Audi, Nama'a; Mesa, María D; Martínez, María A; Martínez-Victoria, Emilio; Mañas, Mariano; Yago, María D
2007-04-01
Dietary fat type influences fatty acids in rat pancreatic membranes, in association with modulation of secretory activity and cell signalling in viable acini. We aimed to confirm whether AR42J cells are a valid model to study the interactions between lipids and pancreatic acinar cell function. For this purpose we have (i) compared the baseline fatty acid composition of AR42J cells with that of pancreatic membranes from rats fed a standard chow; (ii) investigated if fatty acids in AR42J membranes can be modified in culture; and (iii) studied if similar compositional variations that can be evoked in rats when dietary fat type is altered occur in AR42J cells. Weaning Wistar rats were fed for 8 weeks either a commercial chow (C) or semi-purified diets containing virgin olive oil (VOO) or sunflower oil (SO) as fat source. AR42J cells were incubated for 72 hrs in medium containing unmodified fetal calf serum (FCS, AR42J-C cells), FCS enriched with 18:1 n-9 (AR42J-O cells), or FCS enriched with 18:2 n-6 (AR42J-L cells). Fatty acids in crude membranes from rat pancreas and AR42J cells were determined by gas-liquid chromatography. Differences in membrane fatty acids between C rats and AR42J-C cells can be explained in part by variations in the amount of fatty acids in the extracellular environment. Supplementation of FCS with 18:1 n-9 or 18:2 n-6 changed the fatty acid spectrum of AR42J cells in a manner that resembles the pattern found, respectively, in VOO and SO rats, although AR42J-L cells were unable to accumulate 20:4 n-6. The AR42J cell line can be a useful tool to assess the effect of membrane compositional changes on acinar cell function. However, differences in baseline characteristics, and perhaps fatty acid metabolism, indicate that results obtained in AR42J cells should be confirmed with experiments in the whole animal.
Functional somatostatin receptors on a rat pancreatic acinar cell line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.
1988-07-01
Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibitionmore » of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.« less
Zhang, Yumei; Zhu, Lin; Wang, Jia; Zhao, Jianlei; Zhao, Xianlin; Guo, Hui; Li, Juan; Tang, Wenfu
2016-01-01
Objective. To identify the herbal formula compatibility law based on the effects of the absorbed components from DCQD on the cerulein-injured AR42J cells. Methods. AR42J cells were pretreated for 30 min with or without the different concentrations of the absorbed components from DCQD individually or in combination or DCQD and coincubated with cerulein (10 nM) for a further 24 h. Cell viability, lactate dehydrogenase (LDH) release, and the levels of apoptosis and necrosis were measured. Results. Compared to DCQD, the individual or combination components partially protected cerulein-injured AR42J cells by increasing cell viability, reducing LDH release, and promoting apoptosis. Rhein, naringin, and honokiol were the main absorbed components from DCQD in cerulein-induced pancreatitis. Moreover, rhein in combination with naringin and honokiol had synergistic effects in protecting cerulein-injured AR42J cells and was better than the individual or the pairwise combination of the three components. Conclusions. The ten effective components from DCQD may elicit similar protective effects as DCQD on cerulein-induced pancreatitis. The principle of the formula compatibility of DCQD may be identified based on the effects of its absorbed components in cerulein-injured AR42J cells. PMID:27123032
PPARγ regulates exocrine pancreas lipase.
Danino, Hila; Naor, Ronny Peri-; Fogel, Chen; Ben-Harosh, Yael; Kadir, Rotem; Salem, Hagit; Birk, Ruth
2016-12-01
Pancreatic lipase (triacylglycerol lipase EC 3.1.1.3) is an essential enzyme in hydrolysis of dietary fat. Dietary fat, especially polyunsaturated fatty acids (PUFA), regulate pancreatic lipase (PNLIP); however, the molecular mechanism underlying this regulation is mostly unknown. As PUFA are known to regulate expression of proliferator-activated receptor gamma (PPARγ), and as we identified in-silico putative PPARγ binding sites within the putative PNLIP promoter sequence, we hypothesized that PUFA regulation of PNLIP might be mediated by PPARγ. We used in silico bioinformatics tools, reporter luciferase assay, PPARγ agonists and antagonists, PPARγ overexpression in exocrine pancreas AR42J and primary cells to study PPARγ regulation of PNLIP. Using in silico bioinformatics tools we mapped PPARγ binding sites (PPRE) to the putative promoter region of PNLIP. Reporter luciferase assay in AR42J rat exocrine pancreas acinar cells transfected with various constructs of the putative PNLIP promoter showed that PNLIP transcription is significantly enhanced by PPARγ dose-dependently, reaching maximal levels with multi PPRE sites. This effect was significantly augmented in the presence of PPARγ agonists and reduced by PPARγ antagonists or mutagenesis abrogating PPRE sites. Over-expression of PPARγ significantly elevated PNLIP transcript and protein levels in AR42J cells and in primary pancreas cells. Moreover, PNLIP expression was up-regulated by PPARγ agonists (pioglitazone and 15dPGJ2) and significantly down-regulated by PPARγ antagonists in non-transfected rat exocrine pancreas AR42J cell line cells. PPARγ transcriptionally regulates PNLIP gene expression. This transcript regulation resolves part of the missing link between dietary PUFA direct regulation of PNLIP. Copyright © 2016 Elsevier B.V. All rights reserved.
Exenatide Induces Impairment of Autophagy Flux to Damage Rat Pancreas.
Li, Zhiqiang; Huang, Lihua; Yu, Xiao; Yu, Can; Zhu, Hongwei; Li, Xia; Han, Duo; Huang, Hui
2017-01-01
The study aimed to explore the alteration of autophagy in rat pancreas treated with exenatide. Normal Sprague-Dawley rats and diabetes-model rats induced by 2-month high-sugar and high-fat diet and streptozotocin injection were subcutaneously injected with exenatide, respectively, for 10 weeks, with homologous rats treated with saline as control. Meanwhile, AR42J cells, pancreatic acinar cell line, were cultured with exenatide at doses of 5 pM for 3 days. The pancreas was disposed, and several sections were stained with hematoxylin-eosin. Immunohistochemistry was used to measure the expressions of glucagon-like peptide 1 receptor (GLP-1R) and cysteine-aspartic acid protease-3 in rat pancreas, and Western blot was used to test the expressions of GLP-1R, light chain 3B-I and -II, and p62 in rat pancreas and AR42J cells. The data were expressed as mean (standard deviation) and analyzed by unpaired Student's t-test. Exenatide can induce pathological changes in rat pancreas. The GLP-1R, p62, light chain 3B-II, and cysteine-aspartic acid protease-3 in rat pancreas and AR42J cells treated with exenatide were significantly overexpressed. Exenatide can activate and upregulate its receptor, GLP-1R, then impair autophagy flux and activate apoptosis in the pancreatic acinar cell, thus damaging rat pancreas.
Erfani, Mostafa; Shafiei, Mohammad; Mazidi, Mohammad; Goudarzi, Mostafa
2013-04-01
Somatostatin-derived analogues play an important role in the diagnosis and treatment of neuroendocrine tumors. The aim of this study was to evaluate a new somatostatin analogue designed for labeling with (99m)Tc: [6-hydrazinopyridine-3-carboxylic acid (HYNIC(0)), β-(3-benzothienyl)-Ala (BzThi(3))]-octreotide ([HYNIC]-BOC), using ethylenediamine-N,N'-diacetic acid (EDDA) and tricine as coligands. Synthesis was performed on a solid phase using a standard Fmoc strategy. The HYNIC-peptide conjugate was radiolabeled with (99m)Tc and characterized by ITLC and high-performance liquid chromatography (HPLC). In vitro studies were carried out in sstr2 expressing AR4-2J cell lines. In vivo distribution studies were performed in rats bearing the AR4-2J tumor. The radiolabeled complex could be prepared at high-specific activities and >95% radiochemical yield as determined by HPLC. The peptide conjugate showed high-affinity binding for sstr2. The radioligand showed high and specific internalization into AR4-2J cells (18.19%±0.21% at 4 hours). In vivo distribution studies in rats bearing tumor have shown a receptor-specific uptake of radioactivity in somatostatin receptor-positive organs. After 4 hours, uptake in the AR4-2J tumor was 1.71%±0.36% injected dose per gram tissue (%ID/g). These data show that [(99m)Tc/EDDA/Tricine/HYNIC(0), BzThi(3)]-octreotide is a specific radioligand for the somatostatin receptor-positive tumors and is a suitable candidate for clinical studies.
Li, Zhiqiang; Zhu, Shaihong; Huang, Lihua; Shang, Mingming; Yu, Can; Zhu, Hongwei; Han, Duo; Huang, Hui; Yu, Xiao; Li, Xia
2018-02-05
This study aimed to explore the mechanism of impaired autophagy flux induced by exendin-4 and its role on cell apoptosis in pancreatic AR42J cells. The AR42J cells were treated with various concentration of exendin-4 for several time points to assess its cytotoxicity by MTT assay. Then the AR42J cells were treated by 10pM exendin-4 for 72 h, the cell death was analyzed by flow cytometry and caspase-3 level was examined by Western blot with or without the pretreatment of z-VAD-fmk to testify whether exendin-4 induces the cell apoptosis. The protein levels of LC3B, p62 and LAMP-2 were assessed by Western blot, the mRNA level of LAMP-2 was quantified by quantitative PCR in the absence or presence of LAMP-2 over-expression plasmid and the expression and activity of CatB and CatL were tested by ELISA or activity assay methods in AR42J cells treated by exendin-4. The normal rats and the diabetes-model rats by high-fat and high-sugar diet for two month then with streptozotocin intraperitoneally were subcutaneously injected with exendin-4 for 10 weeks to test the expression of LAMP-2 mRNA and protein in the pancreas. Cells pretreated with Bafilomycin A1 were detected for LC3B and p62 expressions by Western blot. Cells pretreated by 3-MA were used to assess whether 3-MA can protect from exendin-4 cytotoxicity. We found that exendin-4 can decrease the AR42J cell viability as well as increase the cell death and cleaved caspase-3 level, which all can be inhibited by z-VAD-fmk. Exendin-4 can downregulate the expression of LAMP-2 and then impair the autophagy flux to induce the accumulation of LC3B-II and p62, but cannot change the expression and activity of CatB and CatL. Bafilomycin A1 almostly have no impact on the change of LC3B and p62 protein levels induced by exendin-4. Both 3-MA and overexpressed LAMP-2 can reduce the cytotoxicity of exendin-4. Therefore, we considered the down-regulation of LAMP-2 which can impair the autophagy flux by inhibiting the fusion of autophagosomes with lysosomes to induce the AR42J cell apoptosis as the potential mechanism of chronic pancreatitis induced by exendin-4. Copyright © 2018 Elsevier Inc. All rights reserved.
Al-Adsani, Amani; Burke, Zoë D; Eberhard, Daniel; Lawrence, Katherine L; Shen, Chia-Ning; Rustgi, Anil K; Sakaue, Hiroshi; Farrant, J Mark; Tosh, David
2010-10-27
The pancreatic exocrine cell line AR42J-B13 can be reprogrammed to hepatocytes following treatment with dexamethasone. The question arises whether dexamethasone also has the capacity to induce ductal cells as well as hepatocytes. AR42J-B13 cells were treated with and without dexamethasone and analyzed for the expression of pancreatic exocrine, hepatocyte and ductal markers. Addition of dexamethasone inhibited pancreatic amylase expression, induced expression of the hepatocyte marker transferrin as well as markers typical of ductal cells: cytokeratin 7 and 19 and the lectin peanut agglutinin. However, the number of ductal cells was low compared to hepatocytes. The proportion of ductal cells was enhanced by culture with dexamethasone and epidermal growth factor (EGF). We established several features of the mechanism underlying the transdifferentiation of pancreatic exocrine cells to ductal cells. Using a CK19 promoter reporter, we show that a proportion of the ductal cells arise from differentiated pancreatic exocrine-like cells. We also examined whether C/EBPβ (a transcription factor important in the conversion of pancreatic cells to hepatocytes) could alter the conversion from acinar cells to a ductal phenotype. Overexpression of an activated form of C/EBPβ in dexamethasone/EGF-treated cells provoked the expression of hepatocyte markers and inhibited the expression of ductal markers. Conversely, ectopic expression of a dominant-negative form of C/EBPβ, liver inhibitory protein, inhibited hepatocyte formation in dexamethasone-treated cultures and enhanced the ductal phenotype. These results indicate that hepatocytes and ductal cells may be induced from pancreatic exocrine AR42J-B13 cells following treatment with dexamethasone. The conversion from pancreatic to hepatocyte or ductal cells is dependent upon the expression of C/EBPβ.
Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung
2017-07-01
Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.
Brom, Maarten; Joosten, Lieke; Laverman, Peter; Oyen, Wim J.G.; Béhé, Martin; Gotthardt, Martin; Boerman, Otto C.
2011-01-01
In comparison to somatostatin receptor scintigraphy, gastrin receptor scintigraphy using 111In-DTPA-minigastrin (MG0) showed added value in diagnosing neuroendocrine tumors. We investigated whether the 68Ga-labeled gastrin analogue DOTA-MG0 is suited for positron emission tomography (PET), which could improve image quality. Targeting of cholecystokinin-2 (CCK2)/gastrin receptor–positive tumor cells with DOTA-MG0 labeled with either 111In or 68Ga in vitro was investigated using the AR42J rat tumor cell line. Biodistribution was examined in BALB/c nude mice with a subcutaneous AR42J tumor. In vivo PET imaging was performed using a preclinical PET–computed tomographic scanner. DOTA-MG0 showed high receptor affinity in vitro. Biodistribution studies revealed high tumor uptake of 68Ga-DOTA-MG0: 4.4 ± 1.3 %ID/g at 1 hour postinjection. Coadministration of an excess unlabeled peptide blocked the tumor uptake (0.7 ± 0.1 %ID/g), indicating CCK2/gastrin receptor–mediated uptake (p = .0005). The biodistribution of 68Ga-DOTA-MG0 was similar to that of 111In-DOTA-MG0. Subcutaneous and intraperitoneal tumors were clearly visualized by small-animal PET imaging with 5 MBq 68Ga-DOTA-MG0. 111In- and 68Ga-labeled DOTA-MG0 specifically accumulate in CCK2/gastrin receptor–positive AR42J tumors with similar biodistribution apart from the kidneys. AR42J tumors were clearly visualized by microPET. Therefore, 68Ga-DOTA-MG0 is a promising tracer for PET imaging of CCK2/gastrin receptor–positive tumors in humans. PMID:21439259
Brom, Maarten; Joosten, Lieke; Laverman, Peter; Oyen, Wim J G; Béhé, Martin; Gotthardt, Martin; Boerman, Otto C
2011-04-01
In comparison to somatostatin receptor scintigraphy, gastrin receptor scintigraphy using 111In-DTPA-minigastrin (MG0) showed added value in diagnosing neuroendocrine tumors. We investigated whether the 68Ga-labeled gastrin analogue DOTA-MG0 is suited for positron emission tomography (PET), which could improve image quality. Targeting of cholecystokinin-2 (CCK2)/gastrin receptor-positive tumor cells with DOTA-MG0 labeled with either 111In or 68Ga in vitro was investigated using the AR42J rat tumor cell line. Biodistribution was examined in BALB/c nude mice with a subcutaneous AR42J tumor. In vivo PET imaging was performed using a preclinical PET-computed tomographic scanner. DOTA-MG0 showed high receptor affinity in vitro. Biodistribution studies revealed high tumor uptake of 68Ga-DOTA-MG0: 4.4 ± 1.3 %ID/g at 1 hour postinjection. Coadministration of an excess unlabeled peptide blocked the tumor uptake (0.7 ± 0.1 %ID/g), indicating CCK2/gastrin receptor-mediated uptake (p = .0005). The biodistribution of 68Ga-DOTA-MG0 was similar to that of 111In-DOTA-MG0. Subcutaneous and intraperitoneal tumors were clearly visualized by small-animal PET imaging with 5 MBq 68Ga-DOTA-MG0. 111In- and 68Ga-labeled DOTA-MG0 specifically accumulate in CCK2/gastrin receptor-positive AR42J tumors with similar biodistribution apart from the kidneys. AR42J tumors were clearly visualized by microPET. Therefore, 68Ga-DOTA-MG0 is a promising tracer for PET imaging of CCK2/gastrin receptor-positive tumors in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Weihong; Xu, Bin; Yao, Yiting
In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administrationmore » of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.« less
Bonior, Joanna; Ceranowicz, Piotr; Gajdosz, Ryszard; Kuśnierz-Cabala, Beata; Pierzchalski, Piotr; Warzecha, Zygmunt; Dembiński, Artur; Pędziwiatr, Michał; Kot, Michalina; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Link-Lenczowski, Paweł; Olszanecki, Rafał; Bartuś, Krzysztof; Jaworek, Jolanta
2017-05-02
Ghrelin (GHRL) is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Experimental studies showed that GHRL protects the stomach and pancreas against acute damage, but the effect of GHRL on pancreatic acinar cells was still undetermined. To investigate the effect of GHRL and caerulein on the functional ghrelin system in pancreatic acinar cells taking into account the role of sensory nerves (SN). Experiments were carried out on isolated pancreatic acinar cells and AR42J cells. Before acinar cells isolation, GHRL was administered intraperitoneally at a dose of 50 µg/kg to rats with intact SN or with capsaicin deactivation of SN (CDSN). After isolation, pancreatic acinar cells were incubated in caerulein-free or caerulein containing solution. AR42J cells were incubated under basal conditions and stimulated with caerulein, GHRL or a combination of the above. Incubation of isolated acinar cells with caerulein inhibited GHS-R and GHRL expression at the level of mRNA and protein in those cells. Either in rats with intact SN or with CDSN, administration of GHRL before isolation of acinar cells increased expression of GHRL and GHS-R in those cells and reversed the caerulein-induced reduction in expression of those parameters. Similar upregulation of GHS-R and GHRL was observed after administration of GHRL in AR42J cells. GHRL stimulates its own expression and expression of its receptor in isolated pancreatic acinar cells and AR42J cells on the positive feedback pathway. This mechanism seems to participate in the pancreatoprotective effect of GHRL in the course of acute pancreatitis.
Elshafae, Said M; Kohart, Nicole A; Altstadt, Lucas A; Dirksen, Wessel P; Rosol, Thomas J
2017-05-01
Canine prostate cancer (PCa) is an excellent preclinical model for human PCa. AR-42 is a histone deacetylase inhibitor (HDACi) developed at The Ohio State University that inhibits the proliferation of several cancers, including multiple myeloma, lung, and hepatocellular cancer. In this study, we investigated whether AR-42 would prevent or decrease. The growth and metastasis of a canine PCa (Ace-1 cells) to bone in vitro and in vivo. Proliferation, cell viability, invasion, and metastasis of a canine prostate cancer cell line (Ace-1) were measured following treatment with AR-42. Expression of anoikis resistance, epithelial-to-mesenchymal transition (EMT), and stem cell-related markers were also evaluated. To assess the efficacy of AR-42 on prevention of PCa metastasis to bone, Ace-1 cells were injected in the left cardiac ventricle of nude mice, mice were treated with AR-42, and the incidence and growth of bone metastasis were measured. Bioluminescence was performed to monitor the bone metastases in nude mice. AR-42 inhibited the in vitro proliferation of Ace-1 cells in a time- and dose-dependent manner. The IC 50 concentration of AR-42 for Ace-1 cells was 0.42 μM after 24 hr of treatment. AR-42 induced apoptosis, decreased cell migration, and increased the stem cell properties of Ace-1 cells in vitro. AR-42 downregulated E-cadherin, N-cadherin, TWIST, MYOF, anoikis resistance, and osteomimicry genes, while it upregulated SNAIL, PTEN, FAK, and ZEB1 gene expression in Ace-1 cells. Importantly, AR-42 decreased the bioluminescence and incidence of bone metastasis in nude mice. In addition, AR-42 induced apoptosis and altered the tumor cell morphology to an irregular cell phenotype with condensed chromatin in the bone metastases. AR-42 decreased PCa growth and bone metastasis, induced apoptosis, and downregulated osteomimicry genes in PCa cells in the bone microenvironment. Prostate 77:776-793, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Gandomkar, Mostafa; Najafi, Reza; Shafiei, Mohammad; Mazidi, Mohammad; Ebrahimi, Sayed Esmaeil Sadat
2007-08-01
Radiolabeled somatostatin analogues are important tools for the in vivo localization and targeted radionuclide therapy of somatostatin-receptor-positive tumors. The aim of this study was to evaluate a new somatostatin analogue designed for the labeling with (99m)Tc: [6-hydrazinopyridine-3-carboxylic acid (HYNIC(0)), 1-Nal(3), Thr(8)]-octreotide ([HYNIC]-NATE), using ethylenediamine-N,N'-diacetic acid (EDDA) and tricine as coligands. Synthesis was preformed on a solid phase using a standard Fmoc strategy. Labeling with (99m)Tc was performed at 100 degrees C for 10 min using SnCl(2) as a reductant. Radiochemical analysis involved ITLC and high-performance liquid chromatography methods. Peptide conjugate affinity was determined in AR4-2J cell membranes. The internalization and externalization rates were studied in sstr(2)-expressing AR4-2J cells. Biodistribution of radiopeptide was studied in rats bearing the AR4-2J tumor. Radiolabeling was performed at high specific activities, and radiochemical purity was >95%. Peptide conjugate showed high affinity binding for sstr(2). The radioligand showed a moderate and specific internalization into AR4-2J cells (14.13+/-0.61% at 4 h). In animal biodistribution studies, a receptor-specific uptake of radioactivity was observed in somatostatin-receptor-positive organs. After 4 h, uptake in the AR4-2J tumor was 1.33+/-0.23%ID/g (percentage of injected dose per gram of tissue). These data show that [(99m)Tc/EDDA/tricine/HYNIC]-NATE is a specific radioligand for the somatostatin-receptor-positive tumors and is a suitable candidate for clinical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.
Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were usedmore » to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co-cultures. • Potential new multi-subunit coactivator complexes for AR in CaP bone metastasis.« less
Patki, Mugdha; Huang, Yanfang; Ratnam, Manohar
2016-07-22
It is believed that growth of castration resistant prostate cancer (CRPC) cells is enabled by sensitization to minimal residual post-castrate androgen due to overexpression of the androgen receptor (AR). Evidence is derived from androgen-induced colony formation in the absence of cell-secreted factors or from studies involving forced AR overexpression in hormone-dependent cells. On the other hand, standard cell line models established from CRPC patient tumors (e.g., LNCaP and VCaP) are hormone-dependent and require selection pressure in castrated mice to re-emerge as CRPC cells and the resulting tumors then tend to be insensitive to the androgen antagonist enzalutamide. Therefore, we examined established CRPC model cells produced by castration of mice bearing hormone-dependent cell line xenografts including CRPC cells overexpressing full-length AR (C4-2) or co-expressing wtAR and splice-variant AR-V7 that is incapable of ligand binding (22Rv1). In standard colony formation assays, C4-2 cells were shown to be androgen-dependent and sensitive to enzalutamide whereas 22Rv1 cells were incapable of colony formation under identical conditions. However, both C4-2 and 22Rv1 cells formed colonies in conditioned media derived from the same cells or from HEK293 fibroblasts that were proven to lack androgenic activity. This effect was (i) not enhanced by androgen, (ii) insensitive to enzalutamide, (iii) dependent on AR (in C4-2) and on AR-V7 and wtAR (in 22Rv1) and (iv) sensitive to inhibitors of several signaling pathways, similar to androgen-stimulation. Therefore, during progression to CRPC in vivo, coordinate cellular changes accompanying overexpression of AR may enable cooperation between hormone-independent activity of AR and actions of cellular secretory factors to completely override androgen-dependence and sensitivity to drugs targeting hormonal factors. Copyright © 2016 Elsevier Inc. All rights reserved.
Cheng, Max A; Chou, Fu-Ju; Wang, Keliang; Yang, Rachel; Ding, Jie; Zhang, Qiaoxia; Li, Gonghui; Yeh, Shuyuan; Xu, Defeng; Chang, Chawnshang
2018-03-28
ASC-J9 ® is a recently-developed androgen receptor (AR)-degradation enhancer that effectively suppresses castration resistant prostate cancer (PCa) cell proliferation and invasion. The optimal half maximum inhibitory concentrations (IC 50 ) of ASC-J9 ® at various PCa cell confluences (20%, 50%, and 100%) were assessed via both short-term MTT growth assays and long-term clonogenic proliferation assays. Our results indicate that the IC 50 values for ASC-J9 ® increased with increasing cell confluency. The IC 50 values were significantly decreased in PCa AR-positive cells compared to PCa AR-negative cells or in normal prostate cells. This suggests that ASC-J9 ® may function mainly via targeting the AR-positive PCa cells with limited unwanted side-effects to suppress the surrounding normal prostate cells. Mechanism dissection indicated that ASC-J9 ® might function via altering the apoptosis signals to suppress the PCa AR-negative PC-3 cells. Preclinical studies using multiple in vitro PCa cell lines and an in vivo mouse model with xenografted castration-resistant PCa CWR22Rv1 cells demonstrated that ASC-J9 ® has similar AR degradation effects when dissolved in FDA-approved solvents, including DMSO, PEG-400:Tween-80 (95:5), DMA:Labrasol:Tween-80 (10:45:45), and DMA:Labrasol:Tween-20 (10:45:45). Together, results from preclinical studies suggest a potential new therapy with AR-degradation enhancer ASC-J9 ® may potentially be ready to be used in human clinical trials in order to better suppress PCa at later castration resistant stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Henderson, Sally E; Ding, Li-Yun; Mo, Xiaokui; Bekaii-Saab, Tanios; Kulp, Samuel K; Chen, Ching-Shih; Huang, Po-Hsien
2016-12-01
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. This study was aimed at evaluating the efficacy of AR-42 (formerly OSU-HDAC42), a novel histone deacetylase (HDAC) inhibitor currently in clinical trials, in suppressing tumor growth and/or cancer-induced muscle wasting in murine models of PDAC. The in vitro antiproliferative activity of AR-42 was evaluated in six human pancreatic cancer cell lines (AsPC-1, COLO-357, PANC-1, MiaPaCa-2, BxPC-3, SW1990). AsPC-1 subcutaneous xenograft and transgenic KP fl/fl C (LSL-Kras G12D ;Trp53 flox/flox ;Pdx-1-Cre) mouse models of pancreatic cancer were used to evaluate the in vivo efficacy of AR-42 in suppressing tumor growth and/or muscle wasting. Growth suppression in AR-42-treated cells was observed in all six human pancreatic cancer cell lines with dose-dependent modulation of proliferation and apoptotic markers, which was associated with the hallmark features of HDAC inhibition, including p21 upregulation and histone H3 hyperacetylation. Oral administration of AR-42 at 50 mg/kg every other day resulted in suppression of tumor burden in the AsPC-1 xenograft and KP fl/fl C models by 78% and 55%, respectively, at the end of treatment. Tumor suppression was associated with HDAC inhibition, increased apoptosis, and inhibition of proliferation. Additionally, AR-42 as a single agent preserved muscle size and increased grip strength in KP fl/fl C mice. Finally, the combination of AR-42 and gemcitabine in transgenic mice demonstrated a significant increase in survival than either agent alone. These results suggest that AR-42 represents a therapeutically promising strategy for the treatment of pancreatic cancer. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Chen, Yi-Jin; Wang, Wen-Hung; Wu, Wan-Yu; Hsu, Chia-Chi; Wei, Ling-Rung; Wang, Sheng-Fan; Hsu, Ya-Wen; Liaw, Chih-Chuang; Tsai, Wan-Chi
2017-01-01
Pancreatic cancer is one of the most lethal types of cancer with a 5-year survival rate of ~5%. Histone deacetylases (HDACs) participate in many cellular processes, including carcinogenesis, and pharmacological inhibition of HDACs has emerged as a potential therapeutic strategy. In this study, we explored antitumor activity of the novel HDAC inhibitor AR-42 in pancreatic cancer. Human pancreatic cancer cell lines BxPC-3 and PANC-1 were used in this study. Real-time PCR, RT-PCR, and western blotting were employed to investigate expression of specific genes and proteins, respectively. Translocation of apoptosis-inducing factor was investigated by immunofluorescence and subcellular fractionation. The number of apoptotic cells, cell cycle stages, and reactive oxygen species (ROS) generation levels were determined by flow cytometry. Cell invasiveness was examined by the Matrigel invasion assay. Efficacy of AR-42 in vivo was evaluated by utilizing BxPC-3 xenograft mouse model. AR-42 inhibited pancreatic cancer cell proliferation by causing G2/M cell cycle arrest via regulating expression levels of genes and proteins involved in cell cycle. AR-42 also induced ROS generation and DNA damage, triggering apoptosis of pancreatic cancer cells via both caspase-3-dependent and caspase-3-independent pathways. In addition, AR-42 increased expression levels of negative regulators of p53 (miR-125b, miR-30d, and miR33), which could contribute to lower expression level of mutant p53 in pancreatic cancer cells. Cell invasion assay showed that AR-42 reduced cancer cell aggressiveness and significantly diminished BxPC-3 xenograft tumor growth in vivo. AR-42, a novel HDAC inhibitor, inhibited pancreatic cancer cells by regulating p53 expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multiple apoptosis pathways. Additionally, AR-42 inhibited cell invasiveness and potently suppressed pancreatic cancer tumors in vivo. We conclude that by virtue of its multiple mechanisms of action, AR-42 possesses a considerable potential as an antitumor agent in pancreatic cancer.
Jaworek, J; Szklarczyk, J; Bonior, J; Kot, M; Goralska, M; Pierzchalski, P; Reiter, R J; Czech, U; Tomaszewska, R
2016-06-01
Melatonin protects the pancreas from inflammation and free radical damage but the effect of the melatonin metabolite: N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) on acute pancreatitis is unknown. This study assessed the effects of AFMK on acute pancreatitis (AP) in the rats in vivo and on pancreatic cell line AR42J in vitro. AFMK (5, 10 or 20 mg/kg) was given intraperitoneally to the rats 30 min prior to the induction of AP by subcutaneous caerulein infusion (25 μg/kg). Lipid peroxidation products (MDA + 4-HNE) and the activity of an antioxidant enzyme glutathione peroxidase (GPx) were measured in pancreatic tissue. Blood samples were taken for evaluation of amylase activity and TNF-α concentration. GPx, TNF-α, proapoptotic Bax protein, antiapoptotic Bcl-2 protein and the executor of apoptosis, caspase-3, were determined by Western blot in AR42J cells subjected to AFMK or to melatonin (both used at 10(-12), 10(-10), or 10(-8)M), without or with addition of caerulein (10(-8)M). AP was confirmed by histological examination and by serum increases of amylase and TNF-α (by 800% and 300%, respectively). In AP rats, pancreatic MDA + 4-HNE levels were increased by 300%, whereas GPx was reduced by 50%. AFMK significantly diminished histological manifestations of AP, decreased serum amylase activity and TNF-α concentrations, reduced MDA + 4-HNE levels and augmented GPx in the pancreas of AP rats. In AR42J cells, AFMK combined with caerulein markedly increased protein signals for GPx, Bax, caspase-3 and reduced these for TNF-α and Bcl-2. In conclusion, AFMK significantly attenuated acute pancreatitis in the rat. This may relate to the antioxidative and anti-inflammatory effects of this molecule and possibly to the stimulation of proapoptotic signal transduction pathway.
Targeted Type 1 phototherapeutic agents using azido-peptide bioconjugates
NASA Astrophysics Data System (ADS)
Rajagopalan, Raghavan; Achilefu, Samuel I.; Jimenez, Hermo N.; Webb, Elizabeth G.; Schmidt, Michelle A.; Bugaj, Joseph E.; Dorshow, Richard B.
2001-07-01
Five peptides binding to somatostatin and bombesin receptors were conjugated to 4-azido-2,3,4,6-tetrafluorophenylbenzoic acid, a Type 1 photosensitizer, at the N-terminal position. The receptor affinities were determined by competition binding assay using two different pancreatic tumor cell lines, CA20948 and AR42-J, that expresses somatostatin-2 (SST-2) and bombesin receptors receptively. All compounds exhibited high receptor specificity, i.e., the IC50 values ranged between 1.0 to 64.0 nM. These conjugates may be useful for targeted Type 1 phototherapy via the generation of nitrenes at the cell surfaces expressing these receptors.
NASA Astrophysics Data System (ADS)
Shen, Duanwen; Liang, Kexiang; Ye, Yunpeng; Tetteh, Elizabeth; Achilefu, Samuel
2006-02-01
Numerous studies have shown that basic Tat peptide (48-57) internalized non-specifically in cells and localized in the nucleus. However, localization of imaging agents in cellular nucleus is not desirable because of the potential mutagenesis. When conjugated to the peptides that undergo receptor-mediated endocytosis, Tat peptide could target specific cells or pathologic tissue. We tested this hypothesis by incorporating a somatostatin receptor-avid peptide (octreotate, Oct) and two different fluorescent dyes, Cypate 2 (Cy2) and fluorescein 5'-carboxlic acid (5-FAM), into the Tat-peptide sequence. In addition to the Cy2 or 5-FAM-labeled Oct conjugated to Tat peptide (Tat) to produce Tat-Oct-Cypate2 or Tat-Oct-5-FAM, we also labeled the Tat the Tat peptide with these dyes (Tat-Cy2 and Tat-5-FAM) to serve as positive control. A somatostatin receptor-positive pancreatic tumor cell line, AR42J, was used to assess cell internalization. The results show that Tat-5-FAM and Tat-Cypate2 localized in both nucleus and cytoplasm of the cells. In contrast to Tat-Oct-Cypate2, which localized in both the cytoplasm and nucleus, Tat-Oct-5-FAM internalized in the cytoplasm but not in the nucleus of AR42J cells. The internalizations were inhibited by adding non-labeled corresponding peptides, suggesting that the endocytoses of each group of labeled and the corresponding unlabeled compounds occurred through a common pathway. Thus, fluorescent probes and endocytosis complex between octreotate and somatostatin receptors in cytoplasm could control nuclear internalization of Tat peptides.
Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; Plaza-Davila, María; Martinez-Ruiz, Antonio; Fernandez-Bermejo, Miguel; Mateos-Rodriguez, Jose M; Salido, Gines M; Gonzalez, Antonio
2018-01-01
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca 2+ concentration ([Ca 2+ ] c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca 2+ ] c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells. © 2017 Wiley Periodicals, Inc.
Palethorpe, Helen M; Leach, Damien A; Need, Eleanor F; Drew, Paul A; Smith, Eric
2018-04-10
Fibroblasts express androgen receptor (AR) in the normal prostate and during prostate cancer development. We have reported that loss of AR expression in prostate cancer-associated fibroblasts is a poor prognostic indicator. Here we report outcomes of direct and indirect co-cultures of immortalised AR-positive (PShTert-AR) or AR-negative (PShTert) myofibroblasts with prostate cancer cells. In the initial co-cultures the AR-negative PC3 cell line was used so AR expression and signalling were restricted to the myofibroblasts. In both direct and indirect co-culture with PShTert-AR myofibroblasts, paracrine signalling to the PC3 cells slowed proliferation and induced apoptosis. In contrast, PC3 cells proliferated with PShTert myofibroblasts irrespective of the co-culture method. In direct co-culture PC3 cells induced apoptosis in and destroyed PShTerts by direct signalling. Similar results were seen in direct co-cultures with AR-negative DU145 and AR-positive LNCaP and C4-2B prostate cancer cell lines. The AR ligand 5α-dihydrotestosterone (DHT) inhibited the proliferation of the PShTert-AR myofibroblasts, thereby reducing the extent of their inhibitory effect on cancer cell growth. These results suggest loss of stromal AR would favour prostate cancer cell growth in vivo , providing an explanation for the clinical observation that reduced stromal AR is associated with a poorer outcome.
Palethorpe, Helen M.; Leach, Damien A.; Need, Eleanor F.; Drew, Paul A.; Smith, Eric
2018-01-01
Fibroblasts express androgen receptor (AR) in the normal prostate and during prostate cancer development. We have reported that loss of AR expression in prostate cancer-associated fibroblasts is a poor prognostic indicator. Here we report outcomes of direct and indirect co-cultures of immortalised AR-positive (PShTert-AR) or AR-negative (PShTert) myofibroblasts with prostate cancer cells. In the initial co-cultures the AR-negative PC3 cell line was used so AR expression and signalling were restricted to the myofibroblasts. In both direct and indirect co-culture with PShTert-AR myofibroblasts, paracrine signalling to the PC3 cells slowed proliferation and induced apoptosis. In contrast, PC3 cells proliferated with PShTert myofibroblasts irrespective of the co-culture method. In direct co-culture PC3 cells induced apoptosis in and destroyed PShTerts by direct signalling. Similar results were seen in direct co-cultures with AR-negative DU145 and AR-positive LNCaP and C4-2B prostate cancer cell lines. The AR ligand 5α-dihydrotestosterone (DHT) inhibited the proliferation of the PShTert-AR myofibroblasts, thereby reducing the extent of their inhibitory effect on cancer cell growth. These results suggest loss of stromal AR would favour prostate cancer cell growth in vivo, providing an explanation for the clinical observation that reduced stromal AR is associated with a poorer outcome. PMID:29721186
Sensitivity of osteosarcoma cells to HDAC inhibitor AR-42 mediated apoptosis.
Murahari, Sridhar; Jalkanen, Aimee L; Kulp, Samuel K; Chen, Ching-Shih; Modiano, Jaime F; London, Cheryl A; Kisseberth, William C
2017-01-21
Osteosarcoma (OS) is the most common primary bone tumor in both humans and dogs and is the second leading cause of cancer related deaths in children and young adults. Limb sparing surgery along with chemotherapy has been the mainstay of treatment for OS. Many patients are not cured with current therapies, presenting a real need for developing new treatments. Histone deacetylase (HDAC) inhibitors are a promising new class of anticancer agents. In this study, we investigated the activity of the novel HDAC inhibitor AR-42 in a panel of human and canine OS cell lines. The effect of AR-42 and suberoylanilide hydroxamic acid (SAHA) alone or in combination with doxorubicin on OS cell viability was assessed. Induction of histone acetylation after HDAC inhibitor treatment was confirmed by Western blotting. Drug-induced apoptosis was analyzed by FACS. Apoptosis was assessed further by measuring caspase 3/7 enzymatic activity, nucleosome fragmentation, and caspase cleavage. Effects on Akt signaling were demonstrated by assessing phosphorylation of Akt and downstream signaling molecules. AR-42 was a potent inhibitor of cell viability and induced a greater apoptotic response compared to SAHA when used at the same concentrations. Normal osteoblasts were much less sensitive. The combination of AR-42 with doxorubicin resulted in a potent inhibition of cell viability and apparent synergistic effect. Furthermore, we showed that AR-42 and SAHA induced cell death via the activation of the intrinsic mitochondrial pathway through activation of caspase 3/7. This potent apoptotic activity was associated with the greater ability of AR-42 to downregulate survival signaling through Akt. These results confirm that AR-42 is a potent inhibitor of HDAC activity and demonstrates its ability to significantly inhibit cell survival through its pleiotropic effects in both canine and human OS cells and suggests that spontaneous OS in pet dogs may be a useful large animal model for preclinical evaluation of HDAC inhibitors. HDAC inhibition in combination with standard doxorubicin treatment offers promising potential for chemotherapeutic intervention in both canine and human OS.
Singh-Gupta, Vinita; Banerjee, Sanjeev; Yunker, Christopher K; Rakowski, Joseph T; Joiner, Michael C; Konski, Andre A; Sarkar, Fazlul H; Hillman, Gilda G
2012-05-01
Increased consumption of cruciferous vegetables is associated with decreased risk in prostate cancer (PCa). The active compound in cruciferous vegetables appears to be the self dimerized product [3,3'-diindolylmethane (DIM)] of indole-3-carbinol (I3C). Nutritional grade B-DIM (absorption-enhanced) has proven safe in a Phase I trial in PCa. We investigated the anti-cancer activity of B-DIM as a new biological approach to improve the effects of radiotherapy for hormone refractory prostate cancer cells, which were either positive or negative for androgen receptor (AR) expression. B-DIM inhibited cell growth in a dose-dependent manner in both PC-3 (AR-) and C4-2B (AR+) cell lines. B-DIM was effective at increasing radiation-induced cell killing in both cell lines, independently of AR expression. B-DIM inhibited NF-κB and HIF-1α DNA activities and blocked radiation-induced activation of these transcription factors in both PC-3 and C4-2B cells. In C4-2B (AR+) cells, AR expression and nuclear localization were significantly increased by radiation. However, B-DIM abrogated the radiation-induced AR increased expression and trafficking to the nucleus, which was consistent with decreased PSA secretion. In vivo, treatment of PC-3 prostate tumors in nude mice with B-DIM and radiation resulted in significant primary tumor growth inhibition and control of metastasis to para-aortic lymph nodes. These studies demonstrate that B-DIM augments radiation-induced cell killing and tumor growth inhibition. B-DIM impairs critical survival signaling pathways activated by radiation, leading to enhanced cell killing. These novel observations suggest that B-DIM could be used as a safe compound to enhance the efficacy of radiotherapy for castrate-resistant PCa. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Nelson, Carol A.; Azure, Michael T.; Adams, Christopher T.; Zinn, Kurt R.
2015-01-01
P2045 is a peptide analog of somatostatin with picomolar affinity for the somatostatin receptor subtype 2 (SSTR2) upregulated in some pancreatic tumors. Studies were conducted in rat AR42J pancreatic tumor-xenograft mice to determine if Re-188-P2045 could inhibit the growth of pancreatic cancer in an animal model. Methods Re-188-P2045 was intravenously administered every 3 days for 16 days to nude mice with AR42J tumor-xenografts that were ≈ 20 mm3 at study initiation. Tumor volumes were recorded throughout the dosing period. At necropsy all tissues were assessed for levels of radioactivity and evaluated for histological abnormalities. Clinical chemistry and hematology parameters were determined from terminal blood samples. The affinity of non-radioactive Re-185/187-P2045 for somatostatin receptors was compared in human NCI-H69 and rat AR42J tumor-cell membranes expressing predominantly SSTR2. Results In the 1.85 and 5.55 mBq groups tumor growth was inhibited in a dose-dependent fashion. In the 11.1 mBq group tumor growth was completely inhibited throughout the dosing period and for 12 days after the last administered dose. The radioactivity level in tumors 4 hours post-injection was 10%ID/g, which was 2-fold higher than in the kidneys. Re-188-P2045 was well tolerated in all dose-groups with no adverse clinical, histological, or hematological findings. The non-radioactive Re-185/187-P2045 bound more avidly (0.2 nM) to SSTR2 in human than rat tumor membranes suggesting that these studies are relevant to human studies. Conclusion Re-188-P2045 is a promising therapeutic candidate for patients with somatostatin-receptor-positive cancer. PMID:25359879
Wang, Luofu; Zhang, Miao; Tan, Kaibin; Guo, Yanli; Tong, Haipeng; Fan, Xiaozhou; Fang, Kejing; Li, Rui
2014-01-01
The objective of this study was to investigate nanobubbles carrying androgen receptor (AR) siRNA and their in vitro and in vivo anti-tumor effects, when combined with ultrasonic irradiation, on androgen-independent prostate cancer (AIPC). Nanobubbles carrying AR siRNA were prepared using poly-L-lysine and electrostatic adsorption methods. Using C4-2 cell activity as a testing index, the optimal irradiation parameters (including the nanobubble number/cell number ratio, mechanical index [MI], and irradiation time) were determined and used for transfection of three human prostate cancer cell lines (C4-2, LNCaP, and PC-3 cells). The AR expression levels were investigated with RT-PCR and Western blot analysis. Additionally, the effects of the nanobubbles and control microbubbles named SonoVue were assessed via imaging in a C4-2 xenograft model. Finally, the growth and AR expression of seven groups of tumor tissues were assessed using the C4-2 xenograft mouse model. The nanobubbles had an average diameter of 609.5±15.6 nm and could effectively bind to AR siRNA. Under the optimized conditions of a nanobubble number/cell number ratio of 100∶1, an MI of 1.2, and an irradiation time of 2 min, the highest transfection rates in C4-2, LNCaP, and PC-3 cells were 67.4%, 74.0%, and 63.96%, respectively. In the C4-2 and LNCaP cells, treatment with these binding nanobubbles plus ultrasonic irradiation significantly inhibited cell growth and resulted in the suppression of AR mRNA and protein expression. Additionally, contrast-enhanced ultrasound showed that the nanobubbles achieved stronger signals than the SonoVue control in the central hypovascular area of the tumors. Finally, the anti-tumor effect of these nanobubbles plus ultrasonic irradiation was most significant in the xenograft tumor model compared with the other groups. Nanobubbles carrying AR siRNA could be potentially used as gene vectors in combination with ultrasonic irradiation for the treatment of AIPC.
Tan, Kaibin; Guo, Yanli; Tong, Haipeng; Fan, Xiaozhou; Fang, Kejing; Li, Rui
2014-01-01
Objective The objective of this study was to investigate nanobubbles carrying androgen receptor (AR) siRNA and their in vitro and in vivo anti-tumor effects, when combined with ultrasonic irradiation, on androgen-independent prostate cancer (AIPC). Materials and Methods Nanobubbles carrying AR siRNA were prepared using poly-L-lysine and electrostatic adsorption methods. Using C4-2 cell activity as a testing index, the optimal irradiation parameters (including the nanobubble number/cell number ratio, mechanical index [MI], and irradiation time) were determined and used for transfection of three human prostate cancer cell lines (C4-2, LNCaP, and PC-3 cells). The AR expression levels were investigated with RT-PCR and Western blot analysis. Additionally, the effects of the nanobubbles and control microbubbles named SonoVue were assessed via imaging in a C4-2 xenograft model. Finally, the growth and AR expression of seven groups of tumor tissues were assessed using the C4-2 xenograft mouse model. Results The nanobubbles had an average diameter of 609.5±15.6 nm and could effectively bind to AR siRNA. Under the optimized conditions of a nanobubble number/cell number ratio of 100∶1, an MI of 1.2, and an irradiation time of 2 min, the highest transfection rates in C4-2, LNCaP, and PC-3 cells were 67.4%, 74.0%, and 63.96%, respectively. In the C4-2 and LNCaP cells, treatment with these binding nanobubbles plus ultrasonic irradiation significantly inhibited cell growth and resulted in the suppression of AR mRNA and protein expression. Additionally, contrast-enhanced ultrasound showed that the nanobubbles achieved stronger signals than the SonoVue control in the central hypovascular area of the tumors. Finally, the anti-tumor effect of these nanobubbles plus ultrasonic irradiation was most significant in the xenograft tumor model compared with the other groups. Conclusion Nanobubbles carrying AR siRNA could be potentially used as gene vectors in combination with ultrasonic irradiation for the treatment of AIPC. PMID:24798477
Jiang, Hong Ning; Li, Yuan; Jiang, Wen Yi; Cui, Zong Jie
2018-01-01
Plasma membrane-delimited generation of singlet oxygen by photodynamic action with photosensitizer sulfonated aluminum phthalocyanine (SALPC) activates cholecystokinin 1 receptor (CCK1R) in pancreatic acini. Whether CCK1R retains such photooxidative singlet oxygen activation properties in other environments is not known. Genetically encoded protein photosensitizers KillerRed or mini singlet oxygen generator (miniSOG) were expressed in pancreatic acinar tumor cell line AR4-2J, CCK1R, KillerRed or miniSOG were expressed in HEK293 or CHO-K1 cells. Cold light irradiation (87 mW⋅cm -2 ) was applied to photosensitizer-expressing cells to examine photodynamic activation of CCK1R by Fura-2 fluorescent calcium imaging. When CCK1R was transduced into HEK293 cells which lack endogenous CCK1R, photodynamic action with SALPC was found to activate CCK1R in CCK1R-HEK293 cells. When KillerRed or miniSOG were transduced into AR4-2J which expresses endogenous CCK1R, KillerRed or miniSOG photodynamic action at the plasma membrane also activated CCK1R. When fused KillerRed-CCK1R was transduced into CHO-K1 cells, light irradiation activated the fused CCK1R leading to calcium oscillations. Therefore KillerRed either expressed independently, or fused with CCK1R can both activate CCK1R photodynamically. It is concluded that photodynamic singlet oxygen activation is an intrinsic property of CCK1R, independent of photosensitizer used, or CCK1R-expressing cell types. Photodynamic singlet oxygen CCK1R activation after transduction of genetically encoded photosensitizer in situ may provide a convenient way to verify intrinsic physiological functions of CCK1R in multiple CCK1R-expressing cells and tissues, or to actuate CCK1R function in CCK1R-expressing and non-expressing cell types after transduction with fused KillerRed-CCK1R.
Accurate Laboratory Measurements of Vibration-Rotation Transitions of 36ArH^+ and 38ArH+
NASA Astrophysics Data System (ADS)
Cueto, Maite; Cernicharo, Jose; Herrero, Victor Jose; Tanarro, Isabel; Domenech, Jose Luis
2014-06-01
The protonated Ar ion 36ArH^+ has recently been identified in space, in the Crab Nebula, from Herschel spectra. Its R(0) and R(1) transitions lie at 617.5 and 1234.6 GHz, respectively, where atmospheric transmission is rather poor, even for a site as good as that of ALMA. As an alternative, especially after the end of the Herschel mission, rovibrational transitions of ArH^+ could be observed in absorption against bright background sources such as the galactic center, or other objects. We report on accurate laboratory wavenumber measurements of 19 lines of the v=1-0 band of 36ArH^+ and 38ArH^+, using a hollow cathode discharge cell, a difference frequency laser spectrometer and Ar with natural isotopic composition. Of those lines, only eight had been reported before and with much less accuracy. The data have also been used in a Dunham-type global fit of all published laboratory data (IR and sub-mm) of all isotopologues. Barlow et al., Science, 342, 1343 (2013) R.R. Filgueira and C.E. Blom, J. Mol. Spectrosc., 127, 279 (1988) M. Cueto et al, Astrophys. J. Lett, 783, L5 (2014)
Nguyen, Minh M.; Dar, Javid A.; Ai, Junkui; Wang, Yujuan; Masoodi, Khalid Z.; Shun, Tongying; Shinde, Sunita; Camarco, Daniel P.; Hua, Yun; Huryn, Donna M.; Wilson, Gabriela Mustata; Lazo, John S.; Nelson, Joel B.; Wipf, Peter
2016-01-01
Abstract Patients with castration-resistant prostate cancer (CRPC) can be treated with abiraterone, a potent inhibitor of androgen synthesis, or enzalutamide, a second-generation androgen receptor (AR) antagonist, both targeting AR signaling. However, most patients relapse after several months of therapy and a majority of patients with relapsed CRPC tumors express the AR target gene prostate-specific antigen (PSA), suggesting that AR signaling is reactivated and can be targeted again to inhibit the relapsed tumors. Novel small molecules capable of inhibiting AR function may lead to urgently needed therapies for patients resistant to abiraterone, enzalutamide, and/or other previously approved antiandrogen therapies. Here, we describe a high-throughput high-content screening (HCS) campaign to identify small-molecule inhibitors of AR nuclear localization in the C4-2 CRPC cell line stably transfected with GFP-AR-GFP (2GFP-AR). The implementation of this HCS assay to screen a National Institutes of Health library of 219,055 compounds led to the discovery of 3 small molecules capable of inhibiting AR nuclear localization and function in C4-2 cells, demonstrating the feasibility of using this cell-based phenotypic assay to identify small molecules targeting the subcellular localization of AR. Furthermore, the three hit compounds provide opportunities to develop novel AR drugs with potential for therapeutic intervention in CRPC patients who have relapsed after treatment with antiandrogens, such as abiraterone and/or enzalutamide. PMID:27187604
Shu, Qingbo; Cai, Tanxi; Chen, Xiulan; Zhu, Helen He; Xue, Peng; Zhu, Nali; Xie, Zhensheng; Wei, Shasha; Zhang, Qing; Niu, Lili; Gao, Wei-Qiang; Yang, Fuquan
2015-08-07
One of the major challenges in prostate cancer therapy remains the development of effective treatments for castration-resistant prostate cancer (CRPC), as the underlying mechanisms for its progression remain elusive. Previous studies showed that androgen receptor (AR) is crucially involved in regulation of metabolism in prostate cancer (PCa) cells throughout the transition from early stage, androgen-sensitive PCa to androgen-independent CRPC. AR achieves such metabolic rewiring directively either via its transcriptional activity or via interactions with AMP-activated protein kinase (AMPK). However, due to the heterogeneous expression and activity status of AR in PCa cells, it remains a challenge to investigate the links between AR status and metabolic alterations. To this end, we compared the proteomes of three pairs of androgen-sensitive (AS) and androgen-independent (AI) PCa cell lines, namely, PC3-AR(+)/PC3, 22Rv1/Du145, and LNCaP/C42B, using an iTRAQ labeling approach. Our results revealed that most of the differentially expressed proteins between each pair function in metabolism, indicating a metabolic shift between AS and AI cells, as further validated by multiple reaction monitoring (MRM)-based quantification of nucleotides and relative comparison of fatty acids between these cell lines. Furthermore, increased adenylate kinase isoenzyme 1 (AK1) in AS relative to AI cells may result in activation of AMPK, representing a major regulatory factor involved in the observed metabolic shift in PCa cells.
Kong, YanGuo; Barisone, Gustavo A; Abuhay, Mastewal; O'Donnell, Robert T; Buksh, Zaneb; Yousefian, Faraz; Tuscano, Joseph M
2014-11-01
HB22.7, an anti-CD22 monoclonal antibody has shown consistent preclinical activity against non-Hodgkin lymphoma (NHL). Histone deacetylase inhibitors (HDACi) have demonstrated efficacy in lymphoma and can modulate cell surface receptor expression. To augment the lymphomacidal activity of HB22.7 we examined the combination of AR42 (an HDACi) and HB22.7 in vitro and in vivo. The combination resulted in 10-fold increased potency in 6 NHL cell lines when compared to either drug alone. Both drugs reduced tumor progression in xenografts, but the combination was significantly more efficacious and resulted in regression of established tumors, without toxicity. AR42 inhibited HB22.7-mediated CD22 internalization, suggesting that increased efficacy could be due to higher availability of CD22. Overall, the synergistic effects of HB22.7 and AR42 on in vitro cytotoxicity and in vivo anti-tumor activity make this combination an attractive option for further pre-clinical and clinical evaluation. Published by Elsevier Ltd.
Coronal Heating and the Magnetic Field in Solar Active Regions
NASA Astrophysics Data System (ADS)
Falconer, D. A.; Tiwari, S. K.; Winebarger, A. R.; Moore, R. L.
2017-12-01
A strong dependence of active-region (AR) coronal heating on the magnetic field is demonstrated by the strong correlation of AR X-ray luminosity with AR total magnetic flux (Fisher et al 1998 ApJ). AR X-ray luminosity is also correlated with AR length of strong-shear neutral line in the photospheric magnetic field (Falconer 1997). These two whole-AR magnetic parameters are also correlated with each other. From 150 ARs observed within 30 heliocentric degrees from disk center by AIA and HMI on SDO, using AR luminosity measured from the hot component of the AIA 94 Å band (Warren et al 2012, ApJ) near the time of each of 3600 measured HMI vector magnetograms of these ARs and a wide selection of whole-AR magnetic parameters from each vector magnetogram after it was deprojected to disk center, we find: (1) The single magnetic parameter having the strongest correlation with AR 94-hot luminosity is the length of strong-field neutral line. (2) The two-parameter combination having the strongest still-stronger correlation with AR 94-hot luminosity is a combination of AR total magnetic flux and AR neutral-line length weighted by the vertical-field gradient across the neutral line. We interpret these results to be consistent with the results of both Fisher et al (1998) and Falconer (1997), and with the correlation of AR coronal loop heating with loop field strength recently found by Tiwari et al (2017, ApJ Letters). Our interpretation is that, in addition to depending strongly on coronal loop field strength, AR coronal heating has a strong secondary positive dependence on the rate of flux cancelation at neutral lines at coronal loop feet. This work was funded by the Living With a Star Science and Heliophysics Guest Investigators programs of NASA's Heliophysics Division.
Khurana, Namrata; Kim, Hogyoung; Chandra, Partha K; Talwar, Sudha; Sharma, Pankaj; Abdel-Mageed, Asim B; Sikka, Suresh C; Mondal, Debasis
2017-11-01
Prostate cancer (PCa) cells expressing full-length androgen receptor (AR-FL) are susceptible to androgen deprivation therapy (ADT). However, outgrowth of castration-resistant prostate cancer (CRPC) can occur due to the expression of constitutively active (ligand-independent) AR splice variants, particularly AR-V7. We previously demonstrated that sulforaphane (SFN), an isothiocyanate phytochemical, can decrease AR-FL levels in the PCa cell lines, LNCaP and C4-2B. Here, we examined the efficacy of SFN in targeting both AR-FL and AR-V7 in the CRPC cell line, CWR22Rv1 (22Rv1). MTT cell viability, wound-heal assay, and colony forming unit (CFU) measurements revealed that 22Rv1 cells are resistant to the anti-androgen, enzalutamide (ENZ). However, co-exposure to SFN sensitized these cells to the potent anticancer effects of ENZ (P<0.05). Immunoblot analyses showed that SFN (5-20 µM) rapidly decreases both AR-FL and AR-V7 levels, and immunofluorescence microscopy (IFM) depicted decreased AR in both cytoplasm and nucleus with SFN treatment. SFN increased both ubiquitination and proteasomal activity in 22Rv1 cells. Studies using a protein synthesis inhibitor (cycloheximide) or a proteasomal inhibitor (MG132) indicated that SFN increases both ubiquitin-mediated aggregation and subsequent proteasomal-degradation of AR proteins. Previous studies reported that SFN inhibits the chaperone activity of heat-shock protein 90 (Hsp90) and induces the nuclear factor erythroid-2-like 2 (Nrf2) transcription factor. Therefore, we investigated whether the Hsp90 inhibitor, ganetespib (G) or the Nrf2 activator, bardoxolone methyl (BM) can similarly suppress AR levels in 22Rv1 cells. Low doses of G and BM, alone or in combination, decreased both AR-FL and AR-V7 levels, and combined exposure to G+BM sensitized 22Rv1 cells to ENZ. Therefore, adjunct treatment with the phytochemical SFN or a safe pharmaceutical combination of G+BM may be effective against CRPC cells, especially those expressing AR-V7.
Khurana, Namrata; Kim, Hogyoung; Chandra, Partha K.; Talwar, Sudha; Sharma, Pankaj; Abdel-Mageed, Asim B.; Sikka, Suresh C.; Mondal, Debasis
2017-01-01
Prostate cancer (PCa) cells expressing full-length androgen receptor (AR-FL) are susceptible to androgen deprivation therapy (ADT). However, outgrowth of castration-resistant prostate cancer (CRPC) can occur due to the expression of constitutively active (ligand-independent) AR splice variants, particularly AR-V7. We previously demonstrated that sulforaphane (SFN), an isothiocyanate phytochemical, can decrease AR-FL levels in the PCa cell lines, LNCaP and C4-2B. Here, we examined the efficacy of SFN in targeting both AR-FL and AR-V7 in the CRPC cell line, CWR22Rv1 (22Rv1). MTT cell viability, wound-heal assay, and colony forming unit (CFU) measurements revealed that 22Rv1 cells are resistant to the anti-androgen, enzalutamide (ENZ). However, co-exposure to SFN sensitized these cells to the potent anticancer effects of ENZ (P<0.05). Immunoblot analyses showed that SFN (5–20 µM) rapidly decreases both AR-FL and AR-V7 levels, and immunofluorescence microscopy (IFM) depicted decreased AR in both cytoplasm and nucleus with SFN treatment. SFN increased both ubiquitination and proteasomal activity in 22Rv1 cells. Studies using a protein synthesis inhibitor (cycloheximide) or a proteasomal inhibitor (MG132) indicated that SFN increases both ubiquitin-mediated aggregation and subsequent proteasomal-degradation of AR proteins. Previous studies reported that SFN inhibits the chaperone activity of heat-shock protein 90 (Hsp90) and induces the nuclear factor erythroid-2-like 2 (Nrf2) transcription factor. Therefore, we investigated whether the Hsp90 inhibitor, ganetespib (G) or the Nrf2 activator, bardoxolone methyl (BM) can similarly suppress AR levels in 22Rv1 cells. Low doses of G and BM, alone or in combination, decreased both AR-FL and AR-V7 levels, and combined exposure to G+BM sensitized 22Rv1 cells to ENZ. Therefore, adjunct treatment with the phytochemical SFN or a safe pharmaceutical combination of G+BM may be effective against CRPC cells, especially those expressing AR-V7. PMID:28901514
Comparison of receptor affinity of natSc-DOTA-TATE versus natGa-DOTA-TATE.
Koumarianou, Eftychia; Pawlak, Dariusz; Korsak, Agnieszka; Mikolajczak, Renata
2011-01-01
44Sc as a positron emitter can be an interesting alternative to 68Ga (T½=67.71 min) due to its longer half-life (T½=3.97 h). Moreover, the b-emitter 47Sc can be used for therapy when attached to the same biomolecule vectors. DOTA as a chelating agent has been proven suitable for the radiolabelling of peptides recognising tumour cell receptors in vivo with M3+ radiometals. DOTA-derivatized peptides have been successfully labelled with 90Y and 177Lu for therapy, and with 68Ga for PET imaging. However, published data on 44Sc-labelled DOTA-biomolecules as potential PET radiotracers are still very limited. The aim of this study was to compare the affinity of natGa- and natSc-labelled DOTA-TATE to somatostatin receptors subtype 2 expressed in rat pancreatic cancer cell line AR42J. The cold complexes of DOTA-TATE with natGa and natSc were synthesized and identified by HPLC and MS analysis and evaluated in vitro for competitive binding to cancer cell line AR42J expressing somatostatin receptors subtype 2 (sstr2). The IC50 values calculated from the displacement curve of {125I-Tyr11}-SST-14 were: 0.20±0.18, 0.70±0.20, 0.64±0.22 and 0.67±0.12 for natGa-DOTA-TATE, natSc-DOTA-TATE, DOTA-TATE, and {Tyr11}-SST-14 complexes, respectively, with the affinity lowering in the decreasing order: natGa-DOTA-TATE>DOTA-TATE>Tyr11-SST-14>natSc-DOTA-TATE. The binding affinity of natGa-DOTA-TATE appeared higher than that of natSc-DOTA-TATE. Further in vitro and in vivo studies are needed to verify the influence of the chelated metal on the affinity and uptake of the respective radiolabelled compounds. This information might be crucial when the in vivo applications of peptides labelled with 68Ga and 44Sc for PET, as well as the use of 47Sc for radiotherapy are considered.
C5a alters blood-brain barrier integrity in experimental lupus
Jacob, Alexander; Hack, Bradley; Chiang, Eddie; Garcia, Joe G. N.; Quigg, Richard J.; Alexander, Jessy J.
2010-01-01
The blood-brain barrier (BBB) is a crucial anatomic location in the brain. Its dysfunction complicates many neurodegenerative diseases, from acute conditions, such as sepsis, to chronic diseases, such as systemic lupus erythematosus (SLE). Several studies suggest an altered BBB in lupus, but the underlying mechanism remains unknown. In the current study, we observed a definite loss of BBB integrity in MRL/MpJ-Tnfrsf6lpr (MRL/lpr) lupus mice by IgG infiltration into brain parenchyma. In line with this result, we examined the role of complement activation, a key event in this setting, in maintenance of BBB integrity. Complement activation generates C5a, a molecule with multiple functions. Because the expression of the C5a receptor (C5aR) is significantly increased in brain endothelial cells treated with lupus serum, the study focused on the role of C5a signaling through its G-protein-coupled receptor C5aR in brain endothelial cells, in a lupus setting. Reactive oxygen species production increased significantly in endothelial cells, in both primary cells and the bEnd3 cell line treated with lupus serum from MRL/lpr mice, compared with those treated with control serum from MRL+/+ mice. In addition, increased permeability monitored by changes in transendothelial electrical resistance, cytoskeletal remodeling caused by actin fiber rearrangement, and increased iNOS mRNA expression were observed in bEnd3 cells. These disruptive effects were alleviated by pretreating cells with a C5a receptor antagonist (C5aRant) or a C5a antibody. Furthermore, the structural integrity of the vasculature in MRL/lpr brain was maintained by C5aR inhibition. These results demonstrate the regulation of BBB integrity by the complement system in a neuroinflammatory setting. For the first time, a novel role of C5a in the maintenance of BBB integrity is identified and the potential of C5a/C5aR blockade highlighted as a promising therapeutic strategy in SLE and other neurodegenerative diseases.—Jacob, A., Hack, B., Chiang, E., Garcia, J. G. N., Quigg, R. J., Alexander, J. J. C5a alters blood-brain barrier integrity in experimental lupus. PMID:20065106
Santofimia-Castaño, Patricia; Garcia-Sanchez, Lourdes; Ruy, Deborah Clea; Fernandez-Bermejo, Miguel; Salido, Gines M; Gonzalez, Antonio
2014-09-17
Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
p52 Activation and Enzalutamide Therapy in Prostate Cancer
2015-10-01
analyzed extracts from xenograft tumors derived from C4-2B and C4-2B-Enza-R cells using antibodies against AR-V7 and hnRNPA1. Higher levels of AR-V7...were observed in xenografts derived from C4-2B- Enza-R cells, which was correlated well with higher levels of hnRNPA1 and c-Myc (Fig. 3A right panel... Xenografts from C4-2B-Enza-R cells exhibit higher levels of AR-V7, hnRNPA1 and c-Myc. B) Left panel, Western analysis of AR-V7 in 22Rv1-Enza-R cells
Zhang, Yong; Kim, Kwan-Hyun; Zhang, Wei; Guo, Yinglu; Kim, Sung-Hoon; Lü, Junxuan
2011-01-01
Androgen receptor (AR) signaling is crucial for the genesis and progression of prostate cancer (PCa). We compared the growth responses of AR(+) LNCaP and LNCaP C4-2 vs. AR(−) DU145 and PC-3 PCa cell lines to galbanic acid (GBA) isolated from the resin of medicinal herb Ferula assafoetida and assessed their connection to AR signaling and cell cycle regulatory pathways. Our results showed that GBA preferentially suppressed AR(+) PCa cell growth than AR(−) PCa cells. GBA induced a caspase-mediated apoptosis that was attenuated by a general caspase inhibitor. Subapoptotic GBA down-regulated AR protein in LNCaP cells primarily through promoting its proteasomal degradation, and inhibited AR-dependent transcription without affecting AR nuclear translocation. Whereas docking simulations predicted binding of GBA to the AR ligand binding domain with similarities and differences with the AR antagonist drug bicalutamide, LNCaP cell culture assays did not detect agonist activity of GBA. GBA and bicalutamide exerted greater than additive inhibitory effect on cell growth when used together. Subapoptotic GBA induced G1 arrest associated with an inhibition of cyclin/CDK4/6 pathway, especially cyclin D1 without the causal involvement of CDK inhibitory proteins P21Cip1 and P27Kip1. In summary, the novelty of GBA as an anti-AR compound resides in the distinction between GBA and bicalutamide with respect to AR protein turnover and a lack of agonist effect. Our observations of anti-AR and cell cycle arrest actions plus the anti-angiogenesis effect reported elsewhere suggest GBA as a multi-targeting drug candidate for the prevention and therapy of PCa. PMID:21328348
Kong, D; Heath, E; Chen, W; Cher, M; Powell, I; Heilbrun, L; Li, Y; Ali, S; Sethi, S; Hassan, O; Hwang, C; Gupta, N; Chitale, D; Sakr, Wa; Menon, M; Sarkar, Fh
2013-01-01
Androgen Receptor (AR) signaling is critically important during the development and progression of prostate cancer (PCa). The AR signaling is also important in the development of castrate resistant prostate cancer (CRPC) where AR is functional even after androgen deprivation therapy (ADT); however, little is known regarding the transcriptional and functional regulation of AR in PCa. Moreover, treatment options for primary PCa for preventing the occurrence of CRPC is limited; therefore, novel strategy for direct inactivation of AR is urgently needed. In this study, we found loss of miR-34a, which targets AR, in PCa tissue specimens, especially in patients with higher Gleason grade tumors, consistent with increased expression of AR. Forced over-expression of miR-34a in PCa cell lines led to decreased expression of AR and prostate specific antigen (PSA) as well as the expression of Notch-1, another important target of miR-34a. Most importantly, BR-DIM intervention in PCa patients prior to radical prostatectomy showed reexpression of miR-34a, which was consistent with decreased expression of AR, PSA and Notch-1 in PCa tissue specimens. Moreover, BR-DIM intervention led to nuclear exclusion both in PCa cell lines and in tumor tissues. PCa cells treated with BR-DIM and 5-aza-dC resulted in the demethylation of miR-34a promoter concomitant with inhibition of AR and PSA expression in LNCaP and C4-2B cells. These results suggest, for the first time, epigenetic silencing of miR-34a in PCa, which could be reversed by BR-DIM treatment and, thus BR-DIM could be useful for the inactivation of AR in the treatment of PCa.[This corrects the article on p. 14 in vol. 4.].
Glucocorticoid-induced pancreatic-hepatic trans-differentiation in a human cell line in vitro.
Fairhall, Emma A; Leitch, Alistair C; Lakey, Anne F; Probert, Philip M E; Richardson, Gabriella; De Santis, Carol; Wright, Matthew C
2018-05-22
The rodent pancreatic AR42J-B13 (B-13) cell line differentiates into non-replicative hepatocyte-like cells in response to glucocorticoid mediated via the glucocorticoid receptor (GR). The aims of this study were to identify a human cell line that responds similarly and investigate the mechanisms underpinning any alteration in differentiation. Exposing the human pancreatic adenocarcinoma (HPAC) cell line to 1-10 µM concentrations of dexamethasone (DEX) resulted an inhibition of proliferation, suppressed carcinoembryonic antigen expression, limited expression of pancreatic acinar and hepatic gene expression and significant induction of the constitutively-expressed hepatic CYP3A5 mRNA transcript. These changes were associated with a pulse of genomic DNA methylation and suppressed notch signalling activity. HPAC cells expressed high levels of GR transcript in contrast to other nuclear receptors - such as the glucocorticoid-activated pregnane X receptor (PXR) - and GR transcriptional function was activated by DEX in HPAC cells. Expression of selected hepatocyte transcripts in response to DEX was blocked by co-treatment with the GR antagonist RU486. These data indicate that the HPAC response to glucocorticoid exposure includes an inhibition in proliferation, alterations in notch signalling and a limited change in the expression of genes associated with an acinar and hepatic phenotype. This is the first demonstration of a human cell responding to similarly to the rodent B-13 cell regarding formation of hepatocyte-like cells in response to glucocorticoid. Identifying and modulating the ablating factor(s) may enhance the hepatocyte-like forming capacity of HPAC cells after exposure to glucocorticoid and generate an unlimited in vitro supply of human hepatocytes for toxicology studies and a variety of clinical applications. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Studies of rotationally inelastic collisions of NaK and NaCs with Ar and He perturbers
NASA Astrophysics Data System (ADS)
Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Ashman, S.; Malenda, R. F.; Weiser, P.; Carlus, S.; Fragale, A.; Hickman, A. P.; Huennekens, J.
2013-05-01
We report studies of rotationally inelastic collisions of Ar and He atoms with the molecules NaK and NaCs prepared in various ro-vibrational levels of the A1Σ+ electronic state. We use laser induced fluorescence (LIF) and polarization labeling (PL) spectroscopy in a pump-probe, two step excitation process. The pump excites the molecule to a ro-vibrational level (v , J) in the A state. The probe laser is scanned over transitions to the 31 Π state in NaK or the 53 Π state in NaCs. In addition to strong direct lines, we observe weak satellite lines that arise from collision-induced transitions of the A state level (v , J) to (v , J + ΔJ) . The ratio of intensities of the satellite line to the direct line in LIF and PL yields information about population and orientation transfer. Preliminary results show a strong propensity for collisions with ΔJ =even for NaK; the propensity is larger for He than for Ar. Collisions of NaCs with He show a similar propensity, but collisions of NaCs with Ar do not. Theoretical calculations are also underway. For He-NaK, we have completed potential surface calculations using GAMESS and coupled channel scattering calculations of rotational energy transfer and transfer of orientation. Work supported by NSF and XSEDE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Shan; Wang, Ming-Wei; Yao, Xiaoqiang
2009-05-15
In this study, we developed a human prostatic epithelial cell line BPH-1-AR stably expressing AR by lentiviral transduction. Characterization by immunoblot and RT-PCR showed that AR was stably expressed in all representative BPH-1-AR clones. Androgen treatment induced a secretory differentiation phenotype in BPH-1-AR cells but suppressed their cell proliferation. Treatments with AR agonists induced transactivation of a transfected PSA-gene promoter reporter in BPH-1-AR cells, whereas this transactivation was suppressed by an AR antagonist flutamide, indicating that the transduced AR in BPH-1-AR cells was functional. Finally, we utilized BPH-1-AR cells to evaluate the androgenic activities and growth effects of five newlymore » developed non-steroidal compounds. Results showed that these compounds showed androgenic activities and growth-inhibitory effects on BPH-1-AR cells. Our results showed that BPH-1-AR cell line would be a valuable in vitro model for the study of androgen-regulated processes in prostatic epithelial cells and identification of compounds with AR-modulating activities.« less
Shibata, Norihito; Nagai, Katsunori; Morita, Yoko; Ujikawa, Osamu; Ohoka, Nobumichi; Hattori, Takayuki; Koyama, Ryokichi; Sano, Osamu; Imaeda, Yasuhiro; Nara, Hiroshi; Cho, Nobuo; Naito, Mikihiko
2018-01-25
Targeted protein degradation using small molecules is a novel strategy for drug development. We have developed hybrid molecules named specific and nongenetic inhibitor of apoptosis protein [IAP]-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to degrade target proteins. Here, we show novel SNIPERs capable of inducing proteasomal degradation of the androgen receptor (AR). Through derivatization of the SNIPER(AR) molecule at the AR ligand and IAP ligand and linker, we developed 42a (SNIPER(AR)-51), which shows effective protein knockdown activity against AR. Consistent with the degradation of the AR protein, 42a inhibits AR-mediated gene expression and proliferation of androgen-dependent prostate cancer cells. In addition, 42a efficiently induces caspase activation and apoptosis in prostate cancer cells, which was not observed in the cells treated with AR antagonists. These results suggest that SNIPER(AR)s could be leads for an anticancer drug against prostate cancers that exhibit AR-dependent proliferation.
Sahu, Neha; Meena, Sanjeev; Shukla, Vijaya; Chaturvedi, Priyank; Kumar, Brijesh; Datta, Dipak; Arya, K R
2018-03-01
Medicinal plants used in traditional medicines are affordable, easily accessible, safer, less toxic and considered as a rich or efficient source of bioactive molecules for modern therapeutics. Artemisia nilagirica (AR) has a long history of use in Indian traditional medicine to combat a wide variety of diseases including cancer. Considering the vast potential of traditional healing plants to deliver safer, less toxic and efficient chemotherapeutics, we have examined anticancer activity of ethanolic extract, bioactive fractions and sub-fractions of AR against different human cancer cell lines along with their phytochemical analysis to understand the insights of novel anticancer activities for further preclinical studies. Fresh plant material of AR was procured from the wild, dried and ground. The grinded materials was extracted in ethanol (AR-01) and fractionated into butanol (AR-02), ethyl acetate (AR-03), hexane (AR-04) and water (AR-05). The cytotoxicity was evaluated against three different human cancer cell lines, i.e. colon (DLD-1), lung (A-549), and breast (MCF-7) using Sulforhodamine B (SRB) assay along with non-cancerous VERO cells as control and doxorubicin (DOX) as positive control. As we observed strong cytotoxicity of AR-03 and AR-04 fractions against tested cells and marked cytotoxic effects particularly in colon cancer cell lines, we further re-fractionated, AR-03 into (AR-03A, AR-03B, AR-03C, AR-03D, AR-03E) and AR-04 into (AR-04A, AR-04B, AR-04C) sub-fractions by column chromatography and investigated against the same panel of cell lines in addition to one more colon cancer cell line (HT-29). Phytochemical analysis was performed through HPLC-ESI-QTOF-MS/MS fragmentation. Ethyl acetate (AR-03) and hexane (AR-04) fractions were found to be the most cytotoxic against all the tested cell lines. Further, AR-03E and AR-04A sub-fractions were found more specific cytotoxic selectively against DLD-1 cancer cell lines at 100µg/ml concentration. HPLC-ESI-QTOF-MS/MS determination revealed the presence of 17 compounds in AR-01. Among them, 4 compounds were reported for the first time in this species. However, 3 identified compounds (artemorin, β-santonin and caryophyllene oxide) in AR-03E sub-fraction were commonly present in each bioactive fraction and may be considered as potential and safest cytotoxic agents for anticancer activity. Experimental evidences reported in this paper for anticancer activity validate the traditional wisdom of Artemisia nilagirica as an anticancer herbal drug. To our knowledge, this is our first novel observation of cytotoxicity and selectivity of ethyl acetate and hexane sub-fraction of AR-01 i.e. AR-03E and AR-04A respectively against DLD-1 human cancer cell lines. HPLC-ESI-QTOF-MS/MS determination attributes the identification of cytotoxic compounds which may be used for further preclinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer.
Sharad, Shashwat; Ravindranath, Lakshmi; Haffner, Michael C; Li, Hua; Yan, Wusheng; Sesterhenn, Isabell A; Chen, Yongmei; Ali, Amina; Srinivasan, Alagarsamy; McLeod, David G; Yegnasubramanian, Srinivasan; Srivastava, Shiv; Dobi, Albert; Petrovics, Gyorgy
2014-06-01
The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis.
Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer
Sharad, Shashwat; Ravindranath, Lakshmi; Haffner, Michael C; Li, Hua; Yan, Wusheng; Sesterhenn, Isabell A; Chen, Yongmei; Ali, Amina; Srinivasan, Alagarsamy; McLeod, David G; Yegnasubramanian, Srinivasan; Srivastava, Shiv; Dobi, Albert; Petrovics, Gyorgy
2014-01-01
The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis. PMID:24694733
Storch, Daniel; Béhé, Martin; Walter, Martin A; Chen, Jianhua; Powell, Pia; Mikolajczak, Renata; Mäcke, Helmut R
2005-09-01
Radiolabeled somatostatin analogs are important tools for the in vivo localization and targeted radionuclide therapy of somatostatin receptor-positive tumors. The aim of this study was to compare 3 somatostatin analogs designed for the labeling with (99m)Tc (where HYNIC is 6-hydrazinopyridine-3-carboxylic acid): 6-hydrazinopyridine-3-carboxylic acid(0)-octreotide (HYNIC-OC/(99m)Tc-(1)), [HYNIC(0),Tyr(3)]octreotide (HYNIC-TOC/(99m)Tc-(2)), and [HYNIC(0),Tyr(3),Thr(8)]octreotide (HYNIC-TATE/(99m)Tc-(3)), using ethylenediamine-N,N'-diacetic acid (EDDA) as a coligand. In addition, we compared the (99m)Tc-labeled peptides [(111)In-diethylenetriaminepentaacetic acid(0)]octreotide ([(111)In-DTPA]-OC) and [(111)In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(0),Tyr(3),Thr(8)]octreotide ([(111)In-DOTA]-TATE) with regard to the rate of internalization and the biodistribution in AR4-2J (expressing the somatostatin receptor subtype 2) tumor-bearing rats. The main attention was directed toward a potential correlation between the rate of internalization and the tumor or pancreas uptake. Synthesis was performed on solid phase using a standard Fmoc strategy. Internalization was studied in cell culture (AR4-2J) and biodistribution was studied using a Lewis rat tumor model (AR4-2J). The 5 radiopeptides showed a specific internalization into AR4-2J cells in culture (as shown by blocking experiments). The rate of internalization of the 5 radiopeptides differed significantly according to the following order: (99m)Tc-(1) approximately = [(111)In-DTPA]-OC < (99m)Tc-(2) < (99m)Tc-(3) approximately = [(111)In-DOTA]-TATE. All radiopeptides displayed a rapid blood clearance and a fast clearance from all somatostatin receptor-negative tissues predominantly via the kidneys. A receptor-specific uptake of radioactivity was observed for all compounds in somatostatin receptor-positive organs such as the pancreas, the adrenals, and the stomach. After 4 h, the uptake in the AR4-2J tumor was comparable for (99m)Tc-(2) (3.85 +/- 1.0 injected dose per gram tissue (%ID/g)), (99m)Tc-(3) (3.99 +/- 0.58%ID/g), and [(111)In-DOTA]-TATE (4.12 +/- 0.74%ID/g) but much lower for [(111)In-DTPA]-OC (0.99 +/- 0.08%ID/g) and (99m)Tc-(1) (0.70 +/- 0.13%ID/g). The specificity was determined by blocking experiments using a large excess of [Tyr(3)]octreotide. (99m)Tc-(3) displayed the highest tumor-to-kidney ratio (2.5:1), followed by (99m)Tc(2) (1.9:1) and [(111)In-DOTA]-TATE (1.7:1). These data show that the 5 radiopeptides are specific radioligands for the somatostatin receptor subtype 2. The rate of internalization correlates with the uptake in the tumor (R(2) = 0.75; P = 0.026) and pancreas (R(2) = 0.98; P = 7.4.10(-5)). [Tyr(3),Thr(8)]octreotide derivatives show superiority over the corresponding octreotide and [Tyr(3)]octreotide derivatives, indicating that [(111)In-DOTA]-TATE and [(99m)Tc/EDDA/HYNIC]-TATE are suitable candidates for clinical studies.
Biokinetics and dosimetry of several radiolabelled peptides in cancer cells
NASA Astrophysics Data System (ADS)
Rodríguez-Cortés, J.; Ferro-Flores, G.; de Murphy, C. Arteaga; Pedraza-López, M.; Ramírez-Iglesias, M. A. T.
Radiolabelled peptides have been used as target-specific radiopharmaceuticals. The goal of this research was the in vitro assessment of the uptake, internalization, externalization, and efflux of five radiolabelled peptides in cancer cells to estimate radiation-absorbed doses from experimental biokinetic data. 177Lu-DOTA-octreotate, 188Re-lanreotide, and 99mTc-HYNIC-octreotide were studied in the AR42J cell line. The PC3 and NCIH69 cells were used for 99mTc-HYNIC-bombesin and 177Lu-DOTA-minigastrin, respectively. The cumulated activities in the membrane and cytoplasm were calculated by integration of the experimental time-activity curves and used for dosimetry calculations according to the Medical Internal Radiation Dose (MIRD) cellular methodology. The mean absorbed dose to the cell nucleus were 0.69±0.09, 0.11±0.08, 0.55±0.09, 3.45±0.48, and 3.30±0.65 Gy/Bq for 99mTc-HYNIC-bombesin, 99mTc-HYNIC-octreotide, 177Lu-DOTA-minigastrin, 177Lu-DOTA-octreotate, and 188Re-lanreotide, respectively. If radiopharmaceutical cell kinetics were not used and only uptake data were considered, the calculated doses would be overestimated up to 25 times.
Rotationally inelastic collisions of He and Ar with NaK: Theory and Experiment
NASA Astrophysics Data System (ADS)
Richter, K.; Price, T. J.; Jones, J.; Faust, C.; Hickman, A. P.; Huennekens, J.; Malenda, R. F.; Ross, A. J.; Harker, H.; Crozet, P.; Forrey, R. C.
2015-05-01
Rotationally inelastic collisions of NaK A1Σ+ molecules with He and Ar are studied. At Lehigh, we use pump-probe polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. At Lyon, Fourier transform (FT)-resolved LIF spectra are recorded. In both cases, the pump laser excites a particular ro-vibrational level A1Σ+ (v , J). We observe strong direct lines corresponding to transitions from the (v , J) level pumped, and weak satellite lines corresponding to transitions from collisionally-populated levels (v ,J' = J + ΔJ). The ratios of satellite to direct line intensities in LIF and PL yield population and orientation transfer information. A strong propensity for ΔJ = even transitions is observed for both He and Ar perturbers. In the FT fluorescence experiment we also observe v-changing collisions. Ab initio potential surface and scattering calculations are underway for collisions in the A1Σ+ and X1Σ+ states. For He-NaK we have calculated potential surfaces using GAMESS and carried out coupled channel scattering calculations of transfer of population, orientation, and alignment. Calculations of v-changing collision cross sections are also in progress. Work supported by NSF, XSEDE and CNRS (PICS).
Studies of Inelastic Collisions of NaK and NaCs Molecules with Atomic Perturbers
NASA Astrophysics Data System (ADS)
Jones, Joshua A.
We have investigated collisions of NaK molecules in the first excited state [2(A)1Sigma+], with Ar and He collision partners using laser-induced fluorescence spectroscopy (LIF) and polarization-labeling (PL) spectroscopy in a two-step excitation scheme. Additionally, we have investigated collisions of NaCs molecules in the first excited state [2(A)1Sigma +] with Ar and He perturbers using the LIF technique. We use a pump-probe, two-step excitation process. The pump laser prepares the molecule in a particular ro-vibrational (v, J) level in the A state. The probe laser frequency is scanned over transitions to the 31Π in NaK or to the 53Π in NaCs. In addition to observing strong direct lines, we also see weak collisional satellite lines that arise from collisions in the intermediate state that take the molecule from the prepared level (v, J) to level (v, J + Delta J). The ratio of the intensity of the collisional line to the intensity of the direct line in LIF and PL yield information about population and orientation transfer. Our results show a propensity for DeltaJ=even collisions of NaK with Ar and an even stronger propensity for collisions with He. Collisions of NaCs with Ar do not show any such J=even propensity. Preliminary investigations of collisions of NaCs with He seem to indicate a slight J=even propensity. In addition, we observe that rotationally inelastic collisions of excited NaK molecules with potassium atoms destroy almost all of the orientation, while collisions with argon destroy about one third to two thirds and collisions with helium destroy only about zero to one third of the initial orientation.
Bennett, Nigel C; Hooper, John D; Johnson, David W; Gobe, Glenda C
2014-05-01
In prostate cancer (PCa) patients, the protein target for androgen deprivation and blockade therapies is androgen receptor (AR). AR interacts with many proteins that function to either co-activate or co-repress its activity. Caveolin-1 (Cav-1) is not found in normal prostatic epithelium, but is found in PCa, and may be an AR co-regulator protein. We investigated cell line-specific signatures and associations of endogenous AR and Cav-1 in six PCa cell lines of known androgen sensitivity: LNCaP (androgen sensitive); 22Rv1 (androgen responsive); PC3, DU145, and ALVA41 (androgen non-reliant); and RWPE1 (non-malignant). Protein and mRNA expression profiles were compared and electron microscopy used to identify cells with caveolar structures. For cell lines expressing both AR and Cav-1, knockdown techniques using small interfering RNA against AR or Cav-1 were used to test whether diminished expression of one affected the other. Co-sedimentation of AR and Cav-1 was used to test their association. A reporter assay for AR genomic activity was utilized following Cav-1 knockdown. AR-expressing LNCaP and 22Rv1 cells had low endogenous Cav-1 mRNA and protein. Cell lines that expressed little or no AR (DU145, PC3, ALVA41, and RWPE1) expressed high endogenous levels of Cav-1. AR knockdown in LNCaP cells had little effect on Cav-1, but Cav-1 knockdown inhibited AR expression and genomic activity. These data show endogenous AR and Cav-1 mRNA and protein expression is inversely related in PCa cells, with Cav-1 acting on the androgen/AR signaling axis possibly as an AR co-activator, demonstrated by diminished AR genomic activity following Cav-1 knockdown. © 2013 Wiley Periodicals, Inc.
Szafran, Adam T.; Stephan, Cliff; Bolt, Michael; Mancini, Maureen G.; Marcelli, Marco; Mancini, Michael A.
2018-01-01
Background AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. Methods We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. Results Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous–AR-V7–expressing prostate cancer cell lines and also overcame bicalutamide resistance observed in the 22RV1 cell line. Conclusions SFKs, especially Src and Fyn, may be important upstream regulators of AR-V7 expression and represent promising targets in a subset of CRPCs expressing high levels of AR-V7. PMID:27699828
Saporita, Anthony J.; Ai, Junkui; Wang, Zhou
2010-01-01
BACKGROUND Androgen receptor (AR) is the key molecule in androgen-refractory prostate cancer. Despite androgen ablative conditions, AR remains active and is necessary for the growth of androgen-refractory prostate cancer cells. Nuclear localization of AR is a prerequisite for its transcriptional activation. We examined AR localization in androgen-dependent and androgen-refractory prostate cancer cells. METHODS AND RESULTS We demonstrate increased nuclear localization of a GFP-tagged AR in the absence of hormone in androgen-refractory C4-2 cells compared to parental androgen-sensitive human prostate cancer LNCaP cells. Analysis of AR mutants impaired in ligand-binding indicates that the nuclear localization of AR in C4-2 cells is truly androgen-independent. The hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), inhibits basal PSA expression and disrupts the ligand-independent nuclear localization of AR at doses much lower than required to inhibit androgen-induced nuclear import. CONCLUSIONS Hsp90 is a key regulator of ligand-independent nuclear localization and activation of AR in androgen-refractory prostate cancer cells. PMID:17221841
Yu, Peter; Liu, Ka; Gao, Xuxia; Karmouty-Quintana, Harry; Bailey, Jennifer M; Cao, Yanna; Ko, Tien C
2018-02-01
To investigate regulation of microRNA (miR)-200 family (a, b, c, 141, and 429) in chronic pancreatitis (CP). This was accomplished by examining miR-200 family levels in a mouse model in vivo and their regulation in pancreatic cells in vitro. Chronic pancreatitis was induced by cerulein for 4 weeks (50 μg/kg, 5 hourly intraperitoneal injections/day, and 3 days/week). Control mice received normal saline. The pancreata were harvested for fibrosis assessment by Sirius red staining and for miRNA, collagen, and fibronectin levels by quantitative PCR. In vitro, human primary pancreatic stellate cells and human primary pancreatic fibroblast (hPFBs), and rat pancreatic epithelial AR42J cells were treated with vehicle, transforming growth factor (TGF)-β (1 ng/mL), or BMP2 (50 ng/mL) for 24 hours and then harvested for miRNA analysis. In CP, miR-200s were decreased by 56% to 70% and inversely correlated with pancreatic fibrosis, miR-21, and miR-31 (P < 0.05). In vitro, TGF-β inhibited miR-200b in AR42J cells by 62%, whereas BMP2 increased miR-200b in all 3 cell types in a range of 1.5- to 3.4-fold and inhibited miR-21 in hPFBs by 21% (P < 0.05). Both in vivo and in vitro studies suggest an antifibrogenic function of miR-200s in CP. The TGF-β and BMP2 may function through inverse regulation of miR-200b levels.
The antiandrogenic effect of finasteride against a mutant androgen receptor
Chhipa, Rishi Raj; Zhang, Haitao; Ip, Clement
2011-01-01
Finasteride is known to inhibit Type 2 5α-reductase and thus block the conversion of testosterone to dihydrotestosterone (DHT). The structural similarity of finasteride to DHT raises the possibility that finasteride may also interfere with the function of the androgen receptor (AR). Experiments were carried out to evaluate the antiandrogenic effect of finasteride in LNCaP, C4-2 and VCaP human prostate cancer cells. Finasteride decreased DHT binding to AR, and DHT-stimulated AR activity and cell growth in LNCaP and C4-2 cells, but not in VCaP cells. LNCaP and C4-2 (derived from castration-resistant LNCaP) cells express the T877A mutant AR, while VCaP cells express the wild-type AR. When PC-3 cells, which are AR-null, were transfected with either the wild-type or the T877A mutant AR, only the mutant AR-expressing cells were sensitive to finasteride inhibition of DHT binding. Peroxiredoxin-1 (Prx1) is a novel endogenous facilitator of AR binding to DHT. In Prx1-rich LNCaP cells, the combination of Prx1 knockdown and finasteride was found to produce a greater inhibitory effect on AR activity and cell growth than either treatment alone. The observation suggests that cells with a low expression of Prx1 are likely to be more responsive to the antiandrogenic effect of finasteride. Additional studies showed that the efficacy of finasteride was comparable to that of bicalutamide (a widely used non-steroidal antiandrogen). The implication of the above findings is discussed in the context of developing strategies to improve the outcome of androgen deprivation therapy. PMID:21386657
MicroRNA-548j functions as a metastasis promoter in human breast cancer by targeting Tensin1.
Zhan, Yun; Liang, Xiaoshuan; Li, Lin; Wang, Baona; Ding, Fang; Li, Yi; Wang, Xiang; Zhan, Qimin; Liu, Zhihua
2016-06-01
MicroRNAs (miRNAs) are single-stranded, small non-coding RNA molecules that participate in important biological processes. Although the functions of many miRNAs in breast cancer metastasis have been established, the role of others remains to be characterized. To identify additional miRNAs involved in metastasis, we performed a genetic screen by transducing a Lenti-miR™ virus library into MCF-7 cells. Using transwell invasion assays we identified human miR-548j as an invasion-inducing miRNA. The endogenous levels of miR-548j expression in breast cancer cell lines were shown to correlate with invasiveness. Moreover, miR-548j was shown to stimulate breast cancer cell invasion and metastasis in vitro and in vivo, but had no effect on proliferation. Next, using a series of in vitro and in vivo experiments, we found that Tensin1 served as a direct and functional target of miR-548j. Both miR-548j and Tensin1 modulated the activation of Cdc42 to regulate cell invasion and siCdc42 or the selective Cdc42 inhibitor ML141 suppressed the pathway of miR-548j-mediated cell invasion. Furthermore, a strong correlation between miR-548j, Tensin1, metastasis and survival was observed using two sets of clinical breast cancer samples. Our findings demonstrate that miR-548j functions as a metastasis-promoting miRNA to regulate breast cancer cell invasion and metastasis by targeting Tensin1 and activating Cdc42, suggesting a potential therapeutic application in breast cancer. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Stoor, Katri; Karvonen, Elina; Liinamaa, Johanna; Saarela, Ville
2017-11-30
The evaluation of visual acuity (VA) and refraction in the Northern Finland Birth Cohort Eye study was performed using the Nidek AR-360A autorefractometer. The accuracy of the method for this population-based screening study was assessed. Measurements of the refractive error were obtained from the right eyes of 1238 subjects (mean age 47), first objectively with the AR-360A and then subjectively by an optometrist. Agreement with the subjective refraction was calculated for sphere, cylinder, mean spherical equivalent (MSE), cylindrical vectors J 45 and J 0 and presbyopic correction (add). Visual acuity (VA) was measured using an ETDRS chart and the autorefractometer. The refractive error measured with the AR-360A was higher than the subjective refraction performed by the optometrist for sphere (0.007 D ± 0.24 D p = 0.30) and also for cylinder (-0.16 D ± 0.20 D p < 0.0005). The bias between the measurements of MSE, J 45 and J 0 was low: -0.07 D ± 0.22 D (p = 0.002), 0.01 D ± 0.43 D (p = 0.25) and -0.01 D ± 0.42 D (p = 0.43), respectively. The amount of add measured by the autorefractometer was higher than the subjective 0.35 D ± 0.29 D (p < 0.0005). There was a statistically significant correlation between VA (p < 0.0005) and the difference between the subjective and objective refraction. In 99.2% of the measurements, visual values were within one decimal line of each other. The Nidek AR-360A autorefractometer is an accurate tool for determining the refraction and VA in a clinical screening trial. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Functional significance of SPINK1 promoter variants in chronic pancreatitis.
Derikx, Monique H M; Geisz, Andrea; Kereszturi, Éva; Sahin-Tóth, Miklós
2015-05-01
Chronic pancreatitis is a progressive inflammatory disorder of the pancreas, which often develops as a result of genetic predisposition. Some of the most frequently identified risk factors affect the serine protease inhibitor Kazal type 1 (SPINK1) gene, which encodes a trypsin inhibitor responsible for protecting the pancreas from premature trypsinogen activation. Recent genetic and functional studies indicated that promoter variants in the SPINK1 gene might contribute to disease risk in carriers. Here, we investigated the functional effects of 17 SPINK1 promoter variants using luciferase reporter gene expression assay in four different cell lines, including three pancreatic acinar cell lines (rat AR42J with or without dexamethasone-induced differentiation and mouse 266-6) and human embryonic kidney 293T cells. We found that most variants caused relatively small changes in promoter activity. Surprisingly, however, we observed significant variations in the effects of the promoter variants in the different cell lines. Only four variants exhibited consistently reduced promoter activity in all acinar cell lines, confirming previous reports that variants c.-108G>T, c.-142T>C, and c.-147A>G are risk factors for chronic pancreatitis and identifying c.-52G>T as a novel risk variant. In contrast, variant c.-215G>A, which is linked with the disease-associated splice-site mutation c.194 + 2T>C, caused increased promoter activity, which may mitigate the overall effect of the pathogenic haplotype. Our study lends further support to the notion that sequence evaluation of the SPINK1 promoter region in patients with chronic pancreatitis is justified as part of the etiological investigation. Copyright © 2015 the American Physiological Society.
DeRita, Rachel M; Zerlanko, Brad; Singh, Amrita; Lu, Huimin; Iozzo, Renato V; Benovic, Jeffrey L; Languino, Lucia R
2017-01-01
It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (Src pY416 ) is co-expressed in Exo with phosphorylated FAK (FAK pY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, Src pY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rotationally inelastic collisions of He and Ar with NaK: Theory and Experiment
NASA Astrophysics Data System (ADS)
Richter, K.; Price, T.; Jones, J.; Faust, C.; Hickman, A. P.; Huennekens, J.; Malenda, R. F.; Ross, A. J.; Crozet, P.
2014-05-01
Rotationally inelastic collisions of NaK (A1Σ+) molecules with He and Ar have been studied. At Lehigh, we use a pump-probe scheme (the probe is scanned over transitions to the 31 Π state) with either polarization labeling (PL) or laser-induced fluorescence (LIF) spectroscopy. At Lyon, one-laser excitation is used with Fourier Transform (FT) fluorescence spectroscopy. In both cases, the pump laser excites a particular ro-vibrational level A1Σ+ (v , J). We observe strong direct lines corresponding to transitions from the (v , J) level pumped, and weak satellite lines corresponding to transitions from collisionally-populated levels (v ,J' = J + ΔJ). The ratios of satellite to direct line intensities in LIF and PL yield information about population and orientation transfer. A strong propensity for ΔJ = even transitions is observed for both He and Ar perturbers. In the FT fluorescence experiment we also observe v changing collisions. Theoretical calculations are also underway for collisions in both the A1Σ+ and X1Σ+ states. For He-NaK we have calculated potential surfaces using GAMESS and carried out coupled channel scattering calculations of transfer of population, orientation, and alignment. Work supported by NSF, XSEDE and CNRS (PICS).
Szafran, Adam T; Stephan, Cliff; Bolt, Michael; Mancini, Maureen G; Marcelli, Marco; Mancini, Michael A
2017-01-01
AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous-AR-V7-expressing prostate cancer cell lines and also overcame bicalutamide resistance observed in the 22RV1 cell line. SFKs, especially Src and Fyn, may be important upstream regulators of AR-V7 expression and represent promising targets in a subset of CRPCs expressing high levels of AR-V7. Prostate 77:82-93, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Wang, Kefeng; Sun, Yin; Tao, Wei; Fei, Xiang; Chang, Chawnshang
2017-05-28
Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi
2012-01-01
Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68+ macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic approach to battle BPH via targeting AR and AR-mediated inflammatory signaling pathways. PMID:22915828
Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi; Jin, Jie; Chang, Chawnshang
2012-10-01
Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68(+) macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic approach to battle BPH via targeting AR and AR-mediated inflammatory signaling pathways.
Santofimia-Castaño, Patricia; Salido, Gines M; Gonzalez, Antonio
2016-08-01
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is an antioxidant widely employed in cell physiology studies. It has been reported that it interferes with fura-2-derived fluorescence, making the employment of this dye nonviable. In this work, the interference of resveratrol with fura-2 determinations of intracellular free-Ca(2+) concentration ([Ca(2+)]c) was examined. Solutions containing different concentrations of resveratrol, with or without fura-2, in the presence or in the absence of Ca(2+), were analyzed by spectrofluorimetry. AR42J tumor cells were employed to study the influence of resveratrol on fura-2 fluorescence in living cells, by single cell fluorimetry. Resveratrol impaired the detection of fura-2-fluorescence emission (510 nm) at the 340, 360 and 380 nm excitation wavelengths. Resveratrol emitted fluorescence at 510 nm when lighted at all three excitation wavelengths. In addition, resveratrol emitted fluorescence at 380 nm when excited at 340 nm. Our observations suggest that the employment of the ratiometric properties of fura-2 to follow changes in [Ca(2+)]c in the presence of resveratrol is not viable. However, we think that the 380 nm excitation light could be employed. Results could be expressed as F0/F380, where F0 is the resting fluorescence and F380 is the value of fluoresce at a certain time point. We could follow changes in [Ca(2+)]c evoked by CCK-8, and we also detected Ca(2+) mobilization by 100 µM resveratrol in AR42J cells. This investigation presents evidence demonstrating that resveratrol interferes with fura-2 fluorescence spectra. Nevertheless, a chance still exists if the 380 nm excitation wavelength is employed in the middle or low micromolar concentrations of resveratrol.
SMILE upregulated by metformin inhibits the function of androgen receptor in prostate cancer cells.
Lee, Seung-Yon; Song, Chin-Hee; Xie, Yuan-Bin; Jung, Chaeyong; Choi, Hueng-Sik; Lee, Keesook
2014-11-28
Metformin, a diabetes drug, has been reported to inhibit the growth of prostate cancer cells. In this study, we investigated the effect and action mechanism of metformin on the function of androgen receptor (AR), a key molecule in the proliferation of prostate cancer cells. Metformin was found to reduce androgen-dependent cell growth and the expression of AR target genes by inhibiting AR function in prostate cancer cells such as LNCaP and C4-2 cells. Interestingly, metformin upregulated the protein level of small heterodimer partner-interacting leucine zipper (SMILE), a coregulator of nuclear receptors, and knockdown of SMILE expression with shRNA abolished the inhibitory effect of metformin on AR function. Further studies revealed that SMILE protein itself suppressed the transactivation of AR, and its ectopic expression resulted in the repressed expression of endogenous AR target genes, PSA and NKX3.1, in LNCaP cells. In addition, SMILE protein physically interacted with AR and competed with the AR coactivator SRC-1 to modulate AR transactivation. As expected, SMILE repressed androgen-dependent growth of LNCaP and C4-2 cells. Taken together, these results suggest that SMILE, which is induced by metformin, functions as a novel AR corepressor and may mediate the inhibitory effect of metformin on androgen-dependent growth of prostate cancer cells. Copyright © 2014. Published by Elsevier Ireland Ltd.
Enhanced tubuloglomerular feedback in mice with vascular overexpression of A1 adenosine receptors
Oppermann, Mona; Qin, Yan; Lai, En Yin; Eisner, Christoph; Li, Lingli; Huang, Yuning; Mizel, Diane; Fryc, Justyna; Wilcox, Christopher S.; Briggs, Josephine; Schnermann, Jurgen
2009-01-01
Adenosine 1 receptors (A1AR) in the kidney are expressed in the vasculature and the tubular system. Pharmacological inhibition or global genetic deletion of A1AR causes marked reductions or abolishment of tubuloglomerular feedback (TGF) responses. To assess the function of vascular A1AR in TGF, we generated transgenic mouse lines in which A1AR expression in smooth muscle was augmented by placing A1AR under the control of a 5.38-kb fragment of the rat smooth muscle α-actin promoter and first intron (12). Two founder lines with highest expression in the kidney [353 ± 42 and 575 ± 43% compared with the wild type (WT)] were used in the experiments. Enhanced expression of A1AR at the expected site in these lines was confirmed by augmented constrictor responses of isolated afferent arterioles to administration of the A1AR agonist N6-cyclohexyladenosine. Maximum TGF responses (0–30 nl/min flow step) were increased from 8.4 ± 0.9 mmHg in WT (n = 21) to 14.2 ± 0.7 mmHg in A1AR-transgene (tg) 4 (n = 22; P < 0.0001), and to 12.6 ± 1.2 mmHg in A1AR-tg7 (n = 12; P < 0.02). Stepwise changes in perfusion flow caused greater numerical TGF responses in A1AR-tg than WT in all flow ranges with differences reaching levels of significance in the intermediate flow ranges of 7.5–10 and 10–15 nl/min. Proximal-distal single-nephron glomerular filtration rate (SNGFR) differences (free-flow micropuncture) were also increased in A1AR-tg, averaging 6.25 ± 1.5 nl/min compared with 2.6 ± 0.51 nl/min in WT (P = 0.034). Basal plasma renin concentrations as well as the suppression of renin secretion after volume expansion were similar in A1AR-tg and WT mice, suggesting lack of transgene expression in juxtaglomerular cells. These data indicate that A1AR expression in vascular smooth muscle cells is a critical component for TGF signaling and that changes in renal vascular A1AR expression may determine the magnitude of TGF responses. PMID:19741017
Wen, Simeng; Chang, Hong-Chiang; Tian, Jing; Shang, Zhiqun; Niu, Yuanjie; Chang, Chawnshang
2015-02-01
The prostate is an androgen-sensitive organ that needs proper androgen/androgen receptor (AR) signals for normal development. The progression of prostate diseases, including benign prostate hyperplasia (BPH) and prostate cancer (PCa), also needs proper androgen/AR signals. Tissue recombination studies report that stromal, but not epithelial, AR plays more critical roles via the mesenchymal-epithelial interactions to influence the early process of prostate development. However, in BPH and PCa, much more attention has been focused on epithelial AR roles. However, accumulating evidence indicates that stromal AR is also irreplaceable and plays critical roles in prostate disease progression. Herein, we summarize the roles of stromal AR in the development of normal prostate, BPH, and PCa, with evidence from the recent results of in vitro cell line studies, tissue recombination experiments, and AR knockout animal models. Current evidence suggests that stromal AR may play positive roles to promote BPH and PCa progression, and targeting stromal AR selectively with AR degradation enhancer, ASC-J9, may allow development of better therapies with fewer adverse effects to battle BPH and PCa. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Ubiquitous Argonium, ArH^+, in the Diffuse Interstellar Medium
NASA Astrophysics Data System (ADS)
Schilke, P.; Müller, Holger S. P.; Comito, C.; Sanchez-Monge, A.; Neufeld, D. A.; Indriolo, Nick; Bergin, Edwin; Lis, D. C.; Gerin, Maryvonne; Black, J. H.; Wolfire, M. G.; Pearson, John; Menten, Karl; Winkel, B.
2014-06-01
ArH^+ is isoelectronic with HCl. The J = 1 - 0 and 2 - 1 transitions of 36ArH^+ near 617.5 and 1234.6 GHz, respectively, have been identified very recently as emission lines in spectra obtained with Herschel toward the Crab Nebula supernova remnant. On Earth, 40Ar is by far the most abundant isotope, being almost exclusively formed by the radioactive decay of 40K. However, 36Ar is the dominant isotope in the Universe. In the course of unbiased line surveys of the massive and very luminous Galactic Center star-forming regions Sagittarius B2(M) and (N) with the high-resolution instrument HIFI on board of Herschel, we detected the J = 1 - 0 transition of 36ArH^+ as a moderately strong absorption line initially associated with an unidentified carrier. In both cases, the absorption feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the denser sources themselves. Model calculations are able to reproduce the derived ArH^+ column densities and suggest that argonium resides in the largely atomic, diffuse interstellar medium with a molecular fraction of no more than ˜10-4. The 38ArH^+ isotopolog was also detected. Subsequent observations toward the continuum sources W51, W49, W31C, and G34.3+0.1 resulted in unequivocal detections of 36ArH^+ absorption. Hence, argonium is a good probe of the transition zone between atomic and molecular gas, in particular in combination with OH^+ and H_2O^+, whose abundances peak at a molecular fraction of ˜0.1. Moreover, argonium is a good indicator of an enhanced cosmic ray ionization rate. Therefore, it may be prominent toward, e.g., active galactic nuclei (AGNs) in addition to supernova remnants. M. J. Barlow et al., Science 342 (2013) 1343. H. S. P. Müller et al., Proceedings of the IAU Symposium 297, 2013, "The Diffuse Interstellar Bands", Eds. J. Cami & N. Cox.
Cho, Yuichiro; Horiuchi, Misa; Shibasaki, Kazuo; Kameda, Shingo; Sugita, Seiji
2017-08-01
In situ radiogenic isotope measurements to obtain the absolute age of geologic events on planets are of great scientific value. In particular, K-Ar isochrons are useful because of their relatively high technical readiness and high accuracy. Because this isochron method involves spot-by-spot K measurements using laser-induced breakdown spectroscopy (LIBS) and simultaneous Ar measurements with mass spectrometry, LIBS measurements are conducted under a high vacuum condition in which emission intensity decreases significantly. Furthermore, using a laser power used in previous planetary missions is preferable to examine the technical feasibility of this approach. However, there have been few LIBS measurements for K under such conditions. In this study, we measured K contents in rock samples using 30 mJ and 15 mJ energy lasers under a vacuum condition (10 -3 Pa) to assess the feasibility of in situ K-Ar dating with lasers comparable to those used in NASA's Curiosity and Mars 2020 missions. We obtained various calibration curves for K using internal normalization with the oxygen line at 777 nm and continuum emission from the laser-induced plasma. Experimental results indicate that when K 2 O < 1.1 wt%, a calibration curve using the intensity of the K emission line at 769 nm normalized with that of the oxygen line yields the best results for the 30 mJ laser energy, with a detection limit of 88 ppm and 20% of error at 2400 ppm of K 2 O. Futhermore, the calibration curve based on the K 769 nm line intensity normalized with continuum emission yielded the best result for the 15 mJ laser, giving a detection limit of 140 ppm and 20% error at 3400 ppm K 2 O. Error assessments using obtained calibration models indicate that a 4 Ga rock with 3000 ppm K 2 O would be measured with 8% (30 mJ) and 10% (15 mJ) of precision in age when combined with mass spectrometry of 40 Ar with 10% of uncertainty. These results strongly suggest that high precision in situ isochron K-Ar dating is feasible with a laser used in previous and upcoming Mars rover missions.
Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C.; Wong, Kwong-Kwok; Bao, Wei
2015-01-01
Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity. PMID:26397136
Thomas-Jardin, Shayna E; Kanchwala, Mohammed S; Jacob, Joan; Merchant, Sana; Meade, Rachel K; Gahnim, Nagham M; Nawas, Afshan F; Xing, Chao; Delk, Nikki A
2018-06-01
In immunosurveillance, bone-derived immune cells infiltrate the tumor and secrete inflammatory cytokines to destroy cancer cells. However, cancer cells have evolved mechanisms to usurp inflammatory cytokines to promote tumor progression. In particular, the inflammatory cytokine, interleukin-1 (IL-1), is elevated in prostate cancer (PCa) patient tissue and serum, and promotes PCa bone metastasis. IL-1 also represses androgen receptor (AR) accumulation and activity in PCa cells, yet the cells remain viable and tumorigenic; suggesting that IL-1 may also contribute to AR-targeted therapy resistance. Furthermore, IL-1 and AR protein levels negatively correlate in PCa tumor cells. Taken together, we hypothesize that IL-1 reprograms AR positive (AR + ) PCa cells into AR negative (AR - ) PCa cells that co-opt IL-1 signaling to ensure AR-independent survival and tumor progression in the inflammatory tumor microenvironment. LNCaP and PC3 PCa cells were treated with IL-1β or HS-5 bone marrow stromal cell (BMSC) conditioned medium and analyzed by RNA sequencing and RT-QPCR. To verify genes identified by RNA sequencing, LNCaP, MDA-PCa-2b, PC3, and DU145 PCa cell lines were treated with the IL-1 family members, IL-1α or IL-1β, or exposed to HS-5 BMSC in the presence or absence of Interleukin-1 Receptor Antagonist (IL-1RA). Treated cells were analyzed by western blot and/or RT-QPCR. Comparative analysis of sequencing data from the AR + LNCaP PCa cell line versus the AR - PC3 PCa cell line reveals an IL-1-conferred gene suite in LNCaP cells that is constitutive in PC3 cells. Bioinformatics analysis of the IL-1 regulated gene suite revealed that inflammatory and immune response pathways are primarily elicited; likely facilitating PCa cell survival and tumorigenicity in an inflammatory tumor microenvironment. Our data supports that IL-1 reprograms AR + PCa cells to mimic AR - PCa gene expression patterns that favor AR-targeted treatment resistance and cell survival. © 2018 Wiley Periodicals, Inc.
The Research of Acellular pancreatic bioscaffoldas a natural 3D platform In Vitro
NASA Astrophysics Data System (ADS)
Wang, Xin; Li, Zhao
2018-03-01
AIM: To investigate the biochemical and functional properties of a rat acellular pancreatic bioscaffold (APB). METHODS: Fresh pancreata were soaked and perfused. The histological structure, the extracellular matrix (ECM) composition, and the DNA content of the APBs were evaluated. After biocompatibility studies, the proliferation, apoptosis and differentiation of AR42J pancreatic acinar cells cultured on APBs were assessed. RESULTS: The pancreatic tissues became translucent after decellularization. The native macroscopic 3D architecture and the ECM ultrastructure were preserved, with large ductal structures and vascular tissue branching from the greater pancreatic artery, but there were no visible vascular endothelial cells, cellular components or cracked cellular debris. The ECM components, including collagen I, collagen IV, fibronectin, laminin and sGAG, were not decreased after decellularization of the APB (P>0.05) however, the DNA content was decreased significantly (P<0.05). The subcutaneous implantation sites showed low immunological response and low cytotoxicity around the APB. The proliferation rate was higher and the apoptosis rate was lower when AR42J cells were cultured on APB than when they were cultured in media alone, on artificial scaffold or ECM (P<0.05). The gene expression of pancreatic duodenal homeodomain containing transcription factor (PDX-1) and pancreatic exocrine transcription factor (PTF-1) and the protein expression of α-Amy, cytokeratin 7 (CK7) and fetal liver kinase-1 (Flk-1) were higher for the APB group than for the other groups (P<0.001). CONCLUSION: Our findings support the biological utility of whole pancreas APBs as biomaterial scaffolds, which provides an improved approach for regenerative medicine.
Ratcliffe, S. L.; Matthews, E. K.
1995-01-01
We have shown that addition of exogenous delta-aminolaevulinic acid (ALA) to rat pancreatoma AR4-2J cells in culture leads to the increased production of porphobilinogen (PBG) and the accumulation of photoactive protoporphyrin IX (PPix) in these cells. Exposure to light (lambda > 400 nm) at an intensity of 0.2 mW cm-2 for 8 min resulted in an ALA dose-dependent cytolysis of the cells, with an EC50 of 6.6 +/- 0.7 microM. This cytolytic effect was light intensity dependent, with greater cell destruction after exposure to light at an intensity of 0.47 mW cm-2 than at 0.2 mW cm-2; it was also dependent on the duration of illumination, cell survival decreasing with increasing illumination times. The photodestruction of the AR4-2J cells following exposure to ALA can be attributed to the production of endogenous PPix, a photoactive porphyrin that we have shown to generate singlet oxygen upon illumination, whereas ALA itself does not. Further investigation of the molecular mechanisms underlying the photodynamic action of ALA demonstrated the involvement of the mitochondrial (peripheral) benzodiazepine receptor (MBR), a high-affinity recognition site for dicarboxylic porphyrins, and especially PPix. The centrally acting benzodiazepine compounds clonazepam and flumazenil, which have negligible affinities for the MBR, had no effect on ALA-mediated phototoxicity. In contrast, both the isoquinoline carboxamide PK11195 and the benzodiazepine Ro 5-4864 ligands, displaying a high affinity for the MBR, did affect ALA-mediated phototoxicity, each markedly increasing the EC50 for cell photodestruction and thus exerting a photoprotective effect. It is concluded that the MBR may play an important role in the expression of ALA-mediated PPix phototoxicity and that MBR ligands, by diminishing the actions of endogenous PPix, have the potential to rescue cells from porphyrin-induced photolysis. PMID:7841044
Exocrine pancreas ER stress is differentially induced by different fatty acids.
Danino, Hila; Ben-Dror, Karin; Birk, Ruth
2015-12-10
Exocrine pancreas acinar cells have a highly developed endoplasmic reticulum (ER), accommodating their high protein production rate. Overload of dietary fat (typical to obesity) is a recognized risk factor in pancreatitis and pancreatic cancer. Dietary fat, especially saturated fat, has been suggested by others and us to induce an acinar lipotoxic effect. The effect of different dietary fatty acids on the ER stress response is unknown. We studied the effect of acute (24h) challenge with different fatty acids (saturated, mono and poly-unsaturated) at different concentrations (between 200 and 500µM, typical to normal and obese states, respectively), testing fat accumulation, ER stress indicators, X-box binding protein 1 (Xbp1) splicing and nuclear translocation, as well as unfolded protein response (UPR) transcripts and protein levels using exocrine pancreas acinar AR42J and primary cells. Acute exposure of AR42J cells to different fatty acids caused increased accumulation of triglycerides, dependent on the type of fat. Different FAs had different effects on ER stress: most notably, saturated palmitic acid significantly affected the UPR response, as demonstrated by altered Xbp1 splicing, elevation in transcript levels of UPR (Xbp, CHOP, Bip) and immune factors (Tnfα, Tgfβ), and enhanced Xbp1 protein levels and Xbp1 time-dependent nuclear translocation. Poly-unsaturated FAs caused milder elevation of ER stress markers, while mono-unsaturated oleic acid attenuated the ER stress response. Thus, various fatty acids differentially affect acinar cell fat accumulation and, apart from oleic acid, induce ER stress. The differential effect of the various fatty acids could have potential nutritional and therapeutic implications. Copyright © 2015 Elsevier Inc. All rights reserved.
Guo, Liang; Lichten, Louis A.; Ryu, Moon-Suhn; Liuzzi, Juan P.; Wang, Fudi; Cousins, Robert J.
2010-01-01
The exocrine pancreas plays an important role in endogenous zinc loss by regulating excretion into the intestinal tract and hence influences the dietary zinc requirement. The present experiments show that the zinc transporter ZnT2 (Slc30a2) is localized to the zymogen granules and that dietary zinc restriction in mice decreased the zinc concentration of zymogen granules and ZnT2 expression. Excess zinc given orally increased ZnT2 expression and was associated with increased pancreatic zinc accumulation. Rat AR42J acinar cells when induced into a secretory phenotype, using the glucocorticoid analog dexamethasone (DEX), exhibited increased ZnT2 expression and labile zinc as measured with a fluorophore. DEX administrated to mice also induced ZnT2 expression that accompanied a reduction of the pancreatic zinc content. ZnT2 promoter analyses identified elements required for responsiveness to zinc and DEX. Zinc regulation was traced to a MRE located downstream from the ZnT2 transcription start site. Responsiveness to DEX is produced by two upstream STAT5 binding sites that require the glucocorticoid receptor for activation. ZnT2 knockdown in the AR42J cells using siRNA resulted in increased cytoplasmic zinc and decreased zymogen granule zinc that further demonstrated that ZnT2 may mediate the sequestration of zinc into zymogen granules. We conclude, based upon experiments with intact mice and pancreatic acinar cells in culture, that ZnT2 participates in zinc transport into pancreatic zymogen granules through a glucocorticoid pathway requiring glucocorticoid receptor and STAT5, and zinc-regulated signaling pathways requiring MTF-1. The ZnT2 transporter appears to function in a physiologically responsive manner involving entero-pancreatic zinc trafficking. PMID:20133611
Waterborne Transportation Lines of the United States 1987
1988-10-01
CASEY CO. o0. 0x 141% II PXTTS9LIRSA PA 15130 I I 071 CASHOI R. J. MARINE TOI G III POSCVOO0 DRIVE 1 1 NEWARK DE 18713 42! CASTLE C COOKE, SNC. V. 0. 20...34ASHVILLE TN 17207 A71 CNESAPEAKE 3AR6( 1 100 VCST IOTH STREET I VILKINGTON DE 19fO1 11 III CHESAPEAKE CORPORATION Of I P. 0. e00 311 1 VIP&INIA I WEST...MARTN ROAD I WATfPLOO 1A 50701 07! COPPORATION THUST CENTER 1,09 ORANGE ST. I YILMINSTON DE 1901 33! COPPUS CHRIST1 MARINE $SEVTCS .2. Cox 9370 1 CO
Human MUC1 Oncoprotein is of Functional Importance to the Development of Prostate Cancer
2009-03-01
immunoblotted with the indicated antibodies . B. Lysates from PC3- neo and PC3-AR cells were imunoblotted with the indicated antibodies ...with the indicated antibodies (right panels). D. DU145 cells were treated with 5 µM GO-201 or CP-1 each day for 3 d. Anti-AR immunoprecipitates were...Sci. USA, 2004. 101(3): p. 811-6. 2. Cozzi, P.J., J. Wang, W. Delprado, A.C. Perkins, B.J. Allen, P.J. Russell, and Y. Li, MUC1, MUC2, MUC4 , MUC5AC
Rotationally inelastic collisions of He and Ar with NaK: Theory and Experiment
NASA Astrophysics Data System (ADS)
Price, T. J.; Towne, A. C.; Richter, K.; Jones, J.; Hickman, A. P.; Huennekens, J.; Faust, C.; Malenda, R. F.; Ross, A. J.; Crozet, P.; Talbi, D.; Forrey, R. C.
2016-05-01
Rotationally inelastic thermal collisions of NaK A1Σ+ molecules with He and Ar have been studied at Lehigh and Lyon. In both laboratories, a pump laser excites a particular ro-vibrational level A1Σ+ (v , J). Strong transitions from the pumped (v , J) level and weaker transitions from collisionally-populated levels (v ,J' = J + ΔJ) occur. Ratios of line intensities yield information about population and orientation transfer. At Lyon, we also identify v changing collisions. A strong propensity for ΔJ = even transitions is observed for He and Ar. Theoretical calculations are underway; we've calculated He-NaK and Ar-NaK potential surfaces using GAMESS and performed coupled channel scattering calculations for JM -->J'M' transitions. Semiclassical formulas for the cross sections have been obtained and agree well with our quantum mechanical calculations. Using the vector model, where J precesses with polar angle θ about the z-axis, we derived the distribution of final polar angles θ' and final M' states. We identify a special case where the θ' distribution is a Lorentzian centered at θ. Work supported by NSF, XSEDE and CNRS (PICS).
Collision-Induced Spectra: AN Avenue to Investigate Microscopic-Scale Diffusion in Fluids
NASA Astrophysics Data System (ADS)
Herrebout, Wouter A.; van der Veken, Benjamin J.; Kouzov, Alexander
2014-06-01
New data on the IR spectra induced by intermolecular interactions in liquid cryogenic mixtures at T=89 K (O2 in LAr and LN2 and binary O2-Ar solutions in LN2) are reported. The induced fundamental bands appear as diffuse pedestals (with FWHH≈100 cm-1) on which weak, paradoxically sharp lines (FWHH≈2 cm-1) develop at the 2326 and 1552 cm-1 frequencies of the free-molecule vibrational transitions in N2 and O2, respectively. In LAr and LN2 these lines were carefully separated and studied at varied O2 concentrations up to c=0.23 mole fractions (mf). While the 1552 cm-1 line scales as c[O2]2 and thus is induced by the O2-O2 interactions in a bulk of cryosolvent (Ar, N2), the 2326 cm-1 feature varies linearly with c[O2] and hence is caused by interaction of a guest (O2) with a vibrating host (N_2). The impurity induction mechanism was further supported by our data on the binary O2-Ar solutions in LN2 %for which the spectra were recorded at the fixed c[O2] (0.03 and 0.06 mf) and the varied c% [Ar]≤0.2 mf. Both series revealed the same (linear) enhancement of the sharp N2 line by argon, in an accord with our previous studies of the Ar-LN2 system. The results suggest that the resonance 2326 cm-1 feature is primarily due to the local distortion of the first coordination sphere around a vibrating N_2 by a guest molecule. We also notice that the resonance lines should be due to the dispersion- and overlap-induced dipole moments independent on the rotational degrees of freedom. As our previous studies of the H2-LNe system showed, the unusual line sharpness is a conspicuous manifestation of the relative solvent-solute and solute-solute translations dramatically retarded in a liquid by a fast velocity relaxation, an effect directly related to the microscopic-scale diffusion. The collision-induced spectra thus open up new vistas for studies of microscopic liquid dynamics. W.A. Herrebout, A.A. Stolov, E.J. Sluyts, and B.J. van der Veken, Chem. Phys. Lett. 295, 223 (1998) J.E. Bohr and K.L.C. Hunt, J. Chem. Phys. 86, 5441 (1987) W. A. Herrebout, B. J. van der Veken, and A. P. Kouzov, Phys.Rev. Lett. 101, 093001 (2008) W. A. Herrebout, B. J. van der Veken, and A. P. Kouzov, J. Chem. Phys. 137, 084509 (2012)
Guedes, Liana B.; Morais, Carlos L.; Almutairi, Fawaz; Haffner, Michael C.; Zheng, Qizhi; Isaacs, John T.; Antonarakis, Emmanuel S.; Lu, Changxue; Tsai, Harrison; Luo, Jun; De Marzo, Angelo M.; Lotan, Tamara L.
2016-01-01
Purpose RNA expression of androgen receptor splice variants may be a biomarker of resistance to novel androgen deprivation therapies in castrate resistant prostate cancer (CRPC). We analytically validated an RNA in situ hybridization (RISH) assay for total AR and AR-V7 for use in formalin fixed paraffin embedded (FFPE) prostate tumors. Experimental Design We used prostate cell lines and xenografts to validate chromogenic RISH to detect RNA containing AR exon 1 (AR-E1, surrogate for total AR RNA species) and cryptic exon 3 (AR-CE3, surrogate for AR-V7 expression). RISH signals were quantified in FFPE primary tumors and CRPC specimens, comparing to known AR and AR-V7 status by immunohistochemistry and RT-PCR. Results The quantified RISH results correlated significantly with total AR and AR-V7 levels by RT-PCR in cell lines, xenografts and autopsy metastases. Both AR-E1 and AR-CE3 RISH signals were localized in nuclear punctae in addition to the expected cytoplasmic speckles. Compared to admixed benign glands, AR-E1 expression was significantly higher in primary tumor cells with a median fold increase of 3.0 and 1.4 in two independent cohorts (p<0.0001 and p=0.04, respectively). While AR-CE3 expression was detectable in primary prostatic tumors, levels were substantially higher in a subset of CRPC metastases and cell lines, and were correlated with AR-E1 expression. Conclusions RISH for AR-E1 and AR-CE3 is an analytically valid method to examine total AR and AR-V7 RNA levels in FFPE tissues. Future clinical validation studies are required to determine whether AR RISH is a prognostic or predictive biomarker in specific clinical contexts. PMID:27166397
Ponnusamy, Sudha; Haldar, Saikat; Mulani, Fayaj; Zinjarde, Smita; Thulasiram, Hirekodathakallu; RaviKumar, Ameeta
2015-01-01
Human pancreatic α-amylase (HPA) inhibitors offer an effective strategy to lower postprandial hyperglycemia via control of starch breakdown. Limonoids from Azadirachta indica known for their therapeutic potential were screened for pancreatic α-amylase inhibition, a known anti-diabetic target. Studies were carried out to reveal their mode of action so as to justify their hypoglycemic potential. Of the nine limonoids isolated/semi-synthesized from A.indica and screened for α-amylase inhibition, azadiradione and exhibited potential inhibition with an IC50 value of 74.17 and 68.38 μM, respectively against HPA under in vitro conditions. Further screening on AR42J α-amylase secretory cell line for cytotoxicity and bioactivity revealed that azadiradione and gedunin exhibited cytotoxicity with IC50 of 11.1 and 13.4μM. Maximal secreted α-amylase inhibition of 41.8% and 53.4% was seen at 3.5 and 3.3μM, respectively. Michaelis-Menten kinetics suggested a mixed mode of inhibition with maltopentaose (Ki 42.2, 18.6 μM) and starch (Ki' 75.8, 37.4 μM) as substrate with a stiochiometry of 1:1 for both azadiradione and gedunin, respectively. The molecular docking simulation indicated plausible π-alkyl and alkyl-alkyl interactions between the aromatic amino acids and inhibitors. Fluorescence and CD confirmed the involvement of tryptophan and tyrosine in ligand binding to HPA. Thermodynamic parameters suggested that binding is enthalpically and entropically driven with ΔG° of -21.25 kJ mol-1 and -21.16 kJ mol-1 for azadiradione and gedunin, respectively. Thus, the limonoids azadiradione and gedunin could bind and inactivate HPA (anti-diabetic target) and may prove to be lead drug candidates to reduce/control post-prandial hyperglycemia.
Paliouras, Miltiadis; Diamandis, Eleftherios P
2008-06-01
The androgen receptor (AR) plays an important role in early prostate cancer by activating transcription of a number of genes participating in cell proliferation and growth and cancer progression. However, as the cancer progresses, prostate cancer cells transform from an androgen-dependent to an androgen-independent state. Androgen-independent prostate cancer can manifest itself in several forms, including a percentage of cancers that show reduced levels of prostate-specific antigen (PSA) and can progress without the need for the ligand or active receptor. Therefore, our goal was to examine the role of intracellular signaling pathways in an androgen-independent prostate cancer in vitro model. Using the cell line PC3(AR)(2), we stimulated cells with 5-alpha-dihydrotestosterone (DHT) and epidermal growth factor (EGF) and then analyzed PSA expression. We observed lower PSA expression when cells were jointly stimulated with DHT and EGF, and this was associated with an increase in AKT activity. We examined the role of AKT in AR activity and PSA expression by creating stable PC3(AR)(2) cell lines transfected with a PI3K-Ras-effector loop mutant. These cell lines showed lower DHT-stimulated PSA expression that correlated to changes in the phosphorylated state of AR. Therefore, we propose an in vitro androgen-independent model in which a PI3K/AKT activity threshold and subsequent AR transactivation regulate PSA expression.
Hoshino, Keita; Isawa, Haruhiko; Kuwata, Ryusei; Tajima, Shigeru; Takasaki, Tomohiko; Iwabuchi, Kikuo; Sawabe, Kyoko; Kobayashi, Mutsuo; Sasaki, Toshinori
2015-08-01
Armigeres subalbatus (Coquillett) is a medically important mosquito and a model species for immunology research. We successfully established two cell lines from the neonate larvae of A. subalbatus using two different media. To our knowledge, this is the first report of an established Armigeres mosquito cell line. The cell lines, designated as Ar-3 and Ar-13, consist of adherent and diploid cells with compact colonies. Both these cell lines grow slowly after passage at a split ratio of 1:5 and a population doubling time of 2.7 and 3.0 d, respectively. Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) was used to confirm that these lines correspond to the species of origin and are clearly distinct from seven other insect cell lines. Furthermore, reverse-transcription PCR was used to demonstrate that the Ar-3 cell line is susceptible to the Japanese encephalitis virus and two insect flaviviruses associated with Culex and Aedes mosquitoes but relatively insensitive to dengue virus. These data indicate that the newly established cell lines are cellular models of A. subalbatus as well as beneficial tools for the propagation of viruses associated with the Armigeres mosquito.
Ghotbaddini, Maryam; Powell, Joann B
2015-07-06
The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.
Karacosta, Loukia G; Kuroski, Laura A; Hofmann, Wilma A; Azabdaftari, Gissou; Mastri, Michalis; Gocher, Angela M; Dai, Shuhang; Hoste, Allen J; Edelman, Arthur M
2016-02-15
Re-activation of the transcriptional activity of the androgen receptor (AR) is an important factor mediating progression from androgen-responsive to castrate-resistant prostate cancer (CRPC). However, the mechanisms regulating AR activity in CRPC remain incompletely understood. Ca(2+) /calmodulin-dependent kinase kinase (CaMKK) 2 was previously shown to regulate AR activity in androgen-responsive prostate cancer cells. Our objective was to further explore the basis of this regulation in CRPC cells. The abundance of CaMKK2 in nuclear fractions of androgen-responsive prostate cancer and CRPC, cells were determined by subcellular fractionation and Western blotting. CaMKK2 association with nuclear pore complexes (NPCs) and nucleoporins (Nups) including Nup62, were imaged by structured illumination and super-resolution fluorescence microscopy and co-immunoprecipitation, respectively. The abundance and subcellular localization of CaMKK2 and Nup62 in human clinical specimens of prostate cancer was visualized by immunohistochemistry. The role of Nups in the growth and viability of CRPC cells was assessed by RNA interference and cell counting. The involvement of CaMKK2 and Nup62 in regulating AR transcriptional activity was addressed by RNA interference, chromatin immunoprecipitation, androgen response element reporter assay, and Western blotting. CaMKK2 was expressed at higher levels in the nuclear fraction of CPRC C4-2 cells, than in that of androgen-responsive LNCaP cells. In C4-2 cells, CaMKK2 associated with NPCs of the nuclear envelope and physically interacted with Nup62. CaMKK2 and Nup62 demonstrated pronounced, and similar increases in both expression and perinuclear/nuclear localization in human clinical specimens of advanced prostate cancer relative to normal prostate. Knockdown of Nup62, but not of Nups, 98 or 88, reduced growth and viability of C4-2 cells. Knockdown of Nup62 produced a greater reduction of the growth and viability of C4-2 cells than of non-neoplastic RWPE-1 prostatic cells. Nup62, CaMKK2, and the AR were recruited to androgen response elements of the AR target genes, prostate specific antigen, and transmembrane protease, serine 2. Knockdown of CaMKK2 and Nup62 reduced prostate specific antigen expression and AR transcriptional activity driven by androgen response elements from the prostate-specific probasin gene promoter. Nup62 and CaMKK2 are required for optimal AR transcriptional activity and a potential mechanism for AR re-activation in CRPC. © 2015 Wiley Periodicals, Inc.
Chhipa, Rishi Raj; Halim, Danny; Cheng, Jinrong; Zhang, Huan Yi; Mohler, James L.; Ip, Clement; Wu, Yue
2014-01-01
BACKGROUND Finasteride and dutasteride were developed originally as 5α-reductase inhibitors to block the conversion of testosterone to dihydrotestosterone (DHT). These drugs may possess off-target effects on the androgen receptor (AR) due to their structural similarity to DHT. METHODS A total of 4 human prostate cancer cell models were examined: LNCaP (T877A mutant AR), 22Rv1 (H874Y mutant AR), LAPC4 (wild type AR) and VCaP (wild type AR). Cells were cultured in 10% charcoal-stripped fetal bovine serum, either with or without DHT added to the medium. AR activity was evaluated using the ARE-luciferase assay or the expression of AR regulated genes. RESULTS Dutasteride was more potent than finasteride in interfering with DHT-stimulated AR signaling. Disruption of AR function was accompanied by decreased cell growth. Cells that rely on DHT for protection against death were particularly vulnerable to dutasteride. Different prostate cancer cell models exhibited different sensitivities to dutasteride and finasteride. LNCaP was most sensitive, LAPC4 and VCaP were intermediate, while 22Rv1 was least sensitive. Regardless of the AR genotype, if AR was transfected into drug-sensitive cells, AR was inhibited by drug treatment; and if AR was transfected into drug-resistant cells, AR was not inhibited. CONCLUSIONS The direct inhibitory effect of dutasteride or finasteride on AR signaling is cell line specific. Mutations in the ligand binding domain of AR do not appear to play a significant role in influencing the AR antagonistic effect of these drugs. Subcellular constituent is an important factor in determining the drug effect on AR function. PMID:23813737
Azariadis, Kalliopi; Kiagiadaki, Fotini; Pelekanou, Vasiliki; Bempi, Vasiliki; Alexakis, Kostas; Kampa, Marilena; Tsapis, Andreas; Castanas, Elias; Notas, George
2017-01-01
Reports regarding the role of androgen in breast cancer (BC) are conflicting. Some studies suggest that androgen could lead to undesirable responses in the presence of certain BC tumor characteristics. We have shown that androgen induces C-X-C motif chemokine 12 (CXCL12) in BC cell lines. Our aim was to identify the mechanisms regulating the phenotypic effects of androgen-induced CXCL12 on Androgen Receptor (AR) positive BC cell lines. We analyzed the expression of CXCL12 and its receptors with qPCR and ELISA and the role of Nuclear Receptor Coactivator 1 (NCOA1) in this effect. AR effects on the CXCL12 promoter was studied via Chromatin-immunoprecipitation. We also analyzed publically available data from The Cancer Genome Atlas to verify AR-CXCL12 interactions and to identify the effect or Aromatase Inhibitors (AI) therapy on CXCL12 expression and disease progression in AR positive cases. CXCL12 induction occurs only in AR-positive BC cell lines, possibly via an Androgen Response Element, upstream of the CXCL12 promoter. The steroid receptor co-regulator NCOA1 is critical for this effect. Androgen only induced the motility of p53-mutant BC cells T47D cells via upregulation of CXCR4 expression while they had no effect on wild-type p53 MCF-7 cells. Loss of CXCR4 expression and depletion of CXCL12 abolished the effect of androgen in T47D cells while inhibition of p53 expression in MCF-7 cells made them responsive to androgen and increased their motility in the presence to androgen. Patients with estrogen receptor positive (ER+)/AR+ BC treated with AIs were at increased risk of disease progression compared to ER+/AR+ non-AI treated and ER+/AR- AI treated cases. AIs may lead to unfavorable responses in some ER/AR positive BC cases, especially in patients with AR+, p53 mutant tumors. © 2017 The Author(s). Published by S. Karger AG, Basel.
U.S. EPA, Pesticide Product Label, BUDMOR 42, 11/28/1983
2011-04-14
... I.";tr 1 .. : .. 1 (,:.J \\!'.: of l..'(' tut !'Ia',; U.!\\ ,, tr r.·,: til r l-:f.tf .... 11. •• ~7 o! Ll:crt1 .• ·:lt ... t:r tt h~Lf\\\\ fl.l .. P&fU' c'.::ar ~..;rp;;.~f' rlortl.!cj tr Imo:.fJ (,ttl.tl. ...
Li, Xiaohang; Wang, Xin; Zhou, Yue; Yang, Wenjuan; Chen, Ming; Zhao, Jian; Pei, Gang
2016-01-01
γ-secretase mediates the intramembranous proteolysis of amyloid precursor protein (APP) and determines the generation of Aβ which is associated with Alzheimer’s disease (AD). Here we identified that an anti-Parkinson’s disease drug, Istradefylline, could enhance Aβ generation in various cell lines and primary neuronal cells of APP/PS1 mouse. Moreover, the increased generation of Aβ42 was detected in the cortex of APP/PS1 mouse after chronic treatment with Istradefylline. Istradefylline promoted the activity of γ-secretase which could lead to increased Aβ production. These effects of Istradefylline were reduced by the knockdown of A2AR but independent of A2AR-mediated G protein- or β-arrestin-dependent signal pathway. We further observed that A2AR colocalized with γ-secretase in endosomes and physically interacted with the catalytic subunit presenilin-1 (PS1). Interestingly, Istradefylline attenuated the interaction in time- and dosage-dependent manners. Moreover the knockdown of A2AR which in theory would release PS1 potentiated both Aβ generation and γ-secretase activity. Thus, our study implies that the association of A2AR could modulate γ-secretase activity. Istradefylline enhance Aβ generation and γ-secretase activity possibly via modulating the interaction between A2AR and γ-secretase, which may bring some undesired effects in the central nervous system (CNS). PMID:27835671
Hong, Mee Young; Seeram, Navindra P.; Heber, David
2008-01-01
Prostate cancer is dependent on circulating testosterone in its early stages and is treatable with radiation and surgery. However, recurrent prostate tumors advance to an androgen-independent state where they progress in the absence of circulating testosterone leading to metastasis and death. During the development of androgen independence, prostate cancer cells are known to increase intracellular testosterone synthesis which maintains cancer cell growth in the absence of significant amounts of circulating testosterone. Overexpression of the androgen receptor (AR) occurs in androgen-independent prostate cancer and has been proposed as another mechanism promoting the development of androgen independence. The LNCaP-AR cell line is engineered to overexpress AR but is otherwise similar to the widely studied LNCaP cell line. We have previously shown that pomegranate extracts inhibit both androgen-dependent and androgen-independent prostate cancer cell growth. In the present study, we examined the effects of pomegranate polyphenols, ellagitannin-rich extract and whole juice extract on the expression of genes for key androgen synthesizing enzymes and the AR. We measured expression of the HSD3B2, AKR1C3 and SRD5A1 genes for the respective androgen synthesizing enzymes in LNCaP, LNCaP-AR, and DU-145 human prostate cancer cells. A two-fold suppression of gene expression was considered statistically significant. Pomegranate polyphenols inhibited gene expression and AR most consistently in the LNCaP-AR cell line (P =.05). Therefore, inhibition by pomegranate polyphenols of gene expression involved in androgen synthesis enzymes and the AR may be of particular importance in androgen-independent prostate cancer cells and the subset of human prostate cancers where AR is upregulated. PMID:18479901
NASA Technical Reports Server (NTRS)
Fox, Kenneth; Jennings, Donald E.; Stern, Elizabeth A.; Hubbard, Rob
1988-01-01
Pressure-broadened widths of rotational-vibrational lines in CH4 have been measured at very high spectral resolution in the R-branch of the 3nu3 overtone. The broadening gases were Ar, He, H2, and N2. Results are presented as averages for J-multiplets at ambient temperature. The overall values (per cm per atm) for these R-branch lines are 0.0651 (CH4-Ar), 0.0508 (CH4-He), 0.0728 (CH4-H2), and 0.0715 (CH4-N2).
Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.
Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi
2016-10-01
Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of the AR pathway in bladder cancer growth and further suggest that AR antagonists, including enzalutamide, are of therapeutic benefit in AR-positive bladder cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Automatic Tracking Radar Career Ladder, AFSC-303X3. Electronics Principles Inventory (EPI).
1981-02-01
Oscilloscopes (p. 12) to low in areas such as Infrared (pp. 42-43), Lasers (pp. 43-44), and Display Tubes (p. 44-45). The 3-skill level column is...41 55 INPUT/OUTPUT (PERIPHERAL) DEVICES S1171 41 56 PHOTO SENSITIVE DEVICES S1185 42 57 SYNCHRONOUS VIBRATIONS (CHOPPER CIRCUITS) S1186 42 58 INFRARED ... WW2 00 w. 2 -O . 0 a1a 0 21 a a1 a’ 3iiihh hi V i-- 2 a a. aV oft1 cca a x ar cc a a & & it-1- " IkU4. aacW r c f a a ar - C3 j a cca o low cc t a: a cc
Nakata, Daisuke; Koyama, Ryokichi; Nakayama, Kazuhide; Kitazawa, Satoshi; Watanabe, Tatsuya; Hara, Takahito
2017-06-01
Recent evidence suggests that androgen receptor (AR) splice variants, including AR-V7, play a pivotal role in resistance to androgen blockade in prostate cancer treatment. The development of new therapeutic agents that can suppress the transcriptional activities of AR splice variants has been anticipated as the next generation treatment of castration-resistant prostate cancer. High-throughput screening of AR-V7 signaling inhibitors was performed using an AR-V7 reporter system. The effects of a glycogen synthase kinase-3 (GSK3) inhibitor, LY-2090314, on endogenous AR-V7 signaling were evaluated in an AR-V7-positive cell line, JDCaP-hr, by quantitative reverse transcription polymerase chain reaction. The relationship between AR-V7 signaling and β-catenin signaling was assessed using RNA interference. The effect of LY-2090314 on cell growth in various prostate cancer cell lines was also evaluated. We identified GSK3 inhibitors as transcriptional suppressors of AR-V7 using a high-throughput screen with an AR-V7 reporter system. LY-2090314 suppressed the reporter activity and endogenous AR-V7 activity in JDCaP-hr cells. Because silencing of β-catenin partly rescued the suppression, it was evident that the suppression was mediated, at least partially, via the activation of β-catenin signaling. AR-V7 signaling and β-catenin signaling reciprocally regulate each other in JDCaP-hr cells, and therefore, GSK3 inhibition can repress AR-V7 transcriptional activity by accumulating intracellular β-catenin. Notably, LY-2090314 selectively inhibited the growth of AR-V7-positive prostate cancer cells in vitro. Our findings demonstrate the potential of GSK3 inhibitors in treating advanced prostate cancer driven by AR splice variants. In vivo evaluation of AR splice variant-positive prostate cancer models will help illustrate the overall significance of GSK3 inhibitors in treating prostate cancer. © 2017 Wiley Periodicals, Inc.
Kawahara, Takashi; Aljarah, Ali Kadhim; Shareef, Hasanain Khaleel; Inoue, Satoshi; Ide, Hiroki; Patterson, John D; Kashiwagi, Eiji; Han, Bin; Li, Yi; Zheng, Yichun; Miyamoto, Hiroshi
2016-06-01
Biological significance of ELK1, a transcriptional factor whose phosphorylation is necessary for c-fos proto-oncogene activation, in prostate cancer remains far from fully understood. In this study, we aim to investigate the role of ELK1 in tumor growth as well as the efficacy of a selective α1A-adrenergic blocker, silodosin, in ELK1 activity in prostate cancer cells. We first immunohistochemically determined the levels of phospho-ELK1 (p-ELK1) expression in radical prostatectomy specimens. We then assessed the effects of ELK1 knockdown via short hairpin RNA and silodosin on cell proliferation, migration, and invasion in prostate cancer lines. The levels of p-ELK1 expression were significantly higher in carcinoma than in benign (P < 0.001) or high-grade prostatic intraepithelial neoplasia (HGPIN) (P = 0.002) as well as in HGPIN than in benign (P < 0.001). Kaplan-Meier and log-rank tests revealed that moderate-strong positivity of p-ELK1 in carcinomas tended to correlate with biochemical recurrence after radical prostatectomy (P = 0.098). In PC3 and DU145 expressing ELK1 (mRNA/protein) but no androgen receptor (AR), ELK1 silencing resulted in considerable decreases in the expression of c-fos as well as in cell migration/invasion and matrix metalloproteinase-2 expression, but not in cell viability. Silodosin treatment reduced the expression/activity of ELK1 in these cells as well as the viability of AR-positive LNCaP and C4-2 cells and the migration of both AR-positive and AR-negative cells, but not the viability of AR-negative or ELK1-negative cells. Interestingly, silodosin significantly increased sensitivity to gemcitabine, but not to cisplatin or docetaxel, even in AR-negative cells. ELK1 is likely to be activated in prostate cancer cells and promote tumor progression. Furthermore, silodosin that inactivates ELK1 in prostate cancer cells not only inhibits their growth but also enhances the cytotoxic activity of gemcitabine. Thus, ELK1 inhibition has the potential of being a therapeutic approach for prostate cancer. © 2016 Wiley Periodicals, Inc.
Ding, Miao; Lin, Biaoyang; Li, Tao; Liu, Yuanyuan; Li, Yuhua; Zhou, Xiaoyu; Miao, Maohua; Gu, Jinfa; Pan, Hongjie; Yang, Fen; Li, Tianqi; Liu, Xin Yuan; Li, Runsheng
2015-01-01
Androgen deprivation therapy in prostate cancer (PCa) causes neuroendocrine differentiation (NED) of prostatic adenocarcinomas (PAC) cells, leading to recurrence of PCa. Androgen-responsive genes involved in PCa progression including NED remain largely unknown. Here we demonstrated the importance of androgen receptor (AR)-microRNA-204 (miR-204)-XRN1 axis in PCa cell lines and the rat ventral prostate. Androgens downregulate miR-204, resulting in induction of XRN1 (5′-3′ exoribonuclease 1), which we identified as a miR-204 target. miR-204 acts as a tumor suppressor in two PAC cell lines (LNCaP and 22Rv1) and as an oncomiR in two neuroendocrine-like prostate cancer (NEPC) cell lines (PC-3 and CL1). Importantly, overexpression of miR-204 and knockdown of XRN1 inhibited AR expression in PCa cells. Repression of miR-34a, a known AR-targeting miRNA, contributes AR expression by XRN1. Thus we revealed the AR-miR-204-XRN1-miR-34a positive feedback loop and a dual function of miR-204/XRN1 axis in prostate cancer. PMID:25797256
Wang, Ronghao; Lin, Wanying; Lin, Changyi; Li, Lei; Sun, Yin; Chang, Chawnshang
2016-08-28
Androgen deprivation therapy (ADT) with the newly developed powerful anti-androgen enzalutamide (Enz, also known as MDV3100) has promising therapeutic effects to suppress castration resistant prostate cancer (CRPC) and extending patients' lives an extra 4.8 months. However, most Enz therapy eventually fails with the development of Enz resistance. The detailed mechanisms how CRPC develops Enz resistance remain unclear and may involve multiple mechanisms. Among them, the induction of the androgen receptor (AR) mutant AR-F876L in some CRPC patients may represent one driving force that confers Enz resistance. Here, we demonstrate that the AR degradation enhancer, ASC-J9(®), not only degrades wild-type AR, but also has the ability to target AR-F876L. The consequence of suppressing AR-F876L may then abrogate AR-F876L mediated CRPC cell proliferation and metastasis. Thus, developing ASC-J9(®) as a new therapeutic approach may represent a novel therapy to better suppress CRPC that has already developed Enz resistance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Niimi, Naoko; Yako, Hideji; Takaku, Shizuka; Kato, Hiroshi; Matsumoto, Takafumi; Nishito, Yasumasa; Watabe, Kazuhiko; Ogasawara, Saori; Mizukami, Hiroki; Yagihashi, Soroku; Chung, Sookja K; Sango, Kazunori
2018-03-01
The increased glucose flux into the polyol pathway via aldose reductase (AR) is recognized as a major contributing factor for the pathogenesis of diabetic neuropathy, whereas little is known about the functional significance of AR in the peripheral nervous system. Spontaneously immortalized Schwann cell lines established from long-term cultures of AR-deficient and normal C57BL/6 mouse dorsal root ganglia and peripheral nerves can be useful tools for studying the physiological and pathological roles of AR. These cell lines, designated as immortalized knockout AR Schwann cells 1 (IKARS1) and 1970C3, respectively, demonstrated distinctive Schwann cell phenotypes, such as spindle-shaped morphology and immunoreactivity to S100, p75 neurotrophin receptor, and vimentin, and extracellular release of neurotrophic factors. Conditioned media obtained from these cells promoted neuronal survival and neurite outgrowth of cultured adult mouse dorsal root ganglia neurons. Microarray and real-time RT-PCR analyses revealed significantly down-regulated mRNA expression of polyol pathway-related enzymes, sorbitol dehydrogenase and ketohexokinase, in IKARS1 cells compared with those in 1970C3 cells. In contrast, significantly up-regulated mRNA expression of aldo-keto reductases (AKR1B7 and AKR1B8) and aldehyde dehydrogenases (ALDH1L2, ALDH5A1, and ALDH7A1) was detected in IKARS1 cells compared with 1970C3 cells. Exposure to reactive aldehydes (3-deoxyglucosone, methylglyoxal, and 4-hydroxynonenal) significantly up-regulated the mRNA expression of AKR1B7 and AKR1B8 in IKARS1 cells, but not in 1970C3 cells. Because no significant differences in viability between these two cell lines after exposure to these aldehydes were observed, it can be assumed that the aldehyde detoxification is taken over by AKR1B7 and AKR1B8 in the absence of AR. © 2017 International Society for Neurochemistry.
Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer
Kregel, Steven; Kiriluk, Kyle J.; Rosen, Alex M.; Cai, Yi; Reyes, Edwin E.; Otto, Kristen B.; Tom, Westin; Paner, Gladell P.; Szmulewitz, Russell Z.; Vander Griend, Donald J.
2013-01-01
Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways. PMID:23326489
C5a alters blood-brain barrier integrity in experimental lupus.
Jacob, Alexander; Hack, Bradley; Chiang, Eddie; Garcia, Joe G N; Quigg, Richard J; Alexander, Jessy J
2010-06-01
The blood-brain barrier (BBB) is a crucial anatomic location in the brain. Its dysfunction complicates many neurodegenerative diseases, from acute conditions, such as sepsis, to chronic diseases, such as systemic lupus erythematosus (SLE). Several studies suggest an altered BBB in lupus, but the underlying mechanism remains unknown. In the current study, we observed a definite loss of BBB integrity in MRL/MpJ-Tnfrsf6(lpr) (MRL/lpr) lupus mice by IgG infiltration into brain parenchyma. In line with this result, we examined the role of complement activation, a key event in this setting, in maintenance of BBB integrity. Complement activation generates C5a, a molecule with multiple functions. Because the expression of the C5a receptor (C5aR) is significantly increased in brain endothelial cells treated with lupus serum, the study focused on the role of C5a signaling through its G-protein-coupled receptor C5aR in brain endothelial cells, in a lupus setting. Reactive oxygen species production increased significantly in endothelial cells, in both primary cells and the bEnd3 cell line treated with lupus serum from MRL/lpr mice, compared with those treated with control serum from MRL(+/+) mice. In addition, increased permeability monitored by changes in transendothelial electrical resistance, cytoskeletal remodeling caused by actin fiber rearrangement, and increased iNOS mRNA expression were observed in bEnd3 cells. These disruptive effects were alleviated by pretreating cells with a C5a receptor antagonist (C5aRant) or a C5a antibody. Furthermore, the structural integrity of the vasculature in MRL/lpr brain was maintained by C5aR inhibition. These results demonstrate the regulation of BBB integrity by the complement system in a neuroinflammatory setting. For the first time, a novel role of C5a in the maintenance of BBB integrity is identified and the potential of C5a/C5aR blockade highlighted as a promising therapeutic strategy in SLE and other neurodegenerative diseases.
Mehraein-Ghomi, Farideh; Church, Dawn R.; Schreiber, Cynthia L.; Weichmann, Ashley M.; Basu, Hirak S.; Wilding, George
2015-01-01
Accumulating evidence shows that androgen receptor (AR) activation and signaling plays a key role in growth and progression in all stages of prostate cancer, even under low androgen levels or in the absence of androgen in the castration-resistant prostate cancer. Sustained activation of AR under androgen-deprived conditions may be due to its interaction with co-activators, such as p52 NF-κB subunit, and/or an increase in its stability by phosphorylation that delays its degradation. Here we identified a specific inhibitor of AR/p52 interaction, AR/p52-02, via a high throughput screen based on the reconstitution of Gaussia Luciferase. We found that AR/p52-02 markedly inhibited growth of both castration-resistant C4-2 (IC50 ∼6 μM) and parental androgen-dependent LNCaP (IC50 ∼4 μM) human prostate cancer cells under low androgen conditions. Growth inhibition was associated with significantly reduced nuclear p52 levels and DNA binding activity, as well as decreased phosphorylation of AR at serine 81, increased AR ubiquitination, and decreased AR transcriptional activity as indicated by decreased prostate-specific antigen (PSA) mRNA levels in both cell lines. AR/p52-02 also caused a reduction in levels of p21WAF/CIP1, which is a direct AR targeted gene in that its expression correlates with androgen stimulation and mitogenic proliferation in prostate cancer under physiologic levels of androgen, likely by disrupting the AR signaling axis. The reduced level of cyclinD1 reported previously for this compound may be due to the reduction in nuclear presence and activity of p52, which directly regulates cyclinD1 expression, as well as the reduction in p21WAF/CIP1, since p21WAF/CIP1 is reported to stabilize nuclear cyclinD1 in prostate cancer. Overall, the data suggest that specifically inhibiting the interaction of AR with p52 and blocking activity of p52 and pARser81 may be an effective means of reducing castration-resistant prostate cancer cell growth. PMID:26622945
Wang, Zhiyun; Che, Pao-Lin; Du, Jian; Ha, Barbara; Yarema, Kevin J.
2010-01-01
Background This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF) exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A2A receptor (A2AR) in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD). Methodology and Principal Findings SMF reproduced several responses elicited by ZM241385, a selective A2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth. Conclusions and Significance When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders. PMID:21079735
Performance comparison of two androgen receptor splice variant 7 (AR-V7) detection methods.
Bernemann, Christof; Steinestel, Julie; Humberg, Verena; Bögemann, Martin; Schrader, Andres Jan; Lennerz, Jochen K
2018-01-23
To compare the performance of two established androgen receptor splice variant 7 (AR-V7) mRNA detection systems, as paradoxical responses to next-generation androgen-deprivation therapy in AR-V7 mRNA-positive circulating tumour cells (CTC) of patients with castration-resistant prostate cancer (CRPC) could be related to false-positive classification using detection systems with different sensitivities. We compared the performance of two established mRNA-based AR-V7 detection technologies using either SYBR Green or TaqMan chemistries. We assessed in vitro performance using eight genitourinary cancer cell lines and serial dilutions in three AR-V7-positive prostate cancer cell lines, as well as in 32 blood samples from patients with CRPC. Both assays performed identically in the cell lines and serial dilutions showed identical diagnostic thresholds. Performance comparison in 32 clinical patient samples showed perfect concordance between the assays. In particular, both assays determined AR-V7 mRNA-positive CTCs in three patients with unexpected responses to next-generation anti-androgen therapy. Thus, technical differences between the assays can be excluded as the underlying reason for the unexpected responses to next-generation anti-androgen therapy in a subset of AR-V7 patients. Irrespective of the method used, patients with AR-V7 mRNA-positive CRPC should not be systematically precluded from an otherwise safe treatment option. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.
Experimental investigation of a pulsed Rb-Ar excimer-pumped alkali laser
NASA Astrophysics Data System (ADS)
Cheng, Hongling; Wang, Zhimin; Zhang, Fengfeng; Wang, Mingqiang; Tian, Zhaoshuo; Peng, Qinjun; Cui, Dafu; Xu, Zuyan
2017-03-01
We present experimental results of an exciplex-pumped alkali laser (XPAL) at 780 nm based on the 52P3/2 → 52S1/2 transition of the Rb atom in mixtures of Rb vapor and Ar. A laboratory-built Ti:sapphire laser with a pulse repetition rate of 3 kHz and a pulse width of 100 ns is used as the pump source. The maximum laser pulse energy of 0.26 µJ at 780 nm is obtained under an absorbed pump pulse energy of 42 µJ at 755 nm in mixtures of Rb vapor and Ar at a temperature of 423 K, corresponding to an optical conversion efficiency of 0.62%. Further experiments show that the output laser at 780 nm can always be detected for pump wavelengths ranging from 754 to 759 nm, indicating that Rb-Ar mixtures can be effectively pumped by commercial laser diodes (LDs) with a bandwidth of 5 nm.
Khosroshahi, Mohammad E; Hassannejad, Zahra; Firouzi, Masoumeh; Arshi, Ahmad R
2015-09-01
In this study, we report the apoptosis induction in HER2 overexpressed breast cancer cells using pulsed, continuous wave lasers and polyvinylpyrrolidone (PVP)-stabilized magneto-plasmonic nanoshells (PVP-MPNS) delivered by immunoliposomes. The immunoliposomes containing PVP-MPNS were fabricated and characterized. Heating efficiency of the synthesized nanostructures was calculated. The effect of functionalization on cellular uptake of nanoparticles was assessed using two cell lines of BT-474 and Calu-6. The best uptake result was achieved by functionalized liposome (MPNS-LAb) and BT-474. Also, the interaction of 514 nm argon (Ar) and Nd/YAG second harmonic 532-nm lasers with nanoparticles was investigated based on the temperature rise of the nanoshell suspension and the release value of 5(6)-carboxyfluorescein (CF) from CF/MPNS-loaded liposomes. The temperature increase of the suspensions after ten consecutive pulses of 532 nm and 5 min of irradiation by Ar laser were measured approximately 2 and 12 °C, respectively. The irradiation of CF/MPNS-loaded liposomes by Ar laser for 3 min resulted in 24.3 % release of CF, and in the case of 532 nm laser, the release was laser energy dependent. Furthermore, the comparison of CF release showed a higher efficiency for the Ar laser than by direct heating of nanoshell suspension using circulating water. The percentage of cell apoptosis after irradiation by Ar and 532 nm lasers were 44.6 and 42.6 %, respectively. The obtained results suggest that controlling the NP-laser interaction using optical properties of nanoshells and the laser parameters can be used to develop a new cancer therapy modality via targeted nanoshell and drug delivery.
Stossi, Fabio; Dandekar, Radhika D; Bolt, Michael J; Newberg, Justin Y; Mancini, Maureen G; Kaushik, Akash K; Putluri, Vasanta; Sreekumar, Arun; Mancini, Michael A
2016-03-29
Prostate cancer remains a deadly disease especially when patients become resistant to drugs that target the Androgen Receptor (AR) ligand binding domain. At this stage, patients develop recurring castrate-resistant prostate cancers (CRPCs). Interestingly, CRPC tumors maintain dependency on AR for growth; moreover, in CRPCs, constitutively active AR splice variants (e.g., AR-V7) begin to be expressed at higher levels. These splice variants lack the ligand binding domain and are rendered insensitive to current endocrine therapies. Thus, it is of paramount importance to understand what regulates the expression of AR and its splice variants to identify new therapeutic strategies in CRPCs. Here, we used high throughput microscopy and quantitative image analysis to evaluate effects of selected endocrine disruptors on AR levels in multiple breast and prostate cancer cell lines. Bisphenol AP (BPAP), which is used in chemical and medical industries, was identified as a down-regulator of both full length AR and the AR-V7 splice variant. We validated its activity by performing time-course, dose-response, Western blot and qPCR analyses. BPAP also reduced the percent of cells in S phase, which was accompanied by a ~60% loss in cell numbers and colony formation in anchorage-independent growth assays. Moreover, it affected mitochondria size and cell metabolism. In conclusion, our high content analysis-based screening platform was used to classify the effect of compounds on endogenous ARs, and identified BPAP as being capable of causing AR (both full-length and variants) down-regulation, cell cycle arrest and metabolic alterations in CRPC cell lines.
Lee, Hee-Seok; Park, Eun-Jung; Han, Songyi; Oh, Gyeong-Yong; Kang, Hui-Seung; Suh, Jin-Hyang; Shin, Min-Ki; Oh, Hyun-Suk; Hwang, Myung-Sil; Moon, Guiim; Koh, Young-Ho; Park, Yooheon; Hong, Jin-Hwan; Koo, Yong Eui
2018-01-01
The aim of this study is to assess the androgen receptor (AR) agonistic/antagonistic effects on various chemicals, which are used in household products including cleaning agents and wetted tissues by in vitro OECD test guideline No. 458 (using AR-EcoScreen™ cell line) and the me-too test method (using 22Rv1cell line), which was adopted as OECD project No. 4.99. All chemicals were not determined as AR agonists. However α-dodecyl-ω-hydroxypoly (oxyethylene) and 3-iodo-2-propynyl butylcarbamate have shown a weak AR antagonistic effects with IC 50 values of 2.18 ± 0.12 and 4.26 ± 0.17 μg/ml via binding affinity to AR in only 22Rv1/mouse mammary tumor virus using AR transcriptional activation assay, because of their different cytotoxicity on each applied cell line. This report firstly provides information about agonistic/antagonistic effects against human AR of various chemicals including surfactants and biocides by OECD in vitro stably transfected transcriptional activation assays. However, further in vivo and human model studies are needed to confirm their adverse effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
On The Stark Shift of Ar II 472.68 nm Spectral Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mijatovic, Z.; Gajo, T.; Vujicic, B.
The Stark shift of Ar II 472.68 nm (transition 4s2P - 4p2D deg. ) spectral lines emitted from T-tube plasmas was considered. The electron density ranged from (1.63-2.2){center_dot}1023 m-3 and was determined using laser interferometry. The plasma temperature, derived from the Gaussian part of recorded line profiles was found to be in the range (15000-43300) K. Experimental shifts were compared to theoretical values obtained from the semiempirical formula [M. S. Dimitrijevic and N. Konjevic, J. Quant. Spectrosc. Radiat. Transfer 24, 451 (1980)]. This comparison showed good agreement between experimental results and theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikonomov, Ognian C., E-mail: oikonomo@med.wayne.edu; Filios, Catherine, E-mail: cfilios@med.wayne.edu; Sbrissa, Diego, E-mail: dsbrissa@med.wayne.edu
2013-10-18
Highlights: •We assess PAS complex proteins and phosphoinositide levels in breast cancer cells. •Sac3 and ArPIKfyve are markedly elevated in triple-negative breast cancer cells. •Sac3 silencing inhibits proliferation in triple-negative breast cancer cell lines. •Phosphoinositide profiles are altered in breast cancer cells. •This is the first evidence linking high Sac3 with breast cancer cell proliferation. -- Abstract: The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve–ArPIKfyve–Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P–PtdIns(3,5)P{sub 2} synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer,more » the role of the PAS proteins and the PtdIns3P–PtdIns(3,5)P{sub 2} conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P{sub 2} in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or indirectly the homeostasis of these lipids in TNBC. Together, our results uncover an unexpected role for Sac3 phosphatase in TNBC cell proliferation. Database analyses, discussed herein, reinforce the involvement of Sac3 in breast cancer pathogenesis.« less
Abdulrahman, Basant A; Abdelaziz, Dalia; Thapa, Simrika; Lu, Li; Jain, Shubha; Gilch, Sabine; Proniuk, Stefan; Zukiwski, Alexander; Schatzl, Hermann M
2017-12-14
Prion diseases are fatal infectious neurodegenerative disorders that affect both humans and animals. The autocatalytic conversion of the cellular prion protein (PrP C ) into the pathologic isoform PrP Sc is a key feature in prion pathogenesis. AR-12 is an IND-approved derivative of celecoxib that demonstrated preclinical activity against several microbial diseases. Recently, AR-12 has been shown to facilitate clearance of misfolded proteins. The latter proposes AR-12 to be a potential therapeutic agent for neurodegenerative disorders. In this study, we investigated the role of AR-12 and its derivatives in controlling prion infection. We tested AR-12 in prion infected neuronal and non-neuronal cell lines. Immunoblotting and confocal microscopy results showed that AR-12 and its analogue AR-14 reduced PrP Sc levels after only 72 hours of treatment. Furthermore, infected cells were cured of PrP Sc after exposure of AR-12 or AR-14 for only two weeks. We partially attribute the influence of the AR compounds on prion propagation to autophagy stimulation, in line with our previous findings that drug-induced stimulation of autophagy has anti-prion effects in vitro and in vivo. Taken together, this study demonstrates that AR-12 and the AR-14 analogue are potential new therapeutic agents for prion diseases and possibly protein misfolding disorders involving prion-like mechanisms.
Enzymatic Conversion of Red Cells for Transfusion.
1979-11-19
2 0 x( w m m w0 - 0 - - j to 3 >-4M m m Z 01 -4 -1 0 z 0 C< -< z z z m-0 r, 0 0 -" m 0 0 mu m -a > -4 m Lo m...q W >lM G)0 0- COO) ) vp 3 Z51 - - CO 2 - 0C 2 omz m zm > -nm~j m 0 w N4 0 ;o- 3 -42 m In Vm0 m mmc > -- 4 C, - -- 0 0 - 2 z C.. 2 m 0 > mff C) m --I ;K...6,11 NL Eu.. N3. r low I ,. 14.0. ~~I45 2 . 1.25 11 3.2 m,’ • .. .’ ’: MIRCP RESLIO N C AR .: S . , . II..1 %. I I" :I ’ 1 1 1 1
Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He
NASA Astrophysics Data System (ADS)
Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.
2018-02-01
The collision dynamics of optically centrifuged CO2 with Ar and He are reported here. The optical centrifuge produces an ensemble of CO2 molecules in high rotational states (with J ˜ 220) with oriented angular momentum. Polarization-dependent high-resolution transient IR absorption spectroscopy was used to measure the relaxation dynamics in the presence of Ar or He by probing the CO2 J = 76 and 100 states with Er o t=2306 and 3979 cm-1, respectively. The data show that He relaxes the CO2 super rotors more quickly than Ar. Doppler-broadened line profiles show that He collisions induce substantially larger rotation-to-translation energy transfer. CO2 super rotors have greater orientational anisotropy with He collisions and the anisotropy from the He collisions persists longer than with Ar. Super rotor relaxation dynamics are discussed in terms of mass effects related to classical gyroscope physics and collisional rotational adiabaticity.
von Guggenberg, E; Dietrich, H; Skvortsova, I; Gabriel, M; Virgolini, I J; Decristoforo, C
2007-08-01
Different attempts have been made to develop a suitable radioligand for targeting CCK-2 receptors in vivo, for staging of medullary thyroid carcinoma (MTC) and other receptor-expressing tumours. After initial successful clinical studies with [DTPA(0),D: Glu(1)]minigastrin (DTPA-MG0) radiolabelled with (111)In and (90)Y, our group developed a (99m)Tc-labelled radioligand, based on HYNIC-MG0. A major drawback observed with these derivatives is their high uptake by the kidneys. In this study we describe the preclinical evaluation of the optimised shortened peptide analogue, [HYNIC(0),D: Glu(1),desGlu(2-6)]minigastrin (HYNIC-MG11). (99m)Tc labelling of HYNIC-MG11 was performed using tricine and EDDA as coligands. Stability experiments were carried out by reversed phase HPLC analysis in PBS, PBS/cysteine and plasma as well as rat liver and kidney homogenates. Receptor binding and cell uptake experiments were performed using AR4-2J rat pancreatic tumour cells. Animal biodistribution was studied in AR4-2J tumour-bearing nude mice. Radiolabelling was performed at high specific activities and radiochemical purity was >90%. (99m)Tc-EDDA-HYNIC-MG11 showed high affinity for the CCK-2 receptor and cell internalisation comparable to that of (99m)Tc-EDDA-HYNIC-MG0. Despite high stability in solution, a low metabolic stability in rat tissue homogenates was found. In a nude mouse tumour model, very low unspecific retention in most organs, rapid renal excretion with reduced renal retention and high tumour uptake were observed. (99m)Tc-EDDA-HYNIC-MG11 shows advantages over (99m)Tc-EDDA-HYNIC-MG0 in terms of lower kidney retention with unchanged uptake in tumours and CCK-2 receptor-positive tissue. However, the lower metabolic stability and impurities formed in the labelling process still leave room for further improvement.
Schayek, Hagit; Haugk, Kathy; Sun, Shihua; True, Lawrence D.; Plymate, Stephen R.; Werner, Haim
2010-01-01
Purpose The insulin-like growth factor (IGF) system plays an important role in prostate cancer. The BRCA1 gene encodes a transcription factor with tumor suppressor activity. The involvement of BRCA1 in prostate cancer, however, has not yet been elucidated. The purpose of the present study was to examine the functional correlations between BRCA1 and the IGF system in prostate cancer. Experimental Design An immunohistochemical analysis of BRCA1 was performed on Tissue Microarrays comprising 203 primary prostate cancer specimens. In addition, BRCA1 levels were measured in prostate cancer xenografts and in cell lines representing early stages of the disease (P69 cells) and advanced stages (M12 cells). The ability of BRCA1 to regulate IGF-IR expression was studied by coexpression experiments using a BRCA1 expression vector along with an IGF-IR promoter-luciferase reporter. Results We found significantly elevated BRCA1 levels in prostate cancer in comparison to histologically normal prostate tissue (p < 0.001). In addition, an inverse correlation between BRCA1 and IGF-IR levels was observed in the AR-negative P69 and M12 prostate cancer-derived cell lines. Coexpression experiments in M12 cells revealed that BRCA1 was able to suppress IGF-IR promoter activity and endogenous IGF-IR levels. On the other hand, BRCA1 enhanced IGF-IR levels in LnCaP C4-2 cells expressing an endogenous AR. Conclusions We provide evidence that BRCA1 differentially regulates IGF-IR expression in AR positive and negative prostate cancer cells. The mechanism of action of BRCA1 involves modulation of IGF-IR gene transcription. In addition, immunohistochemical data is consistent with a potential survival role of BRCA1 in prostate cancer. PMID:19223505
PCA3 Silencing Sensitizes Prostate Cancer Cells to Enzalutamide-mediated Androgen Receptor Blockade.
Özgür, Emre; Celik, Ayca Iribas; Darendeliler, Emin; Gezer, Ugur
2017-07-01
Prostate cancer (PCa) is an androgen-dependent disease. Novel anti-androgens (i.e. enzalutamide) have recently been developed for the treatment of patients with metastatic castration-resistant prostate cancer (CRPC). Evidence is accumulating that prostate cancer antigen 3 (PCA3) is involved in androgen receptor (AR) signaling. Here, in combination with enzalutamide-mediated AR blockade, we investigated the effect of PCA3 targeting on the viability of PCa cells. In hormone-sensitive LNCaP cells, AR-overexpressing LNCaP-AR + cells and VCaP cells (representing CRPC), PCA3 was silenced using siRNA oligonucleotides. Gene expression and cell viability was assessed in PCA3-silenced and/or AR-blocked cells. PCA3 targeting reduced the expression of AR-related genes (i.e. prostate-specific antigen (PSA) and prostate-specific transcript 1 (non-protein coding) (PCGEM1)) and potentiated the effect of enzalutamide. Proliferation of PCa cells was suppressed upon PCA3 silencing with a greater effect in LNCaP-AR + cells. Furthermore, PCA3 silencing sensitized PCa cells to enzalutamide-induced loss of cell growth. PCA3, as a therapeutic target in PCa, might be used to potentiate AR antagonists. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
β2-Adrenergic Receptor Agonists Inhibit the Proliferation of 1321N1 Astrocytoma CellsS⃞
Toll, L.; Jimenez, L.; Waleh, N.; Jozwiak, K.; Woo, A.Y.-H.; Xiao, R.-P.; Bernier, M.
2011-01-01
Astrocytomas and glioblastomas have been particularly difficult to treat and refractory to chemotherapy. However, significant evidence has been presented that demonstrates a decrease in astrocytoma cell proliferation subsequent to an increase in cAMP levels. The 1321N1 astrocytoma cell line, as well as other astrocytomas and glioblastomas, expresses β2-adrenergic receptors (β2-ARs) that are coupled to Gs activation and consequent cAMP production. Experiments were conducted to determine whether the β2-AR agonist (R,R′)-fenoterol and other β2-AR agonists could attenuate mitogenesis and, if so, by what mechanism. Receptor binding studies were conducted to characterize β2-AR found in 1321N1 and U118 cell membranes. In addition, cells were incubated with (R,R′)-fenoterol and analogs to determine their ability to stimulate intracellular cAMP accumulation and inhibit [3H]thymidine incorporation into the cells. 1321N1 cells contain significant levels of β2-AR as determined by receptor binding. (R,R′)-fenoterol and other β2-AR agonists, as well as forskolin, stimulated cAMP accumulation in a dose-dependent manner. Accumulation of cAMP induced a decrease in [3H]thymidine incorporation. There was a correlation between concentration required to stimulate cAMP accumulation and inhibit [3H]thymidine incorporation. U118 cells have a reduced number of β2-ARs and a concomitant reduction in the ability of β2-AR agonists to inhibit cell proliferation. These studies demonstrate the efficacy of β2-AR agonists for inhibition of growth of the astrocytoma cell lines. Because a significant portion of brain tumors contain β2-ARs to a greater extent than whole brain, (R,R′)-fenoterol, or some analog, may be useful in the treatment of brain tumors after biopsy to determine β2-AR expression. PMID:21071556
Nash, Claire; Boufaied, Nadia; Mills, Ian G; Franco, Omar E; Hayward, Simon W; Thomson, Axel A
2017-05-05
The androgen receptor (AR) is a transcription factor, and key regulator of prostate development and cancer, which has discrete functions in stromal versus epithelial cells. AR expressed in mesenchyme is necessary and sufficient for prostate development while loss of stromal AR is predictive of prostate cancer progression. Many studies have characterized genome-wide binding of AR in prostate tumour cells but none have used primary mesenchyme or stroma. We applied ChIPseq to identify genomic AR binding sites in primary human fetal prostate fibroblasts and patient derived cancer associated fibroblasts, as well as the WPMY1 cell line overexpressing AR. We identified AR binding sites that were specific to fetal prostate fibroblasts (7534), cancer fibroblasts (629), WPMY1-AR (2561) as well as those common among all (783). Primary fibroblasts had a distinct AR binding profile versus prostate cancer cell lines and tissue, and showed a localisation to gene promoter binding sites 1 kb upstream of the transcriptional start site, as well as non-classical AR binding sequence motifs. We used RNAseq to define transcribed genes associated with AR binding sites and derived cistromes for embryonic and cancer fibroblasts as well as a cistrome common to both. These were compared to several in vivo ChIPseq and transcript expression datasets; which identified subsets of AR targets that were expressed in vivo and regulated by androgens. This analysis enabled us to deconvolute stromal AR targets active in stroma within tumour samples. Taken together, our data suggest that the AR shows significantly different genomic binding site locations in primary prostate fibroblasts compared to that observed in tumour cells. Validation of our AR binding site data with transcript expression in vitro and in vivo suggests that the AR target genes we have identified in primary fibroblasts may contribute to clinically significant and biologically important AR-regulated changes in prostate tissue. Copyright © 2017. Published by Elsevier B.V.
Evaluation of Encapsulant Adhesion to Surface Metallization of Photovoltaic Cells: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Jared; Dauskardt, Reinhold; Bosco, Nick
Delamination of encapsulant materials from PV cell surfaces often appears to originate at regions with metallization. Using a fracture mechanics based metrology, the adhesion of EVA encapsulant to screen printed silver metallization was evaluated. At room temperature, the fracture energy, Gc [J/m2], of the EVA/silver interface (952 J/m2) was ~70% lower than that of the EVA/AR coating (>2900 J/m2) and ~60% lower than that of the EVA to the surface of cell (2265 J/m2). After only 300 hours of damp heat aging, the adhesion energy of the silver interface dropped to and plateaued at ~50-60 J/m2, while that of themore » EVA/AR coating and EVA/cell remained mostly unchanged. Elemental surface analysis showed that the EVA separates from the silver in a purely adhesive manner, indicating that bonds at the interface were likely displaced in the presence of humidity and elevated temperature, and may explain the propensity for delamination to occur at metallized surfaces in the field.« less
Encapsulant Adhesion to Surface Metallization on Photovoltaic Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Jared; Bosco, Nick; Dauskardt, Reinhold
Delamination of encapsulant materials from PV cell surfaces often appears to originate at regions with metallization. Using a fracture mechanics based metrology, the adhesion of ethylene vinyl acetate (EVA) encapsulant to screen-printed silver metallization was evaluated. At room temperature, the fracture energy Gc [J/m2] of the EVA/silver interface (952 J/m2) was ~70% lower than that of the EVA/antireflective (AR) coating (>2900 J/m2) and ~60% lower than that of the EVA to the surface of cell (2265 J/m2). After only 300 h of damp heat aging, the adhesion energy of the silver interface dropped to and plateaued at ~50-60 J/m2 whilemore » that of the EVA/AR coating and EVA/cell remained mostly unchanged. Elemental surface analysis showed that the EVA separates from the silver in a purely adhesive manner, indicating that bonds at the interface were likely displaced in the presence of humidity and chemical byproducts at elevated temperature, which in part accounts for the propensity of metalized surfaces to delaminate in the field.« less
The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...
The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...
Xu, Defeng; Chen, Qiulu; Liu, Yalin; Wen, Xingqiao
2017-12-01
Androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and progression. Androgen deprivation therapy with antiandrogens to reduce androgen biosynthesis or prevent androgens from binding to AR are widely used to suppress AR-mediated PCa growth. However, most of ADT may eventually fail with development of the castration resistance after 12-24 months. Here we found that a natural product baicalein can effectively suppress the PCa progression via targeting the androgen-induced AR transactivation with little effect to AR protein expression. PCa cells including LNCaP, CWR22Rv1, C4-2, PC-3, and DU145, were treated with baicalein and luciferase assay was used to evaluate their effect on the AR transactivation. Cell growth and IC 50 were determined by MTT assay after 48 hrs treatment. RT-PCR was used to evaluate the mRNA levels of AR target genes including PSA, TMPRSS2, and TMEPA1. Western blot was used to determine AR and PSA protein expression. The natural product of baicalein can selectively inhibit AR transactivation with little effect on the other nuclear receptors, including ERα, and GR. At a low concentration, 2.5 μM of baicalein effectively suppresses the growth of AR-positive PCa cells, and has little effect on AR-negative PCa cells. Mechanism dissection suggest that baicalein can suppress AR target genes (PSA, TMPRSS2, and TMEPA1) expression in both androgen responsive LNCaP cells and castration resistant CWR22Rv1 cells, that may involve the inhibiting the AR N/C dimerization and AR-coactivators interaction. Baicalein may be developed as an effective anti-AR therapy via its ability to inhibit AR transactivation and AR-mediated PCa cell growth.
Yang, Eric V.; Kim, Seung-jae; Donovan, Elise L.; Chen, Min; Gross, Amy C.; Webster Marketon, Jeanette I.; Barsky, Sanford H.; Glaser, Ronald
2009-01-01
Studies suggest that stress can be a co-factor for the initiation and progression of cancer. The catecholamine stress hormone, norepinephrine (NE), may influence tumor progression by modulating the expression of factors implicated in angiogenesis and metastasis. The goal of this study was to examine the influence of NE on the expression of VEGF, IL-8, and IL-6 by the human melanoma cell lines, C8161, 1174MEL, and Me18105. Cells were treated with NE and levels of VEGF, IL-8, and IL-6 were measured using ELISA and real-time PCR. The expression of β-adrenergic receptors (β-ARs) mRNA and protein were also assessed. Finally, immunohistochemitry was utilized to examine the presence of β1- and β2-AR in primary and metastatic human melanoma biopsies. We show that NE treatment upregulated production of VEGF, IL-8, and IL-6 in C8161 cells and to a lesser extent 1174MEL and Me18105 cells. The upregulation was associated with induced gene expression. The effect on C8161 cells was mediated by both β1- and β2-ARs. Furthermore, 18 of 20 melanoma biopsies examined expressed β2-AR while 14 of 20 melanoma biopsies expressed β1-AR. Our data support the hypothesis that NE can stimulate the aggressive potential of melanoma tumor cells, in part, by inducing the production VEGF, IL-8, and IL-6. This line of research further suggests that interventions targeting components of the activated sympathetic-adrenal medullary (SAM) axis, or the utilization of β-AR blocking agents, may represent new strategies for slowing down the progression of malignant disease and improving cancer patients’ quality of life. PMID:18996182
Tang, Xiaoshuang; Li, Feng; Jia, Jing; Yang, Chao; Liu, Wei; Jin, Ben; Wang, Xinyang; Gao, Ruixia; He, Dalin; Guo, Peng
2017-01-01
Androgen plays an important role in the progression of prostate cancer. In the present study, novel magnetic molecularly imprinted polymers (MMIPs) with good biocompatibility were produced for the selective separation and inhibition of testosterone in prostate cancer cells. MMIPs were prepared by using magnetic nanospheres, gelatin, and testosterone as the supporting materials, functional monomer, and the template molecule, respectively. The characterization of the resultant products was investigated by transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry. To test whether MMIPs can remove testosterone in biologic samples, human LNCaP (androgen-dependent) and C4-2 (androgen-independent) prostate cancer cells were selected as cell models. The translocation of androgen receptor (AR) was detected by immunofluorescence assay, and the expression of PSA mRNA was detected by real-time quantitative polymerase chain reaction analysis. Cell flow cytometry analysis was performed to detect cell cycle arrest. The synthesized nanomaterials (MMIPs) possessed high crystallinity, satisfactory superparamagnetic properties, and uniform imprinted shell, and exhibited high adsorption capacity, fast kinetics, and high selectivity for testosterone. Moreover, the obtained imprinted nanomaterials could selectively enrich and detect testosterone in the LNCaP cell samples as a solid-phase extractant coupled with high-performance liquid chromatography. In addition, the MMIPs could freely enter prostate cancer cells and suppress the translocation of AR into the cell nucleus. We further found that MMIPs inhibited upregulation of AR downstream target genes in LNCaP and C4-2 cells; also, MMIPs inhibited cell growth and induced obvious cell cycle arrest in androgen-dependent LNCaP cells, but had no obvious effect on androgen-independent C4-2 cells. Our results indicate that the obtained imprinted nanomaterials can specifically and effectively bind testosterone and recover it from prostate cancer cells. Moreover, the MMIPs can freely enter prostate cancer cells and block the activation of testosterone-AR pathway. Thus, the MMIPs may be a new option for antiandrogen therapy in prostate cancer.
NASA Astrophysics Data System (ADS)
Lazar, Daniel C.; Cho, Edward H.; Luttgen, Madelyn S.; Metzner, Thomas J.; Loressa Uson, Maria; Torrey, Melissa; Gross, Mitchell E.; Kuhn, Peter
2012-02-01
Many important experiments in cancer research are initiated with cell line data analysis due to the ease of accessibility and utilization. Recently, the ability to capture and characterize circulating tumor cells (CTCs) has become more prevalent in the research setting. This ability to detect, isolate and analyze CTCs allows us to directly compare specific protein expression levels found in patient CTCs to cell lines. In this study, we use immunocytochemistry to compare the protein expression levels of total cytokeratin (CK) and androgen receptor (AR) in CTCs and cell lines from patients with prostate cancer to determine what translational insights might be gained through the use of cell line data. A non-enrichment CTC detection assay enables us to compare cytometric features and relative expression levels of CK and AR by indirect immunofluorescence from prostate cancer patients against the prostate cancer cell line LNCaP. We measured physical characteristics of these two groups and observed significant differences in cell size, fluorescence intensity and nuclear to cytoplasmic ratio. We hope that these experiments will initiate a foundation to allow cell line data to be compared against characteristics of primary cells from patients.
Cell cycle-coupled expansion of AR activity promotes cancer progression.
McNair, C; Urbanucci, A; Comstock, C E S; Augello, M A; Goodwin, J F; Launchbury, R; Zhao, S G; Schiewer, M J; Ertel, A; Karnes, J; Davicioni, E; Wang, L; Wang, Q; Mills, I G; Feng, F Y; Li, W; Carroll, J S; Knudsen, K E
2017-03-23
The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle ('Cell Cycle Common'), versus those that were specifically enriched in a subset of cell cycle phases ('Phase Restricted'). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide desaturase 1 was identified as an AR-regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention.
Qi, Wenqing; Morales, Carla; Cooke, Laurence S; Johnson, Benny; Somer, Bradley; Mahadevan, Daruka
2015-12-08
Gain-of-function of the androgen receptor (AR) and activation of PI3K/AKT/mTOR pathway have been demonstrated to correlate with progression to castration-resistant prostate cancer (CRPC). However, inhibition of AR or PI3K/mTOR alone results in a reciprocal feedback activation. Therefore, we hypothesized that dual inhibition of the AR and PI3K/mTOR pathway might lead to a synergistic inhibition of cell growth and overcome drug resistance in CRPC. Here, we reported that androgen-depletion increased AR protein level and Akt phosphorylation at Ser473 and Thr308 in LNCaP cells. Moreover, we developed resistance cell lines of LNCaP to Enzalutamide (or MDV3100), an AR inhibitor (named as LNCaP 'MDV-R') and PF-04691502, a PI3K/mTOR inhibitor (named as LNCaP 'PF-R'). MTS analysis showed that LNCaP 'PF-R' was strongly resistant to Enzalutamide treatment, and on the other hand, LNCaP 'MDV-R' was 6-fold resistant to PF-04691502 treatment. Mechanistically, LNCaP 'MDV-R' cells had significantly reduced AR, loss of PSA and increase Akt activity in contrast with LNCaP 'PF-R' cells. Combined inhibition of PI3K/mTOR and AR pathways with a variety of small molecular inhibitors led to a synergistic suppression of cell proliferation and a profound increase of apoptosis and cell cycle arrest in both androgen-dependent LNCaP and independent CRPC 22Rv1 cell lines. In conclusion, this study provides preclinical proof-of-concept that the combination of a PI3K/mTOR inhibitor with an AR inhibitor results in a synergistic anti-tumor response in non-CRPC and CRPC models.
Dejima, Takashi; Imada, Kenjiro; Takeuchi, Ario; Shiota, Masaki; Leong, Jeffrey; Tombe, Tabitha; Tam, Kevin; Fazli, Ladan; Naito, Seiji; Gleave, Martin E; Ong, Christopher J
2017-02-01
LIM and SH3 domain protein 1 (LASP1) has been implicated in several human malignancies and has been shown to predict PSA recurrence in prostate cancer. However, the anti-tumor effect of LASP1 knockdown and the association between LASP1 and the androgen receptor (AR) remains unclear. The aim of this study is to clarify the significance of LASP1 as a target for prostate cancer, and to test the effect of silencing LASP1 in vivo using antisense oligonucleotides (ASO). A tissue microarray (TMA) was performed to characterize the differences in LASP1 expression in prostate cancer treated after hormone deprivation therapy. Flow cytometry was used to analyze cell cycle. We designed LASP1 ASO for knockdown of LASP1 in vivo studies. The expression of LASP1 in TMA was increased after androgen ablation and persisted in castration resistant prostate cancer (CRPC). Also in TMA, compared with LNCaP cell, LASP1 expression is elevated in CRPC cell lines (C4-2 and VehA cells). Interestingly, suppression of AR elevated LASP1 expression conversely, AR activation decreased LASP1 expression. Silencing of LASP1 reduced cell growth through G1 arrest which was accompanied by a decrease of cyclin D1. Forced overexpression of LASP1 promoted cell cycle and induced cell growth which was accompanied by an increase of cyclin D1. Systemic administration of LASP1 ASO with athymic mice significantly inhibited tumor growth in CRPC xenografts. These results indicate that LASP1 is negatively regulated by AR at the transcriptional level and promotes tumor growth through induction of cell cycle, ultimately suggesting that LASP1 may be a potential target in prostate cancer treatment. Prostate 77:309-320, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hsu, C Y; Sulake, R S; Huang, P-K; Shih, H-Y; Sie, H-W; Lai, Y-K; Chen, C; Weng, C F
2015-01-01
The fungal product (+)-antroquinonol activates AMP kinase (AMPK) activity in cancer cell lines. The present study was conducted to examine whether chemically synthesized (+)-antroquinonol exhibited beneficial metabolic effects in insulin-resistant states by activating AMPK and inhibiting dipeptidyl peptidase IV (DPP IV) activity. Effects of (+)-antroquinonol on DPP IV activity were measured with a DPPIV Assay Kit and effects on GLP-1-induced PKA were measured in AR42J cells. Translocation of the glucose transporter 4, GLUT4, induced either by insulin-dependent PI3K/AKT signalling or by insulin-independent AMPK activation, was assayed in differentiated myotubes. Glucose uptake and GLUT4 translocation were assayed in L6 myocytes. Mice with diet-induced obesity were used to assess effects of acute and chronic treatment with (+)-antroquinonol on glycaemic control in vivo. The results showed that of (+)-antroquinonol (100 μM ) inhibited the DPP IV activity as effectively as the clinically used inhibitor, sitagliptin. The phosphorylation of AMPK Thr(172) in differentiated myotubes was significantly increased by (+)-antroquinonol. In cells simultaneously treated with S961 (insulin receptor antagonist), insulin and (+)-antroquinonol, the combination of (+)-antroquinonol plus insulin still increased both GLUT4 translocation and glucose uptake. Further, (+)-antroquinonol and sitagliptin reduced blood glucose, when given acutely or chronically to DIO mice. Chemically synthesized (+)-antroquinonol exhibits dual effects to ameliorate insulin resistance, by increasing AMPK activity and GLUT4 translocation, along with inhibiting DPP IV activity. © 2014 The British Pharmacological Society.
Overcoming CRPC Treatment Resistance via Novel Dual AKR1C3 Targeting
2017-10-01
We therefore characterized another drug resistant line from C4-2B cells, C4-2B AbiR cells. C4-2B AbiR cells were resistant to Abi acetate in a...Testosterone level in C4-2B AbiR cell was 12 pg/50 million cells, similar to that in C4-2B MDVR or LNCaP-AKR1C3 cells. With the single drug resistant...cell lines on hand, we tested for their cross- resistance to Enza and Abi. While the parental line was sensitive to both drugs , the resistant lines
Harada, Kazuki; Kitaguchi, Tetsuya; Tsuboi, Takashi
2015-05-15
Adrenaline reacts with three types of adrenergic receptors, α1, α2 and β-adrenergic receptors (ARs), inducing many physiological events including exocytosis. Although adrenaline has been shown to induce glucagon-like peptide-1 (GLP-1) secretion from intestinal L cells, the precise molecular mechanism by which adrenaline regulates GLP-1 secretion remains unknown. Here we show by live cell imaging that all types of adrenergic receptors are stimulated by adrenaline in enteroendocrine L cell line GLUTag cells and are involved in GLP-1 exocytosis. We performed RT-PCR analysis and found that α1B-, α2A-, α2B-, and β1-ARs were expressed in GLUTag cells. Application of adrenaline induced a significant increase of intracellular Ca(2+) and cAMP concentration ([Ca(2+)]i and [cAMP]i, respectively), and GLP-1 exocytosis in GLUTag cells. Blockade of α1-AR inhibited adrenaline-induced [Ca(2+)]i increase and exocytosis but not [cAMP]i increase, while blockade of β1-AR inhibited adrenaline-induced [cAMP]i increase and exocytosis but not [Ca(2+)]i increase. Furthermore, overexpression of α2A-AR suppressed the adrenaline-induced [cAMP]i increase and exocytosis. These results suggest that the fine-turning of GLP-1 secretion from enteroendocrine L cells is established by the balance between α1-, α2-, and β-ARs activation. Copyright © 2015 Elsevier Inc. All rights reserved.
Zekri, Ali; Ghaffari, Seyed H; Ghanizadeh-Vesali, Samad; Yaghmaie, Marjan; Salmaninejad, Arash; Alimoghaddam, Kamran; Modarressi, Mohammad H; Ghavamzadeh, Ardeshir
2015-02-01
Prostate cancer is the frequent non-cutaneous tumor with high mortality in men. Prostate tumors contain cells with different status of androgen receptor. Androgen receptor plays important roles in progression and treatment of prostate cancer. Aurora B kinase, with oncogenic potential, is involved in chromosome segregation and cytokinesis, and its inhibition is a promising anti-cancer therapy. In the present study, we aimed to investigate the effects of Aurora B inhibitor, AZD1152-HQPA, on survival and proliferation of androgen receptor (AR)-positive prostate cancer cells. LNCaP was used as androgen-dependent prostate cancer cell line. We explored the effects of AZD1152-HQPA on cell viability, DNA content, micronuclei formation, and expression of genes involved in apoptosis and cell cycle. Moreover, the expression of Aurora B and AR were investigated in 23 benign prostatic hyperplasia and 38 prostate cancer specimens. AZD1152-HQPA treatment induced defective cell survival, polyploidy, and cell death in LNCaP cell line. Centromeric labeling with fluorescence in situ hybridization (FISH) showed that the loss of whole chromosomes is the origin of micronuclei, indicating on aneugenic action of AZD1152-HQPA. Treatment of AZD1152-HQPA decreased expression of AR. Moreover, we found weak positive correlations between the expression of Aurora B and AR in both benign prostatic hyperplasia and prostate cancer specimens (r = 0.25, r = 0.41). This is the first time to show that AZD1152-HQPA can be a useful therapeutic strategy for the treatment of androgen-dependent prostate cancer cell line. AZD1152-HQPA induces aneugenic mechanism of micronuclei production. Taken together, this study provides new insight into the direction to overcome the therapeutic impediments against prostate cancer.
Expression of the cancer-testis antigen BORIS correlates with prostate cancer.
Cheema, Zubair; Hari-Gupta, Yukti; Kita, Georgia-Xanthi; Farrar, Dawn; Seddon, Ian; Corr, John; Klenova, Elena
2014-02-01
BORIS, a paralogue of the transcription factor CTCF, is a member of the cancer-testis antigen (CT) family. BORIS is normally present at high levels in the testis; however it is aberrantly expressed in various tumors and cancer cell lines. The main objectives of this study were to investigate BORIS expression together with sub-cellular localization in both prostate cell lines and tumor tissues, and assess correlations between BORIS and clinical/pathological characteristics. We examined BORIS mRNA expression, protein levels and cellular localization in a panel of human prostate tissues, cancer and benign, together with a panel prostate cell lines. We also compared BORIS levels and localization with clinical/pathological characteristics in prostate tumors. BORIS was detected in all inspected prostate cancer cell lines and tumors, but was absent in benign prostatic hyperplasia. Increased levels of BORIS protein positively correlated with Gleason score, T-stage and androgen receptor (AR) protein levels in prostate tumors. The relationship between BORIS and AR was further highlighted in prostate cell lines by the ability of ectopically expressed BORIS to activate the endogenous AR mRNA and protein. BORIS localization in the nucleus plus cytoplasm was also associated with higher BORIS levels and Gleason score. Detection of BORIS in prostate tumors suggests potential applications of BORIS as a biomarker for prostate cancer diagnosis, as an immunotherapy target and, potentially, a prognostic marker of more aggressive prostate cancer. The ability of BORIS to activate the AR gene indicates BORIS involvement in the growth and development of prostate tumors. © 2013 Wiley Periodicals, Inc.
Guo, Yunjun; Ferdani, Riccardo; Anderson, Carolyn J.
2014-01-01
Somatostatin receptors (SSTr) are overexpressed in a wide range of neuroendocrine tumors, making them excellent targets for nuclear imaging and therapy, and radiolabeled somatostatin analogues have been investigated for positron emission tomography imaging and radionuclide therapy of SSTr-positive tumors, especially of the subtype-2 (SSTr2). The aim of this study was to develop a somatostatin analogue, Tyr3-octreotate (Y3-TATE), conjugated to a novel cross-bridged macrocyclic chelator, 11-carboxymethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4-methanephosphonic acid (CB-TE1A1P). Unlike traditional cross-bridged macrocycles, such as 4, 11 - bis (carboxymethyl) - 1, 4, 8, 11 -etraazabicyclo[6.6.2]hexadecane (CB-TE2A), CB-TE1A1P-Y3-TATE was radiolabeled with 64Cu in high purity and high specific activity using mild conditions. Saturation binding assays revealed that 64Cu-CB-TE1A1P-Y3-TATE had comparable binding affinity but bound to more binding sites in AR42J rat pancreatic tumor cell membranes than 64Cu-CB-TE2A-Y3-TATE. Both radiopharmaceuticals showed comparable uptake in SSTr2 positive tissues in AR42J tumor-bearing rats. 64Cu-CB-TE1A1PY3- TATE demonstrated improved blood clearance compared to 64Cu-CB-TE2A-Y3-TATE, as the tumor/blood ratios of 64Cu-CB-TE1A1P-Y3-TATE were shown to be significantly higher than those of 64Cu-CB-TE2A-Y3-TATE at 4 and 24 h postinjection. 64Cu-CB-TE1A1P-Y3-TATE, in spite of a relatively high kidney uptake, accumulated less in nontarget organs such as liver, lung, and bone. Small animal PET/CT imaging of 64Cu-CB-TE1A1P-Y3-TATE in AR42J tumor bearing rats validated significant uptake and good contrast in the tumor. This study suggests that CB-TE1A1P is a promising bifunctional chelator for 64Cu-labeled for Y3-TATE, owing to high binding affinity and target tissue uptake, the ability to radiolabel the agent at lower temperatures, and improved tumor/nontarget organ ratios over 64Cu-CB-TE2A-Y3-TATE. PMID:22663248
Markowski, Mark C; Silberstein, John L; Eshleman, James R; Eisenberger, Mario A; Luo, Jun; Antonarakis, Emmanuel S
2017-01-01
A splice variant of the androgen receptor, AR-V7, confers resistance to AR-targeted therapies (ATTs) but not taxane chemotherapies in patients with metastatic castration-resistant prostate cancer. Since August 2015, a clinical-grade assay to detect AR-V7 messenger RNA expression in circulating tumors cells (CTCs) has been available to providers through a Clinical Laboratory Improvement Amendments-certified laboratory at Johns Hopkins University. We contacted ordering providers of the first 150 consecutive tests by using a questionnaire-based survey to determine how the results of AR-V7 testing were used to influence clinical practice. In all, 142 (95%) of 150 questionnaires were completed by 38 providers from 29 sites across the United States and Canada. AR-V7 test results were reported either as CTC- (28%), CTC+/AR-V7- (30%), or CTC+/AR-V7+ (42%). Prevalence of AR-V7 detection increased with prior exposure to ATTs (abiraterone and enzalutamide naïve, 22%; after abiraterone or enzalutamide, 35%; after abiraterone and enzalutamide, 43%). Overall, management was affected by AR-V7 testing in 53% of the patients and even more often with CTC+/AR-V7+ results. AR-V7+ patients were commonly switched from ATT to taxane chemotherapy (43%) or were offered a clinical trial (43%); management remained unchanged in only 14% of these patients. Overall, patients who had a change in management on the basis of AR-V7 testing were significantly more likely to achieve a physician-reported 50% decline in prostate-specific antigen response on next-line therapy than those who did not change treatment (54% v 31%; P = .015). Providers used AR-V7 testing to influence clinical decision making more often than not. Physicians reported thatmenwithAR-V7+results had the most treatment changes, and such men were preferentially managed with taxane therapy or offered a clinical trial, which may have improved outcomes.
Deregulation of miRNAs Contributes to Development and Progression of Prostate Cancer
2012-09-01
p14ARF gene were co-transfected with miR-125b into LNCaP cells. Cotransfection resulted in approximately 50% reduction of the enzyme activity (Fig...Figure3. Downregulation of miR-125b activity induces apoptosis in p53-null CaP cells. A) Western blot analysis of p14ARF and...miR-124-mediated downregulation of the AR affects the AR activity , both AR- positive LNCaP and C4-2B were treated with miR-124 mimic. Western blot
2004-12-01
regulations of the United States Government and the University of Michigan. If the descriptive paragraph indicates that a "Comprehensive Written" informed...tumor samples expressing >50% AR and 41.5% (100/265) expressing % AR. Overall expression of AR was down regulated with median AR expression of...A. et al. Cancer statistics, 2003. CA Cancer J Clin 53, 5-26 (2003). 2. Rubin, M.A. et al. Rapid ("warm") autopsy study for procurement of
Relating Androgen Receptor Conformation to Function in Prostate Cancer Cells
2005-01-01
line development , but have made progress towards resolving these issues and in development of alternate strategies. Task 1. Development of AR and...conformation. Task 2. Development of LNCaP Cells to Express Human AR mutants. We experienced unexpected difficulties in Task 2. We transfected the TET...Coactivators in AR Transactivation Summary Androgens drive sex differentiation, bone and muscle development , and promote growth of hormone dependent cancers
Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T
2010-01-01
The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.
1979-07-01
ARo 1lQ=4,!l1*4TJ 14 152 A; ’AI = 42;k-A\\RD I I t4T j,!. APZVA 42; AAP INT62etO C CH ECK F Pi L~& C CAL Ir #AT I 10k AN%. INT C4 213 I1 08’-- 1L T.A...TC 15.e Lu T%;34J 15C AkRA~kLA INTG235O AR2RJaAA c1k INTO)2j63 15 i 16sA2-ji’sj 14 TC23 I -AA%Arc2A kP2 N f~..e4 J C Ch ECK FC ; L Cv k r 6AL IF... ECK # FOR IAI1k4tJIAT IR1sMT INTERSECTIONtEVALJATE IF RECJIAEU IIT c _c 51 182 JFIIS9..NE.1J) C) T-1 IC2 INTJ;060 * ASoxi INJ TL3C iC GO TOJ I 14- 3
Nuclear Data Sheets for A = 42
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jun; Singh, Balraj
The experimental data are evaluated for known nuclides of mass number A = 42 (Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr). Detailed evaluated level properties and related information are presented, including adopted values of level and γ–ray energies, decay data (energies, intensities and placement of radiations), and other spectroscopic data. This work supersedes earlier full evaluations of A = 42 published by B. Singh, J.A. Cameron – Nucl.Data Sheets 92, 1 (2001) and P.M. Endt – Nucl. Phys. A521, 1 (1990); Errata and Addenda Nucl. Phys. A529, 763 (1991); Errata Nucl. Phys. A564, 609 (1993)more » (also P.M. Endt – Nucl. Phys. A633, 1 (1998) update). No excited states are known in {sup 42}Al, {sup 42}P, {sup 42}V and {sup 42}Cr, and structure information for {sup 42}Si and {sup 42}S is quite limited. There are no decay schemes available for the decay of {sup 42}Al, {sup 42}Si, {sup 42}P, {sup 42}V and {sup 42}Cr, while the decay schemes of {sup 42}Cl and {sup 42}Ti are incomplete in view of scarcity of data, and large gap between their Q–values and the highest energy levels populated in corresponding daughter nuclei. Structures of {sup 42}Ca, {sup 42}K, {sup 42}Sc and {sup 42}Ar nuclides remain the most extensively studied via many different nuclear reactions and decays.« less
Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.
Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T
2013-12-13
Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.
Teng, F; Xu, Z Y; Lyu, H; Wang, Y P; Wang, L J; Huang, T; Sun, J C; Zhu, H T; Ni, Y X; Cheng, X D
2018-02-23
Objective: To investigate the effect of triptolide, a specific inhibitor of heat shock protein 70 (HSP70), on apatinib resistance in gastric cancer cells line MKN45. Methods: The apatinib-resistant cells (MKN45/AR) and MKN45 parental cells were treated with apatinib, triptolide and apatinib combined with triptolide, respectively. CCK-8 assay was performed to determine the half maximal inhibitory concentration (IC(50)) of MKN45/AR and MKN45 cells in the presence of different treatment. The mRNA expression of heat shock protein gene (HSPA1A and HSPA1B) was detected by RT-PCR, while the protein expression of heat shock protein 70 was analyzed using Western blot in MKN45/AR and MKN45 cells. Results: The IC(50) values of apatinib-sensitive and apatinib-resistant MKN45 cells were 10.411 μmol/L and 70.527 μmol/L, respectively, showing a significant difference ( P <0.05). The mRNA expression of HSPA1A and HSPA1B in MKN45/AR cells was significantly higher than that in MKN45 cells ( P <0.001). The protein expression of heat shock protein 70 was significantly decreased after 0.25 μmol/L triptolide treatment in MKN45/AR cells ( P <0.01). When heat shock protein 70 was inhibited by triptolide, the IC(50) value of apatinib in MKN45/AR cells was reduced to 11.679 μmol/L, which was significantly lower than cells treated with apatinib alone ( P <0.05). Conclusions: The apatinib-resistant MKN45 cells have high levels of heat shock protein 70. Low doses of triptolide can significantly inhibit heat shock protein 70, leading to reverse the resistance phenotype of MKN45/AR cells. Therefore, inhibition of heat shock protein 70 provides a new therapy strategy for patients with apatinib resistance.
NASA Astrophysics Data System (ADS)
Velino, Biagio; Melandri, Sonia; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther
2000-01-01
The free-jet millimeter-wave absorption spectrum of 1,1-difluoroethane-Ar is reported. Most of the measured lines are split due to internal rotation of the methyl group and the tunnelling motion of Ar connecting two equivalent potential energy minima. The Ar atom, close to the CHF 2 group, eclipses one of the methylic hydrogens in the symmetryless geometry of the complex, reducing in this way the barrier to the internal rotation of the methyl group with respect to isolated 1,1-difluoroethane. For high J levels the distance of Ar from the molecule increases, however, due to the centrifugal distortion, and the barrier increases towards the value for 1,1-difluoroethane.
NASA Astrophysics Data System (ADS)
Sur, Ritobrata; Spearrin, R. Mitchell; Peng, Wen Y.; Strand, Christopher L.; Jeffries, Jay B.; Enns, Gregory M.; Hanson, Ronald K.
2016-05-01
We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5-967.5 cm-1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.
Ablett, Matthew P; O'Brien, Ciara S; Sims, Andrew H; Farnie, Gillian; Clarke, Robert B
2014-02-15
C-X-C chemokine receptor type 4 (CXCR4) is known to regulate lung, pancreatic and prostate cancer stem cells. In breast cancer, CXCR4 signalling has been reported to be a mediator of metastasis, and is linked to poor prognosis. However its role in normal and malignant breast stem cell function has not been investigated. Anoikis resistant (AR) cells were collected from immortalised (MCF10A, 226L) and malignant (MCF7, T47D, SKBR3) breast cell lines and assessed for stem cell enrichment versus unsorted cells. AR cells had significantly higher mammosphere forming efficiency (MFE) than unsorted cells. The AR normal cells demonstrated increased formation of 3D structures in Matrigel compared to unsorted cells. In vivo, SKBR3 and T47D AR cells had 7- and 130-fold enrichments for tumour formationrespectively, compared with unsorted cells. AR cells contained significantly elevated CXCR4 transcript and protein levels compared to unsorted cells. Importantly, CXCR4 mRNA was higher in stem cell-enriched CD44+/CD24- patient-derived breast cancer cells compared to non-enriched cells. CXCR4 stimulation by its ligand SDF-1 reduced MFE of the normal breast cells lines but increased the MFE in T47D and patient-derived breast cancer cells. CXCR4 inhibition by AMD3100 increased stem cell activity but reduced the self-renewal capacity of the malignant breast cell line T47D. CXCR4+ FACS sorted MCF7 cells demonstrated a significantly increased MFE compared with CXCR4- cells. This significant increase in MFE was further demonstrated in CXCR4 over-expressing MCF7 cells which also had an increase in self-renewal compared to parental cells. A greater reduction in self-renewal following CXCR4 inhibition in the CXCR4 over-expressing cells compared with parental cells was also observed. Our data establish for the first time that CXCR4 signalling has contrasting effects on normal and malignant breast stem cell activity. Here, we demonstrate that CXCR4 signalling specifically regulates breast cancer stem cell activities and may therefore be important in tumour formation at the sites of metastases.
Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells
Bolton, Eric C.
2015-01-01
The androgen receptor (AR) mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT). However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR), and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK) complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation. PMID:26372468
Ono, Hiroyuki; Saitsu, Hirotomo; Horikawa, Reiko; Nakashima, Shinichi; Ohkubo, Yumiko; Yanagi, Kumiko; Nakabayashi, Kazuhiko; Fukami, Maki; Fujisawa, Yasuko; Ogata, Tsutomu
2018-02-02
Although partial androgen insensitivity syndrome (PAIS) is caused by attenuated responsiveness to androgens, androgen receptor gene (AR) mutations on the coding regions and their splice sites have been identified only in <25% of patients with a diagnosis of PAIS. We performed extensive molecular studies including whole exome sequencing in a Japanese family with PAIS, identifying a deep intronic variant beyond the branch site at intron 6 of AR (NM_000044.4:c.2450-42 G > A). This variant created the splice acceptor motif that was accompanied by pyrimidine-rich sequence and two candidate branch sites. Consistent with this, reverse transcriptase (RT)-PCR experiments for cycloheximide-treated lymphoblastoid cell lines revealed a relatively large amount of aberrant mRNA produced by the newly created splice acceptor site and a relatively small amount of wildtype mRNA produced by the normal splice acceptor site. Furthermore, most of the aberrant mRNA was shown to undergo nonsense mediated decay (NMD) and, if a small amount of aberrant mRNA may have escaped NMD, such mRNA was predicted to generate a truncated AR protein missing some functional domains. These findings imply that the deep intronic mutation creating an alternative splice acceptor site resulted in the production of a relatively small amount of wildtype AR mRNA, leading to PAIS.
Chua, Chee Wai; Epsi, Nusrat J; Leung, Eva Y; Xuan, Shouhong; Lei, Ming; Li, Bo I; Bergren, Sarah K; Hibshoosh, Hanina; Mitrofanova, Antonina
2018-01-01
Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor cell that functions in prostate regeneration. Using genetically--engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras in AR-deleted CARNs result in tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer. PMID:29334357
Wadas, Thaddeus J; Eiblmaier, Martin; Zheleznyak, Alexander; Sherman, Christopher D; Ferdani, Riccardo; Liang, Kexian; Achilefu, Samuel; Anderson, Carolyn J
2008-11-01
Recently, the somatostatin receptor subtype 2 (SSTR2) selective antagonist sst2-ANT was determined to have a high affinity for SSTR2. Additionally, 111In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-sst2-ANT showed high uptake in an SSTR2-transfected, tumor-bearing mouse model and suggested that radiolabeled SSTR2 antagonists may be superior to agonists for imaging SSTR2-positive tumors. This report describes the synthesis and evaluation of 64Cu-CB-4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-sst2-ANT (64Cu-CB-TE2A-sst2-ANT) as a PET radiopharmaceutical for the in vivo imaging of SSTR2-positive tumors. Receptor-binding studies were performed to determine the dissociation constant of the radiopharmaceutical 64Cu-CB-TE2A-sst2-ANT using AR42J rat pancreatic tumor cell membranes. The internalization of 64Cu-CB-TE2A-sst2-ANT was compared with that of the 64Cu-labeled agonist 64Cu-CB-TE2A-tyrosine3-octreotate (64Cu-CB-TE2A-Y3-TATE) in AR42J cells. Both radiopharmaceuticals were also compared in vivo through biodistribution studies using healthy rats bearing AR42J tumors, and small-animal PET/CT of 64Cu-CB-TE2A-sst2-ANT was performed. The dissociation constant value for the radiopharmaceutical was determined to be 26 +/- 2.4 nM, and the maximum number of binding sites was 23,000 fmol/mg. 64Cu-CB-TE2A-sst2-ANT showed significantly less internalization than did 64Cu-CB-TE2A-Y3-TATE at time points from 15 min to 4 h. Biodistribution studies revealed that the clearance of 64Cu-CB-TE2A-sst2-ANT from the blood was rapid, whereas the clearance of 64Cu-CB-TE2A-sst2-ANT from the liver and kidneys was more modest at all time points. Tumor-to-blood and tumor-to-muscle ratios were determined to be better for 64Cu-CB-TE2A-sst2-ANT than those for 64Cu-CB-TE2A-Y3-TATE at the later time points, although liver and kidney uptake was significantly higher. Small-animal imaging using 64Cu-CB-TE2A-sst2-ANT revealed excellent tumor-to-background contrast at 4 h after injection, and standardized uptake values remained high even after 24 h. The PET radiopharmaceutical 64Cu-CB-TE2A-sst2-ANT is an attractive agent, worthy of future study as a PET radiopharmaceutical for the imaging of somatostatin receptor-positive tumors.
Lyu, Shuhua; Liu, Han; Liu, Xia; Liu, Shan; Wang, Yahong; Yu, Qi; Niu, Yun
2017-10-01
The association between androgen-induced androgen receptor (AR) activating signal and microRNA (miR)-30a was investigated, as well as the function of miR-30a in estrogen receptor-negative (ER - ), progesterone receptor-negative (PR - ), and AR-positive (AR + ) MDA-MB-453 breast cancer cells. Androgen-induced AR activating signal upregulated the expression of AR, and downregulated the expression of miR-30a, b and c. Bioinformatics analysis indicated a putative miR-30a, b and c binding site in the 3'-untranslated region of AR mRNA. It was confirmed that the AR gene is a direct target of miR-30a, whereas AR does not target the miR-30a promoter, and AR activating signal may indirectly downregulate miR-30a through other cell signaling pathways. In this positive feedback mechanism AR is then upregulated through miR-30a. Overexpression of miR-30a inhibited cell proliferation, whereas inhibition of miR-30a expression by specific antisense oligonucleotides, increased cell growth. Previously, androgen-induced AR activating signal was demonstrated to inhibit cell proliferation in ER - , PR - and AR + MDA-MB-453 breast cancer cells, but AR activating signal downregulated the expression of miR-30a, relieving the inhibition of MDA-MB-453 cell growth. Therefore, in MDA-MB-453 breast cancer cells, miR-30a has two different functions regarding cell growth: Inhibition of cell proliferation through a positive feedback signaling pathway; and the relative promotion of cell proliferation through downregulation of miR-30a. Thus, the association between AR activating signal and microRNAs is complex, and microRNAs may possess different functions due to different signaling pathways. Although the results of the present study were obtained in one cell line, they contribute to subsequent studies on ER - , PR - and AR + breast cancer.
Robitaille, Christina N; Rivest, Patricia; Sanderson, J Thomas
2015-01-01
Several pesticides suspected or known to have endocrine disrupting effects were screened for pro- or antiandrogenic properties by determining their effects on proliferation, prostatic-specific antigen (PSA) secretion and androgen receptor (AR) expression, and AR phosphorylation in androgen-dependent LNCaP human prostate cancer cells, as well as on the expression and catalytic activity of the enzyme CYP17 in H295R human adrenocortical carcinoma cells, an in vitro model of steroidogenesis. Effects on SRD5A gene expression were determined in both cell lines. Benomyl, vinclozolin, and prochloraz, but not atrazine, concentration dependently (1-30 μM) decreased dihydrotestosterone (DHT)-stimulated proliferation of LNCaP cells. All pesticides except atrazine decreased DHT-stimulated PSA secretion, AR nuclear accumulation, and AR phosphorylation on serines 81 and 213 in LNCaP cells. Benomyl and prochloraz, but not vinclozolin or atrazine, decreased levels of CYP17 gene and protein expression, as well as catalytic activity in H295R cells. In the case of prochloraz, some of these effects corresponded with cytotoxicity. H295R cells expressed AR protein and SRD5A1, but not SRD5A2 transcripts. SRD5A1 gene expression in H295R cells was increased by 10 nM DHT, whereas in LNCaP cells significant induction was observed by 0.1 nM DHT. AR protein expression in H295R cells was not increased by DHT. Vinclozolin decreased DHT-induced SRD5A1 gene expression in LNCaP, but not H295R cells, indicating a functional difference of AR between the cell lines. In conclusion, pesticides may exert antiandrogenic effects through several mechanisms that are cell type-specific, including AR antagonism and down-regulation or catalytic inhibition of androgen biosynthetic enzymes, such as CYP17 and SRD5A1. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Modulation of Androgen Receptor Signaling in Hormonal Therapy-Resistant Prostate Cancer Cell Lines
Marques, Rute B.; Dits, Natasja F.; Erkens-Schulze, Sigrun; van IJcken, Wilfred F. J.; van Weerden, Wytske M.; Jenster, Guido
2011-01-01
Background Prostate epithelial cells depend on androgens for survival and function. In (early) prostate cancer (PCa) androgens also regulate tumor growth, which is exploited by hormonal therapies in metastatic disease. The aim of the present study was to characterize the androgen receptor (AR) response in hormonal therapy-resistant PC346 cells and identify potential disease markers. Methodology/Principal Findings Human 19K oligoarrays were used to establish the androgen-regulated expression profile of androgen-responsive PC346C cells and its derivative therapy-resistant sublines: PC346DCC (vestigial AR levels), PC346Flu1 (AR overexpression) and PC346Flu2 (T877A AR mutation). In total, 107 transcripts were differentially-expressed in PC346C and derivatives after R1881 or hydroxyflutamide stimulations. The AR-regulated expression profiles reflected the AR modifications of respective therapy-resistant sublines: AR overexpression resulted in stronger and broader transcriptional response to R1881 stimulation, AR down-regulation correlated with deficient response of AR-target genes and the T877A mutation resulted in transcriptional response to both R1881 and hydroxyflutamide. This AR-target signature was linked to multiple publicly available cell line and tumor derived PCa databases, revealing that distinct functional clusters were differentially modulated during PCa progression. Differentiation and secretory functions were up-regulated in primary PCa but repressed in metastasis, whereas proliferation, cytoskeletal remodeling and adhesion were overexpressed in metastasis. Finally, the androgen-regulated genes ENDOD1, MCCC2 and ACSL3 were selected as potential disease markers for RT-PCR quantification in a distinct set of human prostate specimens. ENDOD1 and ACSL3 showed down-regulation in high-grade and metastatic PCa, while MCCC2 was overexpressed in low-grade PCa. Conclusions/Significance AR modifications altered the transcriptional response to (anti)androgens in therapy-resistant cells. Furthermore, selective down-regulation of genes involved in differentiation and up-regulation of genes promoting proliferation and invasion suggest a disturbed balance between the growth and differentiation functions of the AR pathway during PCa progression. These findings may have implications in the current treatment and development of novel therapeutical approaches for metastatic PCa. PMID:21829708
Guseva, Natalya V; Rokhlin, Oskar W; Glover, Rebecca A; Cohen, Michael B
2011-07-01
A key player in prostate cancer development and progression is the androgen receptor (AR). Tumor-associated lipogenesis can protect cancer cells from carcinogenic- and therapeutic-associated treatments. Increased synthesis of fatty acids and cholesterol is regulated by androgens through induction of several genes in androgen-responsive cancer cells. Acetyl-CoA-carboxylase-α (ACCA) is a key enzyme in the regulation of fatty acids synthesis. Here we show that AR binds in vivo to intron regions of human ACCA gene. We also show that the level of ACCA protein in LNCaP depends on AR expression and that DHT treatment increases ACCA expression and fatty acid synthesis. Inhibition of ACCA by TOFA (5-tetradecyl-oxy-2-furoic acid) decreases fatty acid synthesis and induces caspase activation and cell death in most PCa cell lines. Our data suggest that TOFA can kill cells via the mitochondrial pathway since we found cytochrome c release after TOFA treatment in androgen sensitive cell lines. The results also imply that the pro-apoptotic effect of TOFA may be mediated via a decrease of neuropilin-1(NRP1) and Mcl-1expression. We have previously reported that Mcl-1 is under AR regulation and plays an important role in resistance to drug-induced apoptosis in prostate cancer cells, and NRP1 is known to regulate Mcl-1 expression. Here, we show for the first time that NRP1 expression is under AR control. Taken together, our data suggest that TOFA is a potent cell death inducing agent in prostate cancer cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Luo, Fei; Zhou, Ying
Benign prostatic hyperplasia (BPH) is one of the major disorders of the urinary system in elderly men. Docosahexaenoic acid (DHA) is the main component of n-3 polyunsaturated fatty acids (n-3 PUFAs) and has nerve protective, anti-inflammatory and tumour-growth inhibitory effects. Here, the therapeutic potential of DHA in treating BPH was investigated. Seal oil effectively prevented the development of prostatic hyperplasia induced by oestradiol/testosterone in a rat model by suppressing the increase of the prostatic index (PI), reducing the thickness of the peri-glandular smooth muscle layer, inhibiting the proliferation of both prostate epithelial and stromal cells, and downregulating the expression ofmore » androgen receptor (AR) and oestrogen receptor α (ERα). An in vitro study showed that DHA inhibited the growth of the human prostate stromal cell line WPMY-1 and the epithelial cell line RWPE-1 in a dose- and time-dependent manner. In both cell lines, the DHA arrested the cell cycle in the G2/M phase. In addition, DHA also reduced the expression of ERα and AR in the WPMY-1 and RWPE-1 cells. These results indicate that DHA inhibits the multiplication of prostate stromal and epithelial cells through a mechanism that may involve cell cycle arrest and the downregulation of ERα and AR expression. - Highlights: • Seal oil prevents oestradiol/testosterone (E2/T)-induced BPH in castrated rats. • Seal oil downregulates the expression of oestrogen receptor α(ERα) and androgen receptor (AR) in rat BPH tissues. • DHA inhibits the growth of human prostate stromal and epithelial cells in vitro. • DHA arrests human prostate stromal and epithelial cells in the G2/M phase and downregulates the expression of cyclin B1. • DHA inhibits the expression of ERα and AR in human prostate stromal and epithelial cells.« less
Celastrol Induces Autophagy by Targeting AR/miR-101 in Prostate Cancer Cells
Guo, Jianquan; Huang, Xuemei; Wang, Hui; Yang, Huanjie
2015-01-01
Autophagy is an evolutionarily conserved process responsible for the degradation and recycling of cytoplasmic components through autolysosomes. Targeting AR axis is a standard strategy for prostate cancer treatment; however, the role of AR in autophagic processes is still not fully understood. In the present study, we found that AR played a negative role in AR degrader celastrol-induced autophagy. Knockdown of AR in AR-positive prostate cancer cells resulted in enhanced autophagy. Ectopic expression of AR in AR-negative prostate cancer cells, or gain of function of the AR signaling in AR-positive cells, led to suppression of autophagy. Since miR-101 is an inhibitor of autophagy and its expression was decreased along with AR in the process of celastrol-induced autophagy, we hypothesize that AR inhibits autophagy through transactivation of miR-101. AR binding site was defined in the upstream of miR-101 gene by luciferase reporter and ChIP assays. MiR-101 expression correlated with AR status in prostate cancer cell lines. The inhibition of celastrol-induced autophagy by AR was compromised by blocking miR-101; while transfection of miR-101 led to inhibition of celastrol-induced autophagy in spite of AR depletion. Furthermore, mutagenesis of the AR binding site in miR-101 gene led to decreased suppression of autophagy by AR. Finally, autophagy inhibition by miR-101 mimic was found to enhance the cytotoxic effect of celastrol in prostate cancer cells. Our results demonstrate that AR inhibits autophagy via transactivation of miR-101, thus combination of miR-101 mimics with celastrol may represent a promising therapeutic approach for treating prostate cancer. PMID:26473737
NASA Astrophysics Data System (ADS)
Melandri, Sonia; Velino, Biagio; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther
2000-04-01
The van der Waals complex between Ar and 1,2-difluoroethane has been investigated by free-jet absorption millimeter-wave spectroscopy in the frequency range 60-78 GHz. The analysis of the spectroscopic constants derived from the rotational spectrum allowed the determination of the dimer's structure. 1,2-Difluoroethane is in the gauche conformation and the Ar atom is in a position stabilized by the interaction with one fluorine and the two carbon atoms. The distance between Ar and the center of mass (CM) of the monomer is 3.968 Å, the angle between the Ar-CM line and the C-C bond is 65° and the dihedral angle Ar-CM-C-C is 99°. From centrifugal distortion effects the dissociation energy of the complex has been estimated to be 2.1 kJ/mol.
Therapeutic targeting of sunitinib-induced AR phosphorylation in renal cell carcinoma.
Adelaiye-Ogala, Remi; Damayanti, Nur P; Orillion, Ashley R; Arisa, Sreevani; Chintala, Sreenivasulu; Titus, Mark A; Kao, Chinghai; Pili, Roberto
2018-03-23
Androgen receptor (AR) plays a crucial role in the development and progression of prostate cancer. AR expression has also been reported in other solid tumors, including renal cell carcinoma (RCC), but its biological role here remains unclear. Through integrative analysis of a reverse phase protein array (RPPA), we discovered increased expression of AR in an RCC patient-derived xenograft model of acquired resistance to the receptor tyrosine kinase inhibitor (RTKi) sunitinib. AR expression was increased in RCC cell lines with either acquired or intrinsic sunitinib resistance in vitro. An AR signaling gene array profiler indicated elevated levels of AR target genes in sunitinib-resistant cells. Sunitinib-induced AR transcriptional activity was associated with increased phosphorylation of serine 81 (pS81) on AR. Additionally, AR overexpression resulted in acquired sunitinib resistance, and the AR antagonist enzalutamide-induced AR degradation and attenuated AR downstream activity in sunitinib-resistant cells, also indicated by decreased secretion of human kallikrein 2 (KLK2). Enzalutamide-induced AR degradation was rescued by either proteasome inhibition or by knockdown of the AR ubiquitin ligase speckle-type POZ protein (SPOP). In vivo treatment with enzalutamide and sunitinib demonstrated that this combination efficiently induced tumor regression in an RCC model following acquired sunitinib resistance. Overall, our results suggest the potential role of AR as a target for therapeutic interventions, in combination with RTKi, to overcome drug resistance in RCC. Copyright ©2018, American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye
2014-01-01
We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.
Super Lorentzian effects on the wings of self-broadened HCl and of HCl diluted in Ar
NASA Astrophysics Data System (ADS)
Tran, H.; Hartmann, J.-M.; Li, G.; Ebert, V.
2017-02-01
Super-Lorentzian effects in the troughs between HCl lines were observed long time ago [Varanasi et al., J Quant Rad Transfer, Vol. 12, pag. 857, 1972]. The observed spectral shape was then modelled by using an empirical law and there was no explanation about the mechanisms underlying these super-Lorentzian effects. In this work, new spectra of pure HCl and HCl diluted in Ar have been measured using a high resolution Fourier Transform spectrometer, for pressure from 6 to 10 bars. Spectra of pure HCl and HCl in Ar have been also computed using classical molecular dynamics simulations (CMDS). First comparisons between CMDS-calculated spectra and measured ones, for regions at the troughs between HCl lines, show that the observed super-Lorentzian behaviour is correctly reproduced by the calculations. These results thus open the paths for the determination of the origin of these super-Lorentzian effects.
Kim, Yundeok; Eom, Ju-In; Jeung, Hoi-Kyung; Jang, Ji Eun; Kim, Jin Seok; Cheong, June-Won; Kim, Young Sam; Min, Yoo Hong
2015-07-01
We investigated the effects of the autophagy inhibitor hydroxychloroquine (HCQ) on cell death of cytosine arabinoside (Ara-C)-resistant human acute myeloid leukemia (AML) cells. Ara-C-sensitive (U937, AML-2) and Ara-C-resistant (U937/AR, AML-2/AR) human AML cell lines were used to evaluate HCQ-regulated cytotoxicity, autophagy, and apoptosis as well as effects on cell death-related signaling pathways. We found that HCQ-induced dose- and time-dependent cell death in Ara-C-resistant cells compared to Ara-C-sensitive cell lines. The extent of cell death and features of HCQ-induced autophagic markers including increase in microtubule-associated protein light chain 3 (LC3) I conversion to LC3-II, beclin-1, ATG5, as well as green fluorescent protein-LC3 positive puncta and autophagosome were remarkably greater in U937/AR cells. Also, p62/SQSTM1 was increased in response to HCQ. p62/SQSTM1 protein interacts with both LC3-II and ubiquitin protein and is degraded in autophagosomes. Therefore, a reduction of p62/SQSTM1 indicates increased autophagic degradation, whereas an increase of p62/SQSTM1 by HCQ indicates inhibited autophagic degradation. Knock down of p62/SQSTM1 using siRNA were prevented the HCQ-induced LC3-II protein level as well as significantly reduced the HCQ-induced cell death in U937/AR cells. Also, apoptotic cell death and caspase activation in U937/AR cells were increased by HCQ, provided evidence that HCQ-induced autophagy blockade. Taken together, our data show that HCQ-induced apoptotic cell death in Ara-C-resistant AML cells through autophagy regulation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Steely, Andrea M; Willoughby, Jamin A; Sundar, Shyam N; Aivaliotis, Vasiliki I; Firestone, Gary L
2017-10-01
Androgen receptor (AR) expression and activity is highly linked to the development and progression of prostate cancer and is a target of therapeutic strategies for this disease. We investigated whether the antimalarial drug artemisinin, which is a sesquiterpene lactone isolated from the sweet wormwood plant Artemisia annua, could alter AR expression and responsiveness in cultured human prostate cancer cell lines. Artemisinin treatment induced the 26S proteasome-mediated degradation of the receptor protein, without altering AR transcript levels, in androgen-responsive LNCaP prostate cancer cells or PC-3 prostate cancer cells expressing exogenous wild-type AR. Furthermore, artemisinin stimulated AR ubiquitination and AR receptor interactions with the E3 ubiquitin ligase MDM2 in LNCaP cells. The artemisinin-induced loss of AR protein prevented androgen-responsive cell proliferation and ablated total AR transcriptional activity. The serine/threonine protein kinase AKT-1 was shown to be highly associated with artemisinin-induced proteasome-mediated degradation of AR protein. Artemisinin treatment activated AKT-1 enzymatic activity, enhanced receptor association with AKT-1, and induced AR serine phosphorylation. Treatment of LNCaP cells with the PI3-kinase inhibitor LY294002, which inhibits the PI3-kinase-dependent activation of AKT-1, prevented the artemisinin-induced AR degradation. Furthermore, in transfected receptor-negative PC-3 cells, artemisinin failed to stimulate the degradation of an altered receptor protein (S215A/S792A) with mutations in its two consensus AKT-1 serine phosphorylation sites. Taken together, our results indicate that artemisinin induces the degradation of AR protein and disrupts androgen responsiveness of human prostate cancer cells, suggesting that this natural compound represents a new potential therapeutic molecule that selectively targets AR levels.
Stope, Matthias B; Schubert, Tina; Staar, Doreen; Rönnau, Cindy; Streitbörger, Andreas; Kroeger, Nils; Kubisch, Constanze; Zimmermann, Uwe; Walther, Reinhard; Burchardt, Martin
2012-06-01
Heat shock proteins (HSP) are involved in processes of folding, activation, trafficking and transcriptional activity of most steroid receptors including the androgen receptor (AR). Accumulating evidence links rising heat shock protein 27 (HSP27) levels with the development of castration-resistant prostate cancer. In order to study the functional relationship between HSP27 and the AR, we modulated the expression of the small heat shock protein HSP27 in human prostate cancer (PC) cell lines. HSP27 protein concentrations in LNCaP and PC-3 cells were modulated by over-expression or silencing of HSP27. The effects of HSP27 on AR protein and mRNA levels were monitored by Western blotting and quantitative RT-PCR. Treatment for the AR-positive LNCaP with HSP27-specific siRNA resulted in a down-regulation of AR levels. This down-regulation of protein was paralleled by a decrease in AR mRNA. Most interestingly, over-expression of HSP27 in PC-3 cells led to a significant increase in AR mRNA although the cells were unable to produce functional AR protein. The observation that HSP27 is involved in the regulation of AR mRNA by a yet unknown mechanism highlights the complexity of HSP27-AR signaling network.
Palomera-Sanchez, Zoraya; Watson, Gregory W; Wong, Carmen P; Beaver, Laura M; Williams, David E; Dashwood, Roderick H; Ho, Emily
2017-09-01
Androgen receptor (AR) is a transcription factor involved in normal prostate physiology and prostate cancer (PCa) development. 3,3'-Diindolylmethane (DIM) is a promising phytochemical agent against PCa that affects AR activity and epigenetic regulators in PCa cells. However, whether DIM suppresses PCa via epigenetic regulation of AR target genes is unknown. We assessed epigenetic regulation of AR target genes in LNCaP PCa cells and showed that DIM treatment led to epigenetic suppression of AR target genes involved in DNA repair (PARP1, MRE11, DNA-PK). Decreased expression of these genes was accompanied by an increase in repressive chromatin marks, loss of AR occupancy and EZH2 recruitment to their regulatory regions. Decreased DNA repair gene expression was associated with an increase in DNA damage (γH2Ax) and up-regulation of genomic repeat elements LINE1 and α-satellite. Our results suggest that DIM suppresses AR-dependent gene transcription through epigenetic modulation, leading to DNA damage and genome instability in PCa cells. Published by Elsevier Inc.
Kato, Taku; Yamamura, Soichiro; Tanaka, Yuichiro; Majid, Shahana; Saini, Sharanjot; Varahram, Shahryari; Kulkarni, Priyanka; Dasgupta, Pritha; Mitsui, Yozo; Sumida, Mitsuho; Tabatabai, Laura; Deng, Guoren; Kumar, Deepak; Dahiya, Rajvir
2017-01-01
African-Americans are diagnosed with more aggressive prostate cancers and have worse survival than Caucasians, however a comprehensive understanding of this health disparity remains unclear. To clarify the mechanisms leading to this disparity, we analyzed the potential involvement of miR-34b expression in African-Americans and Caucasians. miR-34b functions as a tumor suppressor and has a multi-functional role, through regulation of cell proliferation, cell cycle and apoptosis. We found that miR-34b expression is lower in human prostate cancer tissues from African-Americans compared to Caucasians. DNA hypermethylation of the miR-34b-3p promoter region showed significantly higher methylation in prostate cancer compared to normal samples. We then sequenced the promoter region of miR-34b-3p and found a chromosomal deletion in miR-34b in African-American prostate cancer cell line (MDA-PCA-2b) and not in Caucasian cell line (DU-145). We found that AR and ETV1 genes are differentially expressed in MDA-PCa-2b and DU-145 cells after overexpression of miR-34b. Direct interaction of miR-34b with the 3’ untranslated region of AR and ETV1 was validated by luciferase reporter assay. We found that miR-34b downregulation in African-Americans is inversely correlated with high AR levels that lead to increased cell proliferation. Overexpression of miR-34b in cell lines showed higher inhibition of cell proliferation, apoptosis and G1 arrest in the African-American cells (MDA-PCa-2b) compared to Caucasian cell line (DU-145). Taken together, our results show that differential expression of miR-34b and AR are associated with prostate cancer aggressiveness in African-Americans. PMID:28039468
Androgen receptor splice variants circumvent AR blockade by microtubule-targeting agents
Zhang, Guanyi; Liu, Xichun; Li, Jianzhuo; Ledet, Elisa; Alvarez, Xavier; Qi, Yanfeng; Fu, Xueqi; Sartor, Oliver; Dong, Yan; Zhang, Haitao
2015-01-01
Docetaxel-based chemotherapy is established as a first-line treatment and standard of care for patients with metastatic castration-resistant prostate cancer. However, half of the patients do not respond to treatment and those do respond eventually become refractory. A better understanding of the resistance mechanisms to taxane chemotherapy is both urgent and clinical significant, as taxanes (docetaxel and cabazitaxel) are being used in various clinical settings. Sustained signaling through the androgen receptor (AR) has been established as a hallmark of CRPC. Recently, splicing variants of AR (AR-Vs) that lack the ligand-binding domain (LBD) have been identified. These variants are constitutively active and drive prostate cancer growth in a castration-resistant manner. In taxane-resistant cell lines, we found the expression of a major variant, AR-V7, was upregulated. Furthermore, ectopic expression of two clinically relevant AR-Vs (AR-V7 and ARV567es), but not the full-length AR (AR-FL), reduced the sensitivities to taxanes in LNCaP cells. Treatment with taxanes inhibited the transcriptional activity of AR-FL, but not those of AR-Vs. This could be explained, at least in part, due to the inability of taxanes to block the nuclear translocation of AR-Vs. Through a series of deletion constructs, the microtubule-binding activity was mapped to the LBD of AR. Finally, taxane-induced cytoplasm sequestration of AR-FL was alleviated when AR-Vs were present. These findings provide evidence that constitutively active AR-Vs maintain the AR signaling axis by evading the inhibitory effects of microtubule-targeting agents, suggesting that these AR-Vs play a role in resistance to taxane chemotherapy. PMID:26160840
NASA Technical Reports Server (NTRS)
Pine, A. S.
1989-01-01
A differential broadening of the Lambda doublets in the v = 2-0 overtone band of the 2pi1/2 ground electronic state of NO in an Ar buffer gas has been observed by photoacoustic spectroscopy using a tunable color-center laser. The broadening coefficients for the f symmetry components are larger than for the e symmetry components by up to about 6 percent for J of about 16.5. This differential depends on J and vanishes at low J, implicating the anisotropy of the unpaired electron Pi orbital in the plane of rotation. The 2Pi3/2 transitions are slightly broader than the 2Pi1/2 as a result of spin-flipping collisional relaxation. The observed line shapes also exhibit collisional or Dicke narrowing due to velocity-changing collisions.
Tsai, Hui-Chi; Boucher, David L.; Martinez, Anthony; Tepper, Clifford G.; Kung, Hsing-Jien
2012-01-01
Recent studies identifying putative truncated androgen receptor isoforms with ligand-independent activity have shed new light on the acquisition of androgen depletion independent (ADI) growth of prostate cancer. In this study, we present a model system in which a C-terminally truncated variant of androgen receptor (TC-AR) is inducibly expressed in LNCaP, an androgen-dependent cell line, which expresses little truncated receptor. We observed that when TC-AR is overexpressed, the endogenous full length receptor (FL-AR) is transcriptionally downmodulated. This in essence allows us to “replace” FL-AR with TC-AR and compare their individual properties in exactly the same genetic and cellular background, which has not been performed before. We show that the TC-AR translocates to the nucleus, activates transcription of AR target genes in the absence of DHT and is sufficient to confer ADI growth to the normally androgen dependent LNCaP line. We also show that while there is significant overlap in the genes regulated by FL- and TC-AR there are also differences in the respective suites of target genes with each AR form regulating genes that the other does not. Among the genes uniquely activated by TC-AR is RHOB which is shown to be involved in the increased migration and morphological changes observed in LN/TC-AR, suggesting a role of RHOB in the regulation of androgen-independent behavior of prostate cancer cells. PMID:23209612
Tang, Xiping; Tang, Guodu; Liang, Zhihai; Qin, Mengbin; Fang, Chunyun; Zhang, Luyi
The study investigated the effects of endogenous targeted inhibition of ghrelin gene on inflammation and calcium pathway in an in vitro pancreatic acinar cell model of acute pancreatitis. Lentiviral expression vector against ghrelin gene was constructed and transfected into AR42J cells. The mRNA and protein expression of each gene were detected by reverse transcription polymerase chain reaction, Western blotting, or enzyme-linked immunosorbent assay. The concentration of intracellular calcium ([Ca]i) was determined by calcium fluorescence mark probe combined with laser scanning confocal microscopy. Compared with the control group, cerulein could upregulate mRNA and protein expression of inflammatory factors, calcium pathway, ghrelin, and [Ca]i. mRNA and protein expression of inflammatory factors increased significantly in cells transfected with ghrelin miRNA compared with the other groups. Intracellular calcium and expression of some calcium pathway proteins decreased significantly in cells transfected with ghrelin miRNA compared with the other groups. Targeted inhibition of ghrelin gene in pancreatic acinar cells of acute pancreatitis can upregulate the expression of the intracellular inflammatory factors and alleviate the intracellular calcium overload.
Zhu, Chunfang; Luong, Richard; Zhuo, Ming; Johnson, Daniel T.; McKenney, Jesse K.; Cunha, Gerald R.; Sun, Zijie
2011-01-01
The androgen signaling pathway, mediated through the androgen receptor (AR), is critical in prostate tumorigenesis. However, the precise role of AR in prostate cancer development and progression still remains largely unknown. Specifically, it is unclear whether overexpression of AR is sufficient to induce prostate tumor formation in vivo. Here, we inserted the human AR transgene with a LoxP-stop-loxP (LSL) cassette into the mouse ROSA26 locus, permitting “conditionally” activated AR transgene expression through Cre recombinase-mediated removal of the LSL cassette. By crossing this AR floxed strain with Osr1-Cre (odd skipped related) mice, in which the Osr1 promoter activates at embryonic day 11.5 in urogenital sinus epithelium, we generated a conditional transgenic line, R26hARloxP:Osr1-Cre+. Expression of transgenic AR was detected in both prostatic luminal and basal epithelial cells and is resistant to castration. Approximately one-half of the transgenic mice displayed mouse prostatic intraepithelial neoplasia (mPIN) lesions. Intriguingly, four mice (10%) developed prostatic adenocarcinomas, with two demonstrating invasive diseases. Positive immunostaining of transgenic AR protein was observed in the majority of atypical and tumor cells in the mPIN and prostatic adenocarcinomas, providing a link between transgenic AR expression and oncogenic transformation. An increase in Ki67-positive cells appeared in all mPIN and prostatic adenocarcinoma lesions of the mice. Thus, we demonstrated for the first time that conditional activation of transgenic AR expression by Osr1 promoter induces prostate tumor formation in mice. This new AR transgenic mouse line mimics the human disease and can be used for study of prostate tumorigenesis and drug development. PMID:21795710
Characterization of fibroblast-free CWR-R1ca castration-recurrent prostate cancer cell line.
Shourideh, Mojgan; DePriest, Adam; Mohler, James L; Wilson, Elizabeth M; Koochekpour, Shahriar
2016-09-01
The previously established CWR-R1 cell line has been used as an in vitro model representing castration-recurrent prostate cancer. Microscopic observation of subconfluent cells demonstrated two distinct cellular morphologies: polygonal closely aggregated epithelial cells surrounded by bipolar fibroblastic cells with long processes. This study sought to establish and characterize a fibroblast-free derivative of the CWR-R1 cell line. The CWR-R1ca cell line was established from CWR-R1 cells by removing fibroblasts using multiple cycles of short-term trypsinization, cloning, and pooling single-cell colonies. Authentication of fibroblast-free CWR-R1ca cells was demonstrated by analyzing the expression of cytodifferentiation and prostate-associated markers, DNA and cytogenetic profiling, and growth pattern in the absence or presence of androgen. CWR-R1ca is an androgen-sensitive cell line that expresses the androgen receptor (AR) and its splice variant 7 and the luminal epithelia markers, CK-8, CK-18, and c-Met. CWR-R1fb fibroblasts isolated from CWR-R1 cells express AR, hepatocyte growth factor-α, and mouse β-actin but not AR-V7 or epithelial markers. Cytogenetic analysis of CWR-R1ca cells revealed a hyperdiploid male with numerical gains in chromosomes 1, 7, 8, 10, 11, and 12, deletion of one chromosome 2 allele, structural abnormalities that include der(1)t(1:4), der(4)t(2:4), der(10)t(4:10), and an unbalanced reciprocal translocation between chromosome 6 and 14. DNA-profiling revealed that CWR-R1ca cells had significant short-tandem repeat marker homology with CWR22Pc and CWR22Rv1 cell lines, which indicated lineage derivation from CWR22 prostate cancer xenografts. CWR-R1ca cells were responsive to the growth stimulatory effects of dihydrotestosterone (DHT) in the femtomolar range. This study establishes CWR-R1ca cells as a fibroblast-free derivative of the castration-recurrent CWR-R1 cell line. Prostate 76:1067-1077, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
2003-04-01
any of the P interfering sources, and Hkt i (1) (P)] T is defined below. The P-variate vector = t kt , • t J consists of complex waveforms radiated by...line. More precisely, the (i, j ) t element of the matrix Hke is a complex 4-4 coefficient which is practically constant over the kth PRI, and is a...multivariate auto-regressive (AR) model of order n: Ykt + Z Bj Yk- j , t = tkt (25) j =l In the above equation, Bj are the M-variate matrices which are the
Kato, Yuiko; Ochiai, Kazuhiko; Kawakami, Shota; Nakao, Nobuhiro; Azakami, Daigo; Bonkobara, Makoto; Michishita, Masaki; Morimatsu, Masami; Watanabe, Masami; Omi, Toshinori
2017-06-09
The pathological condition of canine prostate cancer resembles that of human androgen-independent prostate cancer. Both canine and human androgen receptor (AR) signalling are inhibited by overexpression of the dimerized co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA), which is considered to cause the development of androgen-independency. Reduced expression in immortalised cells (REIC/Dkk-3) interferes with SGTA dimerization and rescues AR signalling. This study aimed to assess the effects of REIC/Dkk-3 and SGTA interactions on AR signalling in the canine androgen-independent prostate cancer cell line CHP-1. Mammalian two-hybrid and Halo-tagged pull-down assays showed that canine REIC/Dkk-3 interacted with SGTA and interfered with SGTA dimerization. Additionally, reporter assays revealed that canine REIC/Dkk-3 restored AR signalling in both human and canine androgen-independent prostate cancer cells. Therefore, we confirmed the interaction between canine SGTA and REIC/Dkk-3, as well as their role in AR signalling. Our results suggest that this interaction might contribute to the development of a novel strategy for androgen-independent prostate cancer treatment. Moreover, we established the canine androgen-independent prostate cancer model as a suitable animal model for the study of this type of treatment-refractory human cancer.
Fancher, Ashley T.; Hua, Yun; Camarco, Daniel P.; Close, David A.; Strock, Christopher J.
2016-01-01
Abstract The continued activation of androgen receptor (AR) transcription and elevated expression of AR and transcriptional intermediary factor 2 (TIF2) coactivator observed in prostate cancer (CaP) recurrence and the development of castration-resistant CaP (CRPC) support a screening strategy for small-molecule inhibitors of AR-TIF2 protein–protein interactions (PPIs) to find new drug candidates. Small molecules can elicit tissue selective effects, because the cells of distinct tissues express different levels and cohorts of coregulatory proteins. We reconfigured the AR-TIF2 PPI biosensor (PPIB) assay in the PC-3 CaP cell line to determine whether AR modulators and hits from an AR-TIF2 PPIB screen conducted in U-2 OS cells would behave differently in the CaP cell background. Although we did not observe any significant differences in the compound responses between the assay performed in osteosarcoma and CaP cells, the U-2 OS AR-TIF2 PPIB assay would be more amenable to screening, because both the virus and cell culture demands are lower. We implemented a testing paradigm of counter-screens and secondary hit characterization assays that allowed us to identify and deprioritize hits that inhibited/disrupted AR-TIF2 PPIs and AR transcriptional activation (AR-TA) through antagonism of AR ligand binding or by non-specifically blocking nuclear receptor trafficking. Since AR-TIF2 PPI inhibitor/disruptor molecules act distally to AR ligand binding, they have the potential to modulate AR-TA in a cell-specific manner that is distinct from existing anti-androgen drugs, and to overcome the development of resistance to AR antagonism. We anticipate that the application of this testing paradigm to characterize the hits from an AR-TIF2 PPI high-content screening campaign will enable us to prioritize the AR-TIF2 PPI inhibitor/disruptor leads that have potential to be developed into novel therapeutics for CaP and CRPC. PMID:27606620
Schayek, Hagit; Seti, Hila; Greenberg, Norman M; Sun, Shihua; Werner, Haim; Plymate, Stephen R
2010-07-29
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. 2010 Elsevier Ireland Ltd. All rights reserved.
Schayek, Hagit; Seti, Hila; Greenberg, Norman M.; Sun, Shihua; Werner, Haim; Plymate, Stephen R.
2010-01-01
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. PMID:20417685
Asangani, Irfan A; Wilder-Romans, Kari; Dommeti, Vijaya L; Krishnamurthy, Pranathi M; Apel, Ingrid J; Escara-Wilke, June; Plymate, Stephen R; Navone, Nora M; Wang, Shaomeng; Feng, Felix Y; Chinnaiyan, Arul M
2016-04-01
Next-generation antiandrogen therapies, such as enzalutamide and abiraterone, have had a profound impact on the management of metastatic castration-resistant prostate cancer (mCRPC). However, mCRPC patients invariably develop resistance to these agents. Here, a series of clonal cell lines were developed from enzalutamide-resistant prostate tumor xenografts to study the molecular mechanism of resistance and test their oncogenic potential under various treatment conditions. Androgen receptor (AR) signaling was maintained in these cell lines, which acquired potential resistance mechanisms, including expression of AR-variant 7 (AR-v7) and glucocorticoid receptor. BET bromodomain inhibitors were shown previously to attenuate AR signaling in mCRPC; here, we demonstrate the efficacy of bromodomain and extraterminal (BET) inhibitors in enzalutamide-resistant prostate cancer models. AR antagonists, enzalutamide, and ARN509 exhibit enhanced prostate tumor growth inhibition when combined with BET inhibitors, JQ1 and OTX015, respectively. Taken together, these data provide a compelling preclinical rationale to combine BET inhibitors with AR antagonists to subvert resistance mechanisms. Therapeutic combinations of BET inhibitors and AR antagonists may enhance the clinical efficacy in the treatment of mCRPC. http://mcr.aacrjournals.org/content/molcanres/14/4/324/F1.large.jpg ©2016 American Association for Cancer Research.
Hsu, C Y; Sulake, R S; Huang, P-K; Shih, H-Y; Sie, H-W; Lai, Y-K; Chen, C; Weng, C F
2015-01-01
BACKGROUND AND PURPOSE The fungal product (+)-antroquinonol activates AMP kinase (AMPK) activity in cancer cell lines. The present study was conducted to examine whether chemically synthesized (+)-antroquinonol exhibited beneficial metabolic effects in insulin-resistant states by activating AMPK and inhibiting dipeptidyl peptidase IV (DPP IV) activity. EXPERIMENTAL APPROACH Effects of (+)-antroquinonol on DPP IV activity were measured with a DPPIV Assay Kit and effects on GLP-1-induced PKA were measured in AR42J cells. Translocation of the glucose transporter 4, GLUT4, induced either by insulin-dependent PI3K/AKT signalling or by insulin-independent AMPK activation, was assayed in differentiated myotubes. Glucose uptake and GLUT4 translocation were assayed in L6 myocytes. Mice with diet-induced obesity were used to assess effects of acute and chronic treatment with (+)-antroquinonol on glycaemic control in vivo. KEY RESULTS The results showed that of (+)-antroquinonol (100 μM ) inhibited the DPP IV activity as effectively as the clinically used inhibitor, sitagliptin. The phosphorylation of AMPK Thr172 in differentiated myotubes was significantly increased by (+)-antroquinonol. In cells simultaneously treated with S961 (insulin receptor antagonist), insulin and (+)-antroquinonol, the combination of (+)-antroquinonol plus insulin still increased both GLUT4 translocation and glucose uptake. Further, (+)-antroquinonol and sitagliptin reduced blood glucose, when given acutely or chronically to DIO mice. CONCLUSIONS AND IMPLICATIONS Chemically synthesized (+)-antroquinonol exhibits dual effects to ameliorate insulin resistance, by increasing AMPK activity and GLUT4 translocation, along with inhibiting DPP IV activity. PMID:24977411
NASA Astrophysics Data System (ADS)
Dixit, Gopal; Deshmukh, Pranawa C.; Manson, Steven T.; Majumder, Sonjoy
2007-06-01
Our primary aim in this work is to present both allowed and forbidden transition amplitudes and corresponding wavelengths and oscillator strengths for a few ions in the 19-electron potassium isoelectronic sequence. All of these ions have the configuration [Ar] 3^2D3/2 as their ground state, except in the case of K and Ca^+, where it is [Ar] 4^2S1/2.This difference in ground state configuration arises due to strong contributions of correlation effects in the energy levels of these systems [1]. Allowed and forbidden transitions in these systems are of great importance in astrophysics [2] and in laboratory plasma research [3]. We apply in the present work the relativistic coupled-cluster (RCC) theory [4] to evaluate the energy levels and wave functions of these systems and study amplitudes for electric and magnetic dipole transition amplitudes and also the electric quadrupole transition amplitudes. The contributions of various electron correlation effects to the transition amplitudes are estimated in some detail using the RCC theory. [1] Gopal Dixit et al., Astrophys. J (submitted); arXiv.org: physics/0702066. [2] C. R. Cowley and G. M. Wahlgern, Astronomy & Astrophysics, 447, 681 (2002). [3] J. E. Vernazza, E. M. Reeves, Astrophys. J. Suppl. 37, 485 (1978) [4] I. Lindgren, Physics Scripta, 36, 591 (1987).
A novel facile method of labeling octreotide with (18)F-fluorine.
Laverman, Peter; McBride, William J; Sharkey, Robert M; Eek, Annemarie; Joosten, Lieke; Oyen, Wim J G; Goldenberg, David M; Boerman, Otto C
2010-03-01
Several methods have been developed to label peptides with (18)F. However, in general these are laborious and require a multistep synthesis. We present a facile method based on the chelation of (18)F-aluminum fluoride (Al(18)F) by 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The method is characterized by the labeling of NOTA-octreotide (NOTA-d-Phe-cyclo[Cys-Phe-d-Trp-Lys-Thr-Cys]-Throl (MH(+) 1305) [IMP466]) with (18)F. Octreotide was conjugated with the NOTA chelate and labeled with (18)F in a 2-step, 1-pot method. The labeling procedure was optimized with regard to the labeling buffer, peptide, and aluminum concentration. Radiochemical yield, specific activity, in vitro stability, and receptor affinity were determined. Biodistribution of (18)F-IMP466 was studied in AR42J tumor-bearing mice and compared with that of (68)Ga-labeled IMP466. In addition, small-animal PET/CT images were acquired. IMP466 was labeled with Al(18)F in a single step with 50% yield. The labeled product was purified by high-performance liquid chromatography to remove unbound Al(18)F and unlabeled peptide. The radiolabeling, including purification, was performed in 45 min. The specific activity was 45,000 GBq/mmol, and the peptide was stable in serum for 4 h at 37 degrees C. Labeling was performed at pH 4.1 in sodium citrate, sodium acetate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, and 2-(N-morpholino)ethanesulfonic acid buffer and was optimal in sodium acetate buffer. The apparent 50% inhibitory concentration of the (19)F-labeled IMP466 determined on AR42J cells was 3.6 nM. Biodistribution studies at 2 h after injection showed a high tumor uptake of (18)F-IMP466 (28.3 +/- 5.2 percentage injected dose per gram [%ID/g]; tumor-to-blood ratio, 300 +/- 90), which could be blocked by an excess of unlabeled peptide (8.6 +/- 0.7 %ID/g), indicating that the accumulation in the tumor was receptor-mediated. Biodistribution of (68)Ga-IMP466 was similar to that of (18)F-IMP466. (18)F-IMP466 was stable in vivo, because bone uptake was only 0.4 +/- 0.2 %ID/g, whereas free Al(18)F accumulated rapidly in the bone (36.9 +/- 5.0 %ID/g at 2 h after injection). Small-animal PET/CT scans showed excellent tumor delineation and high preferential accumulation in the tumor. NOTA-octreotide could be labeled rapidly and efficiently with (18)F using a 2-step, 1-pot method. The compound was stable in vivo and showed rapid accretion in somatostatin receptor subtype 2-expressing AR42J tumors in nude mice. This method can be used to label other NOTA-conjugated compounds with (18)F.
Transient Signal Distortion and Coupling in Multilayer Multiconductor MIC Microstrips
1990-05-22
cess.ar1 and identify by block number) I FIELD GROUP I $..)3-{; ’\\0-:: Transient signals, distortion, dispersion, microstrip J 1 i nes , multi...printed circuit design; complex microstrip structures {multiple lines and/or dielectric layers), coupling between lines, distortion of non -periodic...signals on complex structures, and a new method to control coupling on multilayer structures, as well as presenting numerical results for each of these
Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim
2008-07-01
Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells.
Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M; Vadgama, Jaydutt V
2015-02-01
We investigated whether a combination of two promising chemopreventive agents arctigenin (Arc) and quercetin (Q) increases the anticarcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of Arc and Q alone or in combination for 48 h. The antiproliferative activity of Arc was 10- to 20-fold stronger than Q in both cell lines. Their combination synergistically enhanced the antiproliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arc demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. The combination of Arc and Q that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.
2014-01-01
Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086
Androgen receptor polyglutamine repeat length affects receptor activity and C2C12 cell development.
Sheppard, Ryan L; Spangenburg, Espen E; Chin, Eva R; Roth, Stephen M
2011-10-20
Testosterone (T) has an anabolic effect on skeletal muscle and is believed to exert its local effects via the androgen receptor (AR). The AR harbors a polymorphic stretch of glutamine repeats demonstrated to inversely affect receptor transcriptional activity in prostate and kidney cells. The effects of AR glutamine repeat length on skeletal muscle are unknown. In this study we examined the effect of AR CAG repeat length on AR function in C2C12 cells. AR expression vectors harboring 14, 24, and 33 CAG repeats were used to assess AR transcriptional activity. C2C12 cell proliferation, differentiation, gene expression, myotube formation, and myonuclear fusion index were assessed. Transcriptional activity increased with increasing repeat length and in response to testosterone (AR14 = 3.91 ± 0.26, AR24 = 25.21 ± 1.72, AR33 = 36.08 ± 3.22 relative light units; P < 0.001). Ligand activation was increased for AR33 (2.10 ± 0.04) compared with AR14 (1.54 ± 0.09) and AR24 (1.57 ± 0.05, P < 0.001). AR mRNA expression was elevated in each stably transfected line. AR33 cell proliferation (20,512.3 ± 1,024.0) was decreased vs. AR14 (27,604.17 ± 1,425.3; P < 0.001) after 72 h. Decreased CK activity in AR14 cells (54.9 ± 2.9 units/μg protein) in comparison to AR33 (70.8 ± 8.1) (P < 0.05) was noted. The myonuclear fusion index was lower for AR14 (15.21 ± 3.24%) and AR33 (9.97 ± 3.14%) in comparison to WT (35.07 ± 5.60%, P < 0.001). AR14 and AR33 cells also displayed atypical myotube morphology. RT-PCR revealed genotype differences in myostatin and myogenin expression. We conclude that AR polyglutamine repeat length is directly associated with transcriptional activity and alters the growth and development of C2C12 cells. This polymorphism may contribute to the heritability of muscle mass in humans.
Verdurand, Mathieu; Chauveau, Fabien; Daoust, Alexia; Morel, Anne-Laure; Bonnefoi, Frédéric; Liger, François; Bérod, Anne; Zimmer, Luc
2016-04-01
Evidence accumulates suggesting a complex interplay between neurodegenerative processes and serotonergic neurotransmission. We have previously reported an overexpression of serotonin 5-HT1A receptors (5-HT(1A)R) after intrahippocampal injections of amyloid-beta 1-40 (Aβ40) fibrils in rats. This serotonergic reactivity paralleled results from clinical positron emission tomography studies with [(18)F]MPPF revealing an overexpression of 5-HT(1A)R in the hippocampus of patients with mild cognitive impairment. Because Aβ40 and Aβ42 isoforms are found in amyloid plaques, we tested in this study the hypothesis of a peptide- and region-specific 5-HT(1A)R reactivity by injecting them, separately, into the hippocampus or striatum of rats. [(18)F]MPPF in vitro autoradiography revealed that Aβ40 fibrils, but not Aβ42, were triggering an overexpression of 5-HT(1A)R in the hippocampus and striatum of rat brains after 7 days. Immunohistochemical approaches targeting neuronal precursor cells, mature neurons, and astrocytes showed that Aβ42 fibrils caused more pathophysiological damages than Aβ40 fibrils. The mechanisms of Aβ40 fibrils-induced 5-HT(1A)R expression remains unknown, but hypotheses including neurogenesis, glial expression, and axonal sprouting are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Submillimeter-Wave Observations of C_3N^- in AN Extended Negative Glow Discharge
NASA Astrophysics Data System (ADS)
Amano, T.
2009-06-01
Extended negative glow and hollow anode discharges are found to be good sources of negative ions, such as CN^-, C_2H^-, and C_4H^-, for observations of pure rotational lines in the submillimeter-wave region. Thaddeus et al. detected C_3N^- in a glow discharge in HC_3N diluted in Ar buffer gas, and its rotational lines up to 378 GHz (J=39-38) were measured. In the present investigation, this anion has been observed in an extended negative glow discharge in a gas mixture of C_2N_2 (˜ 2 mTorr) and C_2H_2 (˜ 3 mTorr) in Ar buffer gas of ˜ 15 mTorr at the cell wall temperature of 230 K. The optimum discharge current was 2-4 mA with 250 Gauss longitudinal magnetic field. The rotational lines of up to J=51-50 in the 495 GHz region have been measured, and the improved rotational and centrifugal distortion constants are obtained. In the discharge optimum for production of C_3N^-, neither CN nor C_3N was detected with a similar signal accumulation time used for observations of the anion. However, this reaction has been found to be an excellent source for HC_3N, and the dominant formation mechanism of C_3N^- is likely to be the dissociative electron attachment to HC_3N. The radiative association of C_3N with electrons seems to be unlikely at least for the extended negative glow discharge. Apparently HC_3N is synthesized by a fast neutral and neutral reaction (C_2{H}_2 + CN → HC_3{N} + {H} It is interesting to see that an isomer, HCCNC, is also detected in the discharge, although the number density of this species is found to be about two orders of magnitude smaller than that of HC_3N. Another isomer, HNCCC, has also been observed with much weaker signal intensity. This species might have been produced by the dissociative recombination reaction of HC_3NH^+ with electrons, although the detection of this cation has not been successful in this type of discharge. T. Amano, J. Chem. Phys., 129, 244305 (2008). P. Thaddeus et al.,Astrophys. J., 677,1132-1139 (2008) K. Graupner et al., New J. Phys., 8,117 (2006) I. R. Sims et al.,Chem. Phys. Lett., 211, 461-468(1992) D. E. Woon and E. Herbst,Astrophys. J., 477, 204-208(1997)
Ahram, Mamoun; Mustafa, Ebtihal; Abu Hammad, Shatha; Alhudhud, Mariam; Bawadi, Randa; Tahtamouni, Lubna; Khatib, Faisal; Zihlif, Malek
2018-03-26
The androgen receptor (AR) has attracted attention in the treatment of breast cancer. Due to the undesirable side effects of AR agonists, attempts have been undertaken to develop selective AR modulators. One of these compounds is Cl-4AS-1. This study examined this compound more closely at the cellular and molecular levels. Three different breast cancer cell lines were utilized, namely the luminal MCF-7 cells, the molecular apocrine MDA-MB-453 cells, and the triple negative, basal MDA-MB-231 cells. High and significant concordance between dihydrotestosterone (DHT) and Cl-4AS-1 in regulation of gene expression in MDA-MB-453 cells was found. However, some differences were noted including the expression of AR, which was upregulated by DHT, but not Cl-4AS-1. In addition, both DHT and Cl-4AS-1 caused a similar morphological change and reorganization of the actin structure of MDA-MB-453 cells into a mesenchymal phenotype. Treatment of cells with DHT resulted in induction of proliferation of MCF-7 and MDA-MB-453 cells, but no effect was observed on the growth of MDA-MB-231 cells. On the other hand, increasing doses of Cl-4AS-1 resulted in a dose-dependent inhibition on the growth of the three cell lines. This inhibition was a result of induction of apoptosis whereby Cl-4AS-1 caused a block in entry of cells into the S-phase followed by DNA degradation. These results indicate that although Cl-4AS-1 has characteristics of classical AR agonist, it has dissimilar properties that may make it useful in treating breast cancer.
Qiao, Liang; Tasian, Gregory E.; Zhang, Haiyang; Cao, Mei; Ferretti, Max; Cunha, Gerald R.; Baskin, Laurence S.
2012-01-01
INTRODUCTION ZEB1 is overexpressed in patients with severe hypospadias. We examined the interaction between ZeB1 and the androgen receptor (AR) in vitro and the expression of AR in boys with hypospadias. RESULTS ZEB1 and AR colocalize to the nucleus. Estrogen upregulated ZEB1 and AR expression. Chromatin immunoprecipitation (ChIP) demonstrated that ZEB1 binds to an E-box sequence in the AR gene promoter. AR expression is higher in subjects with severe hypospadias than those with mild hypospadias and control subjects (P < 0.05). ZEB1 physically interacts with AR in human foreskin cells. DISCUSSION AR is overexpressed in patients with severe hypospadias. Environmental estrogenic compounds may increase the risk of hypospadias by facilitating the interaction between ZEB1 and AR. METHODS Hs68 cells, a fibroblast cell line derived from neonatal human foreskin, were exposed to 0, 10, and 100 nmol/l of estrogen, after which the cellular localization of ZEB1 and AR was assessed using immunocytochemistry. To determine if ZEB1 interacted with the AR gene, ChIP was performed using ZEB1 antibody and polymerase chain reaction (PCR) for AR. Second, AR expression was quantified using real-time PcR and western blot in normal subjects (n = 32), and subjects with mild (n = 16) and severe hypospadia (n = 16). PMID:22391641
Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Lee, Jinhee; Wright, Michael E.
2016-01-01
Aberrant androgen receptor (AR)-dependent transcription is a hallmark of human prostate cancers. At the molecular level, ligand-mediated AR activation is coordinated through spatial and temporal protein-protein interactions involving AR-interacting proteins, which we designate the “AR-interactome.” Despite many years of research, the ligand-sensitive protein complexes involved in ligand-mediated AR activation in prostate tumor cells have not been clearly defined. Here, we describe the development, characterization, and utilization of a novel human LNCaP prostate tumor cell line, N-AR, which stably expresses wild-type AR tagged at its N terminus with the streptavidin-binding peptide epitope (streptavidin-binding peptide-tagged wild-type androgen receptor; SBP-AR). A bioanalytical workflow involving streptavidin chromatography and label-free quantitative mass spectrometry was used to identify SBP-AR and associated ligand-sensitive cytosolic proteins/protein complexes linked to AR activation in prostate tumor cells. Functional studies verified that ligand-sensitive proteins identified in the proteomic screen encoded modulators of AR-mediated transcription, suggesting that these novel proteins were putative SBP-AR-interacting proteins in N-AR cells. This was supported by biochemical associations between recombinant SBP-AR and the ligand-sensitive coatomer protein complex I (COPI) retrograde trafficking complex in vitro. Extensive biochemical and molecular experiments showed that the COPI retrograde complex regulates ligand-mediated AR transcriptional activation, which correlated with the mobilization of the Golgi-localized ARA160 coactivator to the nuclear compartment of prostate tumor cells. Collectively, this study provides a bioanalytical strategy to validate the AR-interactome and define novel AR-interacting proteins involved in ligand-mediated AR activation in prostate tumor cells. Moreover, we describe a cellular system to study how compartment-specific AR-interacting proteins influence AR activation and contribute to aberrant AR-dependent transcription that underlies the majority of human prostate cancers. PMID:27365400
The transcriptional programme of the androgen receptor (AR) in prostate cancer.
Lamb, Alastair D; Massie, Charlie E; Neal, David E
2014-03-01
The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors. © 2013 The Authors. BJU International © 2013 BJU International.
Fousteris, Manolis A; Schubert, Undine; Roell, Daniela; Roediger, Julia; Bailis, Nikolaos; Nikolaropoulos, Sotiris S; Baniahmad, Aria; Giannis, Athanassios
2010-10-01
Here, the synthesis and the evaluation of novel 20-aminosteroids on androgen receptor (AR) activity is reported. Compounds 11 and 18 of the series inhibit both the wild type and the T877A mutant AR-mediated transactivation indicating AR antagonistic function. Interestingly, minor structural changes such as stereoisomers of the amino lactame moiety exhibit preferences for antagonism among wild type and mutant AR. Other tested nuclear receptors are only weakly or not affected. In line with this, the prostate cancer cell growth of androgen-dependent but not of cancer cells lacking expression of the AR is inhibited. Further, the expression of the prostate specific antigen used as a diagnostic marker is also repressed. Finally steroid 18 enhances cellular senescence that might explain in part the growth inhibition mediated by this derivative. Steroids 11 and 18 are the first steroids that act as complete AR antagonists and exhibit AR specificity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Lin28 induces resistance to anti-androgens via promotion of AR splice variant generation.
Tummala, Ramakumar; Nadiminty, Nagalakshmi; Lou, Wei; Evans, Christopher P; Gao, Allen C
2016-04-01
Prostate cancer (PCa) is androgen-dependent initially and progresses to a castration-resistant state after androgen deprivation therapy. Treatment options for castration-resistant PCa include the potent second-generation anti-androgen enzalutamide or CYP17A1 inhibitor abiraterone. Recent clinical observations point to the development of resistance to these therapies which may be mediated by constitutively active alternative splice variants of the androgen receptor (AR). Sensitivity of LNCaP cells overexpressing Lin28 (LN-Lin28) to enzalutamide, abiraterone, or bicalutamide was compared to that of control LN-neo cells using cell growth assays, proliferation assays using MTT, anchorage-dependent clonogenic ability assays and soft agar assays. Ability of LN-Lin28 cells to maintain AR activation after treatment with enzalutamide, abiraterone, or bicalutamide was tested using immunofluorescence, Western blotting, ChIP assays, and qRT-PCR. Importance of Lin28 in enzalutamide resistance was assessed by the downregulation of Lin28 expression in C4-2B and 22Rv1 cells chronically treated with enzalutamide. Requirement for sustained AR signaling in LN-Lin28 cells was examined by the downregulation of either full length AR or AR-V7 using siRNA. We show that Lin28 promotes the development of resistance to currently used targeted therapeutics by enhancing the expression of AR splice variants such as AR-V7. PCa cells overexpressing Lin28 exhibit resistance to treatment with enzalutamide, abiraterone, or bicalutamide. Downregulation of Lin28 resensitizes enzalutamide-resistant PCa cells to enzalutamide treatment. We also show that the upregulation of splicing factors such as hnRNPA1 by Lin28 may mediate the enhanced generation of AR splice variants in Lin28-expressing cells. Our findings suggest that Lin28 plays a key role in the acquisition of resistance to AR-targeted therapies by PCa cells and establish the importance of Lin28 in PCa progression. © 2015 Wiley Periodicals, Inc.
Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target
Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.
2016-01-01
Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335
NASA Technical Reports Server (NTRS)
Balla, R. Jeffrey; Herring, G. C.
2000-01-01
Tunable radiation, at ultraviolet wavelengths, is produced by Raman shifting a modified 285-mJ ArF excimer laser. Multiple Stokes outputs are observed in H2, CH4, D2, N2, SF6, and CF4 (20, 22, 53, 21, 2.1, and 0.35 percent, respectively). Numbers in parentheses are the first Stokes energy conversion efficiencies. We can access 70 percent of the frequency range 42000-52000 cm (exp -1) (190-240 nm) with Stokes energies that vary from 0.2 microJoule to 58 mJ inside the Raman cell. By using 110 mJ of pump energy and D 2 , the tunable first Stokes energy varies over the 29-58 mJ range as the wavelength is tuned over the 204-206 nm range. Dependence on input energy, gas pressure, He mixture fraction, and circulation of the gas in the forced convection Raman cell is discussed; Stokes conversion is also discussed for laser repetition rates from 1 to 100 Hz. An empirical equation is given to determine whether forced convection can improve outputs for a given repetition rate.
Rossini, Andrés E; Dagrosa, Maria A; Portu, Agustina; Saint Martin, Giselle; Thorp, Silvia; Casal, Mariana; Navarro, Aimé; Juvenal, Guillermo J; Pisarev, Mario A
2015-01-01
In order to optimize the effectiveness of Boron Neutron Capture Therapy (BNCT), Relative Biological Effectiveness (RBE) and Compound Biological Effectiveness (CBE) were determined in two human melanoma cell lines, M8 and Mel-J cells, using the amino acid p-boronophenylalanine (BPA) as boron carrier. The effects of BNCT on the primary amelanotic cell line M8 and on the metastatic pigmented melanoma cell line Mel-J were studied using colony formation assay. The RBE values were determined using both a gamma ray source, and the neutron beam from the Nuclear Reactor of the National Atomic Energy Commission (RA-3). For the determination of the RBE, cells were irradiated with increasing doses of both sources, between 1 and 8 Gy; and for the determination of CBE factors, the cells were pre-incubated with BPA before irradiation. Afterwards, the cell surviving fraction (SF) was determined for each treatment. Marked differences were observed between both cell lines. Mel-J cells were more radioresistant than the M8 cell line. The clonogenic assays showed that for a SF of 1%, the RBE values were 1.3 for M8 cells and 1.5 for Mel-J cells. Similarly, the CBE values for a 1% SF were 2.1 for M8 and 3 for Mel-J cell lines. For the endpoint of 0.1% of SF the RBE values obtained were 1.2 for M8 and 1.4 for Mel-J cells. Finally, CBE values calculated for a 0.1% were 2 and 2.6 for M8 and Mel-J cell lines respectively. In order to estimate the uptake of the non-radioactive isotope Boron 10 ((10)B), a neutron induced autoradiographic technique was performed showing discrepancies in (10)B uptake between both cell lines. These obtained in vitro results are the first effectiveness factors determined for human melanoma at the RA-3 nuclear reactor and show that BNCT dosimetry planning for patients could be successfully performed using these new factors.
Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation
NASA Astrophysics Data System (ADS)
Kennedy, Ann; Cengel, Keith
2012-07-01
A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute Radiation Research (CARR) grant; NSBRI is funded through NASA NCC 9-58. Recent Publications: [1]Cengel K. A. et al. (2010) Radiat Environ Biophys 49(4): 715-21. [2] Ware J. H. et al. (2010) Radiation Res 174: 325-330. [3] Davis J. G. et al. (2010) Radiation Res 173(3):353-61. [4] Sanzari J.K. et al. (2011) Radiation Res 175(5):650-6. [5] Ni H. et al. (2011) Radiation Res 175(4): 485-92. [6] Mao X. W. et al. (2011) Radiation Res 176: 187-197. [7] Maks C. J. et al. (2011) Radiation Res 176: 170-6. [8] Kennedy A. R. et al. (2011) Radiation Res 176: 62-70. [9] Sanzari J. K. et al. (2011) Int J Radiat Biol 87: 1033-8. [10] Wilson J. M. et al. (2011) Radiation Res 176(5):649-59. [11] Kennedy A. R. and Wan X. S. (2011) Advances in Space Res 48: 1460-1479. [12] Gridley D. S. et al. (2011) Int J Radiat Biol 2011 87(12): 1173-81, [13] York J. M., et al. (2012) Brain Behav Immun 26(2): 218-27,[14] Wilson J. M. et al. (2012) Advances in Space Res 49: 237-248. [15] Krigsfeld, G.S. et al. Int J Radiat Biol 2012 Feb 6 [Epub ahead of print
ING3 promotes prostate cancer growth by activating the androgen receptor.
Nabbi, Arash; McClurg, Urszula L; Thalappilly, Subhash; Almami, Amal; Mobahat, Mahsa; Bismar, Tarek A; Binda, Olivier; Riabowol, Karl T
2017-05-16
The androgen receptor (AR) is a major driver of prostate cancer, and increased AR levels and co-activators of the receptor promote the development of prostate cancer. INhibitor of Growth (ING) proteins target lysine acetyltransferase or lysine deacetylase complexes to the histone H3K4Me3 mark of active transcription, to affect chromatin structure and gene expression. ING3 is a stoichiometric member of the TIP60 lysine acetyltransferase complex implicated in prostate cancer development. Biopsies of 265 patients with prostate cancer were stained for ING3, pan-cytokeratin, and DNA. LNCaP and C4-2 androgen-responsive cells were used for in vitro assays including immunoprecipitation, western blotting, Luciferase reporter assay and quantitative polymerase chain reaction. Cell viability and migration assays were performed in prostate cancer cell lines using scrambled siRNA or siRNA targeting ING3. We find that ING3 levels and AR activity positively correlate in prostate cancer. ING3 potentiates androgen effects, increasing expression of androgen-regulated genes and androgen response element-driven reporters to promote growth and anchorage-independent growth. Conversely, ING3 knockdown inhibits prostate cancer cell growth and invasion. ING3 activates the AR by serving as a scaffold to increase interaction between TIP60 and the AR in the cytoplasm, enhancing receptor acetylation and translocation to the nucleus. Activation is independent of ING3's ability to target the TIP60 complex to H3K4Me3, identifying a previously unknown chromatin-independent cytoplasmic activity for ING3. In agreement with in vitro observations, analysis of The Cancer Genome Atlas (TCGA) data (n = 498) and a prostate cancer tissue microarray (n = 256) show that ING3 levels are higher in aggressive prostate cancers, with high levels of ING3 predicting shorter patient survival in a low AR subgroup. Including ING3 levels with currently used indicators such as the Gleason score provides more accurate prognosis in primary prostate cancer. In contrast to the majority of previous reports suggesting tumor suppressive functions in other cancers, our observations identify a clear oncogenic role for ING3, which acts as a co-activator of AR in prostate cancer. Data from TCGA and our previous and current tissue microarrays suggest that ING3 levels correlate with AR levels and that in patients with low levels of the receptor, ING3 level could serve as a useful prognostic biomarker.
Cellular androgen content influences enzalutamide agonism of F877L mutant androgen receptor
Coleman, Daniel J.; Van Hook, Kathryn; King, Carly J.; Schwartzman, Jacob; Lisac, Robert; Urrutia, Joshua; Sehrawat, Archana; Woodward, Josha; Wang, Nicholas J.; Gulati, Roman; Thomas, George V.; Beer, Tomasz M.; Gleave, Martin; Korkola, James E.; Gao, Lina; Heiser, Laura M.; Alumkal, Joshi J.
2016-01-01
Prostate cancer is the most commonly diagnosed and second-most lethal cancer among men in the United States. The vast majority of prostate cancer deaths are due to castration-resistant prostate cancer (CRPC) – the lethal form of the disease that has progressed despite therapies that interfere with activation of androgen receptor (AR) signaling. One emergent resistance mechanism to medical castration is synthesis of intratumoral androgens that activate the AR. This insight led to the development of the AR antagonist enzalutamide. However, resistance to enzalutamide invariably develops, and disease progression is nearly universal. One mechanism of resistance to enzalutamide is an F877L mutation in the AR ligand-binding domain that can convert enzalutamide to an agonist of AR activity. However, mechanisms that contribute to the agonist switch had not been fully clarified, and there were no therapies to block AR F877L. Using cell line models of castration-resistant prostate cancer (CRPC), we determined that cellular androgen content influences enzalutamide agonism of mutant F877L AR. Further, enzalutamide treatment of AR F877L-expressing cell lines recapitulated the effects of androgen activation of F877L AR or wild-type AR. Because the BET bromodomain inhibitor JQ-1 was previously shown to block androgen activation of wild-type AR, we tested JQ-1 in AR F877L-expressing CRPC models. We determined that JQ-1 suppressed androgen or enzalutamide activation of mutant F877L AR and suppressed growth of mutant F877L AR CRPC tumors in vivo, demonstrating a new strategy to treat tumors harboring this mutation. PMID:27276681
SWANEA (Southwest Asia-Northeast Africa) A Climatological Study. Volume 3. The Near East Mountains
1991-04-01
SHIRAZ TlRA M LAT/LON: 2f 32 N 52 35 E ELEV: 4920 FT ILIHINTS JAN jFEB J MAR IAPR [MAY IJUN JJU, JAUG ISEP JOCT I NOV j DEC IAkNNJ EXT MAX 61 i75 81...M1AR APR I MAY I JUN jJUL JAUG ISEP I OCT I NOV IDE C IANN xX 5MA1 58 69 75 " ao 921 1001 98 191 j 841 67j 57’ 100 AIVG MAX .... 13 42 5 6 76 83 1 483...o t S•TATON : ESKISEHI[R T URM-’ LAT/LOI.: 39 47 N 30 34 E ELEV: 2579 FT ELEMI.-L TS !JAN FEB IMAR IAPR iHAY JUN JUL JAUG .SEP OCT NOV IDEC I NNI EXT
Liu, Yong; Chen, Xiao-Dong; Yu, Jiang; Chi, Jun-Lin; Long, Fei-Wu; Yang, Hong-Wei; Chen, Ke-Ling; Lv, Zhao-Ying; Zhou, Bin; Peng, Zhi-Hai; Sun, Xiao-Feng; Li, Yuan; Zhou, Zong-Guang
2017-01-01
Severe acute pancreatitis (SAP) still remains a clinical challenge, not only for its high mortality but the uncontrolled inflammatory progression from acute pancreatitis (AP) to SAP. Cell death, including apoptosis and necrosis are critical pathology of AP, since the severity of pancreatitis correlates directly with necrosis and inversely with apoptosis Therefore, regulation of cell death from necrosis to apoptosis may have practicably therapeutic value. X-linked inhibitor of apoptosis protein (XIAP) is the best characterized member of the inhibitor of apoptosis proteins (IAP) family, but its function in AP remains unclear. In the present study, we investigated the potential role of XIAP in regulation of cell death and inflammation during acute pancreatitis. The in vivo pancreatitis model was induced by the administration of cerulein with or without lipopolysaccharide (LPS) or by the administration of l-arginine in wild-type or XIAP-deficient mice, and ex vivo model was induced by the administration of cerulein+LPS in AR42J cell line following XIAP inhibition. The severity of acute pancreatitis was determined by serum amylase activity and histological grading. XIAP deletion on cell apoptosis, necrosis and inflammatory response were examined. Caspases activities, nuclear factor-κB (NF-κB) activation and receptor-interacting protein kinase1 (RIP1) degradation were assessed by western blot. Deletion of XIAP resulted in the reduction of amylase activity, decrease of NF-κB activation and less release of TNF-α and IL-6, together with increased caspases activities and RIP1 degradation, leading to enhanced apoptosis and reduced necrosis in pancreatic acinar cells and ameliorated the severity of acute pancreatitis. Our results indicate that deletion of XIAP switches cell death away from necrosis to apoptosis and decreases the inflammatory response, effectively attenuating the severity of AP/SAP. The critical role of XIAP in cell death and inflammation suggests that inhibition of XIAP represents a potential therapeutic strategy for the treatment of acute pancreatitis. PMID:28300832
Hillman, Kristin L; Doze, Van A; Porter, James E
2005-08-01
Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists indicates that beta2-AR activation is mediating the increased AP frequency. Knowledge of functional AR expression in CA1 pyramidal neurons will aid future long-term potentiation studies by allowing selective manipulation of specific beta-AR subtypes.
Masoodi, Khalid Z; Eisermann, Kurtis; Yang, Zhenyu; Dar, Javid A; Pascal, Laura E; Nguyen, Minh; O'Malley, Katherine; Parrinello, Erica; Feturi, Firuz G; Kenefake, Alex N; Nelson, Joel B; Johnston, Paul A; Wipf, Peter; Wang, Zhou
2017-10-01
The androgen receptor (AR) plays a critical role in the development of castration-resistant prostate cancer (CRPC) as well as in the resistance to the second-generation AR antagonist enzalutamide and the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Novel agents targeting AR may inhibit the growth of prostate cancer cells resistant to enzalutamide and/or abiraterone. Through a high-throughput/high-content screening of a 220,000-member small molecule library, we have previously identified 2-[(isoxazol-4-ylmethyl)thio]-1-(4-phenylpiperazin-1-yl)ethanone (IMTPPE) (SID 3712502) as a novel small molecule capable of inhibiting AR transcriptional activity and protein level in C4-2 prostate cancer cells. In this study, we show that IMTPPE inhibits AR-target gene expression using real-time polymerase chain reaction, Western blot, and luciferase assays. IMTPPE inhibited proliferation of AR-positive, but not AR-negative, prostate cancer cells in culture. IMTPPE inhibited the transcriptional activity of a mutant AR lacking the ligand-binding domain (LBD), indicating that IMTPPE inhibition of AR is independent of the LBD. Furthermore, animal studies showed that IMTPPE inhibited the growth of 22Rv1 xenograft tumor, a model for enzalutamide-resistant prostate cancer. These findings suggest that IMTPPE is a potential lead compound for developing clinical candidates for the treatment of CRPC, including those resistant to enzalutamide. Copyright © 2017 Endocrine Society.
Impact of Duality Violations on Spectral Sum Rule analyses
NASA Astrophysics Data System (ADS)
Catà, Oscar
2007-02-01
Recent sum rule analyses on the
Leptin signaling and apoptotic effects in human prostate cancer cell lines.
Samuel-Mendelsohn, Sigal; Inbar, Michal; Weiss-Messer, Esther; Niv-Spector, Leonora; Gertler, Arieh; Barkey, Ronnie J
2011-06-15
Prostate cancer (PCa) progression is often associated with transactivation of the androgen receptor (AR) by endogenous hormones/growth factors. One such factor affecting growth, proliferation, and apoptostis (pro-/anti-) in various cancers is the adipokine leptin. This research studied leptin-induced signaling and apoptosis in androgen sensitive (LNCaP, PC3/AR) and insensitive (PC3, DU145) PCa cell lines. Signaling was studied by immunoblotting in cells overexpressing leptin receptors (LRb), Janus kinase 2 (JAK2), and kinase negative-HER2-YFP cDNAs. Apoptosis was measured by immunoblotting of apoptotic proteins and by Hoechst staining of condensed DNA. Leptin rapidly induced activation of JAK2, STAT3, and MAPK (ERK1/2) signaling cascades; it may also induce HER2 transactivation via leptin-induced phospho-JAK2. Leptin was then shown to exert clear pro-apoptotic effects, increasing levels of caspase 3, cleavage of its substrate, poly (ADP-ribose) polymerase (PARP) to cleaved PARP(89) , levels of CK 18, a cytoskeletal protein formed during apoptosis, and DNA condensation. Kinase inhibitors indicated that leptin-induced apoptosis is probably mediated by balanced activation of JAK2/STAT3, p38 MAPK, and PKC pathways in PCa cells. A human leptin mutein LRb antagonist, L39A/D40A/F41A, fully inhibited leptin-induced phosphorylation of JAK2, ERK1/2, and Akt/PKB, and partially abrogated effects on apoptotic proteins. In LNCaP and PC3/AR cells, leptin increased AR protein levels in correlation with raised apoptotic markers. Thus, AR may mediate, at least partly, the leptin-induced apoptotic response. Leptin can clearly induce apoptosis in human PCa cell lines. These findings could lead to development of new leptin agonists with enhanced pro-apoptotic effects and targeted for use in human PCa. Copyright © 2010 Wiley-Liss, Inc.
Isolation of Genes Involved in Rac Induced Invasion and Metastasis of Breast Carcinoma Cells
2001-08-01
dystrophy kinase-related Cdc42-binding kinase acts 64 oetGPernCaL.adMcr,1..(20) Myotonic4dystrophyrkinaseoretatedCdc42-bindingekrnasezatson. The cell...kinase homologous to myotonic dystrophy kinase. EMBO J. J. Biol. Chem. 273, 5542-5548. 15, 1885-1893. 97. Fukata, Y., Oshiro, N., Kinoshita, N., Kawano... Becker , D., Williams, D.S., Thorpe, J., Fleming, J., Brown, S.D. and Steel, K.P.: A missense mutation in myosin VIIA prevents aminoglycoside accumulation
Farnesylthiosalicylic acid sensitizes hepatocarcinoma cells to artemisinin derivatives
Wu, Liping; Pang, Yilin; Qin, Guiqi; Xi, Gaina; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng
2017-01-01
Dihydroartemisinin (DHA) and artesunate (ARS), two artemisinin derivatives, have efficacious anticancer activities against human hepatocarcinoma (HCC) cells. This study aims to study the anticancer action of the combination treatment of DHA/ARS and farnesylthiosalicylic acid (FTS), a Ras inhibitor, in HCC cells (Huh-7 and HepG2 cell lines). FTS pretreatment significantly enhanced DHA/ARS-induced phosphatidylserine (PS) externalization, Bak/Bax activation, mitochondrial membrane depolarization, cytochrome c release, and caspase-8 and -9 activations, characteristics of the extrinsic and intrinsic apoptosis. Pretreatment with Z-IETD-FMK (caspase-8 inhibitor) potently prevented the cytotoxicity of the combination treatment of DHA/ARS and FTS, and pretreatment with Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited the loss of ΔΨm induced by DHA/ARS treatment or the combination treatment of DHA/ARS and FTS in HCC cells. Furthermore, silencing Bak/Bax modestly but significantly inhibited the cytotoxicity of the combination treatment of DHA/ARS and FTS. Interestingly, pretreatment with an antioxidant N-Acetyle-Cysteine (NAC) significantly prevented the cytotoxicity of the combination treatment of DHA and FTS instead of the combination treatment of ARS and FTS, suggesting that reactive oxygen species (ROS) played a key role in the anticancer action of the combination treatment of DHA and FTS. Similar to FTS, DHA/ARS also significantly prevented Ras activation. Collectively, our data demonstrate that FTS potently sensitizes Huh-7 and HepG2 cells to artemisinin derivatives via accelerating the extrinsic and intrinsic apoptotic pathways. PMID:28182780
Velázquez-Moctezuma, Rodrigo; Bukh, Jens
2017-01-01
Hepatitis C virus (HCV) is a major cause of end-stage liver diseases. With 3–4 million new HCV infections yearly, a vaccine is urgently needed. A better understanding of virus escape from neutralizing antibodies and their corresponding epitopes are important for this effort. However, for viral isolates with high antibody resistance, or antibodies with moderate potency, it remains challenging to induce escape mutations in vitro. Here, as proof-of-concept, we used antibody-sensitive HVR1-deleted (ΔHVR1) viruses to generate escape mutants for a human monoclonal antibody, AR5A, targeting a rare cross-genotype conserved epitope. By analyzing the genotype 1a envelope proteins (E1/E2) of recovered Core-NS2 recombinant H77/JFH1ΔHVR1 and performing reverse genetic studies we found that resistance to AR5A was caused by substitution L665W, also conferring resistance to the parental H77/JFH1. The mutation did not induce viral fitness loss, but abrogated AR5A binding to HCV particles and intracellular E1/E2 complexes. Culturing J6/JFH1ΔHVR1 (genotype 2a), for which fitness was decreased by L665W, with AR5A generated AR5A-resistant viruses with the substitutions I345V, L665S, and S680T, which we introduced into J6/JFH1 and J6/JFH1ΔHVR1. I345V increased fitness but had no effect on AR5A resistance. L665S impaired fitness and decreased AR5A sensitivity, while S680T combined with L665S compensated for fitness loss and decreased AR5A sensitivity even further. Interestingly, S680T alone had no fitness effect but sensitized the virus to AR5A. Of note, H77/JFH1L665S was non-viable. The resistance mutations did not affect cell-to-cell spread or E1/E2 interactions. Finally, introducing L665W, identified in genotype 1, into genotypes 2–6 parental and HVR1-deleted variants (not available for genotype 4a) we observed diverse effects on viral fitness and a universally pronounced reduction in AR5A sensitivity. Thus, we were able to take advantage of the neutralization-sensitive HVR1-deleted viruses to rapidly generate escape viruses aiding our understanding of the divergent escape pathways used by HCV to evade AR5A. PMID:28231271
Komura, Kazumasa; Jeong, Seong Ho; Hinohara, Kunihiko; Qu, Fangfang; Wang, Xiaodong; Hiraki, Masayuki; Azuma, Haruhito; Lee, Gwo-Shu Mary; Kantoff, Philip W.; Sweeney, Christopher J.
2016-01-01
The androgen receptor (AR) plays an essential role in prostate cancer, and suppression of its signaling with androgen deprivation therapy (ADT) has been the mainstay of treatment for metastatic hormone-sensitive prostate cancer for more than 70 y. Chemotherapy has been reserved for metastatic castration-resistant prostate cancer (mCRPC). The Eastern Cooperative Oncology Group-led trial E3805: ChemoHormonal Therapy Versus Androgen Ablation Randomized Trial for Extensive Disease in Prostate Cancer (CHAARTED) showed that the addition of docetaxel to ADT prolonged overall survival compared with ADT alone in patients with metastatic hormone-sensitive prostate cancer. This finding suggests that there is an interaction between AR signaling activity and docetaxel sensitivity. Here we demonstrate that the prostate cancer cell lines LNCaP and LAPC4 display markedly different sensitivity to docetaxel with AR activation, and RNA-seq analysis of these cell lines identified KDM5D (lysine-specific demethylase 5D) encoded on the Y chromosome as a potential mediator of this sensitivity. Knocking down KDM5D expression in LNCaP leads to docetaxel resistance in the presence of dihydrotestosterone. KDM5D physically interacts with AR in the nucleus, and regulates its transcriptional activity by demethylating H3K4me3 active transcriptional marks. Attenuating KDM5D expression dysregulates AR signaling, resulting in docetaxel insensitivity. KDM5D deletion was also observed in the LNCaP-derived CRPC cell line 104R2, which displayed docetaxel insensitivity with AR activation, unlike parental LNCaP. Dataset analysis from the Oncomine database revealed significantly decreased KDM5D expression in CRPC and poorer prognosis with low KDM5D expression. Taking these data together, this work indicates that KDM5D modulates the AR axis and that this is associated with altered docetaxel sensitivity. PMID:27185910
Wang, Wei; Xu, Ming; Zhang, You-yi; He, Bei
2009-11-01
To investigate the molecular mechanism and signaling pathway by which fenoterol, a beta(2)-adrenergic receptor (beta(2)-AR) agonist, produces anti-inflammatory effects. THP-1, a monocytic cell line, was used to explore the mechanism of beta(2)-AR stimulation in LPS-induced secretion of inflammatory cytokines and changes of toll-like receptors (TLRs). We labeled TLR4 and CD14 using monoclonal anti-TLR4 PE-conjugated and anti-CD14 FITC-conjugated antibodies in THP-1 cells stimulated by beta(2)-AR in the presence or absence of lipopolysaccharide (LPS) and small, interfering RNA (siRNA)-mediated knockdown of beta-arrestin-2, and then analyzed their changes in distribution by flow cytometry, Western blotting and confocal analysis. LPS-induced membrane-bound CD14, TLR4/CD14 complex levels and elevation of inflammatory cytokines were all significantly reduced by pre-incubation of fenoterol (P<0.05). However, the total level of CD14 and TLR4 was not significantly changed. Interestingly, confocal microscopy revealed redistribution of CD14 and TLR4/CD14 complex under beta(2)-AR stimulation. Furthermore, siRNA-mediated knockdown of beta-arrestin-2 eliminated the anti-inflammatory effects and redistribution of CD14 and TLR4/CD14 complex stimulated by beta(2)-AR. beta(2)-AR agonist exerts its anti-inflammatory effects by down-regulating TLR signaling in THP-1 cells, potentially resulting from beta-arrestin-2 mediated redistribution of CD14 and TLR14/CD14 complex.
2007-12-01
23813. 24. Li Y, Gerbod- Giannone MC, Seitz H, Cui D, Thorp E, Tall AR, Matsushima GK, Tabas I. Cholesterol-induced apoptotic macrophages elicit an...Pharmacology. 2005;73:15–22. 30. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod- Giannone MC, Tall AR, Davis RJ, Flavell R, Brenner DA, Tabas I. Free...J. Cell Biol. 171:61-73. *86. Li, Y., Gerbod- Giannone , M.C., Seitz, H., Cui, D., Thorp, E., Tall, A.R., Matsushima, G.K., and Tabas, I. (2006
NASA Astrophysics Data System (ADS)
Vemareddy, P.; Demóulin, P.
2018-04-01
We study the magnetic structure of a successively erupting sigmoid in active region 12371 by modeling the quasi-static coronal field evolution with nonlinear force-free field (NLFFF) equilibria. Helioseismic and Magnetic Imager/Solar Dynamic Observatory vector magnetograms are used as input to the NLFFF model. In all eruption events, the modeled structure resembles the observed pre-eruptive coronal sigmoid and the NLFFF core field is a combination of double inverse-J-shaped and inverse-S field lines with dips touching the photosphere. Such field lines are formed by the flux cancellation reconnection of opposite-J field lines at bald-patch locations, which in turn implies the formation of a weakly twisted flux-rope (FR) from large-scale sheared arcade field lines. Later on, this FR undergoes coronal tether-cutting reconnection until a coronal mass ejection is triggered. The modeled structure captured these major features of sigmoid-to-arcade-to-sigmoid transformation, which is reoccuring under continuous photospheric flux motions. Calculations of the field line twist reveal a fractional increase followed by a decrease of the number of pixels having a range of twist. This traces the buildup process of a twisted core field by slow photospheric motions and the relaxation after eruption, respectively. Our study infers that the large eruptivity of this AR is due to a steep decrease of the background coronal field meeting the torus instability criteria at a low height (≈40 Mm) in contrast to noneruptive ARs.
Fialova, Barbora; Luzna, Petra; Gursky, Jan; Langova, Katerina; Kolar, Zdenek; Trtkova, Katerina Smesny
2016-10-01
The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. Castration-resistant prostate cancer (CRPC) is a consequence of androgen deprivation therapy. Unchecked CRPC followed by metastasis is lethal. Some CRPCs show decreased AR gene expression due to epigenetic mechanisms such as DNA methylation and histone deacetylation. The aim of this study was to epigenetically modulate the methylated state of the AR gene leading to targeted demethylation and AR gene expression in androgen-independent human prostate cancer DU145 cell line, representing the CRPC model with very low or undetectable AR levels. The cell treatment was based on single and combined applications of two epigenetic inhibitors, sodium butyrate (NaB) as histone deacetylases inhibitor and 5'-Aza-2'-deoxycytidine (Aza-dC) as DNA methyltransferases inhibitor. We found that the Aza-dC in combination with NaB may help reduce the toxicity of higher NaB concentrations in cancer cells. In normal RWPE-1 cells and even stronger in cancer DU145 cells, the combined treatment induced both AR gene expression on the mRNA level and increased histone H4 acetylation in AR gene promoter. Also activation and maintenance of G2/M cell cycle arrest and better survival in normal RWPE-1 cells compared to cancer DU145 cells were observed after the treatments. These results imply the selective toxicity effect of both inhibitors used and their potentially more effective combined use in the epigenetic therapy of prostate cancer patients.
Coagulation factor VII is regulated by androgen receptor in breast cancer.
Naderi, Ali
2015-02-01
Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.
Inoue, Satoshi; Ide, Hiroki; Mizushima, Taichi; Jiang, Guiyang; Netto, George J; Gotoh, Momokazu; Miyamoto, Hiroshi
2018-06-01
We investigated the role of NF-κB in the development and progression of urothelial cancer as well as cross-talk between NF-κB and androgen receptor (AR) signals in urothelial cells. Immunohistochemistry in surgical specimens showed that the expression levels of NF-κB/p65 ( P = 0.015)/phospho-NF-κB/p65 ( P < 0.001) were significantly elevated in bladder tumors, compared with those in nonneoplastic urothelial tissues. The rates of phospho-NF-κB/p65 positivity were also significantly higher in high-grade ( P = 0.015)/muscle-invasive ( P = 0.033) tumors than in lower grade/non-muscle-invasive tumors. Additionally, patients with phospho-NF-κB/p65-positive muscle-invasive bladder cancer had significantly higher risks of disease progression ( P < 0.001) and cancer-specific mortality ( P = 0.002). In immortalized human normal urothelial SVHUC cells stably expressing AR, NF-κB activators and inhibitors accelerated and prevented, respectively, their neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene. Bladder tumors were identified in 56% (mock), 89% (betulinic acid), and 22% (parthenolide) of N -butyl- N -(4-hydroxybutyl)nitrosamine-treated male C57BL/6 mice at 22 weeks of age. NF-κB activators and inhibitors also significantly induced and reduced, respectively, cell proliferation/migration/invasion of AR-positive bladder cancer lines, but not AR-knockdown or AR-negative lines, and their growth in xenograft-bearing mice. In both nonneoplastic and neoplastic urothelial cells, NF-κB activators/inhibitors upregulated/downregulated, respectively, AR expression, whereas AR overexpression was associated with increases in the expression levels of NF-κB/p65 and phospho-NF-κB/p65. Thus, NF-κB appeared to be activated in bladder cancer, which was associated with tumor progression. NF-κB activators/inhibitors were also found to modulate tumorigenesis and tumor outgrowth in AR-activated urothelial cells. Accordingly, NF-κB inhibition, together with AR inactivation, has the potential of being an effective chemopreventive and/or therapeutic approach for urothelial carcinoma. Mol Cancer Ther; 17(6); 1303-14. ©2018 AACR . ©2018 American Association for Cancer Research.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-dihydro-ar-[4-[[2-(sulfooxy)ethyl]substituted]phenyl]-, monosodium salt (generic). 721.10130 Section 721... Quino[2,3-b]acridine-7,14-dione, 5,12-dihydro-ar-[4-[[2-(sulfooxy)ethyl]substituted]phenyl]-, monosodium... substance identified generically as quino[2,3-b]acridine-7,14-dione, 5,12-dihydro-ar-[4-[[2-(sulfooxy)ethyl...
1996-08-01
J-4030 TITLE: The In Vivo DNA Binding Properties of Wild-Type and Mutant p53 Proteins in Mammary Cell Lines During the Course of Cell Cycle PRINCIPAL...The In Vivo DNA Binding Properties of 5. FUNDING NUMBERS Wild-Type and Mutant p53 Proteins in Mammary Cell Lines DAMD17-94-J-4030 During the Course of...ABSTRACT (Maximum 200 Using a pair of murine cell lines, one lacking p53 and a derivative cell line containing temperature sensitive p53 val 135
Ar-Ar_Redux: rigorous error propagation of 40Ar/39Ar data, including covariances
NASA Astrophysics Data System (ADS)
Vermeesch, P.
2015-12-01
Rigorous data reduction and error propagation algorithms are needed to realise Earthtime's objective to improve the interlaboratory accuracy of 40Ar/39Ar dating to better than 1% and thereby facilitate the comparison and combination of the K-Ar and U-Pb chronometers. Ar-Ar_Redux is a new data reduction protocol and software program for 40Ar/39Ar geochronology which takes into account two previously underappreciated aspects of the method: 1. 40Ar/39Ar measurements are compositional dataIn its simplest form, the 40Ar/39Ar age equation can be written as: t = log(1+J [40Ar/39Ar-298.5636Ar/39Ar])/λ = log(1 + JR)/λ Where λ is the 40K decay constant and J is the irradiation parameter. The age t does not depend on the absolute abundances of the three argon isotopes but only on their relative ratios. Thus, the 36Ar, 39Ar and 40Ar abundances can be normalised to unity and plotted on a ternary diagram or 'simplex'. Argon isotopic data are therefore subject to the peculiar mathematics of 'compositional data', sensu Aitchison (1986, The Statistical Analysis of Compositional Data, Chapman & Hall). 2. Correlated errors are pervasive throughout the 40Ar/39Ar methodCurrent data reduction protocols for 40Ar/39Ar geochronology propagate the age uncertainty as follows: σ2(t) = [J2 σ2(R) + R2 σ2(J)] / [λ2 (1 + R J)], which implies zero covariance between R and J. In reality, however, significant error correlations are found in every step of the 40Ar/39Ar data acquisition and processing, in both single and multi collector instruments, during blank, interference and decay corrections, age calculation etc. Ar-Ar_Redux revisits every aspect of the 40Ar/39Ar method by casting the raw mass spectrometer data into a contingency table of logratios, which automatically keeps track of all covariances in a compositional context. Application of the method to real data reveals strong correlations (r2 of up to 0.9) between age measurements within a single irradiation batch. Propertly taking into account these correlations significantly improves the precision and accuracy of 40Ar/39Ar data, at no financial cost. A prototype version of Ar-Ar_Redux was written in R and is available from http://redux.london-geochron.com. A standalone GUI is under development.
NASA Astrophysics Data System (ADS)
Hutzler, Nicholas R.; Doyle, John M.
2014-06-01
Cryogenic buffer gas cooled beams and cells can be used to study many species, from atoms and polar molecules to biomolecules. We report on recent applications of this technique to improve the limit on the electron electric dipole moment [1], load polar molecules into a magnetic trap through optical pumping [2], perform chirally sensitive microwave spectroscopy on polyatomic molecules [3], progress towards magneto-optical trapping of polar molecules [4], and studies of atom-molecule sticking [5]. [1] The ACME Collaboration: J. Baron et al., Science 343, p. 269 (2014) [2] B. Hemmerling et al., arXiv:1310.2669, to appear in Phys. Rev. Lett. [3] D. Patterson, M. Schnell, & J. M. Doyle, Nature 497, p. 475 (2013) [4] H. Lu et al., arXiv:1310.3239, to appear in New. J. Phys. [5] J. Piskorski et al., under preparation
Sympathetic Nerves in Breast Cancer: Angiogenesis and Antiangiogenic Therapy
2013-02-01
directly regulate 4T1 growth through ARs. Using in vitro conditions that yielded NE-mediated functional effects in other cell lines (1), we assessed...Therefore we propose that 4T1 is a good model for examining the effects of NE-induced effects on stromal cell populations in the absence of direct NE... effects analysis or by Holm-Sidak multiple comparison test. RESULTS 4T1 Tumor Cells Do Not Respond to NE In Vitro or Signal via AR To determine
Goicochea, Nancy L; Garnovskaya, Maria; Blanton, Mary G; Chan, Grace; Weisbart, Richard; Lilly, Michael B
2017-12-01
Castration-resistant prostate cancer cells exhibit continued androgen receptor signaling in spite of low levels of ligand. Current therapies to block androgen receptor signaling act by inhibiting ligand production or binding. We developed bispecific antibodies capable of penetrating cells and binding androgen receptor outside of the ligand-binding domain. Half of the bispecific antibody molecule consists of a single-chain variable fragment of 3E10, an anti-DNA antibody that enters cells. The other half is a single-chain variable fragment version of AR441, an anti-AR antibody. The resulting 3E10-AR441 bispecific antibody enters human LNCaP prostate cells and accumulates in the nucleus. The antibody binds to wild-type, mutant and splice variant androgen receptor. Binding affinity of 3E10-AR441 to androgen receptor (284 nM) was lower than that of the parental AR441 mAb (4.6 nM), but could be improved (45 nM) through alternative placement of the affinity tags, and ordering of the VH and VK domains. The 3E10-AR441 bispecific antibody blocked genomic signaling by wild-type or splice variant androgen receptor in LNCaP cells. It also blocked non-genomic signaling by the wild-type receptor. Furthermore, bispecific antibody inhibited the growth of C4-2 prostate cancer cells under androgen-stimulated conditions. The 3E10-AR441 biAb can enter prostate cancer cells and inhibits androgen receptor function in a ligand-independent manner. It may be an attractive prototype agent for prostate cancer therapy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Functional Effect of an Amphiregulin Autocrine Loop on Inflammatory Breast Cancer Progression
2007-03-01
autocrine loop exists in pancreatic cancer, colon cancer, and hepatocellular carcinoma (27-29). AR expression was also found to be strongly correlated...J, Erroba, E, Perugorria, MJ, et al. Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res... hepatocellular carcinoma (27–29). AR expression was also found to be * This research was supported by National Institutes of Health Grants R01
NASA Astrophysics Data System (ADS)
Ivanov, Sergey V.; Buzykin, Oleg G.
2016-12-01
A classical approach is applied to calculate pressure broadening coefficients of CO2 vibration-rotational spectral lines perturbed by Ar. Three types of spectra are examined: electric dipole (infrared) absorption; isotropic and anisotropic Raman Q branches. Simple and explicit formulae of the classical impact theory are used along with exact 3D Hamilton equations for CO2-Ar molecular motion. The calculations utilize vibrationally independent most accurate ab initio potential energy surface (PES) of Hutson et al. expanded in Legendre polynomial series up to lmax = 24. New improved algorithm of classical rotational frequency selection is applied. The dependences of CO2 half-widths on rotational quantum number J up to J=100 are computed for the temperatures between 77 and 765 K and compared with available experimental data as well as with the results of fully quantum dynamical calculations performed on the same PES. To make the picture complete, the predictions of two independent variants of the semi-classical Robert-Bonamy formalism for dipole absorption lines are included. This method. however, has demonstrated poor accuracy almost for all temperatures. On the contrary, classical broadening coefficients are in excellent agreement both with measurements and with quantum results at all temperatures. The classical impact theory in its present variant is capable to produce quickly and accurately the pressure broadening coefficients of spectral lines of linear molecules for any J value (including high Js) using full-dimensional ab initio - based PES in the cases where other computational methods are either extremely time consuming (like the quantum close coupling method) or give erroneous results (like semi-classical methods).
Rotationally inelastic collisions of He and Ar with NaK: Experiment and theory
NASA Astrophysics Data System (ADS)
Malenda, R. F.; Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Hickman, A. P.; Huennekens, J.; Talbi, D.; Gatti, F.
2012-06-01
We are investigating collisions of the ground (X^1&+circ;) and first excited (A^1&+circ;) electronic states of NaK using both experimental and theoretical methods. Potential surfaces for HeNaK (fixed NaK bond length) are used for coupled channel calculations of cross sections for rotational energy transfer and also for collisional transfer of orientation and alignment. Additional calculations use the MCTDH wavepacket method. The measurements of the A state collisions involve a pump--probe excitation scheme using polarization labeling and laser-induced fluorescence spectroscopy. The pump excites a particular ro-vibrational level (v,J) of the A state from the X state, and the probe laser is scanned over various transitions to the 3^1π state. In addition to strong direct transitions, weak satellite lines are observed that arise from collisionally-induced transitions from the (v,J) level to (v,J'=J+δJ). This method provides information about the cross sections for transfer of population and orientation for A state levels, and it can be adapted to transitions starting in the X state. For the A state we observe a strong δJ=even propensity for both He and Ar perturbers. Preliminary results for the X state do not show this propensity.
Kim, Moo-Sang; Lim, Hak-Seob; Ahn, Sang Jung; Jeong, Yong-Kee; Kim, Chul Geun; Lee, Hyung Ho
2007-11-01
The origins of replication are associated with nuclear matrices or are found in close proximity to matrix attachment regions (MARs). In this report, fish MARs were cloned into an autonomously replicating sequence (ARS) cloning vector and were screened for ARS elements in Saccharomyces cerevisiae. Sixteen clones were isolated that were able to grow on the selective plates. In particular, an ARS905 that shows high efficiency among them was selected for this study. Southern hybridization indicated the autonomous replication of the transformation vector containing the ARS905 element. DNA sequences analysis showed that the ARS905 contained two ARS consensus sequences as well as MAR motifs, such as AT tracts, ORI patterns, and ATC tracts. In vitro matrix binding analysis, major matrix binding activity and ARS function coincided in a subfragment of the ARS905. To analyze the effects of ARS905 on expression of a reporter gene, an ARS905(E1158) with ARS activity was inserted into pBaEGFP(+) containing mud loach beta-actin promoter, EGFP as a reporter gene, and SV40 poly(A) signal. The pBaEGFP(+)-ARS905(E1158) was transfected into a fish cell line, CHSE-214. The intensity of EGFP transfected cells was a 7-fold of the control at 11days post-transfection. These results indicate that ARS905 enhances the expression of the EGFP gene and that it should be as a component of expression vectors in further fish biotechnological studies.
Koushyar, S; Economides, G; Zaat, S; Jiang, W; Bevan, C L; Dart, D A
2017-01-01
Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR. Additionally, their cellular locations and chromatin interactions are in dynamic opposition. We investigated the mechanisms of cell cycle inhibition by PHB and how this is modulated by AR in prostate cancer. Using a prostate cancer cell line overexpressing PHB, we analysed the gene expression changes associated with PHB-mediated cell cycle arrest. Over 1000 gene expression changes were found to be significant and gene ontology analysis confirmed PHB-mediated repression of genes essential for DNA replication and synthesis, for example, MCMs and TK1, via an E2F1 regulated pathway—agreeing with its G1/S cell cycle arrest activity. PHB is known to inhibit E2F1-mediated transcription, and the PHB:E2F1 interaction was seen in LNCaP nuclear extracts, which was then reduced by androgen treatment. Upon two-dimensional western blot analysis, the PHB protein itself showed androgen-mediated charge differentiation (only in AR-positive cells), indicating a potential dephosphorylation event. Kinexus phosphoprotein array analysis indicated that Src kinase was the main interacting intracellular signalling hub in androgen-treated LNCaP cells, and that Src inhibition could reduce this AR-mediated charge differentiation. PHB charge change may be associated with rapid dissociation from chromatin and E2F1, allowing the cell cycle to proceed. The AR and androgens may deactivate the repressive functions of PHB upon E2F1 leading to cell cycle progression, and indicates a role for AR in DNA replication licensing. PMID:28504694
Krause, William C.; Shafi, Ayesha A.; Nakka, Manjula; Weigel, Nancy L.
2014-01-01
Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. PMID:25008967
NASA Astrophysics Data System (ADS)
Taylor, Robert M.; Huber, Dale L.; Monson, Todd C.; Ali, Abdul-Mehdi S.; Bisoffi, Marco; Sillerud, Laurel O.
2011-10-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s-1 mM-1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s-1 mM-1) and 3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T 2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.
Talbot, N C; Caperna, T J; Garrett, W M
2013-01-01
Totipotent embryonic stem cell lines have not been established from ungulates; however, we have developed a somatic stem cell line from the in vitro culture of pig epiblast cells. The cell line, ARS-PICM-19, was isolated via colony cloning and was found to spontaneously differentiate into hepatic parenchymal epithelial cell types, namely hepatocytes and bile duct cells. Hepatocytes form as monolayers and bile duct cells as 3-dimensional bile ductules. Transmission electron microscopy revealed that the ductules were composed of radially arranged, monociliated cells with their cilia projecting into the lumen of the ductule whereas hepatocytes were arranged in monolayers with lateral canalicular structures containing numerous microvilli and connected by tight junctions and desmosomes. Extensive Golgi and rough endoplasmic reticulum networks were also present, indicative of active protein synthesis. Analysis of conditioned medium by 2-dimensional electrophoresis and mass spectrometry indicated a spectrum of serum-protein secretion by the hepatocytes. The PICM-19 cell line maintains a range of inducible cytochrome P450 activities and, most notably, is the only nontransformed cell line that synthesizes urea in response to ammonia challenge. The PICM-19 cell line has been used for several biomedical- and agricultural-related purposes, such as the in vitro replication of hepatitis E virus, a zoonotic virus of pigs, and a spaceflight experiment to evaluate somatic stem cell differentiation and liver cell function in microgravity. The cell line was also evaluated as a platform for toxicity testing and has been used in a commercial artificial liver rescue device bioreactor. A PICM-19 subclone, PICM-19H, which only differentiates into hepatocytes, was isolated and methods are currently under development to grow PICM-19 cells without feeder cells. Feeder-cell-independent growth will facilitate the study of mesenchymal-parenchymal interactions that influence the divergent differentiation of the PICM-19 cells, enhance our ability to genetically modify the cells, and provide a better model system to investigate porcine hepatic metabolism.
Zwollo, Patty; Ray, Jocelyn C; Sestito, Michael; Kiernan, Elizabeth; Wiens, Gregory D; Kaattari, Steve; StJacques, Brittany; Epp, Lidia
2015-01-01
Bacterial cold water disease (BCWD) is a chronic disease of rainbow trout, and is caused by the Gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp-resistant trout (ARS-Fp-R or R-line trout) and a line of susceptible trout (ARS-Fp-S, or S-line). Little is known about how phenotypic selection alters immune response parameters or how such changes relate to genetic disease resistance. Herein, we quantify interindividual variation in the distribution and abundance of B cell populations (B cell signatures) and examine differences between genetic lines of naive animals. There are limited trout-specific cell surface markers currently available to resolve B cell subpopulations and thus we developed an alternative approach based on detection of differentially expressed transcription factors and intracellular cytokines. B cell signatures were compared between R-line and S-line trout by flow cytometry using antibodies against transcription factors early B cell factor-1 (EBF1) and paired domain box protein Pax5, the pro-inflammatory cytokine IL-1β, and the immunoglobulin heavy chain mu. R-line trout had higher percentages of EBF(+) B myeloid/ progenitor and pre-B cells in PBL, anterior and posterior kidney tissues compared to S-line trout. The opposite pattern was detected in more mature B cell populations: R-line trout had lower percentages of both IgM(+) mature B cells and IgM-secreting cells in anterior kidney and PBL compared to S-line trout. In vitro LPS-activation studies of PBL and spleen cell cultures revealed no significant induction differences between R-line and S-line trout. Together, our findings suggest that selective resistance to BCWD may be associated with shifts in naive animal developmental lineage commitment that result in decreased B lymphopoiesis and increased myelopoiesis in BCWD resistant trout relative to susceptible trout. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheng, Hao; Xie, Zhiliang; Jones, William P; Wei, Xiaohui Tracey; Liu, Zhongfa; Wang, Dasheng; Kulp, Samuel K; Wang, Jiang; Coss, Christopher C; Chen, Ching-Shih; Marcucci, Guido; Garzon, Ramiro; Covey, Joseph M; Phelps, Mitch A; Chan, Kenneth K
2016-05-01
AR-42, a new orally bioavailable, potent, hydroxamate-tethered phenylbutyrate class I/IIB histone deacetylase inhibitor currently is under evaluation in phase 1 and 2 clinical trials and has demonstrated activity in both hematologic and solid tumor malignancies. This report focuses on the preclinical characterization of the pharmacokinetics of AR-42 in mice and rats. A high-performance liquid chromatography-tandem mass spectrometry assay has been developed and applied to the pharmacokinetic study of the more active stereoisomer, S-AR-42, when administered via intravenous and oral routes in rodents, including plasma, bone marrow, and spleen pharmacokinetics (PK) in CD2F1 mice and plasma PK in F344 rats. Oral bioavailability was estimated to be 26 and 100% in mice and rats, respectively. R-AR-42 was also evaluated intravenously in rats and was shown to display different pharmacokinetics with a much shorter terminal half-life compared to that of S-AR-42. Renal clearance was a minor elimination pathway for parental S-AR-42. Oral administration of S-AR-42 to tumor-bearing mice demonstrated high uptake and exposure of the parent drug in the lymphoid tissues, spleen, and bone marrow. This is the first report of the pharmacokinetics of this novel agent, which is now in early phase clinical trials.
Yang, Jun; Xie, Sheng-Xue; Huang, Yiling; Ling, Min; Liu, Jihong; Ran, Yali; Wang, Yanlin; Thrasher, J Brantley; Berkland, Cory; Li, Benyi
2012-01-01
Background Prostate cancer is the major cause of cancer death in men and the androgen receptor (AR) has been shown to play a critical role in the progression of the disease. Our previous reports showed that knocking down the expression of the AR gene using a siRNA-based approach in prostate cancer cells led to apoptotic cell death and xenograft tumor eradication. In this study, we utilized a biodegradable nanoparticle to deliver the therapeutic AR shRNA construct specifically to prostate cancer cells. Materials & methods The biodegradable nanoparticles were fabricated using a poly(dl-lactic-co-glycolic acid) polymer and the AR shRNA constructs were loaded inside the particles. The surface of the nanoparticles were then conjugated with prostate-specific membrane antigen aptamer A10 for prostate cancer cell-specific targeting. Results A10-conjugation largely enhanced cellular uptake of nanoparticles in both cell culture- and xenograft-based models. The efficacy of AR shRNA encapsulated in nanoparticles on AR gene silencing was confirmed in PC-3/AR-derived xenografts in nude mice. The therapeutic property of A10-conjugated AR shRNA-loaded nanoparticles was evaluated in xenograft models with different prostate cancer cell lines: 22RV1, LAPC-4 and LNCaP. Upon two injections of the AR shRNA-loaded nanoparticles, rapid tumor regression was observed over 2 weeks. Consistent with previous reports, A10 aptamer conjugation significantly enhanced xenograft tumor regression compared with nonconjugated nanoparticles. Discussion These data demonstrated that tissue-specific delivery of AR shRNA using a biodegradable nanoparticle approach represents a novel therapy for life-threatening prostate cancers. PMID:22583574
Scatena, Alessia; Fornai, Francesco; Trincavelli, Maria Letizia; Taliani, Sabrina; Daniele, Simona; Pugliesi, Isabella; Cosconati, Sandro; Martini, Claudia; Da Settimo, Federico
2011-09-21
In this study, compound FTBI (3-(2-furyl)-10-(2-phenylethyl)[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one) was selected from a small library of triazinobenzimidazole derivatives as a potent A(2A) adenosine receptor (AR) antagonist and tested for its neuroprotective effects against two different kinds of dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) and methamphetamine (METH), in rat PC12 and in human neuroblastoma SH-SY5Y cell lines. FTBI, in a concentration range corresponding to its affinity for A(2A) AR subtype, significantly increased the number of viable PC12 cells after their exposure to METH and, to a similar extent, to MPP+, as demonstrated in both trypan blue exclusion assay and in cytological staining. These neuroprotective effects were also observed with a classical A(2A) AR antagonist, ZM241385, and appeared to be completely counteracted by the AR agonist, NECA, supporting A(2A) ARs are directly involved in FTBI-mediated effects. Similarly, in human SH-SY5Y cells, FTBI was able to prevent cell toxicity induced by MPP+ and METH, showing that this A(2A) AR antagonist has a neuroprotective effect independently by the specific cell model. Altogether these results demonstrate that the A(2A) AR blockade mediates cell protection against neurotoxicity induced by dopaminergic neurotoxins in dopamine containing cells, supporting the potential use of A(2A) AR antagonists in dopaminergic degenerative diseases including Parkinson's disease.
Wang, Wei; Xu, Ming; Zhang, You-yi; He, Bei
2009-01-01
Aim: To investigate the molecular mechanism and signaling pathway by which fenoterol, a β2-adrenergic receptor (β2-AR) agonist, produces anti-inflammatory effects. Methods: THP-1, a monocytic cell line, was used to explore the mechanism of β2-AR stimulation in LPS-induced secretion of inflammatory cytokines and changes of toll-like receptors (TLRs). We labeled TLR4 and CD14 using monoclonal anti-TLR4 PE-conjugated and anti-CD14 FITC-conjugated antibodies in THP-1 cells stimulated by β2-AR in the presence or absence of lipopolysaccharide (LPS) and small, interfering RNA (siRNA)-mediated knockdown of β-arrestin-2, and then analyzed their changes in distribution by flow cytometry, Western blotting and confocal analysis. Results: LPS-induced membrane-bound CD14, TLR4/CD14 complex levels and elevation of inflammatory cytokines were all significantly reduced by pre-incubation of fenoterol (P<0.05). However, the total level of CD14 and TLR4 was not significantly changed. Interestingly, confocal microscopy revealed redistribution of CD14 and TLR4/CD14 complex under β2-AR stimulation. Furthermore, siRNA-mediated knockdown of β-arrestin-2 eliminated the anti-inflammatory effects and redistribution of CD14 and TLR4/CD14 complex stimulated by β2-AR. Conclusion: β2-AR agonist exerts its anti-inflammatory effects by down-regulating TLR signaling in THP-1 cells, potentially resulting from β-arrestin-2 mediated redistribution of CD14 and TLR14/CD14 complex. PMID:19890360
Some Topics in Applied Electrochemical Kinetics,
1980-07-01
AD-A097 405- DEFENE RESEARCH ESTABLiSHMENT OTTAWA (6NTARID3 F/G 7/ 4 SOME TOPICS IN APP LIED ELECTROCHEMICAL K INETICS.(U) JUL go E J CASEY, J R...electroplating, for a trans- port masurement, for electropolishing ; or it may be a battery of cells for storage of electrical energy; ar it may be a cell for the...product, or some other. Sometimes, although not always, the UNCLASSIFIED 4 UNCLASSIFIED slopes of these different steps are unique and permit
Shami, Paul J; Saavedra, Joseph E; Bonifant, Challice L; Chu, Jingxi; Udupi, Vidya; Malaviya, Swati; Carr, Brian I; Kar, Siddhartha; Wang, Meifeng; Jia, Lee; Ji, Xinhua; Keefer, Larry K
2006-07-13
The literature provides evidence that metabolic nitric oxide (NO) release mediates the cytotoxic activities (against human leukemia and prostate cancer xenografts in mice) of JS-K, a compound of structure R(2)N-N(O)=NO-Ar for which R(2)N is 4-(ethoxycarbonyl)piperazin-1-yl and Ar is 2,4-dinitrophenyl. Here we present comparative data on the potencies of JS-K and 41 other O(2)-arylated diazeniumdiolates as inhibitors of HL-60 human leukemia cell proliferation, as well as in the NCI 51-cell-line screen for six of them. The data show JS-K to be the most potent of the 42 in both screens and suggest that other features of its structure and metabolism besides NO release may contribute importantly to its activity. Results with control compounds implicate JS-K's arylating ability, and the surprisingly low IC(50) value of the N-(ethoxycarbonyl)piperazine byproduct of NO release suggests a role for the R(2)N moiety. In addition to the above-mentioned in vivo activities, JS-K is shown here to be carcinostatic in a rat liver cancer model.
Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei
2015-06-26
The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β2-adrenergic receptor (β2-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β2-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β2-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Nonparametric Estimation of Distribution and Density Functions with Applications.
1982-05-01
8 > Z C.. o i, ,- 4 8 ...S C[ 17 : - j 46 0- IA ~ IL ar’ D rn B- - 4 -4A B- 8 ~a *~jai 188 the jackknife may be found in Gray, et al., and Cressie (Refs 15,28). Analogous to...convergence. 21 =7w; Ul I 0083 q C/) 22S , WJ 8 , J035 224 43 UC I a- 04 14 Q) ’I 4 -4a-Q 23z Let R1 be the real line, the borel field on R 1 and P,
Della Rovere, F; Fattorini, L; D'Angeli, S; Veloccia, A; Del Duca, S; Cai, G; Falasca, G; Altamura, M M
2015-03-01
Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR, SCR and AUX1. Pericycle activity is central for the equilibrium between xylary development and AR formation in the hypocotyl, with a role for AUX1 in switching between, and balancing of, the two developmental programmes. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company.
Correa, Ricardo G; Krajewska, Maryla; Ware, Carl F; Gerlic, Motti; Reed, John C
2014-03-30
Prostate cancer (PCa) is among the leading causes of cancer-related death in men. Androgen receptor (AR) signaling plays a seminal role in prostate development and homeostasis, and dysregulation of this pathway is intimately linked to prostate cancer pathogenesis and progression. Here, we identify the cytosolic NLR-related protein NWD1 as a novel modulator of AR signaling. We determined that expression of NWD1 becomes elevated during prostate cancer progression, based on analysis of primary tumor specimens. Experiments with cultured cells showed that NWD1 expression is up-regulated by the sex-determining region Y (SRY) family proteins. Gene silencing procedures, in conjunction with transcriptional profiling, showed that NWD1 is required for expression of PDEF (prostate-derived Ets factor), which is known to bind and co-regulate AR. Of note, NWD1 modulates AR protein levels. Depleting NWD1 in PCa cell lines reduces AR levels and suppresses activity of androgen-driven reporter genes. NWD1 knockdown potently suppressed growth of androgen-dependent LNCaP prostate cancer cells, thus showing its functional importance in an AR-dependent tumor cell model. Proteomic analysis suggested that NWD1 associates with various molecular chaperones commonly related to AR complexes. Altogether, these data suggest a role for tumor-associated over-expression of NWD1 in dysregulation of AR signaling in PCa.
Zhang, Yong; Shaik, Ahmad Ali; Xing, Chengguo; Chai, Yubo; Li, Li; Zhang, Jinhui; Zhang, Wei; Kim, Sung-Hoon; Lü, Junxuan; Jiang, Cheng
2012-10-01
Targeting androgen receptor (AR) signaling with agents distinct from current antagonist drugs remains a rational approach to the prevention and treatment of prostate cancer (PCa). Our previous studies have shown that decursin and isomer decursinol angelate (DA), isolated from the Korean medicinal herb Angelica gigas Nakai, interrupt AR signaling and possess anti-PCa activities in vitro. In the LNCaP PCa cell model, these pyranoccoumarin compounds exhibit properties distinct from currently used antagonists (e.g., Casodex). However, both are rapidly de-esterified to decursinol, a partial AR agonist. We report here that a synthetic decursin analog, decursinol phenylthiocarbamate (DPTC), has greater in vivo stability than the parent compounds. DPTC-decursinol conversion was undetectable in mice. Furthermore, in LNCaP cells, DPTC decreased prostate specific antigen (PSA) expression, down-regulated AR abundance and mRNA and inhibited AR nuclear translocation. The effect of DPTC on AR and PSA mRNA and protein abundance was also observed in VCaP cells expressing wild type AR. DPTC inhibited growth of both PCa cell lines through G(1) cell cycle arrest and apoptosis, as did decursin and DA. Furthermore, i.p. administration of DPTC for 3 weeks suppressed the expression of AR target genes probasin and Nkx3.1 in mouse prostate glands. Overall, our data suggest that DPTC represents a prototype lead compound for development of in vivo stable and active novel decursin analogs for the prevention or therapy of PCa.
Bypass Mechanisms of the Androgen Receptor Pathway in Therapy-Resistant Prostate Cancer Cell Models
Marques, Rute B.; Dits, Natasja F.; Erkens-Schulze, Sigrun; van Weerden, Wytske M.; Jenster, Guido
2010-01-01
Background Prostate cancer is initially dependent on androgens for survival and growth, making hormonal therapy the cornerstone treatment for late-stage tumors. However, despite initial remission, the cancer will inevitably recur. The present study was designed to investigate how androgen-dependent prostate cancer cells eventually survive and resume growth under androgen-deprived and antiandrogen supplemented conditions. As model system, we used the androgen-responsive PC346C cell line and its therapy-resistant sublines: PC346DCC, PC346Flu1 and PC346Flu2. Methodology/Principal Findings Microarray technology was used to analyze differences in gene expression between the androgen-responsive and therapy-resistant PC346 cell lines. Microarray analysis revealed 487 transcripts differentially-expressed between the androgen-responsive and the therapy-resistant cell lines. Most of these genes were common to all three therapy-resistant sublines and only a minority (∼5%) was androgen-regulated. Pathway analysis revealed enrichment in functions involving cellular movement, cell growth and cell death, as well as association with cancer and reproductive system disease. PC346DCC expressed residual levels of androgen receptor (AR) and showed significant down-regulation of androgen-regulated genes (p-value = 10−7). Up-regulation of VAV3 and TWIST1 oncogenes and repression of the DKK3 tumor-suppressor was observed in PC346DCC, suggesting a potential AR bypass mechanism. Subsequent validation of these three genes in patient samples confirmed that expression was deregulated during prostate cancer progression. Conclusions/Significance Therapy-resistant growth may result from adaptations in the AR pathway, but androgen-independence may also be achieved by alternative survival mechanisms. Here we identified TWIST1, VAV3 and DKK3 as potential players in the bypassing of the AR pathway, making them good candidates as biomarkers and novel therapeutical targets. PMID:20976069
Limon-Boulez, I; Bouet-Alard, R; Gettys, T W; Lanier, S M; Maltier, J P; Legrand, C
2001-02-01
alpha2-Adrenergic receptor (alpha(2)-AR) activation in the pregnant rat myometrium at midterm potentiates beta(2)-AR stimulation of adenylyl cyclase (AC) via Gbetagamma regulation of the type II isoform of adenylyl cyclase. However, at term, alpha(2)-AR activation inhibits beta(2)-AR stimulation of AC. This phenomenon is associated with changes in alpha(2)-AR subtype expression (midterm alpha(2A/D)-AR > alpha(2B)-AR; term alpha(2B) >or =alpha(2A/D)-AR), without any change in ACII mRNA, suggesting that alpha(2A/D)- and alpha(2B)-AR differentially regulate beta(2)-cAMP production. To address this issue, we have stably expressed the same density of alpha(2A/D)- or alpha(2B)-AR with AC II in DDT1-MF2 cells. Clonidine (partial agonist) increased beta(2)-AR-stimulated cAMP production in alpha(2A/D)-AR-ACII transfectants but inhibited it in alpha(2B)-AR-ACII transfectants. In contrast, epinephrine (full agonist) enhanced beta(2)-stimulated ACII in both alpha(2A)- and alpha(2B)-ACII clonal cell lines. 4-Azidoanilido-[alpha-(32)P]GTP-labeling of activated G proteins indicated that, in alpha(2B)-AR transfectants, clonidine activated only Gi(2), whereas epinephrine, the full agonist, effectively coupled to Gi(2) and Gi(3). Thus, partial and full agonists selectively activate G proteins that lead to drug specific effects on effectors. Moreover, these data indicate that Gi(3) activation is required for potentiation of beta(2)-AR stimulation of AC by alpha(2A/D) and alpha(2B)-AR in DDT1-MF2 cells. This may reflect an issue of the amount of Gbetagamma released upon receptor activation and/or betagamma composition of Gi(3) versus Gi(2).
De Laere, Bram; van Dam, Pieter-Jan; Whitington, Tom; Mayrhofer, Markus; Diaz, Emanuela Henao; Van den Eynden, Gert; Vandebroek, Jean; Del-Favero, Jurgen; Van Laere, Steven; Dirix, Luc; Grönberg, Henrik; Lindberg, Johan
2017-08-01
Expression of the androgen receptor splice variant 7 (AR-V7) is associated with poor response to second-line endocrine therapy in castration-resistant prostate cancer (CRPC). However, a large fraction of nonresponding patients are AR-V7-negative. To investigate if a comprehensive liquid biopsy-based AR profile may improve patient stratification in the context of second-line endocrine therapy. Peripheral blood was collected from patients with CRPC (n=30) before initiation of a new line of systemic therapy. We performed profiling of circulating tumour DNA via low-pass whole-genome sequencing and targeted sequencing of the entire AR gene, including introns. Targeted RNA sequencing was performed on enriched circulating tumour cell fractions to assess the expression levels of seven AR splice variants (ARVs). Somatic AR variations, including copy-number alterations, structural variations, and point mutations, were combined with ARV expression patterns and correlated to clinicopathologic parameters. Collectively, any AR perturbation, including ARV, was detected in 25/30 patients. Surprisingly, intra-AR structural variation was present in 15/30 patients, of whom 14 expressed ARVs. The majority of ARV-positive patients expressed multiple ARVs, with AR-V3 the most abundantly expressed. The presence of any ARV was associated with progression-free survival after second-line endocrine treatment (hazard ratio 4.53, 95% confidence interval 1.424-14.41; p=0.0105). Six out of 17 poor responders were AR-V7-negative, but four carried other AR perturbations. Comprehensive AR profiling, which is feasible using liquid biopsies, is necessary to increase our understanding of the mechanisms underpinning resistance to endocrine treatment. Alterations in the androgen receptor are associated with endocrine treatment outcomes. This study demonstrates that it is possible to identify different types of alterations via simple blood draws. Follow-up studies are needed to determine the effect of such alterations on hormonal therapy. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, WE
2010-01-01
Background and purpose: β-Amyloid peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. Experimental approach: We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Aβ-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Aβ and on neurite outgrowth in PC12 cells were investigated. Key results: Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Aβ1-42. Similar protective effects against Aβ1-42 were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Aβ load was markedly diminished in the brain of those animals after treatment with piracetam. Aβ production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Aβ-induced mitochondrial dysfunction and Aβ-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Conclusion and implications: Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Aβ on brain function. This article is commented on by Moncada, pp. 217–219 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00706.x and to view related papers by Pravdic et al. and Puerta et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00698.x and http://dx.doi.org/10.1111/j.1476-5381.2010.00663.x PMID:20218980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Dibash K.; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016; Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065
Prostate cancer (PCa) is frequently diagnosed in men, and dysregulation of microRNAs is characteristic of many cancers. MicroRNA-1207-3p is encoded at the non-protein coding gene locus PVT1 on the 8q24 human chromosomal region, an established PCa susceptibility locus. However, the role of microRNA-1207-3p in PCa is unclear. We discovered that microRNA-1207-3p is significantly underexpressed in PCa cell lines in comparison to normal prostate epithelial cells. Increased expression of microRNA-1207-3p in PCa cells significantly inhibits proliferation, migration, and induces apoptosis via direct molecular targeting of FNDC1, a protein which contains a conserved protein domain of fibronectin (FN1). FNDC1, FN1, and themore » androgen receptor (AR) are significantly overexpressed in PCa cell lines and human PCa, and positively correlate with aggressive PCa. Prostate tumor FN1 expression in patients that experienced PCa-specific death is significantly higher than in patients that remained alive. Furthermore, FNDC1, FN1 and AR are concomitantly overexpressed in metastatic PCa. Consequently, these studies have revealed a novel microRNA-1207-3p/FNDC1/FN1/AR regulatory pathway in PCa. - Graphical abstract: miR-1207-3p/FNDC1/FN1/AR is a novel regulatory pathway in prostate cancer. - Highlights: • Expression of microRNA-1207-3p is significantly lost in prostate cancer (PCa) cells. • MicroRNA-1207-3p regulates proliferation, apoptosis, and migration via direct molecular targeting of the 3′UTR of FNDC1. • MicroRNA-1207-3p regulates proliferation, apoptosis, and migration via direct molecular targeting of the 3′UTR of FNDC1. • FNDC1, FN1, and AR are concurrently overexpressed in metastatic PCa.« less
Laschak, Martin; Spindler, Klaus-Dieter; Schrader, Andres J; Hessenauer, Andrea; Streicher, Wolfgang; Schrader, Mark; Cronauer, Marcus V
2012-03-30
Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling pathway. Our results suggest that small molecules able to inhibit WNT- and AR-signaling via NO-release represent a promising platform for the development of new compounds for the treatment of CRPC.
2012-01-01
Background Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Methods Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. Results The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling pathway. Conclusions Our results suggest that small molecules able to inhibit WNT- and AR-signaling via NO-release represent a promising platform for the development of new compounds for the treatment of CRPC. PMID:22462810
Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52.
Joshi, Jugal Bharat; Patel, Divya; Morton, Derrick J; Sharma, Pankaj; Zou, Jin; Hewa Bostanthirige, Dhanushka; Gorantla, Yamini; Nagappan, Peri; Komaragiri, Shravan Kumar; Sivils, Jeffrey C; Xie, Huan; Palaniappan, Ravi; Wang, Guangdi; Cox, Marc B; Chaudhary, Jaideep
2017-04-01
Castration-resistant prostate cancer (CRPC) is the emergence of prostate cancer cells that have adapted to the androgen-depleted environment of the prostate. In recent years, targeting multiple chaperones and co-chaperones (e.g., Hsp27, FKBP52) that promote androgen receptor (AR) signaling and/or novel AR regulatory mechanisms have emerged as promising alternative treatments for CRPC. We have shown that inactivation of inhibitor of differentiation 4 (ID4), a dominant-negative helix loop helix protein, promotes de novo steroidogenesis and CRPC with a gene expression signature that resembles constitutive AR activity in castrated mice. In this study, we investigated the underlying mechanism through which loss of ID4 potentiates AR signaling. Proteomic analysis between prostate cancer cell line LNCaP (L+ns) and LNCaP lacking ID4 (L(-)ID4) revealed elevated levels of Hsp27 and FKBP52, suggesting a role for these AR-associated co-chaperones in promoting constitutively active AR signaling in L(-)ID4 cells. Interestingly, protein interaction studies demonstrated a direct interaction between ID4 and the 52-kDa FK506-binding protein (FKBP52) in vitro, but not with AR. An increase in FKBP52-dependent AR transcriptional activity was observed in L(-)ID4 cells. Moreover, pharmacological inhibition of FKBP52-AR signaling, by treatment with MJC13, attenuated the tumor growth, weight, and volume in L(-)ID4 xenografts. Together, our results demonstrate that ID4 selectively regulates AR activity through direct interaction with FKBP52, and its loss, promotes CRPC through FKBP52-mediated AR signaling. © 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Generation of Two Novel Cell Lines that Stably Express hAR and Firefly Luciferase Genes for Endocrine Screening
K.L. Bobseine*1, W.R. Kelce2, P.C. Hartig*1, and L.E. Gray, Jr.1
1USEPA, NHEERL, Reproductive Toxicology Division, RTP, NC, 2Searle, Reproductive Toxicology Divi...
Streicher, Wolfgang; Luedeke, Manuel; Azoitei, Anca; Zengerling, Friedemann; Herweg, Alexander; Genze, Felicitas; Schrader, Mark G.; Schrader, Andres J.; Cronauer, Marcus V.
2014-01-01
Background Advanced castration resistant prostate cancer (CRPC) is often characterized by an increase of C-terminally truncated, constitutively active androgen receptor (AR) variants. Due to the absence of a ligand binding domain located in the AR-C-terminus, these receptor variants (also termed ARΔLBD) are unable to respond to all classical forms of endocrine treatments like surgical/chemical castration and/or application of anti-androgens. Methodology In this study we tested the effects of the naturally occurring stilbene resveratrol (RSV) and (E)-4-(2, 6-Difluorostyryl)-N, N-dimethylaniline, a fluorinated dialkylaminostilbene (FIDAS) on AR- and ARΔLBD in prostate cancer cells. The ability of the compounds to modulate transcriptional activity of AR and the ARΔLBD-variant Q640X was shown by reporter gene assays. Expression of endogenous AR and ARΔLBD mRNA and protein levels were determined by qRT-PCR and Western Blot. Nuclear translocation of AR-molecules was analyzed by fluorescence microscopy. AR and ARΔLBD/Q640X homo-/heterodimer formation was assessed by mammalian two hybrid assays. Biological activity of both compounds in vivo was demonstrated using a chick chorioallantoic membrane xenograft assay. Results The stilbenes RSV and FIDAS were able to significantly diminish AR and Q640X-signalling. Successful inhibition of the Q640X suggests that RSV and FIDAS are not interfering with the AR-ligand binding domain like all currently available anti-hormonal drugs. Repression of AR and Q640X-signalling by RSV and FIDAS in prostate cancer cells was caused by an inhibition of the AR and/or Q640X-dimerization. Although systemic bioavailability of both stilbenes is very low, both compounds were also able to downregulate tumor growth and AR-signalling in vivo. Conclusion RSV and FIDAS are able to inhibit the dimerization of AR and ARΔLBD molecules suggesting that stilbenes might serve as lead compounds for a novel generation of AR-inhibitors. PMID:24887556
Energy Levels, wavelengths and hyperfine structure measurements of Sc II
NASA Astrophysics Data System (ADS)
Hala, Fnu; Nave, Gillian
2018-01-01
Lines of singly ionized Scandium (Sc II) along with other Iron group elements have been observed [1] in the region surrounding the massive star Eta Carinae [2,3] called the strontium filament (SrF). The last extensive analysis of Sc II was the four-decade old work of Johansson & Litzen [4], using low-resolution grating spectroscopy. To update and extend the Sc II spectra, we have made observation of Sc/Ar, Sc/Ne and Sc/Ge/Ar hollow cathode emission spectrum on the NIST high resolution FT700 UV/Vis and 2 m UV/Vis/IR Fourier transform spectrometers (FTS). More than 850 Sc II lines have been measured in the wavelength range of 187 nm to 3.2 μm. connecting a total of 152 energy levels. The present work also focuses to resolve hyperfine structure (HFS) in Sc II lines. We aim to obtain accurate transition wavelengths, improved energy levels and HFS constants of Sc II. The latest results from work in progress will be presented.Reference[1] Hartman H, Gull T, Johansson S and Smith N 2004 Astron. Astrophys. 419 215[2] Smith N, Morse J A and Gull T R 2004 Astrophys. J. 605 405[3] Davidson K and Humphreys R M 1997 Annu. Rev. Astron. Astrophys. 35[4] Johansson S and Litzén U 1980 Phys. Scr. 22 49
Fielder, Thomas J; Yi, Charles S; Masumi, Juliet; Waymire, Katrina G; Chen, Hsiao-Wen; Wang, Shuling; Shi, Kai-Xuan; Wallace, Douglas C; MacGregor, Grant R
2012-12-01
To identify ways to improve the efficiency of generating chimeric mice via microinjection of blastocysts with ES cells, we compared production and performance of ES-cell derived chimeric mice using blastocysts from two closely related and commonly used sub-strains of C57BL/6. Chimeras were produced by injection of the same JM8.N4 (C57BL/6NTac) derived ES cell line into blastocysts of mixed sex from either C57BL/6J (B6J) or C57BL/6NTac (B6NTac) mice. Similar efficiency of production and sex-conversion of chimeric animals was observed with each strain of blastocyst. However, B6J chimeric males had fewer developmental abnormalities involving urogenital and reproductive tissues (1/12, 8%) compared with B6NTac chimeric males (7/9, 78%). The low sample size did not permit determination of statistical significance for many parameters. However, in each category analyzed the B6J-derived chimeric males performed as well, or better, than their B6NTac counterparts. Twelve of 14 (86%) B6J male chimeras were fertile compared with 6 of 11 (55%) B6NTac male chimeras. Ten of 12 (83%) B6J chimeric males sired more than 1 litter compared with only 3 of 6 (50%) B6NTac chimeras. B6J male chimeras produced more litters per productive mating (3.42 ± 1.73, n = 12) compared to B6NTac chimeras (2.17 ± 1.33, n = 6). Finally, a greater ratio of germline transmitting chimeric males was obtained using B6J blastocysts (9/14; 64%) compared with chimeras produced using B6NTac blastocysts (4/11; 36%). Use of B6J host blastocysts for microinjection of ES cells may offer improvements over blastocysts from B6NTac and possibly other sub-strains of C57BL/6 mice.
Lgr4 promotes prostate tumorigenesis through the Jmjd2a/AR signaling pathway.
Zhang, Jianwei; Li, Qi; Zhang, Shaojin; Xu, Quanquan; Wang, Tianen
2016-11-15
Lgr4 (leucine-rich repeat domain containing G protein-coupled receptor 4) is implicated in the transcriptional regulation of multiple histone demethylases in the progression of diverse cancers, but there are few reports concerning the molecular mechanism by which Lgr4 regulates histone demethylase activation in prostate cancer (PCa) progression. As Jmjd2a is a histone demethylase, in the current study, we investigated the relationship between interaction Lgr4 with Jmjd 2a and Jmjd2a/androgen receptor (AR) signaling pathway in PCa progression. Firstly, Lgr4 was overexpressed by transfecting pcDNA3.1(+)/Lgr4 plasmids into PCa (LNCaP and PC-3) cell lines. Next, we found that Lgr4 overexpression promoted Jmjd2a mRNA expression, reduced cell apoptosis and arrested cell cycle in the S phase, these effects were reversed by Jmjd2a silencing. Moreover, Lgr4 overexpression markedly elevated AR levels and its interaction with Jmjd2a, which was tested by co-immunoprecipitation and luciferase reporter assays. Furthermore, interaction AR with PSA promoter (containing an AR response element) was obviously improved by Lgr4 overexpression, and PSA silencing reduced Lgr4-induced cell apoptosis and cell cycle arrest in PCa cells. Taken together, Lgr4 may be a novel tumor marker providing new mechanistic insights into PCa progression. Lgr4 activates Jmjd2a/AR signaling pathway to promote interaction AR with PSA promoter, causing reduction of PCa apoptosis and cell cycle arrest. Copyright © 2016 Elsevier Inc. All rights reserved.
An Empirical Expression for the Line Widths of Ammonia
NASA Technical Reports Server (NTRS)
Brown, Linda R.; Peterson, Dean B.
1994-01-01
The hydrogen-broadened line widths of 116 (sup 14)NH(sub 3) ground state transitions have been measured at 0.006 cm(sup -1) resolution using a Bruker spectrometer in the 24 to 210 cm(sup -1) region. The rotational variation of the experimental widths with J(sup '),K(sup ') = 1,0 to 10,10 has been reproduced to 2.4 % using an heuristically derived expression of the form
gamma = a(sub 0) + a(sub 1) J(sup ') + a (sub 2) K(sup ') + a(sub 3) J(sup ')(sup 2) + a(sub 4) J(sup ') K(sup ')
where J(sup ') and K(sup ') are the lower state symmetric top quantum numbers. This function has also been applied to the measured widths of the 58 transitions of nu(sub 1) at 3 (micro)m, each broadened by N(sub 2), O(sub 2), Ar, H(sub 2), and He. The rms of the observed minus calculated widths are 5% or better for the five foreign broadeners. The values of the fitted constants suggest that for some broadeners the expression might also be written as
gamma = a(sub 0) + b(sub 1) J(sup ') + b(sub 2)(J(sup ' )- K(sup ')) + b(sub 3) J(sup ')(J(sup ') - K(sup '))
.
Jung, Gwanghyun; Fajardo, Giovanni; Ribeiro, Alexandre J S; Kooiker, Kristina Bezold; Coronado, Michael; Zhao, Mingming; Hu, Dong-Qing; Reddy, Sushma; Kodo, Kazuki; Sriram, Krishna; Insel, Paul A; Wu, Joseph C; Pruitt, Beth L; Bernstein, Daniel
2016-04-01
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for uncovering disease mechanisms and assessing drugs for efficacy/toxicity. However, the accuracy with which hiPSC-CMs recapitulate the contractile and remodeling signaling of adult cardiomyocytes is not fully known. We used β-adrenergic receptor (β-AR) signaling as a prototype to determine the evolution of signaling component expression and function during hiPSC-CM maturation. In "early" hiPSC-CMs (less than or equal to d 30), β2-ARs are a primary source of cAMP/PKA signaling. With longer culture, β1-AR signaling increases: from 0% of cAMP generation at d 30 to 56.8 ± 6.6% by d 60. PKA signaling shows a similar increase: 15.7 ± 5.2% (d 30), 49.8 ± 0.5% (d 60), and 71.0 ± 6.1% (d 90). cAMP generation increases 9-fold from d 30 to 60, with enhanced coupling to remodeling pathways (e.g., Akt and Ca(2+)/calmodulin-dependent protein kinase type II) and development of caveolin-mediated signaling compartmentalization. By contrast, cardiotoxicity induced by chronic β-AR stimulation, a major component of heart failure, develops much later: 5% cell death at d 30vs 55% at d 90. Moreover, β-AR maturation can be accelerated by biomechanical stimulation. The differential maturation of β-AR functionalvs remodeling signaling in hiPSC-CMs has important implications for their use in disease modeling and drug testing. We propose that assessment of signaling be added to the indices of phenotypic maturation of hiPSC-CMs.-Jung, G., Fajardo, G., Ribeiro, A. J. S., Kooiker, K. B., Coronado, M., Zhao, M., Hu, D.-Q., Reddy, S., Kodo, K., Sriram, K., Insel, P. A., Wu, J. C., Pruitt, B. L., Bernstein, D. Time-dependent evolution of functionalvs remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation. © FASEB.
Zwollo, Patty; Hennessey, Erin; Moore, Catherine; Marancik, David P; Wiens, Gregory D; Epp, Lidia
2017-09-01
Bacterial Cold Water Disease (BCWD) is a common, chronic disease in rainbow trout, and is caused by the gram-negative bacterium Flavobacterium psychrophilum (Fp). Through selective breeding, the National Center for Cool and Cold Water Aquaculture has generated a genetic line that is highly resistant to Fp challenge, designated ARS-Fp-R (or R-line), as well as a susceptible "control" line, ARS-Fp-S (S-line). In previous studies, resistance to Fp had been shown to correlate with naive animal spleen size, and further, naïve R-line trout had been shown to have a lower abundance of IgM + and IgM ++ cells compared to S-line fish. Here we wished to first determine whether the abundance of IgT + and/or IgT ++ cells differed between the two lines in naïve fish, and if so, how these patterns differed after in vivo challenge with Fp. Fp challenge was by intramuscular injection of live Fp and tissue collections were on days 5, 6, and/or 28 post-challenge, in two independent challenge experiments. Flow cytometric and gene expression analyses revealed that naïve R-line fish had a higher abundance of IgT + B cells in their anterior kidney, spleen, and blood, compared to S line fish. Further, that after Fp challenge, this difference was maintained between the two lines. Lastly, abundance of IgT + B cells and expression of secHCtau correlated with lower Fp pathogen loads in challenged fish. In the anterior kidney, IgM + B cell abundance correlated with increased Fp loads. Together, these results suggest that IgT + B lineage cells may have a protective function in the immune response to Fp. Copyright © 2017 Elsevier Ltd. All rights reserved.
Androgen receptor agonism promotes an osteogenic gene program in preadipocytes
Hartig, Sean M.; Feng, Qin; Ochsner, Scott A.; Xiao, Rui; McKenna, Neil J.; McGuire, Sean E.; He, Bin
2013-01-01
Androgens regulate body composition by interacting with the androgen receptor (AR) to control gene expression in a tissue-specific manner. To identify novel regulatory roles for AR in preadipocytes, we created a 3T3-L1 cell line stably expressing human AR. We found AR expression is required for androgen-mediated inhibition of 3T3-L1 adipogenesis. This inhibition is characterized by decreased lipid accumulation, reduced expression of adipogenic genes, and induction of genes associated with osteoblast differentiation. Collectively, our results suggest androgens promote an osteogenic gene program at the expense of adipocyte differentiation. PMID:23567971
Kleb, Brittany; Estécio, Marcos R H; Zhang, Jiexin; Tzelepi, Vassiliki; Chung, Woonbok; Jelinek, Jaroslav; Navone, Nora M; Tahir, Salahaldin; Marquez, Victor E; Issa, Jean-Pierre; Maity, Sankar; Aparicio, Ana
2016-03-03
Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor-derived xenografts (PDX) revealed that AR-negative SCPC (AR(-)SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR-positive castration-resistant adenocarcinomas (AR(+)ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR(-) and AR(+) PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR(-)SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR(-)SCPC cell lines. We conclude that the epigenome of AR(-) is distinct from that of AR(+) castration-resistant prostate carcinomas, and that the AR(-) phenotype can be reversed with epigenetic drugs.
Pivovarova, Aleksandra I; MacGregor, Gordon G
2018-02-01
This study aims to investigate the utilization of The Warburg Effect, cancer's "sweet tooth" and natural greed for glucose to enhance the effect of monocarboxylate transporter inhibition on cellular acidification. By simulating hyperglycemia with high glucose we may increase the effectiveness of inhibition of lactate and proton export on the dysregulation of cell pH homeostasis causing cell death or disruption of growth in cancer cells. MCT1 and MCT4 expression was determined in MCF7 and K562 cell lines using RT-PCR. Cell viability, growth, intracellular pH and cell cycle analysis was measured in the cell lines grown in 5 mM and 25 mM glucose containing media in the presence and absence of the MCT1 inhibitor AR-C155858 (1 μM) and the NHE1 inhibitor cariporide (10 μM). The MCT1 inhibitor, AR-C155858 had minimal effect on the viability, growth and intracellular pH of MCT4 expressing MCF7 cells. AR-C155858 had no effect on the viability of the MCT1 expressing K562 cells, but decreased intracellular pH and cell proliferation, by a glucose-dependent mechanism. Inhibition of NHE1 on its own had a no effect on cell growth, but together with AR-C155858 showed an additive effect on inhibition of cell growth. In cancer cells that only express MCT1, increased glucose concentrations in the presence of an MCT1 inhibitor decreased intracellular pH and reduced cell growth by G1 phase cell-cycle arrest. Thus we propose a transient hyperglycemic-clamp in combination with proton export inhibitors be evaluated as an adjunct to cancer treatment in clinical studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhang, Yajia; Pitchiaya, Sethuramasundaram; Cieślik, Marcin; Niknafs, Yashar S; Tien, Jean C-Y; Hosono, Yasuyuki; Iyer, Matthew K; Yazdani, Sahr; Subramaniam, Shruthi; Shukla, Sudhanshu K; Jiang, Xia; Wang, Lisha; Liu, Tzu-Ying; Uhl, Michael; Gawronski, Alexander R; Qiao, Yuanyuan; Xiao, Lanbo; Dhanasekaran, Saravana M; Juckette, Kristin M; Kunju, Lakshmi P; Cao, Xuhong; Patel, Utsav; Batish, Mona; Shukla, Girish C; Paulsen, Michelle T; Ljungman, Mats; Jiang, Hui; Mehra, Rohit; Backofen, Rolf; Sahinalp, Cenk S; Freier, Susan M; Watt, Andrew T; Guo, Shuling; Wei, John T; Feng, Felix Y; Malik, Rohit; Chinnaiyan, Arul M
2018-06-01
The androgen receptor (AR) plays a critical role in the development of the normal prostate as well as prostate cancer. Using an integrative transcriptomic analysis of prostate cancer cell lines and tissues, we identified ARLNC1 (AR-regulated long noncoding RNA 1) as an important long noncoding RNA that is strongly associated with AR signaling in prostate cancer progression. Not only was ARLNC1 induced by the AR protein, but ARLNC1 stabilized the AR transcript via RNA-RNA interaction. ARLNC1 knockdown suppressed AR expression, global AR signaling and prostate cancer growth in vitro and in vivo. Taken together, these data support a role for ARLNC1 in maintaining a positive feedback loop that potentiates AR signaling during prostate cancer progression and identify ARLNC1 as a novel therapeutic target.
Targeting Stromal Androgen Receptor Suppresses Prolactin-Driven Benign Prostatic Hyperplasia (BPH)
Lai, Kuo-Pao; Huang, Chiung-Kuei; Fang, Lei-Ya; Izumi, Kouji; Lo, Chi-Wen; Wood, Ronald; Kindblom, Jon; Yeh, Shuyuan
2013-01-01
Stromal-epithelial interaction plays a pivotal role to mediate the normal prostate growth, the pathogenesis of benign prostatic hyperplasia (BPH), and prostate cancer development. Until now, the stromal androgen receptor (AR) functions in the BPH development, and the underlying mechanisms remain largely unknown. Here we used a genetic knockout approach to ablate stromal fibromuscular (fibroblasts and smooth muscle cells) AR in a probasin promoter-driven prolactin transgenic mouse model (Pb-PRL tg mice) that could spontaneously develop prostate hyperplasia to partially mimic human BPH development. We found Pb-PRL tg mice lacking stromal fibromuscular AR developed smaller prostates, with more marked changes in the dorsolateral prostate lobes with less proliferation index. Mechanistically, prolactin mediated hyperplastic prostate growth involved epithelial-stromal interaction through epithelial prolactin/prolactin receptor signals to regulate granulocyte macrophage-colony stimulating factor expression to facilitate stromal cell growth via sustaining signal transducer and activator of transcription-3 activity. Importantly, the stromal fibromuscular AR could modulate such epithelial-stromal interacting signals. Targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9®, led to the reduction of prostate size, which could be used in future therapy. PMID:23893956
Kim, Yunlim; Park, Sang Eun; Moon, Jeong-Weon; Kim, Bong-Min; Kim, Ha-Gyeong; Jeong, In Gab; Yoo, Sangjun; Ahn, Jae Beom; You, Dalsan; Pak, Jhang Ho; Kim, Sujong; Hwang, Jung Jin; Kim, Choung-Soo
2017-07-01
Androgen and androgen receptor (AR) play essential roles in the development and maintenance of prostate cancer. The recently identified AR splice variants (AR-Vs) have been considered as a plausible mechanism for the primary resistance against androgen deprivation therapy (ADT) in castration-resistant prostate cancer (CRPC). Sodium meta-arsenite (NaAsO 2 ; KML001; Kominox), a trivalent arsenical, is an orally bioavailable and water soluble, which is currently in phase I/II clinical trials for the treatment of prostate cancer. It has a potent anti-cancer effect on prostate cancer cells and xenografts. The aim of this study was to examine the effect of NaAsO 2 on AR signaling in LNCaP and 22Rv1 CRPC cells. We used hormone-sensitive LNCaP cells, hormone-insensitive 22Rv1 cells, and CRPC patient-derived primary cells. We analyzed anti-cancer effect of NaAsO 2 using real-time quantitative reverse transcription-PCR, Western blotting, immunofluorescence staining and CellTiter Glo® luminescent assay. Statistical evaluation of the results was performed by one-way ANOVA. NaAsO 2 significantly reduced the translocation of AR and AR-Vs to the nucleus as well as their level in LNCaP and 22Rv1 cells. Besides, the level of the prostate-specific antigen (PSA), downstream target gene of AR, was also decreased. This compound was also an effective modulator of AKT-dependent NF-κB activation which regulates AR. NaAsO 2 significantly inhibited phosphorylation of AKT and expression and nuclear translocation of NF-κB. We then investigated the effect of NaAsO 2 on AR stabilization. NaAsO 2 promoted HSP90 acetylation by down-regulating HDAC6, which reduces the stability of AR in prostate cancer cells. Here, we show that NaAsO 2 disrupts AR signaling at multiple levels by affecting AR expression, stability, and degradation in primary tumor cell cultures from prostate cancer patients as well as CRPC cell lines. These results suggest that NaAsO 2 could be a novel therapeutics for prostate cancer. © 2017 Wiley Periodicals, Inc.
Lao, Kejing; Sun, Jie; Wang, Chong; Wang, Ying; You, Qidong; Xiao, Hong; Xiang, Hua
2017-09-01
Prostate cancer (PCa) is the second leading cause of death in men. Recently, some researches have showed that 5α-reductase inhibitors were beneficial in PCa treatment as well. In this study, a series of novel 3-oxo-4-oxa-5α-androst-17β-amide derivatives have been designed and synthesized in a more simple and convenient method. Most of the synthesized compounds displayed good 5α-reductase inhibitory activities and androgen receptor binding affinities. Their anti-proliferation activities in PC-3 and LNCaP cell lines were also evaluated and the results indicated that most of the synthesized compounds exhibited potent anti-proliferative activities. It is obvious that the androgen-dependent cell line LNCaP was much more sensitive than the androgen-independent cell line PC-3. Among all the synthesized compounds, 11d and 11k displayed the best inhibition activity with 4-fold more sensitive toward LNCaP than PC-3, which was consistent with their high affinities observed in AR binding assay. Molecular modeling studies suggested that 11k could bind to AR in a manner similar to the binding of dihydrotestosterone to AR. Compared to the finasteride, 11k showed a longer plasma half-life (4h) and a better bioavailability. Overall, based on biological activities data, compound 11d and 11k can be identified as potential dual 5α-reductase inhibitors and AR antagonists which might be of therapeutic importance for prostate cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yu, Shengqiang; Zhang, Caixia; Lin, Chiu-Chun; Niu, Yuanjie; Lai, Kuo-Pao; Chang, Hong-chiang; Yeh, Shauh-Der; Chang, Chawnshang; Yeh, Shuyuan
2011-04-01
Androgens and the androgen receptor (AR) play critical roles in the prostate development via mesenchymal-epithelial interactions. Smooth muscle cells (SMC), differentiated from mesenchyme, are one of the basic components of the prostate stroma. However, the roles of smooth muscle AR in prostate development are still obscure. We established the smooth muscle selective AR knockout (SM-ARKO) mouse model using the Cre-loxP system, and confirmed the ARKO efficiency at RNA, DNA and protein levels. Then, we observed the prostate morphology changes, and determined the epithelial proliferation, apoptosis, and differentiation. We also knocked down the AR in a prostate smooth muscle cell line (PS-1) to confirm the in vivo findings and to probe the mechanism. The AR was selectively and efficiently knocked out in the anterior prostates of SM-ARKO mouse. The SM-ARKO prostates have defects with loss of infolding structures, and decrease of epithelial proliferation, but with little change of apoptosis and differentiation. The mechanism studies showed that IGF-1 expression level decreased in the SM-ARKO prostates and AR-knockdown PS-1 cells. The decreased IGF-1 expression might contribute to the defective development of SM-ARKO prostates. The AR in SMCs plays important roles in the prostate development via the regulation of IGF-1 signal. Copyright © 2010 Wiley-Liss, Inc.
Hata, Shuko; Ise, Kazue; Azmahani, Abdullah; Konosu-Fukaya, Sachiko; McNamara, Keely May; Fujishima, Fumiyoshi; Shimada, Keiji; Mitsuzuka, Koji; Arai, Yoichi; Sasano, Hironobu; Nakamura, Yasuhiro
2017-12-01
Bladder urothelial carcinoma is increasing in incidence with age and its prognosis could become worse when accompanied with metastasis. Effective treatment of these advanced patients is required and it becomes important to understand its underlying biology of this neoplasm, especially with regard to its biological pathways. A potential proposed pathway is androgen receptor (AR)-mediated intracellular signaling but the details have remained relatively unexplored. The expression of AR, 5α-reductase type1 (5αR1) and 5α-reductase type2 (5αR2) were examined in the bladder cancer cell line T24 and surgical pathology specimens. We also evaluated the status of androgen related cell proliferation and migration using the potent, non-aromatizable androgen agonist 5α-dihydrotestosterone (DHT). DHT treatment significantly increased AR mRNA expression level, but not those of 5αR1 and 5αR2 in T24 cells. DHT also suppressed cellular migration with weaker and opposite effects on cell proliferation. A significant inverse correlation was detected between pT stage and AR, 5αR1 and 5αR2 immunoreactivity. Inverse correlations detected between tumor grade and AR/androgen metabolizing enzyme also suggested that the loss of AR and androgen-producing enzymes could be associated with tumor progression. Effects of DHT on cells also suggest that androgens may regulate cellular behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
2006-12-01
acyltransferase by compound 58-035. J.Biol.Chem. 259:815-819. 5. Li,Y., Gerbod- Giannone ,M.C., Seitz,H., Cui,D., Thorp,E., Tall,A.R., Matsushima,G.K., and...differentiation of human breast cancer through PPAR gamma. Mol.Cell 1:465-470. 9. Li,Y., Schwabe,R.F., DeVries-Seimon,T., Yao,P.M., Gerbod- Giannone ...receptor. J. Cell Biol. 171:61-73. *86. Li, Y., Gerbod- Giannone , M.C., Seitz, H., Cui, D., Thorp, E., Tall, A.R., Matsushima, G.K., and Tabas
1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells
Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N.; Glenn, Sean T.; Liu, Song; Trump, Donald L.; Johnson, Candace S.
2014-01-01
Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. MiRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253 J and 253J-BV cells express endogenous vitamin D receptor (VDR) which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253 J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. PMID:25263658
Laser chirp effect on femtosecond laser filamentation generated for pulse compression.
Park, Juyun; Lee, Jae-Hwan; Nam, Chang H
2008-03-31
The influence of laser chirp on the formation of femtosecond laser filamentation in Ar was investigated for the generation of few-cycle high-power laser pulses. The condition for the formation of a single filament has been carefully examined using 28-fs laser pulses with energy over 3 mJ. The filament formation and output spectrum changed very sensitively to the initial laser chirp and gas pressure. Much larger spectral broadening was obtained with positively chirped pulses, compared to the case of negatively chirped pulses that generated much longer filament, and compressed pulses of 5.5 fs with energy of 0.5 mJ were obtained from the filamentation of positively chirped 30-fs laser pulses in a single Ar cell.
Carter, Jennifer C.; Church, Frank C.
2011-01-01
We investigated peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands effect on cell motility and the plasminogen activator system using normal MCF-10A and malignant MCF-10CA1 cell lines. Ciglitazone reduced both wound-induced migration and chemotaxis. However, the effect was not reversed with pretreatment of cells with the PPAR-γ-specific antagonist GW9662. Immunoblot analysis of conditioned media showed ciglitazone decreased plasminogen activator inhibitor-1 (PAI-1) in both cell lines; this effect was also unaltered by PPAR-γ antagonism. Alternatively, treatment with the ω-6 fatty acid arachidonic acid (ArA), but not the ω-3 fatty acid docosahexanoic acid, increased both MCF-10A cell migration and cell surface uPA activity. Pretreatment with a PPAR-γ antagonist reversed these effects, suggesting that ArA mediates its effect on cell motility and uPA activity through PPAR-γ activation. Collectively, the data suggest PPAR-γ ligands have a differential effect on normal and malignant cell migration and the plasminogen activation system, resulting from PPAR-γ-dependent and PPAR-γ-independent effects. PMID:22131991
Osborne, M; Haltalli, M; Currie, R; Wright, J; Gooderham, N J
2016-07-01
Phenobarbital (PB) is known to produce species-specific effects in the rat and mouse, being carcinogenic in certain mouse strains, but only in rats if treated after a DNA damaging event. PB treatment in the rat and mouse also produces disparate effects on cell signalling and miRNA expression profiles. These responses are induced by short term and prolonged PB exposure, respectively, with the latter treatments being difficult to examine mechanistically in primary hepatocytes due to rapid loss of the original hepatic phenotype and limited sustainability in culture. Here we explore the rat hepatocyte-like B13/H cell line as a model for hepatic response to PB exposure in both short-term and longer duration treatments. We demonstrate that PB with Egf treatment in the B13/H cells resulted in a significant increase in Erk activation, as determined by the ratio of phospho-Erk to total Erk, compared to Egf alone. We also show that an extended treatment with PB in the B13/H cells produces a miRNA response similar to that seen in the rat in vivo, via the time-dependent induction of miR-182/96. Additionally, we confirm that B13/H cells respond to Car activators in a typical rat-specific manner. These data suggest that the B13/H cells produce temporal responses to PB that are comparable to those reported in short-term primary rat hepatocyte cultures and in the longer term are similar to those in the rat in vivo. Finally, we also show that Car-associated miR-122 expression is decreased by PB treatment in B13/H cells, a PB-induced response that is common to the rat, mouse and human. We conclude that the B13/H cell system produces a qualitative response comparable to the rat, which is different to the response in the mouse, and that this model could be a useful tool for exploring the functional consequences of PB-sensitive miRNA changes and resistance to PB-mediated tumours in the rat. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
IR multiphoton absorption of SF6 in flow with Ar at moderate energy fluences
NASA Astrophysics Data System (ADS)
Makarov, G. N.; Ronander, E.; van Heerden, S. P.; Gouws, M.; van der Merwe, K.
1997-10-01
IR multiple photon absorption (MPA) of SF6 in flow with Ar (SF6: Ar=1:100) in conditions of a large vibrational/rotational temperature difference (TV𪒮 K, TR䏐 K) was studied at moderate energy fluences from ۂ.1 to 𪐬 mJ/cm2, which are of interest for isotope selective two-step dissociation of molecules. A 50 cm Laval-type slit nozzle for the flow cooling, and a TEA CO2-laser for excitation of molecules were used in the experiments. The laser energy fluence dependences of the SF6 MPA were studied for several CO2-laser lines which are in a good resonance with the linear absorption spectrum of the Ƚ vibration of SF6 at low temperature. The effect of the laser pulse duration (intensity) on MPA of flow cooled SF6 with Ar was also studied. The results are compared with those obtained in earlier studies.
Goth, Christoffer K.; Tuhkanen, Hanna E.; Khan, Hamayun; Lackman, Jarkko J.; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H.; Overall, Christopher M.; Clausen, Henrik; Schjoldager, Katrine T.; Petäjä-Repo, Ulla E.
2017-01-01
The β1-adrenergic receptor (β1AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β1AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O-glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O-glycosylates β1AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O-glycosylation and proteolytic cleavage assays, a cell line deficient in O-glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β1AR. Furthermore, we demonstrate that impaired O-glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O-glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β1AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. PMID:28167537
Chaperone Function in Androgen-Independent Prostate Cancer
2012-05-01
differentiation. Proc Natl Acad Sci U S A 92, 11081-11085. Yong, W., Yang, Z., Periyasamy, S., Chen, H., Yucel, S., Li, W., Lin, L. Y., Wolf , I. M., Cohn, M...Biol Chem 282, 5026-5036. Yong, W., Yang, Z., Periyasamy, S., Chen, H., Yucel, S., Li, W., Lin, L. Y., Wolf , I. M., Cohn, M. J., Baskin, L. S., et... Reintroduction of AR into PC-3 cells activates the endogenous FKBP51 gene, an observation that is consistent with AR regulation of FKBP51 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemareddy, P.; Ambastha, A.; Maurya, R. A.
An investigation of helicity injection by photospheric shear motions is carried out for two active regions (ARs), NOAA 11158 and 11166, using line-of-sight magnetic field observations obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We derived the horizontal velocities in the ARs from the differential affine velocity estimator (DAVE) technique. Persistent strong shear motions at maximum velocities in the range of 0.6-0.9 km s{sup -1} along the magnetic polarity inversion line and outward flows from the peripheral regions of the sunspots were observed in the two ARs. The helicities injected in NOAA 11158 and 11166more » during their six-day evolution period were estimated as 14.16 Multiplication-Sign 10{sup 42} Mx{sup 2} and 9.5 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The estimated injection rates decreased up to 13% by increasing the time interval between the magnetograms from 12 minutes to 36 minutes, and increased up to 9% by decreasing the DAVE window size from 21 Multiplication-Sign 18 to 9 Multiplication-Sign 6 pixel{sup 2}, resulting in 10% variation in the accumulated helicity. In both ARs, the flare-prone regions (R2) had inhomogeneous helicity flux distribution with mixed helicities of both signs and coronal mass ejection (CME) prone regions had almost homogeneous distribution of helicity flux dominated by a single sign. The temporal profiles of helicity injection showed impulsive variations during some flares/CMEs due to negative helicity injection into the dominant region of positive helicity flux. A quantitative analysis reveals a marginally significant association of helicity flux with CMEs but not flares in AR 11158, while for the AR 11166, we find a marginally significant association of helicity flux with flares but not CMEs, providing evidence of the role of helicity injection at localized sites of the events. These short-term variations of helicity flux are further discussed in view of possible flare-related effects. This study suggests that flux motions and spatial distribution of helicity injection are important to understanding the complex nature of the magnetic flux system of the AR, and how it can lead to conditions favorable for eruptive events.« less
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Syed, Atiya; Andotra, Savit; Kaur, Ramanpreet; Vikas; Pandey, Sushil K.
2018-02-01
Vanadium(III) complexes with sulfur donor dithiophosphate ligands corresponding to [{(ArO)2PS2}3V] and [{(ArO)2PS2}2VCl.L] (Ar = o-, m-, p-CH3C6H4 and p-Cl-m-CH3C6H3; L = NC5H5, P(C6H5)3, have been synthesized and characterized by various physico-chemical techniques like elemental analyses, magnetic studies, ESI-Mass, IR, UV and heteronuclear NMR (1H, 13C and 31P) spectral studies. These analyses have contributed to the prediction of structure: by exhibiting significant v(P-S) and v(Pdbnd S) band shifting in comparative IR spectra; shifting of resonance signal in comparative 31P NMR spectra of ligands and complexes and stability of V(III) ion in the complexed state is confirmed by magnetic and UV studies. Therefore, the six coordinated geometry stabilizing the trivalent vanadium atom in the complexes and adducts, respectively has been confirmed. The cyclic voltammetric analyses presented the redox aptitude of the complex under analysis which can be utilized as catalyst in organic synthesis. The geometry of ligands and complexes has been optimized using density functional theory (DFT). The structural parameters, vibrational bands and energy gaps of frontier orbitals (HOMO-LUMO) have also been calculated. The calculated geometric and spectral results reproduced the experimental data with well agreement. The DFT computed frontier molecular orbitals (HOMO-LUMO) and their energies suggest charge transfer occurs within the complexes. Antimicrobial screening of the complexes against two bacterial strains: Gram-positive, Enterrococcus faecalis and Gram-negative, Eischerichia coli and fungus Fusarium oxysporum have shown potential bioactivity. A preliminary cytotoxic analysis has been carried out using the cultivated human cell lines: lung adeno carcinoma cell line A-549, leukemia cell line THP-1, prostate cancer cell line PC3 and colorectal cancer cell line HCT-116.
Discovery of a Be/X-Ray Binary Consistent with the Location of GRO J2058+42
NASA Technical Reports Server (NTRS)
Wilson, Colleen; Weisskopf, Martin; Finger, Mark H.; Coe, M. J.; Greiner, Jochen; Reig, Pablo; Papamastorakis, Giannis
2005-01-01
GRO J2058+42 is a 195 s transient X-ray pulsar discovered in 1995 with BATSE. In 1996, RXTE located GRO J2058+42 to a 90% confidence error circle with a 4 radius. On 2004 February 20, the region including the error circle was observed with Chandra ACIS-I. No X-ray sources were detected within the error circle; however, two faint sources were detected in the ACIS-I field of view. We obtained optical observations of the brightest object, CXOU J205847.5+414637, which had about 64 X-ray counts and was just 013 outside the error circle. The optical spectrum contains a strong Ha line and corresponds to an inhued object in the Two Micron All Sky Survey catalog, indicating a Be/X-ray binary system. Pulsations were not detected in the Chandra observations, but similar flux variations and distance estimates suggest that CXOU J205847.5+414637 and GRO J2058+42 are the same object. We present results from the Chandra observation, optical observations, new and previously unreported RXTE observations, and a reanalysis of a ROSAT observation.
Liolios, C; Schäfer, M; Haberkorn, U; Eder, M; Kopka, K
2016-03-16
A new series of bispecific radioligands (BRLs) targeting prostate-specific membrane antigen (PSMA) and gastrin releasing peptide receptor (GRPr), both expressed on prostate cancer cells, was developed. Their design was based on the bombesin (BN) analogue, H2N-PEG2-[D-Tyr(6),β-Ala(11),Thi(13),Nle(14)]BN(6-14), which binds to GRPr with high affinity and specificity, and the peptidomimetic urea-based pseudoirreversible inhibitor of PSMA, Glu-ureido-Lys. The two pharmacophores were coupled through copper(I)-catalyzed azide-alkyne cycloaddition to the bis(tetrafluorophenyl) ester of the chelating agent HBED-CC via amino acid linkers made of positively charged His (H) and negatively charged Glu (E): -(HE)n- (n = 0-3). The BRLs were labeled with (68)Ga, and their preliminary pharmacological properties were evaluated in vitro (competitive and time kinetic binding assays) on prostate cancer (PC-3, LNCaP) and rat pancreatic (AR42J) cell lines and in vivo by biodistribution and small animal PET imaging studies in both normal and tumor-bearing mice. The IC50/Ki values determined for all BRLs essentially matched those of the respective monomers. The maximal cellular uptake of the BLRs was observed between 20 and 30 min. The BRLs showed a synergistic ability in vivo by targeting both PSMA (LNCaP) and GRPr (PC-3) positive tumors, whereas the charged -(HE)n- (n = 1-3) linkers significantly reduced the kidney and spleen uptake. The bispecific (PSMA and GRPr) targeting ability and optimized pharmacokinetics of the compounds developed in this study could lead to their future application in clinical practice as more sensitive radiotracers for noninvasive imaging of prostate cancer (PCa) by PET/CT and PET/MRI.
Publications - AR 2011 | Alaska Division of Geological & Geophysical
., and Clough, J.G., 2012, Energy Resources FY12 project descriptions, p. 30-36. AR 2011-BWerdon, M.B , Simone, and Weakland, J.R., 2012, Geologic Communications FY12 project descriptions, p. 70-78. AR 2011
FOXM1 promotes the progression of prostate cancer by regulating PSA gene transcription.
Liu, Youhong; Liu, Yijun; Yuan, Bowen; Yin, Linglong; Peng, Yuchong; Yu, Xiaohui; Zhou, Weibing; Gong, Zhicheng; Liu, Jianye; He, Leye; Li, Xiong
2017-03-07
Androgen/AR is the primary contributor to prostate cancer (PCa) progression by regulating Prostate Specific Antigen (PSA) gene transcription. The disease inevitably evolves to androgen-independent (AI) status. Other mechanisms by which PSA is regulated and develops to AI have not yet been fully determined. FOXM1 is a cell proliferation-specific transcription factor highly expressed in PCa cells compared to non-malignant prostate epithelial cells, suggesting that the aberrant overexpression of FOXM1 contributes to PCa development. In addition to regulating AR gene transcription and cell cycle-regulatory genes, FOXM1 selectively regulates the gene transcription of KLK2 and PSA, typical androgen responsive genes. Screening the potential FOXM1-binding sites by ChIP-PCR, we found that FOXM1 directly binds to the FHK binding motifs in the PSA promoter/enhancer regions. AI C4-2 cells have more FOXM1 binding sites than androgen dependent LNCaP cells. The depletion of FOXM1 by small molecular inhibitors significantly improves the suppression of PSA gene transcription by the anti-AR agent Cadosax. This is the first report showing that FOXM1 promotes PCa progression by regulating PSA gene transcription, particularly in AI PCa cells. The combination of anti-AR agents and FOXM1 inhibitors has the potential to greatly improve therapy for late-stage PCa patients by suppressing PSA levels.
1983-02-01
ISLAND DANGER AREA IS A CIRCLE WITH RADII" JOHNSTON ISLAND (1) 470 nm- ( 871 km) 30 APRIL-12 JUNE 1962 AND DANGER AREA 22 SEPTEMBER-1S OCTOBER 1962 (21...AFCRL. Prolect Report: Reference C. 2018 . .I Project 6.4 -- E- and F-Region Physical Chemistry Agencies: Air Force Cambtidge Research Laboratory (AFCRL...1076) USS RECLAIMER (ARS-42) LISSTO LOVANA (AO- 64) 0USS GURKE (00-783) 2 - USS HALSEY POWELL (DO-686) aJ H I TM SI L N SURFACE ZERO S10- 0 30 60 Go
The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.
Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T
2008-12-01
Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.
Cooperative Dynamics of AR and ER Activity in Breast Cancer
D’Amato, Nicholas C.; Gordon, Michael A.; Babbs, Beatrice L.; Spoelstra, Nicole S.; Carson Butterfield, Kiel T.; Torkko, Kathleen C.; Phan, Vernon T.; Barton, Valerie N.; Rogers, Thomas J.; Sartorius, Carol A; Elias, Anthony D.; Gertz, Jason; Jacobsen, Britta M.; Richer, Jennifer K.
2016-01-01
Androgen receptor (AR) is expressed in 90% of estrogen receptor alpha positive (ER+) breast tumors, but its role in tumor growth and progression remains controversial. Use of two anti-androgens that inhibit AR nuclear localization, enzalutamide and MJC13, revealed that AR is required for maximum ER genomic binding. Here, a novel global examination of AR chromatin binding found that estradiol induced AR binding at unique sites compared to dihydrotestosterone (DHT). Estradiol-induced AR binding sites were enriched for estrogen response elements and had significant overlap with ER binding sites. Furthermore, AR inhibition reduced baseline and estradiol-mediated proliferation in multiple ER+/AR+ breast cancer cell lines, and synergized with tamoxifen and fulvestrant. In vivo, enzalutamide significantly reduced viability of tamoxifen-resistant MCF7 xenograft tumors and an ER+/AR+ patient-derived model. Enzalutamide also reduced metastatic burden following cardiac injection. Lastly, in a comparison of ER+/AR+ primary tumors versus patient-matched local recurrences or distant metastases, AR expression was often maintained even when ER was reduced or absent. These data provide pre-clinical evidence that anti-androgens that inhibit AR nuclear localization affect both AR and ER, and are effective in combination with current breast cancer therapies. In addition, single agent efficacy may be possible in tumors resistant to traditional endocrine therapy, since clinical specimens of recurrent disease demonstrate AR expression in tumors with absent or refractory ER. Implications This study suggests that AR plays a previously-unrecognized role in supporting E2-mediated ER activity in ER+/AR+ breast cancer cells, and that enzalutamide may be an effective therapeutic in ER+/AR+ breast cancers. PMID:27565181
NF-κB and androgen receptor variant expression correlate with human BPH progression.
Austin, David C; Strand, Douglas W; Love, Harold L; Franco, Omar E; Jang, Alex; Grabowska, Magdalena M; Miller, Nicole L; Hameed, Omar; Clark, Peter E; Fowke, Jay H; Matusik, Robert J; Jin, Ren J; Hayward, Simon W
2016-04-01
Benign prostatic hyperplasia (BPH) is a common, chronic progressive disease. Inflammation is associated with prostatic enlargement and resistance to 5α-reductase inhibitor (5ARI) therapy. Activation of the nuclear factor-kappa B (NF-κB) pathway is linked to both inflammation and ligand-independent prostate cancer progression. NF-κB activation and androgen receptor variant (AR-V) expression were quantified in transition zone tissue samples from patients with a wide range of AUASS from incidental BPH in patients treated for low grade, localized peripheral zone prostate cancer to advanced disease requiring surgical intervention. To further investigate these pathways, human prostatic stromal and epithelial cell lines were transduced with constitutively active or kinase dead forms of IKK2 to regulate canonical NF-κB activity. The effects on AR full length (AR-FL) and androgen-independent AR-V expression as well as cellular growth and differentiation were assessed. Canonical NF-κB signaling was found to be upregulated in late versus early stage BPH, and to be strongly associated with non-insulin dependent diabetes mellitus. Elevated expression of AR-variant 7 (AR-V7), but not other AR variants, was found in advanced BPH samples. Expression of AR-V7 significantly correlated with the patient AUASS and TRUS volume. Forced activation of canonical NF-κB in human prostatic epithelial and stromal cells resulted in elevated expression of both AR-FL and AR-V7, with concomitant ligand-independent activation of AR reporters. Activation of NF-κB and over expression of AR-V7 in human prostatic epithelial cells maintained cell viability in the face of 5ARI treatment. Activation of NF-κB and AR-V7 in the prostate is associated with increased disease severity. AR-V7 expression is inducible in human prostate cells by forced activation of NF-κB resulting in resistance to 5ARI treatment, suggesting a potential mechanism by which patients may become resistant to 5ARI therapy. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Yamaguchi, T.; Kifor, O.; Chattopadhyay, N.; Bai, M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
1998-01-01
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Macrophage-like mononuclear cells appear at sites of osteoclastic bone resorption during bone remodeling and may play a role in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for bone marrow mononuclear cells in the vicinity, leading us to investigate whether such mononuclear cells express the CaR. In this study, we used the mouse J774 cell line, which exhibits a pure monocyte-macrophage phenotype. Both immunocytochemistry and Western blot analysis, using polyclonal antisera specific for the CaR, detected CaR protein in J774 cells. The use of reverse transcriptase-polymerase chain reaction with CaR-specific primers, including a set of intron-spanning primers, followed by nucleotide sequencing of the amplified products, also identified CaR transcripts in J774 cells. Exposure of J774 cells to high Ca2+o (2.8 mM or more) or the polycationic CaR agonist, neomycin (100 microM), stimulated both chemotaxis and DNA synthesis in J774 cells. Therefore, taken together, our data strongly suggest that the monocyte-macrophage cell line, J774, possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney.
Lenden Hasse, Hélène; Lescale, Chloé; Bianchi, Joy J; Yu, Wei; Bedora-Faure, Marie; Deriano, Ludovic
2017-12-01
Antigen receptor gene assembly is accomplished in developing lymphocytes by the V(D)J recombination reaction, which can be separated into two steps: DNA cleavage by the recombination-activating gene (RAG) nuclease and joining of DNA double strand breaks (DSBs) by components of the nonhomologous end joining (NHEJ) pathway. Deficiencies for NHEJ factors can result in immunodeficiency and a propensity to accumulate genomic instability, thus highlighting the importance of identifying all players in this process and deciphering their functions. Bcl2 transgenic v-Abl kinase-transformed pro-B cells provide a pseudo-physiological cellular system to study V(D)J recombination. Treatment of v-Abl/Bcl2 pro-B cells with the Abl kinase inhibitor Imatinib leads to G1 cell cycle arrest, the rapid induction of Rag1/2 gene expression and V(D)J recombination. In this system, the Bcl2 transgene alleviates Imatinib-induced apoptosis enabling the analysis of induced V(D)J recombination. Although powerful, the use of mouse models carrying the Bcl2 transgene for the generation of v-Abl pro-B cell lines is time and money consuming. Here, we describe a method for generating v-Abl/Bcl2 pro-B cell lines from wild type mice and for performing gene knock-out using episomal CRISPR/Cas9 targeting vectors. Using this approach, we generated distinct NHEJ-deficient pro-B cell lines and quantified V(D)J recombination levels in these cells. Furthermore, this methodology can be adapted to generate pro-B cell lines deficient for any gene suspected to play a role in V(D)J recombination, and more generally DSB repair. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Development of a New Conditionally Immortalized Human Liver Sinusoidal Endothelial Cells.
Zhu, Meiyan; Koibuchi, Akira; Ide, Hideyuki; Morio, Hanae; Shibuya, Minaka; Kamiichi, Atsuko; Tsubota, Akihito; Anzai, Naohiko; Akita, Hidetaka; Chiba, Kan; Furihata, Tomomi
2018-01-01
Liver sinusoidal endothelial cells (LSECs), which are specialized endothelial cells that line liver sinusoids, have been reported to participate in a variety of liver functions, such as blood macromolecule clearance and factor VIII production. In addition, LSECs play crucial roles in liver regeneration following acute liver injury, as well as the development and progression of liver diseases or drug-induced hepatotoxicity. However, the molecular mechanisms underlying their roles remain mostly unknown. Therefore, in order to contribute to the clarification of those mechanisms, herein we report on the development of a new immortalized human LSEC (HLSEC) line. To produce this cell line, two immortalized genes were introduced into the primary HLSECs, which eventually resulted in the establishment of the HLSEC/conditionally immortalized, clone-J (HLSEC/ciJ). Consistent with the two-immortalized gene expression, HLSEC/ciJ showed excellent proliferation activity. Additionally, the results of gene expression analyses showed that several LSEC (as well as pan-endothelial) marker mRNAs and proteins were clearly expressed in HLSEC/ciJ. Furthermore, we found that adherence junction proteins were localized at the cell border in the HLSEC/ciJ monolayer, and that the cells exhibited a tube-like structure formation property. Taken together, the results obtained thus far indicate that we have successfully immortalized HLSECs, resulting in creation of HLSEC/ciJ, a cell line that possesses infinite proliferation ability while retaining possession of at least some HLSEC features. We believe that the HLSEC/ciJ have the potential to provide a valuable and unlimited alternative source of HLSECs for use in liver/LSEC physiology/pathophysiology, pharmacology, and toxicology studies.
Sampath, Chethan; Sang, Shengmin; Ahmedna, Mohamed
2016-12-01
Hyperglycemic stress activates polyol pathway and aldose reductase (AR) key enzyme responsible for generating secondary complications during diabetes. In this study the therapeutic potential of phloretin, epigallocatechin 3-gallate (EGCG) and [6]-gingerol were evaluated for anti-glycating and AR inhibitory activity in vitro and in vivo systems. Human retinal pigment epithelial (HRPE) cells were induced with high glucose supplemented with the phloretin, EGCG and [6]-gingerol. Aldose reductase activity, total advanced glycation end products (AGEs) and enzyme inhibitor kinetics were assessed. Male C57BL/6J mice were randomly assigned to one of the different treatments (bioactive compounds at 2 concentrations each) with either a low fat diet or high fat diet (HFD). After sixteen weeks, AGE accumulation and AR activity was determined in heart, eyes and kidney. High glucose induced toxicity decreased cell viability compared to the untreated cells and AR activity increased to 2-5 folds from 24 to 96h. Pre-treatment of cells with phloretin, EGCG and [6]-gingerol improved cell viability and inhibited AR activity. The enzyme inhibition kinetics followed a non-competitive mode of inhibition for phloretin and EGCG whereas [6]-gingerol indicated uncompetitive type of inhibition against AR. Data from the animal studies showed high plasma glucose levels in HFD group over time, compared to the low fat diet. HFD group developed cataract and AR activity increased to 4 folds compared to the group with low fat diet. Administration of EGCG, phloretin and [6]-gingerol significantly reduced blood sugar levels, AGEs accumulation, and AR activity. These findings could provide a basis to consider using the selected dietary components alone or in combination with other therapeutic approaches to prevent diabetes-related complications in humans. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie
2012-07-01
To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.
2012-03-24
Cell Line Microplate Cytotoxicity Test. In: Blaise, C., Férard, J.T. (Eds.), Small-scale Freshwater Toxicity Investigations, Vol 1. Springer, The...Eckert, M.L., Lee, L.E.J., Gallagher, E.P., 2008. Comparative oxygen radical formation and toxicity of BDE 47 in rainbow trout cell lines. Marine
Nakata, Daisuke; Nakao, Shoichi; Nakayama, Kazuhide; Araki, Shinsuke; Nakayama, Yusuke; Aparicio, Samuel; Hara, Takahito; Nakanishi, Atsushi
2017-01-29
Mounting evidence suggests that constitutively active androgen receptor (AR) splice variants, typified by AR-V7, are associated with poor prognosis and resistance to androgen deprivation therapy in prostate cancer patients. However, mechanisms governing the generation of AR splice variants are not fully understood. In this study, we aimed to investigate the dynamics of AR splice variant generation using the JDCaP prostate cancer model that expresses AR splice variants under androgen depletion. Microarray analysis of JDCaP xenografts before and after expression of AR splice variants suggested that dysregulation of RNA processing pathways is likely involved in AR splice variant generation. To explore factors contributing to generation of AR-V7 mRNA, we conducted a focused RNA interference screen in AR-V7-positive JDCaP-hr cells using an shRNA library targeting spliceosome-related genes. This screen identified DDX39B as a regulator of AR-V7 mRNA expression. Simultaneous knockdown of DDX39B and its paralog DDX39A drastically and selectively downregulated AR-V7 mRNA expression in multiple AR-V7-positive prostate cancer cell lines. DDX39B was upregulated in relapsed JDCaP xenografts expressing AR splice variants, suggesting its role in expression of AR splice variants. Taken together, our findings offer insight into the mechanisms of AR splice variant generation and identify DDX39 as a potential drug target for the treatment of AR splice variant-positive prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Crosstalk between beta-2-adrenoceptor and muscarinic acetylcholine receptors in the airway.
Pera, Tonio; Penn, Raymond B
2014-06-01
The M3 and M2 muscarinic acetylcholine receptors (mAChRs) and beta-2-adrenoceptors (β2ARs) are important regulators of airway cell function, and drugs targeting these receptors are among the first line drugs in the treatment of the obstructive lung diseases asthma and chronic obstructive lung disease (COPD). Cross-regulation or crosstalk between mAChRs and β2ARs in airway smooth muscle (ASM) helps determine the contractile state of the muscle, thus airway diameter and resistance to airflow. In this review we will detail mAChR and β2AR-signaling and crosstalk, focusing on events in the ASM cell but also addressing the function of these receptors in other cell types that impact airway physiology. We conclude by discussing how recent advances in GPCR pharmacology offer a unique opportunity to fine tune mAChR and β2AR signaling and their crosstalk, and thereby produce superior therapeutics for obstructive lung and other diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Androgen Control of Cell Proliferation and Cytoskeletal Reorganization in Human Fibrosarcoma Cells
Chauhan, Sanjay; Kunz, Susan; Davis, Kelli; Roberts, Jordan; Martin, Greg; Demetriou, Manolis C.; Sroka, Thomas C.; Cress, Anne E.; Miesfeld, Roger L.
2009-01-01
We recently generated an HT-1080-derived cell line called HT-AR1 that responds to dihydrotestosterone (DHT) treatment by undergoing cell growth arrest in association with cytoskeletal reorganization and induction of neuroendocrine-like cell differentiation. In this report, we show that DHT induces a dose-dependent increase in G0/G1 growth-arrested cells using physiological levels of hormone. The arrested cells increase in cell size and contain a dramatic redistribution of desmoplakin, keratin 5, and chromogranin A proteins. DHT-induced cytoskeletal changes were also apparent from time lapse video microscopy that showed that androgen treatment resulted in the rapid appearance of neuronal-like membrane extensions. Expression profiling analysis using RNA isolated from DHT-treated HT-AR1 cells revealed that androgen receptor activation leads to the coordinate expression of numerous cell signaling genes including RhoB, PTGF-β, caveolin-2, Egr-1, myosin 1B, and EHM2. Because RhoB has been shown to have a role in tumor suppression and neuronal differentiation in other cell types, we investigated RhoB signaling functions in the HT-AR1 steroid response. We found that steroid induction of RhoB was DHT-specific and that newly synthesized RhoB protein was post-translationally modified and localized to endocytic vesicles. Moreover, treatment with a farnesyl transferase inhibitor reduced DHT-dependent growth arrest, suggesting that prenylated RhoB might function to inhibit HT-AR1 cell proliferation. This was directly shown by transfecting HT-AR1 cells with RhoB coding sequences containing activating or dominant negative mutations. PMID:14576147
Protection against β-amyloid induced abnormal synaptic function and cell death by Ginkgolide J
Vitolo, Ottavio; Gong, Bing; Cao, Zixuan; Ishii, Hideki; Jaracz, Stanislav; Nakanishi, Koji; Arancio, Ottavio; Dzyuba, Sergei V.; Lefort, Roger; Shelanski, Michael
2009-01-01
A new Ginkgo biloba extract P8A (TTL), 70% enriched with terpene trilactones, prevents Aβ1-42 induced inhibition of long-term potentiation in the CA1 region of mouse hippocampal slices. This neuroprotective effect is attributed in large part to ginkgolide J that completely replicates the effect of the extract. Ginkgolide J is also capable of inhibiting cell death of rodent hippocampal neurons caused by Aβ1-42. This beneficial and multi-faceted mode of action of the ginkgolide makes it a new and promising lead in designing therapies against Alzheimer’s disease. PMID:17640772
Lee, Hee-Seok; Jung, Da-Woon; Han, Songyi; Kang, Hui-Seung; Suh, Jin-Hyang; Oh, Hyun-Suk; Hwang, Myung-Sil; Moon, Guiim; Park, Yooheon; Hong, Jin-Hwan; Koo, Yong Eui
2018-05-01
Trenbolone acetate (TBA) is a synthetic anabolic steroidal growth factor that is used for rapid muscle development in cattle. The absorbed TBA is hydrolyzed to the active form, 17β-trenbolone (17 TB; 17β-hydroxy-estra-4,9,11-trien-3-one) in meat and milk products, which can cause adverse health effects in humans. Similar to 5α-dihydrotestosterone (DHT), 17 TB was reported to exhibit endocrine disrupting effects on animals and humans due to its androgenic effect via binding to the androgen receptor. The purpose of this study is to investigate the molecular mechanism of cell proliferation in prostate cancer (PCa) cells treated with 17 TB. We found that 17 TB induces AR-dependent cell proliferation in the human prostate cancer cell line, 22Rv1 in a concentration dependent manner. Treatment with 17 TB increased the expression of cell cycle regulatory proteins, cyclin D2/CDK-4 and cyclin E/CDK-2, whereas the expression of p27 was down-regulated. Furthermore, phosphorylation of Rb and activation of E2F were also induced, which suggests the activation of cyclin D2/CDK-4 and cyclin E/CDK-2 in the cells. When 22Rv1 cells were exposed to 30 pM of 17 TB, which is the effective concentration (EC 50 ) value required to observe proliferative effects on 22Rv1 cells, the expression levels of the phosphorylated forms of Akt and GSK3β were increased. This study demonstrates that 17 TB induces AR-dependent proliferation through the modulation of cell cycle-related proteins in the Akt signaling pathway. The present study provides an effective methodology for identifying cell proliferation signaling of veterinary drugs that exert AR agonistic effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lawrence, Mitchell G.; Margaryan, Naira V.; Loessner, Daniela; Collins, Angus; Kerr, Kris M.; Turner, Megan; Seftor, Elisabeth A.; Stephens, Carson R.; Lai, John; BioResource, APC; Postovit, Lynne-Marie; Clements, Judith A.; Hendrix, Mary J.C.
2011-01-01
Background Nodal is a member of the Transforming Growth Factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity. Methods Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. Results Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal’s co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. Conclusions An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells. PMID:21656830
NASA Astrophysics Data System (ADS)
Rodríguez-Cortés, J.; de Murphy, C. Arteaga; Ferro-Flores, Ge; Pedraza-López, M.; Murphy-Stack, E.
Malignant pancreatic tumours induced in athymic mice are a good model for peptide receptor targeted radiotherapy. The objective of this research was to determine biokinetic parameters in mice, in order to estimate the induced pancreatic tumour absorbed doses and to evaluate an `in house' 177Lu-DOTA-TATE radiopharmaceutical as part of preclinical studies for targeted therapy in humans. AR42J murine pancreas cancer cells expressing somatostatin receptors, were implanted in athymic mice (nD22) to obtain biokinetic and dosimetric data of 177Lu-DOTA-TATE. The mean tumour uptake 2 h post injection was 14.76±1.9% I.A./g; kidney and pancreas uptake, at the same time, were 7.27±1.1% I.A./g (1.71±0.90%/organ) and 4.20±0.98% I.A./g (0.42±0.03%/organ), respectively. The mean absorbed dose to tumour, kidney and pancreas was 0.58±0.02 Gy/MBq; 0.23±0.01 Gy/MBq and 0.14±0.01 Gy/MBq, respectively. These studies justify further dosimetric estimations to ensure that 177Lu-DOTA-TATE will act as expected in humans.
NASA Technical Reports Server (NTRS)
Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.
2017-01-01
There are many flare forecasting models. For an excellent review and comparison of some of them see Barnes et al. (2016). All these models are successful to some degree, but there is a need for better models. We claim the most successful models explicitly or implicitly base their forecasts on various estimates of components of the photospheric current density J, based on observations of the photospheric magnetic field B. However, none of the models we are aware of compute the complete J. We seek to develop a better model based on computing the complete photospheric J. Initial results from this model are presented in this talk. We present a data driven, near photospheric, 3 D, non-force free magnetohydrodynamic (MHD) model that computes time series of the total J, and associated resistive heating rate in each pixel at the photosphere in the neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of B measured by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series of B in every AR pixel. Errors in B due to these periods can be significant.
Carter, Yvette M; Kunnimalaiyaan, Selvi; Chen, Herbert; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy
2014-05-01
Neuroblastoma is a common neuroendocrine (NE) tumor that presents in early childhood, with a high incidence of malignancy and recurrence. The glycogen synthase kinase-3 (GSK-3) pathway is a potential therapeutic target, as this pathway has been shown to be crucial in the management of other NE tumors. However, it is not known which isoform is necessary for growth inhibition. In this study, we investigated the effect of the GSK-3 inhibitor AR-A014418 on the different GSK-3 isoforms in neuroblastoma. NGP and SH-5Y-SY cells were treated with 0-20 μM of AR-A014418 and cell viability was measured by MTT assay. Expression levels of NE markers CgA and ASCL1, GSK-3 isoforms, and apoptotic markers were analyzed by western blot. Neuroblastoma cells treated with AR-A014418 had a significant reduction in growth at all doses and time points (P<0.001). A reduction in growth was noted in cell lines on day 6, with 10 μM (NGP-53% vs. 0% and SH-5Y-SY-38% vs. 0%, P<0.001) treatment compared to control, corresponding with a noticeable reduction in tumor marker ASCL1 and CgA expression. Treatment of neuroblastoma cell lines with AR-A014418 reduced the level of GSK-3α phosphorylation at Tyr279 compared to GSK-3β phosphorylation at Tyr216, and attenuated growth via the maintenance of apoptosis. This study supports further investigation to elucidate the mechanism(s) by which GSK-3α inhibition downregulates the expression of NE tumor markers and growth of neuroblastoma.
Dupuis, Morgan; Lévy, Arlette; Mhaouty-Kodja, Sakina
2004-04-30
Gh alpha protein, which exhibits both transglutaminase and GTPase activities, represents a new class of GTP-binding proteins. In the present study, we characterized Gh alpha in rat uterine smooth muscle (myometrium) and followed its expression during pregnancy by reverse transcription-PCR and Western blot. We also measured transglutaminase and GTP binding functions and used a smooth muscle cell line to evaluate the role of Gh alpha in cell proliferation. The results show that pregnancy is associated with an up-regulation of Gh alpha expression at both the mRNA and protein level. Gh alpha induced during pregnancy is preferentially localized to the plasma membrane. This was found associated with an increased ability of plasma membrane preparations to catalyze Ca(2+)-dependent incorporation of [(3)H]putrescine into casein in vitro. In the cytosol, significant changes in the level of immunodetected Gh alpha and transglutaminase activity were seen only at term. Activation of alpha1-adrenergic receptors (alpha1-AR) enhanced photoaffinity labeling of plasma membrane Gh alpha. Moreover, the level of alpha1-AR-coupled Gh alpha increased progressively with pregnancy, which parallels the active period of myometrial cell proliferation. Overexpression of wild type Gh alpha in smooth muscle cell line DDT1-MF2 increased alpha1-AR-induced [(3)H]thymidine incorporation. A similar response was obtained in cells expressing the transglutaminase inactive mutant (C277S) of Gh alpha. Together, these findings underscore the role of Gh alpha as signal transducer of alpha1-AR-induced smooth muscle cell proliferation. In this context, pregnant rat myometrium provides an interesting physiological model to study the mechanisms underlying the regulation of the GTPase function of Gh alpha
Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui
2011-01-01
Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt −377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. PMID:21971485
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tingting; Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Chen, Man
Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a singlemore » site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination. Black-Right-Pointing-Pointer Single CpG methylation located at Pax6 binding motif regulates StAR expression.« less
Austin, Ryan J.; Smidansky, Heidi M.; Holstein, Carly A.; Chang, Deborah K.; Epp, Angela; Josephson, Neil C.; Martin, Daniel B.
2012-01-01
The strength of the streptavidin/biotin interaction poses challenges for the recovery of biotinylated molecules from streptavidin resins. As an alternative to high temperature elution in urea containing buffers, we show mono-biotinylated proteins can be released with relatively gentle heating in the presence of biotin and 2% SDS/Rapigest, avoiding protein carbamylation and minimizing streptavidin dissociation. We demonstrate the utility of this mild elution strategy in two studies of the human androgen receptor (AR). In the first, in which formaldehyde crosslinked complexes are analyzed in yeast, a mass spectrometry-based comparison of the AR complex using SILAC reveals an association between the androgen activated AR and the Hsp90 chaperonin, while Hsp70 chaperonins associate specifically with the unliganded complex. In the second study, the endogenous AR is quantified in the LNCaP cell line by absolute SILAC and MRM-MS showing approximately 127,000 AR copies per cell, substantially more than previously measured using radioligand binding. PMID:22116683
Laser-induced breakdown spectroscopy measurement of a small fraction of rhenium in bulk tungsten
NASA Astrophysics Data System (ADS)
Nishijima, D.; Ueda, Y.; Doerner, R. P.; Baldwin, M. J.; Ibano, K.
2018-03-01
Laser-induced breakdown spectroscopy (LIBS) of bulk rhenium (Re) and tungsten (W)-Re alloy has been performed using a Q-switched Nd:YAG laser (wavelength = 1064 nm, pulse width ∼4-6 ns, laser energy = 115 mJ). It is found that the electron temperature, Te, of laser-induced Re plasma is lower than that of W plasma, and that Te of W-Re plasma is in between Re and W plasmas. This indicates that material properties affect Te in a laser-induced plasma. For analysis of W-3.3%Re alloy, only the strongest visible Re I 488.9 nm line is found to be used because of the strong enough intensity without contamination with W lines. Using the calibration-free LIBS method, the atomic fraction of Re, cRe, is evaluated as a function of the ambient Ar gas pressure, PAr. At PAr < 10 Torr, LIBS-measured cRe agrees well with that from EDX (energy-dispersive X-ray micro-analysis), while cRe increases with an increase in PAr at >10 Torr due to spectral overlapping of the Re I 488.9 nm line by an Ar II 488.9 nm line.
Olumi, Aria F
2014-02-01
Understanding the mechanism underlying the regulation of the androgen receptor (AR), a central player in the development of castration-resistant prostate cancer (CRPC), holds promise for overcoming the challenge of treating CRPC. We demonstrate that the ubiquitin ligase Siah2 targets a select pool of NCOR1-bound, transcriptionally-inactive AR for ubiquitin-dependent degradation, thereby promoting expression of select AR target genes implicated in lipid metabolism, cell motility, and proliferation. Siah2 is required for prostate cancer cell growth under androgen-deprivation conditions in vitro and in vivo, and Siah2 inhibition promotes prostate cancer regression upon castration. Notably, Siah2 expression is markedly increased in human CRPCs. Collectively, we find that selective regulation of AR transcriptional activity by the ubiquitin ligase Siah2 is important for CRPC development. Copyright © 2014 Elsevier Inc. All rights reserved.
Djusberg, Erik; Jernberg, Emma; Thysell, Elin; Golovleva, Irina; Lundberg, Pia; Crnalic, Sead; Widmark, Anders; Bergh, Anders; Brattsand, Maria; Wikström, Pernilla
2017-05-01
The relation between androgen receptor (AR) gene amplification and other mechanisms behind castration-resistant prostate cancer (CRPC), such as expression of constitutively active AR variants and steroid-converting enzymes has been poorly examined. Specific aim was to examine AR amplification in PC bone metastases and to explore molecular and functional consequences of this, with the long-term goal of identifying novel molecular targets for treatment. Gene amplification was assessed by fluorescence in situ hybridization in cryo-sections of clinical PC bone metastases (n = 40) and by PCR-based copy number variation analysis. Whole genome mRNA expression was analyzed using H12 Illumina Beadchip arrays and specific transcript levels were quantified by qRT-PCR. Protein localization was analyzed using immunohistochemistry and confocal microscopy. The YIPF6 mRNA expression was transiently knocked down and stably overexpressed in the 22Rv1 cell line as representative for CRPC, and effects on cell proliferation, colony formation, migration, and invasion were determined in vitro. Extracellular vesicles (EVs) were isolated from cell cultures using size-exclusion chromatography and enumerated by nanoparticle tracking analysis. Protein content was identified by LC-MS/MS analysis. Blood coagulation was measured as activated partial thromboplastin time (APTT). Functional enrichment analysis was performed using the MetaCore software. AR amplification was detected in 16 (53%) of the bone metastases examined from CRPC patients (n = 30), and in none from the untreated patients (n = 10). Metastases with AR amplification showed high AR and AR-V7 mRNA levels, increased nuclear AR immunostaining, and co-amplification of genes such as YIPF6 in the AR proximity at Xq12. The YIPF6 protein was localized to the Golgi apparatus. YIPF6 overexpression in 22Rv1 cells resulted in reduced cell proliferation and colony formation, and in enhanced EV secretion. EVs from YIPF6 overproducing 22Rv1 cells were enriched for proteins involved in blood coagulation and, accordingly, decreased the APTT in a dose-dependent fashion. AR amplified CRPC bone metastases show high AR-V7 expression that probably gives resistance to AR-targeting drugs. Co-amplification of the Golgi protein coding YIPF6 gene with the AR may enhance the secretion of pro-coagulative EVs from cancer cells and thereby stimulate tumor progression and increase the coagulopathy risk in CRPC patients. Prostate 77: 625-638, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Koblas, Tomas; Leontovyc, Ivan; Loukotova, Sarka; Kosinova, Lucie; Saudek, Frantisek
2016-05-17
Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently used for cell reprogramming. With the aim of developing a nonintegrative reprogramming strategy for derivation of insulin-producing cells, here, we evaluated a new approach utilizing synthetic messenger RNAs encoding reprogramming transcription factors. Administration of synthetic mRNAs encoding three key transcription regulators of β-cell differentiation-Pdx1, Neurogenin3, and MafA-efficiently reprogrammed the pancreatic exocrine cells into insulin-producing cells. In addition to the insulin genes expression, the synthetic mRNAs also induced the expressions of genes important for proper pancreatic β-cell function, including Sur1, Kir6.2, Pcsk1, and Pcsk2. Pretreating cells with the chromatin-modifying agent 5-Aza-2'-deoxycytidine further enhanced reprogramming efficiency, increasing the proportion of insulin-producing cells from 3.5 ± 0.9 to 14.3 ± 1.9% (n = 4). Moreover, 5-Aza-2'-deoxycytidine pretreatment enabled the reprogrammed cells to respond to glucose challenge with increased insulin secretion. In conclusion, our results support that the reprogramming of pancreatic exocrine cells into insulin-producing cells, induced by synthetic mRNAs encoding pancreatic transcription factors, represents a promising approach for cell-based diabetes therapy.
Lage, Susanne Zur; Goethe, Ralph; Darji, Ayub; Valentin-Weigand, Peter; Weiss, Siegfried
2003-01-01
Mycobacterium avium subspecies paratuberculosis (M. ptb) and M. avium subspecies avium (M. avium) are closely related but exhibit significant differences in their interaction with the host immune system. The macrophage line, J774, was infected with M. ptb and M. avium and analysed for cytokine production and stimulatory capacity towards antigen-specific CD4+ T cells. Under all conditions J774 cells were activated to produce proinflammatory cytokines. No influence on the expression of major histocompatibility complex (MHC) class II, intracellular adhesion molecule-1 (ICAM-1), B7.1, B7.2 or CD40 was found. However, the antigen-specific stimulatory capacity of J774 cells for a CD4+ T-cell line was significantly inhibited after infection with M. ptb, but not with M. avium. When a T-cell hybridoma expressing a T-cell receptor identical to that of the T-cell line was used, this inhibition was not observed, suggesting that costimulation which is essential for the CD4+ T-cell line is influenced by the pathogenic bacterium M. ptb. PMID:12519304
1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.
Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S
2015-04-01
Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Styer, S C; Griffiths, T D
1992-04-01
After exposure to 10 or 20 J/m2 UVC light, cells of the UMN-PIE-1181 line, an embryonic cell line derived from the Indian meal moth, Plodia interpunctella, exhibited a rapid and prolonged depression in the rate of incorporation of [3H]thymidine, whereas cells of the TN-368 line, an ovarian cell line derived from Trichoplusia ni, the cabbage looper, showed only a slight drop in incorporation and a rapid recovery after exposure to 10 or 40 J/m2 UVC light. The extent of this depression was not correlated to the amount of cell killing by UVC light in these cell lines or in IAL-PID2 cells. Blockage of fork progression was correlated to the depression in thymidine incorporation. TN-368 cells exhibited little blockage after exposure to 10 or 20 J/m2 UVC light, whereas UMN-PIE-1181 cells exhibited significant blockage at these fluences. Photoreactivation did not entirely relieve blockage, depression in thymidine incorporation, or cell killing, indicating that, although the (5-6) dimer appears to be the major lesion responsible for these effects, other lesions such as the (6-4) photoproduct may play a role.
NASA Astrophysics Data System (ADS)
Joshi, Tirtha Raj
2016-10-01
Interspecies ion separation has been proposed as a yield-degradation mechanism in inertial-confinement-fusion (ICF) experiments. We present direct experimental evidence of interspecies ion separation in direct-drive ICF experiments performed at the OMEGA laser facility. These experiments were designed based on the fact that interspecies ion thermo-diffusion would be strongest for species with large mass and charge difference. The targets were spherical plastic shells filled with D2 and Ar (1% by atom). Ar K-shell spectral features were observed primarily between the time of first-shock convergence and slightly before neutron bang time, using a time- and space-integrated spectrometer, streaked crystal spectrometer, and two gated multi-monochromatic X-ray imagers fielded along quasi-orthogonal lines-of-sight. Detailed spectroscopic analyses of spatially resolved Ar K-shell lines reveal deviation from the initial 1%-Ar gas fill and show both Ar-concentration enhancement and depletion at different times and radial positions of the implosion. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. The experimentally inferred Ar-atom-fraction profiles agree gently with calculated profiles associated with the incoming and rebounding first shock. This work was done in collaboration with P. Hakel, S. C. Hsu, E. L. Vold, M. J. Schmitt, N. M. Hoffman, R. M. Rauenzahn, G. Kagan, X.-Z. Tang, Y. Kim, and H. W. Herrmann of LANL, and R. C. Mancini of UNR. LA-UR-16-24804. Supported by the LANL ICF and ASC Programs under US-DoE contract no. DE-AC52-06NA25396.
14-3-3η Amplifies Androgen Receptor Actions in Prostate Cancer
Titus, Mark A.; Tan, Jiann-an; Gregory, Christopher W.; Ford, O. Harris; Subramanian, Romesh R.; Fu, Haian; Wilson, Elizabeth M.; Mohler, James L.; French, Frank S.
2009-01-01
Purpose Androgen receptor (AR) abundance and AR-regulated gene expression in castration-recurrent prostate cancer (CaP) are indicative of AR activation in the absence of testicular androgen. AR transactivation of target genes in castration-recurrent CaP occurs in part through mitogen signaling that amplifies the actions of AR and its coregulators. Herein we report on the role of 14-3-3η in AR action. Experimental Design and Results AR and 14-3-3η co-localized in COS cell nuclei with and without androgen and 14-3-3η promoted AR nuclear localization in the absence of androgen. 14-3-3η interacted with AR in cell-free binding and coimmunoprecipitation assays. In the recurrent human CaP cell line, CWR-R1, native endogenous AR transcriptional activation was stimulated by 14-3-3η at low DHT concentrations and was increased by EGF. Moreover, the DHT and EGF dependent increase in AR transactivation was inhibited by a dominant negative 14-3-3η. In the CWR22 CaP xenograft model, 14-3-3η expression was increased by androgen, suggesting a feed-forward mechanism that potentiates both 14-3-3η and AR actions. 14-3-3η mRNA and protein decreased following castration of tumor bearing mice and increased in tumors of castrate mice after treatment with testosterone. CWR22 tumors that recurred 5 months after castration contained 14-3-3η levels similar to the androgen-stimulated tumors removed before castration. In a human prostate tissue microarray of clinical specimens, 14-3-3η localized with AR in nuclei and the similar amounts expressed in castration-recurrent CaP, androgen-stimulated CaP and benign prostatic hyperplasia were consistent with AR activation in recurrent CaP. Conclusion 14-3-3η enhances androgen and mitogen induced AR transcriptional activity in castration-recurrent CaP. PMID:19996220
Differential microRNA expression is associated with androgen receptor expression in breast cancer.
Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang
2017-01-01
The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.
Multivalent peptoid conjugates which overcome enzalutamide resistance in prostate cancer cells
Wang, Yu; Dehigaspitiya, Dilani C.; Levine, Paul M.; Profit, Adam A.; Haugbro, Michael; Imberg-Kazdan, Keren; Logan, Susan K.; Kirshenbaum, Kent; Garabedian, Michael J.
2016-01-01
Development of resistance to anti-androgens for treating advanced prostate cancer is a growing concern, and extends to recently developed therapeutics, including enzalutamide. Therefore, new strategies to block androgen receptor (AR) function in prostate cancer are required. Here we report the characterization of a multivalent conjugate presenting two bioactive ethisterone ligands arrayed as spatially defined pendant groups on a peptoid oligomer. The conjugate, named Multivalent Peptoid Conjugate 6 (MPC6), suppressed the proliferation of multiple AR-expressing prostate cancer cell lines including those that failed to respond to enzalutamide and ARN509. The structure-activity relationships of MPC6 variants were evaluated, revealing that increased spacing between ethisterone moieties and changes in peptoid topology eliminated its anti-proliferative effect, suggesting that both ethisterone ligand presentation and scaffold characteristics contribute to MPC6 activity. Mechanistically, MPC6 blocked AR coactivator-peptide interaction, and prevented AR intermolecular interactions. Protease sensitivity assays suggested that the MPC6-bound AR induced a receptor conformation distinct from that of dihydrotestosterone- or enzalutamide-bound AR. Pharmacological studies revealed that MPC6 was metabolically stable and displayed a low plasma clearance rate. Notably, MPC6 treatment reduced tumor growth and decreased Ki67 and AR expression in mouse xenograft models of enzalutamide-resistant LNCaP-abl cells. Thus, MPC6 represents a new class of compounds with the potential to combat treatment-resistant prostate cancer. PMID:27488525
Castration Induced Neuroendocrine Mediated Progression of Prostate Cancer
2008-09-01
neoplasia in NRP-152 and NRP-154 rat prostatic epithelial cells. BMC Cancer 1, 19. [104] Flowers LO, Subramaniam PS, and Johnson HM (2005). A SOCS-1...metastases without effects on cell motility or growth. EMBO J 21: 6289–6302. Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP et al. (2006). N...Knocking down Etk expression with its specific siRNA inhibits LNCaP cell proliferation (29, 42), and prostates from Etk transgenic mice exhibit
Cihan-Üstündağ, Gökçe; Şatana, Dilek; Özhan, Gül; Çapan, Gültaze
2016-01-01
A new series of indolylhydrazones (6) and indole-based 4-thiazolidinones (7, 8) have been designed, synthesized and screened for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. 4-Thiazolidinone derivatives 7g-7j, 8g, 8h and 8j displayed notable antituberculosis (anti-TB) activity showing 99% inhibition at MIC values ranging from 6.25 to 25.0 µg/ml. Compounds 7g, 7h, 7i, 8h and 8j demonstrated anti-TB activity at concentrations 10-fold lower than those cytotoxic for the mammalian cell lines. The indolylhydrazone derivative 6b has also been evaluated for antiproliferative activity against human cancer cell lines at the National Cancer Institute (USA). Compound 6b showed an interesting anticancer profile against different human tumor-derived cell lines at sub-micromolar concentrations with obvious selectivity toward colon cancer cell line COLO 205.
Androgen receptor mediated epigenetic regulation of CRISP3 promoter in prostate cancer cells.
Pathak, Bhakti R; Breed, Ananya A; Deshmukh, Priyanka; Mahale, Smita D
2018-07-01
Cysteine-rich secretory protein 3 (CRISP3) is one of the most upregulated genes in prostate cancer. Androgen receptor (AR) plays an important role not only in initial stages of prostate cancer development but also in the advanced stage of castration-resistant prostate cancer (CRPC). Role of AR in regulation of CRISP3 expression is not yet known. In order to understand the regulation of CRISP3 expression, various overlapping fragments of CRISP3 promoter were cloned in pGL3 luciferase reporter vector. All constructs were transiently and stably transfected in PC3 (CRISP3 negative) and LNCaP (CRISP3 positive) cell lines and promoter activity was measured by luciferase assay. Promoter activity of LNCaP stable clones was significantly higher than PC3 stable clones. Further in CRISP3 negative PC3 and RWPE-1 cells, CRISP3 promoter was shown to be silenced by histone deacetylation. Treatment of LNCaP cells with DHT resulted in increase in levels of CRISP3 transcript and protein. AR dependency of CRISP3 promoter was also evaluated in LNCaP stable clones by luciferase assay. To provide molecular evidence of epigenetic regulation of CRISP3 promoter and its response to DHT, ChIP PCR was performed in PC3 and LNCaP cells. Our results demonstrate that CRISP3 expression in prostate cancer cells is androgen dependent and in AR positive cells, CRISP3 promoter is epigenetically regulated by AR. Copyright © 2018 Elsevier Ltd. All rights reserved.
Miao, Lu; Yang, Lin; Li, Rui; Rodrigues, Daniel N; Crespo, Mateus; Hsieh, Jer-Tsong; Tilley, Wayne D; de Bono, Johann; Selth, Luke A; Raj, Ganesh V
2017-06-01
Epithelial-to-mesenchymal plasticity (EMP) has been linked to metastasis, stemness, and drug resistance. In prostate cancer, EMP has been associated with both suppression and activation of the androgen receptor (AR) signaling. Here we investigated the effect of the potent AR antagonist enzalutamide on EMP in multiple preclinical models of prostate cancer and patient tissues. Enzalutamide treatment significantly enhanced the expression of EMP drivers (ZEB1, ZEB2, Snail, Twist, and FOXC2) and mesenchymal markers (N-cadherin, fibronectin, and vimentin) in prostate cancer cells, enhanced prostate cancer cell migration, and induced prostate cancer transformation to a spindle, fibroblast-like morphology. Enzalutamide-induced EMP required concomitant suppression of AR signaling and activation of the EMP-promoting transcription factor Snail, as evidenced by both knockdown and overexpression studies. Supporting these findings, AR signaling and Snail expression were inversely correlated in C4-2 xenografts, patient-derived castration-resistant metastases, and clinical samples. For the first time, we elucidate a mechanism explaining the inverse relationship between AR and Snail. Specifically, we found that AR directly repressed SNAI1 gene expression by binding to specific AR-responsive elements within the SNAI1 promoter. Collectively, our findings demonstrate that de-repression of Snail and induction of EMP is an adaptive response to enzalutamide with implications for therapy resistance. Cancer Res; 77(11); 3101-12. ©2017 AACR . ©2017 American Association for Cancer Research.
Antiepileptic drugs affect neuronal androgen signaling via a cytochrome P450-dependent pathway.
Gehlhaus, Marcel; Schmitt, Nina; Volk, Benedikt; Meyer, Ralf P
2007-08-01
Recent data imply an important role for brain cytochrome P450 (P450) in endocrine signaling. In epileptic patients, treatment with P450 inducers led to reproductive disorders; in mouse hippocampus, phenytoin treatment caused concomitant up-regulation of CYP3A11 and androgen receptor (AR). In the present study, we established specific in vitro models to examine whether CYP3A isoforms cause enhanced AR expression and activation. Murine Hepa1c1c7 cells and neuronal-type rat PC-12 cells were used to investigate P450 regulation and its effects on AR after phenytoin and phenobarbital administration. In both cell lines, treatment with antiepileptic drugs (AEDs) led to concomitant up-regulation of CYP3A (CYP3A11 in Hepa1c1c7 and CYP3A2 in PC-12) and AR mRNA and protein. Inhibition of CYP3A expression and activity by the CYP3A inhibitor ketoconazole or by CYP3A11-specific short interfering RNA molecules reduced AR expression to basal levels. The initial up-regulation of AR signal transduction, measured by an androgen-responsive element chloramphenicol-acetyltransferase reporter gene assay, was completely reversed after specific inhibition of CYP3A11. Withdrawal of the CYP3A11 substrate testosterone prevented AR activation, whereas AR mRNA expression remained up-regulated. In addition, recombinant CYP3A11 was expressed heterologously in PC-12 cells, thereby eliminating any direct drug influence on the AR. Again, the initial up-regulation of AR mRNA and activity was reduced to basal levels after silencing of CYP3A11. In conclusion, we show here that CYP3A2 and CYP3A11 are crucial mediators of AR expression and signaling after AED application. These findings point to an important and novel function of P450 in regulation of steroid hormones and their receptors in endocrine tissues such as liver and brain.
Han, Guang; Kortylewicz, Zbigniew P; Enke, Thomas; Baranowska-Kortylewicz, Janina
2014-12-01
The androgen receptor (AR) axis, the key growth and survival pathway in prostate cancer, remains a prime target for drug development. 5-Radioiodo-3'-O-(17β-succinyl-5α-androstan-3-one)-2'-deoxyuridin-5'-yl phosphate (RISAD-P) is the AR-seeking reagent developed for noninvasive assessment of AR and proliferative status, and for molecular radiotherapy of prostate cancer with Auger electron-emitting radionuclides. RISAD-P radiolabeled with 123I, 124I, and 125I were synthesized using a common stannylated precursor. The cellular uptake, subcellular distribution, and radiotoxicity of 123I-, 124I-, and (125) IRISAD-P were measured in LNCaP, DU145, and PC-3 cell lines expressing various levels of AR. The uptake of RISAD-P by prostate cancer cells is proportional to AR levels and independent of the radionuclide. The intracellular accumulation of radioactivity is directly proportional to the extracellular concentration of RISAD-P and the duration of exposure. Initially, RISAD-P is trapped in the cytoplasm. Within 24 hr, radioactivity is associated exclusively with DNA. The RISAD-P radiotoxicity is determined by the radionuclide; however, the cellular responses are directly proportional to the AR expression levels. LNCaP cells expressing high levels of AR are killed at the rate of up to 60% per day after a brief 1 hr RISAD-P treatment. For the first time, the AR expression in PC-3 and DU 145 cells, generally reported as AR-negative, was quantitated by the ultra sensitive RISAD-P-based method. RISAD-P is a theranostic drug, which targets AR. Its subcellular metabolite participates in DNA synthesis. RISAD-P is a promising candidate for imaging of the AR expression and tumor proliferation as well as molecular radiotherapy of prostate cancer. © 2014 Wiley Periodicals, Inc.
Bello, Felio J; Mejía, Astrid J; Corena, María del Pilar; Ayala, Martha; Sarmiento, Ladys; Zuñiga, Claudio; Palau, María T
2005-10-01
The present work describes the in vitro infection of a cell line Lulo, derived from Lutzomyia longipalpis embryonic tissue, by Leishmania chagasi promastigotes. This infection process is compared with a parallel one developed using the J774 cell line. The L. chagasi MH/CO/84/CI-044B strain was used for experimental infection in two cell lines. The cells were seeded on glass coverslips in 24-well plates to reach a final number of 2 x 10(5) cells/well. Parasites were added to the adhered Lulo and J774 cells in a 10:1 ratio and were incubated at 28 and 37 masculineC respectively. After 2, 4, 6, 8, and 10 days post-infection, the cells were extensively washed with PBS, fixed with methanol, and stained with Giemsa. The number of internalized parasites was determined by counting at least 400 cultured cells on each coverslip. The results showed continuous interaction between L. chagasi promastigotes with the cell lines. Some ultrastructural characteristics of the amastigote forms were observed using transmission electron microscopy. The highest percentage of infection in Lulo cells was registered on day 6 post-infection (29.6%) and on day 4 in the J774 cells (51%). This work shows similarities and differences in the L. chagasi experimental infection process in the two cell lines. However, Lulo cells emerge as a new model to study the life-cycle of this parasite.
Aberrant Chromatin Modification as a Mechanism of Prostate Cancer Progression
2004-12-01
mediated control of gene expression. Using the antibody generated against phosphorylated histone H3 (from either Upstate Biotech or Cell Signaling), we...C4-2B cells (Fig 3 of Appendix 2). Interestingly, depletion of AR and ACTR affects the expression of distinct cell cycle genes. As shown in Fig 4A and...coactivator ACTR regulate the expression of different genes that are involved in control of cell cycle , suggesting that distinct mechanisms evolves
Díaz, P; Cardenas, H; Orihuela, P A
2016-10-01
We examined whether aqueous extract of Lepidium meyenii (red Maca) could inhibit growth, potentiate apoptotic activity of two anticancer drugs Taxol and 2-methoxyestradiol (2ME) or change mRNA expression for the androgen target genes, androgen receptor (Ar) and prostate-specific antigen (Psa) in the human prostate cancer cell line LNCaP. Red Maca aqueous extract at 0, 10, 20, 40 or 80 μg/ml was added to LNCaP cells, and viability was evaluated by the MTS assay at 24 or 48 hr after treatment. Furthermore, LNCaP cells were treated with 80 μg/ml of red Maca plus Taxol or 2ME 5 μM and viability was assessed 48 hr later. Finally, LNCaP cells were treated with red Maca 0, 20, 40 or 80 μg/ml, and 12 hr later, mRNA level for Ar or Psa was assessed by real-time PCR. Treatment with red Maca did not affect viability of LNCaP cells. Apoptotic activity induced by Taxol and 2ME in LNCaP cells was not altered with red Maca treatment. Relative expression of the mRNA for Ar and Psa increased with red Maca 20 and 40 μg/ml, but not at 80 μg/ml. We conclude that red Maca aqueous extract does not have toxic effects, but stimulates androgen signalling in LNCaP cells. © 2016 Blackwell Verlag GmbH.
Arginine-Dependent Acid Resistance in Salmonella enterica Serovar Typhimurium
Kieboom, Jasper; Abee, Tjakko
2006-01-01
Salmonella enterica serovar Typhimurium does not survive a pH 2.5 acid challenge under conditions similar to those used for Escherichia coli (J. W. Foster, Nat. Rev. Microbiol. 2:898-907, 2004). Here, we provide evidence that S. enterica serovar Typhimurium can display arginine-dependent acid resistance (AR) provided the cells are grown under anoxic conditions and not under the microaerobic conditions used for assessment of AR in E. coli. The role of the arginine decarboxylase pathway in Salmonella AR was shown by the loss of AR in mutants lacking adiA, which encodes arginine decarboxylase; adiC, which encodes the arginine-agmatine antiporter; or adiY, which encodes an AraC-like regulator. Transcription of adiA and adiC was found to be dependent on AdiY, anaerobiosis, and acidic pH. PMID:16855258
Nancolas, Bethany; Sessions, Richard B; Halestrap, Andrew P
2015-02-15
The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523-530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7-10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278.
Nancolas, Bethany; Sessions, Richard B.; Halestrap, Andrew P.
2014-01-01
The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523–530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7–10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278. PMID:25437897
Electron impact excitation of argon in the extreme vacuum ultraviolet
NASA Technical Reports Server (NTRS)
Mentall, J. E.; Morgan, H. D.
1976-01-01
Polarization-free excitation cross sections in the extreme vacuum ultraviolet have been measured for electron impact on Ar. Observed spectral features were those lines of Ar I and Ar II which lie between 700 and 1100 A. Excitation functions were measured for the Ar I resonance line at 1048 A and the Ar II resonance line at 920 A. Peak cross sections for these two lines were found to be (39.4 plus or minus 7.9) x 10 to the -18th and (6.9 plus or minus 1.4) x 10 to the -18th, respectively. At low energies, excitation of the Ar II resonance line is dominated by an electron exchange transition.
Xiong, Yaoyao; Wang, Long; Li, Yuan; Chen, Minfeng; He, Wei; Qi, Lin
2017-01-01
Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA's target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR) is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells' proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3'UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation. © 2017 The Author(s). Published by S. Karger AG, Basel.
Lehmann, Brian D.; Bauer, Joshua A.; Chen, Xi; Sanders, Melinda E.; Chakravarthy, A. Bapsi; Shyr, Yu; Pietenpol, Jennifer A.
2011-01-01
Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem–like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted “driver” signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies. PMID:21633166
Yang, Xiu-wei; Xu, Bo; Ran, Fu-xiang; Wang, Rui-qing; Wu, Jun; Cui, Jing-rong
2007-01-01
To screen antitumor active compounds, drug-like or leading compounds from Chinese traditional and herbal drugs. Eleven coumarin compounds isolated from the Chinese traditional and herbal drugs were studied for their antitumor activities in vitro by determining the inhibition rates against growth of human bladder carcinoma cell line E-J. It showed that umbelliferone, scoparone, demethylfuropinarine, isopimpinellin, forbesoside, columbianadin, decursin and glycycoumarin inhibited the growth of human bladder carcinoma cell line E-J in vitro and their activities showed a concentration-effect relationship. The inhibitory effects of forbesoside, columbianadin, decursin and umbelliferone, with IC50 values of 7.50x10(-7), 2.30x10(-6), 6.00x10(-6) and 1.30x10(-6) mol/L, respectively, were stronger than those of the other tested compounds. However, xanthotoxin, esculin and sphondin did not inhibit the growth of human bladder carcinoma cell line E-J in this assay condition. These findings indicate that forbesoside, columbianadin, esculin, decursin and umbelliferone would be effective or regarded as potent drug-like or leading compounds against human bladder carcinoma.
Graph Learning for Anomaly Detection using Psychological Context GLAD-PC
2015-08-03
comparison study of user behavior on Facebook and Gmail, ArXiv: 1305.6082, (11 2013): 0. doi: 10.1016/j.chb.2013.06.043 TOTAL: 1 Received Paper...Fournelle, Steve Gaffigan, Oliver Brdiczka, Jianqiang Shen, Juan Liu, Kendra E. Moore. Characterizing user behavior and information propagation on a...media data; and c) detecting unusual and anomalous behavior from on-line activities. (5) Summary of the most important results With regard to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Department of Infectious Diseases, Peking University Third Hospital, Beijing; Zhang, Yuan
The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1βmore » (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.« less
Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome.
Hara, Takahito; Miyazaki, Jun-ichi; Araki, Hideo; Yamaoka, Masuo; Kanzaki, Naoyuki; Kusaka, Masami; Miyamoto, Masaomi
2003-01-01
Most prostate cancers (PCs) become resistant to combined androgen blockade therapy with surgical or medical castration and antiandrogens after several years. Some of these refractory PCs regress after discontinuation of antiandrogen administration [antiandrogen withdrawal syndrome (AWS)]. Although the molecular mechanisms of the AWS are not fully understood because of the lack of suitable experimental models, one hypothesis of the mechanism is mutation of androgen receptor (AR). However, bicalutamide, which has become the most prevalent pure antiandrogen, does not work as an agonist for any mutant AR detected thus far in PC. To elucidate the mechanisms of the AWS, we established and characterized novel LNCaP cell sublines, LNCaP-cxDs, which were generated in vitro by culturing androgen-dependent LNCaP-FGC human PC cells in androgen-depleted medium with bicalutamide to mimic the combined androgen blockade therapy. LNCaP-FGC cells did not grow at first, but they started to grow after 6-13 weeks of culture. Bicalutamide stimulated LNCaP-cxD cell growth and increased prostate-specific antigen secretion from LNCaP-cxD cells both in vitro and in vivo. Sequencing of AR transcripts revealed that the AR in LNCaP-cxD cells harbors a novel mutation in codon 741, TGG (tryptophan) to TGT (cysteine; W741C), or in codon 741, TGG to TTG (leucine; W741L), in the ligand-binding domain. Transactivation assays showed that bicalutamide worked as an agonist for both W741C and W741L mutant ARs. Importantly, another antiandrogen, hydroxyflutamide, worked as an antagonist for these mutant ARs. In summary, we demonstrate for the first time that within only 6-13 weeks of in vitro exposure to bicalutamide, LNCaP-FGC cells, whose growth had initially been suppressed, came to use bicalutamide as an AR agonist via W741 AR mutation to survive. Our data strongly support the hypothesis that AR mutation is one possible mechanism of the AWS and suggest that flutamide might be effective as a second-line therapy for refractory PC previously treated with bicalutamide.
ADRA2A is involved in neuro-endocrine regulation of bone resorption
Mlakar, Vid; Jurkovic Mlakar, Simona; Zupan, Janja; Komadina, Radko; Prezelj, Janez; Marc, Janja
2015-01-01
Adrenergic stimulation is important for osteoclast differentiation and bone resorption. Previous research shows that this happens through β2-adrenergic receptor (AR), but there are conflicting evidence on presence and role of α2A-AR in bone. The aim of this study was to investigate the presence of α2A-AR and its involvement in neuro-endocrine signalling of bone remodelling in humans. Real-time polymerase chain reaction (PCR) and immunohistochemistry were used to investigate α2A-AR receptor presence and localization in bone cells. Functionality of rs553668 and rs1800544 single nucleotide polymorphism SNPs located in α2A-AR gene was analysed by qPCR expression on bone samples and luciferase reporter assay in human osteosarcoma HOS cells. Using real-time PCR, genetic association study between rs553668 A>G and rs1800544 C>G SNPs and major bone markers was performed on 661 Slovenian patients with osteoporosis. α2A-AR is expressed in osteoblasts and lining cells but not in osteocytes. SNP rs553668 has a significant influence on α2A-AR mRNA level in human bone samples through the stability of mRNA. α2A-AR gene locus associates with important bone remodelling markers (BMD, CTX, Cathepsin K and pOC). The results of this study are providing comprehensive new evidence that α2A-AR is involved in neuro-endocrine signalling of bone turnover and development of osteoporosis. As shown by our results the neurological signalling is mediated through osteoblasts and result in bone resorption. Genetic study showed association of SNPs in α2A-AR gene locus with bone remodelling markers, identifying the individuals with higher risk of development of osteoporosis. PMID:25818344
Perets, Ruth; Kaplan, Tommy; Stein, Ilan; Hidas, Guy; Tayeb, Shay; Avraham, Eti; Ben-Neriah, Yinon; Simon, Itamar; Pikarsky, Eli
2012-01-01
Androgen activity plays a key role in prostate cancer progression. Androgen receptor (AR) is the main mediator of androgen activity in the prostate, through its ability to act as a transcription mediator. Here we performed a genome-wide analysis of human AR binding to promoters in the presence of an agonist or antagonist in an androgen dependent prostate cancer cell line. Many of the AR bound promoters are bound in all examined conditions while others are bound only in the presence of an agonist or antagonist. Several motifs are enriched in AR bound promoters, including the AR Response Element (ARE) half-site and recognition elements for the transcription factors OCT1 and SOX9. This suggests that these 3 factors could define a module of co-operating transcription factors in the prostate. Interestingly, AR bound promoters are preferentially located in AT rich genomic regions. Analysis of mRNA expression identified chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1) as a direct AR target gene that is downregulated upon binding by the agonist liganded AR. COUP-TF1 immunostaining revealed nucleolar localization of COUP-TF1 in epithelium of human androgen dependent prostate cancer, but not in adjacent benign prostate epithelium. Stromal cells both in human and mouse prostate show nuclear COUP-TF1 staining. We further show that there is an inverse correlation between COUP-TF1 expression in prostate stromal cells and the rising levels of androgen with advancing puberty. This study extends the pool of recognized putative AR targets and identifies a negatively regulated target of AR – COUP-TF1 – which could possibly play a role in human prostate cancer. PMID:23056316
Perets, Ruth; Kaplan, Tommy; Stein, Ilan; Hidas, Guy; Tayeb, Shay; Avraham, Eti; Ben-Neriah, Yinon; Simon, Itamar; Pikarsky, Eli
2012-01-01
Androgen activity plays a key role in prostate cancer progression. Androgen receptor (AR) is the main mediator of androgen activity in the prostate, through its ability to act as a transcription mediator. Here we performed a genome-wide analysis of human AR binding to promoters in the presence of an agonist or antagonist in an androgen dependent prostate cancer cell line. Many of the AR bound promoters are bound in all examined conditions while others are bound only in the presence of an agonist or antagonist. Several motifs are enriched in AR bound promoters, including the AR Response Element (ARE) half-site and recognition elements for the transcription factors OCT1 and SOX9. This suggests that these 3 factors could define a module of co-operating transcription factors in the prostate. Interestingly, AR bound promoters are preferentially located in AT rich genomic regions. Analysis of mRNA expression identified chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1) as a direct AR target gene that is downregulated upon binding by the agonist liganded AR. COUP-TF1 immunostaining revealed nucleolar localization of COUP-TF1 in epithelium of human androgen dependent prostate cancer, but not in adjacent benign prostate epithelium. Stromal cells both in human and mouse prostate show nuclear COUP-TF1 staining. We further show that there is an inverse correlation between COUP-TF1 expression in prostate stromal cells and the rising levels of androgen with advancing puberty. This study extends the pool of recognized putative AR targets and identifies a negatively regulated target of AR - COUP-TF1 - which could possibly play a role in human prostate cancer.
Kim, Sang Hoon; Pajarillo, Edward Alain B; Balolong, Marilen P; Lee, Ji Yoon; Kang, Dae-Kyung
2016-06-28
In this study, the global proteome of the IPEC-J2 cell line was evaluated using ultra-high performance liquid chromatography coupled to a quadrupole Q Exactive™ Orbitrap mass spectrometer. Proteins were isolated from highly confluent IPEC-J2 cells in biological replicates and analyzed by label-free mass spectrometry prior to matching against a porcine genomic dataset. The results identified 1,517 proteins, accounting for 7.35% of all genes in the porcine genome. The highly abundant proteins detected, such as actin, annexin A2, and AHNAK nucleoprotein, are involved in structural integrity, signaling mechanisms, and cellular homeostasis. The high abundance of heat shock proteins indicated their significance in cellular defenses, barrier function, and gut homeostasis. Pathway analysis and annotation using the Kyoto Encyclopedia of Genes and Genomes database resulted in a putative protein network map of the regulation of immunological responses and structural integrity in the cell line. The comprehensive proteome analysis of IPEC-J2 cells provides fundamental insights into overall protein expression and pathway dynamics that might be useful in cell adhesion studies and immunological applications.
Kumagai, Jinpei; Hofland, Johannes; Erkens-Schulze, Sigrun; Dits, Natasja F J; Steenbergen, Jacobie; Jenster, Guido; Homma, Yukio; de Jong, Frank H; van Weerden, Wytske M
2013-11-01
Despite an initial response to hormonal therapy, patients with advanced prostate cancer (PC) almost always progress to castration-resistant disease (CRPC). Although serum testosterone (T) is reduced by androgen deprivation therapy, intratumoral T levels in CRPC are comparable to those in prostate tissue of eugonadal men. These levels could originate from intratumoral conversion of adrenal androgens and/or from de novo steroid synthesis. However, the relative contribution of de novo steroidogenesis to AR-driven cell growth is unknown. The relative contribution of androgen biosynthetic pathways to activate androgen receptor (AR)-regulated cell growth and expression of PSA, FKBP5, and TMPRSS2 was studied at physiologically relevant levels of adrenal androgen precursors and intermediates of de novo androgen biosynthesis in human prostate cancer cell lines, PC346C, VCaP, and LNCaP. In PC346C and VCaP, responses to pregnenolone and progesterone were absent or minimal, while large effects of adrenal androgen precursors were found. VCaP CRPC clones overexpressing CYP17A1 did not acquire an increased ability to use pregnenolone or progesterone to activate AR. In contrast, all precursors stimulated growth and gene expression in LNCaP cells, presumably resulting from the mutated AR in these cells. Our data indicate that at physiological levels of T precursors PC cells can generally convert adrenal androgens, while de novo steroidogenesis is not generally possible in PC cells and is not able to support AR transactivation and PC growth. © 2013 Wiley Periodicals, Inc.
Promising critical current density characteristics of Ag-sheathed (Sr,Na)Fe2As2 tape
NASA Astrophysics Data System (ADS)
Suwa, Takahiro; Pyon, Sunseng; Tamegai, Tsuyoshi; Awaji, Satoshi
2018-06-01
We report the fabrication of (Sr,Na)Fe2As2 superconducting tapes by the powder-in-tube technique and their characteristics, including the transport critical current density J c at 4.2 K up to 140 kOe, the magnetic J c estimated from magnetic hysteresis curves, magneto-optical (MO) images, and scanning electron microscopy images. In a tape sintered at 875 °C for 1 h, the transport J c reaches 26 kA/cm2 at 4.2 K and 100 kOe for a field perpendicular to the tape surface. When the field is parallel to the tape surface, the magnetic J c exceeds the practical level of 100 kA/cm2 at 4.2 K below 25 kOe. Analysis of the MO images reveals clear current discontinuity lines in the core, indicating that the current flows homogeneously and the connections between grains are strong in the core.
2009-03-14
H, Sodek J, Zhau HE, Chung LW. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent...with mesenchymal phenotype b2-m b2-Microglobulin BSP Bone sialoprotein C4-2 Lineage derivative cells from LNCaP C4-2B C4-2 cells metastasized to bone...OPN) and bone sialoprotein (BSP), and RANKL, collectively allow- ing cancer cells to survive and thrive in the bone microenvironment [7–9]. Previous
Chen, Di; Banerjee, Sanjeev; Cui, Qiuzhi C.; Kong, Dejuan; Sarkar, Fazlul H.; Dou, Q. Ping
2012-01-01
There is a large body of scientific evidence suggesting that 3,3′-Diindolylmethane (DIM), a compound derived from the digestion of indole-3-carbinol, which is abundant in cruciferous vegetables, harbors anti-tumor activity in vitro and in vivo. Accumulating evidence suggests that AMP-activated protein kinase (AMPK) plays an essential role in cellular energy homeostasis and tumor development and that targeting AMPK may be a promising therapeutic option for cancer treatment in the clinic. We previously reported that a formulated DIM (BR-DIM; hereafter referred as B-DIM) with higher bioavailability was able to induce apoptosis and inhibit cell growth, angiogenesis, and invasion of prostate cancer cells. However, the precise molecular mechanism(s) for the anti-cancer effects of B-DIM have not been fully elucidated. In the present study, we investigated whether AMP-activated protein kinase (AMPK) is a molecular target of B-DIM in human prostate cancer cells. Our results showed, for the first time, that B-DIM could activate the AMPK signaling pathway, associated with suppression of the mammalian target of rapamycin (mTOR), down-regulation of androgen receptor (AR) expression, and induction of apoptosis in both androgen-sensitive LNCaP and androgen-insensitive C4-2B prostate cancer cells. B-DIM also activates AMPK and down-regulates AR in androgen-independent C4-2B prostate tumor xenografts in SCID mice. These results suggest that B-DIM could be used as a potential anti-cancer agent in the clinic for prevention and/or treatment of prostate cancer regardless of androgen responsiveness, although functional AR may be required. PMID:23056607
Tani, Tetsuo; Yasuda, Hiroyuki; Hamamoto, Junko; Kuroda, Aoi; Arai, Daisuke; Ishioka, Kota; Ohgino, Keiko; Miyawaki, Masayoshi; Kawada, Ichiro; Naoki, Katsuhiko; Hayashi, Yuichiro; Betsuyaku, Tomoko; Soejima, Kenzo
2016-01-01
Alectinib is a highly selective ALK inhibitor and shows promising efficacy in non-small cell lung cancers (NSCLC) harboring the EML4-ALK gene rearrangement. The precise mechanism of acquired resistance to alectinib is not well defined. The purpose of this study was to clarify the mechanism of acquired resistance to alectinib in ALK-translocated lung cancer cells. We established alectinib-resistant cells (H3122-AR) from the H3122 NSCLC cell line, harboring the EML4-ALK gene rearrangement, by long-term exposure to alectinib. The mechanism of acquired resistance to alectinib in H3122-AR cells was evaluated by phospho-receptor tyrosine kinase (phospho-RTK) array screening and Western blotting. No mutation of the ALK-TK domain was found. Phospho-RTK array analysis revealed that the phosphorylation level of EGFR was increased in H3122-AR cells compared with H3122. Expression of TGFα, one of the EGFR ligands, was significantly increased and knockdown of TGFα restored the sensitivity to alectinib in H3122-AR cells. We found combination therapy targeting ALK and EGFR with alectinib and afatinib showed efficacy both in vitro and in a mouse xenograft model. We propose a preclinical rationale to use the combination therapy with alectinib and afatinib in NSCLC that acquired resistance to alectinib by the activation of EGFR bypass signaling. ©2015 American Association for Cancer Research.
Pollio, Antonino; Zarrelli, Armando; Romanucci, Valeria; Di Mauro, Alfredo; Barra, Federica; Pinto, Gabriele; Crescenzi, Elvira; Roscetto, Emanuela; Palumbo, Giuseppe
2016-03-23
The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L.) Newman, and two Spermatophyta, Juniperus communis L. (J. communis) and Cotinus coggygria Scop. (C. coggygria), were screened against four human cells lines (A549, MCF7, TK6 and U937). Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1-11, 19) and eight polyphenols derivatives (12-18, 20), while in J. communis extract, eight flavonoids (21-28), a α-ionone glycoside (29) and a lignin (30) were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.
Leucocontextins A-R, lanostane-type triterpenoids from Ganoderma leucocontextum.
Zhao, Zhen-Zhu; Chen, He-Ping; Li, Zheng-Hui; Dong, Ze-Jun; Bai, Xue; Zhou, Zhong-Yu; Feng, Tao; Liu, Ji-Kai
2016-03-01
Eighteen new lanostane-type triterpenoids, namely leucocontextins A-R (1-18) were isolated from the fruiting bodies of Ganoderma leucocontextum. Their structures were established by 1D and 2D NMR data in conjunction with HRESIMS/HREIMS, X-ray single crystal diffraction analysis. Compound 18 exhibited weak cytotoxicity against K562 and MCF-7 cell lines with IC50 of 20-30 μM. Copyright © 2015 Elsevier B.V. All rights reserved.
Goth, Christoffer K; Tuhkanen, Hanna E; Khan, Hamayun; Lackman, Jarkko J; Wang, Shengjun; Narimatsu, Yoshiki; Hansen, Lasse H; Overall, Christopher M; Clausen, Henrik; Schjoldager, Katrine T; Petäjä-Repo, Ulla E
2017-03-17
The β 1 -adrenergic receptor (β 1 AR) is a G protein-coupled receptor (GPCR) and the predominant adrenergic receptor subtype in the heart, where it mediates cardiac contractility and the force of contraction. Although it is the most important target for β-adrenergic antagonists, such as β-blockers, relatively little is yet known about its regulation. We have shown previously that β 1 AR undergoes constitutive and regulated N-terminal cleavage participating in receptor down-regulation and, moreover, that the receptor is modified by O -glycosylation. Here we demonstrate that the polypeptide GalNAc-transferase 2 (GalNAc-T2) specifically O -glycosylates β 1 AR at five residues in the extracellular N terminus, including the Ser-49 residue at the location of the common S49G single-nucleotide polymorphism. Using in vitro O -glycosylation and proteolytic cleavage assays, a cell line deficient in O -glycosylation, GalNAc-T-edited cell line model systems, and a GalNAc-T2 knock-out rat model, we show that GalNAc-T2 co-regulates the metalloproteinase-mediated limited proteolysis of β 1 AR. Furthermore, we demonstrate that impaired O -glycosylation and enhanced proteolysis lead to attenuated receptor signaling, because the maximal response elicited by the βAR agonist isoproterenol and its potency in a cAMP accumulation assay were decreased in HEK293 cells lacking GalNAc-T2. Our findings reveal, for the first time, a GPCR as a target for co-regulatory functions of site-specific O -glycosylation mediated by a unique GalNAc-T isoform. The results provide a new level of β 1 AR regulation that may open up possibilities for new therapeutic strategies for cardiovascular diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Šemeláková, Martina; Mikeš, Jaromír; Jendželovský, Rastislav; Fedoročko, Peter
2012-12-05
Photodynamic therapy is a rapidly-developing anti-cancer approach for the treatment of various types of malignant as well as non-malignant diseases. In this study, hypericin-mediated photodynamic therapy (HY-PDT) in sub-optimal dose was combined with hyperforin (HP) or its stable derivative aristoforin (AR) in an effort to improve efficacy on the cellular level. The logic of this combination is based on the fact that both bioactive compounds naturally occur in plants of Hypericum sp. At relatively low concentrations up to 5 μM, hyperforin and aristoforin were able to stimulate onset of apoptosis in HT-29 colon adenocarcinoma cells exposed to HY-PDT, inhibit cell cycle progression, suppress expression of matrixmetalloproteinases-2/-9 together with cell adhesivity, thereby affecting the clonogenic potential of the cells. As the action of aristoforin was more pronounced, in line with our assumption, these changes were also linked in this case with hypericin accumulation and increased ROS generation leading to dissipation of mitochondrial membrane potential in a significant portion of the cells, as well as activation of caspase-3. Comparison of HT-29 cells to another colon adenocarcinoma-derived cell line HCT-116 demonstrated significant differences in sensitivity of different cell lines to PDT, however, accumulated effect of HY-PDT with HP/AR proved similar in both tested cell lines. The presented data may help to elucidate the mechanisms of action for different bioactive constituents of St. John's wort, which are increasingly recognized as being able to regulate a variety of pathobiological processes, thus possessing potential therapeutic properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Rouppe van der Voort, C; Kavelaars, A; van de Pol, M; Heijnen, C J
1999-03-01
Beta2- and alpha2-adrenergic receptors (AR) are thought to be the main AR subtypes to exert the effects of catecholamines on the immune system. However, in the present study, we demonstrate that another subtype of AR can be induced in human monocytes. Expression of alpha1b- and alpha1d-AR mRNA can be obtained by culturing freshly isolated human peripheral blood monocytes with the neuroendocrine mediators dexamethasone or the beta2-AR agonist terbutaline. Using the human monocytic cell line THP-1, we demonstrate that increased levels of alpha1b- and alpha1d-mRNA are accompanied by increased levels of receptor protein as determined by Western blot analysis and radioligand binding assays. This study describes for the first time regulated expression of alpha1-AR subtypes in human monocytes.
Cytotoxic activity of four Mexican medicinal plants.
Vega-Avila, Elisa; Espejo-Serna, Adolfo; Alarcón-Aguilar, Francisco; Velasco-Lezama, Rodolfo
2009-01-01
Ibervillea sonorae Greene, Cucurbita ficifolia Bouché, Tagetes lucida Cav and Justicia spicigera Scheltdd are Mexican native plants used in the treatment of different illnesses. The ethanolic extract of J. spicigera and T. lucida as well as aqueous extracts from I. sonorae, C. ficifolia, T. lucida and J. spicigera were investigated using sulforhodamine B assay. These extracts were assessed using two cell line: T47D (Human Breast cancer) and HeLa (Human cervix cancer). Colchicine was used as the positive control. Data are presented as the dose that inhibited 50% control growth (ED50). All of the assessed extracts were cytotoxic (ED50 < 20 microg/ml) against T47D cell line, meanwhile only the aqueous extract from T. lucida and the ethanolic extract from J. spicigera were cytotoxic to HeLa cell line. Ethanolic extract from J. spicigera presented the best cytotoxic effect. The cytotoxic activity of J. spicigera correlated with one of the popular uses, the treatment of cancer.
Yan, Mengfei; Zhu, Liqi; Yang, Qian
2014-11-19
Porcine circovirus-associated disease (PCVAD) is caused by a small pathogenic DNA virus, Porcine circovirus type 2 (PCV2), and is responsible for severe economic losses. PCV2-associated enteritis appears to be a distinct clinical manifestation of PCV2. Most studies of swine enteritis have been performed in animal infection models, but none have been conducted in vitro using cell lines of porcine intestinal origin. An in vitro system would be particularly useful for investigating microfilaments, which are likely to be involved in every stage of the viral lifecycle. We confirmed that PCV2 infects the intestinal porcine epithelial cell line IPEC-J2 by means of indirect immunofluorescence, transmission electron microscopy, flow cytometry and qRT-PCR. PCV2 influence on microfilaments in IPEC-J2 cells was detected by fluorescence microscopy and flow cytometry. We used Cytochalasin D or Cucurbitacin E to reorganize microfilaments, and observed changes in PCV2 invasion, replication and release in IPEC-J2 cells by qRT-PCR. PCV2 infection changes the ultrastructure of IPEC-J2 cells. PCV2 copy number in IPEC-J2 cells shows a rising trend as infection proceeds. Microfilaments are polymerized at 1 h p.i., but densely packed actin stress fibres are disrupted and total F-actin increases at 24, 48 and 72 h p.i. After Cytochalasin D treatment, invasion of PCV2 is suppressed, while invasion is facilitated by Cucurbitacin E. The microfilament drugs have opposite effects on viral release. PCV2 infects and proliferates in IPEC-J2 cells, demonstrating that IPEC-J2 cells can serve as a cell intestinal infection model for PCV2 pathogenesis. Furthermore, PCV2 rearranges IPEC-J2 microfilaments and increases the quantity of F-actin. Actin polymerization may facilitate the invasion of PCV2 in IPEC-J2 cells and the dissolution of cortical actin may promote PCV2 egress.
Yamanegi, Koji; Yamada, Naoko; Nakasho, Keiji; Nishiura, Hiroshi
2018-01-01
We recently found that erythroblast-like cells derived from human leukaemia K562 cells express C5a receptor (C5aR) and produce its antagonistic and agonistic ligand ribosomal protein S19 (RP S19) polymer, which is cross-linked between K122 and Q137 by tissue transglutaminases. RP S19 polymer binds to the reciprocal C5aRs on erythroblast-like cells and macrophage-like cells derived from human monocytic THP-1 cells and promotes differentiation into reticulocyte-like cells through enucleation in vitro. To examine the roles of RP S19 polymer in mouse erythropoiesis, we prepared Q137E mutant RP S19 gene knock-in C57BL/6J mice. In contrast to wild-type mice, erythroblast numbers at the preliminary stage (CD71 high /TER119 low ) in spleen based on transferrin receptor (CD71) and glycophorin A (TER119) values and erythrocyte numbers in orbital artery bloods were not largely changed in knock-in mice. Conversely, erythroblast numbers at the early stage (CD71 high /TER119 high ) were significantly decreased in spleen by knock-in mice. The reduction of early erythroblast numbers in spleen was enhanced by the phenylhydrazine-induced pernicious anemia model knock-in mice and was rescued by a functional analogue of RP S19 dimer S-tagged C5a/RP S19. These data indicated that RP S19 polymer plays the roles in the early erythroblast differentiation of C57BL/6J mouse spleen. Copyright © 2017 Elsevier GmbH. All rights reserved.
Kunnimalaiyaan, Selvi; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy
2015-09-01
Glycogen synthase kinase-3 (GSK-3) can act as either a tumour promoter or suppressor by its inactivation depending on the cell type. There are conflicting reports on the roles of GSK-3 isoforms and their interaction with Notch1 in pancreatic cancer. It was hypothesized that GSK-3α stabilized Notch1 in pancreatic cancer cells thereby promoting cellular proliferation. The pancreatic cancer cell lines MiaPaCa2, PANC-1 and BxPC-3, were treated with 0-20 μM of AR-A014418 (AR), a known GSK-3 inhibitor. Cell viability was determined by the MTT assay and Live-Cell Imaging. The levels of Notch pathway members (Notch1, HES-1, survivin and cyclinD1), phosphorylated GSK-3 isoforms, and apoptotic markers were determined by Western blot. Immunoprecipitation was performed to identify the binding of GSK-3 specific isoform to Notch1. AR-A014418 treatment had a significant dose-dependent growth reduction (P < 0.001) in pancreatic cancer cells compared with the control and the cytotoxic effect is as a result of apoptosis. Importantly, a reduction in GSK-3 phosphorylation lead to a reduction in Notch pathway members. Overexpression of active Notch1 in AR-A014418-treated cells resulted in the negation of growth suppression. Immunoprecipitation analysis revealed that GSK-3α binds to Notch1. This study demonstrates for the first time that the growth suppressive effect of AR-A014418 on pancreatic cancer cells is mainly mediated by a reduction in phosphorylation of GSK-3α with concomitant Notch1 reduction. GSK-3α appears to stabilize Notch1 by binding and may represent a target for therapeutic development. Furthermore, downregulation of GSK-3 and Notch1 may be a viable strategy for possible chemosensitization of pancreatic cancer cells to standard therapeutics. © 2015 International Hepato-Pancreato-Biliary Association.
Interaction Between a Novel p21 Activated Kinase (PAK6) and Androgen Receptor in Prostate Cancer
2005-02-01
Beest , M., van Es, J., 51. Easwaran, V., Pishvaian, M., Salimuddin, and Byers, S. (1999) Curr. Biol. 9, Loureiro, J., Ypma, A., Hursh, D., Jones, T...antibody was generated and used in the study. 40 Immunofluorescence. Cells were cultured in 8-well Lab Tek chambered cover slides (Nalge Nunc...C19220, Transduction Labs , Lex- To further evaluate the roles of IGF-11 and EGF in ington, KY). Proteins were detected using the ECL kit (Am- AR
Multivalent Peptoid Conjugates Which Overcome Enzalutamide Resistance in Prostate Cancer Cells.
Wang, Yu; Dehigaspitiya, Dilani C; Levine, Paul M; Profit, Adam A; Haugbro, Michael; Imberg-Kazdan, Keren; Logan, Susan K; Kirshenbaum, Kent; Garabedian, Michael J
2016-09-01
Development of resistance to antiandrogens for treating advanced prostate cancer is a growing concern and extends to recently developed therapeutics, including enzalutamide. Therefore, new strategies to block androgen receptor (AR) function in prostate cancer are required. Here, we report the characterization of a multivalent conjugate presenting two bioactive ethisterone ligands arrayed as spatially defined pendant groups on a peptoid oligomer. The conjugate, named Multivalent Peptoid Conjugate 6 (MPC6), suppressed the proliferation of multiple AR-expressing prostate cancer cell lines including those that failed to respond to enzalutamide and ARN509. The structure-activity relationships of MPC6 variants were evaluated, revealing that increased spacing between ethisterone moieties and changes in peptoid topology eliminated its antiproliferative effect, suggesting that both ethisterone ligand presentation and scaffold characteristics contribute to MPC6 activity. Mechanistically, MPC6 blocked AR coactivator-peptide interaction and prevented AR intermolecular interactions. Protease sensitivity assays suggested that the MPC6-bound AR induced a receptor conformation distinct from that of dihydrotestosterone- or enzalutamide-bound AR. Pharmacologic studies revealed that MPC6 was metabolically stable and displayed a low plasma clearance rate. Notably, MPC6 treatment reduced tumor growth and decreased Ki67 and AR expression in mouse xenograft models of enzalutamide-resistant LNCaP-abl cells. Thus, MPC6 represents a new class of compounds with the potential to combat treatment-resistant prostate cancer. Cancer Res; 76(17); 5124-32. ©2016 AACR. ©2016 American Association for Cancer Research.
Molecular biology of castration-resistant prostate cancer: basis for the novel therapeutic targets.
Mellado, Begoña; Marin Aguilera, Mercedes; Pereira, Maria Veronica
2013-06-01
Prostate cancer cells express the androgen receptor (AR) and need the presence of androgens to survive. Androgen suppression is the gold standard first-line therapy for metastatic disease. Almost all prostate cancer patients initially respond to hormonal therapy, but most of them gradually develop castration-resistant progression. Recent evidence has shown that progression at the castration resistant prostate cancer (CRPC) stage is often mediated by AR signalling. Importantly, subsequent AR androgen inhibition, by abiraterone acetate or enzalutamide, has shown to improve patients' survival. Several mechanisms that enhance AR signalling in an androgen-depleted environment have been elucidated:(1) AR mutations that allow activation by low androgen levels or by other endogenous steroids, (2) AR amplification and/or overexpression,(3)increased local intracrine synthesis of androgens, (4) changes in AR cofactors and (5) cross-talk with cytokines and growth factors. Today, there are under development a number of novel agents targeting the AR signaling pathway. This article reviews the postulated mechanisms of AR-driven resistance to androgen suppression that have contributed to the development of new hormonal therapeutic strategies in prostate cancer.
Zuscik, M J; Piascik, M T; Perez, D M
1999-12-01
The functionality of a 3422-base pair promoter fragment from the mouse alpha(1B)-adrenergic receptor (alpha(1B)AR) gene was examined. This fragment, cloned from a mouse genomic library, was found to have significant sequence homology to the known human and rat alpha(1B)AR promoters. However, the consensus motif of several key cis-acting elements is not conserved among the rat, human, and mouse genes, suggesting species specificity. Confirming fidelity of the murine promoter, robust in vitro expression of a chloramphenicol acetyltransferase (CAT) reporter was detected in known alpha(1B)AR-expressing BC(3)H1, NB41A3, and DDT(1)MF-2 cells transiently transfected with a promoter-CAT construct. Conversely, minimal CAT expression was detected in known alpha(1B)AR-negative RAT-1 and R3T3 cells. These findings were extended by transfecting the same promoter-CAT construct into various primary cell types. In support of the hypothesis that alpha(1)ARs are differentially expressed in the smooth muscle of the vasculature, primary cultures of superior mesenteric and renal artery vascular smooth muscle cells showed significantly stronger CAT expression than did vascular smooth muscle cells derived from pulmonary, femoral, and iliac arteries. Primary osteoblastic bone-forming cells, which are known to be alpha(1B)AR negative, showed minimal CAT expression. Indicating regulatory function through cis-acting elements, RAT-1, R3T3, NB41A3, BC(3)H1, and DDT(1)MF2 cells transfected with the promoter-CAT construct all showed increased CAT production when challenged with forskolin or hypoxic conditions. Additionally, tissue-specific regulation of the promoter was observed when cells were simultaneously challenged with both forskolin and hypoxia. These results collectively demonstrate that a 3.4-kb PvuII fragment of the murine alpha(1B)AR gene promoter can: 1) drive tissue-specific production of a CAT reporter in both clonal and primary cell lines; and 2) confer tissue-specific regulation of that CAT reporter when induced by challenge with forskolin and/or hypoxic conditions.
Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J
2016-09-01
Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary.
Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J
2016-01-01
Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary. PMID:27785389
Determining the Ages and Eruption Rates of the Columbia River Basalt Group Magnetozones
NASA Astrophysics Data System (ADS)
Jarboe, N. A.; Coe, R. S.; Renne, P. R.; Glen, J. M.
2009-12-01
The Columbia River Basalt Group (CRBG) eruptions have a well defined relative magnetostratigraphy but have not been definitively correlated to the geomagnetic polarity time scale. Fifteen 40Ar/39Ar ages from lavas erupted in the R0 through R1 magnetozones of the CRBG, in conjunction with the geomagnetic polarity time scales (GPTS) of Lourens et al. (2004) and Billups et al. (2004) based on sea-floor spreading rates and orbital tuning, identify the R0 as the C5Cr chron. Particularly important for correlation to GPTS are four ages from transitionally magnetized lavas from the R0-N0 transition (Steens Reversal) found at Steens Mountain, Catlow Peak and Poker Jim Ridge. These transitionally magnetized lavas, found in sections separated by ~100 km and definitively erupted during the same reversal based on the similarity of their transitional field paths, have a weighted mean age 16.58 ±± 0.19 Ma (±± stands for two sigma). At the top of the Catlow Peak section, a more precise age of 16.654 ±± 0.050 Ma of the normally magnetized Oregon Canyon Tuff places further constraints on the age of the Steens Reversal. Using Isoplot’s Bayesian statistical “Stacked Beds” function on four flows at Catlow Peak (including the mean age of the Steens Reversal) gives a best age of the Steens Reversal at that section of 16.73 +0.13/-0.08 Ma (95% confidence). A normally magnetized Imnaha Basalt age of 16.85 ±± 0.42 Ma, a normally magnetized basalt age from Pole Creek (16.45 ±± 0.22 Ma), and other ages correlate the N0 to the C5Cn.3n chron. Depending on the geomagnetic polarity time scale model, the eruption rate from N0 through R2 (0.34-0.42 Ma in the middle and the bulk of the CRBG emplacement) averaged 0.33-0.45 km3/a and peaked at a rate 1 ½ to 4 ½ times higher during R2. Billups, K., H. Palike, J. E. T. Channell, J. C. Zachos, and N. J. Shackleton, Astronomic Calibration of the Late Oligocene Through Early Miocene Geomagnetic Polarity Time Scale, Earth and Planetary Science Letters, 224, 33-44, 2004. Lourens, L., F. J. Hilgen, N. J. Shackleton, J. Laskar, and J. Wilson, Orbital tuning calibrations and conversions for the Neogene Period, in A Geologic Time Scale 2004, edited by F. Gradstein, J. Ogg and A. Smith, pp. 469-471, Cambridge University Press, Cambridge, 2004.
Xiao, Xunjun; Jones, Gabrielle; Sevilla, Wednesday A; Stolz, Donna B; Magee, Kelsey E; Haughney, Margaret; Mukherjee, Amitava; Wang, Yan; Lowe, Mark E
2016-10-28
Patients with chronic pancreatitis (CP) frequently have genetic risk factors for disease. Many of the identified genes have been connected to trypsinogen activation or trypsin inactivation. The description of CP in patients with mutations in the variable number of tandem repeat (VNTR) domain of carboxyl ester lipase (CEL) presents an opportunity to study the pathogenesis of CP independently of trypsin pathways. We tested the hypothesis that a deletion and frameshift mutation (C563fsX673) in the CEL VNTR causes CP through proteotoxic gain-of-function activation of maladaptive cell signaling pathways including cell death pathways. HEK293 or AR42J cells were transfected with constructs expressing CEL with 14 repeats in the VNTR (CEL14R) or C563fsX673 CEL (CEL maturity onset diabetes of youth with a deletion mutation in the VNTR (MODY)). In both cell types, CEL MODY formed intracellular aggregates. Secretion of CEL MODY was decreased compared with that of CEL14R. Expression of CEL MODY increased endoplasmic reticulum stress, activated the unfolded protein response, and caused cell death by apoptosis. Our results demonstrate that disorders of protein homeostasis can lead to CP and suggest that novel therapies to decrease the intracellular accumulation of misfolded protein may be successful in some patients with CP. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
THE MYSTERIOUS CASE OF THE SOLAR ARGON ABUNDANCE NEAR SUNSPOTS IN FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doschek, G. A.; Warren, H. P.
Recently we discussed an enhancement of the abundance of Ar xiv relative to Ca xiv near a sunspot during a flare, observed in spectra recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The observed Ar xiv/Ca xiv ratio yields an argon/calcium abundance ratio seven times greater than expected from the photospheric abundance. Such a large abundance anomaly is unprecedented in the solar atmosphere. We interpreted this result as being due to an inverse first ionization potential (FIP) effect. In the published work, two lines of Ar xiv were observed, and one line was tentatively identified as anmore » Ar xi line. In this paper, we report observing a similar enhancement in a full-CCD EIS flare spectrum in 13 argon lines that lie within the EIS wavelength ranges. The observed lines include two Ar xi lines, four Ar xiii lines, six Ar xiv lines, and one Ar xv line. The enhancement is far less than reported in Doschek et al. but exhibits similar morphology. The argon abundance is close to a photospheric abundance in the enhanced area, and the abundance could be photospheric. This enhancement occurs in association with a sunspot in a small area only a few arcseconds (1″ = about 700 km) in size. There is no enhancement effect observed in the normally high-FIP sulfur and oxygen line ratios relative to lines of low-FIP elements available to EIS. Calculations of path lengths in the strongest enhanced area in Doschek et al. indicate a depletion of low-FIP elements.« less
Wang, Tingting; Abou-Ouf, Hatem; Hegazy, Samar A; Alshalalfa, Mohammed; Stoletov, Konstantin; Lewis, John; Donnelly, Bryan; Bismar, Tarek A
2016-12-01
Ankyrin G (ANK3) is a member of the Ankyrin family, which functions to provide cellular stability by anchoring the cytoskeleton to the plasma membrane. Deregulation of ANK3 expression has been observed in multiple human cancers but its mechanism remains unknown. ANK3 expression in relation to disease progression and patients' outcome was investigated in two cohorts of prostate cancer (PCA). Mechanistic studies were carried out in vitro and in vivo using several PCA cell lines and the avian embryo model. Silencing ANK3 resulted in significant reduction of cell proliferation through an AR-independent mechanism. Decreased ANK3 expression delayed S phase to G2/M cell cycle transition and reduced the expression of cyclins A and B. However, cells with knocked-down ANK3 exhibited significant increase in cell invasion through an AR-dependent mechanism. Furthermore, we found that ANK3 is a regulator of AR protein stability. ANK3 knockdown also promoted cancer cell invasion and extravasations in vivo using the avian embryo model (p < 0.01). In human samples, ANK3 expression was dramatically upregulated in high grade intraepithelial neoplasia (HGPIN) and localized PCA (p < 0.0001). However, it was downregulated castration resistant stage (p < 0.0001) and showed inverse relation to Gleason score (p < 0.0001). In addition, increased expression of ANK3 in cancer tissues was correlated with better cancer-specific survival of PCA patients (p = 0.012). Silencing ANK3 results in significant reduction of cell proliferation through an AR-independent mechanism. ANK3 knockdown results in significant increase in cell invasion through an AR-dependent mechanism. ANK3 is a regulator of AR protein stability. ANK3 knockdown also promotes cancer cell invasion and extravasation in vivo using the avian embryo model.
Burn Wound gammadelta T-Cells Support a Th2 and Th17 Immune Response
2014-02-01
disorder (rheumatoid arthritis), psoriasis , and graft vs host disease.24–27 Gamma-δ T-cells are functionally specialized and are involved in...Mathers AR, Ferris LK. Anti-cytokine therapy in the treatment of psoriasis . Cytokine 2013;61:704–12. 26. Greenblatt MB, Vrbanac V, Vbranac V, et al...Meglio P, Perera GK, et al. Identification of a novel proinflammatory human skin-homing V?9Vd2 T cell subset with a potential role in psoriasis . J
Alagappan, Azhagammai; Ballingall, Iain; Costen, Matthew L; McKendrick, Kenneth G; Paterson, Grant
2007-02-14
Polarized laser photolysis of ICN is combined with saturated optical pumping to prepare state-selected CN Alpha(2)Pi (nu' = 4, J = 0.5, F(2), f) with a well-defined anisotropic superthermal speed distribution. The collisional evolution of the prepared state is observed by Doppler-resolved Frequency Modulated (FM) spectroscopy via stimulated emission on the CN Alpha(2)Pi-Chi(2)Sigma(+) (4,2) band. The phenomenological rate constants for removal of the prepared state in collisions with He, Ar, N(2) and O(2) are reported. The observed collision cross-sections are consistent with attractive forces contributing significantly for all the colliders with the exception of He. The collisional evolution of the prepared velocity distribution demonstrates that no significant back-transfer into the prepared level occurs, and that any elastic scattering is strongly in the forward hemisphere.
Niedermoser, Sabrina; Chin, Joshua; Wängler, Carmen; Kostikov, Alexey; Bernard-Gauthier, Vadim; Vogler, Nils; Soucy, Jean-Paul; McEwan, Alexander J; Schirrmacher, Ralf; Wängler, Björn
2015-07-01
Radiolabeled peptides for tumor imaging with PET that can be produced with kits are currently in the spotlight of radiopharmacy and nuclear medicine. The diagnosis of neuroendocrine tumors in particular has been a prime example for the usefulness of peptides labeled with a variety of different radionuclides. Among those, (68)Ga and (18)F stand out because of the ease of radionuclide introduction (e.g., (68)Ga isotope) or optimal nuclide properties for PET imaging (slightly favoring the (18)F isotope). The in vivo properties of good manufacturing practice-compliant, newly developed kitlike-producible (18)F-SiFA- and (18)F-SiFAlin- (SiFA = silicon-fluoride acceptor) modified TATE derivatives were compared with the current clinical gold standard (68)Ga-DOTATATE for high-quality imaging of somatostatin receptor-bearing tumors. SiFA- and SiFAlin-derivatized somatostatin analogs were synthesized and radiolabeled using cartridge-based dried (18)F and purified via a C18 cartridge (radiochemical yield 49.8% ± 5.9% within 20-25 min) without high-performance liquid chromatography purification. Tracer lipophilicity and stability in human serum were tested in vitro. Competitive receptor binding affinity studies were performed using AR42J cells. The most promising tracers were evaluated in vivo in an AR42J xenograft mouse model by ex vivo biodistribution and in vivo PET/CT imaging studies for evaluation of their pharmacokinetic profiles, and the results were compared with those of the current clinical gold standard (68)Ga-DOTATATE. Synthetically easily accessible (18)F-labeled silicon-fluoride acceptor-modified somatostatin analogs were developed. They exhibited high binding affinities to somatostatin receptor-positive tumor cells (1.88-14.82 nM). The most potent compound demonstrated comparable pharmacokinetics and an even slightly higher absolute tumor accumulation level in ex vivo biodistribution studies as well as higher tumor standardized uptake values in PET/CT imaging than (68)Ga-DOTATATE in vivo. The radioactivity uptake in nontumor tissue was higher than for (68)Ga-DOTATATE. The introduction of the novel SiFA building block SiFAlin and of hydrophilic auxiliaries enables a favorable in vivo biodistribution profile of the modified TATE peptides, resulting in high tumor-to-background ratios although lower than those observed with (68)Ga-DOTATATE. As further advantage, the SiFA methodology enables a kitlike labeling procedure for (18)F-labeled peptides advantageous for routine clinical application. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Ghosh, Sukhen C.; Rodriguez, Melissa; Carmon, Kendra S.; Voss, Julie; Wilganowski, Nathaniel L.; Schonbrunn, Agnes
2017-01-01
Fluorescence-guided surgery is an emerging imaging technique that can enhance the ability of surgeons to detect tumors when compared with visual observation. To facilitate characterization, fluorescently labeled probes have been dual-labeled with a radionuclide to enable cross-validation with nuclear imaging. In this study, we selected the somatostatin receptor imaging agent DOTATOC as the foundation for developing a dual-labeled analog. We hypothesized that a customized dual-labeling approach with a multimodality chelation (MMC) scaffold would minimize steric effects of dye conjugation and retain agonist properties. Methods: An MMC conjugate (MMC-TOC) was synthesized on solid-phase and compared with an analog prepared using conventional methods (DA-TOC). Both analogs were conjugated to IRDye 800 using copper-free click chemistry. The resulting compounds, MMC(IR800)-TOC and DA(IR800)-TOC, were labeled with Cu and 64Cu and tested in vitro in somatostatin receptor subtype 2–overexpressing HEK-293 cells to assess agonist properties, and in AR42J rat pancreatic cancer cells to determine receptor binding characteristics. Multimodality imaging was performed in AR42J xenografts. Results: Cu-MMC(IR800)-TOC demonstrated higher potency for cyclic adenosine monophosphate inhibition (half maximal effective concentration [EC50]: 0.21 ± 0.18 vs. 1.38 ± 0.54 nM) and receptor internalization (EC50: 41.9 ± 29.8 vs. 455 ± 299 nM) than Cu-DA(IR800)-TOC. Radioactive uptake studies showed that blocking with octreotide caused a dose-dependent reduction in 64Cu-MMC(IR800)-TOC uptake whereas 64Cu-DA(IR800)-TOC was not affected. In vivo studies revealed higher tumor uptake for 64Cu-MMC(IR800)-TOC than 64Cu-DA(IR800)-TOC (5.2 ± 0.2 vs. 3.6 ± 0.4 percentage injected dose per gram). In vivo blocking studies with octreotide reduced tumor uptake of 64Cu-MMC(IR800)-TOC by 66%. Excretion of 64Cu-MMC(IR800)-TOC was primarily through the liver and spleen whereas 64Cu-DA(IR800)-TOC was cleared through the kidneys. Ex vivo analysis at 24 h confirmed PET/CT data by showing near-infrared fluorescence signal in tumors and a tumor-to-muscle ratio of 5.3 ± 0.8 as determined by γ-counting. Conclusion: The findings demonstrate that drug design affected receptor pharmacology and suggest that the MMC scaffold is a useful tool for the development of dual-labeled imaging agents. PMID:28572490
2008-05-01
cells. J Mol Med, 2008. 20. Collins, A. T., Habib , F. K., Maitland, N. J., and Neal, D. E. Identification and isolation of human prostate...The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med 2008;86:1025–32. 20. Collins AT, Habib FK...cells. J Cell Sci 2004;117: 3539–45. 23. Litvinov IV, Vander Griend DJ, Xu Y, Antony L, Dalrymple SL , Isaacs JT. Low-calcium serum-free defined
NASA Astrophysics Data System (ADS)
Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie
2009-06-01
Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.
Broadening and Shifting of Atomic Strontium and Diatomic Bismuth Spectral Lines
2003-05-01
Upper Energy State, Ek kA q kA q jA jA Figure 2-4. Transition between the lower and upper energy states of an atom or molecule affected by quenching...broadened by both lifetime effects and quenching. This profile has a F HM given by Equation 2-16. W q q jA kA qq vNA (2-17) where N is the...December 1998 (AD-A361408)(9921302). 42. Predoi-Cross, Adriana , J. P. Bouanich, D. C. Benner, A. D. May, and J. R. Drummond. “Broadening, Shifting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seulki, E-mail: sl10f@naver.com; Lee, Minjong, E-mail: minjonglee2@naver.com; Kim, Jong Bin, E-mail: kkimjp@hanmail.net
17β-Estradiol (E2) has been proven to exert protective effects against HCC; however, its mechanism on HCC proliferation and suppression of invasion remains to be further explored. Because HCC up-regulates serum Interleukin-6 (IL-6) levels and Signal Transducer and Activator of Transcription 3 (STAT3), molecular agents that attenuate IL-6/STAT3 signaling can potentially suppress HCC development. In this study, we examined involvement of E2 in anoikis resistance that induces invasion capacities and chemo-resistance. Huh-BAT and HepG2 cells grown under anchorage-independent condition were selected. The anoikis-resistant (AR) cells showed stronger chemo-resistance against sorafenib, doxorubicin, 5-fluorouracil and cisplatin compared to adherent HCC cells. AR HCCmore » cells exhibited decreased expression of E-cadherin and increased expression of the N-cadherin and vimentin compared to adherent HCC cells. We then demonstrated that E2 suppressed cell proliferation in AR HCC cells. IL-6 treatment enhanced invasive characteristics, and E2 reversed it. Regarding mechanism of E2, it decreased in the phosphorylation of STAT3 that overexpressed on AR HCC cells. The inhibitory effect of E2 on cell growth was accompanied with cell cycle arrest at G2/M phase and caspase-3/9/PARP activation through c-Jun N-terminal Kinase (JNK) phosphorylation. Taken together, these findings suggested that E2 inhibited the proliferation of AR HCC cells through down-regulation of IL-6/STAT3 signaling. Thus, E2 can be a potential therapeutic drug for treatment of metastatic or chemo-resistant HCC. -- Highlights: •Anoikis-resistant HCC cells characterized chemo-resistant and metastatic potentials. •17β-Estradiol down-regulated IL-6/STAT3 signaling in anoikis-resistant HCC cells. •17β-Estradiol suppressed cell proliferation by inducing G2/M phase arrest and apoptosis though JNK phosphorylation.« less
Yin, Xiaotao; Li, Fanglong; Jin, Yipeng; Yin, Zhaoyang; Qi, Siyong; Wu, Shuai; Wang, Zicheng; Wang, Lin; Yu, Jiyun; Gao, Jiangping
2017-03-01
Objective To establish a human bladder cancer cell line stably co-expressing human sprouty2 (hSPRY2) and luciferase (Luc) genes simultaneously, and develop its subcutaneous tumor xenograft model in nude mice. Methods The hSPRY2 and Luc gene segments were amplified by PCR, and were cloned into lentiviral vector pCDH and pLVX respectively to produce corresponding lentivirus particles. The J82 human bladder cancer cells were infected with these two kinds of lentivirus particles, and then further screened by puromycin and G418. The expressions of hSPRY2 and Luc genes were detected by bioluminescence, immunofluorescence and Western blot analysis. The screened J82-hSPRY2/Luc cells were injected subcutaneously into BALB/c nude mice, and the growth of tumor was monitored dynamically using in vivo fluorescence imaging system. Results J82-hSPRY2/Luc cell line stably expressing hSPRY2 and Luc genes was established successfully. Bioluminescence, immunofluorescence and Western blot analysis validated the expressions of hSPRY2 and Luc genes. The in vivo fluorescence imaging system showed obvious fluorescence in subcutaneous tumor xenograft in nude mice. Conclusion The J82-hSPRY2/Luc bladder cancer cell line and its subcutaneous tumor xenograft model in nude mice have been established successfully.
Dual-Targeting of AR and Akt Pathways by Berberine in Castration-Resistant Prostate Cancer
2015-08-01
into the doxycycline-inducible pHAGE -Ind-EF1a-DEST-120 on June 24, 2015. © 2015 American Association for Cancer Research. cancerres.aacrjournals.org...a 96-well white-wall microplate at 105 cells per well. Freshly prepared 170 coelenterazine (Nanolight Technology) in water was added to the cells at...Medicine) for the 343 pHAGE -Ind-EF1a-DEST-GH construct, and Dr. Shahriar Koochekpour (Roswell Park Cancer 344 Institute) for C4-2 cells. We appreciate the
Mitigation of ^{42}Ar/^{42}K background for the GERDA Phase II experiment
NASA Astrophysics Data System (ADS)
Lubashevskiy, A.; Agostini, M.; Budjáš, D.; Gangapshev, A.; Gusev, K.; Heisel, M.; Klimenko, A.; Lazzaro, A.; Lehnert, B.; Pelczar, K.; Schönert, S.; Smolnikov, A.; Walter, M.; Zuzel, G.
2018-01-01
Background coming from the ^{42}Ar decay chain is considered to be one of the most relevant for the Gerda experiment, which searches for the neutrinoless double beta decay of ^{76}Ge. The sensitivity strongly relies on the absence of background around the Q-value of the decay. Background coming from ^{42}K, a progeny of ^{42}Ar, can contribute to that background via electrons from the continuous spectrum with an endpoint at 3.5 MeV. Research and development on the suppression methods targeting this source of background were performed at the low-background test facility LArGe . It was demonstrated that by reducing ^{42}K ion collection on the surfaces of the broad energy germanium detectors in combination with pulse shape discrimination techniques and an argon scintillation veto, it is possible to suppress ^{42}K background by three orders of magnitude. This is sufficient for Phase II of the Gerda experiment.
Androgen resistance in squirrel monkeys (Saimiri spp.).
Gross, Katherine L; Westberry, Jenne M; Hubler, Tina R; Sadosky, Patti W; Singh, Ravinder J; Taylor, Robert L; Scammell, Jonathan G
2008-08-01
The goal of this study was to understand the basis for high androgen levels in squirrel monkeys (Saimiri spp.). Mass spectrometry was used to analyze serum testosterone, androstenedione, and dihydrotestosterone of male squirrel monkeys during the nonbreeding (n = 7) and breeding (n = 10) seasons. All hormone levels were elevated compared with those of humans, even during the nonbreeding season; the highest levels occurred during the breeding season. The ratio of testosterone to dihydrotestosterone in squirrel monkeys is high during the breeding season compared to man. Squirrel monkeys may have high testosterone to compensate for inefficient metabolism to dihydrotestosterone. We also investigated whether squirrel monkeys have high androgens to compensate for low-activity androgen receptors (AR). The response to dihydrotestosterone in squirrel monkey cells transfected with AR and AR-responsive reporter plasmids was 4-fold, compared with 28-fold in human cells. This result was not due to overexpression of cellular FKBP51, which causes glucocorticoid and progestin resistance in squirrel monkeys, because overexpression of FKBP51 had no effect on dihydrotestosterone-stimulated reporter activity in a human fibroblast cell line. To test whether the inherently low levels of FKBP52 in squirrel monkeys contribute to androgen insensitivity, squirrel monkey cells were transfected with an AR expression plasmid, an AR-responsive reporter plasmid, and a plasmid expressing FKBP52. Expression of FKBP52 decreased the EC50 or increased the maximal response to dihydrotestosterone. Therefore, the high androgen levels in squirrel monkeys likely compensate for their relatively low 5 alpha-reductase activity during the breeding season and AR insensitivity resulting from low cellular levels of FKBP52.
HIV integration sites in latently infected cell lines: evidence of ongoing replication.
Symons, Jori; Chopra, Abha; Malatinkova, Eva; De Spiegelaere, Ward; Leary, Shay; Cooper, Don; Abana, Chike O; Rhodes, Ajantha; Rezaei, Simin D; Vandekerckhove, Linos; Mallal, Simon; Lewin, Sharon R; Cameron, Paul U
2017-01-13
Assessing the location and frequency of HIV integration sites in latently infected cells can potentially inform our understanding of how HIV persists during combination antiretroviral therapy. We developed a novel high throughput sequencing method to evaluate HIV integration sites in latently infected cell lines to determine whether there was virus replication or clonal expansion in these cell lines observed as multiple integration events at the same position. We modified a previously reported method using random DNA shearing and PCR to allow for high throughput robotic processing to identify the site and frequency of HIV integration in latently infected cell lines. Latently infected cell lines infected with intact virus demonstrated multiple distinct HIV integration sites (28 different sites in U1, 110 in ACH-2 and 117 in J1.1 per 150,000 cells). In contrast, cell lines infected with replication-incompetent viruses (J-Lat cells) demonstrated single integration sites. Following in vitro passaging of the ACH-2 cell line, we observed a significant increase in the frequency of unique HIV integration sites and there were multiple mutations and large deletions in the proviral DNA. When the ACH-2 cell line was cultured with the integrase inhibitor raltegravir, there was a significant decrease in the number of unique HIV integration sites and a transient increase in the frequency of 2-LTR circles consistent with virus replication in these cells. Cell lines latently infected with intact HIV demonstrated multiple unique HIV integration sites indicating that these cell lines are not clonal and in the ACH-2 cell line there was evidence of low level virus replication. These findings have implications for the use of latently infected cell lines as models of HIV latency and for the use of these cells as standards.
Hu, Qian; Lin, Xiao; Ding, Linxiaoxiao; Zeng, Yinduo; Pang, Danmei; Ouyang, Nengtai; Xiang, Yanqun; Yao, Herui
2018-06-24
Rho GTPase-activating protein 42 was identified as an inhibitor of RhoA to maintain normal blood pressure homeostasis. However, the effect of ARHGAP42 in promoting cell malignancy in nasopharyngeal carcinoma is demonstrated in this study. Microarray and real-time quantitative PCR were used for a mRNA profiling of ARHGAP42 in nasopharyngeal primary and metastatic carcinoma tissues. Western blot and immunohistochemical staining were used for detecting the expression of ARHGAP42 protein in nasopharyngeal carcinoma tissues and cell lines. The overexpression and silence experiments of ARHGAP42 were performed in NPC cell lines using siRNA and expressive plasmid for evaluating cancer cell migration and invasion in vitro. Real-time quantitative PCR, western blot, and transwell test were employed for with the function of ARHGAP42 and its antisense lncRNA uc010rul. We confirmed the elevated expression of ARHGAP42 in metastatic NPC tissues of mRNA and protein for the first time. Immunohistochemical analysis indicated that NPC patients with highly ARHGAP42 expression were significantly associated with shorter metastasis-free survival. Knockdown of ARHGAP42 resulted in significant inhibition of nasopharyngeal cancer cell migration and invasion in vitro, and the overexpression of ARHGAP42 showed the opposite effects. In addition, the silence of uc010rul resulted in ARHGAP42 expression decrease and significant inhibition of nasopharyngeal cancer cell migration and invasion. High expression of ARHGAP42 is associated with poor metastasis-free survival of nasopharyngeal carcinoma patients. ARHGAP42 promotes migration and invasion of nasopharyngeal carcinoma cells in vitro; the antisense lncRNA may be involved in this effect. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Infrared Spectra of He-, Ne-, and Ar-C_2D_2 Complexes
NASA Astrophysics Data System (ADS)
Rezai, M.; Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernandez, Berta; Farrelly, David
2012-06-01
Remarkably, there are no previously published experimental spectra of the helium-acetylene van der Waals complex. Apparently, infrared spectra of He-C_2H_2 were recorded around 1990 in Roger Miller's lab, but a detailed rotational assignment was not possible even with the help of two extensive sets of theoretical predictions. Here, we study rare gas-C_2D_2 complexes in the νb{3} region (˜2439 wn) using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion. The He-C_2D_2 assignment problem is readily apparent: most of the absorption is piled-up in a very narrow region around 2440.85 wn, close to the R(0) line of the C_2D_2 monomer. This pile-up is a signature of very weak anisotropy in the helium-acetylene intermolecular potential, leading to almost free internal rotation of the C_2D_2. We are able to achieve a convincing rotational assignment with the help of theoretical energy level calculations based on the intermolecular potential surface of Munteanu and Fernández. So far the results are limited to He-C_2D_2 transitions which correlate with the monomer R(0) transition. Ne-C_2D_2 also shows a free-rotation pile-up of lines near R(0) which makes assignment tricky. In contrast, Ar-C_2D_2 exhibits more conventional behavior and a normal asymmetric rotor analysis is possible. [1] T. Slee, R.J. Le Roy, and C.E. Chuaqui, Mol. Phys. 77, 111 (1992); R. Moszynski, P.E.S. Wormer, and A. van der Avoird, J. Chem. Phys. 102, 8385 (1995). [2] R. Munteanu and B. Fernández, J. Chem. Phys. 123, 014309 (2005).
USDA-ARS?s Scientific Manuscript database
In order to answer the question, what effects would microgravity have on the growth, differentiation, and function on liver stem cells, the ARS-PICM-19 pig liver stem cell line was cultured in space aboard space shuttle Endeavor for the 16 days of mission STS-126. The liver is among the few organs ...
Kauffman, Eric C; Robinson, Brian D; Downes, Martin J; Powell, Leagh G; Lee, Ming Ming; Scherr, Douglas S; Gudas, Lorraine J; Mongan, Nigel P
2011-12-01
Bladder cancer is approximately three times more common in men as compared to women. We and others have previously investigated the contribution of androgens and the androgen receptor (AR) to bladder cancer. JMJD2A and LSD1 are recently discovered AR coregulator proteins that mediate AR-dependent transcription via recently described histone lysine-demethylation (KDM) mechanisms. We used immunohistochemistry to examine JMJD2A, LSD1, and AR expression in 72 radical cystectomy specimens, resulting in evaluation of 129 tissue samples (59 urothelial carcinoma, 70 benign). We tested levels of these proteins for statistical association with clinicopathologic variables and patient survival. Expression of these markers was also assessed in human bladder cancer cell lines. The effects of pharmacological inhibition of LSD1 on the proliferation of these bladder cancer cells was determined. JMJD2A and AR levels were significantly lower in malignant versus benign urothelium, while increased LSD1 levels were observed in malignant urothelium relative to benign. A significant reduction in all three proteins occurred with cancer stage progression, including muscle invasion (JMJD2A/LSD1/AR), extravesical extension (JMJD2A/LSD1), and lymph node metastasis (JMJD2A/AR). Lower JMJD2A intensity correlated with additional poor prognostic features, including lymphovascular invasion, concomitant carcinoma in situ and tobacco usage, and predicted significantly worse overall survival. Pharmacological inhibition of LSD1 suppressed bladder cancer cell proliferation and androgen-induced transcription. Our results support a novel role for the AR-KDM complex in bladder cancer initiation and progression, identify JMJD2A as a promising prognostic biomarker, and demonstrate targeting of the KDM activity as an effective potential approach for bladder cancer growth inhibition. Copyright © 2011 Wiley Periodicals, Inc.
Targeting Sulfotransferase (SULT) 2B1b as a regulator of Cholesterol Metabolism in Prostate Cancer
2016-10-01
Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and...and PCa cell lines and that genetic knock down suppresses LNCaP growth and diminishes androgen receptor ( AR ) activity. It is hypothesized that SULT2B1b...knock down suppresses LNCaP growth and diminishes androgen receptor ( AR ) activity. It is hypothesized that SULT2B1b modulates PCa growth and
Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2014-09-09
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2015-07-07
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Fourier-transform MW spectroscopy of the SH({sup 2}{Pi}{sub i})-Ar and SD-Ar radical complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumiyoshi, Yoshihiro; Endo, Yasuki; Ohshima, Yasuhiro
1996-12-31
The authors have studied the SH({sup 2}{Pi}{sub i})-Ar and SD-Ar radical complexes with FTMW spectroscopy. The complexes were produced in a supersonic free jet by a pulsed discharge of H{sub 2}S or D{sub 2}S, which was diluted to 0.35% in Ar with a stagnation pressure of 2 atm. R-branch transitions in the lower spin-orbit component ({Omega}=3/2) for the linear {sup 2}{Pi}{sub i} radicals were observed for J{double_prime} = 3/2 to J{double_prime} = 15/2 in the 8-26 GHz region. The transitions were split into two parity components owing to the parity doubling. Each parity component was split further due to themore » magnetic hyperfine interaction associated with the H/D nucleus. Rotational constants for SH-Ar and SD-Ar were determined to be 1569.656(2) and 1567.707(2)MHz respectively. The value for SH-Ar agrees well with that of a previous LIF study. From the SH/SD data, it was confirmed that the argon atom is located at the hydrogen side of the SH radical. With an assumption that the S-H bond length is equal to that in the monomer, the H-Ar distance is calculated to be 2.900 {Angstrom}, which is about 0.1 {Angstrom} longer than that in OH-Ar. The effective D{sub J} constants of SH-Ar and SD-Ar were found to have negative values of -58.4(7) and -50.7(6), kHz respectively.« less
Ink jet assisted metallization for low cost flat plate solar cells
NASA Technical Reports Server (NTRS)
Teng, K. F.; Vest, R. W.
1987-01-01
Computer-controlled ink-jet-assisted metallization of the front surface of solar cells with metalorganic silver inks offers a maskless alternative method to conventional photolithography and screen printing. This method can provide low cost, fine resolution, reduced process complexity, avoidance of degradation of the p-n junction by firing at lower temperature, and uniform line film on rough surface of solar cells. The metallization process involves belt furnace firing and thermal spiking. With multilayer ink jet printing and firing, solar cells of about 5-6 percent efficiency without antireflection (AR) coating can be produced. With a titanium thin-film underlayer as an adhesion promoter, solar cells of average efficiency 8.08 percent without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film solar cells of the same lot. Problems with regard to lower inorganic content of the inks and contact resistance are noted.
NASA Astrophysics Data System (ADS)
Zharov, Vladimir P.; Galitovsky, Valentin; Chowdhury, Parimal; Chambers, Timothy
2004-07-01
This short review presents findings from a recent evaluation of the diagnostic capabilities of a new experimental design of the advanced photothermal (PT) imaging system; specifically, its performance in studying the impact of nicotine, a combination of antitumor drugs, and radiation on the absorbing structures of various cells. We used this imaging system to test our hypothesis that low doses of chemicals or drugs lead to changes in cell metabolism, that these changes are accompanied by the shrinking of cellular absorbing zones (e.g. organelles), and that these reactions cause increased local absorption. Conversely, high (toxic) doses may lead to swelling of organelles or release of chromophores into the intracellular space, causing decreased local absorption. In this study, we compared PT images and PT responses of the pancreatic exocrine tumor cell line AR42J resulting from exposure to various concentrations of nicotine versus those of control cells. We found that responses were almost proportional to the drug concentration in concentrations ranging from 1 nM-100 μM, reached saturation at a maximum of approximately 100 μM-1 mM, and then fell rapidly at concentrations ranging from 1-50 mM. We also examined the influence of antitumor drugs (vinblastine and paclitaxel) on KB3 carcinoma cells, with drug concentrations ranging from 10-10 nM to 10 nM. In this instance, exposure initially led to slight cell activation, which was then followed by decreased cellular PT response. Drug administration led to corresponding changes in the amplitude and spatial intracellular localization of PT responses, including bubble formation, as an indicator of local absorption level. Additionally, it was shown that, depending on cell type, x-ray radiation may produce effects similar to those resulting from exposure to drugs. Independent verification with a combined PT-fluorescence assay and conventional staining kits (trypan blue, Annexin V-propidium iodide [PI]) revealed that this new PT assay has the potential to detect different stages of environmental impact, including changes in cell metabolism and apoptotic- and toxic-related phenomena, at a concentration threshold sensitivity at least three orders of magnitude better than existing assays. This assay may also help optimize combined cancer therapies.
Goldman, Aaron; Chen, Hwu Dau Rw; Roesly, Heather B.; Hill, Kimberly A.; Tome, Margaret E.; Dvorak, Bohuslav; Bernstein, Harris
2011-01-01
Barrett's esophagus (BE) is a premalignant condition, where normal squamous epithelium is replaced by intestinal epithelium. BE is associated with an increased risk of developing esophageal adenocarcinoma (EAC). However, the BE cell of origin is not clear. We hypothesize that BE tissue originates from esophageal squamous cells, which can differentiate to columnar cells as a result of repeated exposure to gastric acid and bile acids, two components of refluxate implicated in BE pathology. To test this hypothesis, we repeatedly exposed squamous esophageal HET1A cells to 0.2 mM bile acid (BA) cocktail at pH 5.5 and developed an HET1AR-resistant cell line. These cells are able to survive and proliferate after repeated 2-h treatments with BA at pH 5.5. HET1AR cells are resistant to acidification and express markers of columnar differentiation, villin, CDX2, and cytokeratin 8/18. HET1AR cells have increased amounts of reactive oxygen species, concomitant with a decreased level and activity of manganese superoxide dismutase compared with parental cells. Furthermore, HET1AR cells express proteins and activate signaling pathways associated with inflammation, cell survival, and tumorigenesis that are thought to contribute to BE and EAC development. These include STAT3, NF-κB, epidermal growth factor receptor (EGFR), cyclooxygenase-2, interleukin-6, phosphorylated mammalian target of rapamycin (p-mTOR), and Mcl-1. The expression of prosurvival and inflammatory proteins and resistance to cell death could be partially modified by inhibition of STAT3 signaling. In summary, our study shows that long-term exposure of squamous cells to BA at acidic pH causes the cells to display the same characteristics and markers as BE. PMID:21127259
Feng, Jinhong; Fang, Hao; Wang, Xuejian; Jia, Yuping; Zhang, Lei; Jiao, Jie; Zhang, Jian; Gu, Lichuan; Xu, Wenfang
2011-03-01
A novel series of N-hydroxy-4-(3-phenylpropanamido)benzamide (HPPB) derivatives comprising N-hydroxybenzamide group as zinc-chelating moiety were designed, synthesized and evaluated as histone deacetylases inhibitors. The thiophene substituted derivative 5j exhibited the best HDAC inhibition activity among these compounds. The present study was designed to evaluate the efficacy of 5j as a candidate compound for cancer therapy. Our results indicated that 5j exhibited better HDAC1, 8 and hela nuclear extract inhibition activities than SAHA, and good antiproliferative activities against a broad spectrum of human cancer cell lines especially for breast cancer. 5j induced cell cycle arrest at G(2)/M phase, and eventual apoptosis possibly by modulating p21, caspase-3 and Bcl-x(L) on MDA-MB-231 cells. In addition, 5j down regulated the active form of MMP2, and inhibited the invasion of MDA-MB-231 cell lines. Moreover, 5j significantly delayed the growth of MDA-MB-231 xenografts in mice after 3 weeks of peritoneal injection. In summary, our results suggest that 5j might have therapeutic potential for the treatment of human breast cancer.
Zheng, Ken Yu-zhong; Choi, Roy Chi-yan; Guo, Ava Jiang-yang; Bi, Cathy Wen-chuan; Zhu, Kevin Yue; Du, Crystal Ying-qing; Zhang, Zhen-Xia; Lau, David Tai-wai; Dong, Tina Ting-xia; Tsim, Karl Wah-keung
2012-11-01
Danggui Buxue Tang (DBT), a herbal decoction contains Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), has been used as a health food supplement in treating menopausal irregularity in women for more than 800 years in China. Several lines of evidence indicate that the synergistic actions of AR and ASR in this herbal decoction leading to a better pharmacological effect of DBT. Here, the role of different herbs in directing the transport of active ingredients of DBT was determined. A validated RRLC-QQQ-MS/MS method was applied to determinate the permeability of ingredients across the Caco-2 cell monolayer. AR-derived chemicals, including astragaloside IV, calycosin and formononetin, as well as ASR-derived chemicals, including ferulic acid and ligustilide, were determined by RRLC-QQQ-MS/MS. The pharmacokinetic results showed that the membrane permeabilities of calycosin and formononetin, two of the major flavonoids in AR, could be markedly increased in the presence of ASR extract: this induction effect could be mediated by ferulic acid deriving from ASR. In contrast, the extract of AR showed no effect on the chemical permeability. The current results suggested that the ingredients of ASR (such as ferulic acid) could enhance the membrane permeability of AR-derived formononetin and calycosin in cultured Caco-2 cells. The possibility of herb-drug synergy within DBT was proposed here. Copyright © 2012 Elsevier B.V. All rights reserved.
ADRA2A is involved in neuro-endocrine regulation of bone resorption.
Mlakar, Vid; Jurkovic Mlakar, Simona; Zupan, Janja; Komadina, Radko; Prezelj, Janez; Marc, Janja
2015-07-01
Adrenergic stimulation is important for osteoclast differentiation and bone resorption. Previous research shows that this happens through β2-adrenergic receptor (AR), but there are conflicting evidence on presence and role of α2A-AR in bone. The aim of this study was to investigate the presence of α2A-AR and its involvement in neuro-endocrine signalling of bone remodelling in humans. Real-time polymerase chain reaction (PCR) and immunohistochemistry were used to investigate α2A-AR receptor presence and localization in bone cells. Functionality of rs553668 and rs1800544 single nucleotide polymorphism SNPs located in α2A-AR gene was analysed by qPCR expression on bone samples and luciferase reporter assay in human osteosarcoma HOS cells. Using real-time PCR, genetic association study between rs553668 A>G and rs1800544 C>G SNPs and major bone markers was performed on 661 Slovenian patients with osteoporosis. α2A-AR is expressed in osteoblasts and lining cells but not in osteocytes. SNP rs553668 has a significant influence on α2A-AR mRNA level in human bone samples through the stability of mRNA. α2A-AR gene locus associates with important bone remodelling markers (BMD, CTX, Cathepsin K and pOC). The results of this study are providing comprehensive new evidence that α2A-AR is involved in neuro-endocrine signalling of bone turnover and development of osteoporosis. As shown by our results the neurological signalling is mediated through osteoblasts and result in bone resorption. Genetic study showed association of SNPs in α2A-AR gene locus with bone remodelling markers, identifying the individuals with higher risk of development of osteoporosis. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Altered Redox Status Accompanies Progression to Metastatic Human Bladder Cancer
Hempel, Nadine; Ye, Hanqing; Abessia, Bryan; Mian, Badar; Melendez, J. Andres
2009-01-01
The role of reactive oxygen species (ROS) in bladder cancer progression remains an unexplored field. Expression levels of enzymes regulating ROS levels are often altered in cancer. Search of publicly available micro-array data reveals that expression of mitochondrial manganese superoxide dismutase (Sod2), responsible for the conversion of superoxide (O2-.) to hydrogen peroxide (H2O2), is consistently increased in high grade and advanced stage bladder tumors. Here we aim to identify the role of Sod2 expression and ROS in bladder cancer. Using an in vitro human bladder tumor model we monitored the redox state of both non-metastatic (253J) and highly metastatic (253J B-V) bladder tumor cell lines. 253J B-V cells displayed significantly higher Sod2 protein and activity levels compared to their parental 253J cell line. The increase in Sod2 expression was accompanied by a significant decrease in catalase activity, resulting in a net increase in H2O2 production in the 253J B-V line. Expression of pro-metastatic and –angiogenic factors, matrix metalloproteinase 9 (MMP-9) and vascular endothelial derived growth factor (VEGF), respectively, were similarly upregulated in the metastatic line. Expression of both MMP-9 and VEGF were shown to be H2O2-dependent, as removal of H2O2 by overexpression of catalase attenuated their expression. Similarly, expression of catalase effectively reduced the clonogenic activity of 253J B-V cells. These findings indicate that metastatic bladder cancer cells display an altered antioxidant expression profile, resulting in a net increase in ROS production, which leads to the induction of redox-sensitive pro-tumorigenic and pro-metastatic genes such as VEGF and MMP-9. PMID:18930813
Derivation of Thymic Lymphoma T-cell Lines from Atm-/- and p53-/- Mice
Jinadasa, Rasika; Balmus, Gabriel; Gerwitz, Lee; Roden, Jamie; Weiss, Robert; Duhamel, Gerald
2011-01-01
Established cell lines are a critical research tool that can reduce the use of laboratory animals in research. Certain strains of genetically modified mice, such as Atm-/- and p53-/- consistently develop thymic lymphoma early in life 1,2, and thus, can serve as a reliable source for derivation of murine T-cell lines. Here we present a detailed protocol for the development of established murine thymic lymphoma T-cell lines without the need to add interleukins as described in previous protocols 1,3. Tumors were harvested from mice aged three to six months, at the earliest indication of visible tumors based on the observation of hunched posture, labored breathing, poor grooming and wasting in a susceptible strain 1,4. We have successfully established several T-cell lines using this protocol and inbred strains ofAtm-/- [FVB/N-Atmtm1Led/J] 2 and p53-/- [129/S6-Trp53tm1Tyj/J] 5 mice. We further demonstrate that more than 90% of the established T-cell population expresses CD3, CD4 and CD8. Consistent with stably established cell lines, the T-cells generated by using the present protocol have been passaged for over a year. PMID:21490582
Overexpression of p42.3 promotes cell growth and tumorigenicity in hepatocellular carcinoma
Sun, Wei; Dong, Wei-Wei; Mao, Lin-Lin; Li, Wen-Mei; Cui, Jian-Tao; Xing, Rui; Lu, You-Yong
2013-01-01
AIM: To investigate the association of p42.3 expression with clinicopathological characteristics and the biological function of p42.3 in human hepatocellular carcinoma (HCC). METHODS: We used reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time RT-PCR and western blotting to detect p42.3 mRNA and protein expression in hepatic cell lines. We examined primary HCC samples and matched adjacent normal tissue by immunohistochemistry to investigate the correlation between p42.3 expression and clinicopathological features. HepG2 cells were transfected with a pIRES2-EGFP-p42.3 expression vector to examine the function of the p42.3 gene. Transfected cells were analyzed for their viability and malignant transformation abilities by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, and tumorigenicity assay in nude mice. RESULTS: p42.3 is differentially expressed in primary HCC tumors and cell lines. Approximately 69.6% (96/138) of cells were p42.3-positive in hepatic tumor tissues, while 30.7% (35/114) were p42.3-positive in tumor-adjacent normal tissues. Clinicopathological characteristics of the HCC specimens revealed a significant correlation between p42.3 expression and tumor differentiation (P = 0.031). However, p42.3 positivity was not related to tumor tumor-node-metastasis classification, hepatitis B virus status, or hepatoma type. Regarding p42.3 overexpression in stably transfected HepG2 cells, we discovered significant enhancement of cancer cell growth and colony formation in vitro, and significantly enhanced tumorigenicity in nude mice. Western blot analysis of cell cycle proteins revealed that enhanced p42.3 levels promote upregulation of proliferating cell nuclear antigen, cyclin B1 and mitotic arrest deficient 2. CONCLUSION: p42.3 promotes tumorigenicity and tumor growth in HCC and may be a potential target for future clinical cancer therapeutics. PMID:23704824
Vasculogenic mimicry in bladder cancer and its association with the aberrant expression of ZEB1
Li, Baimou; Mao, Xiaopeng; Wang, Hua; Su, Guanyu; Mo, Chengqiang; Cao, Kaiyuan; Qiu, Shaopeng
2018-01-01
The aim of the present study was to investigate the associations between vasculogenic mimicry (VM) and zinc finger E-box binding homeobox 1 (ZEB1) in bladder cancer. VM structure and ZEB1 expression were analyzed by cluster of differentiation 34/periodic acid Schiff (PAS) double staining and immunohistochemical staining in 135 specimens from patients with bladder cancer, and a further 12 specimens from normal bladder tissues. Three-dimensional (3-D) culture was used to detect VM formation in the bladder transitional cancer cell lines UM-UC-3 and J82, and the immortalized human bladder epithelium cell line SV-HUC-1 in vitro. ZEB1 expression in these cell lines was compared by reverse transcription-quantitative polymerase chain reaction and western blot assays. In addition, small interfering RNA was used to inhibit ZEB1 in UM-UC-3 and J82 cells, followed by 3-D culturing of treated cell lines. As a result, VM was observed in 31.1% of specimens from bladder cancer tissues, and cases with high ZEB1 expression accounted for 60.0% of patients with bladder cancer. In addition, ZEB1 expression was closely associated with VM (r=0.189; P<0.05), and also increased as the grade and stage of the tumor developed. In an in vitro assay, UM-UC-3 and J82 cells exhibited VM formation, however, SV-HUC-1 did not. Furthermore, VM-forming cancer cell lines UM-UC-3 and J82 exhibited higher ZEB1 expression. Notably, VM formation was inhibited following knockdown of ZEB1. In conclusion, ZEB1 may be associated with VM in bladder cancer and serve an important role in the process of VM formation. However, its detailed mechanism requires further study. PMID:29552157
Chen, Li; Wang, Jiaolong; Mouser, Glen; Li, Yan Chun; Marcovici, Geno
2016-06-01
Androgenetic alopecia (AGA) affects approximately 70% of men and 40% of women in an age-dependent manner and is partially mediated by androgen hormones. Benign prostatic hyperplasia (BPH) similarly affects 50% of the male population, rising by 10% each decade. Finasteride inhibits 5-alpha reductase (5AR) and is used to treat both disorders, despite offering limited clinical benefits accompanied by significant adverse side effects. Building on our previous work demonstrating the efficacy of naturally derived 5AR inhibitors (such as stigmasterol and beta sitosterol), we hypothesize that targeting 5AR as well as inflammatory pathways may yield improved efficacy in AGA and BPH. Here we address these dual pathomechanisms by examining the potency of a novel composition using in vitro assays of representative cell lines for AGA (hair follicle dermal papilla cells) and BPH (LNCaP prostate cells), respectively. Exposure of cells to the novel test composition down-regulated mRNA expression profiles characteristic of both disease processes, which outperformed finasteride. Changes in mRNA expression were corroborated at the protein level as assessed by western blotting. These studies provide proof of concept that novel, naturally derived compositions simultaneously targeting 5AR and inflammatory mediators may represent a rational approach to treating AGA and BPH. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Wu, Yue; Godoy, Alejandro; Azzouni, Faris; Wilton, John H; Ip, Clement; Mohler, James L
2013-09-01
Blocking 5α-reductase-mediated testosterone conversion to dihydrotestosterone (DHT) with finasteride or dutasteride is the driving hypothesis behind two prostate cancer prevention trials. Factors affecting intracellular androgen levels and the androgen receptor (AR) signaling axis need to be examined systematically in order to fully understand the outcome of interventions using these drugs. The expression of three 5α-reductase isozymes, as determined by immunohistochemistry and qRT-PCR, was studied in five human prostate cancer cell lines. Intracellular testosterone and DHT were analyzed using mass spectrometry. A luciferase reporter assay and AR-regulated genes were used to evaluate the modulation of AR activity. Prostate cancer cells were capable of accumulating testosterone to a level 15-50 times higher than that in the medium. The profile and expression of 5α-reductase isozymes did not predict the capacity to convert testosterone to DHT. Finasteride and dutasteride were able to depress testosterone uptake in addition to lowering intracellular DHT. The inhibition of AR activity following drug treatment often exceeded the expected response due to reduced availability of DHT. The ability to maintain high intracellular testosterone might compensate for the shortage of DHT. The biological effect of finasteride or dutasteride appears to be complex and may depend on the interplay of several factors, which include testosterone turnover, enzymology of DHT production, ability to use testosterone and DHT interchangeably, and propensity of cells for off-target AR inhibitory effect. © 2013 Wiley Periodicals, Inc.
Abdi-Ali, A; Worobec, E A; Deezagi, A; Malekzadeh, F
2004-05-01
Pyocin typing of 82 Pseudomonas aeruginosa strains, collected from different Iranian clinical sources, revealed that one isolate, P. aeruginosa 42A, produced pyocin S2, a protease-sensitive bacteriocin. Pyocin S2 production was induced by mitomycin C (2 micro g/mL) in the pyocin S2 producer P. aeruginosa 42A. Pyocin S2 was purified using ion exchange chromatography with CM-Sepharose CL-6B and sodium phosphate buffer (pH 8) from an 80% ammonium sulfate precipitate of whole-cell lysates. Pyocin activity of the fractions was detected using the Govan spot testing method. The purity of the active fraction was confirmed by SDS-PAGE, where a single band with a molecular mass of 74 kDa was detected. Cytotoxic effects of purified pyocin S2 and partially purified pyocin from P. aeruginosa 42A on the human tumor cell lines HepG2 and Im9 and the normal human cell line HFFF (Human Foetal Foreskin Fibroblast) were studied by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results demonstrated that partially purified pyocin and pyocin S2 exhibited substantial inhibitory effects on the growth of the tumor cell lines HepG2 and Im9, while no inhibitory effects were observed on the normal cell line HFFF. Pure lipopolysaccharide was used as a control and was found to have no inhibitory effect on any of the cell lines tested.
Sternberg, Hal; Jiang, Jianjie; Sim, Pamela; Kidd, Jennifer; Janus, Jeffrey; Rinon, Ariel; Edgar, Ron; Shitrit, Alina; Larocca, David; Chapman, Karen B; Binette, Francois; West, Michael D
2014-01-01
The transcriptome and fate potential of three diverse human embryonic stem cell-derived clonal embryonic progenitor cell lines with markers of cephalic neural crest are compared when differentiated in the presence of combinations of TGFβ3, BMP4, SCF and HyStem-C matrices. The cell lines E69 and T42 were compared with MEL2, using gene expression microarrays, immunocytochemistry and ELISA. In the undifferentiated progenitor state, each line displayed unique markers of cranial neural crest including TFAP2A and CD24; however, none expressed distal HOX genes including HOXA2 or HOXB2, or the mesenchymal stem cell marker CD74. The lines also showed diverse responses when differentiated in the presence of exogenous BMP4, BMP4 and TGFβ3, SCF, and SCF and TGFβ3. The clones E69 and T42 showed a profound capacity for expression of endochondral ossification markers when differentiated in the presence of BMP4 and TGFβ3, choroid plexus markers in the presence of BMP4 alone, and leptomeningeal markers when differentiated in SCF without TGFβ3. The clones E69 and T42 may represent a scalable source of primitive cranial neural crest cells useful in the study of cranial embryology, and potentially cell-based therapy.
Ouattara, Eric N; Ross, Eric L; Yazdanpanah, Yazdan; Wong, Angela Y; Robine, Marion; Losina, Elena; Moh, Raoul; Walensky, Rochelle P; Danel, Christine; Paltiel, A David; Eholié, Serge P; Freedberg, Kenneth A; Anglaret, Xavier
2014-07-01
In sub-Saharan Africa, HIV-infected adults who fail second-line antiretroviral therapy (ART) often do not have access to third-line ART. We examined the clinical impact and cost-effectiveness of making third-line ART available in Côte d'Ivoire. We used a simulation model to compare 4 strategies after second-line ART failure: continue second-line ART (C-ART2), continue second-line ART with an adherence reinforcement intervention (AR-ART2), immediate switch to third-line ART (IS-ART3), and continue second-line ART with adherence reinforcement, switching patients with persistent failure to third-line ART (AR-ART3). Third-line ART consisted of a boosted-darunavir plus raltegravir-based regimen. Primary outcomes were 10-year survival and lifetime incremental cost-effectiveness ratios (ICERs), in $/year of life saved (YLS). ICERs below $3585 (3 times the country per capita gross domestic product) were considered cost-effective. Ten-year survival was 6.0% with C-ART2, 17.0% with AR-ART2, 35.4% with IS-ART3, and 37.2% with AR-ART3. AR-ART2 was cost-effective ($1100/YLS). AR-ART3 had an ICER of $3600/YLS and became cost-effective if the cost of third-line ART decreased by <1%. IS-ART3 was less effective and more costly than AR-ART3. Results were robust to wide variations in the efficacy of third-line ART and of the adherence reinforcement, as well as in the cost of second-line ART. Access to third-line ART combined with an intense adherence reinforcement phase, used as a tool to distinguish between patients who can still benefit from their current second-line regimen and those who truly need third-line ART would provide substantial survival benefits. With minor decreases in drug costs, this strategy would be cost-effective.
Li, Qian; Bian, Liujiao; Zhao, Xinfeng; Gao, Xiaokang; Zheng, Jianbin; Li, Zijian; Zhang, Youyi; Jiang, Ru; Zheng, Xiaohui
2014-01-01
A new oriented method using a diazonium salt reaction was developed for linking β2-adrenoceptor (β2-AR) on the surface of macroporous silica gel. Stationary phase containing the immobilised receptor was used to investigate the interaction between β2-AR and ephedrine plus pseudoephedrine by zonal elution. The isotherms of the two drugs best fit the Langmuir model. Only one type of binding site was found for ephedrine and pseudoephedrine targeting β2-AR. At 37 °C, the association constants during the binding were (5.94±0.05)×103/M for ephedrine and (3.80±0.02) ×103/M for pseudoephedrine, with the binding sites of (8.92±0.06) ×10-4 M. Thermodynamic studies showed that the binding of the two compounds to β2-AR was a spontaneous reaction with exothermal processes. The ΔGθ, ΔHθ and ΔSθ for the interaction between ephedrine and β2-AR were -(22.33±0.04) kJ/mol, -(6.51±0.69) kJ/mol and 50.94±0.31 J/mol·K, respectively. For the binding of pseudoephedrine to the receptor, these values were -(21.17±0.02) kJ/mol, -(7.48±0.56) kJ/mol and 44.13±0.01 J/mol·K. Electrostatic interaction proved to be the driving force during the binding of the two drugs to β2-AR. The proposed immobilised method will have great potential for attaching protein to solid substrates and realizing the interactions between proteins and drugs.
Li, Qian; Bian, Liujiao; Zhao, Xinfeng; Gao, Xiaokang; Zheng, Jianbin; Li, Zijian; Zhang, Youyi; Jiang, Ru; Zheng, Xiaohui
2014-01-01
A new oriented method using a diazonium salt reaction was developed for linking β 2-adrenoceptor (β 2-AR) on the surface of macroporous silica gel. Stationary phase containing the immobilised receptor was used to investigate the interaction between β 2-AR and ephedrine plus pseudoephedrine by zonal elution. The isotherms of the two drugs best fit the Langmuir model. Only one type of binding site was found for ephedrine and pseudoephedrine targeting β 2-AR. At 37 °C, the association constants during the binding were (5.94±0.05)×103/M for ephedrine and (3.80±0.02) ×103/M for pseudoephedrine, with the binding sites of (8.92±0.06) ×10−4 M. Thermodynamic studies showed that the binding of the two compounds to β 2-AR was a spontaneous reaction with exothermal processes. The ΔGθ, ΔHθ and ΔSθ for the interaction between ephedrine and β 2-AR were −(22.33±0.04) kJ/mol, −(6.51±0.69) kJ/mol and 50.94±0.31 J/mol·K, respectively. For the binding of pseudoephedrine to the receptor, these values were −(21.17±0.02) kJ/mol, −(7.48±0.56) kJ/mol and 44.13±0.01 J/mol·K. Electrostatic interaction proved to be the driving force during the binding of the two drugs to β 2-AR. The proposed immobilised method will have great potential for attaching protein to solid substrates and realizing the interactions between proteins and drugs. PMID:24747442
Characterization and inhibition of beta-adrenergic receptor kinase in intact myocytes.
Laugwitz, K L; Kronsbein, K; Schmitt, M; Hoffmann, K; Seyfarth, M; Schömig, A; Ungerer, M
1997-08-01
beta-Adrenergic receptor kinase (beta ARK) phosphorylates and thereby inactivates agonist-occupied beta-adrenergic receptors (beta AR). beta ARK is thought to play an important role in the regulation of cardiac function. Therefore, we studied beta ARK activation and its inhibition in intact smooth muscle cells and in cardiomyoblasts. beta AR agonist-stimulated translocation of beta ARK was monitored by immunofluorescence labelling with specific antibodies and confocal laser scanning microscopy in DDT-MF 2 hamster smooth muscle cells and in H9c2 rat cardiomyoblasts. In unstimulated cells. beta ARK was mainly located in the cytosol. After beta AR agonist stimulation, the beta ARK signal was partially translocated to the membranes. Liposomal gene transfer of the COOH-terminus of beta ARK ('beta ARKmini') as a beta ARK inhibitor led to functional expression of this protein in both cell lines with high efficiency. Western blots with beta ARK antibodies showed a gene concentration-dependent immunoreactivity of the 'beta ARKmini' protein. 'beta ARKmini'-transfected myocytes demonstrated reduced membrane targeting of the beta ARK immuno-fluorescence signal. Additionally, the effect of 'beta ARKmini' on beta AR-induced desensitization of myocytic cAMP accumulation was investigated. In control cells, desensitization with isoproterenol led to a subsequent reduction of beta AR-induced cAMP accumulation. In 'beta ARKmini'-transfected myocytes, this beta AR-induced desensitization was significantly diminished, whereas normal beta AR-induced cAMP accumulation was unaffected. A gene concentration of 2 micrograms 'beta ARKmini' DNA/100,000 cardiomyoblasts, and of 0.7 microgram 'beta ARKmini' DNA/100,000 DDT-MF2 smooth muscle cells led to approximately 5.9- and approximately 5.6-fold overexpressions of 'beta ARKmini' vs. native beta ARK, respectively. These gene doses proved sufficient to attenuate beta-adrenergic desensitization significantly. (1) beta ARK translocation was evidenced in DDT-MF2 smooth muscle cells and in cardiomyoblasts by confocal laser scanning microscopy. (2) Feasibility of 'beta ARKmini' gene transfer to myocytes was demonstrated, and necessary gene doses for beta ARK inhibition were titered. (3) Overexpression of 'beta ARKmini' functionally interacted with endogenous beta-adrenergic signal transduction, leading to sustained cAMP accumulation after prolonged beta-adrenergic stimulation.
Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro.
Sanna, K; Rofstad, E K
1994-07-15
Rodent cell lines can develop resistance to doxorubicin and methotrexate during hypoxic stress. This has so far not been observed in human tumor cell lines. The purpose of our communication is to show that doxorubicin and methotrexate resistance can also develop in human melanoma cells during exposure to hypoxia. Four cell lines (BEX-c, COX-c, SAX-c, WIX-c) have been studied. Cells were exposed to hypoxia (O2 concentration < 10 ppm) for 24 hr prior to reoxygenation. Doxorubicin and methotrexate cell survival curves were determined immediately after as well as 18 and 42 hr after reoxygenation. The 4 cell lines were relatively sensitive to doxorubicin without hypoxia pre-treatment, and all developed resistance during exposure to hypoxia. Hypoxic stress also induced methotrexate resistance in BEX-c and SAX-c but not in COX-c and WIX-c. BEX-c and SAX-c were sensitive to methotrexate without hypoxia pre-treatment, whereas COX-c and WIX-c were resistant initially. Hypoxia-induced drug resistance was present immediately after reoxygenation and tended to decrease with time but remained statistically significant even 42 hr after reoxygenation.
Mills, Melody; Meysick, Karen C.; O'Brien, Alison D.
2000-01-01
Pathogenic Escherichia coli associated with urinary tract infections (UTIs) in otherwise healthy individuals frequently produce cytotoxic necrotizing factor type 1 (CNF1), a member of the family of bacterial toxins that target the Rho family of small GTP-binding proteins. To gain insight into the function of CNF1 in the development of E. coli-mediated UTIs, we examined the effects of CNF1 intoxication on a panel of human cell lines derived from physiologically relevant sites (bladder, ureters, and kidneys). We identified one uroepithelial cell line that exhibited a distinctly different CNF1 intoxication phenotype from the prototypic one of multinucleation without cell death that is seen when HEp-2 or other epithelial cells are treated with CNF1. The 5637 bladder cell line detached from the growth surface within 72 h of CNF1 intoxication, a finding that suggested frank cytotoxicity. To determine the basis for the unexpected toxic effect of CNF1 on 5637 cells, we compared the degree of toxin binding, actin fiber formation, and Rho modification with those CNF1-induced events in HEp-2 cells. We found no apparent difference in the amount of CNF1 bound to 5637 cells and HEp-2 cells. Moreover, CNF1 modified Rho, in vivo and in vitro, in both cell types. In contrast, one of the classic responses to CNF1 in HEp-2 and other epithelial cell lines, the formation of actin stress fibers, was markedly absent in 5637 cells. Indeed, actin stress fiber induction by CNF1 did not occur in any of the other human bladder cell lines that we tested (J82, SV-HUC-1, or T24). Furthermore, the appearance of lamellipodia and filopodia in 5637 cells suggested that CNF1 activated the Cdc42 and Rac proteins. Finally, apoptosis was observed in CNF1-intoxicated 5637 cells. If our results with 5637 cells reflect the interaction of CNF1 with the transitional uroepithelium in the human bladder, then CNF1 may be involved in the exfoliative process that occurs in that organ after infection with uropathogenic E. coli. PMID:10992497
Publications - RDF 2004-1 | Alaska Division of Geological & Geophysical
, C-4, and B-5 quadrangles, Alaska Authors: Athey, J.E., Layer, P.W., and Drake, Jeff Publication Date ): Livengood Bibliographic Reference Athey, J.E., Layer, P.W., and Drake, Jeff, 2004, 40Ar/39Ar ages of rocks
Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.
Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing
2013-01-01
Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.
Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis
Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing
2013-01-01
Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. PMID:23983455
Improve T Cell Therapy in Neuroblastoma
2014-07-01
or non- lymphoid tissue (132). Their potential value as CAR-expressing effec- tor cells is considered below. Provision of costimulation to enhance CAR-T... lymphoid leukemia. N Engl J Med 2011;365:725–733. 42. Kalos M, et al. T cells with chimeric antigen receptors have potent antitumor effects and can...antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013;368:1509–1518. 45. Till BG, et al. Adoptive immunotherapy for indolent non
2013-07-25
ovary cells from Spodoptera frugiperda ATCCa CRL-1711 Grace VA) (Vaughn et al., 1977) HvAM1: pupal ovary cells from Heliothis virescens Dr. C Goodman...iguana. Ecology 78, 297–307. Vaughn, J.L., Goodwind, R.H., Tompkins, G.J., McCawley, P., 1977. Establishment of 2 cell lines from insect Spodoptera ... frugiperda . In Vitro 13, 213–217. Wilson, S.M., Nagler, J.J., 2006. Age, but not salinity, affects the upper lethal temperature limits for juvenile
NASA Astrophysics Data System (ADS)
Akopyan, M. E.; Baturo, V. V.; Lukashov, S. S.; Poretsky, S. A.; Pravilov, A. M.
2015-01-01
The stepwise three-step three-color laser population of the I2(β1g, νβ, Jβ) rovibronic states via the B0u+, νB, JB rovibronic states and rovibronic levels of the 1u(bb) and 0g+(bb) states mixed by hyperfine interaction is used for determination of rovibronic level energies of the weakly bound I2(1u(bb)) state. Dunham coefficients of the state, Yi0 (i = 0-3), Yi1 (i = 0-2), Y02 and Y12 for the {{v}{{1u}}} = 1-5, 8, 10, 15 and {{J}{{1u}}} ≈ 9-87 ranges, the dissociation energy of the state, De, and equilibrium I-I distance, Re, as well as the potential energy curve are determined. There are aperiodicities in the excitation spectrum corresponding to the β, νβ = 23, Jβ ← 1u(bb), ν1u = 4, 5, J1u progressions in the I2 + Rg = He, Ar mixture, namely, a great number of lines which do not coincide with the R or P line progressions. Their positions conflict with the ΔJ-even selection rule. Furthermore, they do not correspond to the ΔJ-odd progression.
Trapping of N 2, CO and Ar in amorphous ice—Application to comets
NASA Astrophysics Data System (ADS)
Bar-Nun, A.; Notesco, G.; Owen, T.
2007-10-01
Recent attempts using high resolution spectra to detect N +2 in several comets were unsuccessful [Cochran, A.L., Cochran, W.D., Baker, E.S., 2000. Icarus 146, 583-593; Cochran, A.L., 2002. Astrophys. J. 576, L165-L168]. The upper limits on N +2 in comparison with the positively detected CO + for Comets C/1995 O1 Hale-Bopp, 122P/1995 S1 de Vico and 153P/2002 C1 Ikeya-Zhang range between N2+/CO<(0.65-5.4)×10. Ar was not detected in three recent comets [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98], with upper limits of Ar/CO<(3.4-7.8)×10 for Comets C/1999 T1 McNaught-Hartley, C/2001 A2 LINEAR and C/2000 WM1 LINEAR. The Ar detected by Stern et al. [Stern, S.A., Slater, D.C., Festou, M.C., Parker, J.Wm., Gladstone, G.R., A'Hearn, M.F., Wilkinson, E., 2000. Astrophys. J. 544, L169-L172] for Comet C/1995 O1 Hale-Bopp, gives a ratio Ar/CO=7.25×10, which was not confirmed by Cosmovici et al. [Cosmovici, C.B., Bratina, V., Schwarz, G., Tozzi, G., Mumma, M.J., Stalio, R., 2006. Astrophys. Space Sci. 301, 135-143]. Trying to solve the two problems, we studied experimentally the trapping of N+CO+Ar in amorphous water ice, at 24-30 K. CO was found to be trapped in the ice 20-70 times more efficiently than N 2 and with the same efficiency as Ar. The resulting Ar/CO ratio of 1.2×10 is consistent with Weaver et al.'s [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98] non-detection of Ar. However, with an extreme starting value for N 2/CO = 0.22 in the region where the ice grains which agglomerated to produce comet nuclei were formed, the expected N 2/CO ratio in the cometary ice should be 6.6×10, much higher than its non-detection limit.
Gao, Zhan-Guo; Jacobson, Kenneth A
2008-04-01
Structurally diverse ligands were studied in A(3) adenosine receptor (AR)-mediated beta-arrestin translocation in engineered CHO cells. The agonist potency and efficacy were similar, although not identical, to their G protein signaling. However, differences have also been found. MRS542, MRS1760, and other adenosine derivatives, A(3)AR antagonists in cyclic AMP assays, were partial agonists in beta-arrestin translocation, indicating possible biased agonism. The xanthine 7-riboside DBXRM, a full agonist, was only partially efficacious in beta-arrestin translocation. DBXRM was shown to induce a lesser extent of desensitization compared with IB-MECA. In kinetic studies, MRS3558, a potent and selective A(3)AR agonist, induced beta-arrestin translocation significantly faster than IB-MECA and Cl-IB-MECA. Non-nucleoside antagonists showed similar inhibitory potencies as previously reported. PTX pretreatment completely abolished ERK1/2 activation, but not arrestin translocation. Thus, lead candidates for biased agonists at the A(3)AR have been identified with this arrestin-translocation assay, which promises to be an effective tool for ligand screening.
75 FR 78646 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... Promulgation of Air Quality Implementation Plans; Minnesota AGENCY: Environmental Protection Agency (EPA...: Douglas Aburano, Chief, Control Strategies Section, Air Programs Branch (AR-18J), U.S. Environmental..., Chief, Control Strategies Section, Air Programs Branch (AR-18J), U.S. Environmental Protection Agency...
Perković, I; Antunović, M; Marijanović, I; Pavić, K; Ester, K; Kralj, M; Vlainić, J; Kosalec, I; Schols, D; Hadjipavlou-Litina, D; Pontiki, E; Zorc, B
2016-11-29
A series of novel compounds 3a-j and 6a-j with primaquine and hydroxyl or halogen substituted benzene moieties bridged by urea or bis-urea functionalities were designed, synthesized and evaluated for biological activity. The title compounds were prepared using benzotriazole as the synthon, through several synthetic steps. 3-[3,5-Bis(trifluoromethyl)phenyl]-1-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}urea (3j) was the most active urea and 1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]-3-[3-(trifluoromethyl)phenyl]urea (6h) the most active bis-urea derivative in antiproliferative screening in vitro against eight tested cancer cell lines. Urea derivatives 3a-g with hydroxy group or one halogen atom showed moderate antiproliferative effects against all the tested cell lines, but stronger activity against breast carcinoma MCF-7 cell line, while trifluoromethyl derivatives 3h-j showed antiproliferative effects against all the tested cell lines in low micromolar range. Finally, bis-ureas with hydroxy and fluoro substituents 6a-d showed extreme selectivity and chloro or bromo derivatives 6e-g high selectivity against MCF-7 cells (IC 50 0.1-2.6 μM). p-Fluoro derivative 6d, namely 3-(4-fluorophenyl)-1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]urea, is the most promising compound. Further biological experiments showed that 6d affected cell cycle and induced cell death of MCF-7 cell line. Due to its high activity against MCF-7 cell line (IC 50 0.31 μM), extreme selectivity and full agreement with the Lipinski's and Gelovani's rules for prospective small molecular drugs, 6d may be considered as a lead compound in development of breast carcinoma drugs. Urea 3b and almost all bis-ureas showed high antioxidant activity in DPPH assay, but urea derivatives were more active in lipid peroxidation test. Only few compounds exhibited weak inhibition of soybean lipoxygenase. Compound 3j exhibited the strongest antimicrobial activity in susceptibility assay in vitro (MIC = 1.6-12.5 μg ml -1 ). Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Hansen-Hagge, T E; Yokota, S; Reuter, H J; Schwarz, K; Bartram, C R
1992-11-01
Rearrangements of the T-cell receptor (TCR) delta locus are observed in the majority of human B-cell precursor acute lymphoblastic leukemias (ALL) with a striking predominance of V delta 2(D)D delta 3 recombinations in common ALL (cALL) patients. Recently, we and others showed that almost 20% of cALL cases are characterized by further recombination of V delta 2(D)D delta 3 segments to J alpha elements, thereby deleting the TCR delta locus in analogy to the delta Rec/psi J alpha pathway in differentiating alpha/beta-positive T cells. We report here that two human cALL-derived cell lines, REH and Nalm-6, are competent to recombine the TCR delta/alpha locus under standard tissue culture conditions. Analysis of different REH subclones obtained by limiting dilution of the initial culture showed a biased recombination of V delta 2D delta 3 to distinct J alpha elements. During prolonged tissue culture, a subclone acquired growth advantage and displaced parental cells as well as other subclones. Frequently, the DJ junctions of REH subclones contained extended stretches of palindromic sequences derived from modified D delta 3 coding elements. The other cell line, Nalm-6, started the TCR delta/alpha recombination with an unusual signal joint of a cryptic recombinase signal sequence (RSS) upstream of D delta 3 to the 3' RSS of D delta 3. The RSS dimer was subsequently rearranged in all investigated subclones to an identical J alpha element. Both cell lines might become valuable tools to unravel the complex regulation of TCR delta/alpha recombination pathways in malignant and normal lymphopoiesis.
Cold atmospheric plasma discharged in water and its potential use in cancer therapy
NASA Astrophysics Data System (ADS)
Chen, Zhitong; Cheng, Xiaoqian; Lin, Li; Keidar, Michael
2017-01-01
Cold atmospheric plasma (CAP) has emerged as a novel technology for cancer treatment. CAP can directly treat cells and tissue but such direct application is limited to skin or can be invoked as a supplement during open surgery. In this study we report indirect plasma treatment using CAP discharged in deionized (DI) water using three gases as carriers (argon (Ar), helium (He), and nitrogen (N2)). Plasma stimulated water was applied to the human breast cancer cell line (MDA-MB-231). MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay tests showed that using Ar plasma had the strongest effect on inducing apoptosis in cultured human breast cancer cells. This result is attributed to the elevated production of reactive oxygen species and reactive nitrogen species in water.
Properties of Highly Rotationally Excited H2 in Photodissociation Regions
NASA Astrophysics Data System (ADS)
Cummings, Sally Jane; Wan, Yier; Stancil, Phillip C.; Yang, Benhui H.; Zhang, Ziwei
2018-06-01
H2 is the dominant molecular species in the vast majority of interstellar environments and it plays a crucial role as a radiative coolant. In photodissociation regions, it is one of the primary emitters in the near to mid-infrared which are due to lines originating from highly excited rotational levels. However, collisional data for rotational levels j>10 are sparse, particularly for H2-H2 collisions. Utilizing new calculations for para-H2 and ortho-H2 collisional rate coefficients with H2 for j as high as 30, we investigate the effects of the new results in standard PDR models with the spectral simulation package Cloudy. We also perform Cloudy models of the Orion Bar and use Radex to explore rotational line ratio diagnostics. The resulting dataset of H2 collisional data should find wide application to other molecular environments. This work was support by Hubble Space Telescope grant HST-AR-13899.001-A and NASA grants NNX15AI61G and NNX16AF09G.
Ma, Yingyu; Luo, Wei; Bunch, Brittany L; Pratt, Rachel N; Trump, Donald L; Johnson, Candace S
2017-09-01
Metastasis is the major cause of bladder cancer death. 1,25D 3 , the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D 3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D 3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D 3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D 3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using "wound" healing, chemotactic migration and Matrigel-based invasion assays. 1,25D 3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D 3 on migration and invasion in 253J-BV cells. Further, 1,25D 3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D 3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D 3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level.
Ma, Yingyu; Luo, Wei; Bunch, Brittany L.; Pratt, Rachel N.; Trump, Donald L.; Johnson, Candace S.
2017-01-01
Metastasis is the major cause of bladder cancer death. 1,25D3, the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using “wound” healing, chemotactic migration and Matrigel-based invasion assays. 1,25D3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D3 on migration and invasion in 253J-BV cells. Further, 1,25D3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level. PMID:28947955
Liu, He; Qu, Menghua; Xu, Lina; Han, Xu; Wang, Changyuan; Shu, Xiaohong; Yao, Jihong; Liu, Kexin; Peng, Jinyong; Li, Yanxia; Ma, Xiaodong
2017-07-28
A new series of diphenylpyrimidine derivatives (SFA-DPPYs) were synthesized by introducing a functional sulfonamide into the C-2 aniline moiety of pyrimidine template, and then were biologically evaluated as potent Bruton's tyrosine kinase (BTK) inhibitors. Among these molecules, inhibitors 10c, 10i, 10j and 10k displayed high potency against the BTK enzyme, with IC 50 values of 1.18 nM, 0.92 nM, 0.42 nM and 1.05 nM, respectively. In particular, compound 10c could remarkably inhibit the proliferation of the B lymphoma cell lines at concentrations of 6.49 μM (Ramos cells) and 13.2 μM (Raji cells), and was stronger than the novel agent spebrutinib. In addition, the inhibitory potency toward the normal PBMC cells showed that inhibitor 10c possesses low cell cytotoxicity. All these explorations indicated that molecule 10c could serve as a valuable inhibitor for B-cell lymphoblastic leukemia treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kleb, Brittany; Estécio, Marcos R.H.; Zhang, Jiexin; Tzelepi, Vassiliki; Chung, Woonbok; Jelinek, Jaroslav; Navone, Nora M.; Tahir, Salahaldin; Marquez, Victor E.; Issa, Jean-Pierre; Maity, Sankar; Aparicio, Ana
2016-01-01
ABSTRACT Small cell prostate carcinoma (SCPC) morphology is rare at initial diagnosis but often emerges during prostate cancer progression and portends a dismal prognosis. It does not express androgen receptor (AR) or respond to hormonal therapies. Clinically applicable markers for its early detection and treatment with effective chemotherapy are needed. Our studies in patient tumor–derived xenografts (PDX) revealed that AR–negative SCPC (AR−SCPC) expresses neural development genes instead of the prostate luminal epithelial genes characteristic of AR–positive castration-resistant adenocarcinomas (AR+ADENO). We hypothesized that the differences in cellular lineage programs are reflected in distinct epigenetic profiles. To address this hypothesis, we compared the DNA methylation profiles of AR− and AR+ PDX using methylated CpG island amplification and microarray (MCAM) analysis and identified a set of differentially methylated promoters, validated in PDX and corresponding donor patient samples. We used the Illumina 450K platform to examine additional regions of the genome and the correlation between the DNA methylation profiles of the PDX and their corresponding patient tumors. Struck by the low frequency of AR promoter methylation in the AR−SCPC, we investigated this region's specific histone modification patterns by chromatin immunoprecipitation. We found that the AR promoter was enriched in silencing histone modifications (H3K27me3 and H3K9me2) and that EZH2 inhibition with 3-deazaneplanocin A (DZNep) resulted in AR expression and growth inhibition in AR−SCPC cell lines. We conclude that the epigenome of AR− is distinct from that of AR+ castration-resistant prostate carcinomas, and that the AR− phenotype can be reversed with epigenetic drugs. PMID:26890396
Rana, Kesha; Chiu, Maria W S; Russell, Patricia K; Skinner, Jarrod P; Lee, Nicole K L; Fam, Barbara C; Zajac, Jeffrey D; MacLean, Helen E
2016-08-01
The aim of this study was to investigate the direct muscle cell-mediated actions of androgens by comparing two different mouse lines. The cre-loxP system was used to delete the DNA-binding activity of the androgen receptor (AR) in mature myofibers (MCK mAR(ΔZF2)) in one model and the DNA-binding activity of the AR in both proliferating myoblasts and myofibers (α-actin mAR(ΔZF2)) in another model. We found that hind-limb muscle mass was normal in MCK mAR(ΔZF2) mice and that relative mass of only some hind-limb muscles was reduced in α-actin mAR(ΔZF2) mice. This suggests that myoblasts and myofibers are not the major cellular targets mediating the anabolic actions of androgens on male muscle during growth and development. Levator ani muscle mass was decreased in both mouse lines, demonstrating that there is a myofiber-specific effect in this unique androgen-dependent muscle. We found that the pattern of expression of genes including c-myc, Fzd4 and Igf2 is associated with androgen-dependent changes in muscle mass; therefore, these genes are likely to be mediators of anabolic actions of androgens. Further research is required to identify the major targets of androgen actions in muscle, which are likely to include indirect actions via other tissues. © 2016 Society for Endocrinology.
Evans Blue Attachment Enhances Somatostatin Receptor Subtype-2 Imaging and Radiotherapy.
Tian, Rui; Jacobson, Orit; Niu, Gang; Kiesewetter, Dale O; Wang, Zhantong; Zhu, Guizhi; Ma, Ying; Liu, Gang; Chen, Xiaoyuan
2018-01-01
Purpose: Radionuclide therapy directed against tumors that express somatostatin receptors (SSTRs) has proven effective for the treatment of advanced, low- to intermediate-grade neuroendocrine tumors in the clinic. In clinical usage, somatostatin peptide-based analogs, labeled with therapeutic radionuclides, provide an overall response rate of about 30%, despite the high cumulative activity injected per patient. We set out to improve the effectiveness of somatostatin radiotherapy by preparing a chemical analog that would clear more slowly through the urinary tract and, concomitantly, have increased blood circulation half-life and higher targeted accumulation in the tumors. Experimental Design: We conjugated a common, clinically-used SST peptide derivative, DOTA-octreotate, to an Evans blue analog (EB), which reversibly binds to circulating serum albumin. The resulting molecule was used to chelate 86 Y and 90 Y, a diagnostic and a therapeutic radionuclide, respectively. The imaging capabilities and the radiotherapeutic efficacy of the resulting radioligand was evaluated in HCT116/SSTR2, HCT116, and AR42J cell lines that express differing levels of SST2 receptors. Results: The synthesized radiopharmaceutical retained affinity and specificity to SSTR2. The new molecule also retained the high internalization rate of DOTA-octreotate, and therefore, showed significantly higher accumulation in SSTR2-positive tumors. Labeling of our novel EB-octreotate derivative with the therapeutic, pure beta emitter, 90 Y, resulted in improved tumor response and survival rates of mice bearing SSTR2 xenografts and had long term efficacy when compared to DOTA-octreotate itself. Conclusions: The coupling of a targeted peptide, a therapeutic radionuclide, and the EB‑based albumin binding provides for effective treatment of SSTR2-containing tumors.
75 FR 48895 - Approval and Promulgation of Air Quality Implementation Plans; MN
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... Promulgation of Air Quality Implementation Plans; MN AGENCY: Environmental Protection Agency (EPA). ACTION..., Chief, Air Programs Branch (AR-18J), U.S. Environmental Protection Agency, 77 West Jackson Boulevard, Chicago, Illinois 60604. 5. Hand Delivery: Jay Bortzer, Chief, Air Programs Branch (AR-18J), U.S...
77 FR 41914 - Approval and Promulgation of Air Quality Implementation Plans; Indiana
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... Promulgation of Air Quality Implementation Plans; Indiana AGENCY: Environmental Protection Agency (EPA). ACTION..., Control Strategies Section, Air Programs Branch (AR-18J), U.S. Environmental Protection Agency, 77 West... Section, Air Programs Branch (AR-18J), U.S. Environmental Protection Agency, 77 West Jackson Boulevard...
78 FR 40086 - Approval and Promulgation of Air Quality Implementation Plans; Illinois
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... Promulgation of Air Quality Implementation Plans; Illinois AGENCY: Environmental Protection Agency (EPA...) 692-2450. 4. Mail: Pamela Blakley, Chief, Control Strategies Section, Air Programs Branch (AR-18J), U... Delivery: Pamela Blakley, Chief, Control Strategies Section, Air Programs Branch (AR-18J), U.S...
75 FR 45568 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... Promulgation of Air Quality Implementation Plans; Minnesota AGENCY: Environmental Protection Agency (EPA.... Fax: (312) 629-2054. 4. Mail: Jay Bortzer, Chief, Air Programs Branch (AR-18J), U.S. Environmental..., Air Programs Branch (AR-18J), U.S. Environmental Protection Agency, 77 West Jackson Boulevard, Chicago...
40 CFR 52.120 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (i) Incorporation by reference. (A) Arizona Revised Statutes. (1) Senate Bill 1360: Section 6: ARS 15-1444-C (added), Section 7: QRS 15-1627-F (added), Section 21: ARS 49- 542-A (amended, Section 21: ARS 49-542-E (added), Section 21: ARS 49-542-J.3.(b) (amended), and Section 23: ARS 49-550-E (added...
40 CFR 52.120 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (i) Incorporation by reference. (A) Arizona Revised Statutes. (1) Senate Bill 1360: Section 6: ARS 15-1444-C (added), Section 7: QRS 15-1627-F (added), Section 21: ARS 49- 542-A (amended, Section 21: ARS 49-542-E (added), Section 21: ARS 49-542-J.3.(b) (amended), and Section 23: ARS 49-550-E (added...
40 CFR 52.120 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (i) Incorporation by reference. (A) Arizona Revised Statutes. (1) Senate Bill 1360: Section 6: ARS 15-1444-C (added), Section 7: QRS 15-1627-F (added), Section 21: ARS 49- 542-A (amended, Section 21: ARS 49-542-E (added), Section 21: ARS 49-542-J.3.(b) (amended), and Section 23: ARS 49-550-E (added...
40 CFR 52.120 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (i) Incorporation by reference. (A) Arizona Revised Statutes. (1) Senate Bill 1360: Section 6: ARS 15-1444-C (added), Section 7: QRS 15-1627-F (added), Section 21: ARS 49- 542-A (amended, Section 21: ARS 49-542-E (added), Section 21: ARS 49-542-J.3.(b) (amended), and Section 23: ARS 49-550-E (added...
40 CFR 52.120 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (i) Incorporation by reference. (A) Arizona Revised Statutes. (1) Senate Bill 1360: Section 6: ARS 15-1444-C (added), Section 7: QRS 15-1627-F (added), Section 21: ARS 49- 542-A (amended, Section 21: ARS 49-542-E (added), Section 21: ARS 49-542-J.3.(b) (amended), and Section 23: ARS 49-550-E (added...
Copik, Alicja. J.; Baldys, Aleksander; Nguyen, Khanh; Sahdeo, Sunil; Ho, Hoangdung; Kosaka, Alan; Dietrich, Paul J.; Fitch, Bill; Raymond, John R.; Ford, Anthony P. D. W.; Button, Donald; Milla, Marcos E.
2015-01-01
The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK/ERK signaling cascade that is likely independent of coupling to Gαq. PMID:25606852
Evaluation of NF-kappaB Signaling in T Cells
2009-01-01
ranging from myelomas (46) to breast cancer (47) to esophageal cancer (48), to name a few. NF-κB activation is also implicated in several leukemias and...nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer . J Clin Invest 100:2952-2960. 48. Abdel-Latif, M. M., J. O’Riordan, H. J...42), cyclin D1 (43), and cyclin E (44, 45). Furthermore, NF-κB activity has been linked to the proliferation of various types of cancer cells
Jakobs, Daniel; Hage-Hülsmann, Anne; Prenner, Lars; Kolb, Christiane; Weiser, Dieter; Häberlein, Hanns
2013-06-01
While the use of St John's wort extracts as treatment for mild to moderate depression is well established the mode of action is still under investigation. Individual constituents of St John's wort extract were tested for possible effects on the β1 AR density and a subsequent change in downstream signalling in rat C6 glioblastoma cells. The effect of compounds from St John's wort extract on the downregulation of β1 -adrenergic receptor-GFP fusion proteins (β1 AR-green fluorescent protein (GFP)) of transfected rat C6 gliobastoma cells (C6-β1 AR-GFP) was investigated by means of confocal laser scanning microscopy (LSM). The influence on the lateral mobility of β1 AR-GFP in C6-β1 AR-GFP was investigated by fluorescence correlation spectroscopy. The formation of second messenger was determined by c-AMP-assay. Confocal LSM revealed that pretreatment of cells with 1 μm of hyperforin and hyperoside for 6 days, respectively, led to an internalization of β1 AR-GFP under non-stimulating conditions. Observation by fluorescence correlation spectroscopy showed two diffusion time constants for control cells, with τdiff1 = 0.78 ± 0.18 ms and τdiff2 = 122.53 ± 69.41 ms, similarly distributed. Pretreatment with 1 μm hyperforin or 1 μm hyperoside for 3 days did not alter the τdiff values but decreased the fraction of τdiff1 whereas the fraction of τdiff2 increased significantly. An elevated level of β1 AR-GFP with hindered lateral mobility was in line with β1 AR-GFP internalization induced by hyperforin and hyperoside, respectively. A reduced β1 -adrenergic responsiveness was assumed for C6 gliobastoma cells after pretreatment for 6 days with 1 μm of both hyperforin and hyperoside, which was confirmed by decreased cAMP formation of about 10% and 5% under non-stimulating conditions. Decrease in cAMP formation by 23% for hyperforin and 15% for hyperoside was more pronounced after stimulation with 10 μm dobutamine for 30 min. The treatment of C6 gliobastoma cells with hyperforin and hyperoside results in a reduced β1 AR density in the plasma membrane and a subsequent reduced downstream signalling. © 2013 Royal Pharmaceutical Society.
Wang, Wei; Chen, Jing; Li, Xiao Guang; Xu, Jie
2016-12-01
The AMP-activated protein kinase (AMPK) pathway has been shown to be able to regulate inflammation in several cell lines. We reported that fenoterol, a β 2 -adrenergic receptor (β 2 -AR) agonist, inhibited lipopolysaccharide (LPS)-induced AMPK activation and inflammatory cytokine production in THP-1 cells, a monocytic cell line in previous studies. 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an agonist of AMPK. Whether AICAR induced AMPK activation and inflammatory cytokine production in THP-1 cells can be inhibited by fenoterol is unknown. In this study, we explored the mechanism of β 2 -AR stimulation with fenoterol in AICAR-induced inflammatory cytokine secretion in THP-1 cells. We studied AMPK activation using p-AMPK and AMPK antibodies, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion in THP-1 cells stimulated by β 2 -AR in the presence or absence of AICAR and small interfering RNA (siRNA)-mediated knockdown of β-arrestin-2 or AMPKα1 subunit. AICAR-induced AMPK activation, NF-κB activation and tumor necrosis factor (TNF)-α release were reduced by fenoterol. In addition, siRNA-mediated knockdown of β-arrestin-2 abolished fenoterol's inhibition of AICAR-induced AMPK activation and TNF-α release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol in AICAR-treated THP-1 cells. Furthermore, siRNA-mediated knockdown of AMPKα1 significantly attenuated AICAR-induced NF-κB activation and TNF-α release, so AMPKα1 was a key signaling molecule involved in AICAR-induced inflammatory cytokine production. These data suggested that fenoterol inhibited AICAR-induced AMPK activation and TNF-α release through β-arrestin-2 in THP-1 cells. Management especially inhibition of AMPK signaling may provide new approaches and strategies for the treatments of immune diseases including inflammatory diseases and other critical illness. Published by Elsevier Masson SAS.
Chen, Yumay; Chiang, Huai-Chin; Litchfield, Patricia; Pena, Michelle; Juang, Charity; Riley, Daniel J
2014-07-17
Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD. We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman's space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths. Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.
Ohoyama, H; Matsuura, Y
2011-10-13
The atomic alignment effect has been studied for the dissociative energy transfer reaction of metal carbonyls (Fe(CO)(5), Ni(CO)(4)) with the oriented Ar ((3)P(2), M(J) = 2). The emission intensity from the excited metal products (Fe*, Ni*) has been measured as a function of the atomic alignment in the collision frame. The selectivity of the atomic orbital alignment of Ar ((3)P(2), M(J) = 2) (rank 2 moment, a(2)) is found to be opposite for the two reaction systems; the Fe(CO)(5) reaction is favorable at the Π configuration (positive a(2)), while the Ni(CO)(4) reaction is favorable at the Σ configuration (negative a(2)). Moreover, a significant spin alignment effect (rank 4 moment, a(4)) is recognized only in the Ni(CO)(4) reaction. The atomic alignment effect turns out to be essentially different between the two reaction systems; the Fe(CO)(5) reaction is controlled by the configuration of the half-filled 3p atomic orbital of Ar ((3)P(2)) in the collision frame (L dependence), whereas the Ni(CO)(4) reaction is controlled by the configuration of the total angular moment J (including spin) of Ar ((3)P(2)) in the collision frame (J dependence). As the origin of J dependence observed only in the Ni(CO)(4) reaction, the correlation (and/or the interference) between two electron exchange processes via the electron rearrangements is proposed.
Copple, Ian M; Mercer, Amy E; Firman, James; Donegan, Gail; Herpers, Bram; Wong, Michael HL; Chadwick, James; Bringela, Andreia D; Cristiano, Maria LS; van de Water, Bob; Ward, Stephen A; O’Neill, Paul M; Park, B Kevin
2012-01-01
Semisynthetic artemisinin-based therapies are the first-line treatment for P. falciparum malaria, but next-generation synthetic drug candidates are urgently required to improve availability and respond to the emergence of artemisinin-resistant parasites. Artemisinins are embryotoxic in animal models and induce apoptosis in sensitive mammalian cells. Understanding the cytotoxic propensities of antimalarial drug candidates is crucial to their successful development and utilization. Here, we demonstrate that, similarly to the model artemisinin artesunate (ARS), a synthetic tetraoxane drug candidate (RKA182) and a trioxolane equivalent (FBEG100) induce embryotoxicity and depletion of primitive erythroblasts in a rodent model. We also show that RKA182, FBEG100 and ARS are cytotoxic toward a panel of established and primary human cell lines, with caspase-dependent apoptosis and caspase-independent necrosis underlying the induction of cell death. Although the toxic effects of RKA182 and FBEG100 proceed more rapidly and are relatively less cell-selective than that of ARS, all three compounds are shown to be dependent upon heme, iron and oxidative stress for their ability to induce cell death. However, in contrast to previously studied artemisinins, the toxicity of RKA182 and FBEG100 is shown to be independent of general chemical decomposition. Although tetraoxanes and trioxolanes have shown promise as next-generation antimalarials, the data described here indicate that adverse effects associated with artemisinins, including embryotoxicity, cannot be ruled out with these novel compounds, and a full understanding of their toxicological actions will be central to the continuing design and development of safe and effective drug candidates which could prove important in the fight against malaria. PMID:22669474
Zhao, Dan; Huang, Shanshan; Qu, Menghua; Wang, Changyuan; Liu, Zhihao; Li, Zhen; Peng, Jinyong; Liu, Kexin; Li, Yanxia; Ma, Xiaodong; Shu, Xiaohong
2017-01-27
A new series of diphenylpyrimidine derivatives (DPPYs) bearing various aniline side chains at the C-2 position of pyrimidine core were synthesized as potent BTK inhibitors. Most of these inhibitors displayed improved activity against B leukemia cell lines compared with lead compound spebrutinib. Subsequent studies showed that the peculiar inhibitor 7j, with IC 50 values of 10.5 μM against Ramos cells and 19.1 μM against Raji cells, also displayed slightly higher inhibitory ability than the novel agent ibrutinib. Moreover, compound 7j is not sensitive to normal cells PBMC, indicating low cell cytotoxicity. In addition, flow cytometry analysis indicated that 7j significantly induced the apoptosis of Ramos cells, and arrested the cell cycle at the G0/G1 phase. These explorations provided new clues to discover pyrimidine scaffold as more effective BTK inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The X-Ray Spectra of Blazars: Analysis of the Complete EXOSAT Archive: Erratum
NASA Astrophysics Data System (ADS)
Sambruna, Rita M.; Barr, Paul; Giommi, Paolo; Maraschi, Laura; Tagliaferri, Gianpiero; Treves, Aldo
1995-07-01
In the paper "The X-Ray Spectra of Blazars: Analysis of the Complete EXOSAT Archive" by Rita M. Sambruna, Paul Barr, Paolo Giommi, Laura Maraschi, Gianpiero Tagliaferri, and Aldo Treves (ApJS, 95,371 [1994]), the section regarding the object PKS 1510-08 (Section 4.4.14) contains an erroneous quotation. K. P. Singh, A.R. Rao, and M.N. Vahia (ApJ, 365,455 [1990]) in fact detected: emission line only in the 1984 data, and not in the 1985 spectrum, as stated.
Early Thermal History of Eucrites by Ar-39-Ar-40
NASA Technical Reports Server (NTRS)
Bogard, D. D.; Garrison, D. H.
2001-01-01
Ar-39-Ar-40 ages for Piplia Kalan (3.58 +/- 0.02 Ga) and two other eucrites indicate later impact resetting. Older Ar-39-Ar-40 ages exist for the Moama cumulate eucrite (4.42 +/- 0.01 Ga) and the PCA82502 (4.506 +/- 0.009 Ga) and PCA91007 non-brecciated eucrites. Additional information is contained in the original extended abstract.
Gan, Jingyi; Meng, Fanwei; Zhou, Xin; Li, Chan; He, Yixin; Zeng, Xiaoping; Jiang, Xingen; Liu, Jia; Zeng, Guifang; Tang, Yunxia; Liu, Muyun; Mrsny, Randall J; Hu, Xiang; Hu, Jifan; Li, Tao
2015-04-01
Acute radiation syndrome (ARS) leads to pancytopenia and multi-organ failure. Transplantation of hematopoietic stem cells provides a curative option for radiation-induced aplasia, but this therapy is limited by donor availability. We examined an alternative therapeutic approach to ARS with the use of human extracellular superoxide dismutase (ECSOD)-modified umbilical cord mesenchymal stromal cells (UCMSCs). This treatment combines the unique regenerative role of UCMSCs with the anti-oxidative activity of ECSOD. We demonstrated that systemically administered ECSOD-UCMSCs are able to protect mice from sub-lethal doses of radiation and improve survival by promoting multilineage hematopoietic recovery. The therapeutic effect of this treatment is related to the decrease in radiation-induced O(2)(-) and apoptosis. Our data highlight the clinical potential of this two-pronged approach to the treatment of ARS, thereby serving as a rapid and effective first-line strategy to combat the hematopoietic failure resulting from a radiation accident, nuclear terrorism and other radiologic emergencies. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Studies on Oxygen Toxicity in the Lungs.
1980-02-29
Health 22:450-453, 1971 . gins after about seven days At this time there is pro- 10. EVANS, M. J., R. J. ST-mnEs and C. FREEMAN: Effects of nitrogen...dioxide on cell renewal in the rat lung. Arch. liferation of endothelial cells in capillaries and Type 2 Intern. Med. 128:57-60, 1971 . alveolar cells...Atmospheres perature and humidity. Changes in these Absolute (ATA). Aerosp. Med 42:1262-1265 parameters occur when the number of ani- (December 1971
Wiren, Kristine M.; Hashimoto, Joel G.; Semirale, Anthony A.; Zhang, Xiao-Wei
2011-01-01
Although androgen is considered an anabolic hormone, the consequences of androgen receptor (AR) overexpression in skeletally-targeted AR-transgenic lines highlight the detrimental effect of enhanced androgen sensitivity on cortical bone quality. A compartment-specific anabolic response is observed only in male but not female AR3.6-transgenic (tg) mice, with increased periosteal bone formation and calvarial thickening. To identify anabolic signaling cascades that have the potential to increase bone formation, qPCR array analysis was employed to define expression differences between AR3.6-tg and wild-type (WT) periosteal tissue. Notably, categories that were significantly different between the two genotypes included axonal guidance, CNS development and negative regulation of Wnt signaling with a node centered on stem cell pathways. Further, fine mapping of AR3.6-tg calvaria revealed that anabolic thickening in vivo is not uniform across the calvaria, occurring only in frontal but not parietal bones. Multipotent fraction 1 progenitor populations from both genotypes were cultured separately as frontal bone neural crest stem-like cells (fNCSC) and parietal bone mesenchymal stem-like cells (pMSC). Both osteoblastic and adipogenic differentiation in these progenitor populations was influenced by embryonic lineage and by genotype. Adipogenesis was enhanced in WT fNCSC compared to pMSC, but transgenic cultures showed strong suppression of lipid accumulation only in fNCSC cells. Osteoblastogenesis was significantly increased in transgenic fNCSC cultures compared to WT, with elevated alkaline phosphatase (ALP) activity and induction of mineralization and nodule formation assessed by alizarin red and von Kossa staining. Osteocalcin (OC) and ALP mRNA levels were also increased in fNCSC cultures from AR3.6-tg vs. WT, but in pMSC cultures ALP mRNA levels, mineralization and nodule formation were decreased in AR3.6-tg cells. Expression differences identified by array in long bone periosteal tissue from AR3.6-tg vs. WT were recapitulated in the fNCSC samples while pMSCs profiles reflected cortical expression. These observations reveal the opposing effects of androgen signaling on lineage commitment and osteoblast differentiation that is enhanced in cells derived from a neural crest origin but inhibited in cells derived from a mesodermal origin, consistent with in vivo compartment-specific responses to androgen. Combined, these results highlight the complex action of androgen in the body that is dependent on the embryonic lineage and developmental origin of the cell. Further, these data these data suggest that the periosteum surrounding long bone is derived from neural crest. PMID:21704206
Skin-Based DNA Repair Phenotype for Cancer Risk from GCR in Genetically Diverse Populations
NASA Technical Reports Server (NTRS)
Guiet, Elodie; Viger, Louise; Snijders, Antoine; Costes, Sylvian V.
2017-01-01
Predicting cancer risk associated with cosmic radiation remains a mission-critical challenge for NASA radiation health scientists and mission planners. Epidemiological data are lacking and risk methods do not take individual radiation sensitivity into account. In our approach we hypothesize that genetic factors strongly influence risk of cancer from space radiation and that biomarkers reflecting DNA damage and cell death are ideal tools to predict risk and monitor potential health effects post-flight. At this workshop, we will be reporting the work we have done over the first 9 months of this proposal. Skin cells from 15 different strains of mice already characterized for radiation-induced cancer sensitivity (B6C3F; BALB/cByJ, C57BL/6J, CBA/CaJ, C3H/HeMsNrsf), and 10 strains from the DOE collaborative cross-mouse model were expanded from ear biopsy and cultivated until Passage 3. On average, 3 males and 3 females for each strain were expanded and frozen for further characterization at the NSRL beam line during the NSRL16C run for three LET (350 MeV/n Si, 350 MeV/n Ar and 600 MeV/n Fe) and two ion fluences (1 and 3 particles per cell). The mice work has established new metrics for the usage of Radiation Induced Foci as a marker for various aspect of DNA repair deficiencies. In year 2, we propose to continue characterization of the mouse lines with low LET to identify loci specific to high- versus low- LET and establish genetic linkage for the various DNA repair biomarkers. Correlation with cancer risk from each animals strain and gender will also be investigated. On the human side, we will start characterizing the DNA damage response induced ex-vivo in 200 human's blood donors for radiation sensitivity with a tentative 500 donors by the end of this project. All ex-vivo phenotypic data will be correlated to genetic characterization of each individual human donors using SNP arrays characterization as done for mice. Similarly, ex-vivo phenotypic features from mice will be associated to cancer risk, to identify which biomarkers correlate the most with cancer risk. Genetic traits across humans will also be associated to radiation phenotypic features as a function of age and gender.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Brent R.; Khakoo, Murtadha A.
2011-04-15
We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states ofmore » the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].« less
Wen, Liping; Yuan, Qingqing; Sun, Min; Niu, Minghui; Wang, Hong; Fu, Hongyong; Zhou, Fan; Yao, Chencheng; Wang, Xiaobo; Li, Zheng; He, Zuping
2017-01-01
Sertoli cells are required for normal spermatogenesis and they can be reprogrammed to other types of functional cells. However, the number of primary Sertoli cells is rare and human Sertoli cell line is unavailable. In this study, we have for the first time reported a stable human Sertoli cell line, namely hS1 cells, by overexpression of human telomerase. The hS1 cells expressed a number of hallmarks for human Sertoli cells, including SOX9, WT1, GDNF, SCF, BMP4, BMP6, GATA4, and VIM, and they were negative for 3β-HSD, SMA, and VASA. Higher levels of AR and FSHR were observed in hS1 cells compared to primary human Sertoli cells. Microarray analysis showed that 70.4% of global gene profiles of hS1 cells were similar to primary human Sertoli cells. Proliferation assay demonstrated that hS1 cells proliferated rapidly and they could be passaged for more than 30 times in 6 months. Neither Y chromosome microdeletion nor tumorgenesis was detected in this cell line and 90% normal karyotypes existed in hS1 cells. Collectively, we have established the first human Sertoli cell line with phenotype of primary human Sertoli cells, an unlimited proliferation potential and high safety, which could offer sufficient human Sertoli cells for basic research as well as reproductive and regenerative medicine. PMID:28152522
Meng, Xiang-Qian; Zheng, Gui-Ling; Zhao, Chuan-De; Wan, Fang-Hao; Li, Chang-You
2017-08-01
In this study, we describe a cell line, Ms-10C, cloned from the line QAU-Ms-E-10 (simplified Ms-10), an embryonic line from Mythimna separata. The cloned cell line was significantly more sensitive to nucleopolyhedrovirus (NPV). Ms-10C cells were mainly spherical with a diameter of 14.42 ± 2.23 μm. DNA amplification fingerprinting (DAF) confirmed the profile of PCR-amplified bands of the cloned cell line was consistent with those of the parental cell line, Ms-10. The sequencing result of the mitochondrial cytochrome c oxidase I (mtCO I) fragment confirmed that the amplified 636-bps mtCOI fragment was 100% identical to that of M. separata. Its chromosomes exhibited the typical characters of lepidopteran cell lines. Its population doubling time was 42.2 h at 27°C. Ms-10C was more sensitive than Ms-10 to both Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and M. separata nucleopolyhedrovirus (MsNPV). At 4 d post infection, the infection rates of two viruses reached 94.2 and 92.3%, respectively. The availability of this cell clone strain will provide a useful tool for the basic research on nucleopolyhedrovirus and for potential application in expression of recombinant proteins with baculovirus expression vector system.
Comparative study of the photodynamic effect in tumor and nontumor animal cell lines
NASA Astrophysics Data System (ADS)
Stoykova, Elena V.; Alexandrova, R.; Shurulinkov, Stanislav; Sabotinov, O.; Minchev, Georgi
2004-09-01
In this study we evaluate the cytotoxicity of two photosensitisers with absorption peaks in the green and red part of the spectrum on animal cell lines. The cytotoxicity assessment was performed for a tumor cell line LSCC-SF-Mc29, obtained from a transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29, a tumor line LSR-SF-SR, obtained from a transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin and for normal mouse and bovine cell lines. Up to now the effect of the photodynamic therapy on virus-induced cancers has not been clarified. The cells were treated with 5,10,15,20 - tetra (4-sulfophenyl) porphyrin with main absorption peak at 519 nm and a dye activated with a red light. The cells were seeded in 96-well plates at 2 x 104 cells/well. The cells were exposed to irradiation from a pulsed CuBr vapor laser at 510.6 nm and 578.2 nm and exposure rate 50 mW/cm2, from an Ar-ion laser at 514 nm and 1 mW/cm2 and to 655 nm-irradiation from a semiconductor laser at 10 mW/cm2. The biological activity of the tested compounds was measured by the neutral red uptake cytotoxicity test. The light dose-response curves and light exposures that ensure 50% drop in the treated cells viability in comparison with the cells grown in non-modified medium were obtained for each cell line. The cytotoxic effect of both photosensitisers is most distinguished for the tumor line LSCC-SF-Mc29. The 2-4 times higher viability of the normal cell lines in comparison with the tumor lines is established. The bovine cell lines are more vulnerable than the mouse lines.
Proglucagon-Derived Peptides Do Not Significantly Affect Acute Exocrine Pancreas in Rats
Akalestou, Elina; Christakis, Ioannis; Solomou, Antonia M.; Minnion, James S.; Rutter, Guy A.; Bloom, Stephen R.
2015-01-01
Objectives Reports have suggested a link between treatment with glucagon-like peptide 1 (GLP-1) analogues and an increased risk of pancreatitis. Oxyntomodulin, a dual agonist of both GLP-1 and glucagon receptors, is currently being investigated as a potential anti-obesity therapy, but little is known about its pancreatic safety. The aim of this study was to investigate the acute effect of oxyntomodulin and other proglucagon-derived peptides on the rat exocrine pancreas. Methods GLP-1, oxyntomodulin, glucagon and exendin-4 were infused into anaesthetised rats to measure plasma amylase concentration changes. Additionally, the effect of each peptide on both amylase release and proliferation in rat pancreatic acinar (AR42J) and primary isolated ductal cells was determined. Results Plasma amylase did not increase post peptide infusion, compared to vehicle and cholecystokinin (CCK); however, oxyntomodulin inhibited plasma amylase when co-administered with CCK. None of the peptides caused a significant increase in proliferation rate or amylase secretion from acinar and ductal cells. Conclusions The investigated peptides do not have an acute effect on the exocrine pancreas with regard to proliferation and plasma amylase, when administered individually. Oxyntomodulin appears to be a potent inhibitor of amylase release, potentially making it a safer anti-obesity agent regarding pancreatitis, compared to GLP-1 agonists. PMID:26731187
Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Isaac, Sara; Eden, Amir; Lauria, Ines; Langer, Thomas; Orly, Joseph
2015-06-15
High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Activation of Rho GTPase Cdc42 promotes adhesion and invasion in colorectal cancer cells.
Gao, Lei; Bai, Lan; Nan, Qing zhen
2013-07-25
The purpose of this study was to investigate the role of activated Rho GTPase cell division control protein 42 homolog (Cdc42) in colorectal cancer cell adhesion, migration, and invasion. The constitutively active form of Cdc42 (GFP-Cdc42L61) or control vector was overexpressed in the colorectal cancer cell line SW480. The localization of active Cdc42 was monitored by immunofluorescence staining, and the effects of active Cdc42 on cell migration and invasion were examined using an attachment assay, a wound healing assay, and a Matrigel migration assay in vitro. Immunofluorescence staining revealed that constitutively active Cdc42 predominately localized to the plasma membrane. Compared to SW480 cells transfected with the control vector, overexpression of constitutively active Cdc42 in SW480 cells promoted filopodia formation and cell stretch and dramatically enhanced cell adhesion to the coated plates. The wound healing assay revealed a significant increase of migration capability in SW480 cells expressing active Cdc42 compared to the control cells. Additionally, the Matrigel invasion assay demonstrated that active Cdc42 significantly promoted SW480 cell migration through the chamber. Our results suggest that active Rho GTPase Cdc42 can greatly enhance colorectal cancer cell SW480 to spread, migrate, and invade, which may contribute to colorectal cancer metastasis.
Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects
NASA Astrophysics Data System (ADS)
Kennedy, Ann
The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for the radioprotection of hematopoietic cells against the cell killing effects of radiation, and for improving survival in irradiated animals. Preliminary data suggest similar antioxidant protective effects for animals exposed to potentially lethal doses of proton radiation. Studies were also performed to determine whether dietary antioxidants could affect the incidence rates of malignancies in CBA mice exposed to 300 cGy proton (1 GeV/n) radiation or 50 cGy iron ion (1 GeV/n) radiation [9]. Two antioxidant formulations were utilized in these studies; an AOX formulation containing the mixture of antioxidant agents developed from our previous studies and an antioxidant dietary formulation containing the soybean-derived protease inhibitor known as the Bowman-Birk inhibitor (BBI). BBI was evaluated in the form of BBI Concentrate (BBIC), which is the form of BBI utilized in human trials. BBIC has been utilized in human trials since 1992, as described [10]. The major finding in the long-term animal studies was that there was a reduced risk of malignant lymphoma in mice exposed to space radiations and maintained on diets containing the antioxidant formulations. In addition, the two different dietary countermeasures also reduced the yields of a variety of different rare tumor types, arising from both epithelial and connective tissue cells, observed in the animals exposed to space radiation. REFERENCES [1] Guan J. et al (2004) Radiation Research 162, 572-579. [2] Wan X.S. et al (2005) Radiation Research 163, 364-368. [3] Wan X.S. et al (2005) Radiation Research 163, 232-240. [4] Guan J. et al (2006) Radiation Research 165, 373-378. [5] Wan X.S. et al (2006) International Journal of Radiation Oncology, Biology, Physics 64, 1475-1481. [6] Kennedy A.R. et al (2006) Radiation Research 166, 327-332. [7] Kennedy A.R. et al (2007) Radiation & Environmental Biophysics 46(2), 201-3. [8]Wambi, C., Sanzari, J., Wan, X.S., Nuth, M., Davis, J., Ko, Y.-H., Sayers, C.M., Baran, M., Ware, J.H. and Kennedy, A.R. Dietary antioxidants protect hematopoietic cells and improve animal survival following total body irradiation. Radiation Res. (in press) [9] Kennedy, A.R., Davis, J.G., Carlton, W. and Ware, J.H. Effects of dietary antioxidant supplementation on the development of malignancies and other neoplastic lesions in mice exposed to proton or iron ion radiation. Radiation Res. (submitted) [10] Kennedy, A.R. The Status of Human Trials Utilizing Bowman-Birk Inhibitor Concentrate from Soybeans. In: Soy in Health and Disease Prevention, edited by Michihiro Sugano, CRC Press Press LLC, Boca Raton, Florida, Chapter 12, pp. 207-223, 2005. ACKNOWLEDGEMENTS; This work was supported by the National Space Biomedical Research Institute through NASA NCC 9-58.
A natural laboratory for 40Ar/39Ar geochronology: ICDP cores from Lake Van, Turkey
NASA Astrophysics Data System (ADS)
Engelhardt, Jonathan; Sudo, Masafumi; Oberhänsli, Roland
2015-04-01
Pore water samples from ICDP Paleovan cores indicate a limited pore water exchange within Quaternary lake sediments. The core's volcaniclastic sections bear unaltered K-rich ternary feldspar and fresh to altered glass shards of predominantly rhyolitic composition. Whereas applying the 40Ar/39Ar method on feldspars resulted in ages timing a late-stage crystallization, glass shards had the potential to date the eruption. Volcanic glass is prone to modifications such as hydrous alteration (palagonitization) and devitrification (Cerling et al., 1985). These modifications affect the glass' chemistry and challenge the application of the 40Ar/39Ar method. Gaining precise radiometric ages from two phases has the potential to strengthen a climate-stratigraphic age-model (Stockhecke et al., 2014), and to significantly increase the temporal resolution on the deposition of the lake sediments. Vice versa the core's previous age model has the ability to question the reliability of 40Ar/39Ar eruption ages derived from ternary feldspars and glass shards. Multi- and single-grain total fusion on alkali feldspars from six volcaniclastic deposits resulted in Pleistocene ages that are in good agreement with the predicted age model. Feldspar phenocrysts from three ashes in the core's youngest section yielded consistent isochron ages that are significantly older than the model's prediction. Several distinct stratigraphic and paleomagnetic time markers of similar stratigraphic positions contradict to the older radiometric dates (Stockhecke et al., 2014). Partial resorption features of inherited feldspar domains and the involvement of excess 40Ar indicate incomplete degassing of older domains. To evaluate the magmatic history of the different domains EMPA mappings of trace elements that could be interpreted as Ar diffusion couples are currently conducted. Geochronology on Paleovan cores offers unique opportunities to monitor the effect of alteration on the Ar-systematics of volcanic glass shards and identifies a period of incorporation and incomplete degassing of inherited feldspar domains. References: Cerling, T.E., Brown, F.H., Bowman, J.R., 1985. Low-Temperature Alteration of Volcanic Glass - Hydration, Na, K, O-18 and Ar Mobility. Chemical Geology, 52 (3-4), 281-293. Stockhecke, M., Kwiecien, O., Vigliotti, L., Anselmetti, F., Beer, J., Çağatay, N. M., Channell, J. E. T., Kipfel, R., Lachner, J., Litt, T., Pickarski, N., Sturm, M., 2014. Chronostratigraphy of the 600,000 year old continental record of Lake Van (Turkey). Quarternary Science Reviews 104, 8-17
J-Plus: Measuring Ha Emission Line Flux In The Nearby Universe
NASA Astrophysics Data System (ADS)
Logroño-García, Rafael; Vilella-Rojo, Gonzalo; López-San Juan, Carlos; Varela, Jesús; Viironen, Kerttu
2017-10-01
In the present presentation we aim to validate the methodology designed to extract the Ha emission line flux from J-PLUS data, a twelve optical filter survey carried out with the 2 deg² field of view T80Cam camera, mounted at the JAST/T80 telescope in the OAJ, Teruel, Spain. We use the information of the twelve J-PLUS bands, including the J0660 narrow-band filter located at rest-frame Ha, over 42 deg² to extract de-reddened and [NII] decontaminated Ha emission line fluxes of 46 star-forming regions with previous SDSS and/or CALIFA spectroscopic information. The agreement of the J-PLUS photometric Ha flux and the spectroscopic one is remarkable, with a ratio R = 1,01 +/- 0,27. This demonstrates that we are able to recover reliable Ha fluxes from J-PLUS photometric data. With an expected final area of 8,500 deg2, the large J-PLUS footprint will permit the study of the spatially resolved star formation rate of thousands nearby galaxies at z 0,015, as well as the influence of the close environment. As an illustrative example, we looked to the close pair of interacting galaxies NGC3994 and NGC3995, finding an enhancement of the star formation rate not only in the central part of NGC3994 but also in outer parts of the disc.
Costa, A R; Marcelino, H; Gonçalves, I; Quintela, T; Tomás, J; Duarte, A C; Fonseca, A M; Santos, C R A
2016-09-01
The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood on the basal side and the cerebrospinal fluid (CSF) on the apical side. It is a relevant source of many polypeptides secreted to the CSF with neuroprotective functions and also participates in the elimination and detoxification of brain metabolites, such as β-amyloid (Aβ) removal from the CSF through transporter-mediated influx. The CP is also a target tissue for sex hormones (SHs) that have recognised neuroprotective effects against a variety of insults, including Aβ toxicity and oxidative stress in the central nervous system. The present study aimed to understand how SHs modulate Aβ-induced oxidative stress in a CP cell line (Z310 cell line) by analysing the effects of Aβ1-42 on oxidative stress, mitochondrial function and apoptosis, as well as by assessing how 17β-oestradiol (E2 ) and 5α-dihydrotestosterone (DHT) modulated these effects and the cellular uptake of Aβ1-42 by CP cells. Our findings show that E2 and DHT treatment reduce Aβ1-42 -induced oxidative stress and the internalisation of Aβ1-42 by CP epithelial cells, highlighting the importance of considering the background of SHs and therefore sex-related differences in Aβ metabolism and clearance by CP cells. © 2016 British Society for Neuroendocrinology.
Chronscinski, Denise; Cherukeri, Srujana; Tan, Fraser; Lomax, Joelle; Iorns, Elizabeth
2015-01-01
The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative (PCFMFRI) seeks to address growing concerns about reproducibility in scientific research by conducting replications of recent papers in the field of prostate cancer. This Registered Report describes the proposed replication plan of key experiments from “The Androgen Receptor Induces a Distinct Transcriptional Program in Castration-Resistant Prostate Cancer in Man” by Sharma and colleagues (2013), published in Cancer Cell in 2013. Of thousands of targets for the androgen receptor (AR), the authors elucidated a subset of 16 core genes that were consistently downregulated with castration and re-emerged with castration resistance. These 16 AR binding sites were distinct from those observed in cells in culture. The authors suggested that cellular context can have dramatic effects on downstream transcriptional regulation of AR binding sites. The present study will attempt to replicate Fig. 7C by comparing gene expression of the 16 core genes identified by Sharma and colleagues in xenograft tumor tissue compared to androgen treated LNCaP cells in vitro. The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative is a collaboration between the Prostate Cancer Foundation, the Movember Initiative, and Science Exchange, and the results of the replications will be published by PeerJ. PMID:26401447
Inhibiting glycogen synthase kinase-3 mitigates the hematopoietic acute radiation syndrome in mice.
Lee, Chang-Lung; Lento, William E; Castle, Katherine D; Chao, Nelson J; Kirsch, David G
2014-05-01
Exposure to a nuclear accident or radiological attack can cause death from acute radiation syndrome (ARS), which results from radiation injury to vital organs such as the hematopoietic system. However, the U.S. Food and Drug Administration (FDA) has not approved any medical countermeasures for this specific purpose. With growing concern over nuclear terrorism, there is an urgent need to develop small molecule deliverables that mitigate mortality from ARS. One emerging modulator of hematopoietic stem/progenitor cell (HSPC) activity is glycogen synthase kinase-3 (GSK-3). The inhibition of GSK-3 has been shown to augment hematopoietic repopulation in mouse models of bone marrow transplantation. In this study, we performed an in vitro screen using irradiated bone marrow mononuclear cells (BM-MNCs) to test the effects of four GSK-3 inhibitors: CHIR99021; 6-Bromoindirubin-3'-oxime (BIO); SB415286; and SB216763. This screen showed that SB216763 significantly increased the frequency of c-Kit(+) Lin(-) Sca1(+) (KLS) cells and hematopoietic colony-forming cells in irradiated BM-MNCs. Importantly, administration of a single dose of SB216763 to C57BL/6J mice by subcutaneous injection 24 h after total-body irradiation significantly improved hematopoietic recovery and mitigated hematopoietic ARS. Collectively, our results demonstrate that the GSK-3 inhibitor SB216763 is an effective medical countermeasure against acute radiation injury of the hematopoietic system.
NASA Astrophysics Data System (ADS)
Johnson, Jennifer E.; Rella, Chris W.
2017-08-01
Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.
Osoegawa, Atsushi; Hashimoto, Takafumi; Takumi, Yohei; Abe, Miyuki; Yamada, Tomonori; Kobayashi, Ryoji; Miyawaki, Michiyo; Takeuchi, Hideya; Okamoto, Tatsuro; Sugio, Kenji
2018-03-28
Background Acquired resistance (AR) to an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is a common event, and several underlying mechanisms, including T790 M, MET amplification and PTEN downregulation, have been reported for the common EGFR mutations. EGFR G719X is an uncommon mutation that has been reported to show sensitivity to EGFR-TKIs. However, no established cell lines harboring the EGFR G719X have been reported in the literature. Materials and Methods G719S-GR cells were established from malignant pleural effusion of a patient whose tumor developed AR from gefitinib treatment. G719S-GR cells were then genotyped and tested for drug sensitivities. Multiplex ligation-dependent probe amplification (MLPA) was used to compare the clinical tumor samples with G719S-GR. Results G719S-GR cells were resistant to EGFR-TKIs with an LC50 of around 10 μM. A genomic analysis showed that G719S-GR cells harbor the EGFR G719S mutation as well as the amplification of EGFR locus. The homozygous deletion of CDKN2A and the loss of PTEN and TSC1 were also detected. On comparing the copy number of tumor suppressor genes using MLPA, G719S-GR cells were found to lack one copy of PTEN, which was not observed in a tumor obtained before gefitinib treatment. Loss of PTEN may result in AKT activation. The mTORC1/2 inhibitor Torin-1 was able to inhibit the downstream signaling when combined with osimertinib. Discussion The newly established G719S-GR cell line may be useful for investigating the mechanism underlying the development of AR in the G719X mutation; the loss of PTEN may be one such mechanism.
Feddersen, R M; Van Ness, B G
1990-01-01
Previous characterization of mouse immunoglobulin kappa gene rearrangement products cloned from murine plasmacytomas has indicated that two recombination events can take place on a single kappa allele (R. M. Feddersen and B. G. Van Ness, Proc. Natl. Acad. Sci. USA 82:4792-4797, 1985; M. A. Shapiro and M. Weigert, J. Immunol. 139:3834-3839, 1987). To determine whether multiple recombinations on a single kappa allele can contribute to the formation of productive V-J genes through corrective recombinations, we have examined several Abelson murine leukemia virus-transformed pre-B-cell clones which rearrange the kappa locus during cell culture. Clonal cell lines which had rearranged one kappa allele nonproductively while maintaining the other allele in the germ line configuration were grown, and secondary subclones, which subsequently expressed kappa protein, were isolated and examined for further kappa rearrangement. A full spectrum of rearrangement patterns was observed in this sequential cloning, including productive and nonproductive recombinations of the germ line allele and secondary recombinations of the nonproductive allele. The results show that corrective V-J recombinations, with displacement of the nonproductive kappa gene, occur with a significant frequency (6 of 17 kappa-producing subclones). Both deletion and maintenance of the primary (nonfunctional) V-J join, as a reciprocal product, were observed. Images PMID:2153918
NASA Astrophysics Data System (ADS)
Matsuta, Hideyuki
2017-06-01
The coherent forward scattering (CFS) spectra of O I 844.6 nm and Ar I 842.5 nm lines in a radio frequency (RF) glow discharge were measured using a CFS spectrometer that functions in the Faraday configuration with permanent double-ring magnets and a diode-laser source. A significant change in the CFS spectrum of the Ar I 842.5 nm line was observed when the partial pressures of argon in a Hesbnd Ar RF glow discharge were changed . Based on the theoretical calculations of the CFS spectra performed using Faraday functions, a comparison between the observed and calculated spectra was performed. The CFS line profile of O I 844.6 nm and changes in the Ar I 842.5 nm CFS spectrum are explained by theoretical calculations.
Wang, Wenbao; Wang, Wei; Yao, Guodong; Ren, Qiang; Wang, Di; Wang, Zedan; Liu, Peng; Gao, Pinyi; Zhang, Yan; Wang, Shaojie; Song, Shaojiang
2018-05-10
Sarsasapogenin, an active ingredient in Rhizoma anemarrhenae, is a promising bioactive lead compound in the treatment of Alzheimer's disease. To search for more efficient anti-Alzheimer agents, a series of novel sarsasapogenin-triazolyl hybrids were designed, synthesized, and evaluated for their Aβ 1-42 aggregation inhibitory activities. Most of these new hybrids displayed potent Aβ 1-42 aggregation inhibition. In particular, the promising compounds 6j and 6o displayed a better ability to interrupt the formation of Aβ 1-42 fibrils than curcumin. Moreover, 6j and 6o exhibited moderate neuroprotective effects against H 2 O 2 -induced neurotoxicity in SH-SY5Y cells. To investigate whether 6j and 6o could improve cognitive deficits, we performed behavioral tests to examine the learning and memory impairments induced by intracerebroventricular injection of Aβ 1-42 (ICV-Aβ 1-42 ) in mice and TUNEL staining to observe neuronal apoptosis in the hippocampus. The results obtained indicated that oral treatment with 6j and 6o significantly ameliorated cognitive impairments in behavioral tests and TUNEL staining showed that 6j and 6o attenuated neuronal loss in the brain. Taken together, the results we obtained showed that the sarsasapogenin skeleton could be a promising structural template for the development of new anti-Alzheimer drug candidates, and compounds 6j and 6o have the potential to be important lead compounds for further research. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Och, Marek; Och, Anna; Cieśla, Łukasz; Kubrak, Tomasz; Pecio, Łukasz; Stochmal, Anna; Kocki, Janusz; Bogucka-Kocka, Anna
2015-06-01
The demand for podophyllotoxin and deoxypodophyllotoxin is still increasing and commercially exploitable sources are few and one of them, Podophyllum hexandrum Royle (Berberidaceae), is a "critically endangered" species. The first aim was to quantify the amount of podophyllotoxin and deoxypodophyllotoxin in 61 Juniperus (Cupressaceae) samples. Cytotoxic activity of podophyllotoxin and ethanolic leaf extracts of Juniperus scopulorum Sarg. "Blue Pacific" and Juniperus communis L. "Depressa Aurea" was examined against different leukemia cell lines. Ultra-performance liquid chromatography (UPLC) analysis was performed with the use of a Waters ACQUITY UPLC(TM) system (Waters Corp., Milford, MA). The peaks of podophyllotoxin and deoxypodophyllotoxin were assigned on the basis of their retention data and mass-to-charge ratio (m/z). Trypan blue assay was performed to obtain IC50 cytotoxicity values against selected leukemia cell lines. Juniperus scopulorum was characterized with the highest level of podophyllotoxin (486.7 mg/100 g DW) while Juniperus davurica Pall. contained the highest amount of deoxypodophyllotoxin (726.8 mg/100 g DW). Podophyllotoxin IC50 cytotoxicity values against J45.01 and CEM/C1 leukemia cell lines were 0.0040 and 0.0286 µg/mL, respectively. Juniperus scopulorum extract examined against J45.01 and HL-60/MX2 leukemia cell lines gave the respective IC50 values: 0.369-9.225 µg/mL. Juniperus communis extract was characterized with the following IC50 cytotoxity values against J45.01 and U-266B1 cell lines: 3.310-24.825 µg/mL. Juniperus sp. can be considered as an alternative source of podophyllotoxin and deoxypodophyllotoxin. Cytotoxic activity of podophyllotoxin and selected leaf extracts of Juniperus sp. against a set of leukemia cell lines was demonstrated.
β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure.
Schott, Micah B; Rasineni, Karuna; Weller, Shaun G; Schulze, Ryan J; Sletten, Arthur C; Casey, Carol A; McNiven, Mark A
2017-07-14
In liver steatosis ( i.e. fatty liver), hepatocytes accumulate many large neutral lipid storage organelles known as lipid droplets (LDs). LDs are important in the maintenance of energy homeostasis, but the signaling mechanisms that stimulate LD metabolism in hepatocytes are poorly defined. In adipocytes, catecholamines target the β-adrenergic (β-AR)/cAMP pathway to activate cytosolic lipases and induce their recruitment to the LD surface. Therefore, the goal of this study was to determine whether hepatocytes, like adipocytes, also undergo cAMP-mediated lipolysis in response to β-AR stimulation. Using primary rat hepatocytes and human hepatoma cells, we found that treatment with the β-AR agent isoproterenol caused substantial LD loss via activation of cytosolic lipases adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). β-Adrenergic stimulation rapidly activated PKA, which led to the phosphorylation of ATGL and HSL and their recruitment to the LD surface. To test whether this β-AR-dependent lipolysis pathway was altered in a model of alcoholic fatty liver, primary hepatocytes from rats fed a 6-week EtOH-containing Lieber-DeCarli diet were treated with cAMP agonists. Compared with controls, EtOH-exposed hepatocytes showed a drastic inhibition in β-AR/cAMP-induced LD breakdown and the phosphorylation of PKA substrates, including HSL. This observation was supported in VA-13 cells, an EtOH-metabolizing human hepatoma cell line, which displayed marked defects in both PKA activation and isoproterenol-induced ATGL translocation to the LD periphery. In summary, these findings suggest that β-AR stimulation mobilizes cytosolic lipases for LD breakdown in hepatocytes, and perturbation of this pathway could be a major consequence of chronic EtOH insult leading to fatty liver.
Ar-40/Ar-39 age determinations for the Rotoiti eruption, New Zealand
NASA Astrophysics Data System (ADS)
Flude, S.; Storey, M.
2013-12-01
The contemporaneous Rotoiti and Earthquake Flat ignimbrites, erupted from the Taupo Volcanic zone, New Zealand, form a distinctive tephrostratigraphic horizon in the Southern Pacific. Radioisotopic dating results for these eruptions remain controversial, with published ages ranging from 35.1 × 2.8 ka [1] to 71 × 6 ka [2], with 61.0 × 1.5 ka [3] often being cited as the most widely accepted age. These eruptions are difficult to date as their age is near the limit for various radiometric dating techniques, which are complicated by a large proportion of inherited material (xenocrysts) and a lack of phases suitable for dating. Glass-bearing plutonic blocks erupted with the Rotoiti and Earthquake Flat ignimbrites have previously been interpreted as deriving from a slowly cooled and incompletely solidified magma body that was sampled by the eruptions. They contain large vugs lined with euhedral quartz, sanidine and biotite crystals, indicating that these crystals grew in a gas or aqueous fluid rich environment and are interpreted to have formed shortly before or during eruption. Here we will present Ar-40/Ar-39 ages for sanidines and biotites extracted from vugs in lithic blocks erupted as part of the Earthquake Flat ignimbrite. We show that, even for vug-lining material, inherited ages remain a problem and are the likely source of the wide variation in published radiometric ages. Nevertheless, many of the Ar-40/Ar-39 ages are much younger than the 61 ka age [3] and are more consistent with the recent stratigraphic, C-14 and U-238/Th-230+(U-Th)/He ages that have been suggested (e.g. [4,5]). 1. Whitehead, N. & Ditchburn, R. New Zealand Journal of Geology and Geophysics 37, 381-383 (1994). 2. Ota, Y., Omura, A. & Iwata, H. New Zealand Journal of Geology and Geophysics 32, 327-331 (1989). 3. Wilson, C. J. N. et al. Quaternary Science Reviews 26, 1861-1870 (2007). 4. Molloy, C., Shane, P. & Augustinus, P. Geological Society of America Bulletin 121, 1666-1677 (2009). 5. Danišík, M. et al. Earth and Planetary Science Letters 349-350, 240-250 (2012).
ExoMol line lists - XXII. The rotation-vibration spectrum of silane up to 1200 K
NASA Astrophysics Data System (ADS)
Owens, A.; Yachmenev, A.; Thiel, W.; Tennyson, J.; Yurchenko, S. N.
2017-11-01
A variationally computed 28SiH4 rotation-vibration line list applicable for temperatures up to T = 1200 K is presented. The line list, called OY2T, considers transitions with rotational excitation up to J = 42 in the wavenumber range 0-5000 cm-1 (wavelengths λ > 2 μm). Just under 62.7 billion transitions have been calculated between 6.1 million energy levels. Rovibrational calculations have utilized a new `spectroscopic' potential energy surface determined by empirical refinement to 1452 experimentally derived energy levels up to J = 6, and a previously reported ab initio dipole moment surface. The temperature-dependent partition function of silane, the OY2T line list format, and the temperature dependence of the OY2T line list are discussed. Comparisons with the PNNL spectral library and other experimental sources indicate that the OY2T line list is robust and able to accurately reproduce weaker intensity features. The full line list is available from the ExoMol data base and the CDS data base.
Fu, Yiling; Lu, Yan; Liu, Eddie Y; Zhu, Xiaolong; Mahajan, Gouri J; Lu, Deyin; Roman, Richard J; Liu, Ruisheng
2013-05-01
Males have higher prevalence of hypertension and renal injury than females, which may be attributed in part to androgen-mediated effects on renal hemodynamics. Tubuloglomerular feedback (TGF) is an important mechanism in control of renal microcirculation. The present study examines the role of testosterone in the regulation of TGF responses. TGF was measured by micropuncture (change of stop-flow pressure, ΔPsf) in castrated Sprague-Dawley rats. The addition of testosterone (10(-7) mol/l) into the lumen increased the ΔPsf from 10.1 ± 1.2 to 12.2 ± 1.2 mmHg. To determine whether androgen receptors (AR) are involved, mRNA of AR was measured in the macula dense cells isolated by laser capture microdissection from kidneys, and a macula densa-like cell line (MMDD1). AR mRNA was expressed in the macula densa of rats and in MMDD1 cells. We next examined the effects of the AR blocker, flutamide (10(-5) mol/l) on the TGF response. The addition of flutamide blocked the effects of testosterone on TGF. The addition of Tempol (10(-4) mol/l) or polyethylene glycol-superoxide dismutase (100 U/ml) to scavenge superoxide blocked the effect of testosterone to augment TGF. We then applied apocynin to inhibit NAD(P)H oxidase and oxypurinol to inhibit xanthine oxidase and found the testosterone-induced augmentation of TGF was blocked. In additional experiments in MMDD1 cells, we found that testosterone increased O2(-) generation. Apocynin or oxypurinol blocked the testosterone-induced increases of O2(-), while blockade of COX-2 with NS-398 had no effect. These findings suggest that testosterone enhances TGF response by stimulating O2(-) production in macula densa via an AR-dependent pathway.
Scher, Howard I; Graf, Ryon P; Schreiber, Nicole A; McLaughlin, Brigit; Lu, David; Louw, Jessica; Danila, Daniel C; Dugan, Lyndsey; Johnson, Ann; Heller, Glenn; Fleisher, Martin; Dittamore, Ryan
2017-06-01
Circulating tumor cells (CTCs) expressing AR-V7 protein localized to the nucleus (nuclear-specific) identify metastatic castration-resistant prostate cancer (mCRPC) patients with improved overall survival (OS) on taxane therapy relative to the androgen receptor signaling inhibitors (ARSi) abiraterone acetate, enzalutamide, and apalutamide. To evaluate if expanding the positivity criteria to include both nuclear and cytoplasmic AR-V7 localization ("nuclear-agnostic") identifies more patients who would benefit from a taxane over an ARSi. The study used a cross-sectional cohort. Between December 2012 and March 2015, 193 pretherapy blood samples, 191 of which were evaluable, were collected and processed from 161 unique mCRPC patients before starting a new line of systemic therapy for disease progression at the Memorial Sloan Kettering Cancer Center. The association between two AR-V7 scoring criteria, post-therapy prostate-specific antigen (PSA) change (PTPC) and OS following ARSi or taxane treatment, was explored. One criterion required nuclear-specific AR-V7 localization, and the other required an AR-V7 signal but was agnostic to protein localization in CTCs. Correlation of AR-V7 status to PTPC and OS was investigated. Relationships with survival were analyzed using multivariable Cox regression and log-rank analyses. A total of 34 (18%) samples were AR-V7-positive using nuclear-specific criteria, and 56 (29%) were AR-V7-positive using nuclear-agnostic criteria. Following ARSi treatment, none of the 16 nuclear-specific AR-V7-positive samples and six of the 32 (19%) nuclear-agnostic AR-V7-positive samples had ≥50% PTPC at 12 weeks. The strongest baseline factor influencing OS was the interaction between the presence of nuclear-specific AR-V7-positive CTCs and treatment with a taxane (hazard ratio 0.24, 95% confidence interval 0.078-0.79; p=0.019). This interaction was not significant when nuclear-agnostic criteria were used. To reliably inform treatment selection using an AR-V7 protein biomarker in CTCs, nuclear-specific localization is required. We analyzed outcomes for patients with metastatic castration-resistant prostate cancer on androgen receptor signaling inhibitors and standard chemotherapy. Patients with circulating tumor cells that had AR-V7 protein in the cellular nuclei were very likely to survive longer on taxane-based chemotherapy, and tests unable to distinguish where the protein is located in the cell are not as predictive of benefit. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Centrosome Amplification: A Potential Marker of Breast Cancer Agressiveness
2006-07-01
centrosome amplification. Introduction of DNA damage in the MCF-7 cell line by treatment with hydroxyurea (HU) or daunorubicin (DR) resulted in the...cycles of DNA synthesis and mitotic division in hydroxyurea - arrested Chinese hamster ovary cells. J Cell Biol, 130: 105-115, 1995. 23. D’Assoro, A. B...from cycles of DNA synthesis and mitotic division in hydroxyurea -arrested Chinese hamster ovary cells. J Cell Biol, 1995. 130(1): p. 105-15. 22
Multi-quantum excitation in optically pumped alkali atom: rare gas mixtures
NASA Astrophysics Data System (ADS)
Galbally-Kinney, K. L.; Rawlins, W. T.; Davis, S. J.
2014-03-01
Diode-pumped alkali laser (DPAL) technology offers a means of achieving high-energy gas laser output through optical pumping of the D-lines of Cs, Rb, and K. The exciplex effect, based on weak attractive forces between alkali atoms and polarizable rare gas atoms (Ar, Kr, Xe), provides an alternative approach via broadband excitation of exciplex precursors (XPAL). In XPAL configurations, we have observed multi-quantum excitation within the alkali manifolds which result in infrared emission lines between 1 and 4 μm. The observed excited states include the 42FJ states of both Cs and Rb, which are well above the two-photon energy of the excitation laser in each case. We have observed fluorescence from multi-quantum states for excitation wavelengths throughout the exciplex absorption bands of Cs-Ar, Cs-Kr, and Cs-Xe. The intensity scaling is roughly first-order or less in both pump power and alkali concentration, suggesting a collisional energy pooling excitation mechanism. Collisional up-pumping appears to present a parasitic loss term for optically pumped atomic systems at high intensities, however there may also be excitation of other lasing transitions at infrared wavelengths.
The Mysterious Case of the Solar Argon Abundance Near Sunspots in Flares
NASA Astrophysics Data System (ADS)
Doschek, George A.; Warren, Harry
2016-05-01
Recently Doschek et al. (2015, ApJL, 808, L7) reported on an observation of an enhancement of the abundance of Ar XIV relative to Ca XIV of about a factor of 30 near a sunspot during a flare, observed in spectra recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. This enhancement yields an argon/calcium abundance ratio 7 times greater than expected from the photospheric abundances. Such a large abundance anomaly is unprecedented in the solar atmosphere. We interpreted this result as due to an inverse First Ionization Potential (FIP) effect. Argon is a high-FIP element and calcium is a low-FIP element. In the published work two lines of Ar XIV were observed and one line was tentatively identified as an Ar XI line. The number of argon lines was limited by the limitations of the flare study that was executed. In this paper we report observing a similar enhancement in a full-CCD EIS flare spectrum in argon lines with reasonable statistics and lack of blending that lie within the EIS wavelength ranges. The observed lines include two Ar XI lines, four Ar XIII lines, six Ar XIV lines, and one Ar XV line. The enhancement is far less than reported in Doschek et al. (2015) but exhibits similar morphology. The argon abundance is close to a photospheric abundance in the enhanced area, and is only marginally an inverse FIP effect. However, as for the published cases, this newly discovered enhancement occurs in association with a sunspot in a small area only a few arcsec in size and therefore we feel it is produced by the same physics that produced the strong inverse FIP case. There is no enhancement effect observed in the normally high-FIP sulfur and oxygen line ratios relative to lines of low-FIP elements available to EIS. Calculations of path lengths in the strongest enhanced area in Doschek et al. (2015) indicate that the argon/calcium enhancement is due to a depletion of low-FIP elements. This work is supported by a NASA Hinode grant.
Taparia, Shruti; Khanna, Aparna
2016-01-01
Background: Over the last 400 years, cocoa and chocolate have been described as having potential medicinal value, being consumed as a beverage or eaten as food. Concentration–dependant, antiproliferation, and cytotoxic effects of some of their polyphenolic constituents have been demonstrated against various cancers. Such an effect remains to be demonstrated in ovarian cancer Objective: To investigate the effect of cocoa procyanidins against ovarian cancer in vitro using OAW42 and OVCAR3 cell lines. Materials and Methods: Cocoa procyanidins were extracted and enriched from non alkalized cocoa powder. The polyphenolic content and antioxidant activity were determined. Effect on cell viability was determined after the treatment with ≤1000 μg/mL cocoa procyanidin-rich extract on OAW42 and OVCAR3 and normal human dermal fibroblasts. Similarly, chemosensitization effect was determined by pretreating cancer cell lines with extract followed by doxorubicin hydrochloride treatment. The effect of treatment on cell cycle and P-glycoprotein (P-gp) expression was determined using flow cytometry. Results: The cocoa extract showed high polyphenolic content and antioxidant activity. Treatment with extract caused cytotoxicity and chemosensitization in OAW42 and OVCAR3 cell lines. Normal dermal fibroblasts showed an increase in cell viability post treatment with extract. Treatment with extract affected the cell cycle and an increasing percentage of cells in hypodiploid sub-G1/G0 phase was observed. Treatment of OVCAR3 with the extract caused reduction of P-gp expression. Conclusion: Cocoa procyanidins were found to be selectively cytotoxic against epithelial ovarian cancer, interfered with the normal cell cycle and sensitized cells to subsequent chemotherapeutic treatment. Chemosensitization was found to be associated with P-gp reduction in OVCAR3 cells. SUMMARY Among the naturally occurring flavonoids, procyanidins have been shown to be effective against cancersNon alkalized cocoa powder is one of the richest sources of procyanidinsCocoa procyanidin-rich extract (CPRE) caused cytotoxicity and chemosensitization in ovarian carcinoma cell lines OAW42 and OVCAR3CPRE affected normal cell cycle progressionCPRE also downregulated P-glycoprotein, which mediates chemoresistance in multidrug-resistant OVCAR3 cell line. Abbreviations used: P-gp: P-glycoprotein, CPRE: Cocoa procyanidin rich extract, DMAC: 4-dimethylaminocinnamaldehyde, DPPH: Diphenylpicrylhydrazyl, ABTS: 2,2’;-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), PI: Propidium iodide, FITC: Fluorescein isothiocyanate, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, TLC: Thin layer chromatography, HPTLC: High-performance thin layer chromatography. PMID:27279694
Okegawa, Takatsugu; Ninomiya, Naoki; Masuda, Kazuki; Nakamura, Yu; Tambo, Mitsuhiro; Nutahara, Kikuo
2018-06-01
We examined whether androgen receptor splice variant 7 (AR-V7) in circulating tumor cell(CTC)clusters can be used to predict survival in patients with bone metastatic castration resistant-prostate cancer (mCRPC) treated with abiraterone or enzalutamide. We retrospectively enrolled 98 patients with CRPC on abiraterone or enzalutamide, and investigated the prognostic value of CTC cluster detection (+ v -) and AR-V7 detection (+ v -) using a CTC cluster detection - based AR-V7 mRNA assay. We examined ≤50% prostate-specific antigen (PSA) responses, PSA progression-free survival (PSA-PFS), clinical and radiological progression-free survival (radiologic PSF), and overall survival (OS). We then assessed whether AR-V7 expression in CTC clusters identified after On-chip multi-imaging flow cytometry was related to disease progression and survival after first-line systemic therapy. All abiraterone-treated or enzalutamide-treated patients received prior docetaxel. The median follow-up was 20.7 (range: 3.0-37.0) months in the abiraterone and enzalutamide cohorts, respectively. Forty-nine of the 98 men (50.0%) were CTC cluster (-), 23 of the 98 men (23.5%) were CTC cluster(+)/AR-V7(-), and 26 of the 98 men (26.5%) were CTC cluster(+)/AR-V7(+). CTC cluster(+)/AR-V7(+) patients were more likely to have EOD ≥3 at diagnosis (P = 0.003), pain (P = 0.023), higher alkaline phosphatase levels (P < 0.001), and visceral metastases (P < 0.001). On multivariable analysis, pretherapy CTC cluster(+), CTC cluster(+)/AR-V7(-), and ALP >UNL were independently associated with a poor PSA-PFS, radiographic PFS, and OS in abiraterone-treated patients and enzalutamide-treated patients. The CTC clusters and AR-V7-positive CTC clusters detected were important for assessing the response to abiraterone or enzalutamide therapy and for predicting disease outcome. © 2018 Wiley Periodicals, Inc.
Systematic Design of High-performance Hybrid Feedback Algorithms
2015-06-24
Automatic Control, vol. 59, no. 9, pp. 2426- 2441 , 2014. J6. Liberzon, D.; Nešić, D.; Teel, A.R., “Lyapunov-based small-gain theorems for hybrid...on Automatic Control, vol. 59, no. 9, pp. 2426- 2441 , 2014. J6. Liberzon, D.; Nešić, D.; Teel, A.R., “Lyapunov-based small-gain theorems for hybrid
2016-03-01
MKP-1 may be a down stream effector of prostate cancer cell survival that facilitates therapy resistance. The work proposed sought to test the...being undertaken with MKP-1 over expression and knock-down within these cell lines to test for in vivo therapy resistance. 15. SUBJECT TERMS...cell survival that facilitates therapy resistance. The work proposed sought to test the hypothesis that MKP-1 plays a role in the development of
Modelling cell population growth with applications to cancer therapy in human tumour cell lines.
Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N
2004-01-01
In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.
Wong, Lilian I L; Labrecque, Mark P; Ibuki, Naokazu; Cox, Michael E; Elliott, John E; Beischlag, Timothy V
2015-03-25
Despite stringent restrictions on their use by many countries since the 1970s, the endocrine disrupting chemicals, DDT and DDE are still ubiquitous in the environment. However, little attention has been directed to p,p'-DDT and the anti-androgen, p,p'-DDE on androgen receptor (AR) target gene transcription in human cells. Inhibitors of androgenic activity may have a deleterious clinical outcome in prostate cancer screens and progression, therefore we determined whether environmentally relevant concentrations of p,p'-DDT and p,p'-DDE negatively impact AR-regulated expression of prostate-specific antigen (PSA), and other AR target genes in human LNCaP and VCaP prostate cancer cells. Quantitative real-time PCR and immuno-blotting techniques were used to measure intracellular PSA, PSMA and AR mRNA and protein levels. We have shown for the first time that p,p'-DDT and p,p'-DDE repressed R1881-inducible PSA mRNA and protein levels in a dose-dependent manner. Additionally, we used the fully automated COBAS PSA detection system to determine that extracellular PSA levels were also significantly repressed. These chemicals achieve this by blocking the recruitment of AR to the PSA promoter region at 10 μM, as demonstrated by the chromatin immunoprecipitation (ChIP) in LNCaP cells. Both p,p'-DDT and p,p'-DDE repressed R1881-inducible AR protein accumulation at 10 μM. Thus, we conclude that men who have been exposed to either DDT or DDE may produce a false-negative PSA test when screening for prostate cancer, resulting in an inaccurate clinical diagnosis. More importantly, prolonged exposure to these anti-androgens may mimic androgen ablation therapy in individuals with prostate cancer, thus exacerbating the condition by inadvertently forcing adaptation to this stress early in the disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Gharavi, MJ; Nobakht, M; Khademvatan, SH; Bandani, E; Bakhshayesh, M; Roozbehani, M
2011-01-01
Background The study was aimed to show the effect of molecular mechanism of Aqueous Garlic Extract (AGE) on expression of IFNγ and iNOS genes in Leishmania major. Methods Leishmania major promastigotes (MRHO/IR/75/ER) were added to the in-vitro cultured J774 cell line, the cells were incubated for 72 hours. Various concentrations of garlic extract (9.25, 18.5, 37, 74, 148 mg/ml) were added to the infected cells. MTT assay was applied for cellular proliferation. After 72 hours of incubation, supernatants were collected and total RNA was extracted from the infected cells. The express of IFNγ and iNOS genes were studied by RT-PCR method. Results The colorimetric MTT assay after 3 days of incubation showed cytotoxic effect of garlic extract with an IC50 of 37 mg/ml. In addition, IFNγ and iNOS genes expression by RT-PCR indicated that garlic extract lead to over expression of these genes in J774 cell line infected with L. major. Conclusion Garlic extract exerts cytotoxic effect on infected J774 cell line. In addition, the hypothesis that garlic can improve cellular immunity with raising the expression of IFNγ and of iNOS genes confirmed. PMID:22347300
EUVE and IR observations of the Polars HU Aqr and AR UMa
NASA Astrophysics Data System (ADS)
Howell, S.; Ciardi, D.
1999-12-01
Simultaneous EUVE and ground-based near-infrared J and K observations of the magnetic CV HU Aqr were performed. The observations occurred during a super-high state never before observed in HU Aqr. The average EUVE count-rate was 30-60 times higher than had been measured previously, allowing us to present the first ever EUV spectra of HU Aqr. The near-infrared observations show a corresponding flux increase of 2-3 times over previous J and K observations. However, the near-infrared eclipse minimum during this super-high state are the same as seen in previous observations, indicating that the eclipse in the near-infrared is total. We present a detailed comparison of the EUV and near-infrared emission of HU Aqr as a function of orbital phase and discuss the geometry and physical properties of the high energy and infrared emitting regions. AR UMa is the brightest EUV source yet observed with the EUVE satellite and is also the polar with the largest magnetic field, 250 MG. EUVE observations of the polar AR UMa have allowed, for the first time, EUV time-resolved spectral analysis and radial velocity measurements. We present EUV phase-resolved photometry and spectroscopy and show that the He 304 emission line is not produced on the heated face of the secondary star, but emanates from the inner illuminated regions of the coupling region and accretion stream. We comment on the overall structure of the accretion geometry as well. The authors acknowledge partial support of the research by NASA cooperative agreement NCC5-138 via an EUVE guest Observer mini-grant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, T.; Tanaka, K.; Koyano, I.
1982-07-01
Charge transfer reactions Ar/sup +/ (/sup 2/P/sub J/)+N/sub 2/..-->..N/sup +//sub 2/+Ar (1) and Ar/sup +/(/sup 2/P/sub J/)+CO..-->..CO/sup +/+Ar (2) have been studied for the two spin-orbit states (J = 3/2 and 1/2) separately using the threshold electron-secondary ion coincidence (TESICO) technique. Relative cross sections for the two states sigma(3/2) and sigma(1/2) have been determined at three collision energies 0.2, 1.4, and 5.8 eV. It has been found that in Reaction (1), sigma(3/2) is larger than sigma (1/2) with ratio sigma(1/2)/sigma(3/2) ranging from 0.5 to 0.8 depending on the collision energy, whereas in Reaction (2), sigma(1/2) is larger than sigma(3/2) withmore » the ratio ranging from 1.2 to 1.6. The implications of these results are discussed with regard to the roles of energy resonance and Franck--Condon factors in charge transfer processes.« less
MESH2D Grid generator design and use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].
Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga.
Hiroishi, S; Sugie, K; Yoshida, T; Morimoto, J; Taniguchi, Y; Imai, S; Kurebayashi, J
2001-06-26
Marginisporum crassissimum (Yendo) Ganesan, a marine red alga found in the ordinal coastal sea around Japan, revealed antitumor (antimetastatic) effects in vitro and in vivo. In in vitro experiments, extracts of this alga inhibited not only the growth of several tumor cell lines, such as B16-BL6 (a mouse melanoma cell line), JYG-B (a mouse mammary carcinoma cell line) and KPL-1 (a human mammary carcinoma cell line), but also invasion of B16-BL6 cells in a culture system. In in vivo experiments, the lung metastasis of B16-BL6 cells inoculated to the tail vein of B57BL/6J mice was inhibited by intraperitoneal administration of an extract from the alga. In addition, life prolongation of B57BL/6J mice inoculated with B16-BL6 cells was also observed by the intraperitoneal administration of the extract. An effective substance showing B16-BL6 growth inhibition in vitro was partially purified by filtration and hydrophobic column chromatography, and was revealed to be sensitive to trypsin-digestion and heat-treatment. The molecular weight of the substance was greater than 100 kDa. This is the first study demonstrating antitumor (antimetastatic) effects of M. crassissimum.
NASA Astrophysics Data System (ADS)
Asselin, Pierre; Jabri, Atef; Potapov, Alexey; Loreau, Jérome; van der Avoird, Ad
2017-06-01
Taking advantage of our sensitive laser spectrometer coupled to a pulsed slit jet, we recorded near the νb{2} vibration a series of rovibrational transitions of the NH_3-Ar van der Waals (vdW) complex. These transitions involve in the ground vibrational state several internal rotor states corresponding to the ortho{NH_3} and para{NH_3} spin modifications of the complex. They are labeled by Σ_{a}(j,k), Σ_{s}(j,k), Π_{a}(j,k) and Π_{s}(j,k) where Σ(K=0) and Π(K=1) indicate the projection K of the total rotational angular momentum J on the vdW axis, the superscripts s and a designate a symmetric or antisymmetric NH_3 inversion wave function, and j, k quantum numbers indicate the correlation between the internal-rotor state of the complex and the j, k rotational state of the free NH_3 monomer. Five bands have been identified, only one of which was partly observed before. They include transitions starting from the Σ_{a}(j=0 or j=1) state without any internal angular momentum, consequently they can be assigned from the band contour of a linear-molecule-like K=0, ΔJ=1 transition. The energies and splittings of the rovibrational levels of the νb{2}=1←0 spectrum derived from the analysis of the Π_{s}, Σ_{s}(j=1)← Σ_{a}(j=0), k=0 bands and mostly of the Σ_{s}, Π_{s} and Σ_{a}(j=1)←Σ_{a}(j=1), k=1 bands bring relevant information about the νb{2} dependence of the NH_3-Ar interaction, the rovibrational dynamics of the NH_3-Ar complex and provide a sensitive test of a recently developed 4D potential energy surface that includes explicitly its dependence on the umbrella motion. P. Asselin, Y. Berger, T. R. Huet, R. Motiyenko, L. Margulès, R. J. Hendricks, M. R. Tarbutt, S. Tokunaga, B. Darquié, PCCP 19, 4576 (2017), G. T. Fraser, A.S. Pine and W. A. Kreiner, J. Chem. Phys. 94, 7061 (1991). J. Loreau, J. Liévin, Y. Scribano and A. van der Avoird, J. Chem. Phys. 141, 224303 (2014).
Cocchi, F; Menotti, L; Mirandola, P; Lopez, M; Campadelli-Fiume, G
1998-12-01
We report on the functional cloning of a hitherto unknown member of the immunoglobulin (Ig) superfamily selected for its ability to confer susceptibility to herpes simplex virus (HSV) infection on a highly resistant cell line (J1.1-2 cells), derived by exposure of BHKtk- cells to a recombinant HSV-1 expressing tumor necrosis factor alpha (TNF-alpha). The sequence of herpesvirus Ig-like receptor (HIgR) predicts a transmembrane protein with an ectodomain consisting of three cysteine-bracketed domains, one V-like and two C-like. HIgR shares its ectodomain with and appears to be an alternative splice variant of the previously described protein PRR-1 (poliovirus receptor-related protein). Both HIgR and PRR-1 conferred on J1.1-2 cells susceptibility to HSV-1, HSV-2, and bovine herpesvirus 1. The viral ligand of HIgR and PRR-1 is glycoprotein D, a constituent of the virion envelope long known to mediate viral entry into cells through interaction with cellular receptor molecules. Recently, PRR-1, renamed HveC (herpesvirus entry mediator C), and the related PRR-2, renamed HveB, were reported to mediate the entry of HSV-1, HSV-2, and bovine herpesvirus 1, and the homologous poliovirus receptor was reported to mediate the entry of pseudorabies virus (R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, Science 280:1618-1620, 1998; M. S. Warner, R. J. Geraghty, W. M. Martinez, R. I. Montgomery, J. C. Whitbeck, R. Xu, R. J. Eisenberg, G. H. Cohen, and P. G. Spear, Virology 246:179-189, 1998). Here we further show that HIgR or PRR-1 proteins detected by using a monoclonal antibody to PRR-1 are widely distributed among human cell lines susceptible to HSV infection and commonly used for HSV studies. The monoclonal antibody neutralized virion infectivity in cells transfected with HIgR or PRR-1 cDNA, as well as in the human cell lines, indicating a direct interaction of virions with the receptor molecule, and preliminarily mapping this function to the ectodomain of HIgR and PRR-1. Northern blot analysis showed that HIgR or PRR-1 mRNAs were expressed in human tissues, with the highest expression being detected in nervous system samples. HIgR adds a novel member to the cluster of Ig superfamily members able to mediate the entry of alphaherpesviruses into cells. The wide distribution of HIgR or PRR-1 proteins among human cell lines susceptible to HSV infection, coupled with the neutralizing activity of the antibody in the same cells, provides direct demonstration of the actual use of this cluster of molecules as HSV-1 and HSV-2 entry receptors in human cell lines. The high level of expression in samples from nervous system makes the use of these proteins in human tissues very likely. This cluster of molecules may therefore be considered to constitute bona fide receptors for HSV-1 and HSV-2.
Lee, Hong Jo; Lee, Kyung Youn; Jung, Kyung Min; Park, Kyung Je; Lee, Ko On; Suh, Jeong-Yong; Yao, Yongxiu; Nair, Venugopal; Han, Jae Yong
2017-12-01
Avian leukosis virus subgroup J (ALV-J), first isolated in the late 1980s, has caused economic losses to the poultry industry in many countries. As all chicken lines studied to date are susceptible to ALV infection, there is enormous interest in developing resistant chicken lines. The ALV-J receptor, chicken Na + /H + exchange 1 (chNHE1) and the critical amino acid sequences involved in viral attachment and entry have already been characterized. However, there are no reported attempts to induce resistance to the virus by targeted genome modification of the receptor sequences. In an attempt to induce resistance to ALV-J infection, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated (CRISPR/Cas9)-based genome editing approaches to modify critical residues of the chNHE1 receptor in chicken cells. The susceptibility of the modified cell lines to ALV-J infection was examined using enhanced green fluorescent protein (EGFP)-expressing marker viruses. We showed that modifying the chNHE1 receptor by artificially generating a premature stop codon induced absolute resistance to viral infection, with mutations of the tryptophan residue at position 38 (Trp38) being very critical. Single-stranded oligodeoxynucleotide (ssODN)-mediated targeted recombination of the Trp38 region revealed that deletions involving the Trp38 residue were most effective in conferring resistance to ALV-J. Moreover, protein structure analysis of the chNHE1 receptor sequence suggested that its intrinsically disordered region undergoes local conformational changes through genetic alteration. Collectively, these results demonstrate that targeted mutations on chNHE1 alter the susceptibility to ALV-J and the technique is expected to contribute to develop disease-resistant chicken lines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing
1983-01-01
We examined the ability of a set of cloned chicken ovalbumin (cOVA)- specific, Id-restricted, T cell hybridomas to produce interleukin-2 in response to cOVA presented by the Ia+ B cell lymphoma line, A20-2J. Although viable A20-2J cells presented native, denatured, and fragmented cOVA more or less equally well, A20-2J cells that were glutaraldehyde-fixed could present only enzymatically or chemically fragmented cOVA. These results suggest that antigen fragmentation may be both necessary and sufficient to define accessory cell processing of soluble antigens so that they may be recognized in association with I- region molecules by T cells. PMID:6193218
A potential therapeutic target for FLT3-ITD AML: PIM1 Kinase
Fathi, Amir T.; Arowojolu, Omotayo; Swinnen, Ian; Sato, Takashi; Rajkhowa, Trivikram; Small, Donald; Marmsater, Fredrik; Robinson, John E.; Gross, Stefan David; Martinson, Matthew; Allen, Shelley; Kallan, Nicholas C.; Levis, Mark
2011-01-01
Patients with acute myeloid leukemia (AML) and a FLT3 internal tandem duplication (ITD) mutation have a poor prognosis, and FLT3 inhibitors are now under clinical investigation. PIM1, a serine/threonine kinase, is up-regulated in FLT3-ITD AML and may be involved in FLT3-mediated leukemogenesis. We employed a PIM1 inhibitor, AR00459339 (Array Biopharma Inc.), to investigate the effect of PIM1 inhibition in FLT3-mutant AML. Like FLT3 inhibitors, AR00459339 was preferentially cytotoxic to FLT3-ITD cells, as demonstrated in the MV4-11, Molm-14, and TF/ITD cell lines, as well as 12 FLT3-ITD primary samples. Unlike FLT3 inhibitors, AR00459339 did not suppress phosphorylation of FLT3, but did promote the de-phosphorylation of downstream FLT3 targets, STAT5, AKT, and BAD. Combining AR00459339 with a FLT3 inhibitor resulted in additive to mildly synergistic cytotoxic effects. AR00459339 was cytotoxic to FLT3-ITD samples from patients with secondary resistance to FLT3 inhibitors, suggesting a novel benefit to combining these agents. We conclude that PIM1 appears to be closely associated with FLT3 signaling, and that inhibition of PIM1 may hold therapeutic promise, either as monotherapy, or by overcoming resistance to FLT3 inhibitors. PMID:21802138
NASA Astrophysics Data System (ADS)
Smethie, W. M., Jr.; Smith, J.; Curry, R. G.; Yashayaev, I.; Azetsu-Scott, K.
2016-02-01
129I released to the North Sea from two nuclear fuel reprocessing plants is transported through the Nordic Seas and the Arctic Ocean and is entering the deep North Atlantic, predominantly in dense Denmark Strait Overflow Water (DSOW). CFCs enter the surface ocean and also become incorporated in DSOW. Measurements of temperature, salinity, CFCs and 129I have been made at least annually along WOCE/CLIVAR line AR7W in the Labrador Sea from the mid 1990s to present, along Line W extending from the continental slope southeast of Cape Cod toward Bermuda from 2003 to 2014, and along a single occupation of a line extending from Bermuda southeast across the Bermuda Rise in 2010. The measurements in the Labrador Sea were used as input to DSOW flowing from there to the subtropical western Atlantic Ocean. We compared the temporal changes along Line W to the temporal changes along the AR7W line and applied the boundary current model of Waugh and Hall (J. Phys. Oceanogr. 35,1538-1552, 2005) to the Line W and Bermuda Rise line observations to determine the transit time of DSOW transported to Line W in the Deep Western Boundary Current (DWBC) and transported to the southeastern flank of Bermuda via interior flow paths. The lateral mixing time scale along these two flow paths was also estimated with this model. CFC-11 and 129I increase monotonically in the DSOW in the Labrador Sea and salinity oscillates on a 5-year cycle. The boundary current model reproduces all of these trends. The transit time and lateral mixing time constant for DSOW transported to Line W are 7 years (mean flow velocity of 2.1 cm/sec) and 3-6 years, respectively, and for DSOW transported to the southeast flank of Bermuda are 6-10 years and 2-5 years.
Timm, Matthew J; Matta, Chérif F
2014-12-01
Argon tetroxide (ArO4) is the last member of the N=50 e(-) isoelectronic and isosteric series of ions: SiO4(4-), PO4(3-), SO4(2-), and ClO4(-). A high level computational study demonstrated that while ArO4 is kinetically stable it has a considerable positive enthalpy of formation (of ~298kcal/mol) (Lindh et al., 1999. J. Phys. Chem. A 103, pp. 8295-8302) confirming earlier predictions by Pyykkö (1990. Phys. Scr. 33, pp. 52-53). ArO4 can be expected to be difficult to synthesize by traditional chemistry due to its metastability and has not yet been synthesized at the time of writing. A computational investigation of the changes in the chemical bonding of chlorate (ClO4(-)) when the central chlorine atom undergoes a nuclear transmutation from the unstable artificial chlorine isotope (38)Cl to the stable rare argon isotope (38)Ar through β-decay, hence potentially leading to the formation of ArO4, is reported. A mathematical model is presented that allows for the prediction of yields following the recoil of a nucleus upon ejecting a β-electron. It is demonstrated that below a critical angle between the ejected β-electron and that of the accompanying antineutrino their respective linear momentums can cancel to such an extent as imparting a recoil to the daughter atom insufficient for breaking the Ar-O bond. As a result, a primary retention yield of ~1% of ArO4 is predicted following the nuclear disintegration. The study is conducted at the quadratic configuration interaction with single and double excitations [QCISD/6-311+G(3df)] level of theory followed by an analysis of the electron density by the quantum theory of atoms in molecules (QTAIM). Crossed potential energy surfaces (PES) were used to construct a PES from the metastable ArO4 ground singlet state to the Ar-O bond dissociation product ArO3+O((3)P) from which the predicted barrier to dissociation is ca. 22kcal/mol and the exothermic reaction energy is ca. 28kcal/mol [(U)MP2/6-311+G(d)]. Copyright © 2014 Elsevier Ltd. All rights reserved.
C5a induces caspase-dependent apoptosis in brain vascular endothelial cells in experimental lupus.
Mahajan, Supriya D; Tutino, Vincent M; Redae, Yonas; Meng, Hui; Siddiqui, Adnan; Woodruff, Trent M; Jarvis, James N; Hennon, Teresa; Schwartz, Stanley; Quigg, Richard J; Alexander, Jessy J
2016-08-01
Blood-brain barrier (BBB) dysfunction complicates central nervous system lupus, an important aspect of systemic lupus erythematosus. To gain insight into the underlying mechanism, vascular corrosion casts of brain were generated from the lupus mouse model, MRL/lpr mice and the MRL/MpJ congenic controls. Scanning electron microscopy of the casts showed loss of vascular endothelial cells in lupus mice compared with controls. Immunostaining revealed a significant increase in caspase 3 expression in the brain vascular endothelial cells, which suggests that apoptosis could be an important mechanism causing cell loss, and thereby loss of BBB integrity. Complement activation occurs in lupus resulting in increased generation of circulating C5a, which caused the endothelial layer to become 'leaky'. In this study, we show that C5a and lupus serum induced apoptosis in cultured human brain microvascular endothelial cells (HBMVECs), whereas selective C5a receptor 1 (C5aR1) antagonist reduced apoptosis in these cells, demonstrating C5a/C5aR1-dependence. Gene expression of initiator caspases, caspase 1 and caspase 8, and pro-apoptotic proteins death-associated protein kinase 1, Fas-associated protein (FADD), cell death-inducing DNA fragmentation factor 45 000 MW subunit A-like effector B (CIDEB) and BCL2-associated X protein were increased in HBMVECs treated with lupus serum or C5a, indicating that both the intrinsic and extrinsic apoptotic pathways could be critical mediators of brain endothelial cell apoptosis in this setting. Overall, our findings suggest that C5a/C5aR1 signalling induces apoptosis through activation of FADD, caspase 8/3 and CIDEB in brain endothelial cells in lupus. Further elucidation of the underlying apoptotic mechanisms mediating the reduced endothelial cell number is important in establishing the potential therapeutic effectiveness of C5aR1 inhibition that could prevent and/or reduce BBB alterations and preserve the physiological function of BBB in central nervous system lupus. © 2016 John Wiley & Sons Ltd.
Tadokoro-Cuccaro, Rieko; Davies, John; Mongan, Nigel P; Bunch, Trevor; Brown, Rosalind S; Audi, Laura; Watt, Kate; McEwan, Iain J; Hughes, Ieuan A
2014-01-01
Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS. © 2014 S. Karger AG, Basel.
The Steroidogenic Acute Regulatory Protein (StAR) Is Regulated by the H19/let-7 Axis.
Men, Yi; Fan, Yanhong; Shen, Yuanyuan; Lu, Lingeng; Kallen, Amanda N
2017-02-01
The steroidogenic acute regulatory protein (StAR) governs the rate-limiting step in steroidogenesis, and its expression varies depending on the needs of the specific tissue. Tight control of steroid production is essential for multiple processes involved in reproduction, including follicular development, ovulation, and endometrial synchronization. Recently, there has been a growing interest in the role of noncoding RNAs in the regulation of reproduction. Here we demonstrate that StAR is a novel target of the microRNA let-7, which itself is regulated by the long noncoding RNA (lncRNA) H19. Using human and murine cell lines, we show that overexpression of H19 stimulates StAR expression by antagonizing let-7, which inhibits StAR at the post-transcriptional level. Our results uncover a novel mechanism underlying the regulation of StAR expression and represent the first example of lncRNA-mediated control of the rate-limiting step of steroidogenesis. This work thus adds to the body of literature describing the multiple roles in oncogenesis, cellular growth, glucose metabolism, and now regulation of steroidogenesis, of this complex lncRNA. Copyright © 2017 by the Endocrine Society.
Biller, Steven J; Wayne, Kyle J; Winkler, Malcolm E; Burkholder, William F
2011-02-01
Bacteria must accurately replicate and segregate their genetic information to ensure the production of viable daughter cells. The high fidelity of chromosome partitioning is achieved through mechanisms that coordinate cell division with DNA replication. We report that YycJ (WalJ), a predicted member of the metallo-β-lactamase superfamily found in most low-G+C Gram-positive bacteria, contributes to the fidelity of cell division in Bacillus subtilis. B. subtilis ΔwalJ (ΔwalJ(Bsu)) mutants divide over unsegregated chromosomes more frequently than wild-type cells, and this phenotype is exacerbated when DNA replication is inhibited. Two lines of evidence suggest that WalJ(Bsu) and its ortholog in the Gram-positive pathogen Streptococcus pneumoniae, WalJ(Spn) (VicX), play a role in cell wall metabolism: (i) strains of B. subtilis and S. pneumoniae lacking walJ exhibit increased sensitivity to a narrow spectrum of cephalosporin antibiotics, and (ii) reducing the expression of a two-component system that regulates genes involved in cell wall metabolism, WalRK (YycFG), renders walJ essential for growth in B. subtilis, as observed previously with S. pneumoniae. Together, these results suggest that the enzymatic activity of WalJ directly or indirectly affects cell wall metabolism and is required for accurate coordination of cell division with DNA replication.