

    Zhu, Rongrong; Wu, Xianzheng; Xiao, Yu; Gao, Bo; Xie, Qian

    2013-01-01

    Abstract Curcumin and 5-Fluorouracil (5-Fu) have been reported to have anticancer potentials and show certain synergetic effect on some cancer cell lines. However, the poor bioavailability and rapid metabolism limited their medical application. In this study, we encapsulated curcumin with solid lipid nanoparticles (SLN), 5-Fu with Layered double hydroxides (LDHs) separately and tested its properties and anticancer potentials. SLN-curcumin and LDH-5-Fu were determined to be 100 and 60 nm by Transmission Electron Microscopy detection, and the loading efficiency were 28%±2.5% and 16.7%±1.8%, individually. Furthermore, SLN-curcumin and LDH-5-Fu showed a significantly synergetic effect on SMMC-7721 cell stronger than plain drugs together, of which the Idrug loaded nano-carriers was only 0.315. FACS analysis revealed that the combination of SLN-curcumin and LDH-5-Fu induced 80.1% apoptosis in SMMC-7721 cells, which were 1.7-folds of the sum of the two plain drug loaded carriers. The results demonstrated the significant synergetic anticancer potentials of nano-encapsulated curcumin and 5-Fu, which could be further explored for the treatment of other carcinoma. PMID:23808828

  4. Evaluation of anti-apoptotic activity of different dietary antioxidants in renal cell carcinoma against hydrogen peroxide

    PubMed Central

    Garg, Neeraj K; Mangal, Sharad; Sahu, Tejram; Mehta, Abhinav; Vyas, Suresh P; Tyagi, Rajeev K

    2011-01-01

    Objective To evaluate the anti-apoptotic and radical scavenging activities of dietary phenolics, namely ascorbic acid,α-tocopherol acetate, citric acid, salicylic acid, and estimate H2O2-induced apoptosis in renal cell carcinoma cells. Methods The intracellular antioxidant potency of antioxidants was investigated. H2O2-induced apoptosis in RCC-26 was assayed with the following parameters: cell viability (% apoptosis), nucleosomal damage and DNA fragmentation, bcl-2 levels and flow cytometery analysis (ROS production evaluation). Results The anticancer properties of antioxidants such as ascorbic acid, α-tocopherol acetate, citric acid, salicylic acid with perdurable responses were investigated. It was observed that these antioxidants had protective effect (anti-apoptotic activity) against hydrogen peroxide (H2O2) in renal cell carcinoma (RCC-26) cell line. Conclusions This study reveals and proves the anticancer properties. However, in cancer cell lines anti-apoptotic activity can indirectly reflect the cancer promoter activity through radicals scavenging, and significantly protect nucleus and bcl-2. PMID:23569726

  5. Trisindoline synthesis and anticancer activity.

    PubMed

    Yoo, Miyoun; Choi, Sang-Un; Choi, Ki Young; Yon, Gyu Hwan; Chae, Jong-Chan; Kim, Dockyu; Zylstra, Gerben J; Kim, Eungbin

    2008-11-07

    Expression of a Rhodococcus-derived oxygenase gene in Escherichia coli yielded indigo metabolites with cytotoxic activity against cancer cells. Bioactivity-guided fractionation of these indigo metabolites led to the isolation of trisindoline as the agent responsible for the observed in vitro cytotoxic activity against cancer cells. While the cytotoxicity of etoposide, a common anticancer drug, was dramatically decreased in multidrug-resistant (MDR) cancer cells compared with treatment of parental cells, trisindoline was found to have similar cytotoxicity effects on both parental and MDR cell lines. In addition, the cytotoxic effects of trisindoline were resistant to P-glycoprotein overexpression, one of the most common mechanisms of drug resistance in cancer cells, supporting its use to kill MDR cancer cells.

  6. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    PubMed Central

    Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito

    2018-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983

  7. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells

    PubMed Central

    JUNG, IL LAE; LEE, JU HYE; KANG, SE CHAN

    2015-01-01

    It has previously been reported that cold water-extracts of Moringa oleifera leaf have anticancer activity against various human cancer cell lines, including non-small cell lung cancer. In the present study, the anticancer activity of M. oleifera leaf extracts was investigated in human hepatocellular carcinoma HepG2 cells. By the analysis of apoptotic signals, including the induction of caspase or poly(ADP-ribose) polymerase cleavage, and the Annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays, it was demonstrated that M. oleifera leaf extracts induce the apoptosis of HepG2 cells. In the hollow fiber assay, oral administration of the leaf extracts significantly reduced (44–52%) the proliferation of the HepG2 cells and A549 non-small cell lung cancer cells. These results support the potential of soluble extracts of M. oleifera leaf as orally administered therapeutics for the treatment of human liver and lung cancers. PMID:26622717

  8. Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells.

    PubMed

    Eom, Dae-Woon; Lee, Ji Hwan; Kim, Young-Joo; Hwang, Gwi Seo; Kim, Su-Nam; Kwak, Jin Ho; Cheon, Gab Jin; Kim, Ki Hyun; Jang, Hyuk-Jai; Ham, Jungyeob; Kang, Ki Sung; Yamabe, Noriko

    2015-08-01

    Epigallocatechin gallate (EGCG) and curcumin are well known to naturally-occurring anticancer agents. The aim of this study was to verify the combined beneficial anticancer effects of curcumin and EGCG on PC3 prostate cancer cells, which are resistant to chemotherapy drugs and apoptosis inducers. EGCG showed weaker inhibitory effect on PC3 cell proliferation than two other prostate cancer cell lines, LNCaP and DU145. Co-treatment of curcumin improved antiproliferative effect of EGCG on PC3 cells. The protein expressions of p21 were significantly increased by the co-treatment of EGCG and curcumin, whereas it was not changed by the treatment with each individual compound. Moreover, treatments of EGCG and curcumin arrested both S and G2/M phases of PC3 cells. These results suggest that the enhanced inhibitory effect of EGCG on PC3 cell proliferation by curcumin was mediated by the synergic up-regulation of p21-induced growth arrest and followed cell growth arrest.

  9. Maslinic acid promotes autophagy by disrupting the interaction between Bcl2 and Beclin1 in rat pheochromocytoma PC12 cells

    PubMed Central

    Dong, Xiaoli; Zhang, Jiaxiao; Zhou, Zhilin; Ye, Zhennan; Chen, Jiahao; Yuan, Jifan; Cao, Fengjun; Wang, Xuanbin; Liu, Wenchao; Yu, Wenxuan; Li, Xiaohua

    2017-01-01

    Maslinic acid (2α, 3β-dihydroxyolean-12-en-28-oic acid, MA) was isolated from natural plants and showed anti-cancer activity in rat Pheochromocytoma PC12 cells in our previous studies. We now discover that MA disrupts the interaction between Bcl2 and autophagy scaffold protein Beclin1 in the above cell line, leading to the up-regulation of autophagy. We investigated the effect of MA on the interaction between Bcl2 and Beclin1 by biochemical and biophysical methods in combination with autophagy characterization in the above cell line. Our results suggest that MA may serve as an autophagy activator by directly blocking the Bcl2-Beclin1 interaction to release free Beclin1 required for the recruitment of autophagy positive regulators, implying MA may exert its anti-cancer activity by regulating autophagy. PMID:29088805

  10. Artepillin C induces selective oxidative stress and inhibits migration and invasion in a comprehensive panel of human cervical cancer cell lines.

    PubMed

    Souza, Raquel Pantarotto; de Souza Bonfim-Mendonca, Patricia; Damke, Gabrielle Marconi Zago Ferreira; De Assis Carvalho, Analine Rosa Barquez; Ratti, Bianca Altrao; de Oliveira Dembogurski, Djaceli Sampaio; da Silva, Vania Ramos Sela; Silva, Sueli Oliveira; da Silva, Denise Brentan; Bruschi, Marcos Luciano; Maria-Engler, Silvya Stuchi; Consolaro, Marcia Edilaine Lopes

    2018-06-03

    Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is the main bioactive component of Brazilian green propolis, and possesses, among other things, anticancer properties. However, to the best of our knowledge, there are no studies of artepillin C in cervical cancer. To explore a new therapeutic candidate for cervical cancer, we have evaluated the effects of artepillin C on cellular viability in a comprehensive panel of human cervical cancer-derived cell lines including HeLa (human papillomavirus/HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16- and 18-positive) and C33A (HPV-negative) cells compared to a spontaneously immortalized human epithelial cell line (HaCaT). Our results demonstrated that artepillin C had a selective effect on cellular viability and could induce apoptosis possibly by intrinsic pathway, likely a result of oxidative stress, in all cancer-derived cell lines but not in HaCaT. Additionally, artepillin C was able to inhibit the migration and invasion of cancer cells. Thus, artepillin C appears to be a promising new candidate as an anticancer drug for cervical cancer induced by different HPV types. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Oxidative Stress Triggered by Apigenin Induces Apoptosis in a Comprehensive Panel of Human Cervical Cancer-Derived Cell Lines.

    PubMed

    Souza, Raquel P; Bonfim-Mendonça, Patrícia de S; Gimenes, Fabrícia; Ratti, Bianca A; Kaplum, Vanessa; Bruschi, Marcos L; Nakamura, Celso V; Silva, Sueli O; Maria-Engler, Silvya S; Consolaro, Marcia E L

    2017-01-01

    Recently, the cytotoxic effects of apigenin (4',5,7-trihydroxyflavone), particularly its marked inhibition of cancer cell viability both in vitro and in vivo, have attracted the attention of the anticancer drug discovery field. Despite this, there are few studies of apigenin in cervical cancer, and these studies have mostly been conducted using HeLa cells. To evaluate the possibility of apigenin as a new therapeutic candidate for cervical cancer, we evaluated its cytotoxic effects in a comprehensive panel of human cervical cancer-derived cell lines including HeLa (human papillomavirus/HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16 and HPV 18-positive), and C33A (HPV-negative) cells in comparison to a nontumorigenic spontaneously immortalized human epithelial cell line (HaCaT). Our results demonstrated that apigenin had a selective cytotoxic effect and could induce apoptosis in all cervical cancer cell lines which were positively marked with Annexin V, but not in HaCaT (control cells). Additionally, apigenin was able to induce mitochondrial redox impairment, once it increased ROS levels and H 2 O 2 , decreased the Δ ψm , and increased LPO. Still, apigenin was able to inhibit migration and invasion of cancer cells. Thus, apigenin appears to be a promising new candidate as an anticancer drug for cervical cancer induced by different HPV genotypes.

  12. Oxidative Stress Triggered by Apigenin Induces Apoptosis in a Comprehensive Panel of Human Cervical Cancer-Derived Cell Lines

    PubMed Central

    Souza, Raquel P.; Gimenes, Fabrícia; Ratti, Bianca A.; Kaplum, Vanessa; Bruschi, Marcos L.; Nakamura, Celso V.; Maria-Engler, Silvya S.

    2017-01-01

    Recently, the cytotoxic effects of apigenin (4′,5,7-trihydroxyflavone), particularly its marked inhibition of cancer cell viability both in vitro and in vivo, have attracted the attention of the anticancer drug discovery field. Despite this, there are few studies of apigenin in cervical cancer, and these studies have mostly been conducted using HeLa cells. To evaluate the possibility of apigenin as a new therapeutic candidate for cervical cancer, we evaluated its cytotoxic effects in a comprehensive panel of human cervical cancer-derived cell lines including HeLa (human papillomavirus/HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16 and HPV 18-positive), and C33A (HPV-negative) cells in comparison to a nontumorigenic spontaneously immortalized human epithelial cell line (HaCaT). Our results demonstrated that apigenin had a selective cytotoxic effect and could induce apoptosis in all cervical cancer cell lines which were positively marked with Annexin V, but not in HaCaT (control cells). Additionally, apigenin was able to induce mitochondrial redox impairment, once it increased ROS levels and H2O2, decreased the Δψm, and increased LPO. Still, apigenin was able to inhibit migration and invasion of cancer cells. Thus, apigenin appears to be a promising new candidate as an anticancer drug for cervical cancer induced by different HPV genotypes. PMID:28191273

  13. Anticancer effects of resveratrol in canine hemangiosarcoma cell lines.

    PubMed

    Carlson, A; Alderete, K S; Grant, M K O; Seelig, D M; Sharkey, L C; Zordoky, B N M

    2018-06-01

    Hemangiosarcoma (HSA) is a highly malignant tumour with aggressive biological behaviour. HSAs are more common in dogs than other domestic animals. The median survival time of dogs with HSA remains short, even with chemotherapy and surgery. Therefore, there is a critical need to improve the adjuvant chemotherapeutic regimens to improve clinical outcomes in dogs with HSA. Resveratrol has been shown to possess strong anti-proliferative and/or pro-apoptotic properties in human cancer cell lines. Nevertheless, the potential anticancer effects of resveratrol have not been reported in canine HSAs. The objective of this study is to determine the growth inhibitory effects of resveratrol in HSA cells when used alone or in combination with doxorubicin, a commonly used chemotherapeutic agent. Frog and DD-1 canine HSA cell lines were treated with varying concentrations of resveratrol with and without doxorubicin. Cell viability was measured by the MTT assay. The expression of apoptotic proteins, activation of p38 mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were assessed by western blotting. Similar to human cancer cell lines, resveratrol markedly inhibited the growth and induced apoptosis in both HSA cell lines. Mechanistically, resveratrol activated p38 MAPK, but did not affect the AMPK or the ERK1/2 pathways. Additional experiments showed that resveratrol augmented the growth-inhibitory and apoptotic effects of doxorubicin in both HSA cell lines. These findings suggest that resveratrol has pro-apoptotic effects in canine HSA cells; therefore, its use as a potential adjunct therapy in canine HSA patients warrants further investigation. © 2017 John Wiley & Sons Ltd.

  14. Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma.

    PubMed

    Sales, Leilane; Pezuk, Julia Alejandra; Borges, Kleiton Silva; Brassesco, María Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; dos Santos, Marcelo Henrique; Ionta, Marisa; de Oliveira, Jaqueline Carvalho

    2015-10-30

    Glioblastoma is the most common tumor of the central nervous system and one of the hardest tumors to treat. Consequently, the search for novel therapeutic options is imperative. 7-epiclusianone, a tetraprenylated benzophenone isolated from the epicarp of the native plant Garcinia brasiliensis, exhibits a range of biological activities but its prospect anticancer activity is underexplored. Thus, the aim of the present study was to evaluate the influence of 7-epiclusianone on proliferation, clonogenic capacity, cell cycle progression and induction of apoptosis in two glioblastoma cell lines (U251MG and U138MG). Cell viability was measured by the MTS assay; for the clonogenic assay, colonies were stained with Giemsa and counted by direct visual inspection; For cell cycle analysis, cells were stained with propidium iodide and analyzed by cytometry; Cyclin A expression was determined by immunoblotting; Apoptotic cell death was determined by annexin V fluorescein isothiocyanate labeling and Caspase-3 activity in living cells. Viability of both cell lines was drastically inhibited; moreover, the colony formation capacity was significantly reduced, demonstrating long-term effects even after removal of the drug. 7-epiclusianone treatment at low concentrations also altered cell cycle progression, decreased the S and G2/M populations and at higher concentrations increased the number of cells at sub-G1, in concordance with the increase of apoptotic cells. The present study demonstrates for the first time the anticancer potential of 7-epiclusianone against glioblastoma cells, thus meriting its further investigation as a potential therapeutic agent.

  15. QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Khan, Feroz; Srivastava, Santosh Kumar

    2013-12-01

    For the prediction of anticancer activity of glycyrrhetinic acid (GA-1) analogs against the human lung cancer cell line (A-549), a QSAR model was developed by forward stepwise multiple linear regression methodology. The regression coefficient (r(2)) and prediction accuracy (rCV(2)) of the QSAR model were taken 0.94 and 0.82, respectively in terms of correlation. The QSAR study indicates that the dipole moments, size of smallest ring, amine counts, hydroxyl and nitro functional groups are correlated well with cytotoxic activity. The docking studies showed high binding affinity of the predicted active compounds against the lung cancer target EGFR. These active glycyrrhetinic acid derivatives were then semi-synthesized, characterized and in-vitro tested for anticancer activity. The experimental results were in agreement with the predicted values and the ethyl oxalyl derivative of GA-1 (GA-3) showed equal cytotoxic activity to that of standard anticancer drug paclitaxel.

  16. Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Iα: in vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines.

    PubMed

    Tabassum, Sartaj; Zaki, Mehvash; Afzal, Mohd; Arjmand, Farukh

    2014-03-03

    New metal-based anticancer chemotherapeutic drug candidates [Cu(phen)L](NO₃)₂ (1) and [Zn(phen)L](NO₃)₂ (2) were synthesized from ligand L (derived from pharmacophore scaffold barbituric acid and pyrazole). In vitro DNA binding studies of the L, 1 and 2 were carried out by various biophysical techniques revealing electrostatic mode. Complex 1 cleaves pBR322 DNA via oxidative pathway and recognizes major groove of DNA double helix. The molecular docking study was carried out to ascertain the mode of action towards the molecular target DNA and enzymes. The complex 1 exhibited remarkably good anticancer activity on a panel of human cancer cell lines (GI₅₀ values < 10 μg/ml), and to elucidate the mechanism of cancer inhibition, Topo-I enzymatic activity was carried out. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. The potential of deferasirox as a novel therapeutic modality in gastric cancer.

    PubMed

    Choi, Jung Hye; Kim, Jung Soon; Won, Young Woong; Uhm, Jieun; Park, Byeong Bae; Lee, Young Yiul

    2016-03-10

    Iron is a crucial element for cell proliferation, growth, and metabolism. However, excess iron and altered iron metabolism are both associated with tumor initiation and tumor growth. Deferasirox is an oral iron chelator. Although some studies have indicated that deferasirox is a promising candidate for anti-cancer therapies, its effectiveness against gastric cancer has not yet been determined. This study was conducted to determine whether deferasirox exerts anti-tumor effects in gastric cancer cell lines and whether deferasirox and cisplatin act synergistically. Four human gastric cancer cell lines (AGS, MKN-28, SNU-484, and SNU-638) were treated with various concentrations of deferasirox to determine the IC50 for each cell line. The effects of deferasirox on the cell cycle were evaluated by flow cytometry, and the effects of deferasirox on iron metabolism, the cell cycle, and apoptosis were assessed by Western blotting. To determine whether deferasirox enhances the effect of cisplatin, AGS cells were cultured in the presence and absence of cisplatin. Deferasirox inhibited the proliferation of all gastric cancer cell lines as assessed by MTT assays. Since the IC50 of deferasirox was the lowest (below 10 μM) in AGS cells, subsequent experiments were performed in this line. Deferasirox upregulated transferrin receptor 1 expression and decreased ferroportin expression. Moreover, deferasirox induced G1 arrest; upregulated p21, p27, and p53 expression; and downregulated cyclin D1, cyclin B, and CDK4 expression. Furthermore, deferasirox induced apoptosis, upregulated N-myc downstream regulated gene 1 (NDRG1), and downregulated p-mTOR and c-myc expression. It was also found to act synergistically with cisplatin. Our results suggest that deferasirox may exert anti-tumor effects in the context of gastric cancer. Deferasirox affects a number of different pathways and molecules; for instance, deferasirox upregulates NDRG1 expression, inhibits the cell cycle, downregulates mTOR and c-myc expression, and induces apoptosis. In addition, deferasirox appears to potentiate the anti-cancer effects of cisplatin. Although the efficacy of deferasirox remains to be tested in future studies, the results presented here indicate that deferasirox is a promising novel anti-cancer therapeutic agent.

  18. Chemo-sensitivity in a panel of B-cell precursor acute lymphoblastic leukemia cell lines, YCUB series, derived from children.

    PubMed

    Goto, Hiroaki; Naruto, Takuya; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Fujii, Hisaki; Yokota, Shumpei; Komine, Hiromi

    2009-10-01

    Sensitivity to 10 anticancer drugs was evaluated in 6 childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. Authenticity of newly established cell lines was confirmed by genomic fingerprinting. The line YCUB-5R established at relapse was more resistant to 4-hydroperoxy-cyclophosphamide, cytarabine, L-asparaginase, topotecan, fludarabine, and etoposide than YCUB-5 from the same patient at diagnosis. Of the drugs tested, etoposide and SN-38 (irinotecan) showed highest efficacy in the panel, with 50% growth inhibition at 0.22-1.8 microg/ml and 0.57-3.6 ng/ml, respectively. This cell line panel offers an in vitro model for the development of new therapies for childhood BCP-ALL.

  19. [6]-Gingerol Induces Caspase-Dependent Apoptosis and Prevents PMA-Induced Proliferation in Colon Cancer Cells by Inhibiting MAPK/AP-1 Signaling

    PubMed Central

    Narayanan, Sai Shyam; Nath, Lekshmi R.; Thulasidasan, Arun Kumar T.; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer. PMID:25157570

  20. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    PubMed

    Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  1. Probiotic potential and biotherapeutic effects of newly isolated vaginal Lactobacillus acidophilus 36YL strain on cancer cells.

    PubMed

    Nami, Yousef; Abdullah, Norhafizah; Haghshenas, Babak; Radiah, Dayang; Rosli, Rozita; Khosroushahi, Ahmad Yari

    2014-08-01

    Lactobacillus acidophilus is categorized as a probiotic strain because of its beneficial effects in human health and prevention of disease transmission. This study is aimed to characterize the probiotic potential of L. acidophilus 36YL originally isolated from the vagina of healthy and fertile Iranian women. The L. acidophilus 36YL strain was identified using 16S rDNA gene sequencing and characterized by biochemical methodologies, such as antibiotics susceptibility, antimicrobial activity, and acid and bile resistance. The bioactivity of the secretion of this strain on four human cancer cell lines (AGS, HeLa, MCF-7, and HT-29) and one normal cell line (HUVEC) was evaluated by cytotoxicity assay and apoptosis analysis. This newly isolated strain was found to exhibit notable probiotic properties, such as admirable antibiotic susceptibility, good antimicrobial activity, and favorable resistance to acid and bile salt. The results of bioactivity assessment demonstrated acceptable anticancer effects on the four tested cancer cell lines and negligible side effects on the assayed normal cell line. Our findings revealed that the anticancer effect of L. acidophilus 36YL strain secretions depends on the induction of apoptosis in cancer cells. L. acidophilus 36YL strain is considered as a nutraceutical alternative or a topical medication with a potential therapeutic index because of the absence of cytotoxicity to normal cells, but effective toxicity to cancer cell lines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines

    NASA Astrophysics Data System (ADS)

    Panwar, Richa; Sharma, Asvene K.; Kaloti, Mandeep; Dutt, Dharm; Pruthi, Vikas

    2016-08-01

    Ferulic acid (FA) is a widely distributed hydroxycinnamic acid found in various cereals and fruits exhibiting potent antioxidant and anticancer activities. However, due to low solubility and permeability, its availability to biological systems is limited. Non-toxic chitosan-tripolyphosphate pentasodium (CS-TPP) nanoparticles (NPs) are used to load sparingly soluble molecules and drugs, increasing their bioavailability. In the present work, we have encapsulated FA into the CS-TPP NPs to increase its potential as a therapeutic agent. Different concentrations of FA were tested to obtain optimum sized FA-loaded CS-TPP nanoparticles (FA/CS-TPP NPs) by ionic gelation method. Nanoparticles were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy (FTIR), thermogravimetric analyses and evaluated for their anticancer activity against ME-180 human cervical cancer cell lines. The FTIR spectra confirmed the encapsulation of FA and thermal analysis depicted its degradation profile. A concentration-dependent relationship between FA encapsulation efficiency and FA/CS-TPP NPs diameter was observed. Smooth and spherical FA-loaded cytocompatible nanoparticles with an average diameter of 125 nm were obtained at 40 µM FA conc. The cytotoxicity of 40 µM FA/CS-TPP NPs against ME-180 cervical cancer cell lines was found to be higher as compared to 40 µM native FA. Apoptotic morphological changes as cytoplasmic remnants and damaged wrinkled cells in ME-180 cells were visualized using scanning electron microscopic and fluorescent microscopic techniques. Data concluded that chitosan enveloped FA nanoparticles could be exploited as an excellent therapeutic drug against cancer cells proliferation.

  3. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb.

    PubMed

    Suresh, V; Sruthi, V; Padmaja, B; Asha, V V

    2011-04-12

    To determine anti-inflammatory and anti-cancer activities of Cuscuta reflexa in cell lines (in vitro). Anti-inflammatory activity of the water extract was analysed in vitro using lipopolysaccharide (LPS) induced inflammatory reactions in murine macrophage cell line RAW264.7. The expression of COX-2 and TNF-α genes involved in inflammation was analysed by SQ RT-PCR. EMSA was conducted to analyse the influence of the extract on NF-κB signalling. Anti-cancer activity was analysed on Hep3B cells by MTT assay, DAPI staining, annexin V staining and SQ-RT PCR analysis of BAX, Bcl-2, p53 and survivin. The extract down regulated LPS induced over expression of TNF-α and COX-2 in RAW264.7 cells; blocked NF-κB binding to its motifs and induced apoptosis in Hep3B cells as evidenced from MTT, DAPI staining and annexin V staining assays. The extract up regulated pro-apoptotic factors BAX and p53, and down regulated anti-apoptotic factors Bcl-2 and survivin. The study showed that Cuscuta reflexa inhibits LPS induced inflammatory responses in RAW264.7 cells through interplay of TNF-α, COX-2 and NF-κB signalling. It induced apoptosis in Hep3B cells through the up regulation of p53, BAX and down regulation of Bcl-2 and survivin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. The Acetone Extract of Sclerocarya birrea (Anacardiaceae) Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7)

    PubMed Central

    Tanih, Nicoline Fri; Ndip, Roland Ndip

    2013-01-01

    Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy. PMID:23576913

  5. SKLB060 Reversibly Binds to Colchicine Site of Tubulin and Possesses Efficacy in Multidrug-Resistant Cell Lines.

    PubMed

    Yan, Wei; Yang, Tao; Yang, Jianhong; Wang, Taijin; Yu, Yamei; Wang, Yuxi; Chen, Qiang; Bai, Peng; Li, Dan; Ye, Haoyu; Qiu, Qiang; Zhou, Yongzhao; Hu, Yiguo; Yang, Shengyong; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2018-05-22

    Many tubulin inhibitors are in clinical use as anti-cancer drugs. In our previous study, a novel series of 4-substituted coumarins derivatives were identified as novel tubulin inhibitors. Here, we report the anti-cancer activity and underlying mechanism of one of the 4-substituted coumarins derivatives (SKLB060). The anti-cancer activity of SKLB060 was tested on 13 different cancer cell lines and four xenograft cancer models. Immunofluorescence staining, cell cycle analysis, and tubulin polymerization assay were employed to study the inhibition of tubulin. N, N '-Ethylenebis(iodoacetamide) assay was used to measure binding to the colchicine site. Wound-healing migration and tube formation assays were performed on human umbilical vascular endothelial cells to study anti-vascular activity (the ability to inhibit blood vessel growth). Mitotic block reversibility and structural biology assays were used to investigate the SKLB060-tubulin bound model. SKLB060 inhibited tubulin polymerization and subsequently induced G2/M cell cycle arrest and apoptosis in cancer cells. SKLB060 bound to the colchicine site of β-tubulin and showed antivascular activity in vitro. Moreover, SKLB060 induced reversible cell cycle arrest and reversible inhibition of tubulin polymerization. A mitotic block reversibility assay showed that the effects of SKLB060 have greater reversibility than those of colcemid (a reversible tubulin inhibitor), indicating that SKLB060 binds to tubulin in a totally reversible manner. The crystal structures of SKLB060-tubulin complexes confirmed that SKLB060 binds to the colchicine site, and the natural coumarin ring in SKLB060 enables reversible binding. These results reveal that SKLB060 is a powerful and reversible microtubule inhibitor that binds to the colchicine site and is effective in multidrug-resistant cell lines. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Cold atmospheric plasma, a novel promising anti-cancer treatment modality.

    PubMed

    Yan, Dayun; Sherman, Jonathan H; Keidar, Michael

    2017-02-28

    Over the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists.

  7. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles.

    PubMed

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties.

  8. Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis.

    PubMed

    Ramamoorthy, Sathishkumar; Gnanakan, Ananthan; S Lakshmana, Senthil; Meivelu, Moovendhan; Jeganathan, Arun

    2018-06-15

    In the present study, extracellular polysaccharides (EPS) producing bacterium Bacillus thuringiensis RSK CAS4 was isolated from ascidian Didemnum granulatum and its production was optimized by response surface methodology. Fructose and galactose were found as the major monosaccharides in the EPS from the strain RSK CAS4. Functional groups and structural characteristics of the EPS were characterized with FT-IR and 1 HNMR. The purified EPS showed potent antioxidant properties in investigation against DPPH, hydroxyl, superoxide free radicals. In vitro anticancer activity of purified EPS was evaluated on HEp-2 cells, A549 and Vero cell lines. Growth of cancer cells was inhibited by the EPS in a dose-dependent manner and maximum anticancer activity was found to be 76% against liver cancer at 1000 μg/ml. The antioxidant and anticancer potentials of theEPS from marine bacterium Bacillusthuringiensis RSK CAS4 suggests it as a potential natural source and its scopeas an alternative to synthetics for pharmaceutical application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles.

    PubMed

    Yadav, Pinki; Lal, Kashmiri; Kumar, Ashwani; Guru, Santosh Kumar; Jaglan, Sundeep; Bhushan, Shashi

    2017-01-27

    A series of chalcone linked-1,2,3-triazoles was synthesized via cellulose supported copper nanoparticle catalyzed click reaction in water. The structures of all the compounds were analyzed by IR, NMR and Mass spectral techniques. All the synthesized products were subjected to 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay against a panel of four human cancer cell lines (MCF-7, MIA-Pa-Ca-2, A549, HepG2) to check their anticancer potential. Compound 6h was found to be most active against all the tested cancer cell lines with IC 50 values in the range of 4-11 μM and showed better or comparable activity to the reference drug against all the tested cell lines. Cell cycle analysis revealed that compound 6h induces apoptosis and G2/S arrest in MIA-Pa-Ca-2 cells. Compound 6h triggers mitochondrial potential loss in pancreatic cancer MIA-Pa-Ca-2 cells. Further, Compound 6h also triggers caspase-3 and PARP-1 cleavage, which increases in dose dependent manner. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.

    PubMed

    Rajagopal, Sriram; Kumar, R Ajaya; Deevi, Dhanvanthri S; Satyanarayana, Chitkala; Rajagopalan, R

    2003-01-01

    Andrographis paniculata plant extract is known to possess a variety of pharmacological activities. Andrographolide, the major constituent of the extract is implicated towards its pharmacological activity. We studied the cellular processes and targets modulated by andrographolide treatment in human cancer and immune cells. Andrographolide treatment inhibited the in vitro proliferation of different tumor cell lines, representing various types of cancers. The compound exerts direct anticancer activity on cancer cells by cell-cycle arrest at G0/G1 phase through induction of cell-cycle inhibitory protein p27 and decreased expression of cyclin-dependent kinase 4 (CDK4). Immunostimulatory activity of andrographolide is evidenced by increased proliferation of lymphocytes and production of interleukin-2. Andrographolide also enhanced the tumor necrosis factor-alpha production and CD marker expression, resulting in increased cytotoxic activity of lymphocytes against cancer cells, which may contribute for its indirect anticancer activity. The in vivo anticancer activity of the compound is further substantiated against B16F0 melanoma syngenic and HT-29 xenograft models. These results suggest that andrographolide is an interesting pharmacophore with anticancer and immunomodulatory activities and hence has the potential for being developed as a cancer therapeutic agent.

  11. Novel Synthetic Mono-triazole Glycosides Induce G0/G1 Cell-cycle Arrest and Apoptosis in Cholangiocarcinoma Cells.

    PubMed

    Obchoei, Sumalee; Saeeng, Rungnapha; Wongkham, Chaisiri; Wongkham, Sopit

    2016-11-01

    The treatment of cholangiocarcinoma (CCA) is still ineffective and the search for a novel treatment is needed. In this study, eight novel mono-triazole glycosides (W1-W8) were synthesized and tested for their anticancer activities in CCA cell lines. The anti-proliferation effect and the underlying mechanisms of the triazole glycosides were explored. Viable cells were determined using the MTT test. Among glycosides tested, W4 and W5 exhibited the most potent anticancer activity in a dose- and time-dependent fashion. Flow cytometry and wstern blot analysis revealed that W4 and W5 induced G 0 /G 1 phase cell-cycle arrest through down-regulation of cyclin D1, cyclin E and induction of cyclin-dependent kinase inhibitors, p27 and p21 protein expression. Annexin V/propidium iodide (PI) staining demonstrated that W4 and W5 also induced apoptotic cells in a dose-dependent manner via caspase signaling cascade. Together, these findings imply that the novel synthetic glycosides might be a promising anticancer agent for CCA. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Protein-bound polysaccharide-K augments the anticancer effect of fluoropyrimidine derivatives possibly by lowering dihydropyrimidine dehydrogenase expression in gastrointestinal cancers.

    PubMed

    Mekata, Eiji; Murata, Satoshi; Sonoda, Hiromichi; Shimizu, Tomoharu; Umeda, Tomoko; Shiomi, Hisanori; Naka, Shigeyuki; Yamamoto, Hiroshi; Abe, Hajime; Edamatsu, Takeo; Fujieda, Ayako; Fujioka, Masaki; Wada, Tsutomu; Tani, Tohru

    2013-12-01

    Protein-bound polysaccharide-K (PSK) enhances the antitumor effect of anticancer drug when used clinically in combination with such drugs. PSK is known to act by immune-mediated mechanisms; however, the relationship between PSK and metabolic enzymes of anticancer drugs is unknown. We used the collagen gel droplet-embedded culture drug sensitivity test (CD-DST) clinically to evaluate the sensitivity of anticancer drugs. In the present study, we modified the CD-DST by adding peripheral blood mononuclear cells (PBMCs) (immuno-CD-DST) and examined the antitumor effect of PSK in combination with anticancer drugs. First, HCT116 human colon cancer cells were cultured with PSK and 5-fluorouracil (5-FU) or 5'-deoxy-5-fluorouridine (5'-DFUR) in the presence or absence of PBMCs, and the antiproliferative effects were compared. In the presence of PBMCs, PSK augmented the inhibitory effects of 5-FU and 5'-DFUR on HCT116 cell proliferation. Next, using human gastric cancer and colon cancer cell lines, the effects of PSK on mRNA expression of various metabolic enzymes of fluoropyrimidines: dihydropyrimidine dehydrogenase (DPD), thymidylate synthase, thymidine phosphorylase and orotate phosphoribosyl transferase, were examined by real-time PCR. PSK significantly enhanced DPD mRNA expression in all of the cancer cell lines tested, but not those of the other enzymes. Addition of IFN-α and TRAIL, cytokines known to inhibit DPD expression, to the cultures reduced DPD mRNA expression in the cancer cells. When PBMC samples collected from healthy volunteers were cultured with PSK, IFN-α mRNA expression increased in 3 of the 5 PBMC samples, while TRAIL mRNA expression was unchanged. The present results propose the possibility that PSK induces PBMCs to express IFN-α which inhibits DPD expression, and consequently augments the antitumor effect of 5-FU or 5'-DFUR. Immuno-CD-DST is useful for evaluating drugs with immunological mechanisms of action.

  13. Synthesis and Anticancer Mechanism Investigation of Dual Hsp27 and Tubulin Inhibitors

    PubMed Central

    Zhong, Bo; Chennamaneni, Snigdha; Lama, Rati; Yi, Xin; Geldenhuys, Werner J.; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2013-01-01

    Heat shock protein 27 (Hsp27) is a chaperone protein, and its expression is increased in response to various stress stimuli including anticancer chemotherapy, which allows the cells to survive and causes drug resistance. We previously identified lead compounds that bound to Hsp27 and tubulin via proteomic approaches. Systematic ligand based optimization in the current study significantly increased the cell growth inhibition and apoptosis inducing activities of the compounds. Compared to the lead compounds, one of the new derivatives exhibited much better potency to inhibit tubulin polymerization but a decreased activity to inhibit Hsp27 chaperone function, suggesting that the structural modification dissected the dual targeting effects of the compound. The most potent compounds 20 and 22 exhibited strong cell proliferation inhibitory activities at subnanomolar concentration against 60 human cancer cell lines conducted by Developmental Therapeutic Program at the National Cancer Institute and represented promising candidates for anticancer drug development. PMID:23767669

  14. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives.

    PubMed

    Li, Yang; Feng, Ling; Song, Zhi-Fang; Li, Hai-Bei; Huai, Qi-Yong

    2016-02-06

    A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively) and merits further exploration as a new anticancer agent.

  15. Selective Targeting of Cancer Stem Cells by 2-Aminodihydroquinoline Analogs.

    PubMed

    Park, Heejoo; Yu, Yeongji; Kim, Hyejin; Lee, Eun; Lee, Hani; Jeon, Raok; Kim, Woo-Young

    2017-04-01

    Many aminodihydroquinoline compounds have been studied to determine their cytotoxicity to cancer cells. However, anti-cancer stem cells (CSCs) activity of aminodihydroquinoline has not been tested in spite that CSC is believed to do an important roles in chemotherapy resistance and recurrence. The CSC selective targeting activities of 10 recently synthesized 2-aminodihydroquinoline analogs were examined on CSCs and bulk culture of a glioblastoma cell line. A diethylaminopropyl substituted aminodihydroquinoline, 5h, showed a strong anti-CSC effect and general cytotoxicity. However, a benzyl substituted aminodihydroquinoline, 5i, displayed the most effective anti-CSC effect, with no or small significant cytotoxic effect in bulk culture conditions. While 5h temporarily enhanced CSC marker-positive cells and eventually suppressed the CSC population, which is similar to other cytotoxic anticancer reagents reported, 5i selectively eliminated CSC marker-positive cells based on fluorescence activated cell sorter (FACS) analysis. 5h also temporarily activated some genes associated with signaling required for CSC, while 5i selectively suppressed these genes supporting that the differential effects are resulted from different molecular responses. In addition, the selective CSC effect is also found against a colon cancer cell line. Collectively, we suggest that these two novel aminodihydroquinoline compounds possess novel anti-CSC effects in colon and brain tumor derived cell lines probably through independent pathways.

  16. Synthesis of Rapamycin Derivatives Containing the Triazole Moiety Used as Potential mTOR-Targeted Anticancer Agents.

    PubMed

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-06-01

    Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 μM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Antileukemic Activity of Tillandsia recurvata and Some of its Cycloartanes

    PubMed Central

    LOWE, HENRY I.C.; TOYANG, NGEH J.; WATSON, CHARAH T.; AYEAH, KENNETH N.N.; BRYANT, JOSEPH

    2015-01-01

    Background Approximately 250,000 deaths were caused by leukemia globally in 2012 and about 40%-50% of all leukemia diagnoses end-up in death. Medicinal plants are a rich source for the discovery of new drugs against leukemia and other types of cancers. To this end, we subjected the Jamaican ball moss (Tillandsia recurvata) and its cycloartanes, as well as some analogs, to in vitro screening against a number of leukemia cell lines. The WST-1 anti-proliferation assay was used to determine the anticancer activity of ball moss and two cycloartanes isolated from ball moss and four of their analogs against four leukemia cell lines (HL-60, K562, MOLM-14, monoMac6). Ball moss crude methanolic extract showed activity with a 50% inhibition concentration (IC50) value of 3.028 μg/ml against the Molm-14 cell line but was ineffective against HL-60 cells. The six cycloartanes tested demonstrated varying activity against the four leukemia cancer cell lines with IC50 values ranging from 1.83 μM to 18.3 μM. Five out of the six cycloartanes demonstrated activity, while one was inactive against all four cell lines. The preliminary activity demonstrated by the Jamaican ball moss and its cycloartanes against selected leukemia cell lines continues to throw light on the broad anticancer activity of ball moss. Further studies to evaluate the efficacy of these molecules in other leukemia cell lines are required in order to validate the activity of these molecules, as well as to determine their mechanisms of action and ascertain the activity in vivo in order to establish efficacy and safety profiles. PMID:24982361

  18. Evaluation of anticancer effects and enhanced doxorubicin cytotoxicity of xanthine derivatives using canine hemangiosarcoma cell lines.

    PubMed

    Motegi, Tomoki; Katayama, Masaaki; Uzuka, Yuji; Okamura, Yasuhiko

    2013-10-01

    Methylxanthine derivatives increase cAMP and are known to have diuretic, cardiac, and central nervous system stimulatory effects. Moreover, caffeine inhibits the development of tumors induced by various carcinogens. The aim of this work was to elucidate the anticancer effects on apoptosis of xanthine derivatives alone and with doxorubicin in canine hemangiosarcoma cells. Xanthine derivatives with or without doxorubicin were administered to cells, and the effects were investigated by measuring tumor cell proliferation, cell death (cytotoxicity) induction, and apoptosis by the expression of annexin V or caspase 3/7. Both caffeine and theophylline induced apoptosis, and the treated cells expressed annexin V and caspase 3/7. Both drugs enhanced doxorubicin-induced cytotoxicity; however, hypoxanthine showed no effect. These results indicate that theophylline is similar to caffeine; both drugs may enhance doxorubicin-induced cytotoxicity by inhibiting ATM/ATR kinases. Our data suggest that caffeine and theophylline have anticancer effects and can improve the treatment effect in canine hemangiosarcoma patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Activity of Saponins from Medicago species Against HeLa and MCF-7 Cell Lines and their Capacity to Potentiate Cisplatin Effect.

    PubMed

    Avato, Pinarosa; Migoni, Danilo; Argentieri, Mariapia; Fanizzi, Francesco P; Tava, Aldo

    2017-11-24

    Saponins from Medicago species display several biological activities, among them apoptotic effects against plant cells have been evidenced. In contrast, their cytotoxic and antitumor activity against animal cells have not been studied in great details. To explore the cytotoxic properties of saponin from Medicago species against animal cells and their effect in combination with the antitumoral drug cisplatin. Cytotoxic activity of saponin mixtures from M. arabica (tops and roots), M. arborea (tops) and M. sativa (tops, roots and seeds) and related prosapogenins from M. arborea and M. sativa (tops) against HeLa and MCF-7 cell lines is described. In addition, cytotoxicity of soyasaponin I and purified saponins (1-8) of hederagenin, medicagenic and zanhic acid is also presented. Combination experiments with cisplatin have been also conducted. Saponins from M. arabica tops and roots (mainly monodesmosides of hederagenin and bayogenin) were the most effective to reduce proliferation of HeLa and MCF-7 cell lines. Among the purified saponins, the most cytotoxic was saponin 1, 3-O-ß-D-glucopyranosyl(1→2)-α-L-arabinopyranosyl hederagenin. When saponins, derived prosapogenins and pure saponins were used in combination with cisplatin, they all, to different extent, were able to potentiate cisplatin activity against HeLa cells but not against MCF-7 cell lines. Moreover uptake of cisplatin in these cell lines was significantly reduced. Overall results showed that specific molecular types of saponins (hederagenin glycosides) have potential as anti-cancer agents or as leads for anti-cancer agents. Moreover saponins from Medicago species have evidenced interesting properties to mediate cisplatin effects in tumor cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Phenformin Induces Cell Cycle Change, Apoptosis, and Mesenchymal-Epithelial Transition and Regulates the AMPK/mTOR/p70s6k and MAPK/ERK Pathways in Breast Cancer Cells.

    PubMed

    Liu, Zhao; Ren, Lidong; Liu, Chenghao; Xia, Tiansong; Zha, Xiaoming; Wang, Shui

    2015-01-01

    Breast cancer remains a world-wide challenge, and additional anti-cancer therapies are still urgently needed. Emerging evidence has demonstrated the potent anti-tumor effect of biguanides, among which phenformin was reported to potentially be a more active anti-cancer agent than metformin. However, little attention has been given to the role of phenformin in breast cancer. In this study, we reveal the role of phenformin in cell death of the MCF7, ZR-75-1, MDA-MB-231 and SUM1315 breast cancer cell lines. The respective IC50 values of phenformin in MCF7, ZR-75-1, MDA-MB-231 and SUM1315 cells were 1.184±0.045 mM, 0.665±0.007 mM, 2.347±0.010 mM and 1.885±0.015 mM (mean± standard error). Phenformin induced cell cycle change and apoptosis in breast cancer cells via the AMPK/mTOR/p70s6k and MAPK/ERK pathways. Interestingly, phenformin induced MET (mesenchymal-epithelial transition) and decreased the migration rate in breast cancer cell lines. Furthermore, our results suggest that phenformin inhibits breast cancer cell metastasis after intracardiac injection into nude mice. Taken together, our study further confirms the potential benefit of phenformin in breast cancer treatment and provides novel mechanistic insight into its anti-cancer activity in breast cancer.

  1. Phenformin Induces Cell Cycle Change, Apoptosis, and Mesenchymal-Epithelial Transition and Regulates the AMPK/mTOR/p70s6k and MAPK/ERK Pathways in Breast Cancer Cells

    PubMed Central

    Liu, Zhao; Ren, Lidong; Liu, Chenghao; Xia, Tiansong; Zha, Xiaoming; Wang, Shui

    2015-01-01

    Breast cancer remains a world-wide challenge, and additional anti-cancer therapies are still urgently needed. Emerging evidence has demonstrated the potent anti-tumor effect of biguanides, among which phenformin was reported to potentially be a more active anti-cancer agent than metformin. However, little attention has been given to the role of phenformin in breast cancer. In this study, we reveal the role of phenformin in cell death of the MCF7, ZR-75-1, MDA-MB-231 and SUM1315 breast cancer cell lines. The respective IC50 values of phenformin in MCF7, ZR-75-1, MDA-MB-231 and SUM1315 cells were 1.184±0.045 mM, 0.665±0.007 mM, 2.347±0.010 mM and 1.885±0.015 mM (mean± standard error). Phenformin induced cell cycle change and apoptosis in breast cancer cells via the AMPK/mTOR/p70s6k and MAPK/ERK pathways. Interestingly, phenformin induced MET (mesenchymal-epithelial transition) and decreased the migration rate in breast cancer cell lines. Furthermore, our results suggest that phenformin inhibits breast cancer cell metastasis after intracardiac injection into nude mice. Taken together, our study further confirms the potential benefit of phenformin in breast cancer treatment and provides novel mechanistic insight into its anti-cancer activity in breast cancer. PMID:26114294

  2. Azilsartan and its Zn(II) complex. Synthesis, anticancer mechanisms of action and binding to bovine serum albumin.

    PubMed

    Martínez, Valeria R; Aguirre, María V; Todaro, Juan S; Piro, Oscar E; Echeverría, Gustavo A; Ferrer, Evelina G; Williams, Patricia A M

    2018-04-01

    Azilsartan is the eighth approved member of angiotensin II receptor blockers for hypertension treatment. Considering that some drugs have additional effects when administered, we studied its effects and mechanisms of action on a human lung cancer cell line A549. We have also modified the structure of the drug by complexation with Zn(II) cation and assayed the anticancer effect. The crystal structure of the new binuclear Zn(II) complex, for short [Zn 2 (azil) 2 (H 2 O) 4 ]·2H 2 O (ZnAzil), was determined by X-ray diffraction methods. The zinc ions are bridged by azilsartan ligands through their carboxylate oxygen and oxadiazol nitrogen atoms. The compounds were examined for their cytotoxic effects against human lung fibroblast (MRC5) and human lung cancer (A549) cell lines. Azilsartan displayed low cytotoxic effects at 150 μM concentrations in A549 human lung cancer cells but the higher effect measured for the Zn complex suggested that this compound may act as an anticancer agent. An apoptotic oxidative stress mechanism of action via the mitochondrial-dependent intrinsic pathway has been determined. Besides, the compounds exerted weak cytotoxic effects in the normal lung related cell line MRC5. Binding constants of the complex formed between each compound and bovine serum albumin (BSA) are in the intermediate range, hence suggesting that azilsartan and ZnAzil could be bonded and transported by BSA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The functional genomic studies of curcumin.

    PubMed

    Huminiecki, Lukasz; Horbańczuk, Jarosław; Atanasov, Atanas G

    2017-10-01

    Curcumin is a natural plant-derived compound that has attracted a lot of attention for its anti-cancer activities. Curcumin can slow proliferation of and induce apoptosis in cancer cell lines, but the precise mechanisms of these effects are not fully understood. However, many lines of evidence suggested that curcumin has a potent impact on gene expression profiles; thus, functional genomics should be the key to understanding how curcumin exerts its anti-cancer activities. Here, we review the published functional genomic studies of curcumin focusing on cancer. Typically, a cancer cell line or a grafted tumor were exposed to curcumin and profiled with microarrays, methylation assays, or RNA-seq. Crucially, these studies are in agreement that curcumin has a powerful effect on gene expression. In the majority of the studies, among differentially expressed genes we found genes involved in cell signaling, apoptosis, and the control of cell cycle. Curcumin can also induce specific methylation changes, and is a powerful regulator of the expression of microRNAs which control oncogenesis. We also reflect on how the broader technological progress in transcriptomics has been reflected on the field of curcumin. We conclude by discussing the areas where more functional genomic studies are highly desirable. Integrated OMICS approaches will clearly be the key to understanding curcumin's anticancer and chemopreventive effects. Such strategies may become a template for elucidating the mode of action of other natural products; many natural products have pleiotropic effects that are well suited for a systems-level analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Stably Fluorescent Cell Line of Human Ovarian Epithelial Cancer Cells SK-OV-3ip-red.

    PubMed

    Konovalova, E V; Shulga, A A; Chumakov, S P; Khodarovich, Yu M; Woo, Eui-Jeon; Deev, S M

    2017-11-01

    Stable red fluorescing line of human ovarian epithelial cancer cells SK-OV-3ip-red was generated expressing gene coding for protein TurboFP635 (Katushka) fluorescing in the far-red spectrum region with excitation and emission peaks at 588 and 635 nm, respectively. Fluorescence of SK-OV-3ip-red line remained high during long-term cell culturing and after cryogenic freezing. The obtained cell line SK-OV-3ip-red can serve a basis for a model of a scattered tumor with numerous/extended metastases and used both for testing anticancer drugs inhibiting metastasis growth and for non-invasive monitoring of the growth dynamics with high precision.

  5. PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells).

    PubMed

    Meena, Ramovatar; Kumar, Sumit; Kumar, Raj; Gaharwar, Usha Singh; Rajamani, Paulraj

    2017-10-01

    Triple-negative breast cancers (TNBC) are aggressive cancers, which do not control by hormonal therapy or therapies that target HER-2 receptors. Curcumin (Cur) has shown cytotoxic effects in multiple cancer cell lines. However, its medical uses remain limited due to low aqueous solubility and poor bioavailability. Therefore, present study was aimed to fabricate the small positive charge curcumin nanoparticles (CN) by nanoprecipitation methods using PLGA and CTAB, and to evaluate its anticancer efficacy and underlying the mechanism in triple negative breast cancer cell lines (MDA-MB-231 cells). In in-vitro drug release assay, Cur was released from CN by flicking diffusion and anomalous transport process. CN showed a higher cellular incorporation than free Cur resulted in higher cytotoxicity. Checking the anticancer activity at the molecular level, Cur has shown to induce the reactive oxygen species production that subsequently causes the DNA damage and resulting in p38-MAPK activation. The p38-MAPK induce the expression of p16 /INKK4a , p21 /waf1/cip1 and p53 resulting in a reduction in the level of CDK2, CDK4, cyclin D1 and cyclin E and subsequently cell cycle arrest at G1/S and G2/M phase. It also reduces the expression of DNA repair gene, i.e. BRCA1, BRCA2, Rad51, Rad50, Mre11 and NBS1 resulting in apoptosis induction due to persistent DNA damage. This study presents an effective delivery of curcumin in TNBC cancer cells and it could open the new frontiers in clinical cancer chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Microfluidic chip for non-invasive analysis of tumor cells interaction with anti-cancer drug doxorubicin by AFM and Raman spectroscopy.

    PubMed

    Zhang, Han; Xiao, Lifu; Li, Qifei; Qi, Xiaojun; Zhou, Anhong

    2018-03-01

    Raman spectroscopy has been playing an increasingly significant role for cell classification. Here, we introduce a novel microfluidic chip for non-invasive Raman cell natural fingerprint collection. Traditional Raman spectroscopy measurement of the cells grown in a Polydimethylsiloxane (PDMS) based microfluidic device suffers from the background noise from the substrate materials of PDMS when intended to apply as an in vitro cell assay. To overcome this disadvantage, the current device is designed with a middle layer of PDMS layer sandwiched by two MgF 2 slides which minimize the PDMS background signal in Raman measurement. Three cancer cell lines, including a human lung cancer cell A549, and human breast cancer cell lines MDA-MB-231 and MDA-MB-231/BRMS1, were cultured in this microdevice separately for a period of three days to evaluate the biocompatibility of the microfluidic system. In addition, atomic force microscopy (AFM) was used to measure the Young's modulus and adhesion force of cancer cells at single cell level. The AFM results indicated that our microchannel environment did not seem to alter the cell biomechanical properties. The biochemical responses of cancer cells exposed to anti-cancer drug doxorubicin (DOX) up to 24 h were assessed by Raman spectroscopy. Principal component analysis over the Raman spectra indicated that cancer cells untreated and treated with DOX can be distinguished. This PDMS microfluidic device offers a non-invasive and reusable tool for in vitro Raman measurement of living cells, and can be potentially applied for anti-cancer drug screening.

  7. Optical imaging of tumor cells in hollow fibers: evaluation of the antitumor activities of anticancer drugs and target validation.

    PubMed

    Zhang, Guo-Jun; Chen, Tsing-Bau; Bednar, Bohumil; Connolly, Brett M; Hargreaves, Richard; Sur, Cyrille; Williams, David L

    2007-08-01

    The in vivo hollow fiber assay, in which semipermeable hollow fibers filled with tumor cells, are implanted into animals, was originally developed to screen for anticancer compounds before assessment in more complex tumor models. To enhance screening and evaluation of anticancer drugs, we have applied optical imaging technology to this assay. To demonstrate that tumor cells inside hollow fibers can communicate with the host mice, we have used fluorescence imaging in vivo and CD31 immunostaining ex vivo to show that angiogenesis occurs around cell-filled hollow fibers by 2 weeks after subcutaneous implantation. Bioluminescence imaging has been used to follow the number of luciferase-expressing tumor cells within implanted hollow fibers; proliferation of those cells was found to be significantly inhibited by docetaxel or irinotecan. We also used bioluminescence imaging of hollow fibers to monitor the nuclear factor kappaB (NFkappaB) pathway in vivo; NFkappaB activation by lipopolysaccharide and tumor necrosis factor-alpha was evaluated in tumor cell lines genetically engineered to express luciferase controlled by an NFkappaB-responsive element. These results demonstrate that optical imaging of hollow fibers containing reporter tumor cells can be used for the rapid and accurate evaluation of antitumor activities of anticancer drugs and for measurement of molecular pathways.

  8. Selective Induction of Tumor Cell Apoptosis by a Novel P450-mediated Reactive Oxygen Species (ROS) Inducer Methyl 3-(4-Nitrophenyl) Propiolate*

    PubMed Central

    Sun, Xiaoxiao; Ai, Midan; Wang, Ying; Shen, Shensi; Gu, Yuan; Jin, Yi; Zhou, Zuyu; Long, Yaqiu; Yu, Qiang

    2013-01-01

    Induction of tumor cell apoptosis has been recognized as a valid anticancer strategy. However, therapeutic selectivity between tumor and normal cells has always been a challenge. Here, we report a novel anti-cancer compound methyl 3-(4-nitrophenyl) propiolate (NPP) preferentially induces apoptosis in tumor cells through P450-catalyzed reactive oxygen species (ROS) production. A compound sensitivity study on multiple cell lines shows that tumor cells with high basal ROS levels, low antioxidant capacities, and p53 mutations are especially sensitive to NPP. Knockdown of p53 sensitized non-transformed cells to NPP-induced cell death. Additionally, by comparing NPP with other ROS inducers, we show that the susceptibility of tumor cells to the ROS-induced cell death is influenced by the mode, amount, duration, and perhaps location of ROS production. Our studies not only discovered a unique anticancer drug candidate but also shed new light on the understanding of ROS generation and function and the potential application of a ROS-promoting strategy in cancer treatment. PMID:23382387

  9. Selective cytotoxicity of the antibacterial peptide ABP-dHC-Cecropin A and its analog towards leukemia cells.

    PubMed

    Sang, Ming; Zhang, Jiaxin; Zhuge, Qiang

    2017-05-15

    Some cationic antibacterial peptides, with typical amphiphilic α-helical conformations in a membrane-mimicking environment, exhibit anticancer properties as a result of a similar mechanism of action towards both bacteria and cancer cells. We previously reported the cDNA sequence of the antimicrobial peptide ABP-dHC-Cecropin A precursor cloned from drury (Hyphantria cunea) (dHC). In the present study, we synthesized and structurally characterized ABP-dHC-Cecropin A and its analog, ABP-dHC-Cecropin A-K(24). Circular dichroism spectroscopy showed that ABP-dHC-Cecropin A and its analog adopt a well-defined α-helical structure in a 50% trifluorethanol solution. The cytotoxicity and cell selectivity of these peptides were further examined in three leukemia cell lines and two non-cancerous cell lines. The MTT assay indicated both of these peptides have a concentration-dependent cytotoxic effect in leukemia cells, although the observed cytotoxicity was greater with ABP-dHC-Cecropin A-K(24) treatment, whereas they were not cytotoxic towards the non-cancerous cell lines. Moreover, ABP-dHC-Cecropin A and its analog had a lower hemolytic effect in human red blood cells. Together, these results suggest the peptides are selectively cytotoxic towards leukemia cells. Confocal laser scanning microscopy determined that the peptides were concentrated at the surface of the leukemia cells, and changes in the cell membrane were determined with a permeability assay, which suggested that the anticancer activity of ABP-dHC-Cecropin A and its analog is a result of its presence at the leukemia cell membrane. ABP-dHC-Cecropin A and its analog may represent a novel anticancer agent for leukemia therapy, considering its cancer cell selectivity and relatively low cytotoxicity in normal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis and cytotoxic evaluation of novel symmetrical taspine derivatives as anticancer agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Sicen; He, Langchon

    2011-07-01

    It has been demonstrated that taspine derivatives act as anticancer agents, thus we designed and synthesized a novel class of symmetrical biphenyl derivatives. We evaluated the cytotoxicity and antitumor activity of biphenyls against five human tumor and normal cell lines. The results indicated that the majority of the compounds exhibited anticancer activity equivalent to or greater than the positive control. Compounds (11) and (12) demonstrated the most potent cytotoxic activity with IC₅₀ values between 19.41 µM and 29.27 µM. The potent antiproliferative capabilities of these compounds against ECV304 human transformed endothelial cells indicated that these biphenyls could potentially serve as antiangiogenic agents. We also reviewed the relationship between structure and activity based on the experimental results. Our findings provide a good starting point for further development of symmetrical biphenyl derivatives as potential novel anticancer agents.

  11. Synthesis and evaluation of thiazolidinone-pyrazole conjugates as anticancer and antimicrobial agents.

    PubMed

    Bhat, Mahima; Poojary, Boja; Kalal, Bhuvanesh Sukhlal; Gurubasavaraja Swamy, Purawarga Matada; Kabilan, Senthamaraikannan; Kumar, Vasantha; Shruthi, Nooji; Alias Anand, Selvam Athavan; Pai, Vinitha Ramanath

    2018-05-01

    To synthesize a series of new thiazolidinone-pyrazole hybrids (5a-o) and assess their anticancer (in vitro and in vivo) and antimicrobial activities. The compounds 5h (against Ehrlich ascites carcinoma cells), 5e and 5i (against the human breast cancer [MDA-MB231] cell line) exhibited potent anticancer activity. All the compounds except 5g and 5e found to be less toxic for the human dermal fibroblast cells. The effective interactions of the compounds in silico with MDM2 exemplified their inhibitory potency. The derivatives also showed moderate antimicrobial activity. The halogen atoms on various positions of the N-arylamino ring played an advantageous role in elevating the potency of the molecules. Thus, these conjugates could be used as a lead for further optimization to achieve promising therapeutics.

  12. Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines – in vitro studies

    PubMed Central

    Legut, Mateusz; Lipka, Dominik; Filipczak, Nina; Piwoni, Adriana; Kozubek, Arkadiusz; Gubernator, Jerzy

    2014-01-01

    This paper describes a novel formulation of antineoplastic drug: mitoxantrone loaded into liposomal carriers enriched with encapsulated anacardic acid in the liposomal bilayer using a vitamin C gradient. Anacardic acid is a potent epigenetic agent with anticancer activity. This is the first liposomal formulation to combine an actively encapsulated drug and anacardic acid. The liposomes were characterized in terms of basic parameters, such as size, zeta potential, optimal drug-to-lipid ratio, loading time and temperature, and stability at 4°C and in human plasma in vitro. The formulation was found to be stable, and the loading process was rapid and efficient (drug-to-lipid ratio of up to 0.3 with over 90% efficiency in 5 minutes). The cytotoxicity of these formulations was assessed using the human melanoma cell lines A375 and Hs294T and the normal human dermal fibroblast line. The results showed that anacardic acid and to a smaller extent vitamin C significantly increased the cytotoxicity of the drug towards melanoma compared to ammonium sulfate liposomes. On the other hand, vitamin C and anacardic acid both protected normal cells from damage caused by the drug. The formulation combining anacardic acid, vitamin C, and mitoxantrone showed promising results in terms of cytotoxicity and cytoprotection. Therefore, it has potential for anticancer treatment. PMID:24489469

  13. The Cytotoxicity of Dacarbazine Potentiated by Sea Cucumber Saponin in Resistant B16F10 Melanoma Cells through Apoptosis Induction.

    PubMed

    Baharara, Javad; Amini, Elaheh; Nikdel, Najme; Salek-Abdollahi, Farzaneh

    2016-01-01

    Malignant melanoma is a highly aggressive malignant melanocytic neoplasm which resists against the most conventional therapies. Sea cucumber as one of marine organisms contains bioactive compounds such as polysaccharide, terpenoid and other metabolites which have anti-cancer, anti-tumor, anti-inflammatory and antioxidant properties. The present study was designed to investigate the anticancer potential of saponin extracted from sea cucumber Holothuria leucospilata alone and in combination with dacarbazine on B16F10 melanoma cell line. The B16F10 cell line was treated with different concentrations of saponin (0, 4, 8, 12, 16, 20 μg/ml), dacarbazine (0, 1200, 1400, 1600, 18000, 1200, 1400, 1600, 2000 μg/ml) and co-administration of saponin-dacarbazine (1200 da+8 sp, 1200 da+4 sp) for 24 and 48 hr and the cytotoxic effect was examined by MTT, DAPI, acridine orange/propodium iodide, flow cytometry and caspase colorimetric assay. The results exhibited that sea cucumber saponin, dacarbazine, and co-administration of saponin-dacarbazine inhibited the proliferation of melanoma cells in a dose and time dependent manner with IC50 values of 10, 1400 and 4+1200 μg/ml, respectively. Morphological observation of DAPI and acridine orange/propodium iodide staining documented typical characteristics of apoptotic cell death. Flow cytometry assay indicated accumulation of IC50 treated cells in sub-G1 peak. Additionally, saponin extracted induced intrinsic apoptosis via up-regulation of caspase-3 and caspase-9. These results revealed that the saponin extracted from sea cucumber as a natural anti-cancer compound may be a new treatment modality for metastatic melanoma and the application of sea cucumber saponin in combination with dacarbazine demonstrated the strongest anti-cancer activity as compared with the drug alone.

  14. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1.

    PubMed

    Feldman, Richard I; Wu, James M; Polokoff, Mark A; Kochanny, Monica J; Dinter, Harald; Zhu, Daguang; Biroc, Sandra L; Alicke, Bruno; Bryant, Judi; Yuan, Shendong; Buckman, Brad O; Lentz, Dao; Ferrer, Mike; Whitlow, Marc; Adler, Marc; Finster, Silke; Chang, Zheng; Arnaiz, Damian O

    2005-05-20

    The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.

  15. The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin

    PubMed Central

    Goldfeiz, Neta; Rephaeli, Ada; Nudelman, Abraham; Weitman, Michal; Tarasenko, Nataly; Gorovitz, Batia; Maron, Leah; Yehezkel, Shiran; Amitay-Laish, Iris; Lubin, Ido; Hodak, Emmilia

    2016-01-01

    The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS. PMID:26752418

  16. The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin.

    PubMed

    Moyal, Lilach; Feldbaum, Nataly; Goldfeiz, Neta; Rephaeli, Ada; Nudelman, Abraham; Weitman, Michal; Tarasenko, Nataly; Gorovitz, Batia; Maron, Leah; Yehezkel, Shiran; Amitay-Laish, Iris; Lubin, Ido; Hodak, Emmilia

    2016-01-01

    The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS.

  17. Design, Synthesis and Biological Evaluation of (E)-N-Aryl-2-arylethene-sulfonamide Analogues as Potent and Orally Bioavailable Microtubule-targeted Anticancer Agents

    PubMed Central

    Ramana Reddy, M. V.; Mallireddigari, Muralidhar R.; Pallela, Venkat R.; Cosenza, Stephen C.; Billa, Vinay K.; Akula, Balaiah; Venkata Subbaiah, D. R. C.; Bharathi, E. Vijaya; Padgaonkar, Amol; Lv, Hua; Gallo, James M.; Reddy, E. Premkumar

    2013-01-01

    A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-Amino-4-methoxyphenyl)-2-(2′,4′,6′-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound 6t is predicted to have increased blood-brain barrier permeability relative to many clinically used anti-mitotic agents. Mechanistic studies indicate that 6t and some other analogs disrupted microtubule formation, formation of mitotic spindles and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin indicating its binding site on tubulin. PMID:23750455

  18. Synthesis, in vitro anticancer and antimycobacterial evaluation of new 5-(2,5-dimethoxyphenyl)-1,3,4-thiadiazole-2-amino derivatives.

    PubMed

    Polkam, Naveen; Rayam, Parsharamulu; Anireddy, Jaya Shree; Yennam, Satyanarayana; Anantaraju, Hasitha Shilpa; Dharmarajan, Sriram; Perumal, Yogeeswari; Kotapalli, Sudha Sravanti; Ummanni, Ramesh; Balasubramanian, Sridhar

    2015-04-01

    A series of 2,5-disubstituted-1,3,4-thiadiazole derivatives 5a-5l, 7a-7e and 9 have been synthesised and screened for in vitro antimycobacterial activity against Mycobacterium smegmatis MC-155. In addition these compounds have also been screened for cytotoxic activity against cancer cell lines HT-29, MDA-MB-231 by MTT colorimetric assay. The compounds are well characterized by spectral analysis viz. (1)H NMR, (13)C NMR, FT-IR, mass and HRMS. Screening results indicate that compounds 5g, 7a possess good antitubercular activity with MIC value 65.74 and 40.86, respectively, compounds 5g, 7a, 7b, 7d, 7e and 9 displayed promising cytotoxic activity against the cell lines tested. 5g and 7a stand out to be potent antimycobacterial and anticancer agents among the tested series. Further the title compounds were also tested on human normal cells HEK293T and are found to be safer with lesser cytotoxicity. It is interesting to observe that compound 5g has come out to be safer, potent anticancer and antimycobacterial agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis.

    PubMed

    Teerasripreecha, Dungporn; Phuwapraisirisan, Preecha; Puthong, Songchan; Kimura, Kiyoshi; Okuyama, Masayuki; Mori, Haruhide; Kimura, Atsuo; Chanchao, Chanpen

    2012-03-30

    Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G(2)), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC(50) values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC(50) values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs.

  20. Diverse amide analogs of sulindac for cancer treatment and prevention.

    PubMed

    Mathew, Bini; Hobrath, Judith V; Connelly, Michele C; Kiplin Guy, R; Reynolds, Robert C

    2017-10-15

    Sulindac is a non-steroidal anti-inflammatory drug (NSAID) that has shown significant anticancer activity. Sulindac sulfide amide (1) possessing greatly reduced COX-related inhibition relative to sulindac displayed in vivo antitumor activity that was comparable to sulindac in a human colon tumor xenograft model. Inspired by these observations, a panel of diverse sulindac amide derivatives have been synthesized and their activity probed against three cancer cell lines (prostate, colon and breast). A neutral analog, compound 79 was identified with comparable potency relative to lead 1 and activity against a panel of lymphoblastic leukemia cell lines. Several new series also show good activity relative to the parent (1), including five analogs that also possess nanomolar inhibitory potencies against acute lymphoblastic leukemia cells. Several new analogs identified may serve as anticancer lead candidates for further development. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Synthesis, molecular docking and anticancer studies of peptides and iso-peptides.

    PubMed

    Jabeen, Farukh; Panda, Siva S; Kondratyuk, Tamara P; Park, Eun-Jung; Pezzuto, John M; Ihsan-ul-Haq; Hall, C Dennis; Katritzky, Alan R

    2015-08-01

    Chiral peptides and iso-peptides were synthesized in excellent yield by using benzotriazole mediated solution phase synthesis. Benzotriazole acted both as activating and leaving group, eliminating frequent use of protection and subsequent deprotection. The procedure was based on the hypothesis that epimerization should be suppressed in solution due to a faster coupling rate than SPPS. All the synthesized peptides complied with Lipinski's Ro5 except for the rotatable bonds. Inhibition of cell proliferation of cancer cell lines is one of the most commonly used methods to study the effectiveness of any anticancer agents. Synthesized peptides and iso-peptides were tested against three cancer cell lines (MCF-7, MDA-MB 231) to determine their anti-proliferative potential. NFkB was also determined. Molecular docking studies were also carried out to complement the experimental results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. CancerHSP: anticancer herbs database of systems pharmacology

    NASA Astrophysics Data System (ADS)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  3. Isorhynchophylline, a Potent Plant Alkaloid, Induces Apoptotic and Anti-Metastatic Effects in Human Hepatocellular Carcinoma Cells through the Modulation of Diverse Cell Signaling Cascades

    PubMed Central

    Lee, Hanwool; Baek, Seung Ho; Lee, Jong Hyun; Kim, Chulwon; Ko, Jeong-Hyeon; Lee, Seok-Geun; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Yang, Woong Mo; Um, Jae-Young; Sethi, Gautam; Ahn, Kwang Seok

    2017-01-01

    Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells. PMID:28534824

  4. Isorhynchophylline, a Potent Plant Alkaloid, Induces Apoptotic and Anti-Metastatic Effects in Human Hepatocellular Carcinoma Cells through the Modulation of Diverse Cell Signaling Cascades.

    PubMed

    Lee, Hanwool; Baek, Seung Ho; Lee, Jong Hyun; Kim, Chulwon; Ko, Jeong-Hyeon; Lee, Seok-Geun; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Yang, Woong Mo; Um, Jae-Young; Sethi, Gautam; Ahn, Kwang Seok

    2017-05-19

    Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells.

  5. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    PubMed

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  6. Antiproliferative and apoptotic effects triggered by Grape Seed Extract (GSE) versus epigallocatechin and procyanidins on colon cancer cell lines.

    PubMed

    Dinicola, Simona; Cucina, Alessandra; Pasqualato, Alessia; D'Anselmi, Fabrizio; Proietti, Sara; Lisi, Elisabetta; Pasqua, Gabriella; Antonacci, Donato; Bizzarri, Mariano

    2012-01-01

    Grape seed extract has been proven to exert anticancer effects on different tumors. These effects are mainly ascribed to catechin and procyanidin content. Analytical studies demonstrated that grape seed extract composition is complex and it is likely other components could exert biological activities. Using cell count and flow cytometry assays, we evaluated the cytostatic and apoptotic effects produced by three different grape seed extracts from Italia, Palieri and Red Globe cultivars, on Caco2 and HCT-8 colon cancer cells. These effects were compared to those induced by epigallocatechin and procyanidins, alone or in association, on the same cell lines. All the extracts induced growth inhibition and apoptosis in Caco2 and HCT-8 cells, along the intrinsic apoptotic pathway. On both cell lines, growth inhibition induced by Italia and Palieri grape seed extracts was significantly higher than that it has been recorded with epigallocatechin, procyanidins and their association. In Caco2 cells, the extract from Red Globe cultivar was less effective in inducing growth inhibition than procyanidins alone and in association with epigallocatechin, whereas, in HCT-8 cells, only the association of epigallocatechin and procyanidins triggers a significant proliferation decrease. On both cell lines, apoptosis induced by Italia, Palieri and Red Globe grape seed extracts was considerably higher than has been recorded with epigallocatechin, procyanidins and their association. These data support the hypothesis by which other compounds, present in the grape seed extracts, are likely to enhance the anticancer effects.

  7. Antiproliferative and Apoptotic Effects Triggered by Grape Seed Extract (GSE) versus Epigallocatechin and Procyanidins on Colon Cancer Cell Lines

    PubMed Central

    Dinicola, Simona; Cucina, Alessandra; Pasqualato, Alessia; D’Anselmi, Fabrizio; Proietti, Sara; Lisi, Elisabetta; Pasqua, Gabriella; Antonacci, Donato; Bizzarri, Mariano

    2012-01-01

    Grape seed extract has been proven to exert anticancer effects on different tumors. These effects are mainly ascribed to catechin and procyanidin content. Analytical studies demonstrated that grape seed extract composition is complex and it is likely other components could exert biological activities. Using cell count and flow cytometry assays, we evaluated the cytostatic and apoptotic effects produced by three different grape seed extracts from Italia, Palieri and Red Globe cultivars, on Caco2 and HCT-8 colon cancer cells. These effects were compared to those induced by epigallocatechin and procyanidins, alone or in association, on the same cell lines. All the extracts induced growth inhibition and apoptosis in Caco2 and HCT-8 cells, along the intrinsic apoptotic pathway. On both cell lines, growth inhibition induced by Italia and Palieri grape seed extracts was significantly higher than that it has been recorded with epigallocatechin, procyanidins and their association. In Caco2 cells, the extract from Red Globe cultivar was less effective in inducing growth inhibition than procyanidins alone and in association with epigallocatechin, whereas, in HCT-8 cells, only the association of epigallocatechin and procyanidins triggers a significant proliferation decrease. On both cell lines, apoptosis induced by Italia, Palieri and Red Globe grape seed extracts was considerably higher than has been recorded with epigallocatechin, procyanidins and their association. These data support the hypothesis by which other compounds, present in the grape seed extracts, are likely to enhance the anticancer effects. PMID:22312277

  8. Design, synthesis and anticancer activity of piperazine hydroxamates and their histone deacetylase (HDAC) inhibitory activity.

    PubMed

    Chetan, Bhadaliya; Bunha, Mahesh; Jagrat, Monika; Sinha, Barij Nayan; Saiko, Philipp; Graser, Geraldine; Szekeres, Thomas; Raman, Ganapathy; Rajendran, Praveen; Moorthy, Dhatchana; Basu, Arijit; Jayaprakash, Venkatesan

    2010-07-01

    Six compounds were synthesized with piperazine in linker region and hydroxamate as Zinc Binding Group (ZBG). They were screened against three cancer cell-lines (NCIH460; HCT116; U251). Compounds 5c and 5f with GI(50) value of 9.33+/-1.3 microM and 12.03+/-4 microM, respectively, were tested for their inhibitory potential on hHDAC8. Compound 5c had IC(50) of 33.67 microM. Compounds were also screened for their anticancer activity against HL60 human promyelocytic leukemia cell line due to the presence of pharmacophoric features of RR inhibitors in them. Compound 5c had IC(50) of 0.6 microM at 48h. 2010 Elsevier Ltd. All rights reserved.

  9. Anticancer effects of deproteinized asparagus polysaccharide on hepatocellular carcinoma in vitro and in vivo.

    PubMed

    Xiang, Jianfeng; Xiang, Yanjie; Lin, Shengming; Xin, Dongwei; Liu, Xiaoyu; Weng, Lingling; Chen, Tao; Zhang, Minguang

    2014-04-01

    Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies in the world whose chemoprevention became increasingly important in HCC treatment. Although the anticancer effects of asparagus constituents have been investigated in several cancers, its effects on hepatocellular carcinoma have not been fully studied. In this study, we investigated the anticancer effects of the deproteinized asparagus polysaccharide on the hepatocellular carcinoma cells using the in vitro and in vivo experimental model. Our data showed that deproteinized asparagus polysaccharide might act as an effective inhibitor on cell growth in vitro and in vivo and exert potent selective cytotoxicity against human hepatocellular carcinoma Hep3B and HepG2 cells. Further study showed that it could potently induce cell apoptosis and G2/M cell cycle arrest in the more sensitive Hep3B and HepG2 cell lines. Moreover, deproteinized asparagus polysaccharide potentiated the effects of mitomycin both in vitro and in vivo. Mechanistic studies revealed that deproteinized asparagus polysaccharide might exert its activity through an apoptosis-associated pathway by modulating the expression of Bax, Bcl-2, and caspase-3. In conclusion, deproteinized asparagus polysaccharide exhibited significant anticancer activity against hepatocellular carcinoma cells and could sensitize the tumoricidal effects of mitomycin, indicating that it is a potential therapeutic agent (or chemosensitizer) for liver cancer therapy.

  10. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Rae-Kwon; Uddin, Nizam; Hyun, Jin-Won

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2more » and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.« less

  11. Evaluation of anticancer agents using patient-derived tumor organoids characteristically similar to source tissues.

    PubMed

    Tamura, Hirosumi; Higa, Arisa; Hoshi, Hirotaka; Hiyama, Gen; Takahashi, Nobuhiko; Ryufuku, Masae; Morisawa, Gaku; Yanagisawa, Yuka; Ito, Emi; Imai, Jun-Ichi; Dobashi, Yuu; Katahira, Kiyoaki; Soeda, Shu; Watanabe, Takafumi; Fujimori, Keiya; Watanabe, Shinya; Takagi, Motoki

    2018-06-18

    Patient-derived tumor xenograft models represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture; however, their use is low-throughput and costly. To overcome this limitation, patient-derived tumor organoids (PDOs) were established from human lung, ovarian and uterine tumor tissues, among others, to accurately and efficiently recapitulate the tissue architecture and function. PDOs were able to be cultured for >6 months, and formed cell clusters with similar morphologies to their source tumors. Comparative histological and comprehensive gene expression analyses proved that the characteristics of PDOs were similar to those of their source tumors, even following long-term expansion in culture. At present, 53 PDOs have been established by the Fukushima Translational Research Project, and were designated as Fukushima PDOs (F‑PDOs). In addition, the in vivo tumorigenesis of certain F‑PDOs was confirmed using a xenograft model. The present study represents a detailed analysis of three F‑PDOs (termed REME9, 11 and 16) established from endometrial cancer tissues. These were used for cell growth inhibition experiments using anticancer agents. A suitable high-throughput assay system, with 96- or 384‑well plates, was designed for each F‑PDO, and the efficacy of the anticancer agents was subsequently evaluated. REME9 and 11 exhibited distinct responses and increased resistance to the drugs, as compared with conventional cancer cell lines (AN3 CA and RL95-2). REME9 and 11, which were established from tumors that originated in patients who did not respond to paclitaxel and carboplatin (the standard chemotherapy for endometrial cancer), exhibited high resistance (half-maximal inhibitory concentration >10 µM) to the two agents. Therefore, assay systems using F‑PDOs may be utilized to evaluate anticancer agents using conditions that better reflect clinical conditions, compared with conventional methods using cancer cell lines, and to discover markers that identify the pharmacological effects of anticancer agents.

  12. Extraction, profiling and bioactivity analysis of volatile glucosinolates present in oil extract of Brassica juncea var. raya.

    PubMed

    Bassan, Priyanka; Bhushan, Sakshi; Kaur, Tajinder; Arora, Rohit; Arora, Saroj; Vig, Adarsh Pal

    2018-05-01

    Cruciferous vegetables are rich source of glucosinolates (GSLs), which in presence of myrosinase enzyme cause hydrolytic cleavage and result in different hydrolytic products like isothiocyanates, thiocyanates, nitriles and epinitriles. The GSLs hydrolytic products are volatile compounds, which are known to exhibit bioactivities like antioxidant, fungicidal, bioherbicidal and anticancer. Among the Brassicaceae family, Brassica juncea is very well known for high content of GSLs. In the present study, the isolation of volatile oil of B. juncea var. raya was done by hydrodistillation method using clevenger apparatus and further there extraction was done by solvents ethyl acetate and dichloromethane. The volatile compounds present in the extract were analysed by gas chromatography/gas chromatography-mass spectrometry (GC/GC-MS). Fatty acid esters, sulphur and/or nitrogen compounds, carbonyl compounds and some other volatile compounds were also identified. Besides the analytical studies, the extracts were analysed for their bioactivities including radical scavenging activity by using DNA nicking assay and cytotoxic effect using different human cancer cell lines viz. breast (MCF-7 and MDA-MB-231), prostate (PC-3), lung (A-549), cervix (HeLa) and colon (HCT116) by MTT assay. The oil extracts were efficiently able to reduce the increase of cancer cells in a dose-dependent manner. Among all cell lines, the most effective anticancer activity was observed in case of breast (MCF-7) cancer cell line. So, MCF-7 cells were used for further mechanistic studies for analysing the mechanism of anticancer activity. Confocal microscopy was done for analysing morphological changes in the cells and the images confirmed the features typical of apoptosis. For evaluating the mode of cell death, spectrofluorometric determination of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) was done. The volatile oil extract treated MCF-7 cells had a significant increase in number of ROS, also there was a rise in percentage of cells with increased disruption of MMP. So, the present study marks necessary indication that B. juncea (raya) oil extracts significantly induces apoptosis in all the above mentioned cancer cells lines through a ROS-mediated mitochondrial pathway and thus play a remarkable role in death of cancer cells.

  13. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium

    NASA Astrophysics Data System (ADS)

    Yan, Dayun; Xiao, Haijie; Zhu, Wei; Nourmohammadi, Niki; Zhang, Lijie Grace; Bian, Ka; Keidar, Michael

    2017-02-01

    The cold atmospheric plasma (CAP) is a promising novel anti-cancer method. Our previous study showed that the cold plasma-stimulated medium (PSM) exerted remarkable anti-cancer effect as effectively as the direct CAP treatment did. H2O2 has been identified as a key anti-cancer substance in PSM. However, the mechanisms underlying intracellular H2O2 regulation by cancer cells is largely unknown. Aquaporins (AQPs) are the confirmed membrane channels of H2O2. In this study, we first demonstrated that the anti-glioblastoma capacity of PSM could be inhibited by silencing the expression of AQP8 in glioblastoma cells (U87MG) or using the aquaporins-blocker silver atoms. This discovery illustrates the key intermediate role of AQPs in the toxicity of PSM on cancer cells. Because the expression of AQPs varies significantly among different cancer cell lines, this study may facilitate the understanding on the diverse responses of cancer cells to PSM or the direct CAP treatment.

  14. Exosomes secreted by placental stem cells selectively inhibit growth of aggressive prostate cancer cells.

    PubMed

    Peak, Taylor C; Praharaj, Prakash P; Panigrahi, Gati K; Doyle, Michael; Su, Yixin; Schlaepfer, Isabel R; Singh, Ravi; Vander Griend, Donald J; Alickson, Julie; Hemal, Ashok; Atala, Anthony; Deep, Gagan

    2018-05-23

    The current paradigm in the development of new cancer therapies is the ability to target tumor cells while avoiding harm to noncancerous cells. Furthermore, there is a need to develop novel therapeutic options against drug-resistant cancer cells. Herein, we characterized the placental-derived stem cell (PLSC) exosomes (PLSC Exo ) and evaluated their anti-cancer efficacy in prostate cancer (PCa) cell lines. Nanoparticle tracking analyses revealed the size distribution (average size 131.4 ± 0.9 nm) and concentration of exosomes (5.23 × 10 10 ±1.99 × 10 9 per ml) secreted by PLSC. PLSC Exo treatment strongly inhibited the viability of enzalutamide-sensitive and -resistant PCa cell lines (C4-2B, CWR-R1, and LNCaP cells). Interestingly, PLSC Exo treatment had no effect on the viability of a non-neoplastic human prostate cell line (PREC-1). Mass spectrometry (MS) analyses showed that PLSC Exo are loaded with 241 proteins and mainly with saturated fatty acids. Further, Ingenuity Pathway Analysis analyses of proteins loaded in PLSC Exo suggested the role of retinoic acid receptor/liver x receptor pathways in their biological effects. Together, these results suggest the novel selective anti-cancer effects of PLSC Exo against aggressive PCa cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Eco-friendly synthesis of novel cyanopyridine derivatives and their anticancer and PIM-1 kinase inhibitory activities.

    PubMed

    Abouzid, Khaled A M; Al-Ansary, Ghada H; El-Naggar, Abeer M

    2017-07-07

    Targeting Pim-1 kinase recently proved to be profitable for conquering cancer proliferation. In the current study, we report the design, synthesis and biological evaluation of two novel series of 2-amino cyanopyridine series (5a-g) and 2-oxocyanopyridine series (6a-g) targeting Pim-1 kinase. All of the newly synthesized compounds were evaluated for their in vitro anticancer activity against a panel of three cell lines, namely, the liver cancer cell line (HepG2), the colon cancer cell line (HCT-116) and the breast cancer cell line (MCF-7). Most of the compounds showed good to moderate anti-proliferative activity against HepG2 and HCT-116 cell lines while only few compounds showed significant cytotoxic activity against MCF-7 cell line. Further, the Pim-1 kinase inhibitory activity for the two series was evaluated where most of the tested compounds showed marked Pim-1 kinase inhibitory activity (26%-89%). Moreover, determination of the IC 50 values unraveled very potent molecules in the submicromolar range where compound 6c possessed an IC 50 value of 0.94 μM. Moreover, apoptosis studies were conducted on the most potent compound 6c to evaluate the proapoptotic potential of our compounds. Interestingly, it induced the level of active caspase 3 and boosted the Bax/Bcl2 ratio 22704 folds in comparison to the control. Finally, a molecular docking study was conducted to reveal the probable interaction with the Pim-1 kinase active site. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Folic acid Targeted Polymeric Micelles Based on Tocopherol Succinate- Pulluan as an Effective Carrier for Epirubicin: Preparation, Characterization and In-vitro Cytotoxicity Assessment.

    PubMed

    Hassanzadeh, Farshid; Mehdifar, Mozhdeh; Varshosaz, Jaleh; Khodarahmi, Ghadam Ali; Rostami, Mahboubeh

    2018-02-14

    Chemotherapy still encounters a serious drawback, the lack of selectivity of anticancer drugs toward neoplastic cells, thus, the normal cells are affected by the cytotoxic action of the drugs. This causes a narrow therapeutic index in most anticancer drugs. We describe the preparation of pullulan-tocopherol succinate-folic acid (Pu-TS-FA) micelles for the first time to targeted delivery of Epirubicin (EPI) to Hela and MCF-7 cell lines. We confirmed the structure of conjugate using spectroscopic methods. The degree of substitution for both folic acid and tocopherol succinate was calculated using 1HNMR. We prepared the micelles via direct dissolution method. All the physicochemical properties of micelles including size, zeta potential, polydispersity index (PDI), critical micelle concentration (CMC), entrapment efficiency (EE %) and release efficiency (RE24%) were determined. The morphology of particles was studied using transmission electron microscopy (TEM), and the in-vitro cell cytotoxicity of EPI loaded micelles was studied using MTT assay on MCF-7 and Hela cell lines. The optimized micelles showed the particle size of 149.5 nm, the zeta potential of -6.49 mV, a polydispersity index of 0.259 ± 0.07, LE% of 88 %, and RE24% of 63 ± 2.45 % with a relatively low CMC 194.87 µg/ml. TEM showed the relatively uniform spherical structure for particles and in vitro MTT assay showed that EPI loaded micelles were more toxic on Hela cell line than MCF7 as expected. Since the Pu-TS-FA micelle could improve the anticancer activity of epirubicin and would be a promising candidate for EPI treatment of cancers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Evaluation of anticancer activity of Cordia dichotoma leaves against a human prostate carcinoma cell line, PC3.

    PubMed

    Rahman, Md Azizur; Sahabjada; Akhtar, Juber

    2017-07-01

    Mechanisms of antioxidant and apoptosis induction may be involved in the management of cancer by medicinal plants. Aim of the study was designed to evaluate anticancer activity of the methanolic extract of Cordia dichotoma leaves (MECD) against a human prostate carcinoma cell line, PC3. Flavonoid content was determined by colorimetric principle and antioxidant activity by various in vitro assays. MTT, DCFH-DA and DAPI staining assays were performed for the evaluation of cytotoxicity, analysis of induction of apoptosis and intracellular reactive oxygen species (ROS) activity level by MECD against human prostate carcinoma cell line, PC3. Flavonoid content was found to be 160 mg QE/g extract. IC 50 values for MECD treatment in various assays based on scavenging of 2,2-diphenyl-1-picrylhydrazyl, 2,2-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid), nitric oxide, peroxy radical, superoxide anion, hydroxy radical were found to be 315.5, 38, 476, 523, 197, 82 μg/ml respectively. MECD exposure to PC3 cells significantly increased the cell death (p < 0.001, IC 50  = 74.5 μg/ml), nuclear condensation, apoptosis (p < 0.001) and induced production of ROS (p < 0.001) initiating apoptotic cascade in a dose dependent manner. This study confirms that MECD possesses antioxidant property and can prevent carcinogenesis by reducing oxidative stress. MECD possesses anticancer activity and lead to PC3 cell death via induction of apoptosis mediated through excessive ROS generation. Flavonoids in MECD may be responsible for these activities due to dual antioxidant and pro-oxidant properties.

  18. Sodium valproate, a histone deacetylase inhibitor, enhances the efficacy of vinorelbine-cisplatin-based chemoradiation in non-small cell lung cancer cells.

    PubMed

    Gavrilov, Vladimir; Lavrenkov, Konstantin; Ariad, Samuel; Shany, Shraga

    2014-11-01

    To enhance the anticancer activity of vinorelbine, cisplatin and ionizing radiation (IR) combination against non-small cell lung cancer (NSCLC) cells by co-administration of sodium valproate (VPA), a histone deacetylase inhibitor, and to elucidate molecular events underpinning treatment efficacy. The NSCLC A549 cell line was treated with cisplatin (0.2 μg/ml), vinorelbine (2 nM), VPA (1 mM) and IR (2.5 Gy) alone, or in combination. Cell proliferation, cell-cycle distribution, apoptosis, and levels of DNA double-strand breaks, activated DNA damage checkpoint kinases pCHK1, pCHK2, cell-cycle inhibitors p21CIP1/WAF1 and p27KIP1 were assessed. VPA markedly enhanced the DNA-damaging effect of the cisplatin-vinorelbine-IR combination and induced increased DSBs, and expression of pCHK2, pCHK1, p21CIP1/WAF1 and p27KIP1. These molecular changes led to cell-cycle arrest and increased apoptosis and consequently markedly curtailed cancer cell growth. VPA markedly enhances the anticancer activity of cisplatin-vinorelbine-IR combination. This finding has translational implications for enhancing the efficacy of anticancer treatment and for reducing side-effects by reducing doses of radiation and drugs. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Autophagy induced by baicalin involves downregulation of CD147 in SMMC-7721 cells in vitro

    PubMed Central

    ZHANG, XIANJIAO; TANG, XU; LIU, HANQIANG; LI, LIANXIANG; HOU, QIAN; GAO, JIANMIN

    2012-01-01

    Baicalin has been demonstrated to exert anticancer effects mainly through induction of tumor cell apoptosis and cell cycle arrest. However, the precise mechanisms underlying its anticancer role remain to be elucidated. In the present study, we investigated whether autophagy was involved in the anticancer activity of baicalin in the human hepatocellular carcinoma (HCC) cell line SMMC-7721 and the possible molecular mechanisms. Our data showed that the viability of SMMC-7721 cells was significantly inhibited by baicalin in a dose- and time-dependent manner. Alongside apoptosis, autophagy was also induced by baicalin dose- and time-dependently with the involvement of the autophagy-associated protein Beclin 1. Moreover, we demonstrated that cell death induced by baicalin was significantly inhibited by the apoptosis inhibitor z-DEVD-fmk or the autophagy inhibitor 3-MA, respectively. In addition, we found that CD147, a key molecule related both to apoptosis and autophagy, was markedly downregulated at the protein level in SMMC-7721 cells treated with baicalin. Collectively, this is the first study to suggest that baicalin induces autophagic cell death in SMMC-7721 cells, which involves the downregulation of CD147. Our study reveals a new mechanism for the anticancer effects of baicalin and puts forward a potential crucial role of CD147 in baicalin-induced cancer cell death. PMID:22200845

  20. Terpinen-4-ol inhibits colorectal cancer growth via reactive oxygen species

    PubMed Central

    Nakayama, Ken; Murata, Soichiro; Ito, Hiromu; Iwasaki, Kenichi; Villareal, Myra Orlina; Zheng, Yun-Wen; Matsui, Hirofumi; Isoda, Hiroko; Ohkohchi, Nobuhiro

    2017-01-01

    Terpinen-4-ol (TP4O) is the main component of the essential oil extracted from Melaleuca alternifolia, known as the tea tree, of the botanical family Myrtaceae. The anticancer effects of TP4O have been reported in several cancer cell lines. Previous reports have demonstrated that TP4O exerts anticancer effects by inducing apoptotic cell death in several cell lines; however, the underlying molecular mechanisms of these effects remain unclear. In the present study, the anticancer effects of TP4O against the colorectal cancer (CRC) cell lines HCT116 and RKO were evaluated using WST-8 and bromodeoxyuridine assays. The mechanism of cell death was investigated by the measurement of caspase-3/7, Annexin V and lactate dehydrogenase release. Reactive oxygen species (ROS) levels induced by TP4O were evaluated by electron spin resonance and quantitative measurement of dihydroethidium. Localization of the ROS derived from mitochondria was observed by confocal inverted microscopy. Protein levels of ROS scavengers were assessed by western blotting analysis. To confirm the role of ROS, cell viability was measured in the presence of antioxidant reagents. In an in vivo xenograft model of ICR-SCID mice implanted with HCT116 cells, 200 mg/kg TP4O was injected locally, and tumor growth was compared with that of the control. TP4O induced apoptotic cell death in HCT116 and RKO cells in a dose-dependent manner, and TP4O also increased the levels of ROS generated by mitochondria. TP4O-induced cell death was rescued by administration of antioxidant regents. In vivo, TP4O inhibited the proliferation of HCT116 xenografts compared with that of the control group. The results of the present study suggest that TP4O induces apoptosis in CRC cells through ROS generation. Furthermore, TP4O is potentially useful for the development of novel therapies against CRC. PMID:28781645

  1. Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest.

    PubMed

    Qi, Fei; Yan, Qiang; Zheng, Zhaozheng; Liu, Jian; Chen, Yan; Zhang, Guiyang

    2018-01-01

    Colon cancer ranks second in mortality among all human malignancies, creating thus a need for exploration of novel molecules that would prove effective, cost-effective and with lower toxicity. In the recent past monoterpenes have gained tremendous attention for their anticancer activity. In the present study we evaluated the anticancer effects of two important monoterpenes, geraniol and geranyl acetate against colo-205 cancer cells. The antiproliferative activity was determined by MTT assay. Apoptosis was assessed by DAPI staining and DNA damage was checked by comet assay. The cell cycle analysis was carried out by flow cytometry and protein expression was examined by western blotting. The results showed that both geraniol and geranyl acetate exhibited significant anticancer activity against colo-205 cancer cell line with IC50 values of 20 and 30 μM respectively. To find out the underlying mechanism, DAPI staining was carried out and it was observed that both the monoterpenes, geraniol and geranyl acetate, induced apoptosis in colo-205 cells. The apoptosis was also associated with upregulation of Bax and downregulation of Bcl-2 expressions, indicative of mitochondrial apoptosis. Moreover, these two monoterpenes could trigger DNA damage and G2/M cell cycle arrest in colo-205 cells. Taken together, we propose that geraniol and geranyl acetate may prove to be important lead molecular candidates for the treatment of colon cancer. Their anticancer activity can be attributed to the ability to trigger apoptosis, DNA damage and cell cycle arrest.

  2. Comprehensive List of Cancer-Related Genetic Variations of the NCI-60 Panel | Center for Cancer Research

    Cancer.gov

    The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. The panel of cell lines represents nine different types of cancer: breast, ovary, prostate, colon, lung, kidney, brain, leukemia, and melanoma. Originally developed to screen anticancer compounds by the NCI Developmental Therapeutics Program (DTP), the NCI-60 panel has generated the most extensive cancer pharmacology database worldwide. The 60 cell lines have also been extensively analyzed for their gene and microRNA expression levels, DNA mutation status, and DNA copy number variations. These findings have provided the groundwork for research centered on increasing our understanding of tumor biology and drug activity.

  3. Preparation of biocompatible copolymeric micelles as a carrier of atorvastatin and rosuvastatin for potential anticancer activity study.

    PubMed

    Hamidreza Kheiri, Manjili; Alimohammadi, Niusha; Danafar, Hossein

    2018-05-18

    Statins are widely used for the treatment of hypercholesterolemia. However, their inhibitory action on HMG-CoA reductase also results in the depletion of intermediate biosynthetic products, which importantly contribute to cell proliferation. The aim of the present study was to compare the effects of the individual commercially available statins on investigational breast cancer. Thus, in this study, biodegradable polymeric micelles as carrier of statins were prepared using biodegradable copolymers (PCL-PEG-PCL). These nanoparticles were prepared with two statins (atorvastatin and rosuvastatin) and drug loading, release, kinetic release, and anti-cancer activity of these drugs were studied. The triblock copolymer PCL-PEG-PCL was synthesized by a ring opening polymerization of e-caprolactone in the presence of PEG as the initiator and Sn(oct) 2 as the catalyst. The synthesized copolymers and nanoparticles were characterized by FTIR, HNMR, GPC, DLS, and AFM analyses. The drug loading and release of drugs were studied by UV-Vis. Additionally, MTT assays on HFF-2 cell lines were performed for determination of biocompatibility of micelles. Finally, the anticancer activity of micelles was studied on MCF-7 breast cancer cell lines. The results showed that the average diameter of nanoparticles was less than 45 nm. The loading capacity of atorvastatin and rosuvastatin was 20.0 ± 1.01% and 13.21 ± 1.18%, respectively, and encapsulation efficiency of atorvastatin and rosuvastatin was 88.19 ± 1.11% and 69.32 ± 0.23%, respectively. The results showed strong and dose-dependent inhibition of cell (MCF-7line) growth by the nanoparticles compared with statins. The result of cell viability assay on the MCF-7 cell line verified that the bare nanoparticles showed little inherent cytotoxicity whereas the statins-loaded nanoparticles were cytotoxic.

  4. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines

    PubMed Central

    Takeshima, Mikako; Ono, Misaki; Higuchi, Takako; Chen, Chen; Hara, Takayuki; Nakano, Shuji

    2014-01-01

    Although lycopene, a major carotenoid component of tomatoes, has been suggested to attenuate the risk of breast cancer, the underlying preventive mechanism remains to be determined. Moreover, it is not known whether there are any differences in lycopene activity among different subtypes of human breast cancer cells. Using ER/PR positive MCF-7, HER2-positive SK-BR-3 and triple-negative MDA-MB-468 cell lines, we investigated the cellular and molecular mechanism of the anticancer activity of lycopene. Lycopene treatment for 168 consecutive hours exhibited a time-dependent and dose-dependent anti-proliferative activity against these cell lines by arresting the cell cycle at the G0/G1 phase at physiologically achievable concentrations found in human plasma. The greatest growth inhibition was observed in MDA-MB-468 where the sub-G0/G1 apoptotic population was significantly increased, with demonstrable cleavage of PARP. Lycopene induced strong and sustained activation of the ERK1/2, with concomitant cyclin D1 suppression and p21 upregulation in these three cell lines. In triple negative cells, lycopene inhibited the phosphorylation of Akt and its downstream molecule mTOR, followed by subsequent upregulation of proapoptotic Bax without affecting anti-apoptotic Bcl-xL. Taken together, these data indicate that the predominant anticancer activity of lycopene in MDA-MB-468 cells suggests a potential role of lycopene for the prevention of triple negative breast cancer. PMID:24397737

  5. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles

    PubMed Central

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Background Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. Methods The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. Results The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Conclusion Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties. PMID:25565802

  6. Selective sensitivity to wasabi-derived 6-(methylsulfinyl)hexyl isothiocyanate of human breast cancer and melanoma cell lines studied in vitro.

    PubMed

    Nomura, Takahiro; Shinoda, Shoko; Yamori, Takao; Sawaki, Saeko; Nagata, Ikuko; Ryoyama, Kazuo; Fuke, Yoko

    2005-01-01

    Recently, attention has focused on the anticancer properties of an aromatic component 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) in a typical Japanese spice, wasabi. In this paper, anticancer activity of 6-MITC in vitro was studied by using a human cancer cell (HCC) panel. 6-MITC directly affected the cells in the HCC panel and inhibited their growth in culture. The mean concentration required to inhibit 50% of control cell growth was 3.9 microM, which is a sufficiently low dosage for practical use. The suppression influenced not only the cell growth, but also the survival of these cells. The mean concentration to suppress cells to a 50% survival was 43.7 microM. The reduction activity of 6-MITC was differential, and it suppressed specific cells. These severely suppressed cell lines included breast cancer and melanoma cell lines. For example, one melanoma line was seriously damaged at a concentration of 0.3 microM of 6-MITC. Compared with other MITCs (2-MITC, 4-MITC and 8-MITC), 6-MITC showed the most effective suppression and with the most specific manner of the cells mentioned above. A "COMPARE" analysis using a computerized algorithm, which was based on the HCC database, suggested that the suppression mechanism of 6-MITC is unique and may be different from that of other known chemicals. The actual mechanism may not a simple one but may involve multiple pathways. On account of its sufficiently small size, 6-MITC is a new possible candidate for controlling cancer cells.

  7. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines.

    PubMed

    Park, S H; Sung, J H; Kim, E J; Chung, N

    2015-02-01

    Pancreatic cancer is the fourth leading cause of cancer death. Gemcitabine is widely used as a chemotherapeutic agent for the treatment of pancreatic cancer, but the prognosis is still poor. Berberine, an isoquinoline alkaloid extracted from a variety of natural herbs, possesses a variety of pharmacological properties including anticancer effects. In this study, we investigated the anticancer effects of berberine and compared its use with that of gemcitabine in the pancreatic cancer cell lines PANC-1 and MIA-PaCa2. Berberine inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. After berberine treatment, the G1 phase of PANC-1 cells increased by 10% compared to control cells, and the G1 phase of MIA-PaCa2 cells was increased by 2%. Whereas gemcitabine exerts antiproliferation effects through S-phase arrest, our results showed that berberine inhibited proliferation by inducing G1-phase arrest. Berberine-induced apoptosis of PANC-1 and MIA-PaCa2 cells increased by 7 and 2% compared to control cells, respectively. Notably, berberine had a greater apoptotic effect in PANC-1 cells than gemcitabine. Upon treatment of PANC-1 and MIA-PaCa2 with berberine at a half-maximal inhibitory concentration (IC50), apoptosis was induced by a mechanism that involved the production of reactive oxygen species (ROS) rather than caspase 3/7 activation. Our findings showed that berberine had anti-cancer effects and may be an effective drug for pancreatic cancer chemotherapy.

  8. Anticancer activity of ferrocenylthiosemicarbazones.

    PubMed

    Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García

    2014-03-01

    Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity.

  9. Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents

    PubMed Central

    Del Papa, Joshua; Parks, Robin J.

    2017-01-01

    Cancer is a devastating disease that affects millions of patients every year, and causes an enormous economic burden on the health care system and emotional burden on affected families. The first line of defense against solid tumors is usually extraction of the tumor, when possible, by surgical methods. In cases where solid tumors can not be safely removed, chemotherapy is often the first line of treatment. As metastatic cancers often become vigorously resistant to treatments, the development of novel, more potent and selective anti-cancer strategies is of great importance. Adenovirus (Ad) is the most commonly used virus in cancer clinical trials, however, regardless of the nature of the Ad-based therapeutic, complete responses to treatment remain rare. A number of pre-clinical studies have shown that, for all vector systems, viral spread throughout the tumor mass can be a major limiting factor for complete tumor elimination. By expressing exogenous cell-fusion proteins, many groups have shown improved spread of Ad-based vectors. This review summarizes the research done to examine the potency of Ad vectors expressing fusogenic proteins as anti-cancer therapeutics. PMID:28106842

  10. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway

    PubMed Central

    Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity. PMID:26090459

  11. Copper-tolfenamic acid: evaluation of stability and anti-cancer activity.

    PubMed

    Hurtado, Myrna; Sankpal, Umesh T; Chhabra, Jaya; Brown, Deondra T; Maram, Rajasekhar; Patel, Rafid; Gurung, Raj K; Simecka, Jerry; Holder, Alvin A; Basha, Riyaz

    2018-05-15

    The non-steroidal anti-inflammatory drug, Tolfenamic acid (TA) acts as an anti-cancer agent in several adult and pediatric cancer models. Copper (Cu) is an important element with multiple biological functions and has gained interest in medical applications. Recently, [Cu(TA) 2 (bpy)] (Cu-TA) has been synthesized in order to enhance therapeutic activity. In this study, we synthesized Cu-TA using an established method, characterized it by UV visible spectroscopy and Fourier-transform infrared spectroscopy (FTIR), and tested its anti-cancer activity using twelve cell lines representing various cancers, such as Ewing sarcoma, glioblastoma, medulloblastoma, neuroblastoma, pancreatic and prostate. The anti-proliferative activity of Cu-TA was determined at 48 h post-treatment and compared with the parental compound, TA. The IC 50 values were calculated using GraphPad Prism software. The biological stability of Cu-TA was evaluated using twelve-month-old powder and six-month-old stock solution. Cardiomyocytes (H9C2) were used to test the cytotoxicity in non-malignant cells. Cu-TA showed higher anti-proliferative activity, and the IC 50 values were 30 to 80% lower when compared with TA. H9C2 cells were non-responsive to Cu-TA, suggesting that it is selective towards malignant cells. Comparison of the twelve-month-old powder and six-month-old stock solution using the Panc1 cell line showed similar IC 50 values (<5% variation), confirming the stability of Cu-TA either in powder or solution form. These findings demonstrate the potential of Cu-TA as an effective anti-cancer agent. Further studies to delineate the detailed mechanism of action of Cu-TA for specific cancer model are underway.

  12. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro.

    PubMed

    Lv, Li-Hong; Wan, Yun-Le; Lin, Yan; Zhang, Wei; Yang, Mei; Li, Guo-Lin; Lin, Hao-Ming; Shang, Chang-Zhen; Chen, Ya-Jin; Min, Jun

    2012-05-04

    Failure of immune surveillance related to inadequate host antitumor immune responses has been suggested as a possible cause of the high incidence of recurrence and poor overall survival outcome of hepatocellular carcinoma. The stress-induced heat shock proteins (HSPs) are known to act as endogenous "danger signals" that can improve tumor immunogenicity and induce natural killer (NK) cell responses. Exosome is a novel secretory pathway for HSPs. In our experiments, the immune regulatory effect of the HSP-bearing exosomes secreted by human hepatocellular carcinoma cells under stress conditions on NK cells was studied. ELISA results showed that the production of HSP60, HSP70, and HSP90 was up-regulated in both cell lines in a stress-specific manner. After exposure to hepatocellular carcinoma cell-resistant or sensitive anticancer drugs (hereafter referred to as "resistant" or "sensitive" anticancer drug), the membrane microvesicles were actively released by hepatocellular carcinoma cells, differing in their ability to present HSPs on the cell surface, which were characterized as exosomes. Acting as a decoy, the HSP-bearing exosomes efficiently stimulated NK cell cytotoxicity and granzyme B production, up-regulated the expression of inhibitory receptor CD94, and down-regulated the expression of activating receptors CD69, NKG2D, and NKp44. Notably, resistant anticancer drugs enhanced exosome release and generated more exosome-carried HSPs, which augmented the activation of the cytotoxic response. In summary, our findings demonstrated that exosomes derived from resistant anticancer drug-treated HepG2 cells conferred superior immunogenicity in inducing HSP-specific NK cell responses, which provided a clue for finding an efficient vaccine for hepatocellular carcinoma immunotherapy.

  13. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    PubMed

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

    PubMed Central

    Somasekharan, Syam Prakash; El-Naggar, Amal; Sorensen, Poul H.

    2016-01-01

    Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted. PMID:27656243

  15. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.

    PubMed

    Chen, Yu Qing; Min, Cui; Sang, Ming; Han, Yang Yang; Ma, Xiao; Xue, Xiao Qing; Zhang, Shuang Quan

    2010-08-01

    Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Synergistic Cytotoxicity Effect by Combination Treatment of Polyketide Derivatives from Annona muricata Linn Leaves and Doxorubicin as Potential Anticancer Material on Raji Cell Line

    NASA Astrophysics Data System (ADS)

    Artanti, A. N.; Astirin, O. P.; Prayito, A.; Fisma, R.; Prihapsara, F.

    2018-03-01

    Nasopharynx cancer is one of the most deadly cancer. The main priority of nasopharynx cancer treatment is the use of chemotherapeutic agents, especially doxorubicin. However, doxorubicin might also lead to diverse side effect. An approach recently develop to overcome side effect of doxorubicin is to used of combined chemotherapeutic agent. One of the compounds found effication as an anticancer agent on nasopharynx cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on raji cell line. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). Data analysis showed that combination of polyketide derivative from Annona muricata L. (14,4 µg/ml) and doxorubicin with all of concentration performed synergistic effect on raji cell line with CI value from 0.13 – 0.65.

  17. The Anticancer Effects of Radachlorin-mediated Photodynamic Therapy in the Human Endometrial Adenocarcinoma Cell Line HEC-1-A.

    PubMed

    Kim, Su-Mi; Rhee, Yun-Hee; Kim, Jong-Soo

    2017-11-01

    We investigated the effect of photodynamic therapy (PDT) using radachlorin on invasion, vascular formation and apoptosis by targeting epidermal growth factor receptor (EGFR)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling pathways in the HEC-1-A endometrial adenocarcinoma cell line. To investigate the apoptotic pathway, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, and western blot analysis. We also evaluated the effects of PDT on tubular capillary formation in and invasion by HEC-1-A cells with a tube formation assay, invasion assay, prostaglandin E2 (PGE2) assay, and western blot analysis. PDT had anticancer effects on HEC-1-A through activation of the intrinsic pathway of apoptosis via caspase-9 and poly-(ADP-ribose) polymerase (PARP). PDT also inhibited tubular capillary formation in and invasion by HEC-1-A under VEGF pretreatment, that resulted from down-regulation of VEGFR2, EGFR, Ras homolog gene family/ member A (RhoA) and PGE2. These results are indicative of the specificity of radachlorin-mediated PDT to VEGF. The major advantage of radachlorin-mediated PDT is its selectivity for cancer tissue while maintaining adjacent normal endometrial tissue. Therefore, radachlorin-mediated PDT might offer high anticancer efficacy for endometrial adenocarcinoma and an especially useful modality for preserving fertility. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Expression and function of activin receptors in human endometrial adenocarcinoma cells.

    PubMed

    Tanaka, Tetsuji; Toujima, Saori; Otani, Tsutomu; Minami, Sawako; Yamoto, Mareo; Umesaki, Naohiko

    2003-09-01

    Menstrual cycle-dependent expressions of activin A in normal human endometrial tissues have been reported. Expression of activin receptor mRNAs and increased activin A production were also observed in human endometrial adenocarcinoma tissues, suggesting that activin A might enhance cell proliferation and inhibit apoptotic signaling in endometrial cancer cells. In this study, we have examined the effects of activin A on cell proliferation, anticancer drug-induced apoptosis and Fas-mediated apoptosis in 3 differentiated human endometrial adenocarcinoma cell lines, namely HEC-1, HHUA and Ishikawa. Flow cytometric analyses revealed moderate expressions of all 4 types of activin receptor subunits on the cell surfaces of the 3 cell lines. The proliferations of the 3 endometrial cancer cells were completely unaffected by activin A, whereas it suppressed the cell proliferation of a human ovarian endometrioid adenocarcinoma cell line, OVK-18, in a dose-dependent manner. Moreover, activin A did not affect the apoptotic changes in the 3 endometrial adenocarcinoma cells treated with 4 different anticancer drugs, namely CDDP, paclitaxel, etoposide and SN38. The apoptotic changes in HHUA cells treated with anti-Fas IgM were also unaffected by activin A. These results indicate that the increased activin A production in human endometrial adenocarcinoma tissues in vivo may not stimulate carcinoma cell proliferation or inhibit apoptotic signaling in carcinoma cells. Insensitivity to the usual growth suppression signals induced by activin A might be one of the mechanisms of immortality of human endometrial adenocarcinoma cells.

  19. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A., E-mail: mab@mayo.ed

    2009-11-25

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereasmore » Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.« less

  20. In vitro and in vivo anti-cancer activity of silymarin on oral cancer.

    PubMed

    Won, Dong-Hoon; Kim, Lee-Han; Jang, Boonsil; Yang, In-Hyoung; Kwon, Hye-Jeong; Jin, Bohwan; Oh, Seung Hyun; Kang, Ju-Hee; Hong, Seong-Doo; Shin, Ji-Ae; Cho, Sung-Dae

    2018-05-01

    Silymarin, a standardized extract from milk thistle fruits has been found to exhibit anti-cancer effects against various cancers. Here, we explored the anti-cancer activity of silymarin and its molecular target in human oral cancer in vitro and in vivo. Silymarin dose-dependently inhibited the proliferation of HSC-4 oral cancer cells and promoted caspase-dependent apoptosis. A human apoptosis protein array kit showed that death receptor 5 may be involved in silymarin-induced apoptosis, which was also shown through western blotting, immunocytochemistry, and reverse transcription-polymerase chain reaction. Silymarin increased cleaved caspase-8 and truncated Bid, leading to accumulation of cytochrome c. In addition, silymarin activated death receptor 5/caspase-8 to induce apoptotic cell death in two other oral cancer cell lines (YD15 and Ca9.22). Silymarin also suppressed tumor growth and volume without any hepatic or renal toxicity in vivo. Taken together, these results provide in vitro and in vivo evidence supporting the anti-cancer effect of silymarin and death receptor 5, and caspase-8 may be essential players in silymarin-mediated apoptosis in oral cancer.

  1. Enhanced Production of Gypenoside LXXV Using a Novel Ginsenoside-Transforming β-Glucosidase from Ginseng-Cultivating Soil Bacteria and Its Anti-Cancer Property.

    PubMed

    Cui, Chang-Hao; Kim, Da Jung; Jung, Suk-Chae; Kim, Sun-Chang; Im, Wan-Taek

    2017-05-19

    Minor ginsenosides, such as compound K, Rg₃( S ), which can be produced by deglycosylation of ginsenosides Rb₁, showed strong anti-cancer effects. However, the anticancer effects of gypenoside LXXV, which is one of the deglycosylated shapes of ginsenoside Rb₁, is still unknown due to the rarity of its content in plants. Here, we cloned and characterized a novel ginsenoside-transforming β-glucosidase (BglG167b) derived from Microbacterium sp. Gsoil 167 which can efficiently hydrolyze gypenoside XVII into gypenoside LXXV, and applied it to the production of gypenoside LXXV at the gram-scale with high specificity. In addition, the anti-cancer activity of gypenoside LXXV was investigated against three cancer cell lines (HeLa, B16, and MDA-MB231) in vitro. Gypenoside LXXV significantly reduced cell viability, displaying an enhanced anti-cancer effect compared to gypenoside XVII and Rb₁. Taken together, this enzymatic method would be useful in the preparation of gypenoside LXXV for the functional food and pharmaceutical industries.

  2. Design, spectral characterization, thermal, DFT studies and anticancer cell line activities of Co(II), Ni(II) and Cu(II) complexes of Schiff bases derived from 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol.

    PubMed

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B S; Yadav, Deepak

    2015-06-15

    A series of two biologically active Schiff base ligands L(1), L(2) have been synthesized in equimolar reaction of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol with thiophene-2-carbaldehyde and furan-2-carbaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 1:1 and 2:1. The characterization of Schiff bases and metal complexes was done by (1)H NMR, UV-Vis, TGA, IR, mass spectrometry and molar conductivity studies. The in DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II), Ni(II) and Cu(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2) were studied and compared with those of free ligand. The anticancer cell line results reveal that all metal complexes show moderate to significant % cytotoxicity on cell line HepG2 and MCF-7. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design and Synthesis of Curcumin-Like Diarylpentanoid Analogues as Potential Anticancer Agents.

    PubMed

    Qudjani, Elahe; Iman, Maryam; Davood, Asghar; Ramandi, Mahdi F; Shafiee, Abbas

    2016-01-01

    Curcumin is a polyphenolic natural compound with multiple targets that used for the prophylaxis and treatment of some type of cancers like cervical and pancreatic cancers. Some recent patent for curcumin for cancer has also been reviewed. In this study, ten new curcumin derivatives were designed and synthesized and their cytostatic activity evaluated against the Hela and Panc cell lines that some of them showed more activity than curcumin. In the present study, a series of mono-carbonyl derivatives of curcumin were designed and prepared. The details of the synthesis and chemical characterization of the synthesized compounds are described. The cytostatic activities of the designed compounds are assessed in two different tumor cell lines using MTT test. In vitro screening for human cervix carcinoma cell lines (Hela) and pancreatic cell lines (Panc-1) at 24 and 48 hour showed that all the analogs possessed good activity against these tumor cell lines and compounds 5a, 5c and 6 with high potency can be used as a new lead compounds for the designing and finding new and potent cytostatic agents. Docking studies indicated that compound 5c readily binds the active site of human glyoxalase I protein via two strong hydrogen bonds engaging residues of Glu-99 and Lys-156. Our results are useful in guiding a design of optimized ligands with improved pharmacokinetic properties and increased of anti-cancer activity vs. the prototype curcumin compound.

  4. Withaferin-A Induces Apoptosis in Osteosarcoma U2OS Cell Line via Generation of ROS and Disruption of Mitochondrial Membrane Potential.

    PubMed

    Zhang, Hui-Liang; Zhang, Hong

    2017-01-01

    Withaferin-A (WF-A) is a well-known dietary compound isolated from Withania sominifera . It has tremendous pharmacological potential and has been shown to exhibit antiproliferative activity against several types of cancerous cells. Currently, the main focus of anti-cancer therapeutic development is to identify apoptosis inducing drug-like molecules. Osteosarcoma is a rare type of osteocancer, affecting human. The present study therefore focused on the evaluation of antitumor potential of WF-A against several osteosarcoma cell lines. MTT assay was used to evaluate WF-A against osteosarcoma cell lines and to calculate the IC 50 . DAPI staining was used to confirm the apoptosis inducing potential of WF-A. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, and Western blotting were used to confirm the basis of apoptosis. The results revealed that that WF-A exhibited strong antiproliferative activity against all the cells lines, with IC 50 ranging from 0.32 to 7.6 μM. The lowest IC 50 (0.32 μM) was observed against U2OS cell line and therefore it was selected for further analysis. DAPI staining indicated that WF-A exhibited antiproliferative activity via induction of apoptosis. Moreover, WF-A induced ROS-mediated reduction in mitochondrial membrane potential ΔΨm) in a dose-dependent manner and activation of caspase-3 in osteosarcoma cells. We propose that WF-A may prove a potent therapeutic agent for inducing apoptosis in osteosarcoma cell lines via generation of ROS and disruption of mitochondrial membrane potential. WF-A exhibits strong anticancer activity against osteosarcoma cell linesAntiproliferative activity of WF-A is via induction of apoptosisWF-A induced ROS-mediated reduction in mitochondrial membrane potentialWF-A induced expression of caspase-3 in osteosarcoma cells. Abbreviations used: WA: Withaferin A; ROS: Reactive oxygen species; OS: Osteosarcoma; MMP: Mitochondrial membrane potential.

  5. Cobra venom cytotoxins; apoptotic or necrotic agents?

    PubMed

    Ebrahim, Karim; Shirazi, Farshad H; Mirakabadi, Abbas Zare; Vatanpour, Hossein

    2015-12-15

    Organs homeostasis is controlled by a dynamic balance between cell proliferation and apoptosis. Failure to induction of apoptosis has been implicated in tumor development. Cytotoxin-I (CTX-I) and cytotoxin-II (CTX-II) are two physiologically active polypeptides found in Caspian cobra venom. Anticancer activity and mechanism of cell death induced by these toxins have been studied. The toxins were purified by different chromatographic steps and their cytotoxicity and pattern of cell death were determined by MTT, LDH release, acridine orange/ethidium bromide (AO/EtBr) double staining, flow cytometric analysis, caspase-3 activity and neutral red assays. The IC50 of CTX-II in MCF-7, HepG2, DU-145 and HL-60 was 4.1 ± 1.3, 21.2 ± 4.4, 9.4 ± 1.8 μg/mL and 16.3 ± 1.9 respectively while the IC50 of this toxin in normal MDCK cell line was 54.5 ± 3.9 μg/mL. LDH release suddenly increase after a specific toxins concentrations in all cell lines. AO/EtBr double staining, flow cytometric analysis and caspase-3 activity assay confirm dose and time-dependent induction of apoptosis by both toxins. CTX-I and CTX-II treated cells lost their lysosomal membrane integrity and couldn't uptake neutral red day. CTX-I and CTX-II showed significant anticancer activity with minimum effects on normal cells and better IC50 compared to current anticancer drug; cisplatin. They induce their apoptotic effect via lysosomal pathways and release of cathepsins to cytosol. These effects were seen in limited rage of toxins concentrations and pattern of cell death rapidly changes to necrosis by increase in toxin's concentration. In conclusion, significant apoptogenic effects of these toxins candidate them as a possible anticancer agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Nanostructured polysaccharidic microcapsules for intracellular release of cisplatin.

    PubMed

    Vergaro, Viviana; Papadia, Paride; Petrini, Paola; Fanizzi, Francesco Paolo; De Pascali, Sandra A; Baldassarre, Francesca; Pastorino, Laura; Ciccarella, Giuseppe

    2017-06-01

    Carbohydrate polimeric microcapsules were assembled using a LbL approach onto a CaCO 3 core. The microcapsules were used to delivery the anticancer drug cisplatin into HeLa and MCF-7 cancer cell lines. Drug encapsulation, measured by ICP spectroscopy, was around 50% of the charging solution. Fluorimetric measurements showed an efficient cellular uptake of polysacchardic microcapsules in both cell lines. The drug-loaded capsules demonstrated a better efficiency against cell viability than the free drug. Specifically, the amount of platinum reaching genomic DNA was measured, showing that encapsulation improves the nuclear delivery of the drug for both cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Quantification of sensitivity and resistance of breast cancer cell lines to anti-cancer drugs using GR metrics

    PubMed Central

    Hafner, Marc; Heiser, Laura M.; Williams, Elizabeth H.; Niepel, Mario; Wang, Nicholas J.; Korkola, James E.; Gray, Joe W.; Sorger, Peter K.

    2017-01-01

    Traditional means for scoring the effects of anti-cancer drugs on the growth and survival of cell lines is based on relative cell number in drug-treated and control samples and is seriously confounded by unequal division rates arising from natural biological variation and differences in culture conditions. This problem can be overcome by computing drug sensitivity on a per-division basis. The normalized growth rate inhibition (GR) approach yields per-division metrics for drug potency (GR50) and efficacy (GRmax) that are analogous to the more familiar IC50 and Emax values. In this work, we report GR-based, proliferation-corrected, drug sensitivity metrics for ~4,700 pairs of breast cancer cell lines and perturbagens. Such data are broadly useful in understanding the molecular basis of therapeutic response and resistance. Here, we use them to investigate the relationship between different measures of drug sensitivity and conclude that drug potency and efficacy exhibit high variation that is only weakly correlated. To facilitate further use of these data, computed GR curves and metrics can be browsed interactively at http://www.GRbrowser.org/. PMID:29112189

  8. Constraint based modeling of metabolism allows finding metabolic cancer hallmarks and identifying personalized therapeutic windows.

    PubMed

    Bordel, Sergio

    2018-04-13

    In order to choose optimal personalized anticancer treatments, transcriptomic data should be analyzed within the frame of biological networks. The best known human biological network (in terms of the interactions between its different components) is metabolism. Cancer cells have been known to have specific metabolic features for a long time and currently there is a growing interest in characterizing new cancer specific metabolic hallmarks. In this article it is presented a method to find personalized therapeutic windows using RNA-seq data and Genome Scale Metabolic Models. This method is implemented in the python library, pyTARG. Our predictions showed that the most anticancer selective (affecting 27 out of 34 considered cancer cell lines and only 1 out of 6 healthy mesenchymal stem cell lines) single metabolic reactions are those involved in cholesterol biosynthesis. Excluding cholesterol biosynthesis, all the considered cell lines can be selectively affected by targeting different combinations (from 1 to 5 reactions) of only 18 metabolic reactions, which suggests that a small subset of drugs or siRNAs combined in patient specific manners could be at the core of metabolism based personalized treatments.

  9. Synthesis, characterization and in vitro anticancer activity of 18-membered octaazamacrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II)

    NASA Astrophysics Data System (ADS)

    Kareem, Abdul; Zafar, Hina; Sherwani, Asif; Mohammad, Owais; Khan, Tahir Ali

    2014-10-01

    An effective series of 18 membered octaazamacrocyclic complexes of the type [MLX2], where X = Cl or NO3 have been synthesized by template condensation reaction of oxalyl dihydrazide with dibenzoylmethane and metal salt in 2:2:1 molar ratio. The formation of macrocyclic framework, stereochemistry and their overall geometry have been characterized by various physico-chemical studies viz., elemental analysis, electron spray ionization-mass spectrometry (ESI-MS), I.R, UV-Vis, 1H NMR, 13C NMR spectroscopy, X-ray diffraction (XRD) and TGA/DTA studies. These studies suggest formation of octahedral macrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II). The molar conductance values suggest nonelectrolytic nature for all the complexes. Thermogravimatric analysis shows that all the complexes are stable up to 600 °C. All these complexes have been tested against different human cancer cell lines i.e. human hepatocellular carcinoma (Hep3B), human cervical carcinoma (HeLa), human breast adenocarcinoma (MCF7) and normal cells (PBMC). The newly synthesized 18-membered octaazamacrocyclic complexes during in vitro anticancer evaluation, displayed moderate to good cytotoxicity on liver (Hep3B), cervical (HeLa) and breast (MCF7) cancer cell lines, respectively. The most effective anticancer cadmium complex (C34H28N10CdO10) was found to be active with IC50 values, 2.44 ± 1.500, 3.55 ± 1.600 and 4.82 ± 1.400 in micro-molar on liver, cervical and breast cancer cell lines, respectively.

  10. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    NASA Astrophysics Data System (ADS)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  11. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database.

    PubMed

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-05

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  12. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents. PMID:27145869

  13. The anticancer properties of iron core–gold shell nanoparticles in colorectal cancer cells

    PubMed Central

    Wu, Ya-Na; Wu, Ping-Ching; Yang, Li-Xing; Ratinac, Kyle R; Thordarson, Pall; Jahn, Kristina A; Chen, Dong-Hwang; Shieh, Dar-Bin; Braet, Filip

    2013-01-01

    Previously, iron core–gold shell nanoparticles (Fe@Au) have been shown to possess cancer-preferential cytotoxicity in oral and colorectal cancer (CRC) cells. However, CRC cell lines are less sensitive to Fe@Au treatment when compared with oral cancer cell lines. In this research, Fe@Au are found to decrease the cell viability of CRC cell lines, including Caco-2, HT-29, and SW480, through growth inhibition rather than the induction of cell death. The cytotoxicity induced by Fe@Au in CRC cells uses different subcellular pathways to the mitochondria-mediated autophagy found in Fe@Au-treated oral cancer cells, OECM1. Interestingly, the Caco-2 cell line shows a similar response to OECM1 cells and is thus more sensitive to Fe@Au treatment than the other CRC cell lines studied. We have investigated the underlying cell resistance mechanisms of Fe@Au-treated CRC cells. The resistance of CRC cells to Fe@Au does not result from the total amount of Fe@Au internalized. Instead, the different amounts of Fe and Au internalized appear to determine the different response to treatment with Fe-only nanoparticles in Fe@Au-resistant CRC cells compared with the Fe@Au-sensitive OECM1 cells. The only moderately cytotoxic effect of Fe@Au nanoparticles on CRC cells, when compared to the highly sensitive OECM1 cells, appears to arise from the CRC cells’ relative insensitivity to Fe, as is demonstrated by our Fe-only treatments. This is a surprising outcome, given that Fe has thus far been considered to be the “active” component of Fe@Au nanoparticles. Instead, we have found that the Au coatings, previously considered only as a passivating coating to protect the Fe cores from oxidation, significantly enhance the cytotoxicity of Fe@Au in certain CRC cells. Therefore, we conclude that both the Fe and Au in these core–shell nanoparticles are essential for the anticancer properties observed in CRC cells. PMID:24039416

  14. Protopine, a novel microtubule-stabilizing agent, causes mitotic arrest and apoptotic cell death in human hormone-refractory prostate cancer cell lines.

    PubMed

    Chen, Chun-Han; Liao, Cho-Hwa; Chang, Ya-Ling; Guh, Jih-Hwa; Pan, Shiow-Lin; Teng, Che-Ming

    2012-02-01

    In this study, we investigated the anticancer effect of protopine on human hormone-refractory prostate cancer (HRPC) cells. Protopine exhibited an anti-proliferative effect by induction of tubulin polymerization and mitotic arrest, which ultimately led to apoptotic cell death. The data suggest that protopine increased the activity of cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex and that contributed to cell apoptosis by modulating mitochondria-mediated signaling pathways, such as Bcl-2 phosphorylation and Mcl-1 down-regulation. In conclusion, the data suggest that protopine is a novel microtubule stabilizer with anticancer activity in HRPC cells through apoptotic pathway by modulating Cdk1 activity and Bcl-2 family of proteins. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. A review on the chemotherapeutic potential of fisetin: In vitro evidences.

    PubMed

    Sundarraj, Kiruthika; Raghunath, Azhwar; Perumal, Ekambaram

    2018-01-01

    During the past five decades, cancer cell lines are being successfully used as an in vitro model to discover the anti-cancer potential of plant secondary metabolites. Fisetin - the most popular polyphenol from fruits and vegetables, exhibits a repertoire of promising pharmacological features. Such versatile properties make fisetin an excellent anticancer agent and its efficacy as a chemotherapeutic agent against tumor heterogeneity from in vitro studies are encouraging. Fisetin is like a Pandora's box, as more research studies are being carried out, it reveals its new molecules within the cancer cells as therapeutic targets. These molecular targets orchestrate processes such as apoptosis, autophagic cell death, cell cycle, invasion, metastasis and angiogenesis in cancer cells. Besides apoptotic elicitation, fisetin's ability to induce autophagic cell death in cancer cells has been reported. This review examines the various molecular mechanisms of action elicited by fisetin leading to apoptosis and autophagic cell death as evidenced from cancer cell lines. In addition, the increased bioavailability and sustained release of fisetin improved through conjugation and enhanced effect of fisetin through synergism on various cancers are also highlighted. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Anticancer activity and mediation of apoptosis in human HL-60 leukaemia cells by edible sea cucumber (Holothuria edulis) extract.

    PubMed

    Wijesinghe, W A J P; Jeon, You Jin; Ramasamy, Perumal; Wahid, Mohd Effendy A; Vairappan, Charles S

    2013-08-15

    Sea cucumbers have been a dietary delicacy and important ingredient in Asian traditional medicinal over many centuries. In this study, edible sea cucumber Holothuria edulis was evaluated for its in vitro anticancer potential. An aqueous fraction of the edible sea cucumber (ESC-AQ) has been shown to deliver a strong cytotoxic effect against the human HL-60 leukaemia cell line. An induction effect of apoptotic body formation in response to ESC-AQ treatment was confirmed in HL-60 cells stained with Hoechst 33342 and confirmed via flow cytometry analysis. The up regulation of Bax and caspase-3 protein expression was observed while the expression of Bcl-xL protein was down regulated in ESC-AQ treated HL-60 cells. Due to the profound anticancer activity, ESC-AQ appears to be an economically important biomass fraction that can be exploited in numerous industrial applications as a source of functional ingredients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro.

    PubMed

    Ndolo, Rosemary A; Luan, Yepeng; Duan, Shaofeng; Forrest, M Laird; Krise, Jeffrey P

    2012-01-01

    Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC(50) values of the inhibitors in normal fibroblasts to the IC(50) values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity.

  18. Lysosomotropic Properties of Weakly Basic Anticancer Agents Promote Cancer Cell Selectivity In Vitro

    PubMed Central

    Ndolo, Rosemary A.; Luan, Yepeng; Duan, Shaofeng; Forrest, M. Laird; Krise, Jeffrey P.

    2012-01-01

    Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC50 values of the inhibitors in normal fibroblasts to the IC50 values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity. PMID:23145164

  19. Targeting autophagy to modulate cell survival: a comparative analysis in cancer, normal and embryonic cells.

    PubMed

    Divac Rankov, Aleksandra; Ljujić, Mila; Petrić, Marija; Radojković, Dragica; Pešić, Milica; Dinić, Jelena

    2017-11-01

    Autophagy is linked to multiple cancer-related signaling pathways, and represents a defense mechanism for cancer cells under therapeutic stress. The crosstalk between apoptosis and autophagy is essential for both tumorigenesis and embryonic development. We studied the influence of autophagy on cell survival in pro-apoptotic conditions induced by anticancer drugs in three model systems: human cancer cells (NCI-H460, COR-L23 and U87), human normal cells (HaCaT and MRC-5) and zebrafish embryos (Danio rerio). Autophagy induction with AZD2014 and tamoxifen antagonized the pro-apoptotic effect of chemotherapeutics doxorubicin and cisplatin in cell lines, while autophagy inhibition by wortmannin and chloroquine synergized the action of both anticancer agents. This effect was further verified by assessing cleaved caspase-3 and PARP-1 levels. Autophagy inhibitors significantly increased both apoptotic markers when applied in combination with doxorubicin while autophagy inducers had the opposite effect. In a similar manner, autophagy induction in zebrafish embryos prevented cisplatin-induced apoptosis in the tail region while autophagy inhibition increased cell death in the tail and retina of cisplatin-treated animals. Autophagy modulation with direct inhibitors of the PI3kinase/Akt/mTOR pathway (AZD2014 and wortmannin) triggered the cellular response to anticancer drugs more effectively in NCI-H460 and zebrafish embryonic models compared to HaCaT suggesting that these modulators are selective towards rapidly proliferating cells. Therefore, evaluating the autophagic properties of chemotherapeutics could help determine more accurately the fate of different cell types under treatment. Our study underlines the importance of testing autophagic activity of potential anticancer agents in a comparative approach to develop more rational anticancer therapeutic strategies.

  20. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity.

    PubMed

    Chinthala, Yakaiah; Thakur, Sneha; Tirunagari, Shalini; Chinde, Srinivas; Domatti, Anand Kumar; Arigari, Niranjana Kumar; K V N S, Srinivas; Alam, Sarfaraz; Jonnala, Kotesh Kumar; Khan, Feroz; Tiwari, Ashok; Grover, Paramjit

    2015-03-26

    A series of novel chalcone-triazole derivatives were synthesized and screened for in vitro anticancer activity on the human cancer cell lines IMR32 (neuroblastoma), HepG2 (hepatoma) and MCF-7 (breast adenocarcinoma), DU-145 (prostate carcinoma), and A549 (lung adenocarcinoma). Among the tested compounds, 4r showed the most promising anticancer activity in all the cell lines whereas, compounds 4c (IC50 65.86 μM), 4e (IC50 66.28 μM), 4o (IC50 35.81 μM), 4q (IC50 50.82 μM) and 4s (IC50 48.63 μM) showed better activity than the standard doxorubicin (IC50 69.33 μM) in A549 cell line alone. Rat intestinal α-glucosidase inhibitory activity of the synthesized derivatives showed 4m (IC50 67.77 μM), 4p (IC50 74.94 in μM) and 4s (IC50 102.10 μM) as most active compared to others. The in silico docking of synthesized derivatives 4a-4t with DNA topoisomerase IIα revealed the LibDock score in the range of 71.2623-118.29 whereas, compounds 4h, 4m, 4p and 4s with docking target α-glucosidase were in the range of 100.372-107.784. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Anticancer β-hairpin peptides: membrane-induced folding triggers activity

    PubMed Central

    Sinthuvanich, Chomdao; Veiga, Ana Salomé; Gupta, Kshitij; Gaspar, Diana; Blumenthal, Robert; Schneider, Joel P.

    2012-01-01

    Several cationic antimicrobial peptides (AMPs) have recently been shown to display anticancer activity via a mechanism that usually entails the disruption of cancer cell membranes. In this work, we designed an 18-residue anticancer peptide, SVS-1, whose mechanism of action is designed to take advantage of the aberrant lipid composition presented on the outer leaflet of cancer cell membranes, which makes the surface of these cells relatively electronegative relative to non-cancerous cells. SVS-1 is designed to remain unfolded and inactive in aqueous solution but preferentially fold at the surface of cancer cells, adopting an amphiphilic β-hairpin structure capable of membrane disruption. Membrane-induced folding is driven by electrostatic interaction between the peptide and the negatively charge membrane surface of cancer cells. SVS-1 is active against a variety of cancer cell lines such as A549 (lung carcinoma), KB (epidermal carcinoma), MCF-7 (breast carcinoma) and MDA-MB-436 (breast carcinoma). However, the cytotoxicity towards non-cancerous cells having typical membrane compositions, such as HUVEC and erythrocytes, is low. CD spectroscopy, appropriately designed peptide controls, cell-based studies, liposome leakage assays and electron microscopy support the intended mechanism of action, which leads to preferential killing of cancerous cells. PMID:22413859

  2. Autophagic cell death and premature senescence: New mechanism of 5-fluorouracil and sulforaphane synergistic anticancer effect in MDA-MB-231 triple negative breast cancer cell line.

    PubMed

    Milczarek, Małgorzata; Wiktorska, Katarzyna; Mielczarek, Lidia; Koronkiewicz, Mirosława; Dąbrowska, Aleksandra; Lubelska, Katarzyna; Matosiuk, Dariusz; Chilmonczyk, Zdzisław

    2018-01-01

    In view of the need for new, more effective therapies for the triple negative breast cancer treatment, the aim of the study was to evaluate the anticancer activity and mechanism of action of the sulforaphane and 5-fluorouracil combination in the triple negative breast cancer cell line MDA-MB-231. Changes in the number of live cells after alone and sequential treatment were determined by the MTT test. The Chou and Talaly method was used to identify the type of interaction. Confocal microscopy, flow cytometry, western blot and spectrophotometry were used to examine apoptosis, autophagy and premature senescence. The western blot method was applied to measure the level of enzymes that are crucial for the 5-fluorouracil activity. Sulforaphane and 5-fluorouracil have been shown to interact synergistically in the breast cancerMDA-MB-231 cell line, resulting in a significant reduction of the number of live cells compared to alone treatments. Sulforaphane has decreased the level of thymidylate synthetase, which was also observed in the case of the sequential sulforaphane and 5-fluorouracil treatment. Studies of the interaction mechanism have revealed that sulforaphane and 5-fluorouracil act synergistically in the MDA-MB-231 cells by inducing autophagic cell death and premature senescence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2.

    PubMed

    Park, S H; Sung, J H; Chung, N

    2014-09-01

    Cancer stem cells play an important role in metastasis and the relapse of drug resistant cancers. Side-population (SP) cells are capable of effluxing Hoechst 33342 dye and are referred to as cancer stem cells. We investigated the effect of berberine on pancreatic cancer stem cells of PANC-1 and MIA PaCa-2. For both cell lines, the proportions of SP cells in the presence of berberine were investigated and compared to the proportions in the presence of gemcitabine, a standard pancreatic anti-cancer drug. The proportions of SP cells in the PANC-1 and MIA PaCa-2 cell lines were about 9 and <0.1%, respectively. After berberine and gemcitabine treatments, the SP cell proportion of PANC-1 decreased to 5.7 ± 2.0 and 6.8 ± 0.8%, respectively, which compares to the control proportion of (9.7 ± 1.7). After berberine and gemcitabine treatment of PANC-1, of the four stem cell-associated genes (SOX2, POU5F1, NANOG, and NOTCH1), all but NOTCH1 were down-regulated. Unfortunately, the effect of berberine and gemcitabine treatments on MIA PaCa-2 SP cells could not be clearly observed because SP cells represented only a very small proportion of MIA PaCa-2 cells. However, SOX2, POU5F1, and NANOG genes were shown to be effectively down-regulated in the MIA PaCa-2 cell line as a whole. Taken together, these results indicate that berberine is as effective at targeting pancreatic cancer cell lines as gemcitabine. Therefore, we believe that POU5F1, SOX2, and NANOG can serve as potential markers, and berberine may be an effective anti-cancer agent when targeting human pancreatic cancer cells and/or their cancer stem cells.

  4. Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro.

    PubMed

    Deng, Yan; Sriwiriyajan, Somchai; Tedasen, Aman; Hiransai, Poonsit; Graidist, Potchanapond

    2016-07-21

    Piper nigrum is widely used as a folk medicine including usage for pain relief, fevers, as well as an anti-cancer agent. However the crude extract of piperine free P. nigrum (PFPE), which inhibits breast cancer, and its mechanisms are still being kept secret. This research aims to elucidate the anti-cancer effects of PFPE and its mechanisms. Anti-cancer effects of PFPE were investigated in N-nitroso-N-methylurea (NMU)-induced mammary tumorigenesis rats and breast cancer cell lines MCF-7 and ZR-75-1. Furthermore, the cancer prevention effects of PFPE were investigated in rats. Western blotting was employed to study protein levels induced by PFPE. PFPE was found to up-regulate p53, and down-regulate estrogen receptor (ER), E-cadherin (E-cad), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), c-Myc, and vascular endothelial growth factor (VEGF) levels in breast cancer rats. Moreover, PFPE decreased protein levels of E-cad, c-Myc, and VEGF in MCF-7 cells. These results suggest that PFPE can enhance breast cancer cell response to phytochemicals, then induce cell cycle arrest, and inhibit cancer cell proliferation resulting in tumor size decrease in the PFPE treated group. It further suggests that PFPE may suppress tumor cell invasion, migration, and angiogenesis. In addition, PFPE possessed cancer prevention effects through generation of reactive oxygen species (ROS) to higher cancer cell cellular stress. PFPE may possess anti-cancer and cancer prevention effects; hence, it deserves further investigation as a novel candidate for breast cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Role of TGF-β signaling in curcumin-mediated inhibition of tumorigenicity of human lung cancer cells

    PubMed Central

    Datta, Raktima; Halder, Sunil K.

    2014-01-01

    Purpose Curcumin has been shown to have potent anti-cancer activities like inhibition of cell proliferation, induction of apoptosis, and suppression of angiogenesis. Transforming growth factor-β (TGF-β) signaling plays a complex role in tumor suppression and promotion depending on the tumor type and stage. However, the effect of curcumin on TGF-β signaling in cancer cells and the role of TGF-β signaling in curcumin-induced anticancer activities have not been determined. Here, we investigate the role of curcumin on TGF-β signaling, and whether TGF-β signaling is involved in the antitumor activities of curcumin. Methods Human non-small cell lung cancer (NSCLC) cell lines, ACC-LC-176 (without TGF-β signaling), H358, and A549 (with TGF-β signaling) were treated with curcumin to determine cell growth, apoptosis, and tumorigenicity. Antitumor activities of curcumin were determined using these cell lines and an in vivo mouse model. We also tested the effect of curcumin on TGF-β/Smad signaling by western blotting and by luciferase assays. Results Curcumin inhibited cell growth and induced apoptosis of all three NSCLC cell lines in vitro and in vivo. It significantly reduced subcutaneous tumor growth by these three cell lines irrespective of TGF-β signaling status. Curcumin inhibited TGF-β-induced Smad2/3 phosphorylation and transcription in H358 and A549 cells, but not in ACC-LC-176 cells. Conclusions Curcumin reduces tumorigenicity of human lung cancer cells in vitro and in vivo by inhibiting cell proliferation and promoting apoptosis. These results suggest that TGF-β signaling is not directly involved in curcumin-mediated growth inhibition, induction of apoptosis, and inhibition of tumorigenicity. PMID:23224523

  6. Identifying anti-cancer drug response related genes using an integrative analysis of transcriptomic and genomic variations with cell line-based drug perturbations.

    PubMed

    Sun, Yi; Zhang, Wei; Chen, Yunqin; Ma, Qin; Wei, Jia; Liu, Qi

    2016-02-23

    Clinical responses to anti-cancer therapies often only benefit a defined subset of patients. Predicting the best treatment strategy hinges on our ability to effectively translate genomic data into actionable information on drug responses. To achieve this goal, we compiled a comprehensive collection of baseline cancer genome data and drug response information derived from a large panel of cancer cell lines. This data set was applied to identify the signature genes relevant to drug sensitivity and their resistance by integrating CNVs and the gene expression of cell lines with in vitro drug responses. We presented an efficient in-silico pipeline for integrating heterogeneous cell line data sources with the simultaneous modeling of drug response values across all the drugs and cell lines. Potential signature genes correlated with drug response (sensitive or resistant) in different cancer types were identified. Using signature genes, our collaborative filtering-based drug response prediction model outperformed the 44 algorithms submitted to the DREAM competition on breast cancer cells. The functions of the identified drug response related signature genes were carefully analyzed at the pathway level and the synthetic lethality level. Furthermore, we validated these signature genes by applying them to the classification of the different subtypes of the TCGA tumor samples, and further uncovered their in vivo implications using clinical patient data. Our work may have promise in translating genomic data into customized marker genes relevant to the response of specific drugs for a specific cancer type of individual patients.

  7. In vitro antioxidant and antiproliferative activities of six international basil cultivars.

    PubMed

    Elansary, Hosam O; Mahmoud, Eman A

    2015-01-01

    The total phenolic, flavonoid and tannin contents in leaves extracts of Ocimum basilicum (OB) (Lamiaceae) international cultivars, as well as their overall antioxidant activities using DPPH and linoleic acid assays, were investigated. Furthermore, the antiproliferative and cytotoxic activities against line HeLa, MCF-7, Jurkat, HT-29, T24, MIAPaCa-2 cancer cells and one normal human cell line HEK-293 were examined. DPPH and linoleic acid assays ranged from 75.8% to 93.3% and from 74.5% to 97.1%; respectively. O. b. 'purple ruffle', O. b. 'dark opale', O. b. 'genovese', O. b. 'anise', O. b. 'bush green' and O. b. L. (OBL) varied in their antiproliferative and cytotoxic activities, influenced cell cycle progression and stimulated apoptosis in most cancer cells. OBL exhibited the highest antioxidant and antiproliferative activities. OB extracts not only improve taste but also have certain anticancer activity against diverse cancer cells due to the presence of compounds such as rosmarinic acid, chicoric acid and caftaric acid. Thus, OB represents a potent source of anticancer materials.

  8. Mechanisms of cell killing by the new anti-cancer drug SR 4233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.

    SR 4233 (3-amino-1,2,4-benzotriazine, 1,4-dioxide) is a new potential anti-cancer drug which has a highly selective toxicity to hypoxic cells. This study investigated the mechanism of cell killing by this drug. Enzymatic studies have shown that SR 4233 is reductively metabolized to SR 4317 by the tumor cell lines SCVII and HT 1080 under hypoxic conditions. Cytochrome P-450 may play a major role in the reduction in both cell lines. DT diaphorase is the second most important enzyme in reducing SR 4233. In characterizing the major cellular target for SR 4233, the author has shown that damage to cell mitochondria ismore » produced largely under aerobic conditions, whereas DNA is likely to be the major target for cell death under hypoxic conditions. Further experiments demonstrated that DNA damage was similar to that produced by ionizing radiation at equitoxic doses, and chromosome aberrations can entirely account for cell death by SR 4233 under hypoxic conditions in the low dose range. Nevertheless, chromosome breaks produced by SR 4233 are less repairable than those produced by ionizing radiation, suggesting highly localized damage in the DNA by discrete foci of SR 4233 radicals.« less

  9. Structure-Activity Relationships of Orotidine-5′-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, A.; Konforte, D; Poduch, E

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro,more » 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.« less

  10. Anticancer activity of Carica papaya: a review.

    PubMed

    Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K

    2013-01-01

    Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Exploring the Cytotoxic Potential of Triterpenoids-enriched Fraction of Bacopa monnieri by Implementing In vitro, In vivo, and In silico Approaches.

    PubMed

    Mallick, Md Nasar; Khan, Washim; Parveen, Rabea; Ahmad, Sayeed; Sadaf; Najm, Mohammad Zeeshan; Ahmad, Istaq; Husain, Syed Akhtar

    2017-10-01

    Bacopa monnieri (BM) is a herbaceous plant traditionally used from time immemorial in Ayurvedic and folklore medicines. We hypothesized that the extract of the whole plant might contain numerous molecules with having antitumor activities that could be very effective in killing of human cancer cells. This work investigated anticancer activity of bioactive fraction of BM. The hydroalcoholic extract of BM was fractionated with different solvent, namely, hexane, dichloromethane (DCM), acetone, methanol, and water. The in vitro anticancer activity was performed against various Human Cancer Cell lines, namely, Colon (HT29, Colo320, and Caco2), Lung (A549), Cervix (HeLa, SiHa), and Breast (MCF-7, MDAMB-231). Further, DCM fraction was evaluated in vivo for anticancer activity against Ehrlich ascites carcinoma (EAC) tumor-bearing mice since it showed the best cytotoxicity at 72 h (IC 50 41.0-60.0 µg/mL). The metabolic fingerprinting of these extract were carried out using high-performance thin-layer chromatography along with quantification of bacoside A, bacoside B, cucurbitacin B, cucurbitacin E, and bittulinic acid. Oral administration of DCM fraction at a dose of 40 mg/kg rendered prominent reduction of tumor regression parameters such as tumor weight, packed cell volume, tumor volume and viable tumor cell count as compared to the untreated mice of the EAC control group. The anticancer activity of DCM fraction may be due to the presence of large amount of bacoside A, B and cucurbitacins. The molecular docking studies of major metabolites with targeted proteins predicted the anticancer activity of DCM fraction which was in support of in vivo activity. The in vitro , in vivo , analytical and in silico studies on DCM fraction of Bacopa monieri has proved its great potential for development of anticancer phytopharmaceuticals. A new HPTLC method has been developed and validated for the qualitative and quantitative analysis of bacoside A, B, cucurbitacin B, D, E and bittulinic acid in Bacopa monnieri extract. Enrichment of active anticancer metabolites was done by polarity based fractionations of hydroalcoholic extract of Bacopa. DCM fraction of a hydroalcoholic extract of Bacopa showed anticancer potential against human cancer cell line (IC50 41.0-60.0 µg/mL) and in EAC treated mice (at a dose of 40 mg/kg body weight). The anticancer activity of Bacopa may be due to the presence of bacosides and cucurbitacin and it was confirmed by in silico screening. Abbreviations used: DBM: DCM fraction of Bacopa monnieri; DCM: Dichloromethane; EAC: Ehrlich ascites carcinoma; HCT: Hematocrit; HGB: Hemoglobin; HPTLC: High performance thin layer chromatography; ICH: International council for Harmonisation; LOD: Limit of detection; LOQ: Limit of quantification; LYM: Lymphocytes; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular haemoglobin concentration (MCHC); MCV: Mean corpuscular volume; MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PLT: Platelet; RBC: Red blood cell; RDW: Red blood cell distribution width; RSD: Relative standard deviation; WBC: White blood cells.

  12. Exploring the Cytotoxic Potential of Triterpenoids-enriched Fraction of Bacopa monnieri by Implementing In vitro, In vivo, and In silico Approaches

    PubMed Central

    Mallick, Md. Nasar; Khan, Washim; Parveen, Rabea; Ahmad, Sayeed; Sadaf; Najm, Mohammad Zeeshan; Ahmad, Istaq; Husain, Syed Akhtar

    2017-01-01

    Background: Bacopa monnieri (BM) is a herbaceous plant traditionally used from time immemorial in Ayurvedic and folklore medicines. We hypothesized that the extract of the whole plant might contain numerous molecules with having antitumor activities that could be very effective in killing of human cancer cells. Objectives: This work investigated anticancer activity of bioactive fraction of BM. Materials and Methods: The hydroalcoholic extract of BM was fractionated with different solvent, namely, hexane, dichloromethane (DCM), acetone, methanol, and water. The in vitro anticancer activity was performed against various Human Cancer Cell lines, namely, Colon (HT29, Colo320, and Caco2), Lung (A549), Cervix (HeLa, SiHa), and Breast (MCF-7, MDAMB-231). Further, DCM fraction was evaluated in vivo for anticancer activity against Ehrlich ascites carcinoma (EAC) tumor-bearing mice since it showed the best cytotoxicity at 72 h (IC50 41.0–60.0 µg/mL). The metabolic fingerprinting of these extract were carried out using high-performance thin-layer chromatography along with quantification of bacoside A, bacoside B, cucurbitacin B, cucurbitacin E, and bittulinic acid. Results: Oral administration of DCM fraction at a dose of 40 mg/kg rendered prominent reduction of tumor regression parameters such as tumor weight, packed cell volume, tumor volume and viable tumor cell count as compared to the untreated mice of the EAC control group. The anticancer activity of DCM fraction may be due to the presence of large amount of bacoside A, B and cucurbitacins. The molecular docking studies of major metabolites with targeted proteins predicted the anticancer activity of DCM fraction which was in support of in vivo activity. Conclusion: The in vitro, in vivo, analytical and in silico studies on DCM fraction of Bacopa monieri has proved its great potential for development of anticancer phytopharmaceuticals. SUMMARY A new HPTLC method has been developed and validated for the qualitative and quantitative analysis of bacoside A, B, cucurbitacin B, D, E and bittulinic acid in Bacopa monnieri extract. Enrichment of active anticancer metabolites was done by polarity based fractionations of hydroalcoholic extract of Bacopa. DCM fraction of a hydroalcoholic extract of Bacopa showed anticancer potential against human cancer cell line (IC50 41.0-60.0 µg/mL) and in EAC treated mice (at a dose of 40 mg/kg body weight). The anticancer activity of Bacopa may be due to the presence of bacosides and cucurbitacin and it was confirmed by in silico screening. Abbreviations used: DBM: DCM fraction of Bacopa monnieri; DCM: Dichloromethane; EAC: Ehrlich ascites carcinoma; HCT: Hematocrit; HGB: Hemoglobin; HPTLC: High performance thin layer chromatography; ICH: International council for Harmonisation; LOD: Limit of detection; LOQ: Limit of quantification; LYM: Lymphocytes; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular haemoglobin concentration (MCHC); MCV: Mean corpuscular volume; MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PLT: Platelet; RBC: Red blood cell; RDW: Red blood cell distribution width; RSD: Relative standard deviation; WBC: White blood cells. PMID:29142420

  13. Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3-nitrobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Arafath, Md. Azharul; Adam, Farook; Razali, Mohd. R.; Ahmed Hassan, Loiy E.; Ahamed, Mohamed B. Khadeer; Majid, Amin Malik S. A.

    2017-02-01

    A carbothioamide NSO tridentate Schiff base ligand (HL) and its square planar complexes Na[NiLOAc], Na[PdLOAc] and [PtLdmso] have been synthesized and characterized on the basis of melting point, elemental analysis, FT-IR, 1H NMR, 13C NMR, UV-Vis spectra. The structure of HL was elucidated with X-ray diffraction analysis. In the present study, the synthesized compounds were evaluated for their anticancer properties against three human cancer cell lines breast cancer (MCF-7), cervical (Hela), and colon (HCT-116). In addition, the cytotoxicity of the synthesized compounds was tested on a normal human cell line (human endothelial cell line EA.hy926). Among the tested compounds, the complex [NiLOAc] excelled in halting proliferation of the cervical and colon cancer cells with median inhibitory concentration (IC50) values of 28.33 and 34.4 μM, respectively. The complex, [PdLOAc] demonstrated selective cytotoxicity against breast cancer line MCF-7 with IC50 = 47.5 μM, while HL showed inhibitory effect against colon cancer cell line (HCT-116) with IC50 = 55.66 μM. The complex, [PtLdmso] showed mild activity against breast cancer (MCF-7) and cervical cancer (Hela) cells with IC50 = 64.44 and 68.3 μM, respectively, whereas, it displayed insignificant cytotoxicity against human endothelial cells (EA.hy926) with IC50 > 200 μM. Cancer cells treated with [NiLOAc] showed apoptotic features such as membrane blebbing and DNA condensation. Thus, the findings of the present study demonstrated that the series of metal complexes of HL could form the new lead for development of cancer chemotherapies to treat human cervical, breast and colon malignancies.

  14. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death

    PubMed Central

    Akimoto, Miho; Iizuka, Mari; Kanematsu, Rie; Yoshida, Masato; Takenaga, Keizo

    2015-01-01

    The extract of ginger (Zingiber officinale Roscoe) and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS) generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069) in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01) without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s) as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug. PMID:25961833

  15. A comparison between PLGA-PEG and NIPAAm-MAA nanocarriers in curcumin delivery for hTERT silencing in lung cancer cell line.

    PubMed

    Roointan, A; Sharifi-Rad, M; Badrzadeh, F; Sharifi-Rad, J

    2016-08-29

    Lung cancer is the most common cancer among men. Since the main reason of cancer cells immortality is telomerase activity, targeting of such enzyme can be a promising approach in cancer therapy. Curcumin is a safe and efficient anticancer agent in this context, but its applications in cancer therapy are limited because of its hydrophobic structure and low solubility in water. Today, using nanocarriers for delivery of such anticancer agents is a well performed method. Here, we developed and compared the efficiency of two nanocarriers (PLGA-PEG and NIPAAm-MAA) in delivery of curcumin and also in levels of hTERT silencing in lung cancer cell line (calu-6). Scanning electron microscopy, MTT assays and real-time PCR were used for imaging, cytotoxicity testing and measuring the expression levels of hTERT after treatment of cells with different concentrations of free curcumin and curcumin loaded nanocarriers. The MTT results demonstrated that the IC50 values of curcumin loaded nanocarriers were in lower concentrations than free curcumin. The hTERT expression levels were decreased by curcumin loaded PLGA-PEG more than curcumin loaded NIPAAm-MAA and free curcumin. Our results showed that the curcumin loaded PLGA-PEG can be a useful nano based carrier for delivery of anti-cancer agents such as curcumin to fight lung cancer.

  16. Structures of Phytosterols and Triterpenoids with Potential Anti-Cancer Activity in Bran of Black Non-Glutinous Rice

    PubMed Central

    Suttiarporn, Panawan; Chumpolsri, Watcharapong; Mahatheeranont, Sugunya; Luangkamin, Suwaporn; Teepsawang, Somsuda; Leardkamolkarn, Vijittra

    2015-01-01

    Structures of some bioactive phytochemicals in bran extract of the black rice cv. Riceberry that had demonstrated anti-cancer activity in leukemic cell line were investigated. After saponification with potassium hydroxide, separation of the unsaponified fraction by reversed-phase high performance liquid chromatography (HPLC) resulted in four sub-fractions that had a certain degree of anti-proliferation against a mouse leukemic cell line (WEHI-3 cell), this being IC50 at 24 h ranging between 2.80–467.11 μg/mL. Further purification of the bioactive substances contained in these four sub-fractions was performed by normal-phase HPLC. Structural characterization by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) resulted in, overall, the structures of seven phytosterols and four triterpenoids. Four phytosterols, 24-methylene-ergosta-5-en-3β-ol, 24-methylene-ergosta-7-en-3β-ol, fucosterol, and gramisterol, along with three triterpenoids, cycloeucalenol, lupenone, and lupeol, were found in the two sub-fractions that showed strong anti-leukemic cell proliferation (IC50 = 2.80 and 32.89 μg/mL). The other sterols and triterpenoids were campesterol, stigmasterol, β-sitosterol and 24-methylenecycloartanol. Together with the data from in vitro biological analysis, we suggest that gramisterol is a significant anti-cancer lead compound in Riceberry bran extract. PMID:25756784

  17. Bio-fabrication of catalytic platinum nanoparticles and their in vitro efficacy against lungs cancer cells line (A549).

    PubMed

    Ullah, Sadeeq; Ahmad, Aftab; Wang, Aoke; Raza, Muslim; Jan, Amin Ullah; Tahir, Kamran; Rahman, Aziz Ur; Qipeng, Yuan

    2017-08-01

    Platinum based drugs are considered as effective agents against various types of carcinoma; however, the severe toxicity associated with the chemically prepared platinum complexes limit their practical applications. Similarly, water pollution caused by various organic moieties is another serious health problem worldwide. Hence, an intense need exists to develop new, effective and biocompatible materials with catalytic and biomedical applications. In the present contribution, we prepared platinum nanoparticles (PtNPs) by a green route using phytochemicals as a source of reducing and stabilizing agents. Well dispersed and crystalline PtNPs of spherical shapes were prepared and characterized. The bio-fabricated PtNPs were used as catalyst and anticancer agents. Catalytic performance of the PtNPs showed that 84% of the methylene blue can be reduced in 32min under visible light irradiation (K=0.078min -1 ). Similarly the catalytic conversion of 4-nitrophenol to 4-aminophenol was achieved in <20min (K=0.124min -1 ). The in vitro anticancer study revealed that biogenic PtNPs are the efficient nano-agents possessing strong anticancer activity against the lungs cancer cells line (A549). Interestingly, the as prepared PtNPs were well tolerated by normal human cells, and therefore, could be effective and biocompatible agents in the treatment of different cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds

    PubMed Central

    Costa, Margarida; Garcia, Mónica; Costa-Rodrigues, João; Costa, Maria Sofia; Ribeiro, Maria João; Fernandes, Maria Helena; Barros, Piedade; Barreiro, Aldo; Vasconcelos, Vitor; Martins, Rosário

    2013-01-01

    The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria. PMID:24384871

  19. Genetic load makes cancer cells more sensitive to common drugs: evidence from Cancer Cell Line Encyclopedia.

    PubMed

    Pavel, Ana B; Korolev, Kirill S

    2017-05-16

    Genetic alterations initiate tumors and enable the evolution of drug resistance. The pro-cancer view of mutations is however incomplete, and several studies show that mutational load can reduce tumor fitness. Given its negative effect, genetic load should make tumors more sensitive to anticancer drugs. Here, we test this hypothesis across all major types of cancer from the Cancer Cell Line Encyclopedia, which provides genetic and expression data of 496 cell lines together with their response to 24 common anticancer drugs. We found that the efficacy of 9 out of 24 drugs showed significant association with genetic load in a pan-cancer analysis. The associations for some tissue-drug combinations were remarkably strong, with genetic load explaining up to 83% of the variance in the drug response. Overall, the role of genetic load depended on both the drug and the tissue type with 10 tissues being particularly vulnerable to genetic load. We also identified changes in gene expression associated with increased genetic load, which included cell-cycle checkpoints, DNA damage and apoptosis. Our results show that genetic load is an important component of tumor fitness and can predict drug sensitivity. Beyond being a biomarker, genetic load might be a new, unexplored vulnerability of cancer.

  20. The steroidal Na+/K+ ATPase inhibitor 3-[(R)-3-pyrrolidinyl]oxime derivative (3-R-POD) induces potent pro-apoptotic responses in colonic tumor cells.

    PubMed

    Alkahtani, Saad Hussin

    2014-06-01

    Recently, potent anticancer actions of the steroidal Na(+)/K(+) ATPase inhibitor 3-[(R)-3-pyrrolidinyl]oxime derivative 3 (3-R-POD) have been reported for multiple cell lines, including prostate and lung cancer cells. In the present study, the anticancer action of 3-R-POD was addressed in colonic tumor cells. Treatment of Caco2 colonic tumor cells with increasing concentrations of 3-R-POD induced potent, dose-dependent inhibition of cell growth as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the APOpercentage apoptosis assay revealed significant pro-apoptotic responses, suggesting that the anticancer activity of this steroidal Na(+)/K(+) ATPase inhibitor in colonic tumors takes places mainly through the induction of strong pro-apoptotic effects. Focussing on the molecular mechanism that may regulate these interactions, 3-R-POD was shown to induce significant early actin re-organization and late Protein Kinase B (AKT) de-phosphorylation. Finally, the 3-R-POD-induced inhibition of cell growth and early actin reorganization in colonic cancer cells remained unchanged when cells were pre-treated with pertussis toxin, thus excluding possible interactions of this inhibitor with G-coupled receptors. These results indicate that 3-R-POD induces potent pro-apoptotic responses in colonic tumor cells governed by actin re-organization and inhibition of AKT pro-survival signaling. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. In vitro cytotoxicity of allelopathic plants Adonis vernalis L. Origanum vulgare ssp. vulgare L. and Nepeta nuda subsp. nuda

    NASA Astrophysics Data System (ADS)

    Koleva, Vanya; Dragoeva, Asya; Stoyanova, Zheni; Yordanova, Zhenia; Ali, Selime; Uzunov, Nikolay M.; Melendez-Alafort, Laura; Rosato, Antonio; Enchev, Dobromir D.

    2018-03-01

    Medicinal plants produce various secondary metabolites as a part of their chemical defence and survival in nature. These compounds have a wide range of biological activities. Nowadays, medicinal plants are used as source of allelochemicals and new effective anticancer agents. Our previous studies revealed allelopathic potential of water extracts of Adonis vernalis L. (Ranunculaceae), Origanum vulgare ssp. vulgare L. and Nepeta nuda subsp. nuda (Lamiaceae). Present study aimed to evaluate the effect of the same extracts in vitro on human hepatoma cell line SK-HEP-1. Cell proliferation/viability was assessed using Premixed WST-1 Cell Proliferation Reagent. Adonis water extract (1.83mg/ml) had notable negative influence on cancer cell line tested. Oregano (3.5 mg/ml) also exerted negative effect, but to a lesser degree. On the contrary, nepeta water extract (6.59 mg/ml) had an opposite effect, stimulating cell proliferation. One possible explanation could be the type of extraction: after treatment with nepeta methanol extract (6.59 mg/ml) cell viability was significantly reduced. In conclusion, Adonis vernalis and Nepeta nuda subsp. nuda possess metabolites with growth inhibitory effect on human hepatoma cell line SK-HEP-1. Further research is needed to clarify biological activity of lower concentrations which are appropriate to enable the design of new anticancer drugs.

  2. Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Awady, Raafat A., E-mail: relawady@sharjah.ac.ae; Department of Pharmacology and Pharmaceutics, College of Pharmacy, University of Sharjah, University City road, 27272 Sharjah; Saleh, Ekram M.

    Celecoxib, an inhibitor of cyclooxygenase-2, is being investigated for enhancement of chemotherapy efficacy in cancer clinical trials. This study investigates the ability of cyclooxygenase-2 inhibitors to sensitize cells from different origins to several chemotherapeutic agents. The effect of the drug's mechanism of action and sequence of administration are also investigated. The sensitivity, cell cycle, apoptosis and DNA damage of five different cancer cell lines (HeLa, HCT116, HepG2, MCF7 and U251) to 5-FU, cisplatin, doxorubicin and etoposide {+-} celecoxib following different incubation schedules were analyzed. We found antagonism between celecoxib and the four drugs in the breast cancer cells MCF7 followingmore » all incubation schedules and between celecoxib and doxorubicin in all cell lines except for two combinations in HCT116 cells. Celecoxib with the other three drugs in the remaining four cell lines resulted in variable interactions. Mechanistic investigations revealed that celecoxib exerts different molecular effects in different cells. In some lines, it abrogates the drug-induced G2/M arrest enhancing pre-mature entry into mitosis with damaged DNA thus increasing apoptosis and resulting in synergism. In other cells, it enhances drug-induced G2/M arrest allowing time to repair drug-induced DNA damage before entry into mitosis and decreasing cell death resulting in antagonism. In some synergistic combinations, celecoxib-induced abrogation of G2/M arrest was not associated with apoptosis but permanent arrest in G1 phase. These results, if confirmed in-vivo, indicate that celecoxib is not a suitable chemosensitizer for breast cancer or with doxorubicin for other cancers. Moreover, combination of celecoxib with other drugs should be tailored to the tumor type, drug and administration schedule. - Graphical abstract: Display Omitted Highlights: > Celecoxib may enhance effects of anticancer drugs. > Its combination with four drugs was tested in five cancer cell lines. > It antagonized the effects of the four drugs in the breast cancer cell line MCF7. > Doxorubicin's cytotoxic effects were antagonized by celecoxib in four cell lines. > Cell cycle, apoptosis and DNA damage explain the different interactive effects.« less

  3. Differential expression of the multidrug resistance 1 (MDR1) protein in prostate cancer cells is independent from anticancer drug treatment and Y box binding protein 1 (YB-1) activity.

    PubMed

    Saupe, Madeleine; Rauschenberger, Lisa; Preuß, Melanie; Oswald, Stefan; Fussek, Sebastian; Zimmermann, Uwe; Walther, Reinhard; Knabbe, Cornelius; Burchardt, Martin; Stope, Matthias B

    2015-10-01

    The development of a drug-resistant phenotype is the major challenge during treatment of castration-resistant prostate cancer (PC). In solid cancer entities, one of the major contributors to chemoresistance is the multidrug resistance 1 (MDR1) protein. Believed to be involved in the induction of MDR1 expression is the presence of anticancer drugs as well as the Y box binding protein 1 (YB-1). Basal as well as drug-induced expression of MDR1 in established PC cell lines was assessed by Western blotting and mass spectrometry. Subsequently, the influence of YB-1 on MDR1 expression was examined via transient overexpression of YB-1. While LNCaP and PC-3 cells showed no detectable amounts of MDR1, the resistance factor was found to be expressed in 22Rv1 cells. Despite this difference, all three cell lines demonstrated similar growth behavior in the presence of the first-line chemotherapeutic agent docetaxel. Incubation of 22Rv1 cells with docetaxel, cabazitaxel, and abiraterone did not significantly alter MDR1 expression levels. Furthermore, overexpression of the MDR1 controlling factor YB-1 showed no impact on MDR1 expression levels. MDR1 was detectable in the PC cell line 22Rv1. However, this study suggests that MDR1 is of less importance for drug resistance in PC cells than in other types of solid cancer. Furthermore, in contrast to YB-1 properties in other malignancies, MDR1 regulation through YB-1 seems to be unlikely.

  4. Isolation and characterization of circulating tumor cells from human gastric cancer patients.

    PubMed

    Yuan, Dandan; Chen, Liang; Li, Mingxing; Xia, Hongwei; Zhang, Yuchen; Chen, Tie; Xia, Rui; Tang, Qiulin; Gao, Fabao; Mo, Xianming; Liu, Ming; Bi, Feng

    2015-04-01

    Circulating tumor cells (CTCs) have been proved to be responsible for tumor metastasis and resistant to anticancer therapies. This study aims to isolate and characterize circulating tumor cells from human gastric cancer patients, and investigate characteristic differences between gastric CTCs and gastric cancer cell lines. We analyzed 31 cases of gastric cancer patients using anti-CD45 antibody-conjugated magnetic microbeads negative separation, combined with fluorescence activated cell sorter CD44 positive screening. Abilities of tumor formation, metastasis, invasion, migration, irradiation and drug sensitivity of CTCs and gastric cancer cell lines were detected and compared. Of all the 31 patients, CD44(+)/CD45(-)CTCs were isolated in 14 patients, of which 3 cases were stage IIA, 2 cases stage IIB, 2 cases stage IIIC and 7 cases stage IV. The malignant behavior was demonstrated by both clonogenetic assay and tumor xenograft in nude mice. Compared with human gastric cancer cell lines, the migration and invasion abilities of CTCs increased to 3.21-12.6-fold and 2.3-6.7-fold, respectively (all p values <0.05). In addition, the metastatic potential of CTCs is much higher in vivo than that of the control. Furthermore, CTCs were found to be relatively sensitive to FU, cisplatin and paclitaxel, but relatively resistant to irradiation, oxaliplatin, cetuximab and trastuzumab. CD44(+)/CD45(-) gastric CTCs were isolated and found to exhibit stronger malignant behavior when compared with human gastric cancer cell lines. Furthermore, CTCs cultured in vitro have potential implications in drug sensitivity screening for the future anticancer treatments.

  5. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin

    PubMed Central

    WANG, CHONG-ZHI; ZHANG, CHUN-FENG; CHEN, LINA; ANDERSON, SAMANTHA; LU, FANG; YUAN, CHUN-SU

    2015-01-01

    Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal micro-biota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anti-cancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis. PMID:26398706

  6. Anti-proliferative activities on HeLa cancer cell line of Thai medicinal plant recipes selected from MANOSROI II database.

    PubMed

    Manosroi, Jiradej; Boonpisuttinant, Korawinwich; Manosroi, Worapaka; Manosroi, Aranya

    2012-07-13

    The Thai/Lanna medicinal plant recipe database "MANOSROI II" contained the medicinal plant recipes of all regions in Thailand for the treatment of various diseases including anti-cancer medicinal plant recipes. To investigate anti-proliferative activity on HeLa cell lines of medicinal plant recipes selected from the Thai/Lanna medicinal plant recipe database "MANOSROI II". The forty aqueous extracts of Thai/Lanna medicinal plant recipes selected from the Thai/Lanna medicinal plant recipe database "MANOSROI II" were investigated for anti-proliferative activity on HeLa cell line by SRB assay. The apoptosis induction by caspase-3 activity and MMP-2 inhibition activity by zymography on HeLa cell line of the three selected aqueous extracts, which gave the highest anti-proliferative activity were determined. Phytochemicals and anti-oxidative activities including free radical scavenging activity, inhibition of lipid peroxidation and metal chelating inhibition activities were also investigated. Sixty percentages of the medicinal plant recipes selected from "MANOSROI II" database showed anti-proliferative activity on HeLa cell line. The recipes of N031(Albizia chinensis (Osbeck) Merr, Cassia fistula L., and Dargea volubilis Benth.ex Hook. etc.), N039 (Nymphoides indica L., Peltophorum pterocarpum (DC.), and Polyalthia debilis Finet et Gagnep etc.) and N040 (Nymphoides indica L. Kuntze, Sida rhombifolia L., and Xylinbaria minutiflora Pierre. etc.) gave higher anti-proliferative activity than the standard anti-cancer drug, cisplatin of 1.25, 1.29 and 30.18 times, respectively. The positive relationship between the anti-proliferative activity and the MMP-2 inhibition activity and metal chelating inhibition activity was observed, but no relationship between the anti-proliferative activity and apoptosis induction, free radical scavenging activity and lipid peroxidation inhibition activity. Phytochemicals found in these extracts were alkaloids, flavonoids, tannins and xanthones, but not anthraquinones and carotenoids. The recipe N040 exhibited the highest anti-proliferative and MMP-2 inhibition on HeLa cancer cell line at 30 and threefolds of cisplatin, respectively (p<0.05), while recipe N031 gave the highest caspase-3 activity (1.29-folds over the control) (p<0.05). This study has demonstrated that recipe N040 selected from MANOSROI II database appeared to be a good candidate with high potential for the further development as an anti-cancer agent. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Induction of heme oxygenase-1 with hemin alleviates cisplatin-induced reproductive toxicity in male rats and enhances its cytotoxicity in prostate cancer cell line.

    PubMed

    Heeba, Gehan Hussein; Hamza, Alaaeldin Ahmed; Hassanin, Soha Osama

    2016-12-15

    Cisplatin-induced testicular damage is a major obstacle in the application of cisplatin as chemotherapeutic agent. However, it remains as one of the most widely employed anticancer agents in treating various solid tumors including prostate cancer. Since heme-oxygenase-1 (HO-1) is a cytoprotective enzyme with anti-oxidative stress, anti-inflammatory and anticancer activities, we investigated the effects of up-regulation of HO-1 by hemin and its inhibition by zinc protoporphyrin-IX (ZnPP) on cisplatin-induced testicular toxicity in adult rats. Furthermore, the anticancer effect of hemin and ZnPP, with and without cisplatin, was evaluated on human prostate cancer cell line, PC3. Results of the animal study showed that hemin reversed cisplatin-induced perturbations in sperm characteristics, normalized serum testosterone level, and ameliorated cisplatin-induced alterations in testicular and epididymal weights, and restored normal testicular architecture. Moreover, hemin increased the expression and activity of HO-1 protein and prevented cisplatin-induced testicular toxicity by virtue of its antioxidant and anti-inflammatory effects. This effect was evidenced by amelioration of testicular oxidative stress markers (malondialdehyde, nitric oxide, reduced glutathione contents, and catalase activity) and inflammatory mediators (tumor necrosis factor-α and nitric oxide synthase expressions). In contrast, administration of ZnPP (HO-1 inhibitor) did not show significant improvement against cisplatin-induced testicular toxicity. Finally, in vitro analyses showed that, hemin augmented the anticancer efficacy of cisplatin, while ZnPP inhibited its apoptotic effect in PC3 cells. In conclusion, the induction of HO-1 represents a potential therapeutic approach to protect the testicular tissue from the detrimental effects of cisplatin without repressing, but rather augmenting, its cytotoxic effects on PC3 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. A survey on anticancer effects of artemisinin, iron, miconazole, and butyric acid on 5637 (bladder cancer) and 4T1 (Breast cancer) cell lines.

    PubMed

    Shahbazfar, Amir Ali; Zare, Payman; Ranjbaran, Mehrdad; Tayefi-Nasrabadi, Hossein; Fakhri, Omid; Farshi, Yashar; Shadi, Sahar; Khoshkerdar, Afsaneh

    2014-01-01

    Anticancer properties of artemisinin and its derivatives have been shown in many experiments. Addition of butyric acid, miconazole, and iron to this traditional drug has been done in order to enhance its anticancer potency. Cell lines 5637 and 4T1, were cultivated and classified into 13 groups of three each. Different doses of artemisinin with constant doses of iron, miconazole and butyric acid, were added to the cultures. At the end of exposure pathological and enzymatic studies were performed. In four groups treated with different doses of artemisinin and iron, dose-dependent changes were observed. These changes included apoptosis and necrosis with dominance of apoptosis. The supernatant lactate dehydrogenase (LDH) level was increased in a dose-dependent manner, but there was no significant increase in the cell fraction of malonyldialdehyde (MDA) or LDH. In four other groups, which received miconazole, butyric acid and iron in addition to different doses of artemisinin, necrosis was more prominent than apoptosis, and the MDA level did not show any significant change, but LDH was increased. The groups treated with miconazole showed identical changes, with less severity compared to combination therapy groups. In butyric acid-treated groups, the only detectable changes were, mild cell swelling, few apoptosis, and rare necrosis. A combination therapy with artemisinin can be more effective against cancer cells than monotherapy with that. Butyric acid was not effective on cancer cells. Miconazole deviated the nature of cell death from apoptosis to necrosis and it must be used under caution.

  9. Lappaol F, a novel anticancer agent isolated from plant arctium Lappa L.

    PubMed

    Sun, Qing; Liu, Kanglun; Shen, Xiaoling; Jin, Weixin; Jiang, Lingyan; Sheikh, M Saeed; Hu, Yingjie; Huang, Ying

    2014-01-01

    In an effort to search for new cancer-fighting therapeutics, we identified a novel anticancer constituent, Lappaol F, from plant Arctium Lappa L. Lappaol F suppressed cancer cell growth in a time- and dose-dependent manner in human cancer cell lines of various tissue types. We found that Lappaol F induced G(1) and G(2) cell-cycle arrest, which was associated with strong induction of p21 and p27 and reduction of cyclin B1 and cyclin-dependent kinase 1 (CDK1). Depletion of p21 via genetic knockout or short hairpin RNA (shRNA) approaches significantly abrogated Lappaol F-mediated G(2) arrest and CDK1 and cyclin B1 suppression. These results suggest that p21 seems to play a crucial role in Lappaol F-mediated regulation of CDK1 and cyclin B1 and G(2) arrest. Lappaol F-mediated p21 induction was found to occur at the mRNA level and involved p21 promoter activation. Lappaol F was also found to induce cell death in several cancer cell lines and to activate caspases. In contrast with its strong growth inhibitory effects on tumor cells, Lappaol F had minimal cytotoxic effects on nontumorigenic epithelial cells tested. Importantly, our data also demonstrate that Lappaol F exhibited strong growth inhibition of xenograft tumors in nude mice. Lappaol F was well tolerated in treated animals without significant toxicity. Taken together, our results, for the first time, demonstrate that Lappaol F exhibits antitumor activity in vitro and in vivo and has strong potential to be developed as an anticancer therapeutic.

  10. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis

    PubMed Central

    2012-01-01

    Background Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Methods Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G2), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. Results The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC50 values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC50 values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. Conclusion This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs. PMID:22458642

  11. Anti-cancer activity of withaferin A in B-cell lymphoma

    PubMed Central

    McKenna, MK; Gachuki, BW; Alhakeem, SS; Oben, KN; Rangnekar, VM; Gupta, RC; Bondada, S

    2015-01-01

    Withaferin A (WA), a withanolide from the plant, Ashwagandha (Withania somnifera) used in Ayurvedic medicine, has been found to be valuable in the treatment of several medical ailments. WA has been found to have anticancer activity against various solid tumors, but its effects on hematological malignancies have not been studied in detail. WA strongly inhibited the survival of several human and murine B cell lymphoma cell lines. Additionally, in vivo studies with syngeneic-graft lymphoma cells suggest that WA inhibits the growth of tumor but does not affect other proliferative tissues. We demonstrate that WA inhibits the efficiency of NF-κB nuclear translocation in diffuse large B cell lymphomas and found that WA treatment resulted in a significant decrease in protein levels involved in B cell receptor signaling and cell cycle regulation. WA inhibited the activity of heat shock protein (Hsp) 90 as reflected by a sharp increase in Hsp70 expression levels. Hence, we propose that the anti-cancer effects of WA in lymphomas are likely due to its ability to inhibit Hsp90 function and subsequent reduction of critical kinases and cell cycle regulators that are clients of Hsp90. PMID:26020511

  12. Anti-cancer activity of withaferin A in B-cell lymphoma.

    PubMed

    McKenna, M K; Gachuki, B W; Alhakeem, S S; Oben, K N; Rangnekar, V M; Gupta, R C; Bondada, S

    2015-01-01

    Withaferin A (WA), a withanolide from the plant, Ashwagandha (Withania somnifera) used in Ayurvedic medicine, has been found to be valuable in the treatment of several medical ailments. WA has been found to have anticancer activity against various solid tumors, but its effects on hematological malignancies have not been studied in detail. WA strongly inhibited the survival of several human and murine B cell lymphoma cell lines. Additionally, in vivo studies with syngeneic-graft lymphoma cells suggest that WA inhibits the growth of tumor but does not affect other proliferative tissues. We demonstrate that WA inhibits the efficiency of NF-κB nuclear translocation in diffuse large B cell lymphomas and found that WA treatment resulted in a significant decrease in protein levels involved in B cell receptor signaling and cell cycle regulation. WA inhibited the activity of heat shock protein (Hsp) 90 as reflected by a sharp increase in Hsp70 expression levels. Hence, we propose that the anti-cancer effects of WA in lymphomas are likely due to its ability to inhibit Hsp90 function and subsequent reduction of critical kinases and cell cycle regulators that are clients of Hsp90.

  13. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy.

    PubMed

    Saengkrit, Nattika; Saesoo, Somsak; Srinuanchai, Wanwisa; Phunpee, Sarunya; Ruktanonchai, Uracha Rungsardthong

    2014-02-01

    The delivery of curcumin has been explored in the form of liposomal nanoparticles to treat various cancer cells. Since curcumin is water insoluble and an effective delivery route is through encapsulation in liposomes, which were modified with three components of DDAB, cholesterol and non-ionic surfactant. The purpose of this study was to establish a critical role of DDAB in liposomes containing curcumin at cellular response against two types of cell lines (HeLa and SiHa). Here, we demonstrate that DDAB is a potent inducer of cell uptake and cell death in both cell lines. The enhanced cell uptake was found on DDAB-containing liposome, but not on DDAB-free liposome. However, the cytotoxicity of DDAB-containing liposomes was high and needs to be optimized. The cytotoxicity of liposomal curcumin was more pronounced than free curcumin in both cells, suggesting the benefits of using nanocarrier. In addition, the anticancer efficiency and apoptosis effect of the liposomal curcumin formulations with DDAB was higher than those of DDAB-free liposomes. Therefore curcumin loaded liposomes indicate significant potential as delivery vehicles for the treatment of cervical cancers. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Mannich bases of 1,2,4-triazole-3-thione containing adamantane moiety: Synthesis, preliminary anticancer evaluation, and molecular modeling studies.

    PubMed

    Milošev, Milorad Z; Jakovljević, Katarina; Joksović, Milan D; Stanojković, Tatjana; Matić, Ivana Z; Perović, Milka; Tešić, Vesna; Kanazir, Selma; Mladenović, Milan; Rodić, Marko V; Leovac, Vukadin M; Trifunović, Snežana; Marković, Violeta

    2017-06-01

    A series of 18 novel N-Mannich bases derived from 5-adamantyl-1,2,4-triazole-3-thione was synthesized and characterized using NMR spectroscopy and X-ray diffraction technique. All derivatives were evaluated for their anticancer potential against four human cancer cell lines. Several tested compounds exerted good cytotoxic activities on K562 and HL-60 cell lines, along with pronounced selectivity, showing lower cytotoxicity against normal fibroblasts MRC-5 compared to cancer cells. The effects of compounds 5b, 5e, and 5j on the cell cycle were investigated by flow cytometric analysis. It was found that these compounds cause the accumulation of cells in the subG1 and G1 phases of the cell cycle and induce caspase-dependent apoptosis, while the anti-angiogenic effects of 5b, 5e, and 5j have been confirmed in EA.hy926 cells using a tube formation assay. Further, the interaction of Bax protein with compound 5b was investigated by means of molecular modeling, applying the combined molecular docking/molecular dynamics approach. © 2016 John Wiley & Sons A/S.

  15. Growth inhibitory and proapoptotic effects of l-asparaginase from Fusarium culmorum ASP-87 on human leukemia cells (Jurkat).

    PubMed

    Meghavarnam, Anil K; Salah, Maryam; Sreepriya, Meenakshisundaram; Janakiraman, Savitha

    2017-06-01

    The objective of this study was to evaluate the anticancer properties of l-asparaginase purified from fungal isolate Fusarium culmorum ASP-87 against human T-cell leukemia cell line (Jurkat). The growth inhibitory and proapoptotic effects of purified l-asparaginase on Jurkat cell lines were investigated by determining its influence on cell viability, colony formation, DNA fragmentation, and cell cycle progression. The results revealed that purified l-asparaginase showed significant decrease in cell survival with IC 50 value of 90 μg/mL (9 IU/mL). The enzyme inhibited colony formation and showed characteristic laddering pattern on agarose gel thereby confirming the induction of apoptosis. Further, cell cycle analysis revealed that the enzyme induced apoptotic cell death by arresting the growth of cells at G 2 -M phase. However, the enzyme did not elicit any toxic effects on human erythrocytes. l-asparaginase purified from F. culmorum ASP-87 showed significant and selective cytotoxic and apoptotic effects on human T-cell leukemic cells in dose-dependent manner. Results of the study give leads for the anticancer effects of fungal l-asparaginase and its potential usefulness in the chemotherapy of leukemia. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  16. Fatty acid composition and anticancer activity in colon carcinoma cell lines of Prunus dulcis seed oil.

    PubMed

    Mericli, Filiz; Becer, Eda; Kabadayı, Hilal; Hanoglu, Azmi; Yigit Hanoglu, Duygu; Ozkum Yavuz, Dudu; Ozek, Temel; Vatansever, Seda

    2017-12-01

    Almond oil is used in traditional and complementary therapies for its numerous health benefits due to high unsaturated fatty acids content. This study investigated the composition and in vitro anticancer activity of almond oil from Northern Cyprus and compared with almond oil from Turkey. Almond oil from Northern Cyprus was obtained by supercritical CO 2 extraction and analyzed by GC-MS. Almond oil of Turkey was provided from Turkish pharmacies. Different concentrations of almond oils were incubated for 24 and 48 h with Colo-320 and Colo-741 cells. Cell growth and cytotoxicity were measured by MTT assays. Anticancer and antiprolifetarive activities of almond oils were investigated by immunocytochemistry using antibodies directed against to BMP-2, β-catenin, Ki-67, LGR-5 and Jagged 1. Oleic acid (77.8%; 75.3%), linoleic acid (13.5%; 15.8%), palmitic acid (7.4%; 6.3%), were determined as the major compounds of almond oil from Northern Cyprus and Turkey, respectively. In the MTT assay, both almond oils were found to be active against Colo-320 and Colo-741 cells with 1:1 dilution for both 24 h and 48 h. As a result of immunohistochemical staining, while both almond oils exhibited significant antiproliferative and anticancer activity, these activities were more similar in Colo-320 cells which were treated with Northern Cyprus almond oil. Almond oil from Northern Cyprus and Turkey may have anticancer and antiproliferative effects on colon cancer cells through molecular signalling pathways and, thus, they could be potential novel therapeutic agents.

  17. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity

    NASA Astrophysics Data System (ADS)

    Barai, Abir Chandan; Paul, Koushik; Dey, Aditi; Manna, Subhankar; Roy, Somenath; Bag, Braja Gopal; Mukhopadhyay, Chiradeep

    2018-04-01

    The phytochemicals present in the stem bark extract of Nerium oleander (commonly known as Karabi) have been utilized for the green synthesis of stable gold-conjugated nanoparticles at room temperature under very mild conditions. The green synthesized gold-conjugated nanoparticles were characterized by surface plasmon resonance spectroscopy, High resolution transmission electron microscopy, X-ray diffraction studies and dynamic light scattering. A mechanism for the synthesis and stabilization of gold-conjugated nanoparticles (AuNPs) has been proposed. Anticancer activity of the stabilized AuNPs studied against MCF-7 breast cancer cell line revealed that the stabilized AuNPs were highly effective for the apoptosis of cancer cells selectively. The antioxidant activity of the stem bark extract of Nerium oleander has also been studied against a long lived 2,2-diphenylpicrylhydrazyl radical at room temperature. Moreover, the utilization of the stabilized AuNPs as a catalyst has also been demonstrated. [Figure not available: see fulltext.

  18. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity.

    PubMed

    Barai, Abir Chandan; Paul, Koushik; Dey, Aditi; Manna, Subhankar; Roy, Somenath; Bag, Braja Gopal; Mukhopadhyay, Chiradeep

    2018-01-01

    The phytochemicals present in the stem bark extract of Nerium oleander (commonly known as Karabi) have been utilized for the green synthesis of stable gold-conjugated nanoparticles at room temperature under very mild conditions. The green synthesized gold-conjugated nanoparticles were characterized by surface plasmon resonance spectroscopy, High resolution transmission electron microscopy, X-ray diffraction studies and dynamic light scattering. A mechanism for the synthesis and stabilization of gold-conjugated nanoparticles (AuNPs) has been proposed. Anticancer activity of the stabilized AuNPs studied against MCF-7 breast cancer cell line revealed that the stabilized AuNPs were highly effective for the apoptosis of cancer cells selectively. The antioxidant activity of the stem bark extract of Nerium oleander has also been studied against a long lived 2,2-diphenylpicrylhydrazyl radical at room temperature. Moreover, the utilization of the stabilized AuNPs as a catalyst has also been demonstrated.

  19. Synthesis of novel fluorinated chalcones derived from 4‧-morpholinoacetophenone and their antiproliferative effects

    NASA Astrophysics Data System (ADS)

    Kurşun Aktar, Bedriye Seda; Oruç-Emre, Emine Elçin; Demirtaş, Ibrahim; Yaglioglu, Ayse Sahin; Guler, Caglar; Adem, Sevki; Karaküçük Iyidoğan, Ayşegül

    2017-12-01

    The fluorinated chalcones were synthesized by Claisen-Schmidt condensation between 4‧-morpholineacetophenone and various fluorinated benzaldehydes in the presence of NaOH in methanol. The synthesized compounds [1-7] were evaluated their antiproliferative activity against HeLa and C6 cell lines. Among them, compounds 4 and 5 were determined to have anticancer activity against HeLa cells line (IC50 values of 7.74 and 6.10 μg/mL, respectively). The anticancer activity results were shown that compounds 3, and 6 had inhibitory against C6 cells (IC50 values of 12.80 and 4.16 μg/mL, respectively). The compounds 1 and 2 had high antiproliferative activity with non-cytotoxicity. All of the new compounds, except for compound 4 showed inhibition against the human isozyme hCA I with IC50 in the range of 0.5-1,16 mM. Pyruvate kinase M2 (PKM2) was effectively inhibited by compound 4 with IC50 = 26 μM.

  20. A Genomics-Based Approach Identifies a Thioviridamide-Like Compound with Selective Anticancer Activity.

    PubMed

    Frattaruolo, Luca; Lacret, Rodney; Cappello, Anna Rita; Truman, Andrew W

    2017-11-17

    Thioviridamide is a structurally novel ribosomally synthesized and post-translational modified peptide (RiPP) produced by Streptomyces olivoviridis NA005001. It is characterized by a structure that features a series of thioamide groups and possesses potent antiproliferative activity in cancer cell lines. Its unusual structure allied to its promise as an anticancer compound led us to investigate the diversity of thioviridamide-like pathways across sequenced bacterial genomes. We have isolated and characterized three diverse members of this family of natural products. This characterization is supported by transformation-associated recombination cloning and heterologous expression of one of these compounds, thiostreptamide S4. Our work provides an insight into the diversity of this rare class of compound and indicates that the unusual N-terminus of thioviridamide is not introduced biosynthetically but is instead introduced during acetone extraction. A detailed analysis of the biological activity of one of the newly discovered compounds, thioalbamide, indicates that it is highly cytotoxic to cancer cells, while exhibiting significantly less activity toward a noncancerous epithelial cell line.

  1. The natural flavonoid silybin improves the response to Photodynamic Therapy of bladder cancer cells.

    PubMed

    Gándara, L; Sandes, E; Di Venosa, G; Prack Mc Cormick, B; Rodriguez, L; Mamone, L; Batlle, A; Eiján, A M; Casas, A

    2014-04-05

    Photodynamic Therapy (PDT) is an anticancer treatment based on photosensitisation of malignant cells. The precursor of the photosensitiser Protoporphyrin IX, 5-aminolevulinic acid (ALA), has been used for PDT of bladder cancer. Silybin is a flavonoid extracted from Silybum marianum, and it has been reported to increase the efficacy of several anticancer treatments. In the present work, we evaluated the cytotoxicity of the combination of ALA-PDT and silybin in the T24 and MB49 bladder cancer cell lines. MB49 cells were more sensitive to PDT damage, which was correlated with a higher Protoporphyrin IX production from ALA. Employing lethal light doses 50% (LD50) and 75% (LD75) and additional silybin treatment, there was a further increase of toxicity driven by PDT in both cell lines. Using the Chou-Talalay model for drug combination derived from the mass-action law principle, it was possible to identify the effect of the combination as synergic when using LD75, whilst the use of LD50 led to an additive effect on MB49 cells. On the other hand, the drug combination turned out to be nearly additive on T24 cells. Apoptotic cell death is involved both in silybin and PDT cytotoxicity in the MB49 line but there is no apparent correlation with the additive or synergic effect observed on cell viability. On the other hand, we found an enhancement of the PDT-driven impairment of cell migration on both cell lines as a consequence of silybin treatment. Overall, our results suggest that the combination of silybin and ALA-PDT would increase PDT outcome, leading to additive or synergistic effects and possibly impairing the occurrence of metastases. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. In vitro anticancer activities of Leonurus heterophyllus sweet (Chinese motherwort herb).

    PubMed

    Chinwala, Maimoona G; Gao, Min; Dai, Jie; Shao, Jun

    2003-08-01

    To investigate the anticancer activities of Chinese motherwort herb (Leonurus heterophyllus Sweet; LHS). Dried LHS was extracted and reconstituted in phosphate-buffered saline. The in vitro antiproliferation activities of the extract were tested against seven human cancer cell lines. The DNA ladder assay and cell morphologic studies were performed to verify the drug's apoptotic activities. The possible pathway by which LHS induced apoptosis was also explored by examining mitochondrial depolarization, cytochrome c release, and caspase-3 activation. The LHS extract was effective in inhibiting the growth of all seven cancer cell lines tested. The IC(50) (50% inhibition concentrations, milligrams of raw material per milliliter) were in the range of 8.0-40.0 when the drug exposure time was 48 hours. The inhibitory action of the herbal extract was time- and dose-dependent. A significant decrease in activity was seen when the drug exposure time was shortened. Microscopic examination of the LN CaP and other cancer cell lines after treatment with LHS revealed morphologic changes that are typical of cells undergoing apoptosis. DNA fragmentation was obvious in the DNA latter assay and this confirmed the induction of apoptosis of the cancer cells by LHS. The mitochondria of the LHS-treated cells were found to undergo depolarization. Cytochrome c was released into the cytosol from the LHS-treated cells but not from the control cells. Cells treated with LHS showed cleavage of the full-length poly[ADP(ribose)] polymerase (PARP; 112 kd) to generate the 85-kd cleaved PARP fragment indicating the activation of caspase-3. LHS was able to induce apoptosis of all the tumor cell lines tested. The antiproliferation effect was dose- and time-dependent. The mitochondrion was found to be involved in the apoptosis induced by the LHS extract.

  3. Zanthoxylum fruit extract from Japanese pepper promotes autophagic cell death in cancer cells.

    PubMed

    Nozaki, Reo; Kono, Toru; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Oketani, Kaori; Sakamaki, Yuichi; Okubo, Naoto; Nakagawa, Koji; Takeda, Hiroshi

    2016-10-25

    Zanthoxylum fruit, obtained from the Japanese pepper plant (Zanthoxylum piperitum De Candolle), and its extract (Zanthoxylum fruit extract, ZFE) have multiple physiological activities (e.g., antiviral activity). However, the potential anticancer activity of ZFE has not been fully examined. In this study, we investigated the ability of ZFE to induce autophagic cell death (ACD). ZFE caused remarkable autophagy-like cytoplasmic vacuolization, inhibited cell proliferation, and ultimately induced cell death in the human cancer cell lines DLD-1, HepG2, and Caco-2, but not in A549, MCF-7, or WiDr cells. ZFE increased the level of LC3-II protein, a marker of autophagy. Knockdown of ATG5 using siRNA inhibited ZFE-induced cytoplasmic vacuolization and cell death. Moreover, in cancer cells that could be induced to undergo cell death by ZFE, the extract increased the phosphorylation of c-Jun N-terminal kinase (JNK), and the JNK inhibitor SP600125 attenuated both vacuolization and cell death. Based on morphology and expression of marker proteins, ZFE-induced cell death was neither apoptosis nor necrosis. Normal intestinal cells were not affected by ZFE. Taken together, our findings show that ZFE induces JNK-dependent ACD, which appears to be the main mechanism underlying its anticancer activity, suggesting a promising starting point for anticancer drug development.

  4. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    PubMed

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.

  5. Gen-27, a newly synthesized flavonoid, inhibits glycolysis and induces cell apoptosis via suppression of hexokinase II in human breast cancer cells.

    PubMed

    Tao, Lei; Wei, Libing; Liu, Yishi; Ding, Yang; Liu, Xiuting; Zhang, Xin; Wang, Xiaoping; Yao, Yuyuan; Lu, Jinrong; Wang, Qing; Hu, Rong

    2017-02-01

    We have previously reported that Gen-27, a newly synthesized flavonoid, exhibits anticancer effects against human colorectal cancer cells. In this study, we investigated the anticancer effects in human breast cancer cell lines and its underlying mechanisms. We demonstrated that Gen-27 inhibited the growth and proliferation of human breast cancer cells in concentration and time-dependent manners. It was found that Gen-27 induced mitochondrial-mediated apoptosis, characterized by the dissipation of mitochondrial membrane potential (ΔΨm), cytochrome c (Cyt c) release from mitochondria to cytosol, activation of caspases and induction of poly (ADP-ribose) polymerase (PARP). In addition, Gen-27 inhibited the glycolysis in human breast cancer cells. After treatment with Gen-27, the expression of HKII was down-regulated, accompanied by weakened interaction of HKII and VDAC. Further research revealed that the induction of mitochondrial apoptosis was associated with the decrease of HKII expression by Gen-27. Finally, in vivo studies demonstrated that Gen-27 significantly suppressed the growth and promoted apoptosis of MDA-MB-231 breast cancer orthotopic tumors with low systemic toxicity. In conclusion, the results showed that Gen-27 had significant anticancer effects against human breast cancer and it may potentially be used as a novel anticancer agent for the treatment of breast cancer. Copyright © 2016. Published by Elsevier Inc.

  6. Cytotoxic agents for KB and SiHa cells from n-hexane fraction of Cissampelos pareira and its chemical composition.

    PubMed

    Bala, Manju; Pratap, Kunal; Verma, Praveen Kumar; Padwad, Yogendra; Singh, Bikram

    2015-01-01

    Eleven constituents were characterised by gas chromatography-mass spectrometry analysis, and five molecules were isolated using column chromatography. The in vitro study of the extract and isolated molecules against KB and SiHa cell lines revealed oleanolic acid (1) and oleic acid (2) as potent cytotoxic molecules with potential anticancer activity. The IC50 values of n-hexane extract (CPHF), oleanolic acid (1) and oleic acid (2) were >300, 56.08 and 70.7 μg/mL (μM), respectively, against KB cell lines and >300, 47.24 and 80.2 μg/mL (μM), respectively, against SiHa cell lines.

  7. Subtype and pathway specific responses to anticancer compounds in breast cancer.

    PubMed

    Heiser, Laura M; Sadanandam, Anguraj; Kuo, Wen-Lin; Benz, Stephen C; Goldstein, Theodore C; Ng, Sam; Gibb, William J; Wang, Nicholas J; Ziyad, Safiyyah; Tong, Frances; Bayani, Nora; Hu, Zhi; Billig, Jessica I; Dueregger, Andrea; Lewis, Sophia; Jakkula, Lakshmi; Korkola, James E; Durinck, Steffen; Pepin, François; Guan, Yinghui; Purdom, Elizabeth; Neuvial, Pierre; Bengtsson, Henrik; Wood, Kenneth W; Smith, Peter G; Vassilev, Lyubomir T; Hennessy, Bryan T; Greshock, Joel; Bachman, Kurtis E; Hardwicke, Mary Ann; Park, John W; Marton, Laurence J; Wolf, Denise M; Collisson, Eric A; Neve, Richard M; Mills, Gordon B; Speed, Terence P; Feiler, Heidi S; Wooster, Richard F; Haussler, David; Stuart, Joshua M; Gray, Joe W; Spellman, Paul T

    2012-02-21

    Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.

  8. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines.

    PubMed

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-05-01

    To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted.

  9. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    PubMed Central

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  10. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    NASA Astrophysics Data System (ADS)

    K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-05-01

    Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  11. Garlic-derived compound S-allylmercaptocysteine (SAMC) is active against anaplastic thyroid cancer cell line 8305C (HPACC).

    PubMed

    Liu, Yuexin; Yan, Jinyin; Han, Xiaochen; Hu, Wanning

    2015-01-01

    Epidemiological and experimental carcinogenesis studies provide evidence that components of garlic have anticancer activity. In this study, the apoptotic effects of Garlic-derived compound S-allylmercaptocysteine (SAMC) were investigated in 8305C human anaplastic thyroid carcinoma cells. The cell line 8305C (HPACC) were treated with SAMC and the MTT assay, flow cytometry (FCM), electron microscope method were used to test cell cycle, inhibitory rate and morphologic changes respectively. HPACC-8305C cells were suppressed after exposure to SAMC of 0.02 mg/ml, 0.06 mg/ml, and 0.1 mg/ml for 48 h. Compared with the control, the difference was significant (P< 0.05). SAMC could induce apoptosis of the cells in a dose-dependent and non-linear manner and increase the proportion of cells in the G2/M phase. Compared with the control, the difference was significant in terms of the percentage of cells in the G2/M phase (P< 0.05). After exposure to SAMC at 0.02 mg/ml for 24 hours, HPACC-8305C cells showed typical morphologic change. SAMC inhibits the growth of HPACC-8305C cells by induction of apoptotic cell death and inhibit telomerase activity, which appears to account for its anti-cancer activity.

  12. Differential biological effects of dehydroepiandrosterone (DHEA) between mouse (B16F10) and human melanoma (BLM) cell lines.

    PubMed

    Joshi, Kumud; Hassan, Sherif S; Ramaraj, Pandurangan

    2017-01-01

    Dehydroepiandrosterone (DHEA) is a weak androgen and had been shown to have anti-cancer, anti-adipogenic and anti-inflammatory effects on mouse and other rodent models, but not on humans, suggesting a systemic level difference between mouse and human. Our previous study on DHEA biological functions involving a variety of cell lines, suggested that the functional differences between mouse and human existed even at the cellular level. Hence, using mouse and human melanoma cell models, in-vitro effects of DHEA on cell growth, mechanism of cell death and mechanism of DHEA action were studied. Results indicated a differential biological effects of DHEA between mouse and human melanoma cell lines. These in-vitro studies also suggested that the differential biological effects observed between these two cell lines could be due to the difference in the way DHEA was processed or metabolized inside the cell.

  13. Synthesis, characterisation, and in vitro anticancer activity of curcumin analogues bearing pyrazole/pyrimidine ring targeting EGFR tyrosine kinase.

    PubMed

    Ahsan, Mohamed Jawed; Khalilullah, Habibullah; Yasmin, Sabina; Jadav, Surender Singh; Govindasamy, Jeyabalan

    2013-01-01

    In search of potential therapeutics for cancer, we described herein the synthesis, characterization, and in vitro anticancer activity of a novel series of curcumin analogues. The anticancer effects were evaluated on a panel of 60 cell lines, according to the National Cancer Institute (NCI) screening protocol. There were 10 tested compounds among 14 synthesized compounds, which showed potent anticancer activity in both one-dose and 5-dose assays. The most active compound of the series was 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-yl(phenyl)methanone which showed mean growth percent of -28.71 in one-dose assay and GI₅₀ values between 0.0079 and 1.86 µM in 5-dose assay.

  14. The Cytotoxicity of Dacarbazine Potentiated by Sea Cucumber Saponin in Resistant B16F10 Melanoma Cells through Apoptosis Induction

    PubMed Central

    Baharara, Javad; Amini, Elaheh; Nikdel, Najme; Salek-Abdollahi, Farzaneh

    2016-01-01

    Background: Malignant melanoma is a highly aggressive malignant melanocytic neoplasm which resists against the most conventional therapies. Sea cucumber as one of marine organisms contains bioactive compounds such as polysaccharide, terpenoid and other metabolites which have anti-cancer, anti-tumor, anti-inflammatory and antioxidant properties. The present study was designed to investigate the anticancer potential of saponin extracted from sea cucumber Holothuria leucospilata alone and in combination with dacarbazine on B16F10 melanoma cell line. Methods: The B16F10 cell line was treated with different concentrations of saponin (0, 4, 8, 12, 16, 20 μg/ml), dacarbazine (0, 1200, 1400, 1600, 18000, 1200, 1400, 1600, 2000 μg/ml) and co-administration of saponin-dacarbazine (1200 da+8 sp, 1200 da+4 sp) for 24 and 48 hr and the cytotoxic effect was examined by MTT, DAPI, acridine orange/propodium iodide, flow cytometry and caspase colorimetric assay. Results: The results exhibited that sea cucumber saponin, dacarbazine, and co-administration of saponin-dacarbazine inhibited the proliferation of melanoma cells in a dose and time dependent manner with IC50 values of 10, 1400 and 4+1200 μg/ml, respectively. Morphological observation of DAPI and acridine orange/propodium iodide staining documented typical characteristics of apoptotic cell death. Flow cytometry assay indicated accumulation of IC50 treated cells in sub-G1 peak. Additionally, saponin extracted induced intrinsic apoptosis via up-regulation of caspase-3 and caspase-9. Conclusion: These results revealed that the saponin extracted from sea cucumber as a natural anti-cancer compound may be a new treatment modality for metastatic melanoma and the application of sea cucumber saponin in combination with dacarbazine demonstrated the strongest anti-cancer activity as compared with the drug alone. PMID:27563423

  15. Synthesis, Characterization, Anticancer and Antibacterial Activity of Some Novel Pyrano[2,3-d]pyrimidinone Carbonitrile Derivatives.

    PubMed

    Aremu, Oluwole S; Gopaul, Kaalin; Kadam, Pramod; Singh, Moganavelli; Mocktar, Chunderika; Singh, Parvesh; Koorbanally, Neil A

    2017-01-01

    Pyrimidines have widespread activity and have shown potent antibacterial and anticancer activity. To synthesise a range of pyrimidine diones and test them for their antibacterial and anticancer activity. The pyranopyrimidin-2,4-dione derivatives (1-7) were synthesized in a one-pot reaction by reacting malononitrile and barbituric acid with several aromatic aldehydes in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) in aqueous medium. The compounds were tested for their antibacterial activity using the broth microdilution method and for their cytotoxicity against three cell lines, HeLa (cervical cancer), Caco-2 (human colon adenocarcinoma) and HEK 293 (human embryonic kidney cells) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay. Compounds 1-7 were successfully synthesized in yields of >90%. The 3,4-dihydroxyaryl (3) and the 2,5- dimethoxyaryl (7) derivatives were novel. Compounds 3, 5 (4'-methoxy derivative) and 6 (2',3'-dimethoxy derivative) showed antibacterial activity comparable to or better than the standard ampicillin. All the test compounds 1-7 showed good anticancer activity. The IC50 values ranged from 3.46 to 37.13 μM (HeLa); 136.78 to 297.05 μM (Caco-2) and 137.84 to 333.81 μM (HEK293). The best activity was seen in the HeLa cell line when compared to the standard 5FU (5-Fluorouracil IC50 of 41.85 μM), with 1, 2, 5 and 7 having IC50 values of 10.64, 3.46, 4.36 and 4.44 μM respectively. Additionally, two representative compounds (1 and 7) found to be potent against the two cell lines (HeLa and HEK 293) were docked into the binding site of human kinesin Eg5 with the aim of predicting their binding propensities and to establish their mechanism of action. The Lipinski parameters of these compounds were also computed and analysed for their drug-likeness. Compound 6 is an excellent candidate for a broad spectrum antibiotic with MBCs of 45.6-365.2 μM, while both 3 and 6 have the potential to be developed into an antibiotic against MRSA, with MBCs of 183-199 μM. Since all synthesized compounds showed IC50 values of 10 μM or less especially against the HeLa cells, they can be considered good lead compounds for anticancer agents. Additionally, the docking simulations suggested a good binding affinity of the compounds with Eg5 and indicated their anti-cancer action, at least partially, through its inhibition. The predicted Lipinski descriptors also indicated the potential of these compounds as an orally active drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Anticancer Activity of Marine Sponge Hyrtios sp. Extract in Human Colorectal Carcinoma RKO Cells with Different p53 Status

    PubMed Central

    Lim, Hyun Kyung; Bae, Woori; Lee, Hyi-Seung

    2014-01-01

    Drug development using marine bioresources is limited even though the ocean occupies about 70% of the earth and contains a large number of biological materials. From the screening test of the marine sponge extracts, we found Hyrtios sp. sponge collected from Chuuk island, Micronesia. In this study, the Hyrtios sp. extract was examined for anticancer activity against human colorectal carcinoma RKO cells that are wildtype for p53 and RKO-E6 that are p53 defective. The Hyrtios sp. extract dose-dependently inhibited viability in both cell lines. Multinucleation as an indication of mitotic catastrophe was also observed. Cytotoxicity tests gave significantly different results for RKO and RKO-E6 cells after 48 h exposure to Hyrtios sp. extract. In RKO cells treated with Hyrtios sp. extract, cell death occurred by induction of p53 and p21 proteins. In p53-defective RKO-E6 cells, Hyrtios sp. extract decreased expression of JNK protein and increased p21 protein. These results indicate that Hyrtios sp. extract induced apoptosis via different pathways depending on p53 status and could be a good natural product for developing new anticancer drugs. PMID:25243139

  17. Antiproliferative effect of a food coloring on colon cancer cell line.

    PubMed

    Norizadeh Tazehkand, M

    2017-01-01

    4-MEI (4-Methylimidazole) is used as a chemical intermediate, crude material or component in the manufacture of pharmaceuticals, photographic and photothermographic chemicals, dyes and pigments and agricultural chemicals. 4-MEI is unintentionally found in our food. Caramel colour (which is the most used beverage colouring and food), dark beers and common brands of cola drinks may comprise more than 100 μg of this compound per 12-ounce serving. 4-MEI is widely used by people and colon cancer is common in our countries. So, it was decided to do in vitro analysis of anti-cancer effect of 4-MEI by MTT test using htc-116 cell line.In this study, mouse Htc-116 cell line was treated with 4-MEI concentrations of 300, 450, 600 and 750 µg/mL for 24 hours and 48 hours periods, after that antiproliferative effect of the 4-MEI was studied by MTT assay. In this study 4-MEI at highest concentration of 24h and at all concentration for 48 h treatment time significantly inhibited cell proliferation when it was compared to control. Also, exposing to the 4-MEI for 48 hours led to a decrease in cells proliferation by concentration dependent manner. This result showed that 4-MEI had anticancer effect in htc-116 cells. However, it has to be evaluated with different new studies (Tab. 1, Fig. 4, Ref. 19).

  18. LY294002 enhances expression of proteins encoded by recombinant replication-defective adenoviruses via mTOR- and non-mTOR-dependent mechanisms.

    PubMed

    Shepelev, Mikhail V; Korobko, Elena V; Vinogradova, Tatiana V; Kopantsev, Eugene P; Korobko, Igor V

    2013-03-04

    Adenovirus-based drugs are efficient when combined with other anticancer treatments. Here we show that treatment with LY294002 and LY303511 upregulates expression of recombinant proteins encoded by replication-defective adenoviruses, including expression of therapeutically valuable combination of herpes simplex virus thymidine kinase controlled by human telomerase reverse transcriptase promoter (Ad-hTERT-HSVtk). In line with this, treatment with LY294002 synergized with Ad-hTERT-HSVtk infection in the presence of gancyclovir prodrug on Calu-I lung cancer cell death. The effect of LY294002 and LY303511 on adenovirus-delivered transgene expression was demonstrated in 4 human lung cancer cell lines. LY294002-induced upregulation of adenovirally delivered transgene is mediated in part by direct inhibition of mTOR protein kinase in mTORC2 signaling complex thus suggesting that anticancer drugs targeting mTOR will also enhance expression of transgenes delivered with adenoviral vectors. As both LY294002 and LY303511 are candidate prototypic anticancer drugs, and many mTOR inhibitors for cancer treatment are under development, our results have important implication for development of future therapeutic strategies with adenoviral gene delivery.

  19. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    PubMed

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Destruxin B Isolated from Entomopathogenic Fungus Metarhizium anisopliae Induces Apoptosis via a Bcl-2 Family-Dependent Mitochondrial Pathway in Human Nonsmall Cell Lung Cancer Cells

    PubMed Central

    Wu, Chun-Chi; Chen, Tzu-Hsiu; Liu, Bing-Lan; Wu, Li-Chen; Chen, Yung-Ching; Tzeng, Yew-Min; Hsu, Shih-Lan

    2013-01-01

    Destruxin B, isolated from entomopathogenic fungus Metarhizium anisopliae, is one of the cyclodepsipeptides with insecticidal and anticancer activities. In this study, destruxin B was extracted and purified by ion-exchange chromatography, silica gel chromatography, and semipreparative high-performance liquid chromatography. The potential anticancer effects and molecular mechanisms of destruxin B in human nonsmall cell lung cancer cell lines were characterized. Our results showed that destruxin B induced apoptotic cell death in A549 cells. This event was accompanied by the activation of caspase-2, -3, and -9. Moreover, destruxin B increased the expression level of proapoptotic molecule, PUMA, while decreased antiapoptotic molecule Mcl-1. Additionally, the translocation of Bax from cytosol to mitochondrial membrane was observed upon destruxin B treatment. Knockdown of Bax by shRNA effectively attenuated destruxin-B-triggered apoptosis in A549 cells. Interestingly, similar toxic effects and underlying mechanisms including caspase activation, upregulation of PUMA, and downregulation of Mcl-1 were also observed in a p53-null lung cancer H1299 cell line upon destruxin B treatment. Taken together, our findings suggest that destruxin-B-induced apoptosis in human nonsmall cell lung cancer cells is via a Bcl-2 family-dependent mitochondrial pathway. PMID:24204395

  1. Optimization of gefitinib analogues with potent anticancer activity.

    PubMed

    Yin, Kai-Hao; Hsieh, Yi-Han; Sulake, Rohidas S; Wang, Su-Pei; Chao, Jui-I; Chen, Chinpiao

    2014-11-15

    The interactions of gefitinib (Iressa) in EGFR are hydrogen bonding and van der Waals forces through quinazoline and aniline rings. However the morpholino group of gefitinib is poorly ordered due to its weak electron density. A series of novel piperazino analogues of gefitinib where morpholino group substituted with various piperazino groups were designed and synthesized. Most of them indicated significant anti-cancer activities against human cancer cell lines. In particular, compounds 52-54 showed excellent potency against cancer cells. Convergent synthetic approach has been developed for the synthesis of gefitinib intermediate which can lead to gefitinib as well as numerous analogues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Hydroxyethylated graphene oxide as potential carriers for methotrexate delivery

    NASA Astrophysics Data System (ADS)

    Du, Libo; Suo, Siqingaowa; Luo, Dan; Jia, Hongying; Sha, Yinlin; Liu, Yang

    2013-06-01

    In this study, we presented a simple approach to prepare hydroxyethylated graphene oxide (HE-GO) with high water solubility and physiological stability. The successful synthesis of HE-GO was confirmed by UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The loading of anticancer drug methotrexate (MTX) onto this nanocarrier (MTX/HE-GO) was investigated. The results of in vitro drug release experiment showed that the rate of MTX release from MTX/HE-GO was pH dependent. Moreover, cell viability assay demonstrated that HE-GO loaded with MTX exhibits higher anticancer activity against human lung adenocarcinoma epithelial cell line than non-vehicle MTX.

  3. Exploring Orthogonal Hydrogen Bonding towards Designing Organic-Salt-Based Supramolecular Gelators: Synthesis, Structures, and Anticancer Properties.

    PubMed

    Chakraborty, Poulami; Dastidar, Parthasarathi

    2018-05-18

    A series of primary ammonium monocarboxylate (PAM) salts derived from β-alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide⋅⋅⋅amide and PAM synthons on gelation. Single-crystal X-ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure-property correlation based on SXRD and powder X-ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA-MB-231, revealed that one of the PAM salts in the series, namely, PAA.B2, displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structure-based pharmacophore design and virtual screening for novel potential inhibitors of epidermal growth factor receptor as an approach to breast cancer chemotherapy.

    PubMed

    Mahernia, Shabnam; Hassanzadeh, Malihe; Sharifi, Niusha; Mehravi, Bita; Paytam, Fariba; Adib, Mehdi; Amanlou, Massoud

    2018-02-01

    Cancer cells are described with features of uncontrolled growth, invasion and metastasis. The epidermal growth factor receptor subfamily of tyrosine kinases (EGFR-TK) plays a crucial regulatory role in the control of cellular proliferation and progression of various cancers. Therefore, its inhibition might lead to the discovery of a new generation of anticancer drugs. In the present study, structure-based pharmacophore modeling, molecular docking and molecular dynamics simulations were applied to identify potential hits, which exhibited good inhibition on the proliferation of MCF-7 breast cancer cell line and favorable binding interactions on EGFR-TK. Selected compounds were examined for their anticancer activity against the Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line which overexpresses EGFR using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay. Compounds 1 and 2, with an isoindoline-1-one core, induced significant inhibition of breast cancer cells proliferation with IC[Formula: see text] values 327 and 370 nM, respectively.

  5. Superior anticancer activity is demonstrated by total extract of Curcuma longa L. as opposed to individual curcuminoids separated by centrifugal partition chromatography.

    PubMed

    Kukula-Koch, Wirginia; Grabarska, Aneta; Łuszczki, Jarogniew; Czernicka, Lidia; Nowosadzka, Ewa; Gumbarewicz, Ewelina; Jarząb, Agata; Audo, Gregoire; Upadhyay, Shakti; Głowniak, Kazimierz; Stepulak, Andrzej

    2018-05-01

    Three curcuminoids: bisdemethoxycurcumin, demethoxycurcumin, and curcumin from turmeric were successfully separated by a high capacity solvent system composed of heptane: chloroform: methanol: water mixture (5: 6: 3: 2 v/v/v/v) tailored for centrifugal partition chromatographs at K-values of 0.504, 1.057, 1.644, respectively. These three ferulic acid derivatives obtained at a purity rate exceeding 95% were analysed by an HPLC-MS spectrometer. Turmeric extract inhibited the proliferation/viability of A549 human lung cancer, HT29 colon cancer, and T98G glioblastoma cell lines in (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay (MTT). Single curcuminoids significantly decreased the viability/proliferation of lung cancer cells in a dose-dependent manner. However, total extract displayed the superior anticancer activity in the investigated cell lines. Crude extract in combination with cisplatin augmented the decrease in the viability of cancer cells compared with single compound treatment in A549 lung cancer cells. Total extract of Curcuma longa could be regarded as being more effective against lung cancer cells in vitro than its separated compounds. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Cold physical plasma treated buffered saline solution as effective agent against pancreatic cancer cells.

    PubMed

    Bekeschus, Sander; Kading, Andre; Schroder, Tim; Wende, Kristian; Hackbarth, Christine; Liedtke, Kim Rouven; van der Linde, Julia; von Woedtke, Thomas; Heidecke, Claus-Dieter; Partecke, Lars-Ivo

    2018-05-07

    Cold physical plasma has been suggested as a new anticancer tool recently. However, direct use of plasma is limited to visible tumors and in some clinical situations not feasible. This includes repetitive treatment of peritoneal metastases which commonly occur in advanced gastrointestinal cancer and in pancreatic cancer in particular. In case of diffuse intraperitoneal metastatic spread Hyperthermic Intraperitoneal Intraoperative Chemotherapy (HIPEC) is used as therapeutic approach. Plasma treated solutions may combine their suspected systemic non-toxic characteristics with the anticancer effects of HIPEC. Previous work has provided evidence for an anti-cancer efficacy of plasma treated cell culture medium but the clinical relevance of such an approach is low due to its complex formulation and lack of medical accreditation. Therefore, plasma treated phosphate-buffered saline (PBS) which closely resembles medically certified solutions was investigated for its cytotoxic effect on 2D monolayer murine pancreatic cancer cells in vitro. It significantly decreased cancer cell metabolisms and proliferation whereas plasma treated Dulbecco's Modified Eagle Medium had no effect. Moreover, tumor cell growth attenuation was significantly higher when compared to syngeneic primary murine fibroblasts. Both results were confirmed in a human pancreatic cancer cell line. Finally, plasma treated PBS also decreased tumor sizes of pancreatic tumors in the TUM-CAM model in a three-dimensional manner, and induction of apoptosis was found to be responsible for all anticancer effects identified. Altogether, plasma treated PBS inhibited cell growth in 2D and 3D models of cancer. These results may help facilitating the development of new plasma derived anticancer agent with clinical relevance in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Isolation and characterization of Cepa2, a natural alliospiroside A, from shallot (Allium cepa L. Aggregatum group) with anticancer activity.

    PubMed

    Abdelrahman, Mostafa; Mahmoud, Hassan Y A H; El-Sayed, Magdi; Tanaka, Shuhei; Tran, L S

    2017-07-01

    Exploration of new and promising anticancer compounds continues to be one of the main tasks of cancer research because of the drug resistance, high cytotoxicity and limitations of tumor selectivity. Natural products represent a better choice for cancer treatment in comparison with synthetic compounds because of their pharmacokinetic properties and lower side effects. In the current study, we isolated a steroidal saponin, named Cepa2, from the dry roots of shallot (Allium cepa L. Aggregatum group), and determined its structure by using two-dimensional nuclear manganic resonance (2D NMR). The 1 H NMR and 13 C NMR data revealed that the newly isolated Cepa2 compound is identical to alliospiroside A (C 38 H 60 O 12 ) [(25S)-3β-hydroxyspirost-5-en-1β-yl-2-O-(6-deoxy-α-L-mannopyranosyl)-α-L-arabinopyranoside], whose anticancer activity remains elusive. Our in vitro examination of the cytotoxic activity of the identified Cepa2 against P3U1 myeloma cancer cell line showed its high efficiency as an anticancer with 91.13% reduction in P3U1 cell viability 12 h post-treatment. The reduction of cell viability was correlated with the increase in reactive oxygen species levels in Cepa2-treated P3U1 cells, as compared with untreated cells. Moreover, scanning electron microscope results demonstrated apoptosis of the Cepa2-treated P3U1 cells in a time course-dependent manner. The results of our study provide evidence for the anticancer properties of the natural Cepa2/alliospiroside A extracted from shallot plants, and a strong foundation for in-depth investigations to build theoretical bases for cell apoptosis and development of novel anticancer drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. From COX-2 inhibitor nimesulide to potent anti-cancer agent: synthesis, in vitro, in vivo and pharmacokinetic evaluation

    PubMed Central

    Chennamaneni, Snigdha; Yi, Xin; Liu, lili; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2014-01-01

    Cyclooxygenase-2 (COX-2) inhibitor nimesulide inhibits the proliferation of various types of cancer cells mainly via COX-2 independent mechanisms, which makes it a good lead compound for anti-cancer drug development. In the presented study, a series of new nimesulide analogs were synthesized based on the structure–function analysis generated previously. Some of them displayed very potent anti-cancer activity with IC50s around 100nM to 200nM to inhibit SKBR-3 breast cancer cell growth. CSUOH0901 (NSC751382) from the compound library also inhibits the growth of the 60 cancer cell lines used at National Cancer Institute Developmental therapeutics Program (NCIDTP) with IC50s around 100nM to 500nM. Intraperitoneal injection with a dosage of 5mg/kg/d of CSUOH0901 to nude mice suppresses HT29 colorectal xenograft growth. Pharmacokinetic studies demonstrate the good bioavailability of the compound. PMID:22119125

  9. Anticancer Activity of Ferulic Acid-Inorganic Nanohybrids Synthesized via Two Different Hybridization Routes, Reconstruction and Exfoliation-Reassembly

    PubMed Central

    Choi, Ae-Jin; Oh, Jae-Min

    2013-01-01

    We have successfully prepared nanohybrids of biofunctional ferulic acid and layered double hydroxide nanomaterials through reconstruction and exfoliation-reassembly routes. From X-ray diffraction and infrared spectroscopy, both nanohybrids were determined to incorporate ferulic acid molecules in anionic form. Micrsocopic results showed that the nanohybrids had average particle size of 150 nm with plate-like morphology. As the two nanohybridization routes involved crystal disorder and random stacking of layers, the nanohybrids showed slight alteration in z-axis crystallinity and particle size. The zeta potential values of pristine and nanohybrids in deionized water were determined to be positive, while those in cell culture media shifted to negative values. According to the in vitro anticancer activity test on human cervical cancer HeLa cells, it was revealed that nanohybrids showed twice anticancer activity compared with ferulic acid itself. Therefore we could conclude that the nanohybrids of ferulic acid and layered double hydroxide had cellular delivery property of intercalated molecules on cancer cell lines. PMID:24453848

  10. Anticancer activity of ferulic acid-inorganic nanohybrids synthesized via two different hybridization routes, reconstruction and exfoliation-reassembly.

    PubMed

    Kim, Hyoung-Jun; Ryu, Kitae; Kang, Joo-Hee; Choi, Ae-Jin; Kim, Tae-il; Oh, Jae-Min

    2013-01-01

    We have successfully prepared nanohybrids of biofunctional ferulic acid and layered double hydroxide nanomaterials through reconstruction and exfoliation-reassembly routes. From X-ray diffraction and infrared spectroscopy, both nanohybrids were determined to incorporate ferulic acid molecules in anionic form. Microscopic results showed that the nanohybrids had average particle size of 150 nm with plate-like morphology. As the two nanohybridization routes involved crystal disorder and random stacking of layers, the nanohybrids showed slight alteration in z-axis crystallinity and particle size. The zeta potential values of pristine and nanohybrids in deionized water were determined to be positive, while those in cell culture media shifted to negative values. According to the in vitro anticancer activity test on human cervical cancer HeLa cells, it was revealed that nanohybrids showed twice anticancer activity compared with ferulic acid itself. Therefore we could conclude that the nanohybrids of ferulic acid and layered double hydroxide had cellular delivery property of intercalated molecules on cancer cell lines.

  11. (-)-Kusunokinin and piperloguminine from Piper nigrum: An alternative option to treat breast cancer.

    PubMed

    Sriwiriyajan, Somchai; Sukpondma, Yaowapa; Srisawat, Theera; Madla, Siribhorn; Graidist, Potchanapond

    2017-08-01

    Several studies have reported that active compounds isolated from Piper nigrum possess anticancer properties. However, there are no data on anticancer activity of (-)-kusunokinin and piperlonguminine. The purposes of this study were to isolate active compounds from P. nigrum and identify the molecular mechanisms underlying growth and apoptosis pathway in breast cancer cells. Two bioactive compounds, (-)-kusunokinin and piperlonguminine, were isolated from P. nigrum. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry and Western blot analysis. We found that the active compounds, which effect cancer cell lines were (-)-kusunokinin and piperlonguminine. These compounds have potent cytotoxic effects on breast cancer cells (MCF-7 and MDA-MB-468) and colorectal cells (SW-620). (-)-Kusunokinin demonstrated a cytotoxic effect on MCF-7 and MDA-MB-468 with IC 50 values of 1.18 and 1.62μg/mL, respectively. Piperlonguminine had a cytotoxic effect on MCF-7 and MDA-MB-468 with IC 50 values of 1.63 and 2.19μg/mL, respectively. Both compounds demonstrated lower cytotoxicity against normal breast cell lines with IC 50 values higher than 11μg/mL. Cell cycle and apoptotic analysis using flow cytometry, showed that the (-)-kusunokinin and piperlonguminine induced cell undergoing apoptosis and drove cells towards the G2/M phase. Moreover, both compounds decreased topoisomerase II and bcl-2. The increasing of p53 levels further increased p21, bax, cytochrome c, caspase-8, -7 and -3 activities, except caspase-9. These results suggest that the (-)-kusunokinin and piperlonguminine have been shown to have potent anticancer activities through extrinsic pathway and G2/M phase arrest. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: anticancer and antibacterial activities.

    PubMed

    Singh, Hina; Du, Juan; Yi, Tae-Hoo

    2017-11-01

    This study highlights the facile, reliable, cost effective, and ecofriendly synthesis of silver nanoparticles (AgNPs) using Borago officinalis leaves extract efficiently. The biosynthesis of AgNPs was verified by UV-Vis spectrum which showed the surface plasmon resonance (SPR) band at 422 nm. Transmission electron microscope (TEM) analysis revealed that the particles were spherical, hexagonal, and irregular in shape and had size ranging from 30 to 80 nm. The energy dispersive X-ray spectroscopy (EDX) and elemental mapping have displayed the purity and maximum distribution of silver in the AgNPs. The crystalline nature of AgNPs had been identified using X-ray diffraction (XRD) and selected area diffraction pattern (SAED). The particle size analysis revealed that the Z-average diameter of the AgNPs was 50.86 nm with polydispersity index (PDI) 0.136. Zeta potential analysis displayed the colloidal stability of AgNPs. This work also showed the efficacy of AgNPs against lung cancer cell lines (A549) and cervical cancer cell line (HeLa), in vitro. The AgNPs showed cytotoxicity to the A549 and HeLa cancer cell line at the concentrations 5 and 2 μg/ml. The AgNPs were also explored for the antibacterial activity including biofilm inhibition against pathogenic bacteria. The B. officinalis leaves extract can be used efficiently for green synthesis AgNPs. The biosynthesized AgNPs demonstrated potentials as anticancer and antibacterial agents. This work provides helpful insight into the development of new anticancer and antimicrobial agents.

  13. Potential of amphiphilic graft copolymer α-tocopherol succinate-g-carboxymethyl chitosan in modulating the permeability and anticancer efficacy of tamoxifen.

    PubMed

    Jena, Sunil K; Samal, Sanjaya K; Kaur, Shamandeep; Chand, Mahesh; Sangamwar, Abhay T

    2017-04-01

    Recent studies showed an enhanced oral bioavailability of tamoxifen (TMX) by hydrophobically modified α-tocopherol succinate-g-carboxymethyl chitosan (Cmc-TS) micelles. As a continued effort, here we evaluated TMX-loaded polymeric micelles (TMX-PMs) for its enhanced permeability with increased anticancer efficacy and decreased hepatotoxicity. We employed co-solvent evaporation technique to encapsulate TMX into Cmc-TS. Apparent permeability assay of TMX-PMs was performed on Caco-2 cell line. The absorptive transport of TMX increased significantly about 3.8-fold when incorporated into Cmc-TS PMs. Cytotoxicity of Cmc-TS PMs was studied on MCF-7 cell line by MTT and; confocal microscopy was used for cellular uptake. Confocal microscopy revealed that Cmc-TS PMs could effectively accumulate in the cytosol of MCF-7 cell lines. In vitro data was further validated using N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis model in Sprague-Dawley rats. Hepatotoxicity profiles of TMX-PMs at three different doses were also evaluated against the free drug TMX. TMX-PMs were more effective in suppressing breast tumor in MNU-induced mammary carcinoma model than free TMX with better safety profile. In addition, histological data shows that tumors are "benign" in TMX-PMs treated group compared with "malignant" tumors in free TMX treated and control groups. Overall, the results implicate that our Cmc-TS PMs may serve as a promising carrier for the intracellular delivery of anticancer drug molecules via oral route. Copyright © 2017. Published by Elsevier B.V.

  14. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells.

    PubMed

    Hoai, Nguyen Thi; Duc, Ho Viet; Thao, Do Thi; Orav, Anne; Raal, Ain

    2015-10-01

    So far, the anticancer action of pine tree extracts has mainly been shown for the species distributed widely around the Asian countries. Therefore, this study was performed to examine the potential cytotoxicity of Scots pine (Pinus sylvestris L.) native also to the European region and growing widely in Estonia. The cytotoxic activity of methanol extract and essential oil of Scots pine needles was determined by sulforhodamine B assay in different human cancer cell lines. This needle extract was found to suppress the viability of several human cancer cell lines showing some selectivity to estrogen receptor negative breast cancer cells, MDA-MB-231(half maximal inhibitory concentration [IC50] 35 μg/ml) in comparison with estrogen receptor-positive breast cancer cells, MCF-7 (IC50 86 μg/ml). It is the strongest cytotoxic effect at all measured, thus far for the needles and leaves extracts derived from various pine species, and is also the first study comparing the anticancer effects of pine tree extracts on molecularly different human breast cancer cells. The essential oil showed the stronger cytotoxic effect to both negative and positive breast cancer cell lines (both IC50 29 μg/ml) than pine extract (IC50 42 and 80 μg/ml, respectively). The data from this report indicate that Scots pine needles extract and essential oil exhibits some potential as chemopreventive or chemotherapeutic agent for mammary tumors unresponsive to endocrine treatment.

  15. Pharmacological importance, characterization and applications of gold and silver nanoparticles synthesized by Panax ginseng fresh leaves.

    PubMed

    Singh, Priyanka; Singh, Hina; Ahn, Sungeun; Castro-Aceituno, Verónica; Jiménez, Zuly; Simu, Shakina Yesmin; Kim, Yeon Ju; Yang, Deok Chun

    2017-11-01

    Previously, we showed the rapid and eco-friendly synthesis of gold and silver nanoparticles within 3 and 45 min by fresh leaves extract of herbal medicinal plant Panax ginseng. In addition, we characterized the nanoparticles in terms of shape, size, morphology and stability by FE-TEM, EDX, elemental mapping, SEAD, XRD and particles size analysis. In addition of this, we showed their antimicrobial, anti-coagulant, and biofilm inhibition activity of nanoparticles. Continuing our previous study, here we highlight the further characterization and biomedical applications of P. ginseng leaf-mediated gold and silver nanoparticles. We characterized the nanoparticles further in terms of active functional group and capping layer, surface charge, and temperature stability. Based on these factors, we explored the nanoparticles for antioxidant efficacy, biocompatibility in HaCaT cells, 3T3-L1 pre-adipocytes cells, for anticancer efficacy in A549 lung cancer and B16BL6 skin melenoma cancer cell lines and for anti-inflammation efficacy in RAW 264.7 cell lines. Based on our findings, we suggest that the P. ginseng-mediated gold nanoparticles have high antioxidant activity and highly biocompatibility in HaCaT cells, 3T3-L1 pre-adipocytes cells, RAW 264.7 cells lines and could be considered for future drug delivery carriers. The silver nanoparticles also showed high potent antioxidant efficacy, additionally it showed high anticancer effect in A549 lung cancer and B16BL6 skin melenoma cancer cell lines as compared to precursor salts. Moreover, both gold and silver nanoparticles have anti-inflammatory efficacies in RAW 264.7 cells. Thus, the study may provide useful insights of P. ginseng leaves extract-mediated biocompatible gold and silver nanoparticles and improving their applicability in designing nanoparticles carrier systems for drug delivery applications.

  16. "(Not) all (dead) things share the same breath": identification of cell death mechanisms in anticancer therapy.

    PubMed

    Rello-Varona, Santiago; Herrero-Martín, David; López-Alemany, Roser; Muñoz-Pinedo, Cristina; Tirado, Oscar M

    2015-03-15

    During the last decades, the knowledge of cell death mechanisms involved in anticancer therapy has grown exponentially. However, in many studies, cell death is still described in an incomplete manner. The frequent use of indirect proliferation assays, unspecific probes, or bulk analyses leads too often to misunderstandings regarding cell death events. There is a trend to focus on molecular or genetic regulations of cell demise without a proper characterization of the phenotype that is the object of this study. Sometimes, cancer researchers can feel overwhelmed or confused when faced with such a corpus of detailed insights, nomenclature rules, and debates about the accuracy of a particular probe or assay. On the basis of the information available, we propose a simple guide to distinguish forms of cell death in experimental settings using cancer cell lines. ©2015 American Association for Cancer Research.

  17. Methanolic extract of Pterocarpus santalinus induces apoptosis in HeLa cells.

    PubMed

    Kwon, H J; Hong, Y K; Kim, K H; Han, C H; Cho, S H; Choi, J S; Kim, Byung-Woo

    2006-04-21

    Ptercarpus santalinus (Fabaceae) has been used as a folk remedy in Korea, and it has been shown to exhibit antiinflammations, antiulcers and anticancer effects. In this study, therefore, we report the cytotoxic activity and the mechanism of cell death exhibited by the methanol extract of Ptercarpus santalinus (MEPS) against human cervical adenocarcinoma cell line, HeLa. Treatment of HeLa cells with various concentrations of MEPS resulted in growth inhibition and induction of apoptosis in a dose-dependent manner as determined by cell viability, chromatin condensation, DNA fragmentation and sub-G1 phase accumulation. In Western blot analysis, apoptosis in the HeLa cells was associated with the release of cytochrome C from mitochondria into the cytosol, activation of caspases-3, -8, -9 and proteolytic cleavage of PARP. These results suggest that MEPS exhibits antiproliferative effect on HeLa cells via apoptosis, and it may be a potential candidate in field of anticancer drug discovery.

  18. The anti-cancer peptide, PNC-27, induces tumor cell necrosis of a poorly differentiated non-solid tissue human leukemia cell line that depends on expression of HDM-2 in the plasma membrane of these cells.

    PubMed

    Davitt, Katlin; Babcock, Blake D; Fenelus, Maly; Poon, Chi Kong; Sarkar, Abhishek; Trivigno, Vincent; Zolkind, Paul A; Matthew, Sheena M; Grin'kina, Natalia; Orynbayeva, Zulfiya; Shaikh, Mohammad F; Adler, Victor; Michl, Josef; Sarafraz-Yazdi, Ehsan; Pincus, Matthew R; Bowne, Wilbur B

    2014-01-01

    We have developed the anti-cancer peptide, PNC-27, which is a membrane-active peptide that binds to the HDM-2 protein expressed in the cancer cell membranes of solid tissue tumor cells and induces transmembrane pore formation in cancer, but not in normal cells, resulting in tumor cell necrosis that is independent of p53 activity in these cells. We now extend our study to non-solid tissue tumor cells, in this case, a primitive, possible stem cell human leukemia cell line (K562) that is also p53-homozygously deleted. Our purpose was twofold: to investigate if these cells likewise express HDM-2 in their plasma membranes and to determine if our anti-cancer peptide induces tumor cell necrosis in these non-solid tissue tumor cells in a manner that depends on the interaction between the peptide and membrane-bound HDM-2. The anti-cancer activity and mechanism of PNC-27, which carries a p53 aa12-26-leader sequence connected on its carboxyl terminal end to a trans-membrane-penetrating sequence or membrane residency peptide (MRP), was studied against p53-null K562 leukemia cells. Murine leukocytes were used as a non-cancer cell control. Necrosis was determined by measuring the lactate dehydrogenase (LDH) release and apoptosis was determined by the detection of Caspases 3 and 7. Membrane colocalization of PNC-27 with HDM-2 was analyzed microscopically using fluorescently labeled antibodies against HDM-2 and PNC-27 peptides. We found that K562 cells strongly express HDM-2 protein in their membranes and that PNC-27 co-localizes with this protein in the membranes of these cells. PNC-27, but not the negative control peptide PNC-29, is selectively cytotoxic to K562 cells, inducing nearly 100 percent cell killing with LDH release. In contrast, this peptide had no effect on the lymphocyte control cells. The results suggest that HDM-2 is expressed in the membranes of non-solid tissue tumor cells in addition to the membranes of solid tissue tumor cells. Since K-562 cells appear to be in the stem cell family, the results suggest that early developing tumor cells also express HDM-2 protein in their membranes. Since PNC-27 induces necrosis of K-562 leukemia cells and co-localizes with HDM-2 in the tumor cell membrane as an early event, we conclude that the association of PNC-27 with HDM-2 in the cancer cell membrane results in trans-membrane pore formation which results in cancer cell death, as previously discovered in a number of different solid tissue tumor cells. Since K562 cells lack p53 expression, these effects of PNC-27 on this leukemia cell line occur by a p53-independent pathway. © 2014 by the Association of Clinical Scientists, Inc.

  19. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines.

    PubMed

    Sarvmeili, Najmeh; Jafarian-Dehkordi, Abbas; Zolfaghari, Behzad

    2016-12-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were: β -caryophyllene (14.8%), germacrene D (12.9%), α-terpinenyl acetate (8.15%), α -pinene (5.7%), and -α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extract showed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica . Therefore, P. eldarica might have a good potential for active anticancer agents.

  20. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines

    PubMed Central

    Sarvmeili, Najmeh; Jafarian-Dehkordi, Abbas; Zolfaghari, Behzad

    2016-01-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were: β -caryophyllene (14.8%), germacrene D (12.9%), α–terpinenyl acetate (8.15%), α –pinene (5.7%), and –α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extract showed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica. Therefore, P. eldarica might have a good potential for active anticancer agents. PMID:28003841

  1. Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress

    PubMed Central

    Isham, Crescent R.; Tibodeau, Jennifer D.; Jin, Wendy; Xu, Ruifang; Timm, Michael M.

    2007-01-01

    Chaetocin, a thiodioxopiperazine natural product previously unreported to have anticancer effects, was found to have potent antimyeloma activity in IL-6–dependent and –independent myeloma cell lines in freshly collected sorted and unsorted patient CD138+ myeloma cells and in vivo. Chaetocin largely spares matched normal CD138− patient bone marrow leukocytes, normal B cells, and neoplastic B-CLL (chronic lymphocytic leukemia) cells, indicating a high degree of selectivity even in closely lineage-related B cells. Furthermore, chaetocin displays superior ex vivo antimyeloma activity and selectivity than doxorubicin and dexamethasone, and dexamethasone- or doxorubicin-resistant myeloma cell lines are largely non–cross-resistant to chaetocin. Mechanistically, chaetocin is dramatically accumulated in cancer cells via a process inhibited by glutathione and requiring intact/unreduced disulfides for uptake. Once inside the cell, its anticancer activity appears mediated primarily through the imposition of oxidative stress and consequent apoptosis induction. Moreover, the selective antimyeloma effects of chaetocin appear not to reflect differential intracellular accumulation of chaetocin but, instead, heightened sensitivity of myeloma cells to the cytotoxic effects of imposed oxidative stress. Considered collectively, chaetocin appears to represent a promising agent for further study as a potential antimyeloma therapeutic. PMID:17090648

  2. Delayed luminescence to monitor programmed cell death induced by berberine on thyroid cancer cells

    NASA Astrophysics Data System (ADS)

    Scordino, Agata; Campisi, Agata; Grasso, Rosaria; Bonfanti, Roberta; Gulino, Marisa; Iauk, Liliana; Parenti, Rosalba; Musumeci, Francesco

    2014-11-01

    Correlation between apoptosis and UVA-induced ultraweak photon emission delayed luminescence (DL) from tumor thyroid cell lines was investigated. In particular, the effects of berberine, an alkaloid that has been reported to have anticancer activities, on two cancer cell lines were studied. The FTC-133 and 8305C cell lines, as representative of follicular and anaplastic thyroid human cancer, respectively, were chosen. The results show that berberine is able to arrest cell cycle and activate apoptotic pathway as shown in both cell lines by deoxyribonucleic acid fragmentation, caspase-3 cleavage, p53 and p27 protein overexpression. In parallel, changes in DL spectral components after berberine treatment support the hypothesis that DL from human cells originates mainly from mitochondria, since berberine acts especially at the mitochondrial level. The decrease of DL blue component for both cell lines could be related to the decrease of intra-mitochondrial nicotinamide adenine dinucleotide and may be a hallmark of induced apoptosis. In contrast, the response in the red spectral range is different for the two cell lines and may be ascribed to a different iron homeostasis.

  3. Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells.

    PubMed

    Li, Xiao-Li; Wang, Chong-Zhi; Mehendale, Sangeeta R; Sun, Shi; Wang, Qi; Yuan, Chun-Su

    2009-11-01

    Colorectal cancer is a major cause of morbidity and mortality for cancer worldwide. Although 5-fluorouracil (5-FU) is one of the most widely used chemotherapeutic agents in first-line therapy for colorectal cancer, serious side effects limit its clinical usefulness. Panaxadiol (PD) is the purified sapogenin of ginseng saponins, which exhibit anti-tumor activity. In this study, we investigated the possible synergistic anti-cancer effects of PD and 5-FU on a human colorectal cancer cell line, HCT-116. Cell viability was evaluated by an MTS cell proliferation assay. Morphological observation was performed by crystal violet cell viability staining assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry after staining with PI/RNase or Annexin V/PI. Cell growth was markedly suppressed in HCT-116 cells treated by 5-FU (20-100 microM) for 24 or 48 h with time-dependent effects. The significant suppression on HCT-116 cell proliferation was observed after treatment with PD (25 microM) for 24 and 48 h. Panaxadiol (25 microM) markedly (P < 0.05) enhanced the anti-proliferative effects of 5-FU (5, 10, 20 microM) on HCT-116 cells compared to single treatment of 5-FU for 24 and 48 h. Flow cytometric analysis on DNA indicated that PD and 5-FU selectively arrested cell cycle progression in the G1 phase and S phase (P < 0.01), respectively, compared to the control condition. Combination use of 5-FU with PD significantly (P < 0.001) increased cell cycle arrest in the S phase compared to that treated by 5-FU alone. The combination of 5-FU and PD significantly enhanced the percentage of apoptotic cells when compared with the corresponding cell groups treated by 5-FU alone (P < 0.001). Panaxadiol enhanced the anti-cancer effects of 5-FU on human colorectal cancer cells through the regulation of cell cycle transition and the induction of apoptotic cells.

  4. Acyl derivatives of boswellic acids as inhibitors of NF-κB and STATs.

    PubMed

    Kumar, Ajay; Shah, Bhahwal A; Singh, Samar; Hamid, Abid; Singh, Shashank K; Sethi, Vijay K; Saxena, Ajit K; Singh, Jaswant; Taneja, Subhash C

    2012-01-01

    Boswellic acid acylates including their epimers were synthesized and screened against a panel of human cancer cell lines. They exhibited a range of cytotoxicity against various human cancer cell lines thereby leading to the development of a possible SAR. One of the identified lead compounds was found to be an inhibitor of the NF-κB and STAT proteins, warranting further investigations to be developed into a potential anticancer lead. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Molecular predictors of therapeutic response to specific anti-cancer agents

    DOEpatents

    Spellman, Paul T.; Gray, Joe W.; Sadanandam, Anguraj; Heiser, Laura M.; Gibb, William J.; Kuo, Wen-lin; Wang, Nicholas J.

    2016-11-29

    Herein is described the use of a collection of 50 breast cancer cell lines to match responses to 77 conventional and experimental therapeutic agents with transcriptional, proteomic and genomic subtypes found in primary tumors. Almost all compounds produced strong differential responses across the cell lines produced responses that were associated with transcriptional and proteomic subtypes and produced responses that were associated with recurrent genome copy number abnormalities. These associations can now be incorporated into clinical trials that test subtype markers and clinical responses simultaneously.

  6. Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. nov.

    PubMed

    Liu, Rui; Cui, Cheng-Bin; Duan, Lin; Gu, Qian-Qun; Zhu, Wei-Ming

    2005-12-01

    Bioassay-guided fractionation of CHCl3 extract from the fermentation broth of a sponge Mycale plumose-derived actinomycete Saccharopolyspora sp. nov., led to the isolation of two known prodigiosin analogs--metacycloprodigiosin (1) and undecylprodigiosin (2). These compounds exhibited significant cytotoxic activities against five cancer cell lines: P388, HL60, A-549, BEL-7402, and SPCA4. This is the first report on the significant cytotoxicity of metacycloprodigiosin (1) against human cancer cell lines.

  7. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity.

    PubMed

    Coskun, Demet; Erkisa, Merve; Ulukaya, Engin; Coskun, Mehmet Fatih; Ari, Ferda

    2017-08-18

    Cancer treatment still requires new compounds to be discovered. Chalcone and its derivatives exhibit anticancer potential in different cancer cells. A new series of benzofuran substituted chalcone derivatives was synthesized by the base-catalyzed Claisen-Schmidt reaction of the 1-(7-ethoxy-1-benzofuran-2-yl) ethanone with different aromatic aldehydes to yield 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives 3a-j. The derivatives were characterized by elemental analysis, FT-IR, 1 H NMR and 13 C NMR spectroscopy techniques. The anti-growth effect of chalcone compounds was tested in breast cancer (MCF-7), non-small cell lung cancer (A549) and prostate cancer (PC-3) cell lines by the SRB and ATP cell viability assays. Apoptosis was detected by mitochondrial membrane potential, Annexin V staining and caspase 3/7 activity. Formation of reactive oxygen species was determined by DCFDA. The results revealed that chalcone derivatives have anticancer activity with especially chalcone derivative 3a showing cytotoxic effects on cancer cells. In addition, chalcone derivative 3a induced apoptosis through caspase dependent pathways in prostate, lung and breast cancer cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells.

    PubMed

    El-Awady, Raafat A; Semreen, Mohammad H; Saber-Ayad, Maha M; Cyprian, Farhan; Menon, Varsha; Al-Tel, Taleb H

    2016-01-01

    DNA damage response machinery (DDR) is an attractive target of cancer therapy. Modulation of DDR network may alter the response of cancer cells to DNA damaging anticancer drugs such as doxorubicin. The aim of the present study is to investigate the effects of a newly developed imidazopyridine (IAZP) derivative on the DDR after induction of DNA damage in cancer cells by doxorubicin. Cytotoxicity sulphrhodamine-B assay showed a weak anti-proliferative effect of IAZP alone on six cancer cell lines (MCF7, A549, A549DOX11, HepG2, HeLa and M8) and a normal fibroblast strain. Combination of IAZP with doxorubicin resulted in synergism in lung (A549) and breast (MCF7) cancer cells but neither in the other cancer cell lines nor in normal fibroblasts. Molecular studies revealed that synergism is mediated by modulation of DNA damage response and induction of apoptosis. Using constant-field gel electrophoresis and immunofluorescence detection of γ-H2AX foci, IAZP was shown to inhibit the repair of doxorubicin-induced DNA damage in A549 and MCF7 cells. Immunoblot analysis showed that IAZP suppresses the phosphorylation of the ataxia lelangiectasia and Rad3 related (ATR) protein, which is an important player in the response of cancer cells to chemotherapy-induced DNA damage. Moreover, IAZP augmented the doxorubicin-induced degradation of p21, activation of p53, CDK2, caspase 3/7 and phosphorylation of Rb protein. These effects enhanced doxorubicin-induced apoptosis in both cell lines. Our results indicate that IAZP is a promising agent that may enhance the cytotoxic effects of doxorubicin on some cancer cells through targeting the DDR. It is a preliminary step toward the clinical application of IAZP in combination with anticancer drugs and opens the avenue for the development of compounds targeting the DDR pathway that might improve the therapeutic index of anticancer drugs and enhance their cure rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Imidazopyridine-fused [1,3]-diazepinones: synthesis and antiproliferative activity.

    PubMed

    Gallud, Audrey; Vaillant, Ophélie; Maillard, Ludovic T; Arama, Dominique P; Dubois, Joëlle; Maynadier, Marie; Lisowski, Vincent; Garcia, Marcel; Martinez, Jean; Masurier, Nicolas

    2014-03-21

    A series of 15 pyrido-imidazo-1,3-diazepin-5-ones and pyrido-1,3-diazepine-2,5-diones were synthesized and their anticancer activities were evaluated. Among tested compounds on a cell lines panel, compound 6a presents the best growth inhibition activity on 21 cell lines with a cytotoxic effect on MDA-MB-435 melanoma cells. This compound led to deep cell morphological changes and revealed to be an inhibitor of the Hepatocyte progenitor kinase-like kinase (HGK), which is known to be implicated in the migration, adhesion and invasion of various tumor cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Improving the anticancer activity of curcumin using nanocurcumin dispersion in water.

    PubMed

    Basniwal, Rupesh Kumar; Khosla, Ritu; Jain, Nidhi

    2014-01-01

    Curcumin is a highly potent, nontoxic bioactive agent found in turmeric and is known to have significant anticancer properties against different types of cancer cells. The major disadvantage associated with the use of curcumin, however, is its low systemic bioavailability due to its poor aqueous solubility. The focus of the present study was to generate nanoparticles of curcumin with improved aqueous phase solubility, and to investigate their efficacy in treating cancer cells. Curcumin nanoparticles having particle size in the range 2-40 nm and aqueous solubility of up to a maximum of 3 mg/mL were prepared. Evaluation of anticancer properties of curcumin nanodispersion was carried out in 3 different cancer cell lines: lung (A549), liver (HepG2), and skin (A431). The results demonstrated that under aqueous conditions curcumin nanoparticles exhibited similar or a much stronger antiproliferative effect on the cancer cells compared to normal curcumin in DMSO. Our results lead way toward unharnessed potential of curcumin in the form of its nanoparticles as an adjuvant therapy for clinical application in treating various cancers.

  11. Comparative Evaluation of Silibinin Effects on Cell Cycling and Apoptosis in Human Breast Cancer MCF-7 and T47D Cell Lines.

    PubMed

    Jahanafrooz, Zohreh; Motameh, Nasrin; Bakhshandeh, Behnaz

    2016-01-01

    Silibinin is a natural polyphenol with high antioxidant and anticancer properties. In this study, its influence on two of the most commonly employed human breast cancer cell lines, MCF-7 and T47D, and one non-malignant MCF-10A cell line, were investigated and compared. Cell viability, the cell cycle distribution and apoptosis induction were analyzed by MTT and flow cytometry, respectively. The effect of silibinin on PTEN, Bcl-2, P21, and P27 mRNAs expression was also investigated by real-time RT-PCR. It was found that silibinin caused G1 cell cycle arrest in MCF-7 and MCF-10A cells but had no effect on the T47D cell cycle. Silibinin induced cytotoxic and apoptotic effects in T47D cells more than the MCF-7 cells and had no cytotoxic effect in MCF-10A cells under the same conditions. Silibinin upregulated PTEN in MCF-7 and caused slightly increased P21 mRNA expression in T47D cells and slightly increased PTEN and P21 expression in MCF-10A cells. Bcl-2 expression decreased in all of the examined cells under silibinin treatment. P27 mRNA expression upregulated in T47D and MCF-10A cells under silibinin treatment. PTEN mRNA in T47D and P21 and P27 mRNAsin MCF-7 were not affected by silibinin. These results suggest that silibinin has mostly different inhibitory effects in breast cancer cells and might be an effective anticancer agent for some cells linked to influence on cell cycle progression.

  12. Synthesis and Anti-cancer Activity of Novel Thiazolidinone Analogs of 6-Aminoflavone.

    PubMed

    Moorkoth, Sudheer

    2015-01-01

    Novel heterocyclic analogs were synthesized by combining a flavone nucleus and thiazolidinone ring in an effort to potentiate the existing anti-cancer activity of flavone. The syntheses of 6-aminoflavone, 6-amino-3-methoxyflavone, 6-amino-3-methoxy-3',4'-dimethxyflavone and their corresponding thiazolidinone analogs were performed. Fifteen novel analogs were synthesized and evaluated for their anti-cancer activity using cell-based assay techniques and in vivo testing. As expected, the analogs improved cytotoxicity and were shown to increase the life span of cancer-bearing mice. Cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays in HeLa, MDA-MB-435, and Vero cell lines. In vivo evaluation of anti-cancer activity performed in albino mice bearing Dalton's ascites carcinoma showed that the new analogs enhanced life span and prevented increases in body weight owing to tumor volumes. Moreover, cell-cycle analysis and Hoechst staining analysis proved the apoptotic potential of these analogs. Preliminary pharmacokinetic evaluation was carried out on the synthesized compounds to determine the lipophilicity and pKa. Lipophilicity was determined using high-performance liquid chromatography and the results showed a direct correlation between the observed anti-cancer activity and log P value, while pKa values indicated the ionizing range which is a prediction tool for solubility and permeability.

  13. A New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin-Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation.

    PubMed

    Bai, Feng; Diao, Jiajing; Wang, Ying; Sun, Shixin; Zhang, Hongmei; Liu, Yunyun; Wang, Yanqing; Cao, Jian

    2017-08-16

    Curcumin is a dominating active component of Curcuma longa and has been studied widely because of its prominent biological activities. The extremely low aqueous solubility, stability, and bioavailability of curcumin limit its application in the field of medicine. In this study, we developed pectin-curcumin (PEC-CCM) conjugates that could self-assemble water-soluble nanomicelles in aqueous solution. The structure of PEC-CCM conjugates was characterized by ultraviolet-visible spectra, fluorescence spectra, Fourier transform infrared spectroscopy, and 1 H nuclear magnetic resonance spectroscopy. The thermal property of PEC-CCM conjugates was investigated by thermogravimetric analysis. It was found that PEC-CCM conjugates had formed nanomicelles in aqueous medium via self-assembly. These nanomicelles were observed as small spheres or ellipsoids and aggregated with a size range of 70-190 nm by transmission electron microscopy analysis. In a solution of nanomicelles, the stability of curcumin was improved, and its antioxidant property was preserved. The anticancer activity of PEC-CCM conjugates was quantified by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay using a hepatic cancer cell line (HepG2), a breast cancer cell line (MCF-7), a cervical cancer cell line (HeLa), and a human normal kidney cell line (293A). It was found that the curcumin of PEC-CCM conjugates had a more significant inhibitory effect on cancer cells and was less cytotoxic to normal cells than free curcumin was. PEC-CCM conjugates have great potential for some food and pharmaceutical applications.

  14. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract.

    PubMed

    Abdullah, Al-Shwyeh Hussah; Mohammed, Abdulkarim Sabo; Abdullah, Rasedee; Mirghani, Mohamed Elwathig Saeed; Al-Qubaisi, Mothanna

    2014-06-25

    Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals. The potential anticancer effects of the ethanolic kernel extract on breast cancer cells (MDA-MB-231 and MCF-7) using MTT, anti-proliferation, neutral red (NR) uptake and lactate dehydrogenase (LDH) release assays were evaluated. Cytological studies on the breast cancer cells were also conducted, and phytochemical analyses of the extract were carried out to determine the likely bioactive compounds responsible for such effects. Results showed the extract induced cytotoxicity in MDA-MB-231 cells and MCF-7 cells with IC50 values of 30 and 15 μg/mL, respectively. The extract showed significant toxicity towards both cell lines, with low toxicity to normal breast cells (MCF-10A). The cytotoxic effects on the cells were further confirmed by the NR uptake, antiproliferative and LDH release assays. Bioactive analyses revealed that many bioactives were present in the extract although butylated hydroxytoluene, a potent antioxidant, was the most abundant with 44.65%. M. indica extract appears to be more cytoxic to both estrogen positive and negative breast cancer cell lines than to normal breast cells. Synergistic effects of its antioxidant bioactives could have contributed to the cytotoxic effects of the extract. The extract of M. indica, therefore, has potential anticancer activity against breast cancer cells. This potential is worth studying further, and could have implications on future studies and eventually management of human breast cancers.

  15. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract

    PubMed Central

    2014-01-01

    Background Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals. Methods The potential anticancer effects of the ethanolic kernel extract on breast cancer cells (MDA-MB-231 and MCF-7) using MTT, anti-proliferation, neutral red (NR) uptake and lactate dehydrogenase (LDH) release assays were evaluated. Cytological studies on the breast cancer cells were also conducted, and phytochemical analyses of the extract were carried out to determine the likely bioactive compounds responsible for such effects. Results Results showed the extract induced cytotoxicity in MDA-MB-231 cells and MCF-7 cells with IC50 values of 30 and 15 μg/mL, respectively. The extract showed significant toxicity towards both cell lines, with low toxicity to normal breast cells (MCF-10A). The cytotoxic effects on the cells were further confirmed by the NR uptake, antiproliferative and LDH release assays. Bioactive analyses revealed that many bioactives were present in the extract although butylated hydroxytoluene, a potent antioxidant, was the most abundant with 44.65%. Conclusions M. indica extract appears to be more cytoxic to both estrogen positive and negative breast cancer cell lines than to normal breast cells. Synergistic effects of its antioxidant bioactives could have contributed to the cytotoxic effects of the extract. The extract of M. indica, therefore, has potential anticancer activity against breast cancer cells. This potential is worth studying further, and could have implications on future studies and eventually management of human breast cancers. PMID:24962691

  16. Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells.

    PubMed

    Park, Eun-Ji; Lee, Dahae; Baek, Seon-Eun; Kim, Ki Hyun; Kang, Ki Sung; Jang, Tae Su; Lee, Hye Lim; Song, Ji Hoon; Yoo, Jeong-Eun

    2017-09-15

    Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line.

    PubMed

    Thomas, Andrew J; Hailey, Dale W; Stawicki, Tamara M; Wu, Patricia; Coffin, Allison B; Rubel, Edwin W; Raible, David W; Simon, Julian A; Ou, Henry C

    2013-03-06

    Cisplatin, one of the most commonly used anticancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analog of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line.

  18. Rhizome of Anemarrhena asphodeloides as mediators of the eco-friendly synthesis of silver and gold spherical, face-centred cubic nanocrystals and its anti-migratory and cytotoxic potential in normal and cancer cell lines.

    PubMed

    Lee, Hyun A; Castro-Aceituno, Veronica; Abbai, Ragavendran; Moon, Seong Soo; Kim, Yeon-Ju; Simu, Shakina Yesmin; Yang, Deok Chun

    2018-03-29

    The water extract of Anemarrhena asphodeloides, the traditional oriental medicinal plant, mediated the eco-friendly synthesis of silver nanoparticles (Aa-AgNPs) and gold nanoparticles (Aa-AuNPs). First, its therapeutic rhizome was powdered prior to water extraction and then silver, gold nanoparticles were synthesized. Aa-AgNPs and Aa-AuNPs were found to be spherical, face-centred cubic nanocrystals with a Z-average hydrodynamic diameter of 190 and 258 nm, respectively. In addition, proteins and aromatic biomolecules were the plausible players associated with the production and stabilization of Aa-AgNPs; instead, phenolic compounds were responsible for the synthesis and stability of Aa-AuNPs. In vitro cytotoxic analysis revealed that up to 50 μg.mL -1 concentration Aa-AuNPs did not exhibit any toxicity on 3T3-L1, HT29 and MCF7 cell lines, while being specifically cytotoxic to A549 cell line. On the contrary, Aa-AgNPs displayed a significantly higher toxicity in comparison to Aa-AuNPs in all cell lines specially MCF7 cell line. Since cancer cells were more sensitive to Aa-Au/AgNPs treatments, further evaluation was done in order to determine their anticancer potential. Reactive oxygen species (ROS) generation was not affected by Aa-AuNPs, on the other hand, Aa-AgNPs treatment exhibited a higher potential to induce oxidative stress in A549 cells than HT29 and MCF7 cells. In addition, Aa-Ag/AuNPs reduced cell migration in A549 cells at 10 and 50 μg.mL -1 , respectively. So far, this is the only report uncovering the ability of A. asphodeloides to synthesize silver and gold nanoparticles with anticancer potential and also indirectly enabling its large-scale utilization with value addition.

  19. Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: Implications for the oncoprotein c-MYC

    PubMed Central

    Sylman, Joanna L.; Ngo, Anh T. P.; Pang, Jiaqing; Sears, Rosalie C.; Williams, Craig D.; McCarty, Owen J. T.

    2017-01-01

    Aspirin, an anti-inflammatory and antithrombotic drug, has become the focus of intense research as a potential anticancer agent owing to its ability to reduce tumor proliferation in vitro and to prevent tumorigenesis in patients. Studies have found an anticancer effect of aspirin when used in low, antiplatelet doses. However, the mechanisms through which low-dose aspirin works are poorly understood. In this study, we aimed to determine the effect of aspirin on the cross talk between platelets and cancer cells. For our study, we used two colon cancer cell lines isolated from the same donor but characterized by different metastatic potential, SW480 (nonmetastatic) and SW620 (metastatic) cancer cells, and a pancreatic cancer cell line, PANC-1 (nonmetastatic). We found that SW480 and PANC-1 cancer cell proliferation was potentiated by human platelets in a manner dependent on the upregulation and activation of the oncoprotein c-MYC. The ability of platelets to upregulate c-MYC and cancer cell proliferation was reversed by an antiplatelet concentration of aspirin. In conclusion, we show for the first time that inhibition of platelets by aspirin can affect their ability to induce cancer cell proliferation through the modulation of the c-MYC oncoprotein. PMID:27903583

  20. In vitro antioxidant and cytotoxic properties of ethanol extract of Alpinia oxyphylla fruits.

    PubMed

    Wang, Cheng-zhong; Yuan, Hui-hui; Bao, Xiao-li; Lan, Min-bo

    2013-11-01

    Alpinia oxyphylla Miquel (Zingiberaceae) is a traditional Chinese herbal medicine widely used for the treatment of intestinal disorders, urosis and diuresis. However, information about antioxidant and cytotoxic properties of its fruits remains to be elucidated. The ethanol crude extract (CE) and its fractions [petroleum ether fraction (PF), ethyl acetate fraction (EF), n-butanol fraction (BF) and water fraction (WF) extracted by petroleum ether, ethyl acetate, n-butanol and water, respectively] of A. oxyphylla fruits were investigated for their antioxidant activity and cytotoxicity. The total phenolic content (TPC) and antioxidant activity of the extracts were determined by Folin-Ciocalteu reagent, 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), Trolox equivalent antioxidant capacity and reducing power assay. Cytotoxicity of the extracts (0-200 μg/mL) was tested on six human cancer cell lines (breast cancer cell line, cervix carcinoma cell line, lung adenocarcinoma cell line, liver carcinoma cell line, gastric cancer cell line and colon cancer cell line) using the sulforhodamine B assay. The TPC of extracts varied from 8.2 to 20.3 mg gallic acid equivalents/g dry weight. DPPH radical scavenging effect of extracts decreased in the order of EF > BF > CE > PF > WF, with IC50 values ranging from 74.7 to 680.8 μg/mL. 2,2-azo-bis(3-Ethylbenzothiazoline-6-sulfoic acid) diammonium salt scavenging activity ranged from 0.118 to 0.236 mmol Trolox equivalence/mg extract. The extracts exhibited concentration-dependent reducing power, and EF showed the highest reducing ability. A satisfactory correlation (R(2) > 0.826) between TPC and antioxidant activity was observed. In addition, EF, PF and CE exhibited potent anticancer effects on six cancer cell lines with IC50 values ranging from 40.1 to 166.3 μg/mL. The ethanol extract of A. oxyphylla fruit, especially the EF, was found to possess potent antioxidant and anticancer activities, and thus a great potential for the application in food and drug products.

  1. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola).

    PubMed

    Gavamukulya, Yahaya; Abou-Elella, Faten; Wamunyokoli, Fred; AEl-Shemy, Hany

    2014-09-01

    To determine the phytochemical composition, antioxidant and anticancer activities of ethanolic and water leaves extracts of Annona muricata (A. muricata) from the Eastern Uganda. Phytochemical screening was conducted using standard qualitative methods and a Chi-square goodness of fit test was used to assign the relative abundance of the different phytochemicals. The antioxidant activity was determined using the 2, 2-diphenyl-2-picrylhydrazyl and reducing power methods whereas the in vitro anticancer activity was determined using three different cell lines. Phytochemical screening of the extracts revealed that they were rich in secondary class metabolite compounds such as alkaloids, saponins, terpenoids, flavonoids, coumarins and lactones, anthraquinones, tannins, cardiac glycosides, phenols and phytosterols. Total phenolics in the water extract were (683.69±0.09) μg/mL gallic acid equivalents (GAE) while it was (372.92±0.15) μg/mL GAE in the ethanolic extract. The reducing power was 216.41 μg/mL in the water extract and 470.51 μg/mL GAE in the ethanolic extract. In vitro antioxidant activity IC50 was 2.0456 mg/mL and 0.9077 mg/mL for ethanolic and water leaves extracts of A. muricata respectively. The ethanolic leaves extract was found to be selectively cytotoxic in vitro to tumor cell lines (EACC, MDA and SKBR3) with IC50 values of 335.85 μg/mL, 248.77 μg/mL, 202.33 μg/mL respectively, while it had no cytotoxic effect on normal spleen cells. The data also showed that water leaves extract of A. muricata had no anticancer effect at all tested concentrations. The results showed that A. muricata was a promising new antioxidant and anticancer agent. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  2. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities.

    PubMed

    Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K; Pandey, Abhay K

    2013-01-01

    The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11-222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10-40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90-99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.

  3. Explorative study on the anticancer activity, selectivity and metabolic stability of related analogs of aminosteroid RM-133.

    PubMed

    Perreault, Martin; Maltais, René; Dutour, Raphaël; Poirier, Donald

    2016-11-01

    RM-133 is a key representative of a new family of aminosteroids reported as potent anticancer agents. Although RM-133 produced interesting results in 4 mouse xenograft cancer models when injected subcutaneously, it needs to be improved to increase its in vivo potency. Thus, to obtain an analog of RM-133 with a better drug potential, a structure-activity relationship study was conducted by synthesizing eleven RM-133-related compounds and addressing their antiproliferative activity on 3 human cancer cells (HL-60, OVCAR-3 and PANC-1) and 3 human normal cell lines (primary ovary, pancreas and renal proximal tubule) as well as their metabolic stability in human liver microsomes. When the 2β-tertiary amine of RM-133 was transformed into a salt or moved to position 3β, the anticancer activity was lost. Modifying the orientation of the side chain of RM-133 increased anticancer activity and selectivity, but led to a drastic loss of stability. The protection of the 3α-hydroxyl of RM-133 by the formation of an ester or a carbamate stabilized the molecule against the phase I metabolic enzymes without affecting its anticancer activity. In comparison to RM-133, the 3-dimethylcarbamate derivative 3 is more selective for cancer cells over normal cells and is much more stable in liver microsomes. Those results support the use of a pro-drug strategy targeting the 3α-hydroxyl of RM-133 as an approach to improve its drug properties. The work presented will enable the development of an optimized anticancer drug of the aminosteroid family that is suitable for a future phase I clinical trial. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Anti-Cancer Efficacy of Silybin Derivatives - A Structure-Activity Relationship

    PubMed Central

    Agarwal, Chapla; Wadhwa, Ritambhara; Deep, Gagan; Biedermann, David; Gažák, Radek; Křen, Vladimír; Agarwal, Rajesh

    2013-01-01

    Silybin or silibinin, a flavonolignan isolated from Milk thistle seeds, is one of the popular dietary supplements and has been extensively studied for its antioxidant, hepatoprotective and anti-cancer properties. We have envisioned that potency of silybin could be further enhanced through suitable modification/s in its chemical structure. Accordingly, here, we synthesized and characterized a series of silybin derivatives namely 2,3-dehydrosilybin (DHS), 7-O-methylsilybin (7OM), 7-O-galloylsilybin (7OG), 7,23-disulphatesilybin (DSS), 7-O-palmitoylsilybin (7OP), and 23-O-palmitoylsilybin (23OP); and compared their anti-cancer efficacy using human bladder cancer HTB9, colon cancer HCT116 and prostate carcinoma PC3 cells. In all the 3 cell lines, DHS, 7OM and 7OG demonstrated better growth inhibitory effects and compared to silybin, while other silybin derivatives showed lesser or no efficacy. Next, we prepared the optical isomers (A and B) of silybin, DHS, 7OM and 7OG, and compared their anti-cancer efficacy. Isomers of these three silybin derivatives also showed better efficacy compared with respective silybin isomers, but in each, there was no clear cut silybin A versus B isomer activity preference. Further studies in HTB cells found that DHS, 7OM and 7OG exert better apoptotic activity than silibinin. Clonogenic assays in HTB9 cells further confirmed that both the racemic mixtures as well as pure optical isomers of DHS, 7OM and 7OG were more effective than silybin. Overall, these results clearly suggest that the anti-cancer efficacy of silybin could be significantly enhanced through structural modifications, and identify strong anti-cancer efficacy of silybin derivatives, namely DHS, 7OM, and 7OG, signifying that their efficacy and toxicity should be evaluated in relevant pre-clinical cancer models in rodents. PMID:23555889

  5. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    PubMed Central

    Dobretsov, Sergey; Tamimi, Yahya; Al-Kindi, Mohamed A.; Burney, Ikram

    2016-01-01

    Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF)-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies. PMID:27226907

  6. Synthesis of novel proxyphylline derivatives with dual Anti-Candida albicans and anticancer activity.

    PubMed

    Borowiecki, Paweł; Wińska, Patrycja; Bretner, Maria; Gizińska, Małgorzata; Koronkiewicz, Mirosława; Staniszewska, Monika

    2018-04-25

    Three out of 16 newly synthesized 1,3-dimethylxanthine derivatives (proxyphylline analogues) exhibited consistencies between antifungal and anticancer properties. Proxyphylline possessing 1-(10H-phenothiazin-10-yl)propan-2-yl (6) and polybrominated benzimidazole (41) or benzotriazole moiety (42) remained selectively cidal against Candida albicans (lg R ≥ 3 at conc. of 31, 36 and 20 μM, respectively) however not against normal mammalian Vero cell line in vitro (IC 50  ≥ 280 μM) and Galleria mellonella in vivo. These compounds also displayed moderate antineoplastic activity against human breast adenocarcinoma (MCF-7) cell line (EC 50  = 80 μM) and high against peripheral blood T lymphoblast (CCRF-CEM) (EC 50  = 6.3-6.5 μM). In addition, 6 and 42 exerted: (1) dual activity against fungal adhesion and damage mature biofilm; (2) necrosis of planktonic cells due to loss of membrane function and of structural integrity; (3) biochemical (inhibition of sessile cell respiration) and morphological changes in cell wall polysaccharide contents. Therefore, leading proxyphylline derivatives can be employed to prevent cancer-associated biofilm Candida infections. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Syringolin A selectively labels the 20 S proteasome in murine EL4 and wild-type and bortezomib-adapted leukaemic cell lines.

    PubMed

    Clerc, Jérôme; Florea, Bogdan I; Kraus, Marianne; Groll, Michael; Huber, Robert; Bachmann, André S; Dudler, Robert; Driessen, Christoph; Overkleeft, Herman S; Kaiser, Markus

    2009-11-02

    The natural product syringolin A (SylA) is a potent proteasome inhibitor with promising anticancer activities. To further investigate its potential as a lead structure, selectivity profiling with cell lysates was performed. At therapeutic concentrations, a rhodamine-tagged SylA derivative selectively bound to the 20 S proteasome active sites without detectable off-target labelling. Additional profiling with lysates of wild-type and bortezomib-adapted leukaemic cell lines demonstrated the retention of this proteasome target and subsite selectivity as well as potency even in clinically relevant cell lines. Our studies, therefore, propose that further development of SylA might indeed result in an improved small molecule for the treatment of leukaemia.

  8. In vitro anticancer activity, toxicity and structure-activity relationships of phyllostictine A, a natural oxazatricycloalkenone produced by the fungus Phyllosticta cirsii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Calve, Benjamin; Lallemand, Benjamin; Perrone, Carmen

    2011-07-01

    The in vitro anticancer activity and toxicity of phyllostictine A, a novel oxazatricycloalkenone recently isolated from a plant-pathogenic fungus (Phyllosticta cirsii) was characterized in six normal and five cancer cell lines. Phyllostictine A displays in vitro growth-inhibitory activity both in normal and cancer cells without actual bioselectivity, while proliferating cells appear significantly more sensitive to phyllostictine A than non-proliferating ones. The main mechanism of action by which phyllostictine displays cytotoxic effects in cancer cells does not seem to relate to a direct activation of apoptosis. In the same manner, phyllostictine A seems not to bind or bond with DNA asmore » part of its mechanism of action. In contrast, phyllostictine A strongly reacts with GSH, which is a bionucleophile. The experimental data from the present study are in favor of a bonding process between GSH and phyllostictine A to form a complex though Michael attack at C=C bond at the acrylamide-like system. Considering the data obtained, two new hemisynthesized phyllostictine A derivatives together with three other natural phyllostictines (B, C and D) were also tested in vitro in five cancer cell lines. Compared to phyllostictine A, the two derivatives displayed a higher, phyllostictines B and D a lower, and phyllostictine C an almost equal, growth-inhibitory activity, respectively. These results led us to propose preliminary conclusions in terms of the structure-activity relationship (SAR) analyses for the anticancer activity of phyllostictine A and its related compounds, at least in vitro.« less

  9. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk.

    PubMed

    Riaz Rajoka, Muhammad Shahid; Zhao, Haobin; Lu, Yao; Lian, Ziyang; Li, Na; Hussain, Nazim; Shao, Dongyan; Jin, Mingliang; Li, Qi; Shi, Junling

    2018-05-15

    Lactic acid bacteria have been categorized as probiotics and play a crucial role in human health by stimulating the supply of nutrients, shaping the immune system, and preventing the colonization of pathogenic microbes. This study investigated the mechanisms for the action of three potential probiotic Lactobacillus strains: Lactobacillus casei SR1, Lactobacillus casei SR2, and Lactobacillus paracasei SR4 isolated from human breast milk. These Lactobacillus strains were identified via 16S DNA sequencing and characterized via biochemical assays including acid resistance, bile resistance, antioxidant activity, and antibiotic susceptibility. The bioactivity of the cell-free culture supernatant (CFCS) secreted by these strains on the cervix cancer (HeLa) cell line was also evaluated via cytotoxicity assay and apoptosis analysis. The mechanism of anticancer activity was also investigated via RT-qPCR and western blotting. The results demonstrated that these newly isolated Lactobacillus strains from human milk displayed noticeable probiotic characteristics such as excellent antibiotic susceptibility, outstanding antioxidant activity, and promising resistance to low pH and high concentration of bile salts. The results of the conducted bioactivity assays verified that the CFCSs had acceptable anticancer effects on cervix cancer (HeLa) cells by upregulating the expression of apoptotic genes BAX, BAD, caspase3, caspase8, and caspase9 and by downregulating the expression of the BCl-2 gene. Overall, these results indicate that the Lactobacillus strains isolated from human breast milk could be considered as a topical medication with a potential therapeutic index due to their efficacy against cervix cancer cells.

  10. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends towards Future Drugs.

    PubMed

    Khan, Haroon; Saeedi, Mina; Nabavi, Seyed Mohammad; Mubarak, Mohammad S; Bishayee, Anupam

    2018-04-03

    Cancer continues to be a global burden, despite the advancement of various technological and pharmaceutical improvements over the past two decades. Methods for treating cancer include surgery, radiotherapy and chemotherapy in addition to other specialized techniques. On the other hand, medicinal plants have been traditionally employed either as the complementary medicine or dietary agents in the treatment and management of cancer. Medicinal plants are a rich source of secondary metabolites with interesting biological and pharmacological activities. Among these metabolites, glycosides are naturally occurring substances and have outstanding therapeutic potential and clinical utility. Different medical research engines such GoogleScholar, PubMed, SpringerLink, ScienceDirect were used to collect related literature on the subject matter. In this regard, only peer reviewed journals were considered. Emerging results showed that numerous glycosides isolated from various plants possessed marked anticancer activity against a variety of cancer cell lines. Accordingly, the aim of the present review is to shed light on the anticancer effects of glycosides, analyze possible mechanisms of action, and highlight the role of these natural agents as complementary and alternative medicine in combating and managing cancer. The glycosides isolated from different plants demonstrated potent cytotoxic effects against various cancer cell lines in initial preclinical studies. The anticancer effect was mediated through multiple mechanisms; however further detail studies are needed to understand the full potential of glycosides for clinical utility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Modified sugar beet pectin induces apoptosis of colon cancer cells via interaction with the neutral sugar side-chains

    USDA-ARS?s Scientific Manuscript database

    Pectins extracted from a variety of sources and modified with heat and/or pH have previously been shown to exhibit activity towards several cancer cell lines. However, the structural basis for the anti-cancer activity of modified pectin requires clarification. Sugar beet and citrus pectin extracts h...

  12. The first total synthesis and biological evaluation of marine natural products ma'edamines A and B.

    PubMed

    Saha, Sanjay; Venkata Ramana Reddy, Ch; Chiranjeevi, T; Addepally, Uma; Chinta Rao, T S; Patro, Balaram

    2013-02-15

    We have developed the first total syntheses of marine natural products ma'edamines A (18) and B (20). Structurally, they contain a pyrazine-2-(1H)-one core and were screened for antiproliferative activity on several cancer cell lines. Out of the six cell lines tested, ma'edamines A and B showed significant cytotoxicity against human colon cancer line COLO 205 (IC(50) 7.9 and 10.3 μM, respectively), breast cancer cell line MCF-7 (IC(50): 6.9 and 10.5 μM, respectively) and human lung adenocarcinoma cell line A549 (IC(50): 12.2 and 15.4 μM, respectively). The apoptotic effect of ma'edamines was confirmed by comet assay. Hence ma'edamines are likely to be useful as leads for development of a new class of anti-cancer agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway.

    PubMed

    Balachandran, C; Sangeetha, B; Duraipandiyan, V; Raj, M Karunai; Ignacimuthu, S; Al-Dhabi, N A; Balakrishna, K; Parthasarathy, K; Arulmozhi, N M; Arasu, M Valan

    2014-12-05

    The aim of this study was to investigate the anticancer activity of a flavonoid type of compound isolated from soil derived filamentous bacterium Streptomyces sp. (ERINLG-4) and to explore the molecular mechanisms of action. Cytotoxic properties of ethyl acetate extract was carried out against A549 lung cancer cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cytotoxic properties of isolated compound were investigated in A549 lung cancer cell line, COLO320DM cancer cell line and Vero cells. The compound showed potent cytotoxic properties against A549 lung cancer cell line and moderate cytotoxic properties against COLO320DM cancer cell line. Isolated compound showed no toxicity up to 2000 μg/mL in Vero cells. So we have chosen the A549 lung cancer cell line for further anticancer studies. Intracellular visualization was done by using a laser scanning confocal microscope. Apoptosis was measured using DNA fragmentation technique. Treatment of the A549 cancer cells with isolated compound significantly reduced cell proliferation, increased formation of fragmented DNA and apoptotic body. Activation of caspase-9 and caspase-3 indicated that compound may be inducing intrinsic and extrinsic apoptosis pathways. Bcl-2, p53, pro-caspases, caspase-3, caspase-9 and cytochrome c release were detected by western blotting analysis after compound treatment (123 and 164 μM). The activities of pro-caspases-3, caspase-9 cleaved to caspase-3 and caspase-9 gradually increased after the addition of isolated compound. But Bcl-2 protein was down regulated after treatment with isolated compound. Molecular docking studies showed that the compound bound stably to the active sites of caspase-3 and caspase-9. These results strongly suggest that the isolated compound induces apoptosis in A549 cancer cells via caspase activation through cytochrome c release from mitochondria. The present results might provide helpful suggestions for the design of antitumor drugs toward lung cancer treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Antiproliferative action of Xylopia aethiopica fruit extract on human cervical cancer cells.

    PubMed

    Adaramoye, Oluwatosin A; Sarkar, Jayanta; Singh, Neetu; Meena, Sanjeev; Changkija, Bendangla; Yadav, Prem P; Kanojiya, Sanjeev; Sinha, Sudhir

    2011-10-01

    The anticancer potential of Xylopia aethiopica fruit extract (XAFE), and the mechanism of cell death it elicits, was investigated in various cell lines. Treatment with XAFE led to a dose-dependent growth inhibition in most cell lines, with selective cytotoxicity towards cancer cells and particularly the human cervical cancer cell line C-33A. In this study, apoptosis was confirmed by nuclear fragmentation and sub-G(0)/G(1) phase accumulation. The cell cycle was arrested at the G(2)/M phase with a decreased G(0)/G(1) population. A semi-quantitative gene expression study revealed dose-dependent up-regulation of p53 and p21 genes, and an increase in the Bax/Bcl-2 ratio. These results indicate that XAFE could be a potential therapeutic agent against cancer since it inhibits cell proliferation, and induces apoptosis and cell cycle arrest in C-33A cells. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Phytochemical analysis with free radical scavenging, nitric oxide inhibition and antiproliferative activity of Sarcocephalus pobeguinii extracts.

    PubMed

    Mfotie Njoya, Emmanuel; Munvera, Aristide Mfifen; Mkounga, Pierre; Nkengfack, Augustin Ephrem; McGaw, Lyndy Joy

    2017-04-04

    Free radicals have been implicated in the pathogenesis of diverse metabolic disorders including cancer. Therefore, fighting against free radicals has become an important strategy in the prevention or treatment of such diseases, in addition to direct or indirect anticancer chemotherapy. Sarcocephalus pobeguinii has been used traditionally to treat various diseases in which excess production of free radicals is implicated, warranting investigation of its free radical scavenging, anticancer and anti-inflammatory activity. In the present study, extracts from leaves, fruits, roots and bark of Sarcocephalus pobeguinii were evaluated on four human cancer cell lines (MCF-7, HeLa, Caco-2 and A549 cells) and a non-cancerous cell line for their antiproliferative potential. The cells were incubated with the plant extracts for 48 h at 37 °C in a 5% CO 2 humidified environment and their cytotoxic effect was determined using the tetrazolium-based colorimetric (MTT) assay. The radical inhibition was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging techniques. The nitric oxide inhibitory activity was determined using LPS-activated RAW 264.7 macrophages. The correlation between radical scavenging capacity and antiproliferative activity was also analysed. The extract from leaves of Sarcocephalus pobeguinii (LSP) exhibited the highest cytotoxic effect on all four of the human cancer cell lines but with some cytotoxicity to the normal Vero cells. However, the LSP extract had the best selectivity index, ranging from 3.15 to 18.28. Also, antioxidant and anti-inflammatory assays indicated that the LSP extract had the highest radical scavenging capacity of all the extracts. A positive linear correlation was found between free radical scavenging ability and antiproliferative activity against the four cancer cell lines, with the highest correlation factor (R 2  = 0.9914) obtained between DPPH inhibition and antiproliferative activity against A549 cells. The high selectivity index of the Sarcocephalus pobeguinii leaf extract indicates the potential of using this extract in cancer therapy. Furthermore, the positive correlation between free radical scavenging and antiproliferative activity suggests that the radical scavenging capacity of extracts may contribute to a prediction of their anticancer property.

  16. Acetaminophen and Metamizole Induce Apoptosis in HT 29 and SW 480 Colon Carcinoma Cell Lines In Vitro.

    PubMed

    Bundscherer, Anika C; Malsy, Manuela; Gruber, Michael A; Graf, Bernhard M; Sinner, Barbara

    2018-02-01

    The perioperative phase is supposed to be a period with high vulnerability for cancer dissemination. Acetaminophen and metamizole are common analgesics administered during this phase. We investigated the effect of acetaminophen, metamizole and 4-methylaminoantipyrine (MAA) on proliferation and apoptosis of colon carcinoma cell lines (SW 480 and HT 29). Proliferation was detected by cell proliferation ELISA BrdU, and apoptosis by Annexin V staining. Cytochrome c and caspase 3, 8 and 9 expression levels were detected by western blot. Acetaminophen, metamizole or MAA caused slight changes in proliferation. Acetaminophen, metamizole or the combination increased apoptosis in both cell lines. All agents decreased caspase 3 and 8 expression in SW480. Acetaminophen decreased caspase 9 expression in both cell lines. In clinically relevant doses, acetaminophen and/or metamizole induce apoptosis in both colon cancer cell lines. Both mitochondrial and death receptor pathways might be involved in acetaminophen-induced apoptosis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Synergistic anticancer effect of curcumin and chemotherapy regimen FP in human gastric cancer MGC-803 cells.

    PubMed

    He, Bin; Wei, Wen; Liu, Ji; Xu, Yundan; Zhao, Gang

    2017-09-01

    Curcumin is an anticancer compound that exerts anti-proliferative and apoptotic effects via multiple molecular targets. The purpose of the present study was to investigate the anticancer effects of curcumin in combination with 5-fluorouracil plus cisplatin (FP) on the MGC-803 human gastric cancer cell line. Following treatment with curcumin and/or FP for 24, 48 and 72 h, cell viability, cell cycle progression and the apoptosis rate were evaluated using an MTT assay, flow cytometry and dual acridine orange/ethidium bromide staining, respectively. In addition, colony formation, Transwell migration and caspase-3/caspase-8 activity assays were performed. The expression of the apoptosis regulator B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected by western blotting analysis. Following treatment with curcumin and/or FP, cell viability, colony formation and cell migration were significantly reduced compared with the untreated control group. The rate of apoptosis, caspase-3/caspase-8 activity and the expression of Bax were significantly increased, whereas Bcl-2 expression was significantly reduced following treatment with curcumin and/or FP, compared with the untreated control group. The efficacy of curcumin combined with low-dose FP was significantly increased, compared with that of curcumin combined with high-dose FP (P<0.05). Therefore, curcumin may enhance the anticancer effects of FP chemotherapy in MGC-803 cells through the promotion of apoptosis via the caspase-3/caspase-8, Bcl-2 and Bax signaling pathways. These results suggest that curcumin may serve as a synergistic drug with chemotherapy regimen FP for the treatment of gastric cancer.

  18. Antitumor Agents 293. Non-toxic Dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) Analogs Chemosensitize Multidrug Resistant Cancer Cells to Clinical Anticancer Drugs

    PubMed Central

    Hung, Hsin-Yi; Ohkoshi, Emika; Goto, Masuo; Bastow, Kenneth F.; Nakagawa-Goto, Kyoko; Lee, Kuo-Hsiung

    2012-01-01

    Novel dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) analogs were designed and synthesized to improve their chemosensitizing action on KBvin (vincristine resistant nasopharyngeal carcinoma) cells, a multi-drug resistant cell line over-expressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic and bulky aliphatic side chains at the 2,2′-positions effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as paclitaxel (TAX), vincristine (VCR), and doxorubicin (DOX). DDB derivatives 16 and 23 showed 5–10 times more effective reversal ability than verapamil (VRP) for TAX and VCR. Analog 6 also exhibited five times greater chemosensitizing effect against DOX than VRP. Importantly, no cytotoxicity was observed by the active DDB analogs against both non-MDR and MDR cells, suggesting that DDB analogs serve as the novel lead compounds for the development of chemosensitizers to overcome MDR phenotype. The mechanism of action studies demonstrated that effective inhibition of P-glycoprotein by DDB analogs dramatically elevated cellular concentration of anticancer drugs. PMID:22612652

  19. Streptomyces artemisiae MCCB 248 isolated from Arctic fjord sediments has unique PKS and NRPS biosynthetic genes and produces potential new anticancer natural products.

    PubMed

    Dhaneesha, M; Benjamin Naman, C; Krishnan, K P; Sinha, Rupesh Kumar; Jayesh, P; Joseph, Valsamma; Bright Singh, I S; Gerwick, William H; Sajeevan, T P

    2017-05-01

    After screening marine actinomycetes isolated from sediment samples collected from the Arctic fjord Kongsfjorden for potential anticancer activity, an isolate identified as Streptomyces artemisiae MCCB 248 exhibited promising results against the NCI-H460 human lung cancer cell line. H460 cells treated with the ethyl acetate extract of strain MCCB 248 and stained with Hoechst 33342 showed clear signs of apoptosis, including shrinkage of the cell nucleus, DNA fragmentation and chromatin condensation. Further to this treated cells showed indications of early apoptotic cell death, including a significant proportion of Annexin V positive staining and evidence of DNA damage as observed in the TUNEL assay. Amplified PKS 1 and NRPS genes involved in secondary metabolite production showed only 82% similarity to known biosynthetic genes of Streptomyces, indicating the likely production of a novel secondary metabolite in this extract. Additionally, chemical dereplication efforts using LC-MS/MS molecular networking suggested the presence of a series of undescribed tetraene polyols. Taken together, these results revealed that this Arctic S. artemisiae strain MCCB 248 is a promising candidate for natural products drug discovery and genome mining for potential anticancer agents.

  20. Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and Chrysin in combination cancer chemotherapy.

    PubMed

    Davaran, Soodabeh; Fazeli, Hamed; Ghamkhari, Aliyeh; Rahimi, Fariborz; Molavi, Ommoleila; Anzabi, Maryam; Salehi, Roya

    2018-08-01

    A Novel poly [2-hydroxyethyl methacrylate-Lactide-dimethylaminoethyl methacrylate quaternary ammonium alkyl halide] [P(HEMA-LA-MADQUAT)] copolymer was synthesized through combination of ring opening polymerization (ROP) and 'free' radical initiated polymerization methods. This newly developed copolymer was fully characterized by FT-IR, 1 HNMR and 13 CNMR spectroscopy. Micellization of the copolymer was performed by dialysis membrane method and obtained micelles were characterized by FESEM, dynamic light scattering (DLS), zeta potential (ξ), and critical micelle concentration (CMC) measurements. This copolymer was developed with the aim of co-delivering two different anticancer drugs: methotrexate (MTX) and chrysin. In vitro cytotoxicity effect of MTX@Chrysin-loaded P(HEMA-LA-MADQUAT) was also studied through assessing the survival rate of breast cancer cell line (MCF-7) and DAPI staining assays. Cationic micelle (and surface charge of + 7.6) with spherical morphology and an average diameter of 55 nm and CMC of 0.023 gL -1 was successfully obtained. Micelles showed the drug loaded capacity around 87.6 and 86.5% for MTX and Chrysin, respectively. The cytotoxicity assay of a drug-free nanocarrier on MCF-7 cell lines indicated that this developed micelles were suitable nanocarriers for anticancer drugs. Furthermore, the MTX@Chrysin-loaded micelle had more efficient anticancer performance than free dual anticancer drugs (MTX @ chrysin), confirmed by MTT assay and DAPI stainingmethods. Therefore, we envision that this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies. Therefore, this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies.

  1. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  2. Studies on the secondary metabolites of a Pseudoalteromonas sp. isolated from sediments collected at the northeastern coast of Brazil.

    PubMed

    Arthaud, Isabelle D B; Rodrigues, Felipe A R; Jimenez, Paula C; Montenegro, Raquel C; Angelim, Alysson L; Maciel, Vânia M M; Silveira, Edilberto R; Freitas, Hozana P S; Sousa, Thiciana S; Pessoa, Otília D L; Lotufo, Tito M C; Costa-Lotufo, Letícia V

    2012-02-01

    Continuing search for anticancer compounds from the marine environment, we have studied microorganisms that inhabit intertidal sediments of the northeastern Brazilian coast. Of the 32 strains isolated, 13 were selected for biological evaluation of their crude extracts. The acetate extract obtained from a Gram-negative bacterium was strongly active against cancer cell lines with IC(50) values that ranged from 0.04 (HL60 leukemia cells) to 0.26 μg/ml (MDA MB-435 melanoma cells). The bacterium was identified as a Pseudoalteromonas sp. based on 16S rRNA gene sequencing. A bioassay-guided fractionation of the active extract led to the isolation of prodigiosin, a well-known tripyrrole red pigment with immunosuppressive and anticancer activities. Further experiments with ErbB-2 overexpressing cell lines, including HB4a-C3.6 (moderate overexpression), HB4a-C5.2 (high overexpression), and the parental HB4a cell line, were performed. Prodigiosin was moderately active toward HB4a cells with an IC(50) of 4.6 μg/ml, while it was 115 and 18 times more active toward HB4a-C3.6 cells (IC(50) of 0.04 μg/ml) and HB4a-C5.2 (IC(50) of 0.26 μg/ml) cells, respectively. These data suggest that, in spite of its previously described apoptosis-inducing properties, prodigiosin can selectively recognize cells overexpressing ErbB-2, which could be highly appealing in human breast cancer therapy. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Ferrocene-cinchona hybrids with triazolyl-chalcone linkers act as pro-oxidants and sensitize human cancer cell lines to paclitaxel.

    PubMed

    Podolski-Renić, Ana; Bősze, Szilvia; Dinić, Jelena; Kocsis, László; Hudecz, Ferenc; Csámpai, Antal; Pešić, Milica

    2017-08-16

    Recently, we demonstrated that ferrocene-containing compounds with a cinchona moiety displayed marked anticancer activity. Here we report on the effects of the most promising isomers encompassing quinine- (compounds 4 and 5) and quinidine-epimers (compounds 6 and 7) - synthesized using improved methods providing controlled diastereoselectivity - in three different human multidrug resistant (MDR) cancer cell lines and their sensitive counterparts (non-small cell lung carcinoma NCI-H460/R/NCI-H460, colorectal carcinoma DLD1-TxR/DLD1 and glioblastoma U87-TxR/U87). We observed that the presence of the MDR phenotype did not diminish the activity of the compounds suggesting that ferrocene quinine- and quinidine-epimers are not substrates for P-glycoprotein, which has been indicated as a major mechanism of MDR in the cell lines used. Considering that metal-based anticancer agents mainly act by increasing ROS production, we investigated the potential of ferrocene-quinidine epimers to generate ROS. We found that 6 and 7 more readily increased ROS production and induced mitochondrial damage in MDR cancer cells. According to cell death analysis, 6 and 7 were more active against MDR cancer cells showing collateral sensitivity. In addition, our data suggest that these compounds could act as inhibitors of autophagy. Importantly, simultaneous treatments of 6 and 7 with paclitaxel (PTX) increased the sensitivity of MDR cancer cells to PTX. In conclusion, the ferrocene-quinidine epimers, besides being selective towards MDR cancer cells, could also possess potential to overcome PTX resistance.

  4. Deoxyschizandrin, Isolated from Schisandra Berries, Induces Cell Cycle Arrest in Ovarian Cancer Cells and Inhibits the Protumoural Activation of Tumour-Associated Macrophages.

    PubMed

    Lee, Kijun; Ahn, Ji-Hye; Lee, Kyung-Tae; Jang, Dae Sik; Choi, Jung-Hye

    2018-01-15

    Deoxyschizandrin, a major lignan of Schisandra berries, has been demonstrated to have various biological activities such as antioxidant, hepatoprotective, and antidiabetic effects. However, the anti-cancer effects of deoxyschizandrin are poorly characterized. In the present study, we investigated the anti-cancer effect of deoxyschizandrin on human ovarian cancer cell lines and tumour-associated macrophages (TAMs). Deoxyschizandrin induced G₀/G₁ phase cell cycle arrest and inhibited cyclin E expression in human ovarian cancer cells. Overexpression of cyclin E significantly reversed the deoxyschizandrin-induced cell growth inhibition. Interestingly, increased production of reactive oxygen species and decreased activation of Akt were observed in A2780 cells treated with deoxyschizandrin, and the antioxidant compromised the deoxyschizandrin-induced cell growth inhibition and Akt inactivation. Moreover, deoxyschizandrin-induced cell growth inhibition was markedly suppressed by Akt overexpression. In addition, deoxyschizandrin was found to inhibit the expression of the M2 phenotype markers CD163 and CD209 in TAMs, macrophages stimulated by the ovarian cancer cells. Moreover, expression and production of the tumour-promoting factors MMP-9, RANTES, and VEGF, which are highly enhanced in TAMs, was significantly suppressed by deoxyschizandrin treatment. Taken together, these data suggest that deoxyschizandrin exerts anti-cancer effects by inducing G₀/G₁ cell cycle arrest in ovarian cancer cells and reducing the protumoural phenotype of TAMs.

  5. Momordica charantia Extract Induces Apoptosis in Human Cancer Cells through Caspase- and Mitochondria-Dependent Pathways

    PubMed Central

    Li, Chia-Jung; Tsang, Shih-Fang; Tsai, Chun-Hao; Tsai, Hsin-Yi; Chyuan, Jong-Ho; Hsu, Hsue-Yin

    2012-01-01

    Plants are an invaluable source of potential new anti-cancer drugs. Momordica charantia is one of these plants with both edible and medical value and reported to exhibit anticancer activity. To explore the potential effectiveness of Momordica charantia, methanol extract of Momordica charantia (MCME) was used to evaluate the cytotoxic activity on four human cancer cell lines, Hone-1 nasopharyngeal carcinoma cells, AGS gastric adenocarcinoma cells, HCT-116 colorectal carcinoma cells, and CL1-0 lung adenocarcinoma cells, in this study. MCME showed cytotoxic activity towards all cancer cells tested, with the approximate IC50 ranging from 0.25 to 0.35 mg/mL at 24 h. MCME induced cell death was found to be time-dependent in these cells. Apoptosis was demonstrated by DAPI staining and DNA fragmentation analysis using agarose gel electrophoresis. MCME activated caspase-3 and enhanced the cleavage of downstream DFF45 and PARP, subsequently leading to DNA fragmentation and nuclear condensation. The apoptogenic protein, Bax, was increased, whereas Bcl-2 was decreased after treating for 24 h in all cancer cells, indicating the involvement of mitochondrial pathway in MCME-induced cell death. These findings indicate that MCME has cytotoxic effects on human cancer cells and exhibits promising anti-cancer activity by triggering apoptosis through the regulation of caspases and mitochondria. PMID:23091557

  6. OK-432 Suppresses Proliferation and Metastasis by Tumor Associated Macrophages in Bladder Cancer.

    PubMed

    Tian, Yuan-Feng; Tang, Kun; Guan, Wei; Yang, Tao; Xu, Hua; Zhuang, Qian-Yuan; Ye, Zhang-Qun

    2015-01-01

    OK-432, a Streptococcus-derived anticancer immunotherapeutic agent, has been applied in clinic for many years and achieved great progress in various cancers. In the present study, we investigated its anticancer effect on bladder cancer through tumor associated macrophages (TAMs). MTS assay validated OK-432 could inhibit proliferation in both T24 and EJ bladder cell lines. OK-432 also induced apoptosis of bladder cancer cells in vitro. Consequently, we demonstrated that OK-432 could suppress the bladder cancer cells migration and invasion by altering the EMT-related factors. Furthermore, using SD rat model, we revealed that OK-432 inhibited tumor growth, suppressed PCNA expression and inhibited metastasis in vivo. Taken together, these findings strongly suggest that OK-432 inhibits cell proliferation and metastasis through inducing macrophages to secret cytokines in bladder cancer.

  7. Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group.

    PubMed

    Yadlapalli, Rama Krishna; Chourasia, O P; Vemuri, Kiranmayi; Sritharan, Manjula; Perali, Ramu Sridhar

    2012-04-15

    A series of dihydropyrimidine derivatives were synthesized by utilizing Biginelli reaction and evaluated for their in vitro anticancer activity against MCF-7 human breast cancer (HBC) cell line using sulforhodamine B (SRB) assay and antitubercular activity against Mycobacterium tuberculosis (MTB) H(37)Rv using Microplate Alamar Blue Assay (MABA). Compounds 13p, 13t were exhibited 70.6% and 63.7% of HBC cell growth inhibition at 10 μM concentration. Interestingly compound 13p was also found to be the most potent in the series against MTB H(37)Rv with MIC value of 0.125 μg/mL. Copyright © 2012. Published by Elsevier Ltd.

  8. Secretion metabolites of probiotic yeast, Pichia kudriavzevii AS-12, induces apoptosis pathways in human colorectal cancer cell lines.

    PubMed

    Saber, Amir; Alipour, Beitollah; Faghfoori, Zeinab; Mousavi Jam, Ali; Yari Khosroushahi, Ahmad

    2017-05-01

    There is a common agreement on the important role of the gastrointestinal microbiota in the etiology of cancer. Benign probiotic yeast strains are able to ameliorate intestinal microbiota and regulate the host metabolism, physiology, and immune system through anti-inflammatory, antiproliferative, and anticancer effects. We hypothesized that Pichia kudriavzevii AS-12 secretion metabolites possess anticancer activity on human colorectal cancer cells (HT-29, Caco-2) via inhibiting growth and inducing apoptosis. This study aimed to assess the anticancer effect of P. kudriavzevii AS-12 secretion metabolites and the underlying mechanisms. The cytotoxicity evaluations were performed via 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay; 4',6-diamidino-2-phenylindole staining; and FACS-flow cytometry tests. Also, the effects of P. kudriavzevii AS-12 secretion metabolites on the expression level of 6 important genes (BAD, Bcl-2, Caspase-3, Caspase-8, Caspase-9 and Fas-R) involved in the extrinsic and intrinsic apoptosis pathways were studied by real-time polymerase chain reaction method. P. kudriavzevii AS-12 secretion metabolites showed significant (P < .0001) cytotoxic effects on HT-29 cells (57.5%) and Caco-2 (32.5%) compared to KDR/293 normal cells (25%). Moreover, the cytotoxic effects of examined yeast supernatant on HT-29 cells were comparable with 5-fluorouracil, as a positive control (57.5% versus 62.2% respectively). Flow cytometric results showed that the induction of apoptosis is the main mechanism of the anticancer effects. Also, according to the reverse transcriptase polymerase chain reaction results, the expression level of proapoptotic genes (BAD, Caspase-3, Caspase-8, Caspase-9, and Fas-R) in treated HT-29 and Caco-2 cells was higher than untreated and normal cells, whereas the antiapoptotic gene (Bcl-2) was downregulated. P. kudriavzevii AS-12 secretion metabolites exert its anticancer effects by inhibiting cell proliferation and inducing intrinsic and extrinsic apoptosis in colon cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects on Energy Metabolism of Two Guanidine Molecules, (Boc)2 -Creatine and Metformin.

    PubMed

    Garbati, Patrizia; Ravera, Silvia; Scarfì, Sonia; Salis, Annalisa; Rosano, Camillo; Poggi, Alessandro; Damonte, Gianluca; Millo, Enrico; Balestrino, Maurizio

    2017-09-01

    Several enzymes are involved in the energy production, becoming a possible target for new anti-cancer drugs. In this paper, we used biochemical and in silico studies to evaluate the effects of two guanidine molecules, (Boc) 2 -creatine and metformin, on creatine kinase, an enzyme involved in the regulation of intracellular energy levels. Our results show that both drugs inhibit creatine kinase activity; however, (Boc) 2 -creatine displays a competitive inhibition, while metformin acts with a non-competitive mechanism. Moreover, (Boc) 2 -creatine is able to inhibit the activity of hexokinase with a non-competitive mechanism. Considering that creatine kinase and hexokinase are involved in energy metabolism, we evaluated the effects of (Boc) 2 -creatine and metformin on the ATP/AMP ratio and on cellular proliferation in healthy fibroblasts, human breast cancer cells (MDA-MB-468), a human neuroblastoma cell line (SH-SY5Y), a human Hodgkin lymphoma cell line (KMH2). We found that healthy fibroblasts were only partially affected by (Boc) 2 -creatine, while both ATP/AMP ratio and viability of the three cancer cell lines were significantly decreased. By inhibiting both creatine kinase and hexokinase, (Boc) 2 -creatine appears as a promising new agent in anticancer treatment. Further research is needed to understand what types of cancer cells are most suitable to treatment by this new compound. J. Cell. Biochem. 118: 2700-2711, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells.

    PubMed

    Shimizu, Takamitsu; Kawai, Junya; Ouchi, Kenji; Kikuchi, Haruhisa; Osima, Yoshiteru; Hidemi, Rikiishi

    2016-04-01

    Agaricus blazei (A. blazei) is a mushroom with many biological effects and active ingredients. We purified a tumoricidal substance from A. blazei, an ergosterol derivative, and named it 'Agarol'. Cytotoxic effects of Agarol were determined by the MTT assay using A549, MKN45, HSC-3, and HSC-4 human carcinoma cell lines treated with Agarol. Apoptosis was detected by flow cytometry analysis. Reactive oxygen species (ROS) levels and mitochondria membrane potential (∆ψm) were also determined by flow cytometry. Western blot analysis was used to quantify the expression of apoptosis-related proteins. Agarol predominantly induced apoptosis in two p53-wild cell lines (A549 and MKN45) compared to the other p53-mutant cell lines (HSC-3 and HSC-4). Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of ROS, reduced ∆ψm, release of apoptosis-inducing factor (AIF) from the mitochondria to the cytosol, upregulation of Bax, and downregulation of Bcl-2. Caspase-3 activities did not increase, and z-VAD-fmk, a caspase inhibitor, did not inhibit the Agarol-induced apoptosis. These findings indicate that Agarol induces caspase-independent apoptosis in human carcinoma cells through a mitochondrial pathway. The in vivo anticancer activity of Agarol was confirmed in a xenograft murine model. This study suggests a molecular mechanism by which Agarol induces apoptosis in human carcinoma cells and indicates the potential use of Agarol as an anticancer agent.

  11. Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities.

    PubMed

    Wang, Changhao; Carter-Cooper, Brandon; Du, Yixuan; Zhou, Jie; Saeed, Musabbir A; Liu, Jinbing; Guo, Min; Roembke, Benjamin; Mikek, Clinton; Lewis, Edwin A; Lapidus, Rena G; Sintim, Herman O

    2016-08-08

    G-quadruplex ligands have been touted as potential anticancer agents, however, none of the reported G-quadruplex-interactive small molecules have gone past phase II clinical trials. Recently it was revealed that diminazene (berenil, DMZ) actually binds to G-quadruplexes 1000 times better than DNA duplexes, with dissociation constants approaching 1 nM. DMZ however does not have strong anticancer activities. In this paper, using a panel of biophysical tools, including NMR, FRET melting assay and FRET competition assay, we discovered that monoamidine analogues of DMZ bearing alkyne substitutes selectively bind to G-quadruplexes. The lead DMZ analogues were shown to be able to target c-MYC G-quadruplex both in vitro and in vivo. Alkyne DMZ analogues display respectable anticancer activities (single digit micromolar GI50) against ovarian (OVCAR-3), prostate (PC-3) and triple negative breast (MDA-MB-231) cancer cell lines and represent interesting new leads to develop anticancer agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Preclinical Evaluation of Sequential Combination of Oncolytic Adenovirus Delta-24-RGD and Phosphatidylserine-Targeting Antibody in Pancreatic Ductal Adenocarcinoma.

    PubMed

    Dai, Bingbing; Roife, David; Kang, Ya'an; Gumin, Joy; Rios Perez, Mayrim V; Li, Xinqun; Pratt, Michael; Brekken, Rolf A; Fueyo-Margareto, Juan; Lang, Frederick F; Fleming, Jason B

    2017-04-01

    Delta-24-RGD (DNX-2401) is a conditional replication-competent oncolytic virus engineered to preferentially replicate in and lyse tumor cells with abnormality of p16/RB/E2F pathway. In a phase I clinical trial, Delta-24-RGD has shown favorable safety profile and promising clinical efficacy in brain tumor, which prompted us to evaluate its anticancer activity in pancreatic ductal adenocarcinoma (PDAC), which also has high frequency of homozygous deletion and promoter methylation of CDKN2A encoding the p16 protein. Our results demonstrate that Delta-24-RGD can induce dramatic cytotoxicity in a subset of PDAC cell lines with high cyclin D1 expression. Induction of autophagy and apoptosis by Delta-24-RGD in sensitive PDAC cells was confirmed with LC3B-GFP autophagy reporter and acridine orange staining as well as Western blotting analysis of LC3B-II expression. Notably, we found that Delta-24-RGD induced phosphatidylserine exposure in infected cells independent of cells' sensitivity to Delta-24-RGD, which renders a rationale for combination of Delta-24-RGD viral therapy and phosphatidylserine targeting antibody for PDAC. In a mouse PDAC model derived from a liver metastatic pancreatic cancer cell line, Delta-24-RGD significantly inhibited tumor growth compared with control ( P < 0.001), and combination of phosphatidylserine targeting antibody 1N11 further enhanced its anticancer activity ( P < 0.01) possibly through inducing synergistic anticancer immune responses. Given that these 2 agents are currently in clinical evaluation, our study warrants further clinical evaluation of this novel combination strategy in pancreatic cancer therapy. Mol Cancer Ther; 16(4); 662-70. ©2016 AACR . ©2017 American Association for Cancer Research.

  13. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  14. Comparison of essential oil components and in vitro anticancer activity in wild and cultivated Salvia verbenaca.

    PubMed

    Russo, Alessandra; Cardile, Venera; Graziano, Adriana C E; Formisano, Carmen; Rigano, Daniela; Canzoneri, Marisa; Bruno, Maurizio; Senatore, Felice

    2015-01-01

    The objectives of our research were to study the chemical composition and the in vitro anticancer effect of the essential oil of Salvia verbenaca growing in natural sites in comparison with those of cultivated (Sc) plants. The oil from wild (Sw) S. verbenaca presented hexadecanoic acid (23.1%) as the main constituent, while the oil from Sc plants contained high quantities of hexahydrofarnesyl acetone (9.7%), scarce in the natural oil (0.7%). The growth-inhibitory and proapoptotic effects of the essential oils from Sw and Sc S. verbenaca were evaluated in the human melanoma cell line M14, testing cell vitality, cell membrane integrity, genomic DNA fragmentation and caspase-3 activity. Both the essential oils were able to inhibit the growth of the cancer cells examined inducing also apoptotic cell death, but the essential oil from cultivated samples exhibited the major effects.

  15. Afzelin exhibits anti-cancer activity against androgen-sensitive LNCaP and androgen-independent PC-3 prostate cancer cells through the inhibition of LIM domain kinase 1.

    PubMed

    Zhu, Kai-Chang; Sun, Jian-Mei; Shen, Jian-Guo; Jin, Ji-Zhong; Liu, Feng; Xu, Xiao-Lin; Chen, Lin; Liu, Lin-Tao; Lv, Jia-Ju

    2015-10-01

    Prostate cancer presents high occurrence worldwide. Medicinal plants are a major source of novel and potentially therapeutic molecules; therefore, the aim of the present study was to investigate the possible anti-prostate cancer activity of afzelin, a flavonol glycoside that was previously isolated from Nymphaea odorata . The effect of afzelin on the proliferation of androgen-sensitive LNCaP and androgen-independent PC-3 cells was evaluated by performing a water soluble tetrazolium salt-1 assay. In addition, the effect of afzelin on the cell cycle of the LNCaP and PC-3 prostate cancer cell lines was evaluated. Western blot analysis was performed to evaluate the effect of afzelin on the kinases responsible for the regulation of actin organization. Afzelin was identified to inhibit the proliferation of LNCaP and PC3 cells, and block the cell cycle in the G 0 phase. The anticancer activity of afzelin in these cells was determined to be due to inhibition of LIM domain kinase 1 expression. Thus, the in vitro efficacy of afzelin against prostate cancer is promising; however, additional studies on different animal models are required to substantiate its anticancer potential.

  16. Afzelin exhibits anti-cancer activity against androgen-sensitive LNCaP and androgen-independent PC-3 prostate cancer cells through the inhibition of LIM domain kinase 1

    PubMed Central

    ZHU, KAI-CHANG; SUN, JIAN-MEI; SHEN, JIAN-GUO; JIN, JI-ZHONG; LIU, FENG; XU, XIAO-LIN; CHEN, LIN; LIU, LIN-TAO; LV, JIA-JU

    2015-01-01

    Prostate cancer presents high occurrence worldwide. Medicinal plants are a major source of novel and potentially therapeutic molecules; therefore, the aim of the present study was to investigate the possible anti-prostate cancer activity of afzelin, a flavonol glycoside that was previously isolated from Nymphaea odorata. The effect of afzelin on the proliferation of androgen-sensitive LNCaP and androgen-independent PC-3 cells was evaluated by performing a water soluble tetrazolium salt-1 assay. In addition, the effect of afzelin on the cell cycle of the LNCaP and PC-3 prostate cancer cell lines was evaluated. Western blot analysis was performed to evaluate the effect of afzelin on the kinases responsible for the regulation of actin organization. Afzelin was identified to inhibit the proliferation of LNCaP and PC3 cells, and block the cell cycle in the G0 phase. The anticancer activity of afzelin in these cells was determined to be due to inhibition of LIM domain kinase 1 expression. Thus, the in vitro efficacy of afzelin against prostate cancer is promising; however, additional studies on different animal models are required to substantiate its anticancer potential. PMID:26622852

  17. Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells.

    PubMed

    Du, Guang-Jian; Wang, Chong-Zhi; Zhang, Zhi-Yu; Wen, Xiao-Dong; Somogyi, Jacqueline; Calway, Tyler; He, Tong-Chuan; Du, Wei; Yuan, Chun-Su

    2012-05-01

    Panaxadiol is a purified sapogenin of ginseng saponins that exhibits anticancer activity. Irinotecan is a second-line anticancer drug, but clinical treatment with irinotecan is limited due to its side effects. In this study, we have investigated the possible synergistic anticancer effects of panaxadiol and irinotecan on human colorectal cancer cells and explored the potential role of apoptosis in their synergistic activity. The combination of panaxadiol and irinotecan significantly enhanced antiproliferative effects in HCT-116 cells (P< 0.05). Cell cycle analysis demonstrated that combining irinotecan treatment with panaxadiol significantly increased the G1-phase fractions of cells, compared with irinotecan treatment alone. In apoptotic assays, the combination of panaxadiol and irinotecan significantly increased the percentage of apoptotic cells compared with irinotecan alone (P<0.01). Increased activity of caspase-3 and caspase-9 was observed after treating with panaxadiol and irinotecan. The synergistic apoptotic effects were supported by docking analysis, which demonstrated that panaxadiol and irinotecan bound two different chains of the caspase-3 protein. Data from this study suggested that caspase-3- and caspase-9-mediated apoptosis may play an important role in the panaxadiol enhanced antiproliferative effects of irinotecan on human colorectal cancer cells. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  18. Cyclin D1 Downregulation Contributes to Anti-Cancer Effect of Isorhapontigenin (ISO) on Human Bladder Cancer Cells

    PubMed Central

    Fang, Yong; Cao, Zipeng; Hou, Qi; Ma, Chen; Yao, Chunsuo; Li, Jingxia; Wu, Xue-Ru; Huang, Chuanshu

    2013-01-01

    Isorhapontigenin (ISO) is a new derivative of stilbene compound that was isolated from the Chinese herb Gnetum Cleistostachyum, and has been used for treatment of bladder cancers for centuries. In our current studies, we have explored the potential inhibitory effect and molecular mechanisms underlying ISO anti-cancer effects on anchorage-independent growth of human bladder cancer cell lines. We found that ISO showed a significant inhibitory effect on human bladder cancer cell growth and was accompanied with related cell cycle G0/G1 arrest as well as downregulation of Cyclin D1 expression at the transcriptional level in UMUC3 and RT112 cells. Further studies identified that ISO down-regulated Cyclin D1 gene transcription via inhibition of SP1 transactivation. Moreover, ectopic expression of GFP-Cyclin D1 rendered UMUC3 cells resistant to induction of cell cycle G0/G1 arrest and inhibition of cancer cell anchorage-independent growth by ISO treatment. Together, our studies demonstrate that ISO is an active compound that mediates for Gnetum Cleistostachyum’s induction of cell cycle G0/G1 arrest and inhibition of cancer cell anchorage-independent growth through down-regulating SP1/Cyclin D1 axis in bladder cancer cells. Our studies provide a novel insight into understanding the anti-cancer activity of the Chinese herb Gnetum Cleistostachyum and its isolate ISO. PMID:23723126

  19. A Benzothiazole Derivative (5g) Induces DNA Damage And Potent G2/M Arrest In Cancer Cells.

    PubMed

    Hegde, Mahesh; Vartak, Supriya V; Kavitha, Chandagirikoppal V; Ananda, Hanumappa; Prasanna, Doddakunche S; Gopalakrishnan, Vidya; Choudhary, Bibha; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C

    2017-05-31

    Chemically synthesized small molecules play important role in anticancer therapy. Several chemical compounds have been reported to damage the DNA, either directly or indirectly slowing down the cancer cell progression by causing a cell cycle arrest. Direct or indirect reactive oxygen species formation causes DNA damage leading to cell cycle arrest and subsequent cell death. Therefore, identification of chemically synthesized compounds with anticancer potential is important. Here we investigate the effect of benzothiazole derivative (5g) for its ability to inhibit cell proliferation in different cancer models. Interestingly, 5g interfered with cell proliferation in both, cell lines and tumor cells leading to significant G2/M arrest. 5g treatment resulted in elevated levels of ROS and subsequently, DNA double-strand breaks (DSBs) explaining observed G2/M arrest. Consistently, we observed deregulation of many cell cycle associated proteins such as CDK1, BCL2 and their phosphorylated form, CyclinB1, CDC25c etc. Besides, 5g treatment led to decreased levels of mitochondrial membrane potential and activation of apoptosis. Interestingly, 5g administration inhibited tumor growth in mice without significant side effects. Thus, our study identifies 5g as a potent biochemical inhibitor to induce G2/M phase arrest of the cell cycle, and demonstrates its anticancer properties both ex vivo and in vivo.

  20. Combined antitumor effects of bee venom and cisplatin on human cervical and laryngeal carcinoma cells and their drug resistant sublines.

    PubMed

    Gajski, Goran; Čimbora-Zovko, Tamara; Rak, Sanjica; Rožman, Marko; Osmak, Maja; Garaj-Vrhovac, Vera

    2014-12-01

    In the present study, we investigated the possible combined anticancer ability of bee venom (BV) and cisplatin towards two pairs of tumour cell lines: parental cervical carcinoma HeLa cells and their cisplatin-resistant HeLa CK subline,as well as laryngeal carcinoma HEp-2 cells and their cisplatin-resistant CK2 subline. Additionally, we identified several peptides of BV in the BV sample used in the course of the study and determined the exact concentration of MEL. BV applied alone in concentrations of 30 to 60 μg ml(–1) displayed dose-dependent cytotoxicity against all cell lines tested. Cisplatin-resistant cervical carcinoma cells were more sensitive to BV than their parental cell lines (IC(50) values were 52.50 μg ml(–1) for HeLa vs.47.64 μg ml(–1) for HeLa CK cells), whereas opposite results were obtained for cisplatin-resistant laryngeal carcinoma cells (IC(50) values were 51.98 μg ml(–1) for HEp-2 vs. > 60.00 μg ml(–1) for CK2 cells). Treatment with BV alone induced a necrotic type of cell death, as shown by characteristic morphological features, fast staining with ethidium-bromide and a lack of cleavage of apoptotic marker poly (ADP-ribose) polymerase (PARP) on Western blot. Combined treatment of BV and cisplatin induced an additive and/or weak synergistic effect towards tested cell lines, suggesting that BV could enhance the killing effect of selected cells when combined with cisplatin. Therefore, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. Our results suggest that combined treatment with BV could be useful from the point of minimizing the cisplatin concentration during chemotherapy, consequently reducing and/or postponing the development of cisplatin resistance.

  1. Synthesis, biological evaluation and structure-activity relationship studies of isoflavene based Mannich bases with potent anti-cancer activity.

    PubMed

    Chen, Yilin; Cass, Shelley L; Kutty, Samuel K; Yee, Eugene M H; Chan, Daniel S H; Gardner, Christopher R; Vittorio, Orazio; Pasquier, Eddy; Black, David StC; Kumar, Naresh

    2015-11-15

    Phenoxodiol, an analogue of the isoflavone natural product daidzein, is a potent anti-cancer agent that has been investigated for the treatment of hormone dependent cancers. This molecular scaffold was reacted with different primary amines and secondary amines under different Mannich conditions to yield either benzoxazine or aminomethyl substituted analogues. These processes enabled the generation of a diverse range of analogues that were required for structure-activity relationship (SAR) studies. The resulting Mannich bases exhibited prominent anti-proliferative effects against SHEP neuroblastoma and MDA-MB-231 breast adenocarcinoma cell lines. Further cytotoxicity studies against MRC-5 normal lung fibroblast cells showed that the isoflavene analogues were selective towards cancer cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Liquid Chromatography Mass Spectrometry Analysis and Cytotoxicity of Asparagus adscendens Roots against Human Cancer Cell Lines.

    PubMed

    Khan, Kashif Maqbool; Nahar, Lutfun; Mannan, Abdul; Arfan, Muhammad; Khan, Ghazanfar Ali; Al-Groshi, Afaf; Evans, Andrew; Dempster, Nicola M; Ismail, Fyaz M D; Sarker, Satyajit D

    2018-01-01

    Asparagus adscendens Roxb. (Asparagaceae), is native to the Himalayas. This plant has been used in the prevention and effective treatment of various forms of cancers. This paper reports, for the first time, on the cytotoxicity of the methanol (MeOH) extract of the roots of A. adscendens and its solid-phase extraction (SPE) fractions against four human carcinoma cell lines and LC-ESI-QTOF-MS analysis of the SPE fractions. Finely powdered roots of A. adscendens were macerated in methanol and extracted through SPE using gradient solvent system (water: methanol) proceeded for analysis on LC-ESI-QTOF-MS and cytotoxicity against four human carcinoma cell lines: breast (MCF7), liver (HEPG2), lung (A549), and urinary bladder (EJ138), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. The MeOH extract and four SPE fractions exhibited cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mL. As observed in other Asparagus species, the presence of saponins and sapogenins in the SPE fractions was evident in the liquid chromatography-mass spectrometry data. It is reasonable to assume that the cytotoxicity of the MeOH extract of the roots of A. adscendens and its SPE fractions, at least partly, due to the presence of saponins and their aglycones. This suggests that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. The MeOH extract and all solid-phase extraction (SPE) fractions exhibited various levels of cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mLThe presence of saponins and sapogenins in the SPE fractions was evident in the Liquid chromatography-mass spectrometry dataDue to the presence of saponins and their aglycones, suggest that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. Abbreviation used: SPE: Solid-phase extraction, MCF7: Breast cancer cell line, HEPG2: Liver cancer cell line, A549: Lung liver cancer cell line, EJ138: Urinary bladder cancer cell line, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide, LC-MS: Liquid chromatography-mass spectrometry.

  3. Vitamin K2, a menaquinone present in dairy products targets castration-resistant prostate cancer cell-line by activating apoptosis signaling.

    PubMed

    Dasari, Subramanyam; Samy, Angela Lincy Prem Antony; Kajdacsy-Balla, Andre; Bosland, Maarten C; Munirathinam, Gnanasekar

    2018-05-01

    The aim of this study was to evaluate the therapeutic effects of vitamin K2 (VK2) on castration-resistant prostate cancer (CRPC) and its anti-cancer mechanisms in a pre-clinical study using a VCaP cell line (ATCC ® CRL-2876™) which was established from a vertebral bone metastasis from a patient with hormone refractory prostate cancer. Our data showed that VK2 significantly inhibited CRPC VCaP cell proliferation in a dose-dependent manner at 48 h treatment in vitro. In addition, VK2 reduced the migration potential of VCaP cells and inhibited anchorage-independent growth of these cells. Our results also showed that VK2 induces apoptosis in VCaP cells. Furthermore, VK2 enforced growth arrest in VCaP cells by activating cellular senescence. Notably, VK2 treatment elevated the levels of reactive oxygen species in VCaP cells. Western blot analysis revealed that VK2 downregulated the expression of androgen receptor, BiP, survivin, while activating caspase-3 and -7, PARP-1 cleavage, p21 and DNA damage response marker, phospho-H2AX in VCaP cells. In conclusion, our study suggests that VK2 might be a potential anti-cancer agent for CRPC by specifically targeting key anti-apoptotic, cell cycle progression and metastasis-promoting signaling molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer.

    PubMed

    Dandawate, Prasad R; Vyas, Alok; Ahmad, Aamir; Banerjee, Sanjeev; Deshpande, Jyoti; Swamy, K Venkateswara; Jamadar, Abeda; Dumhe-Klaire, Anne Catherine; Padhye, Subhash; Sarkar, Fazlul H

    2012-07-01

    Several formulations have been proposed to improve the systemic delivery of novel cancer therapeutic compounds, including cyclodextrin derivatives. We aimed to synthesize and characterize of CDF-β-cyclodextrin inclusion complex (1:2) (CDFCD). The compound was characterized by Fourier transform infrared, differential scanning calorimetry, powder X-ray diffraction studies, H1 & C13 NMR studies and scanning electron microscopic analysis. Its activity was tested against multiple cancer cell lines, and in vivo bioavailability was checked. CDF-β-cyclodextrin was found to lower IC(50) value by half when tested against multiple cancer cell lines. It preferentially accumulated in the pancreas, where levels of CDF-β-cyclodextrin in mice were 10 times higher than in serum, following intravenous administration of an aqueous CDF-β-cyclodextrin preparation. Novel curcumin analog CDF preferentially accumulates in the pancreas, leading to its potent anticancer activity against pancreatic cancer cells. Synthesis of such CDF-β-cyclodextrin self-assembly is an effective strategy to enhance its bioavailability and tissue distribution, warranting further evaluation for CDF delivery in clinical settings for treatment of human malignancies.

  5. Antitumour properties of the leaf essential oil of Xylopia frutescens Aubl. (Annonaceae).

    PubMed

    Ferraz, Rosana P C; Cardoso, Gabriella M B; da Silva, Thanany B; Fontes, José Eraldo do N; Prata, Ana Paula do N; Carvalho, Adriana A; Moraes, Manoel O; Pessoa, Claudia; Costa, Emmanoel V; Bezerra, Daniel P

    2013-11-01

    The aim of this study was to investigate the chemical composition and anticancer effect of the leaf essential oil of Xylopia frutescens in experimental models. The chemical composition of the essential oil was analysed by GC/FID and GC/MS. In vitro cytotoxic activity of the essential oil was determined on cultured tumour cells. In vivo antitumour activity was assessed in Sarcoma 180-bearing mice. The major compounds identified were (E)-caryophyllene (31.48%), bicyclogermacrene (15.13%), germacrene D (9.66%), δ-cadinene (5.44%), viridiflorene (5.09%) and α-copaene (4.35%). In vitro study of the essential oil displayed cytotoxicity on tumour cell lines and showed IC50 values ranging from 24.6 to 40.0 μg/ml for the NCI-H358M and PC-3M cell lines, respectively. In the in vivo antitumour study, tumour growth inhibition rates were 31.0-37.5%. In summary, the essential oil was dominated by sesquiterpene constituents and has some interesting anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. In vitro and in vivo anti-cancer activity of formononetin on human cervical cancer cell line HeLa.

    PubMed

    Jin, Yue-mei; Xu, Tian-min; Zhao, Yan-hui; Wang, Yi-chao; Cui, Man-hua

    2014-03-01

    Worldwide, cervical cancer (CC) is the third most common malignancy in women, and it remains a leading cause of cancer-related death of women. Genomic studies indicate that phosphoinositide 3-kinase (PI3K)/AKT signaling is one of the most frequently deregulated pathways in several human cancers, including CC. This signaling pathway has an important role in cancer cell proliferation, survival, motility, and metabolism, and therefore could be an attractive therapeutic target. In a previous study, we used a sensitive and high-speed homogeneous assay for the detection of kinase activity and for screening of PI3K/AKT signaling inhibitors in a high-throughput screening (HTS) format and then obtain formononetin, as an O-methylated isoflavone existed in a number of plants and herbs like Astragalus membranaceus. We showed that formononetin inhibited the phosphorylation of AKT and induced the apoptosis of CC cell line HeLa in a dose-dependent manner. Furthermore, formononetin suppressed xenograft tumor growth in nude mice. Our results indicated that formononetin may be used as an anti-cancer drug for cervical cancer in the future.

  7. Role of Dopamine Receptors in the Anticancer Activity of ONC201.

    PubMed

    Kline, Christina Leah B; Ralff, Marie D; Lulla, Amriti R; Wagner, Jessica M; Abbosh, Phillip H; Dicker, David T; Allen, Joshua E; El-Deiry, Wafik S

    2018-01-01

    ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201's interaction with DRD2 plays a role in ONC201's anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type-specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201's anticancer effects. Although ONC201's anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201's anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201's ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo.

    PubMed

    Kalanaky, Somayeh; Hafizi, Maryam; Fakharzadeh, Saideh; Vasei, Mohammad; Langroudi, Ladan; Janzamin, Ehsan; Hashemi, Seyed Mahmoud; Khayamzadeh, Maryam; Soleimani, Masoud; Akbari, Mohammad Esmaeil; Nazaran, Mohammad Hassan

    2016-01-01

    In spite of all the efforts and researches on anticancer therapeutics, an absolute treatment is still a myth. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In this study, for the first time, we have evaluated the anticancer effects of BCc1 nanocomplex by vitro and in vivo studies, which is designed based on the novel nanochelating technology. Human breast adenocarcinoma cell line (MCF-7) and mouse embryonic fibroblasts were used for the in vitro study. Antioxidant potential, cell toxicity, apoptosis induction, and CD44 and CD24 protein expression were evaluated after treatment of cells with different concentrations of BCc1 nanocomplex. For the in vivo study, mammary tumor-bearing female Balb/c mice were treated with different doses of BCc1 and their effects on tumor growth rate and survival were evaluated. BCc1 decreased CD44 protein expression and increased CD24 protein expression. It induced MCF-7 cell apoptosis but at the same concentrations did not have negative effects on mouse embryonic fibroblasts viability and protected them against oxidative stress. Treatment with nanocomplex increased survival and reduced the tumor size growth in breast cancer-bearing balb/c mice. These results demonstrate that BCc1 has the capacity to be assessed as a new anticancer agent in complementary studies.

  9. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line

    PubMed Central

    Thomas, Andrew J.; Hailey, Dale W.; Stawicki, Tamara M.; Wu, Patricia; Coffin, Allison B.; Rubel, Edwin W.; Raible, David W.; Simon, Julian A.; Ou, Henry C.

    2013-01-01

    Cisplatin, one of the most commonly used anti-cancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analogue of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line. PMID:23467357

  10. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    PubMed

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  11. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells

    PubMed Central

    Hoai, Nguyen Thi; Duc, Ho Viet; Thao, Do Thi; Orav, Anne; Raal, Ain

    2015-01-01

    Background: So far, the anticancer action of pine tree extracts has mainly been shown for the species distributed widely around the Asian countries. Objective: Therefore, this study was performed to examine the potential cytotoxicity of Scots pine (Pinus sylvestris L.) native also to the European region and growing widely in Estonia. Materials and Methods: The cytotoxic activity of methanol extract and essential oil of Scots pine needles was determined by sulforhodamine B assay in different human cancer cell lines. Results: This needle extract was found to suppress the viability of several human cancer cell lines showing some selectivity to estrogen receptor negative breast cancer cells, MDA-MB-231(half maximal inhibitory concentration [IC50] 35 μg/ml) in comparison with estrogen receptor-positive breast cancer cells, MCF-7 (IC50 86 μg/ml). It is the strongest cytotoxic effect at all measured, thus far for the needles and leaves extracts derived from various pine species, and is also the first study comparing the anticancer effects of pine tree extracts on molecularly different human breast cancer cells. The essential oil showed the stronger cytotoxic effect to both negative and positive breast cancer cell lines (both IC50 29 μg/ml) than pine extract (IC50 42 and 80 μg/ml, respectively). Conclusion: The data from this report indicate that Scots pine needles extract and essential oil exhibits some potential as chemopreventive or chemotherapeutic agent for mammary tumors unresponsive to endocrine treatment. PMID:26664017

  12. Nanovesicular carrier-based formulation for skin cancer targeting: evaluation of cytotoxicity, intracellular uptake, and preclinical anticancer activity.

    PubMed

    Jain, Subheet Kumar; Puri, Richa; Mahajan, Mohit; Yadav, Subodh; Pathak, C M; Ganesh, N

    2015-04-01

    Skin cancer has turned into global epidemic leading to higher incidences among cancer stricken population. The aim of the present investigation is to evaluate the anticancer potential and intracellular uptake of a novel nanovesicular formulation of 5-FU. Detailed intracellular uptake study in conjunction with estimation of intracellular reactive oxygen species was done using skin melanoma cell lines (A375) along with cytotoxicity studies. To further obtain the mechanistic insights into inhibition of tumor cell proliferation, cell-cycle arrest studies were conducted. The preclinical anticancer activity was carried out employing in vivo DMBA-croton oil-induced skin cancer model in mice. Significant reduction in the number of papillomas was observed in skin cancer-bearing mice on treatment with nanovesicular formulation (51.4 ± 3.2%) in comparison with marketed formulation (21.3 ± 2.1%) of 5-FU. Tumor volume was found to be reduced to 46.3 ± 3.5% with prepared formulation, whereas the marketed formulation-treated group showed the reduction of 18.6 ± 1.8% in comparison with the control (untreated) group. The results of present study demonstrated that nanovesicular formulation of 5-FU possessed the enhanced anticancer activity which could be attributed to better intracellular uptake, cellular retention, and sustained release of drug.

  13. Synthesis and evaluation of curcumin-related compounds for anticancer activity.

    PubMed

    Wei, Xingchuan; Du, Zhi-Yun; Zheng, Xi; Cui, Xiao-Xing; Conney, Allan H; Zhang, Kun

    2012-07-01

    Sixty-one curcumin-related compounds were synthesized and evaluated for their anticancer activity toward cultured prostate cancer PC-3 cells, pancreas cancer Panc-1 cells and colon cancer HT-29 cells. Inhibitory effects of these compounds on the growth of PC-3, Panc-1 and HT-29 cells were determined by the MTT assay. Compounds E10, F10, FN1 and FN2 exhibited exceptionally potent inhibitory effects on the growth of cultured PC-3, Panc-1 and HT-29 cells. The IC(50) for these compounds was lower than 1 μM in all three cell lines. E10 was 72-, 46- and 117-fold more active than curcumin for inhibiting the growth of PC-3, Panc-1 and HT-29 cells, respectively. F10 was 69-, 34- and 72-fold more active than curcumin for inhibiting the growth of PC-3, Panc-1 and HT-29 cells, respectively. FN1 and FN2 had about the same inhibitory effect as E10 and F10 toward Panc-1 cells but were less active than E10 and F10 toward PC-3 and HT-29 cells. The active compounds were potent stimulators of apoptosis. The present study indicates that E10, F10, FN1 and FN2 may have useful anticancer activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines.

    PubMed

    Fragni, M; Bonini, S A; Bettinsoli, P; Bodei, S; Generali, D; Bottini, A; Spano, P F; Memo, M; Sigala, S

    2016-05-01

    Preclinical data indicate a direct anti-tumor effect of zoledronic acid (ZA) outside the skeleton, but its molecular mechanism is still not completely clarified. The aim of this study was to investigate the anti-cancer effects of ZA in human breast cancer cell lines, suggesting that they may in part be mediated via the miR-21/PTEN/Akt signaling pathway. The effect of ZA on cell viability was measured by MTT assay, and cell death induction was analyzed using either a double AO/EtBr staining and M30 ELISA assay. A Proteome Profiler Human Apoptosis Array was executed to evaluate the molecular basis of ZA-induced apoptosis. Cell cycle analysis was executed by flow cytometry. The effect of ZA on miR-21 expression was quantified by qRT-PCR, and the amount of PTEN protein and its targets were analyzed by Western blot. ZA inhibited cell growth in a concentration- and time-dependent manner, through the activation of cell death pathways and arrest of cell cycle progression. ZA downregulated the expression of miR-21, resulting in dephosphorilation of Akt and Bad and in a significant increase of p21 and p27 proteins expression. These results were observed also in MDA-MB-231 cells, commonly used as an experimental model of bone metastasis of breast cancer. This study revealed, for the first time, an involvement of the miR-21/PTEN/Akt signaling pathway in the mechanism of ZA anti-cancer actions in breast cancer cells. We would like to underline that this pathway is present both in the hormone responsive BC cell line (MCF-7) as well as in a triple negative cell line (MDA-MB-231). Taken together these results reinforce the use of ZA in clinical practice, suggesting the role of miR-21 as a possible mediator of its therapeutic efficacy.

  15. Screening for in vitro and in vivo antitumor activities of the mushroom Agaricus blazei.

    PubMed

    Ziliotto, Liane; Pinheiro, Fabriciano; Barbisan, Luís Fernando; Rodrigues, Maria Aparecida Marchesan

    2009-01-01

    We have investigated the in vitro antitumor activity of the mushroom Agaricus blazei Murill on human cancer cell lines as well as its potential anticancer activity in a model of rat colon carcinogenesis. The in vitro anticancer analysis was performed using 9 human cancer cell lines incubated with organic and aqueous extracts of A. blazei. Antitumor activity was observed with the dichloromethane/methanol and hexanic extracts of A. blazei at 250 mu g/ml for all cancer cell lines tested. No antiproliferative/cytotoxic activities were detected for the aqueous, methanol, ethyl acetate, or n-butanolic extracts. In the in vivo analysis, crude A. blazei was given orally after carcinogen treatment in a rat medium-term study (20 weeks) of colon carcinogenesis using aberrant crypt foci (ACF) as biomarker. Male Wistar rats were given dimethylhydrazine (DMH) and then were fed A. blazei at 5% in the diet until Week 20. ACF were scored for number and crypt multiplicity. A. blazei intake did not suppress ACF development or crypt multiplicity induced by DMH. No differences in tumor incidence in the colon were observed among the DMH-treated groups. Our results indicate that employing A. blazei in the diet does not have a suppressive effect on colon carcinogenesis.

  16. In Vitro Anticancer Activity of the Crude Extract and two Dicinnamate Isolates from the Jamaican Ball Moss (Tillandsia Recurvata L.)

    PubMed Central

    Lowe, Henry IC; Toyang, Ngeh J.; Watson, Charah; Badal, Simone; Bahado-Singh, Perceval; Bryant, Joseph

    2015-01-01

    A crude chloroform extract from the Jamaican Ball Moss (Tillandsia recurvata L.) was tested for activity against three human cancer cell lines including; A375 (human melanoma), MCF-7 (human breast) and PC-3 (human prostate cancer) using the WST-1 assay. IC50s obtained against these cell lines; A375, MCF-7 and PC-3 in the presence of the crude extract are; 0.9μg/ml, 40.51μg/ml and 5.97μg/ml respectively indicating the promising anti-cancer activity of the ball moss extract. Further, preliminary phytochemical study was conducted in an attempt to identify and isolate the phytochemicals that could possibly be responsible for the observed bioactivity of the ball moss chloroform extract. As a result, two dicinnamates were isolated; 1,3-di-O-Cinnamoyl-glycerol (1) and (E)-3-(cinnamoyloxy)-2-hydroxypropyl 3-(3,4-dimethoxyphenyl)acrylate (2) and we report for the first time isolation of compound 2. Even though the bioactivity of these two islaotes were fairly weak against the cell lines, the results presented here will prove useful for further research aimed at identifying molecules that maybe effective against melanoma, breast and prostate cancers associated with fewer side-effects. PMID:26161295

  17. In Vitro Anticancer Activity of the Crude Extract and two Dicinnamate Isolates from the Jamaican Ball Moss (Tillandsia Recurvata L.).

    PubMed

    Lowe, Henry Ic; Toyang, Ngeh J; Watson, Charah; Badal, Simone; Bahado-Singh, Perceval; Bryant, Joseph

    2013-01-01

    A crude chloroform extract from the Jamaican Ball Moss (Tillandsia recurvata L.) was tested for activity against three human cancer cell lines including; A375 (human melanoma), MCF-7 (human breast) and PC-3 (human prostate cancer) using the WST-1 assay. IC 50 s obtained against these cell lines; A375, MCF-7 and PC-3 in the presence of the crude extract are; 0.9μg/ml, 40.51μg/ml and 5.97μg/ml respectively indicating the promising anti-cancer activity of the ball moss extract. Further, preliminary phytochemical study was conducted in an attempt to identify and isolate the phytochemicals that could possibly be responsible for the observed bioactivity of the ball moss chloroform extract. As a result, two dicinnamates were isolated; 1,3-di-O-Cinnamoyl-glycerol ( 1 ) and (E)-3-(cinnamoyloxy)-2-hydroxypropyl 3-(3,4-dimethoxyphenyl)acrylate ( 2 ) and we report for the first time isolation of compound 2 . Even though the bioactivity of these two islaotes were fairly weak against the cell lines, the results presented here will prove useful for further research aimed at identifying molecules that maybe effective against melanoma, breast and prostate cancers associated with fewer side-effects.

  18. Combining anti-cancer drugs with artificial sweeteners: synthesis and anti-cancer activity of saccharinate (sac) and thiosaccharinate (tsac) complexes cis-[Pt(sac)2(NH3)2] and cis-[Pt(tsac)2(NH3)2].

    PubMed

    Al-Jibori, Subhi A; Al-Jibori, Ghassan H; Al-Hayaly, Lamaan J; Wagner, Christoph; Schmidt, Harry; Timur, Suna; Baris Barlas, F; Subasi, Elif; Ghosh, Shishir; Hogarth, Graeme

    2014-12-01

    The new platinum(II) complexes cis-[Pt(sac)2(NH3)2] (sac=saccharinate) and cis-[Pt(tsac)2(NH3)2] (tsac=thiosaccharinate) have been prepared, the X-ray crystal structure of cis-[Pt(sac)2(NH3)2] x H2O reveals that both saccharinate anions are N-bound in a cis-arrangement being inequivalent in both the solid-state and in solution at room temperature. Preliminary anti-cancer activity has been assessed against A549 human alveolar type-II like cell lines with the thiosaccharinate complex showing good activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Review of procedures used for the extraction of anti-cancer compounds from tropical plants.

    PubMed

    Pandey, Saurabh; Shaw, Paul N; Hewavitharana, Amitha K

    2015-01-01

    Tropical plants are important sources of anti-cancer lead molecules. According to the US National Cancer Institute, out of the 3000 plants identified as active against cancer using in vitro studies, 70% are of tropical origin. The extraction of bioactive compounds from the plant materials is a fundamental step whose efficiency is critical for the success of drug discovery efforts. There has been no review published of the extraction procedures of anti-cancer compounds from tropical plants and hence the following is a critical evaluation of such procedures undertaken prior to the use of these compounds in cancer cell line studies, during the last five years. It presents a comprehensive analysis of all approaches taken to extract anti-cancer compounds from various tropical plants. (Databases searched were PubMed, SciFinder, Web of Knowledge, Scopus, Embase and Google Scholar).

  20. Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties.

    PubMed

    Al-Said, Mansour S; Ghorab, Mostafa M; Nissan, Yassin M

    2012-07-02

    Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3-19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7) comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.

  1. Cytotoxic and genotoxic studies of essential oil from Rosa damascene Mill., Kashan, Iran.

    PubMed

    Shokrzadeh, Mohammad; Habibi, Emran; Modanloo, Mona

    2017-08-01

    Aim Rosa damascene Mill. belongs to the family of Roseaceae and its essential oil is produced in large amounts in Iran. The wide application of rose oil has raised questions about potential adverse health effects. We have investigated cytotoxic activity and genotoxic effects of Rosa oil from Kashan, Iran. Methods The cytotoxic effect and IC50 of the essential oil on the cell lines was studied followed by MTT assay. In this assay mitochondrial oxidoreductase enzymes with reducing the tetrazolium dye MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) reflect the number of viable cells. Genotoxic effect of the oil was evaluated by micronucleus assay by evaluating produced micronuclei due to cytogenetic damage in binucleated lymphocytes. Results The results showed that essential oil significantly had cytotoxic and genotoxic effects at doses over 10µg/mL (p<0.05). Also, essential oil of Rose showed lower IC50 in cancer cell line (A549) in comparison with the normal cell line (NIH3T3). Conclusion Cytotoxic and genotoxic properties of essential oil of Rose in Kashan, Iran, are safe at a dose of 10µg/mL. Also, a good cytotoxic effect was shown and could be introduced as an anticancer compound. Further studies are needed with regard to anti-cancer effects of Rose essential oil. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  2. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-κB besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and damaging the cancer cells on photoactivation in visible light while being minimally toxic in darkness. In this Account, we have made an attempt to review the current status of the chemistry of metal curcumin complexes and present results from our recent studies on curcumin complexes showing remarkable in vitro photocytotoxicity. The undesirable dark toxicity of the complexes can be reduced with suitable choice of the metal and the ancillary ligands in a ternary structure. The complexes can be directed to specific subcellular organelles. Selectivity by targeting cancer cells over normal cells can be achieved with suitable ligand design. We expect that this methodology is likely to provide an impetus toward developing curcumin-based photochemotherapeutics for anticancer treatment and cure.

  3. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line.

    PubMed

    Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R; Shen, Han-Ming; Lin, Qingsong

    2016-02-26

    To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQ(TM) quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway Analysis(TM) (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death.

  4. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line

    PubMed Central

    Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R.; Shen, Han-Ming; Lin, Qingsong

    2016-01-01

    To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQTM quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway AnalysisTM (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death. PMID:26915414

  5. Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines.

    PubMed

    Zandi, K; Ahmadzadeh, S; Tajbakhsh, S; Rastian, Z; Yousefi, F; Farshadpour, F; Sartavi, K

    2010-08-01

    Antitumor drug resistance and side effects of antitumor compounds are the most common problems in medicine. Therefore, finding new antitumor agents with low side effects could be interesting. This study was designed to assay antitumor activity of the extract from brown alga Sargassum oligocystum, gathered from Persian Gulf seashore, against K562 and Daudi human cancer cell lines. The research was performed as an in vitro study. The effect of the alga extract on proliferation of cell lines were measured by two methods: MTT assay and trypan blue exclusion test. The most effective antitumor activity has been shown at concentrations 500 microg/ml and 400 microg/ml of the alga extract against Daudi and K562 cell lines, respectively. The results showed that the extracts of brown alga Sargassum oligocystum have remarkable antitumor activity against K562 and Daudi cell lines. It is justified to be suggested for further research such as algal extract fractionation and purification and in vivo studies in order to formulate natural compounds with antitumor activities.

  6. Auranofin-mediated inhibition of PI3K/AKT/mTOR axis and anticancer activity in non-small cell lung cancer cells

    PubMed Central

    Li, Hongyu; Hu, Jing; Wu, Shuhong; Wang, Li; Cao, Xiaobo; Zhang, Xiaoshan; Dai, Bingbing; Cao, Mengru; Shao, Ruping; Zhang, Ran; Majidi, Mourad; Ji, Lin; Heymach, John V.; Wang, Michael; Pan, Shiyang; Minna, John; Mehran, Reza J.; Swisher, Stephen G.; Roth, Jack A.; Fang, Bingliang

    2016-01-01

    Auranofin, a gold complex that has been used to treat rheumatoid arthritis in clinics and has documented pharmacokinetic and safety profiles in humans, has recently been investigated for its anticancer activity in leukemia and some solid cancers. However, auranofin's single agent activity in lung cancer is not well characterized. To determine whether auranofin has single agent activity in lung cancer, we evaluated auranofin's activity in a panel of 10 non-small cell lung cancer (NSCLC) cell lines. Cell viability analysis revealed that auranofin induced growth inhibition in a subset of NSCLC cell lines with a half maximal inhibitory concentration (IC50) below 1.0 μM. Treatment with auranofin elicited apoptosis and necroptosis in auranofin-sensitive cell lines. Moreover, the susceptibility of NSCLC cells to auranofin was inversely correlated with TXNRD1 expression in the cells. Transient transfection of the TXNRD1-expressing plasmid in auranofin-sensitive Calu3 cells resulted in partial resistance, indicating that high TXNRD level is one of causal factors for resistance to auranofin. Further mechanistic characterization with proteomic analysis revealed that auranofin inhibits expression and/or phosphorylation of multiple key nodes in the PI3K/AKT/mTOR pathway, including S6, 4EBP1, Rictor, p70S6K, mTOR, TSC2, AKT and GSK3. Ectopic expression of TXNRD1 partially reversed auranofin-mediated PI3K/AKT/mTOR inhibition, suggesting that TXNRD1 may participate in the regulation of PI3K/AKT/mTOR pathway. Administration of auranofin to mice with xenograft tumors derived from NSCLC cells significantly suppressed tumor growth without inducing obvious toxic effects. Our results demonstrated feasibility of repurposing auranofin for treatment of lung cancer. PMID:26657290

  7. Downregulation of telomerase activity in human promyelocytic cell line using RNA interference.

    PubMed

    Miri-Moghaddam, E; Deezagi, A; Soheili, Z S

    2009-12-01

    Telomerase is a ribonucleoprotein complex. It consists of two main components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA. High telomerase activity is present in most malignant cells, but it is barely detectable in majority of somatic cells. The direct correlation between telomerase reactivation and carcinogens has made hTERT a key target for anticancer therapeutic studies. In this study, for the first time, we evaluated the ability of the new generation of short interfering RNA (siRNA) to regulate telomerase activity in the human promyelocytic leukemia cell line (HL-60). Transient transfection cell line by hTERT siRNAs resulted in statistically significant suppression of hTERT messenger RNAs which were detected by quantitative real-time polymerase chain reaction, while the expressed hTERT protein levels were measured by flow cytometry. The results of telomeric repeat amplification protocol showed that telomerase activity was significantly reduced upon transfection of the HL-60 cell line with hTERT siRNAs. The results of this study showed that telomerase activity and cell proliferation were efficiently inhibited in the hTERT siRNA-treated leukemic cell line.

  8. Isolation and Characterization of the Anticancer Compound Piceatannol from Sophora Interrupta Bedd

    PubMed Central

    Mathi, Pardhasaradhi; Das, Snehasish; Nikhil, Kumar; Roy, Partha; Yerra, Srikanth; Ravada, Suryachandra Rao; Bokka, Venkata Raman; Botlagunta, Mahendran

    2015-01-01

    Background: Sophora belongs to the family of Fabaceae and the species in this genus are currently used as a folklore medicine for preventing a variety of ailments including cancer. Our aim was to identify and validate an anticancer compound from Sophora interrupta using multi-spectroscopic, anticancer screening, and molecular docking approach. Methods: The cytotoxicity of the various solvent extracts, petroleum ether, n-butanol, and ethyl acetate (EtOAc) of the S. interrupta root powder was evaluated in a breast cancer cell lines (MCF-7). The extract that had anticancer activity was subjected to column chromatography based on the polarity of the solvents. The anticancer activity of the elution fractions was validated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The isolated metabolite fraction with anticancer activity was run through a C18 column isocratic and gradient high-performance liquid chromatography (HPLC). The structure of the isolated compound was characterized using 1H nuclear magnetic resonance (NMR), 13C-NMR, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometer methods. Results: The crude EtAOc extract effectively inhibited the proliferation of MCF-7 cells. The column eluted chloroform and EtOAc (4:6) fraction of the EtOAc extract showed significant anticancer activity in the MCF-7 cells compared with normal mesenchymal stem cells. This fraction showed three major peaks in the HPLC chromatogram and the first major peak with a retention time (RT) of 7.153 was purified using preparative-HPLC. The structure of the compound is a piceatannol, which is a metabolic product of resveratrol. Piceatannol formed direct two hydrogen bond interactions between Cys912 (2H), and Glu878 of vascular endothelial growth factor receptor 1 (VEGFR1) with a glide-score (G-score) of −10.193, and two hydrogen bond interactions between Cys919, and Asp1046 of VEGFR2, with a G-score of −8.359. The structure is similar to that of the crystallized protein for VEGFR1 and R2. Conclusions: Piceatannol is a secondary metabolite of S. interrupta that has anticancer activity. Moreover, piceatannol has been isolated for the first time from S. interrupta. PMID:26605022

  9. Preliminary in vitro evaluation of the anti-proliferative activity of guanylhydrazone derivatives.

    PubMed

    França, Paulo H B; Da Silva-Júnior, Edeildo F; Aquino, Pedro G V; Santana, Antônio E G; Ferro, Jamylle N S; De Oliveira Barreto, Emiliano; Do Ó Pessoa, Cláudia; Meira, Assuero Silva; De Aquino, Thiago M; Alexandre-Moreira, Magna S; Schmitt, Martine; De Araújo-Júnior, João X

    2016-03-01

    Guanylhydrazones have shown promising antitumor activity in preclinical tumor models in several studies. In this study, we aimed at evaluating the cytotoxic effect of a series of synthetic guanylhydrazones. Different human tumor cell lines, by including HCT-8 (colon carcinoma), MDA-MB-435 (melanoma) and SF-295 (glioblastoma) were continuous exposed to guanylhydrazone derivatives for 72 hours and growth inhibition of tumor cell lines and macrophages J774 was measured using tetrazolium salt (MTT) assay. Compounds 7, 11, 16 and 17 showed strong cytotoxic activity with IC50 values lower than 10 μmol L(-1) against four tumor cell lines. Among them, 7 was less toxic to non-tumor cells. Finally, obtained data suggest that guanylhydrazones may be regarded as potential lead compounds for the design of novel anticancer agents.

  10. Natural products from Cuscuta reflexa Roxb. with antiproliferation activities in HCT116 colorectal cell lines.

    PubMed

    Riaz, Muhammad; Bilal, Aishah; Ali, Muhammad Shaiq; Fatima, Itrat; Faisal, Amir; Sherkheli, Muhammad Azhar; Asghar, Adnan

    2017-03-01

    Parasitic Cuscuta reflexa Roxb. possesses many medicinal properties and is a rich source of a variety of biologically relevant natural products. Natural products are the prime source of leads, drugs, and drug templates, and many of the anticancer and antiviral drugs are either based on natural product or derived from them. Cancer is a devastating disease and one of the leading causes of death worldwide despite improvements in patient survival during the past 50 years; new and improved treatments for cancer are therefore actively sought. Colorectal cancer is the fourth most prevalent cancer worldwide and is responsible for nearly 9% of all cancer deaths. Our search for anticancer natural products from C. reflexa has yielded four natural products: Scoparone (1), p-coumaric acid (2), stigmasta-3,5-diene (3) and 1-O-p-hydroxycinnamoylglucose (4) and among them 1-O-p-hydroxycinnamoyldlucose (4) showed promising antiproliferative activities in HCT116 colorectal cell lines, whereas compounds 1-3 showed moderate activities.

  11. Synthesis, structure-activity relationship of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents.

    PubMed

    Raju, B China; Rao, R Nageswara; Suman, P; Yogeeswari, P; Sriram, D; Shaik, Thokhir Basha; Kalivendi, Shasi Vardhan

    2011-05-15

    Series of 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives 7a-7zb, 8a-8d and 9a-9d were synthesized and screened for their in vitro anti-mycobacterial activity against Mycobacterium tuberculosis H(37)Rv (MTB) and cytotoxicity against three human cancer cell lines including A549, SK-N-SH and HeLa. The results indicate that six compounds are more potent and 7za is most effective anti-mycobacterial derivative compared to the standard drugs Ethambutol and Ciprofloxacin. However, 12 compounds exhibited cytotoxicity against human neuroblastoma cell line; amongst them the compound 7v is most effective compared to the standard drug Doxorubicin. This is the first report assigning in vitro anti-mycobacterial, anticancer and structure-activity relationship for this new class of 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Design, synthesis and characterization of novel quinacrine analogs that preferentially kill cancer over non-cancer cells through the down-regulation of Bcl-2 and up-regulation of Bax and Bad.

    PubMed

    Solomon, V Raja; Almnayan, Danah; Lee, Hoyun

    2017-09-08

    Both quinacrine, which contains a 9-aminoacridine scaffold, and thiazolidin-4-one are promising anticancer leads. In an attempt to develop effective and potentially safe anticancer agents, we synthesized 23 novel hybrid compounds by linking the main structural unit of the 9-aminoacridine ring with the thiazolidin-4-one ring system, followed by examination of their anticancer effects against three human breast tumor cell lines and matching non-cancer cells. Most of the hybrid compounds showed good activities, and many of them possessed the preferential killing property against cancer over non-cancer cells. In particular, 3-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-2-(2,6-difluoro-phenyl)-thiazolidin-4-one (11; VR118) effectively killed/inhibited proliferation of cancer cells at IC 50 values in the range of 1.2-2.4 μM. Furthermore, unlike quinacrine or cisplatin, compound 11 showed strong selectivity for cancer cell killing, as it could kill cancer cells 7.6-fold (MDA-MB231 vs MCF10A) to 14.7-fold (MCF7 vs MCF10A) more effectively than matching non-cancer cells. Data from flow cytometry, TUNEL and Western blot assays showed that compound 11 kills cancer cells by apoptosis through the down-regulation of Bcl-2 (but not Bcl-X L ) survival protein and up-regulation of Bad and Bax pro-apoptotic proteins. Thus, compound 11 is a highly promising lead for an effective and potentially anticancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles.

    PubMed

    Adahoun, Mo'ath Ahmad; Al-Akhras, Mohammed-Ali Hassan; Jaafar, Mohamad Suhaimi; Bououdina, Mohamed

    2017-02-01

    Background Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over the last 50 years has demonstrated that these polyphenols play an important role in the maintenance of health and prevention of diseases, in addition to its therapeutic benefits such as anti-tumor, anti-inflammatory, and anti-oxidant activities. Materials and methods This study is devoted to the enhancement of the solubility and bioavailability of curcumin nanoparticles prepared by a process based on a wet-milling technique and then examine in vitro against prostate cancer cell line 3 (PC3), human embryonic kidney cell line (HEK), human erythrocytes (red blood cells (RBCs)), and against fourth different bacterial strains two gram-positive (Micrococcus luteus ATCC 9341, Staphylococcus aureus ATCC 29213), two gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853). Results The cell viability curve, the half maximal inhibitory concentration (IC 50 ), and the minimum bactericidal concentration (MBC) were evaluated. Nanocurcumin displayed significant activity against cancer cell line (PC3) and low toxicity against normal cells (HEK) compared with parent curcumin in favor of PC3 (P < 0.05). In addition, it was found that the efficiency of toxicity for nanocurcumin against PC3 (E% = 59.66%) was much better than HEK (E% = 36.07%) compared with parent curcumin. The results also demonstrate that, although nanocurcumin has a little more ability to lays RBCs than parent curcumin after incubated 60 min, but the hemolysis % remained very low and there was no significant difference between hemolysis % of nanocurcumin and parent curcumin (P > 0.05). On the other hand, the results demonstrate that, the MBCs of nanocurcumin were lower than curcumin for all different bacterial strains. Moreover, the selected gram-positive bacteria had higher sensitivity than the selected gram-negative bacteria for both curcumin and nanocurcumin. In conclusion, all these findings not only indicate that nanocurcumin safe compound has a potent ability as anti-cancer and antimicrobial activities, but also well justify the avail of using nanocurcumin as prostate cells PC3 anti-cancer, and antimicrobial agent for nanocurcumin are markedly improved by decreasing particle size to the nano-scale regime.

  14. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications.

    PubMed

    Deslouches, Berthony; Di, Y Peter

    2017-07-11

    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.

  15. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity.

    PubMed

    Chiang, Yi-Kun; Kuo, Ching-Chuan; Wu, Yu-Shan; Chen, Chung-Tong; Coumar, Mohane Selvaraj; Wu, Jian-Sung; Hsieh, Hsing-Pang; Chang, Chi-Yen; Jseng, Huan-Yi; Wu, Ming-Hsine; Leou, Jiun-Shyang; Song, Jen-Shin; Chang, Jang-Yang; Lyu, Ping-Chiang; Chao, Yu-Sheng; Wu, Su-Ying

    2009-07-23

    A pharmacophore model, Hypo1, was built on the basis of 21 training-set indole compounds with varying levels of antiproliferative activity. Hypo1 possessed important chemical features required for the inhibitors and demonstrated good predictive ability for biological activity, with high correlation coefficients of 0.96 and 0.89 for the training-set and test-set compounds, respectively. Further utilization of the Hypo1 pharmacophore model to screen chemical database in silico led to the identification of four compounds with antiproliferative activity. Among these four compounds, 43 showed potent antiproliferative activity against various cancer cell lines with the strongest inhibition on the proliferation of KB cells (IC(50) = 187 nM). Further biological characterization revealed that 43 effectively inhibited tubulin polymerization and significantly induced cell cycle arrest in G(2)-M phase. In addition, 43 also showed the in vivo-like anticancer effects. To our knowledge, 43 is the most potent antiproliferative compound with antitubulin activity discovered by computer-aided drug design. The chemical novelty of 43 and its anticancer activities make this compound worthy of further lead optimization.

  16. Structure transition in lipids and nucleic acids of tumor cells under anticancer drugs applications

    NASA Astrophysics Data System (ADS)

    Dovbeshko, G. I.; Repnytska, O. P.; Tryndiak, V. P.; Todor, I. N.

    2003-12-01

    Interaction of DNA and phospholipids from Carcinoma Guerina resistant and sensitive cells of Wistar line rats with anti-cancer drugs - cis-platin and doxorubicin (DOX) have been studied in vivo and in vitro experiments. Surface enhanced infrared absorption (SEIRA) spectroscopy was applied for registration of conformational changes in DNA and lipids induced by anti-cancer drugs. It has been shown in vivo experiment that doxorubicin influences less structural disordering of the membrane than cis-platin. Cis-platin creates irreversible complex with memebrane phospholipids, strongly interacting with phosophates and carbohydrate chains. Doxorubicin influences the ordering of carbohydrate chains and does not strongly influence phosphate heads. This change seems to be partially reversible. In contrast, in vivo experiment the doxorubicin strongly influences the DNA structure, leading to DNA stabilization and formation of new H-bonds in DNA-doxorubicin complex. We have not registered the interaction of DNA with cis-platin in vivo experiment. Experiment in vitro for cis-platin incubation with phospholipids from cancer cells during 0.5 hour at 37°C has not shown those drastic structural peculiarities that it was observed in vivo experiments.

  17. Apoptosis mediated anti-proliferative effect of compound isolated from Cassia auriculata leaves against human colon cancer cell line

    NASA Astrophysics Data System (ADS)

    Esakkirajan, M.; Prabhu, N. M.; Manikandan, R.; Beulaja, M.; Prabhu, D.; Govindaraju, K.; Thiagarajan, R.; Arulvasu, C.; Dhanasekaran, G.; Dinesh, D.; Babu, G.

    2014-06-01

    A compound was isolated from Cassia auriculata leaves and characterized by high-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LC-MS), UV-vis spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). The in vitro anticancer effect of the compound isolated from C. auriculata was evaluated in human colon cancer cells HCT 15 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cytotoxicity, nuclear morphology analysis and measurement of lactate dehydrogenase. The isolated compound 4-(2,5 dichlorobenzyl)-2,3,4,5,6,7 hexahydro7(4 methoxyphenyl)benzo[h][1,4,7] triazecin8(1H)-one showed 50% inhibition of HCT 15 cells when tested at 20 μg/ml after 24 h incubation. Cytotoxicity, nuclear morphology and lactate dehydrogenase assays clearly show potent anticancer activity of the isolated compound against colon cancer. Thus, the in vitro findings suggest that the compound isolated from C. auriculata leaves have potent anti-cancer properties with possible clinical applications.

  18. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications

    PubMed Central

    Deslouches, Berthony; Di, Y. Peter

    2017-01-01

    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs. PMID:28422728

  19. Schiff base-Poloxamer P85 combination demonstrates chemotherapeutic effect on prostate cancer cells in vitro.

    PubMed

    Demirci, Selami; Doğan, Ayşegül; Türkmen, Neşe Başak; Telci, Dilek; Rizvanov, Albert A; Şahin, Fikrettin

    2017-02-01

    Prostate cancer is a multistep and complicated cancer type that is regulated by androgens at the cellular level and remains the second commonest cause of death among men. Discovery and development of novel chemotherapeutic agents enabling rapid tumor cell death with minimal toxic effects to healthy tissues might greatly improve the safety of chemotherapy. The present study evaluates the anti-cancer activity of a novel heterodinuclear copper(II)Mn(II) complex (Schiff base) in combination with poly(ethylene oxide) and poly(propylene oxide) block copolymer (Pluronic) P85. We used assays for cell proliferation, apoptosis, cell migration and invasion, DNA binding and cleavage to elucidate the molecular mechanisms of action, in addition to the anti-inflammatory potency of the new combination. The combined treatment of Schiff base and P85 lead to a remarkable anti-cancer effect on prostate cancer cell lines. Cell proliferation was inhibited in Schiff base-P85 treatment. The activity of this formulation is on DNA binding and cleavage and prevents inflammation in in vitro conditions. This is the first study presenting the anti-cancer activity of the present Schiff base derivative and its combination with P85 to treat prostate cancer in vitro. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Time-lapse imaging assay using the BioStation CT: A sensitive drug-screening method for three-dimensional cell culture

    PubMed Central

    Sakamoto, Ruriko; Rahman, M Mamunur; Shimomura, Manami; Itoh, Manabu; Nakatsura, Tetsuya

    2015-01-01

    Three-dimensional (3D) cell culture is beneficial for physiological studies of tumor cells, due to its potential to deliver a high quantity of cell culture information that is representative of the cancer microenvironment and predictive of drug responses in vivo. Currently, gel-associated or matrix-associated 3D cell culture is comprised of intricate procedures that often result in experimental complexity. Therefore, we developed an innovative anti-cancer drug sensitivity screening technique for 3D cell culture on NanoCulture Plates (NCP) by employing the imaging device BioStation CT. Here, we showed that the human breast cancer cell lines BT474 and T47D form multicellular spheroids on NCP plates and compared their sensitivity to the anti-cancer drugs trastuzumab and paclitaxel using the BioStation CT. The anticancer drugs reduced spheroid migration velocity and suppressed spheroid fusion. In addition, primary cells derived from the human breast cancer tissues B58 and B61 grown on NCP plates also exhibited similar drug sensitivity. These results were in good agreement with the conventional assay method using ATP quantification. We confirmed the antitumor effects of the drugs on cells seeded in 96-well plates using the BioStation CT imaging technique. We expect this method to be useful in research for new antitumor agents and for drug sensitivity tests in individually-tailored cancer treatments. PMID:25865675

Top