Science.gov

Sample records for cell line proteome

  1. Multiplexed Quantitative Proteomics for High-Throughput Comprehensive Proteome Comparisons of Human Cell Lines.

    PubMed

    Edwards, Amanda; Haas, Wilhelm

    2016-01-01

    The proteome is the functional entity of the cell, and perturbations of a cellular system almost always cause changes in the proteome. These changes are a molecular fingerprint, allowing characterization and a greater understanding of the effect of the perturbation on the cell as a whole. Monitoring these changes has therefore given great insight into cellular responses to stress and disease states, and analytical platforms to comprehensively analyze the proteome are thus extremely important tools in biological research. Mass spectrometry has evolved as the most relevant technology to characterize proteomes in a comprehensive way. However, due to a lack of throughput capacity of mass spectrometry-based proteomics, researchers frequently use measurement of mRNA levels to approximate proteome changes. Growing evidence of substantial differences between mRNA and protein levels as well as recent improvements in mass spectrometry-based proteomics are heralding an increased use of mass spectrometry for comprehensive proteome mapping. Here we describe the use of multiplexed quantitative proteomics using isobaric labeling with tandem mass tags (TMT) for the simultaneous quantitative analysis of five cancer cell proteomes in biological duplicates in one mass spectrometry experiment.

  2. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  3. Deep proteome and transcriptome mapping of a human cancer cell line

    PubMed Central

    Nagaraj, Nagarjuna; Wisniewski, Jacek R; Geiger, Tamar; Cox, Juergen; Kircher, Martin; Kelso, Janet; Pääbo, Svante; Mann, Matthias

    2011-01-01

    While the number and identity of proteins expressed in a single human cell type is currently unknown, this fundamental question can be addressed by advanced mass spectrometry (MS)-based proteomics. Online liquid chromatography coupled to high-resolution MS and MS/MS yielded 166 420 peptides with unique amino-acid sequence from HeLa cells. These peptides identified 10 255 different human proteins encoded by 9207 human genes, providing a lower limit on the proteome in this cancer cell line. Deep transcriptome sequencing revealed transcripts for nearly all detected proteins. We calculate copy numbers for the expressed proteins and show that the abundances of >90% of them are within a factor 60 of the median protein expression level. Comparisons of the proteome and the transcriptome, and analysis of protein complex databases and GO categories, suggest that we achieved deep coverage of the functional transcriptome and the proteome of a single cell type. PMID:22068331

  4. A quantitative proteomics-based signature of platinum sensitivity in ovarian cancer cell lines

    PubMed Central

    Fan, Gaofeng; Wrzeszczynski, Kazimierz O.; Fu, Cexiong; Pappin, Darryl J.; Lucito, Robert; Tonks, Nicholas K.; Su, Gang

    2014-01-01

    Although DNA encodes the molecular instructions that underlie control of cell function, it is the proteins that are primarily responsible for implementing those instructions. Therefore, quantitative analyses of the proteome would be expected to yield insights into important candidates for the detection and treatment of disease. We present an iTRAQ (Isobaric Tagging for Relative and Absolute Quantification)-based proteomic analysis of 10 ovarian cancer cell lines and 2 normal ovarian surface epithelial cell lines. We profiled the abundance of 2659 cellular proteins, of which 1273 were common to all 12 cell lines. Of the 1273, 75 proteins exhibited elevated expression, and 164 proteins had diminished expression in the cancerous cells compared to the normal cell lines. The iTRAQ expression profiles allowed us to segregate cell lines based upon sensitivity and resistance to carboplatin. Importantly, we observed no substantial correlation between protein abundance and RNA expression or epigenetic, DNA methylation data. Furthermore, we could not discriminate between sensitivity and resistance to carboplatin on the basis of RNA expression and DNA methylation data alone. This study illustrates the importance of proteomics-based discovery for defining the basis for the carboplatin response in ovarian cancer and highlights candidate proteins, particularly involved in cellular redox regulation, homologous recombination and DNA damage repair, that otherwise could not have been predicted from whole genome and expression data sources alone. PMID:25406946

  5. Proteome profiling of human epithelial ovarian cancer cell line TOV-112D.

    PubMed

    Gagné, Jean-Philippe; Gagné, Pierre; Hunter, Joanna M; Bonicalzi, Marie-Eve; Lemay, Jean-François; Kelly, Isabelle; Le Page, Cécile; Provencher, Diane; Mes-Masson, Anne-Marie; Droit, Amaud; Bourgais, David; Poirier, Guy G

    2005-07-01

    A proteome profiling of the epithelial ovarian cancer cell line TOV-112D was initiated as a protein expression reference in the study of ovarian cancer. Two complementary proteomic approaches were used in order to maximise protein identification: two-dimensional gel electrophoresis (2DE) protein separation coupled to matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and one-dimensional gel electrophoresis (1DE) coupled to liquid-chromatography tandem mass spectrometry (LC MS/MS). One hundred and seventy-two proteins have been identified among 288 spots selected on two-dimensional gels and a total of 579 proteins were identified with the 1DE LC MS/MS approach. This proteome profiling covers a wide range of protein expression and identifies several proteins known for their oncogenic properties. Bioinformatics tools were used to mine databases in order to determine whether the identified proteins have previously been implicated in pathways associated with carcinogenesis or cell proliferation. Indeed, several of the proteins have been reported to be specific ovarian cancer markers while others are common to many tumorigenic tissues or proliferating cells. The diversity of proteins found and their association with known oncogenic pathways validate this proteomic approach. The proteome 2D map of the TOV-112D cell line will provide a valuable resource in studies on differential protein expression of human ovarian carcinomas while the 1DE LC MS/MS approach gives a picture of the actual protein profile of the TOV-112D cell line. This work represents one of the most complete ovarian protein expression analysis reports to date and the first comparative study of gene expression profiling and proteomic patterns in ovarian cancer.

  6. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines.

    PubMed

    Vester, Diana; Rapp, Erdmann; Gade, Dörte; Genzel, Yvonne; Reichl, Udo

    2009-06-01

    Over the last years virus-host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2-D DIGE and nanoHPLC-nanoESI-MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2-D gels of the proteomes of uninfected and influenza-infected host cells, 16 quantitatively altered protein spots (at least +/-1.7-fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon-induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome-wide profiling of virus infection can provide insights into complexity and dynamics of virus-host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.

  7. Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.

    PubMed

    Díez, Paula; Droste, Conrad; Dégano, Rosa M; González-Muñoz, María; Ibarrola, Nieves; Pérez-Andrés, Martín; Garin-Muga, Alba; Segura, Víctor; Marko-Varga, Gyorgy; LaBaer, Joshua; Orfao, Alberto; Corrales, Fernando J; De Las Rivas, Javier; Fuentes, Manuel

    2015-09-04

    A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of

  8. Analytical constraints for the analysis of human cell line secretomes by shotgun proteomics.

    PubMed

    Malard, Véronique; Chardan, Laetitia; Roussi, Stamatiki; Darolles, Carine; Sage, Nicole; Gaillard, Jean-Charles; Armengaud, Jean

    2012-01-04

    Human cell line secretome represents a valuable source of therapeutic targets and candidate biomarkers. Secreted proteins found in biological fluids or culture media are by essence highly diluted. Secretome investigation with proteomic approaches is hardly compatible with the high content of proteins found in complete cell culture media. Therefore, many studies are currently done with media containing few or no protein. Such conditions may perturb cell metabolism and proliferation. Here, we compared seventeen different compositions of culture media for the human bronchial epithelial BEAS-2B cell line. Cell viability, proliferation rate and initial protein charge were systematically compared. We have shown that an important difficulty for the proteomic analysis is due to the presence of detergents such as Pluronic F-68 which hinders peptide mass spectrometry. The high glucose containing DMEM medium which is free of proteins was shown to preserve a good viability and proliferation of cells. With this conditioning medium, we identified 81 extracellular proteins in the secretome of BEAS-2B cells. Moreover, to illustrate this approach, we exposed BEAS-2B cells to a low toxic dose of CoCl(2,) and found 24 extracellular proteins modulated by cobalt. This study highlights the possible contribution of such proteomic approach in the field of toxicology.

  9. Proteomic analysis of pancreatic endocrine tumor cell lines treated with the histone deacetylase inhibitor trichostatin A.

    PubMed

    Cecconi, Daniela; Donadelli, Massimo; Rinalducci, Sara; Zolla, Lello; Scupoli, Maria Teresa; Scarpa, Aldo; Palmieri, Marta; Righetti, Pier Giorgio

    2007-05-01

    Effects of the histone-deacetylases inhibitor trichostatin A (TSA) on the growth of three different human pancreatic endocrine carcinoma cell lines (CM, BON, and QGP-1) have been assessed via dosage-dependent growth inhibition curves. TSA determined strong inhibition of cell growth with similar IC(50) values for the different cell lines: 80.5 nM (CM), 61.6 nM (BON), and 86 nM (QGP-1), by arresting the cell cycle in G2/M phase and inducing apoptosis. 2DE and nano-RP-HPLC-ESI-MS/MS analysis revealed 34, 33, and 38 unique proteins differentially expressed after TSA treatment in the CM, BON, and QGP-1 cell lines, respectively. The most important groups of modulated proteins belong to cell proliferation, cell cycle, and apoptosis classes (such as peroxiredoxins 1 and 2, the diablo protein, and HSP27). Other proteins pertain to processes such as regulation of gene expression (nucleophosmin, oncoprotein dek), signal transduction (calcium-calmodulin), chromatin, and cytoskeleton organization (calgizzarin, dynein, and lamin), RNA splicing (nucleolin, HNRPC), and protein folding (HSP70). The present data are in agreement with previous proteomic analyses performed on pancreatic ductal carcinoma cell lines (Cecconi, D. et al.., Electrophoresis 2003; Cecconi, D. et al., J. Proteome Res. 2005) and place histone-deacetylases inhibitors among the potentially most powerful drugs for the treatment of pancreatic tumors.

  10. Proteomic analyses of brain tumor cell lines amidst the unfolded protein response

    PubMed Central

    Redzic, Jasmina S.; Gomez, Joe D.; Hellwinkel, Justin E.; Anchordoquy, Thomas J.; Graner, Michael W.

    2016-01-01

    Brain tumors such as high grade gliomas are among the deadliest forms of human cancers. The tumor environment is subject to a number of cellular stressors such as hypoxia and glucose deprivation. The persistence of the stressors activates the unfolded proteins response (UPR) and results in global alterations in transcriptional and translational activity of the cell. Although the UPR is known to effect tumorigenesis in some epithelial cancers, relatively little is known about the role of the UPR in brain tumors. Here, we evaluated the changes at the molecular level under homeostatic and stress conditions in two glioma cell lines of differing tumor grade. Using mass spectrometry analysis, we identified proteins unique to each condition (unstressed/stressed) and within each cell line (U87MG and UPN933). Comparing the two, we find differences between both the conditions and cell lines indicating a unique profile for each. Finally, we used our proteomic data to identify the predominant pathways within these cells under unstressed and stressed conditions. Numerous predominant pathways are the same in both cell lines, but there are differences in biological and molecular classifications of the identified proteins, including signaling mechanisms, following UPR induction; we see that relatively minimal proteomic alterations can lead to signaling changes that ultimately promote cell survival. PMID:27323862

  11. Proteomics Analysis of Ovarian Cancer Cell Lines and Tissues Reveals Drug Resistance-associated Proteins

    PubMed Central

    CRUZ*, ISA N.; COLEY*, HELEN M.; KRAMER, HOLGER B.; MADHURI, THUMULURU KAVITAH; SAFUWAN, NUR A.M.; ANGELINO, ANA RITA; YANG, MIN

    2016-01-01

    Background: Carboplatin and paclitaxel form the cornerstone of chemotherapy for epithelial ovarian cancer, however, drug resistance to these agents continues to present challenges. Despite extensive research, the mechanisms underlying this resistance remain unclear. Materials and Methods: A 2D-gel proteomics method was used to analyze protein expression levels of three human ovarian cancer cell lines and five biopsy samples. Representative proteins identified were validated via western immunoblotting. Ingenuity pathway analysis revealed metabolomic pathway changes. Results: A total of 189 proteins were identified with restricted criteria. Combined treatment targeting the proteasome-ubiquitin pathway resulted in re-sensitisation of drug-resistant cells. In addition, examination of five surgical biopsies of ovarian tissues revealed α-enolase (ENOA), elongation factor Tu, mitochondrial (EFTU), glyceraldehyde-3-phosphate dehydrogenase (G3P), stress-70 protein, mitochondrial (GRP75), apolipoprotein A-1 (APOA1), peroxiredoxin (PRDX2) and annexin A (ANXA) as candidate biomarkers of drug-resistant disease. Conclusion: Proteomics combined with pathway analysis provided information for an effective combined treatment approach overcoming drug resistance. Analysis of cell lines and tissues revealed potential prognostic biomarkers for ovarian cancer. *These Authors contributed equally to this study. PMID:28031236

  12. Modulation of proteomic profile in H295R adrenocortical cell line induced by mitotane.

    PubMed

    Stigliano, A; Cerquetti, L; Borro, M; Gentile, G; Bucci, B; Misiti, S; Piergrossi, P; Brunetti, E; Simmaco, M; Toscano, V

    2008-03-01

    Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chloro-phenyl) ethane (o,p'-DDD), is a compound that represents the effective agent in the treatment of the adrenocortical carcinoma (ACC), able to block cortisol synthesis. In this type of cancer, the biological mechanism induced by this treatment remains still unknown. In this study, we have already shown a greater impairment in the first steps of the steroidogenesis and recognized a little effect on cell cycle. We also evaluated the variation of proteomic profile of the H295R ACC cell line, either in total cell extract or in mitochondria-enriched fraction after treatment with mitotane. In total cell extracts, triose phosphate isomerase, alpha-enolase, D-3-phosphoglycerate dehydrogenase, peroxiredoxin II and VI, heat shock protein 27, prohibitin, histidine triad nucleotide-binding protein, and profilin-1 showed a different expression. In the mitochondrial fraction, the following proteins appeared to be down regulated: aldolase A, peroxiredoxin I, heterogenous nuclear ribonucleoprotein A2/B1, tubulin-beta isoform II, heat shock cognate 71 kDa protein, and nucleotide diphosphate kinase, whereas adrenodoxin reductase, cathepsin D, and heat shock 70 kDa protein 1A were positively up-regulated. This study represents the first proteomic study on the mitotane effects on ACC. It permits to identify some protein classes affected by the drug involved in energetic metabolism, stress response, cytoskeleton structure, and tumorigenesis.

  13. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line

    PubMed Central

    Baldridge, Gerald D; Baldridge, Abigail S; Witthuhn, Bruce A; Higgins, LeeAnn; Markowski, Todd W; Fallon, Ann M

    2014-01-01

    Wolbachia pipientis a widespread vertically transmitted intracellular bacterium, provides a tool for insect control through manipulation of host-microbe interactions. We report proteomic characterization of wStr, a Wolbachia strain associated with a strong cytoplasmic incompatibility phenotype in its native host, Laodelphax striatellus. In the Aedes albopictus C/wStr1 mosquito cell line, wStr maintains a robust, persistent infection. MS/MS analyses of gel bands revealed a protein “footprint” dominated by Wolbachia-encoded chaperones, stress response and cell membrane proteins, including the surface antigen WspA, a peptidoglycan-associated lipoprotein and a 73 kDa outer membrane protein. Functional classifications and estimated abundance levels of 790 identified proteins suggested that expression, stabilization and secretion of proteins predominate over bacterial genome replication and cell division. High relative abundances of cysteine desulfurase, serine/glycine hydroxymethyl transferase, and components of the α-ketoglutarate dehydrogenase complex in conjunction with above average abundances of glutamate dehydrogenase and proline utilization protein A support Wolbachia genome-based predictions for amino acid metabolism as a primary energy source. wStr expresses 15 Vir proteins of a Type IV secretion system and its transcriptional regulator. Proteomic characterization of a robust insect-associated Wolbachia strain provides baseline information that will inform further development of in vitro protocols for Wolbachia manipulation. PMID:25155417

  14. A proteomic study on a human osteosarcoma cell line Saos-2 treated with diallyl trisulfide.

    PubMed

    Zhang, Yong Kui; Zhang, Xu Hua; Li, Jian Min; Sun, De Sheng; Yang, Qiang; Diao, Dong Mei

    2009-09-01

    Garlic is generally used as a therapeutic reagent against various diseases, and numerous studies have indicated that garlic and its derivatives can reduce the risk of various types of human cancer. Diallyl trisulfide (DATS), a major member of garlic derivatives, could inhibit the cell proliferation by triggering either cell cycle arrest or apoptosis in a variety of cancer cell lines as shown in many studies. However, whether DATS has the same effect on human osteosarcoma cells remains unknown. In this study, we have attempted to analyze the effects of DATS on cell proliferation, cell cycle, induction of apoptosis, global protein expression pattern in a human osteosarcoma cell line Saos-2 cells, and the potential molecular mechanisms of the action of DATS. Saos-2 cells, a human osteosarcoma cell line, were treated with or without 25, 50, and 100 micromol/l DATS for various time intervals. The cell proliferation, cell cycle progression, and apoptosis were examined in this study. Then, after treatment with or without 50 micromol/l DATS for 48 h, protein add pattern in Saos-2 cells were systematically studied using two-dimensional electrophoresis and mass spectrometry. DATS could inhibit the proliferation of Saos-2 cells in a dose-dependent and time-dependent manner. Moreover, the percentage of apoptotic cell and cell arrest in G0/G1 phase was also dose-dependent and time-dependent upon DATS treatment. A total of 27 unique proteins in Saos-2 cells, including 18 downregulated proteins and nine upregulated proteins, were detected with significant changes in their expression levels corresponding to DATS administration. Interestingly, almost half of these proteins (13 of 27) are related to either the cell cycle or apoptosis. DATS has the ability to suppress cell proliferation of Saos-2 cells by blocking cell cycle progression and inducing apoptosis in a dose and time-dependent manner. The proteomic results presented, therefore, provide additional support to the hypothesis

  15. Comparative proteomic analysis of paclitaxel resistance-related proteins in human breast cancer cell lines

    PubMed Central

    Fujioka, Hiroya; Sakai, Akiko; Tanaka, Satoru; Kimura, Kosei; Miyamoto, Akiko; Iwamoto, Mitsuhiko; Uchiyama, Kazuhisa

    2017-01-01

    Paclitaxel is widely used to treat various cancers; however, resistance to this drug is a major obstacle to breast cancer chemotherapy. To identify the proteins involved in paclitaxel resistance, the present study compared the proteomes of MCF-7 human breast cancer cells and its paclitaxel-resistant subclone MCF-7/PTX. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry, 11 upregulated and 12 downregulated proteins were identified in MCF-7/PTX cells compared with the parental cell line. These 23 proteins were functionally classified as stress-induced chaperones, metabolic enzymes and cytoskeletal proteins. The anti-apoptotic proteins, stress-70 protein, 78-kD glucose-regulated protein, peptidyl-prolyl cis-trans isomerase A (PPIA) and heterogeneous nuclear ribonucleoprotein H3, were also upregulated in MCF-7/PTX cells. Notably, knockdown of the stress-response chaperone PPIA using small interfering RNA in MCF-7/PTX cells restored their sensitivity to paclitaxel. These findings indicated that PPIA may have an important role in paclitaxel resistance in MCF-7/PTX cells. PMID:28123557

  16. Metabolic and proteomic study of NS0 myeloma cell line following the adaptation to protein-free medium.

    PubMed

    de la Luz-Hernández, K R; Rojas-del Calvo, L; Rabasa-Legón, Y; Lage-Castellanos, A; Castillo-Vitlloch, A; Díaz, J; Gaskell, S

    2008-07-21

    Proteomics and metabolomics technologies are potentially useful tool for the study of the very complex process of cell adaptation to protein-free medium. In this work, we used the iTRAQ technology to analyze different protein levels in adapted and non-adapted NS0 myeloma cell line. Several proteins with differential expression profile were characterized and quantified. Carbohydrate metabolism, protein synthesis and membrane transport were the principal pathways that change after the adaptation. Changes in lactate production rate with respect to glucose consumption rate were observed according to the changes observed by proteomic.

  17. Comparative proteomic analysis of drug sodium iron chlorophyllin addition to Hep 3B cell line.

    PubMed

    Zhang, Jun; Wang, Wenhai; Yang, Fengying; Zhou, Xinwen; Jin, Hong; Yang, Peng-yuan

    2012-09-21

    The human hepatoma 3B cell line was chosen as an experimental model for in vitro test of drug screening. The drugs included chlorophyllin and its derivatives such as fluo-chlorophyllin, sodium copper chlorophyllin, and sodium iron chlorophyllin. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method was used in this study to obtain the primary screening results. The results showed that sodium iron chlorophyllin had the best LC(50) value. Proteomic analysis was then performed for further investigation of the effect of sodium iron chlorophyllin addition to the Hep 3B cell line. The proteins identified from a total protein extract of Hep 3B before and after the drug addition were compared by two-dimensional-gel-electrophoresis. Then 32 three-fold differentially expressed proteins were successfully identified by MALDI-TOF-TOF-MS. There are 29 unique proteins among those identified proteins. These proteins include proliferating cell nuclear antigen (PCNA), T-complex protein, heterogeneous nuclear protein, nucleophosmin, heat shock protein A5 (HspA5) and peroxiredoxin. HspA5 is one of the proteins which are involved in protecting cancer cells against stress-induced apoptosis in cultured cells, protecting them against apoptosis through various mechanisms. Peroxiredoxin has anti-oxidant function and is related to cell proliferation, and signal transduction. It can protect the oxidation of other proteins. Peroxiredoxin has a close relationship with cancer and can eventually become a disease biomarker. This might help to develop a novel treatment method for carcinoma cancer.

  18. Immunoassay-based proteome profiling of 24 pancreatic cancer cell lines.

    PubMed

    Alhamdani, Mohamed Saiel Saeed; Youns, Mahmoud; Buchholz, Malte; Gress, Thomas M; Beckers, Marie-Claire; Maréchal, Daniel; Bauer, Andrea; Schröder, Christoph; Hoheisel, Jörg D

    2012-06-27

    Pancreatic ductal adenocarcinoma is one of the most deadly forms of cancers, with a mortality that is almost identical to incidence. The inability to predict, detect or diagnose the disease early and its resistance to all current treatment modalities but surgery are the prime challenges to changing the devastating prognosis. Also, relatively little is known about pancreatic carcinogenesis. In order to better understand relevant aspects of pathophysiology, differentiation, and transformation, we analysed the cellular proteomes of 24 pancreatic cancer cell lines and two controls using an antibody microarray that targets 741 cancer-related proteins. In this analysis, 72 distinct disease marker proteins were identified that had not been described before. Additionally, categorizing cancer cells in accordance to their original location (primary tumour, liver metastases, or ascites) was made possible. A comparison of the cells' degree of differentiation (well, moderately, or poorly differentiated) resulted in unique marker sets of high relevance. Last, 187 proteins were differentially expressed in primary versus metastatic cancer cells, of which the majority is functionally related to cellular movement.

  19. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line

    PubMed Central

    Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R.; Shen, Han-Ming; Lin, Qingsong

    2016-01-01

    To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQTM quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway AnalysisTM (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death. PMID:26915414

  20. Monitoring changes in proteome during stepwise adaptation of a MDCK cell line from adherence to growth in suspension.

    PubMed

    Kluge, Sabine; Benndorf, Dirk; Genzel, Yvonne; Scharfenberg, Klaus; Rapp, Erdmann; Reichl, Udo

    2015-08-20

    Adaptation of continuous cell lines to growth in suspension in a chemically defined medium has significant advantages for design and optimization in manufacturing of biologicals. In this work, changes in the protein expression level during a step-wise adaptation of an adherent Madin Darby canine kidney (MDCK) cell line to suspension growth were analyzed. Therefore, three cell line adaptations were performed independently. Two adaptations were monitored closely to characterize short term changes in protein expression levels after serum deprivation. In addition, initial stages of suspension growth were analyzed for both adaptations. The third adaptation involved MDCK suspension cells (MDCKSUS2) grown over an extended time period to achieve robust growth characteristics. Here, cells of the final stage of adaptation were compared with their parental cell line (MDCKADH). A combination of two dimensional differential gel electrophoresis for relative protein quantification and tandem mass spectrometry for protein identification enabled insights into cellular physiology. The two closely monitored cell line adaptations followed different routes regarding specific changes in protein expression but resulted in similar proteome profiles at the initial stages of suspension growth analyzed. Compared to the MDCKADH cells more than 90% of all changes in the protein expression level were identified after serum deprivation and were related to cytoskeletal structure, genetic information processing and cellular metabolism. Myosin proteins, involved in cellular detachment by actin-myosin contractile mechanisms were also differentially expressed. Interestingly, for both of the two adaptations, proteins linked for tumorigenicity, like lactoylglutathione lyase and sulfotransferase 1A1 were differentially expressed. In contrast, none of these proteins were differentially expressed for the MDCKSUS2 cell line. Overall, proteomic monitoring allowed identification of key proteins involved in

  1. The Single Cell Proteome Project - Cell-Cycle Dependent Protein Expression in Breast Cancer Cell Lines

    DTIC Science & Technology

    2005-01-01

    sequencing or hybridization array capillary chromatography. After a 6-min-long preliminary technologies.30,31 separation, fractions from the first...characterize single cells. These tools include mass cating cells contain diploid, S-phase and tetraploid frac- spectrometry, electrochemistry and capillary...separation tions; and some advanced tumors contain tetraploid and methods. This review focuses on the use of capillary aneuploid cells [2

  2. Proteomic differences between microvascular endothelial cells and the EA.hy926 cell line forming three-dimensional structures.

    PubMed

    Ma, Xiao; Sickmann, Albert; Pietsch, Jessica; Wildgruber, Robert; Weber, Gerhard; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2014-03-01

    Proteomic changes of two types of human endothelial cells (ECs) were determined and compared to morphological alterations occurring during the scaffold-free in vitro formation of 3D structures resembling vascular intimas. The EA.hy926 cell line and human microvascular ECs (HMVECs) were cultured on a random positioning machine or static on ground (normal gravity) for 5 and 7 days, before their morphology was examined and their protein content was analysed by MS after free-flow electrophoretic separation. A total of 1175 types of proteins were found in EA.hy926 cells and 846 in HMVEC forming 3D structures faster than the EA.hy926 cells. Five hundred and eighty-four of these kinds of proteins were present in both types of cells. They included a number of metabolic enzymes, of structure-related and stress proteins. Comparing proteins of EA.hy926 cells growing either adherently on ground or in 3D aggregates on the random positioning machine revealed that ribosomal proteins were enhanced, while tubes are formed and various components of 26S proteasomes remained prevalent in static normal gravity control cells only. The fast developing tube-like 3D structures of HMVEC suggested a transient augmentation of ribosomal proteins during the 3D assembling of ECs.

  3. Anticancer drug clustering based on proteomic profiles and a sensitivity database in a lung cancer cell line panel

    PubMed Central

    HINO, MITSUNORI; MATSUDA, KUNIKO; MIYANAGA, AKIHIKO; KURIBAYASI, HIDEHIKO; MIZUTANI, HIDEAKI; NORO, RINTARO; MINEGISHI, YUJI; OKANO, TETSUYA; SEIKE, MASAHIRO; KAWAKAMI, AKIKO; YOSHIMURA, AKINOBU; OGAWA, NAOKI; UESAKA, HARUKA; KUDOH, SHOJI; GEMMA, AKIHIKO

    2010-01-01

    Previously, we performed a molecular pharmacological study that applied a combination of DNA microarray-based gene expression profiling and drug sensitivity tests in vitro with a view to designing an improved chemotherapeutic strategy for advanced lung cancer. Utilizing recent key technological advances in proteomics, particularly antibody array-based methodologies, the current study aimed to examine the benefit of protein expression profiling in an analogous molecular pharmacological context. We performed protein expression analysis in a panel of lung cancer cell lines via an antibody array approach. Using a modified NCI program, we related cell line-specific proteomic profiles to the previously determined cytotoxic activity of a selection of commonly used anticancer agents, namely docetaxel, paclitaxel, gemcitabine, vinorelbine, 5-fluorouracil (5-FU), SN38, cisplatin (CDDP) and carboplatin (CBDCA). In addition, we compared these results with those obtained from our prior DNA microarray-based transcriptomic study. In our expression-drug correlation analysis using antibody array, gemcitabine consistently belonged to an isolated cluster. Docetaxel, paclitaxel, 5-FU, SN38, CBDCA and CDDP were gathered together into one large cluster. These results coincided with those generated by the prior transcriptomic study. Various genes were commonly listed that differentiated gemcitabine from the others. The identified factors associated with drug sensitivities were different between both analyses. Our proteomic profiling data provided confirmation of the previous transcript expression-drug sensitivity correlation analysis. These results suggest that chemotherapy regimens that include gemcitabine should be evaluated in second-line chemotherapy in cases where the first-line chemotherapy did not include this drug. Protein expression-drug sensitivity correlations in lung cancer cells in vitro may provide useful information in determining the most appropriate therapeutic options

  4. Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.

    PubMed

    Chernobrovkin, Alexey L; Zubarev, Roman A

    2014-01-01

    Cell cultures used routinely in proteomic experiments may contain proteins from other species because of infection, transfection or just contamination. Since infection or contamination may affect the results of a biological experiment, it is important to test the samples for the presence of "alien" proteins. Usually cells are tested only for the most common infections, and most of the existing tests are targeting specific contaminations. Here we describe a three-step procedure for reliable untargeted detection of viral proteins using proteomics data, and recommend this or similar procedure to be applied to every proteomics dataset submitted for publication.

  5. Differential proteome analysis of human embryonic kidney cell line (HEK-293) following mycophenolic acid treatment

    PubMed Central

    2011-01-01

    Background Mycophenolic acid (MPA) is widely used as a post transplantation medicine to prevent acute organ rejection. In the present study we used proteomics approach to identify proteome alterations in human embryonic kidney cells (HEK-293) after treatment with therapeutic dose of MPA. Following 72 hours MPA treatment, total protein lysates were prepared, resolved by two dimensional gel electrophoresis and differentially expressed proteins were identified by QTOF-MS/MS analysis. Expressional regulations of selected proteins were further validated by real time PCR and Western blotting. Results The proliferation assay demonstrated that therapeutic MPA concentration causes a dose dependent inhibition of HEK-293 cell proliferation. A significant apoptosis was observed after MPA treatment, as revealed by caspase 3 activity. Proteome analysis showed a total of 12 protein spots exhibiting differential expression after incubation with MPA, of which 7 proteins (complement component 1 Q subcomponent-binding protein, electron transfer flavoprotein subunit beta, cytochrome b-c1 complex subunit, peroxiredoxin 1, thioredoxin domain-containing protein 12, myosin regulatory light chain 2, and profilin 1) showed significant increase in their expression. The expression of 5 proteins (protein SET, stathmin, 40S ribosomal protein S12, histone H2B type 1 A, and histone H2B type 1-C/E/F/G/I) were down-regulated. MPA mainly altered the proteins associated with the cytoskeleton (26%), chromatin structure/dynamics (17%) and energy production/conversion (17%). Both real time PCR and Western blotting confirmed the regulation of myosin regulatory light chain 2 and peroxiredoxin 1 by MPA treatment. Furthermore, HT-29 cells treated with MPA and total kidney cell lysate from MMF treated rats showed similar increased expression of myosin regulatory light chain 2. Conclusion The emerging use of MPA in diverse pathophysiological conditions demands in-depth studies to understand molecular basis of

  6. A proteomic kinetic analysis of IGROV1 ovarian carcinoma cell line response to cisplatin treatment.

    PubMed

    Le Moguen, Karen; Lincet, Hubert; Marcelo, Paulo; Lemoisson, Edwige; Heutte, Natacha; Duval, Marilyne; Poulain, Laurent; Vinh, Joëlle; Gauduchon, Pascal; Baudin, Bruno

    2007-11-01

    Ovarian cancer is one of the leading causes of mortality by gynecological cancer. Despite good response to surgery and initial chemotherapy, essentially based on cisplatin (cis-diamino-dichloro-platinum(II) (CDDP)) compounds, frequent recurrences with chemoresistance acquisition are responsible for poor prognosis. Several mechanisms have been described as implicated in CDDP resistance, however they are not sufficient to exhaustively account for this resistance emergence. We applied a proteomic approach based on 2-DE coupled with MS (MALDI-TOF/TOF) to identify proteins associated with chemoresistance induced by CDDP. A kinetic analysis of IGROV1 cell behavior following treatment with CDDP and subsequent statistical analysis revealed time and/or concentration-dependent modifications in protein expression. We evidenced events such as decreased amino-acid and nucleotide synthesis potentially associated with cell cycle blockade, and variations that may be related to resistance acquisition, such as possible enhanced glycolysis and increased proliferating potential. Moreover, overexpressions of aldehyde dehydrogenase 1 and both cytokeratins 8 and 18 were consistent with our previous findings, demonstrating that expression of these proteins was increased in cisplatin-resistant IGROV1-R10 as compared to IGROV1 parental cells. Identification of such proteins could allow improved understanding of the mechanisms leading to cell death or survival and, thus, to the acquisition of chemoresistance.

  7. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  8. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    PubMed Central

    Permenter, Matthew G.; Dennis, William E.; Sutto, Thomas E.; Jackson, David A.; Lewis, John A.; Stallings, Jonathan D.

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies. PMID:24386269

  9. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    PubMed

    Permenter, Matthew G; Dennis, William E; Sutto, Thomas E; Jackson, David A; Lewis, John A; Stallings, Jonathan D

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  10. DAMTC regulates cytoskeletal reorganization and cell motility in human lung adenocarcinoma cell line: an integrated proteomics and transcriptomics approach.

    PubMed

    Goel, A; Chhabra, R; Ahmad, S; Prasad, A K; Parmar, V S; Ghosh, B; Saini, N

    2012-10-11

    DAMTC (7,8-diacetoxy-4-methylcoumarin) is a thioderivative of 4-methyl coumarin, and previously we have shown that DAMTC is a potent inhibitor of cell growth and an inducer of apoptosis in non-small cell lung cancer (A549) cells. It induces apoptosis through mitochondrial pathway by modulating NF-κB, mitogen-activated protein kinase (MAPK) and p53 pathways. Herein, we explored the genome-wide effects of DAMTC in A549 cells using the concerted approach of transcriptomics and proteomics. In addition to apoptotic pathways, which have been validated earlier, the bioinformatic analysis of microarray data identified small GTPase-mediated signal transduction among the significantly altered biological processes. Interestingly, we observed significant downregulation of some members of the Rho family GTPases in the proteomics data too. Downregulation of Rho GTPases (RhoGDIα (Rho GDP dissociation inhibitor-α, also known as ARHGDIA), Ras homolog family member A, Ras-related C3 botulinum toxin substrate 1 and cell division cycle 42) was validated by western blotting. The Rho protein family is implicated in maintaining the actin filament assembly and cell motility, and we also observed that DAMTC treatment causes actin cytoskeletal reorganization, promotes filopodia formation and inhibits cell motility in A549 cells. The effect of DAMTC treatment on cytoskeleton was reversed after the overexpression of RhoGDIα. In addition, DAMTC augmented the apoptotic effect of etoposide, a proapoptotic chemotherapeutic drug. This elucidation of the mechanism behind DAMTC-induced apoptosis and inhibition of cell motility in A549 cells may make it a potential therapeutic for lung cancer.

  11. The chicken B-cell line DT40 proteome, beadome and interactomes

    PubMed Central

    Rees, Johanna S.; Lilley, Kathryn S.; Jackson, Antony P.

    2015-01-01

    In developing a new quantitative AP-MS method for exploring interactomes in the chicken B-cell line DT40, we also surveyed the most abundant proteins in this organism and explored the likely contaminants that bind to a variety of affinity resins that would later be confirmed quantitatively [1]. We present the ‘Top 150 abundant DT40 proteins list’, the DT40 beadomes as well as protein interaction lists for the Phosphatidyl inositol 5-phosphate 4-kinase 2β and Fanconi anaemia protein complexes. PMID:26217713

  12. Secreted proteome of the murine multipotent hematopoietic progenitor cell line DKmix.

    PubMed

    Luecke, Nina; Templin, Christian; Muetzelburg, Marika Victoria; Neumann, Detlef; Just, Ingo; Pich, Andreas

    2010-03-15

    Administration of the multipotent hematopoietic progenitor cell (HPC) line DKmix improved cardiac function after myocardial infarction and accelerated dermal wound healing due to paracrine mechanisms. The aim of this study was to analyse the secreted proteins of DKmix cells in order to identify the responsible paracrine factors and assess their relevance to the wide spectrum of therapeutic effects. A mass spectrometry (MS)-based approach was used to identify secreted proteins of DKmix cells. Serum free culture supernatants of DKmix-conditioned medium were collected and the proteins present were separated, digested by trypsin and the resulting peptides were then analyzed by matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) MS. Overall 95 different proteins were identified. Among them, secretory proteins galectin-3 and gelsolin were identified. These proteins are known to stimulate cell migration and influence wound healing and cardiac remodelling. The remaining proteins originate from intracellular compartments like cytoplasm (69%), nucleus (12%), mitochondria (4%), and cytoplasmic membrane (3%) indicating permeable or leaky DKmix cells in the conditioned medium. Additionally, a sandwich immunoassay was used to detect and quantify cytokines and chemokines. Interleukin-6 (IL-6), interleukin-13 (IL-13), monocyte-chemoattractant protein-1 (MCP-1), monocyte-chemoattractant protein-3 (MCP-3), monocyte-chemoattractant protein-1alpha (MIP-1alpha) and monocyte-chemoattractant protein-1beta (MIP-1beta) were detected in low concentrations. This study identified a subset of proteins present in the DKmix-conditioned medium that act as paracrine modulators of tissue repair. Moreover, it suggests that DKmix-derived conditioned medium might have therapeutic potency by promoting tissue regeneration.

  13. Characterization of cytarabine-resistant leukemic cell lines established from five different blood cell lineages using gene expression and proteomic analyses.

    PubMed

    Negoro, Eiju; Yamauchi, Takahiro; Urasaki, Yoshimasa; Nishi, Rie; Hori, Hiroki; Ueda, Takanori

    2011-04-01

    Cytarabine (ara-C) is the key drug for treatment of acute myeloid leukemia. Since intracellular cytarabine triphosphate (ara-CTP) is an active metabolite of ara-C, factors that reduce the amount of ara-CTP are known to induce drug resistance. However, these factors do not fully explain the development of resistance to ara-C. The present study was conducted to search for new candidate ara-C resistance factors, including those that are unrelated to ara-CTP production. For this purpose, we newly established five ara-C-resistant leukemic clones from different blood cell lineage leukemic cell lines (HL-60, K562, CEM, THP1 and U937). The resistant subclones were 5-58-fold more ara-C-resistant than their parental counterparts. All of the ara-C-resistant subclones, except for ara-C-resistant CEM cells, displayed alteration of ara-CTP-related factors such as ara-C membrane transport capacity, deoxycytidine kinase activity or cytosolic nucleotidase II activity. To identify new candidate factors, we used two comprehensive approaches: DNA microarray and proteome analyses. The DNA microarray analysis revealed eight genes (C19orf2, HSPA8, LGALS1, POU4F3, PSAP, AKT1, MBC2 and CACNA2D3) that were altered in all five ara-C-resistant lines compared to parental cells. Both proteome and DNA microarray analyses further detected a reduced protein level of stathmin1 in the ara-C-resistant CEM subclone compared to its parental line. Thus, the present findings suggested the involvement of novel multiple mechanisms in mediating the ara-C resistance of leukemic cells. The role of some of these molecules in resistance is still unclear.

  14. From Proteomic Analysis to Potential Therapeutic Targets: Functional Profile of Two Lung Cancer Cell Lines, A549 and SW900, Widely Studied in Pre-Clinical Research

    PubMed Central

    Soto-Cerrato, Vanessa; Vitorino, Rui; Fardilha, Margarida; Pérez-Tomás, Ricardo

    2016-01-01

    Lung cancer is a serious health problem and the leading cause of cancer death worldwide. The standard use of cell lines as in vitro pre-clinical models to study the molecular mechanisms that drive tumorigenesis and access drug sensitivity/effectiveness is of undisputable importance. Label-free mass spectrometry and bioinformatics were employed to study the proteomic profiles of two representative lung cancer cell lines and to unravel the specific biological processes. Adenocarcinoma A549 cells were enriched in proteins related to cellular respiration, ubiquitination, apoptosis and response to drug/hypoxia/oxidative stress. In turn, squamous carcinoma SW900 cells were enriched in proteins related to translation, apoptosis, response to inorganic/organic substances and cytoskeleton organization. Several proteins with differential expression were related to cancer transformation, tumor resistance, proliferation, migration, invasion and metastasis. Combined analysis of proteome and interactome data highlighted key proteins and suggested that adenocarcinoma might be more prone to PI3K/Akt/mTOR and topoisomerase IIα inhibitors, and squamous carcinoma to Ck2 inhibitors. Moreover, ILF3 overexpression in adenocarcinoma, and PCNA and NEDD8 in squamous carcinoma shows them as promising candidates for therapeutic purposes. This study highlights the functional proteomic differences of two main subtypes of lung cancer models and hints several targeted therapies that might assist in this type of cancer. PMID:27814385

  15. Proteomic data analysis of glioma cancer stem-cell lines based on novel nonlinear dimensional data reduction techniques

    NASA Astrophysics Data System (ADS)

    Lespinats, Sylvain; Pinker-Domenig, Katja; Wengert, Georg; Houben, Ivo; Lobbes, Marc; Stadlbauer, Andreas; Meyer-Bäse, Anke

    2016-05-01

    Glioma-derived cancer stem cells (GSCs) are tumor-initiating cells and may be refractory to radiation and chemotherapy and thus have important implications for tumor biology and therapeutics. The analysis and interpretation of large proteomic data sets requires the development of new data mining and visualization approaches. Traditional techniques are insufficient to interpret and visualize these resulting experimental data. The emphasis of this paper lies in the application of novel approaches for the visualization, clustering and projection representation to unveil hidden data structures relevant for the accurate interpretation of biological experiments. These qualitative and quantitative methods are applied to the proteomic analysis of data sets derived from the GSCs. The achieved clustering and visualization results provide a more detailed insight into the protein-level fold changes and putative upstream regulators for the GSCs. However the extracted molecular information is insufficient in classifying GSCs and paving the pathway to an improved therapeutics of the heterogeneous glioma.

  16. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    DTIC Science & Technology

    2013-12-30

    prosome, macropain) subunit, beta type 3; solute carrier family 2 (facilitated glucose transporter), member 1; and ubiquitin-conjugating enzyme E2H. The...1–7. 20. Moger WH (1983) Effects of the calcium-channel blockers cobalt, verapamil, and D600 on Leydig cell steroidogenesis. Biol Reprod 28: 528–535

  17. Establishment of a new OSCC cell line derived from OLK and identification of malignant transformation-related proteins by differential proteomics approach

    PubMed Central

    Dong, Yan; Zhao, Qun; Ma, Xiaoyan; Ma, Guowu; Liu, Caiyun; Chen, Zhuwen; Yu, Liyuan; Liu, Xuefeng; Zhang, Yanguang; Shao, Shujuan; Xiao, Jing; Li, Jia; Zhang, Weimin; Fu, Ming; Dong, Lijia; Yang, Xiandong; Guo, Xu; Xue, Liyan; Fang, Fei; Zhan, Qimin; Zhang, Lihua

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is usually preceded by the oral premalignant lesions, mainly oral leukoplakia (OLK) after repeated insults of carcinogens, tobacco. B(a)P and DMBA are key carcinogens in tobacco smoke. In the present study, for the first time we established the cancerous cell line OSCC-BD induced by B(a)P/DMBA mixture and transformed from dysplastic oral leukoplakia cell line DOK. Cell morphology, proliferation ability, migration ability, colony formation, and tumorigenicity were studied and confirmed the malignant characteristics of OSCC-BD cells. We further identified the differential proteins between DOK and OSCC-BD cells by stable isotope dimethyl labeling based quantitative proteomic method, which showed 18 proteins up-regulated and 16 proteins down-regulated with RSD < 8%. Differential proteins are mainly related to cell cycle, cell proliferation, DNA replication, RNA splicing and apoptosis. Abberant binding function, catalysis activity and transportor activity of differential proteins might contribute to the malignant transformation of OLK. Of the 34 identified differential proteins with RSD < 8%, 13 novel cancer-related proteins were reported in the present study. This study might provide a new insight into the mechanism of OLK malignant transformation and the potent biomarkers for early diagnosis, meanwhile further facilitate the application of the quantification proteomics to carcinogenesis research. PMID:26234610

  18. Toluene Dose-Response and Preliminary Study of Proteomics for Neuronal Cell Lines

    DTIC Science & Technology

    2015-07-01

    media and vapor exposure in glass chambers. To better define the complex signaling response to toluene, the two exposure models are characterized by...authors would like to acknowledge Dr. Schubert of the Salk Institute for Biological Studies in La Jolla CA, for the generous gift of the HT22 immortalized... model (various concentrations of toluene in a dimethyl sulfoxide (DMSO) vehicle were added in cell culture medium), and 2) a vapor exposure model

  19. Proteomic analysis of MCF-7 breast cancer cell line exposed to mitogenic concentration of 17beta-estradiol.

    PubMed

    Malorni, Livia; Cacace, Giuseppina; Cuccurullo, Manuela; Pocsfalvi, Gabriella; Chambery, Angela; Farina, Annarita; Di Maro, Antimo; Parente, Augusto; Malorni, Antonio

    2006-11-01

    Estrogens are powerful mitogens that play a critical role in the onset of breast cancer and its progression. About two-thirds of all breast cancers are estrogen receptor (ER)+ at the time of diagnosis, and the ER expression is the determinant of a tumor phenotype associated with hormone responsiveness. The molecular basis of the relationship between ER expression, (anti)hormonal responsiveness, and breast cancer prognosis is still unknown. To identify the proteins affected by the presence of the hormone we used 2-D-PAGE-based bottom-up proteomics for the study of the proteome of MCF-7 cells of estrogen-responsive breast carcinoma exposed to a mitogenic concentration of 17beta-estradiol (E2) for 12, 18, 24, and 30 h. Differential expression analysis showed significant changes for 12 proteins. These include ezrin-radixin-moesin-binding phosphoprotein of 50 kDa which was previously shown to be directly regulated by E2. Expression profiles of other proteins already implicated in the progression of breast cancer, such as stathmin, calreticulin, heat shock 71 kDa, alpha-enolase are also described. Moreover, it is observed that different unexpected proteins, translation factors, and energetic metabolism enzymes are also influenced by the presence of the hormone.

  20. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line.

    PubMed

    Chiverton, Lesley M; Evans, Caroline; Pandhal, Jagroop; Landels, Andrew R; Rees, Byron J; Levison, Peter R; Wright, Phillip C; Smales, C Mark

    2016-08-01

    There are few studies defining CHO host cell proteins (HCPs) and the flux of these throughout a downstream purification process. Here we have applied quantitative iTRAQ proteomics to follow the HCP profile of an antibody (mAb) producing CHO-S cell line throughout a standard downstream purification procedure consisting of a Protein A, cation and anion exchange process. We used both 6 sample iTRAQ experiment to analyze technical replicates of three samples, which were culture harvest (HCCF), Protein A flow through and Protein A eluate and an 8 sample format to analyze technical replicates of four sample types; HCCF compared to Protein A eluate and subsequent cation and anion exchange purification. In the 6 sample iTRAQ experiment, 8781 spectra were confidently matched to peptides from 819 proteins (including the mAb chains). Across both the 6 and 8 sample experiments 936 proteins were identified. In the 8 sample comparison, 4187 spectra were confidently matched to peptides from 219 proteins. We then used the iTRAQ data to enable estimation of the relative change of individual proteins across the purification steps. These data provide the basis for application of iTRAQ for process development based upon knowledge of critical HCPs.

  1. Proteome-Wide Effect of 17-β-Estradiol and Lipoxin A4 in an Endometriotic Epithelial Cell Line

    PubMed Central

    Sobel, Jonathan A.; Waridel, Patrice; Gori, Ilaria; Quadroni, Manfredo; Canny, Geraldine O.

    2016-01-01

    Endometriosis affects approximately 10% of women of reproductive age. This chronic, gynecological inflammatory disease results in a decreased quality of life for patients, with the main symptoms including chronic pelvic pain and infertility. The steroid hormone 17-β Estradiol (E2) plays a key role in the pathology. Our previous studies showed that the anti-inflammatory lipid Lipoxin A4 (LXA4) acts as an estrogen receptor-alpha agonist in endometrial epithelial cells, inhibiting certain E2-mediated effects. LXA4 also prevents the progression of endometriosis in a mouse model via anti-proliferative mechanisms and by impacting mediators downstream of ER signaling. The aim of the present study was therefore to examine global proteomic changes evoked by E2 and LXA4 in endometriotic epithelial cells. E2 impacted a greater number of proteins in endometriotic epithelial cells than LXA4. Interestingly, the combination of E2 and LXA4 resulted in a reduced number of regulated proteins, with LXA4 mediating a suppressive effect on E2-mediated signaling. These proteins are involved in diverse pathways of relevance to endometriosis pathology and metabolism, including mRNA translation, growth, proliferation, proteolysis, and immune responses. In summary, this study sheds light on novel pathways involved in endometriosis pathology and further understanding of signaling pathways activated by estrogenic molecules in endometriotic epithelial cells. PMID:26779118

  2. Proteome-Wide Effect of 17-β-Estradiol and Lipoxin A4 in an Endometriotic Epithelial Cell Line.

    PubMed

    Sobel, Jonathan A; Waridel, Patrice; Gori, Ilaria; Quadroni, Manfredo; Canny, Geraldine O

    2015-01-01

    Endometriosis affects approximately 10% of women of reproductive age. This chronic, gynecological inflammatory disease results in a decreased quality of life for patients, with the main symptoms including chronic pelvic pain and infertility. The steroid hormone 17-β Estradiol (E2) plays a key role in the pathology. Our previous studies showed that the anti-inflammatory lipid Lipoxin A4 (LXA4) acts as an estrogen receptor-alpha agonist in endometrial epithelial cells, inhibiting certain E2-mediated effects. LXA4 also prevents the progression of endometriosis in a mouse model via anti-proliferative mechanisms and by impacting mediators downstream of ER signaling. The aim of the present study was therefore to examine global proteomic changes evoked by E2 and LXA4 in endometriotic epithelial cells. E2 impacted a greater number of proteins in endometriotic epithelial cells than LXA4. Interestingly, the combination of E2 and LXA4 resulted in a reduced number of regulated proteins, with LXA4 mediating a suppressive effect on E2-mediated signaling. These proteins are involved in diverse pathways of relevance to endometriosis pathology and metabolism, including mRNA translation, growth, proliferation, proteolysis, and immune responses. In summary, this study sheds light on novel pathways involved in endometriosis pathology and further understanding of signaling pathways activated by estrogenic molecules in endometriotic epithelial cells.

  3. Proteomic Analysis of Exosomes and Exosome-Free Conditioned Media From Human Osteosarcoma Cell Lines Reveals Secretion of Proteins Related to Tumor Progression.

    PubMed

    Jerez, Sofía; Araya, Héctor; Thaler, Roman; Charlesworth, M Cristine; López-Solís, Remigio; Kalergis, Alexis M; Céspedes, Pablo F; Dudakovic, Amel; Stein, Gary S; van Wijnen, Andre J; Galindo, Mario

    2017-02-01

    Osteosarcomas are the most prevalent bone tumors in pediatric patients, but can also occur later in life. Bone tumors have the potential to metastasize to lung and occasionally other vital organs. To understand how osteosarcoma cells interact with their micro-environment to support bone tumor progression and metastasis, we analyzed secreted proteins and exosomes from three human osteosarcoma cell lines. Exosome isolation was validated by transmission electron microscopy (TEM) and immuno-blotting for characteristic biomarkers (CD63, CD9, and CD81). Exosomal and soluble proteins (less than 100 kDa) were identified by mass spectrometry analysis using nanoLC-MS/MS and classified by functional gene ontology clustering. We identified a secretome set of >3,000 proteins for both fractions, and detected proteins that are either common or unique among the three osteosarcoma cell lines. Protein ontology comparison of proteomes from exosomes and exosome-free fractions revealed differences in the enrichment of functional categories associated with different biological processes, including those related to tumor progression (i.e., angiogenesis, cell adhesion, and cell migration). The secretome characteristics of osteosarcoma cells are consistent with the pathological properties of tumor cells with metastatic potential. J. Cell. Biochem. 118: 351-360, 2017. © 2016 Wiley Periodicals, Inc.

  4. Suberoylanilide Hydroxamic Acid Treatment Reveals Crosstalks among Proteome, Ubiquitylome and Acetylome in Non-Small Cell Lung Cancer A549 Cell Line

    PubMed Central

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  5. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-03-31

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level.

  6. Lobaplatin arrests cell cycle progression, induces apoptosis and alters the proteome in human cervical cancer cell Line CaSki.

    PubMed

    Li, Xiaoqin; Ran, Li; Fang, Wen; Wang, Donghong

    2014-04-01

    Cervical cancer is one of the most common gynecologic tumors. There is an upward trend in the incidence. The objective of this research was to explore the effect of lobaplatin on cervical cancer CaSki cells proliferation, cell cycle and apoptosis and analysis of the differential expressed proteins of CaSki cells after exposed to lobaplatin. Our findings have shown that lobaplatin inhibits cell proliferations in human cervical cancer CaSki cells in dose- and time-dependent manner. Flow cytometry assay confirmed that lobaplatin affected cervical cancer cell survival by blocking cell cycle progression in S phase and G0/G1 phase and inducing apoptosis in dose- and time-dependent manner. Lobaplatin treatment reduced polypyrimidine tract-binding protein 2, ribose-phosphate pyrophosphokinase, hypothetical protein, terminal uridylyltransferase 7, ubiquitin specific protease 16 and heterogeneous nuclear ribonucleoprotein A2/B1 expression and increase zinc finger protein 91, zinc finger protein, C-X-C motif chemokine 10 precursor, stromal cell protein and laminin subunit alpha-4 expression. Some of the differentially expressed proteins may be associated with antitumor effect of lobaplatin. Lobaplatin showed a good antitumour activity in in vitro models of human cervical cancer cells. These results indicate that lobaplatin could be an effective chemotherapeutic agent in human cervical cancer treatment by inducing apoptosis, cell cycle arrest and changing many kinds of protein molecule expression level.

  7. Proteomic Profiling of Androgen-independent Prostate Cancer Cell Lines Reveals a Role for Protein S during the Development of High Grade and Castration-resistant Prostate Cancer

    PubMed Central

    Saraon, Punit; Musrap, Natasha; Cretu, Daniela; Karagiannis, George S.; Batruch, Ihor; Smith, Chris; Drabovich, Andrei P.; Trudel, Dominique; van der Kwast, Theodorus; Morrissey, Colm; Jarvi, Keith A.; Diamandis, Eleftherios P.

    2012-01-01

    Androgen deprivation constitutes the principal therapy for advanced and metastatic prostate cancers. However, this therapeutic intervention usually results in the transition to a more aggressive androgen-independent prostate cancer. The elucidation of molecular alterations during the progression to androgen independence is an integral step toward discovering more effective targeted therapies. With respect to identifying crucial mediators of this transition, we compared the proteomes of androgen-independent (PC3, DU145, PPC1, LNCaP-SF, and 22Rv1) and androgen-dependent (LNCaP and VCaP) and/or normal prostate epithelial (RWPE) cell lines using mass spectrometry. We identified more than 100 proteins that were differentially secreted in the androgen-independent cell lines. Of these, Protein S (PROS1) was elevated in the secretomes of all of the androgen-independent prostate cancer cell lines, with no detectable secretion in normal and androgen-dependent cell lines. Using quantitative PCR, we observed significantly higher (p < 0.05) tissue expression levels of PROS1 in prostate cancer samples, further indicating its importance in prostate cancer progression. Similarly, immunohistochemistry analysis revealed elevation of PROS1 in high grade prostate cancer (Gleason grade ≥8), and further elevation in castration-resistant metastatic prostate cancer lesions. We also observed its significant (p < 0.05) elevation in high grade prostate cancer seminal plasma samples. Taken together, these results show that PROS1 is elevated in high grade and castration-resistant prostate cancer and could serve as a potential biomarker of aggressive disease. PMID:22908226

  8. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro

    PubMed Central

    Zhang, Yanling; Dong, Weihong; Wang, Junjie; Cai, Jing; Wang, Zehua

    2017-01-01

    Mesenchymal stem cells (MSCs) have been reported to participate in the formation of supportive tumor stroma. The abilities of proliferation and invasion of human epithelial ovarian cancer (EOC) cells were significantly enhanced when indirectly cocultured with human omental adipose-derived MSCs (O-ADSCs) in vitro. However, the underlying mechanisms remain poorly understood. In this study, EOC cells were cultured with conditioned medium (CM) from O-ADSCs (O-ADSC), and the effect of O-ADSC CM on the proteomic profile of EOC cells was assessed by two-dimensional gel electrophoresis (2-DE), followed by liquid chromatography and tandem mass spectrometry. The 2-DE assays revealed a global increase in protein expression in the EOC cells treated with CM. Nine proteins were identified from 11 selected protein spots with differential expression after treatment with CM from O-ADSCs. All the nine proteins have been linked to carcinoma and apoptosis, and the migration ability of tumor cells can be regulated by these proteins. Moreover, the upregulation of prohibitin and serine/arginine-rich splicing factor 1 in EOC cells treated with CM was further confirmed by quantitative real-time polymerase chain reaction. These results suggest that O-ADSCs affect the proteomic profile of EOC cells via paracrine mechanism in favor of EOC progression. PMID:28360526

  9. Serum proteomic test in advanced non-squamous non-small cell lung cancer treated in first line with standard chemotherapy

    PubMed Central

    Grossi, F; Rijavec, E; Genova, C; Barletta, G; Biello, F; Maggioni, C; Burrafato, G; Sini, C; Dal Bello, M G; Meyer, K; Roder, J; Roder, H; Grigorieva, J

    2017-01-01

    Background: VeriStrat is a blood-based proteomic test with predictive and prognostic significance in second-line treatments for non-small cell lung cancer (NSCLC). This trial was designed to investigate the role of VeriStrat in first-line treatment of advanced NSCLC with standard chemotherapy. Here we present the results for 76 non-squamous patients treated with a combination of carboplatin or cisplatin with pemetrexed. Methods: The test-assigned classifications of VeriStrat Good or VeriStrat Poor to samples collected at baseline. The primary end point was progression-free survival (PFS); secondary end points included overall survival (OS) and objective response. Exploratory analyses of end points separately in carboplatin/pemetrexed and cisplatin/pemetrexed subgroups were also conducted. Results: Patients classified as VeriStrat Good had longer PFS and OS than VeriStrat Poor: 6.5 vs 1.6 months and 10.8 vs 3.4 months, respectively; the corresponding hazard ratios (HRs) were 0.36 (P<0.0001) and 0.26 (P<0.0001); they were also more likely to achieve objective response. Prognostic significance of VeriStrat was confirmed in multivariate analysis. Significant differences in OS and PFS between Veristrat classifications were also found when treatment subgroups were analysed separately. Conclusions: The trial demonstrated clinical utility of VeriStrat as a prognostic test for standard first-line chemotherapy of non-squamous advanced NSCLC. PMID:27898657

  10. Proteomic analysis of human U937 cell line activation mediated by Haemophilus influenzae type b P2 porin and its surface-exposed loop 7.

    PubMed

    Severino, Valeria; Chambery, Angela; Vitiello, Mariateresa; Cantisani, Marco; Galdiero, Stefania; Galdiero, Massimiliano; Malorni, Livia; Di Maro, Antimo; Parente, Augusto

    2010-02-05

    The virulence of Haemophilus influenzae type b (Hib) has been attributed to a variety of potential factors associated with its cell surface, including lipopolysaccharides (LPS) and major outer membrane proteins (OMPs). P2 porin, one of the best-characterized porins in terms of its functional characteristics, is the most abundant OMP in Hib and has also been shown to possess proinflammatory activity. To characterize the role played by bacterial surface components in disease onset and development, the proteomic profiling of human U937 cell line activated by H. influenzae type b P2 porin and its most active surface-exposed loop (L7) was performed by means of two-dimensional electrophoresis and mass spectrometry. The study provided a list of candidate proteins with potential relevance in the host immune and inflammatory response. Most of the differentially expressed proteins are involved in metabolic processes, remodelling of cytoskeleton, stress response and signal transduction pathways. The results constitute the basis for dissecting signal transduction cascades activated by P2 stimulation and gain insights into the molecular events involved in the modulation of pathogen-host cell interactions.

  11. Multi-Scale Genomic, Transcriptomic and Proteomic Analysis of Colorectal Cancer Cell Lines to Identify Novel Biomarkers

    PubMed Central

    Briffa, Romina; Um, Inhwa; Faratian, Dana; Zhou, Ying; Turnbull, Arran K.; Langdon, Simon P.; Harrison, David J.

    2015-01-01

    Selecting colorectal cancer (CRC) patients likely to respond to therapy remains a clinical challenge. The objectives of this study were to establish which genes were differentially expressed with respect to treatment sensitivity and relate this to copy number in a panel of 15 CRC cell lines. Copy number variations of the identified genes were assessed in a cohort of CRCs. IC50’s were measured for 5-fluorouracil, oxaliplatin, and BEZ-235, a PI3K/mTOR inhibitor. Cell lines were profiled using array comparative genomic hybridisation, Illumina gene expression analysis, reverse phase protein arrays, and targeted sequencing of KRAS hotspot mutations. Frequent gains were observed at 2p, 3q, 5p, 7p, 7q, 8q, 12p, 13q, 14q, and 17q and losses at 2q, 3p, 5q, 8p, 9p, 9q, 14q, 18q, and 20p. Frequently gained regions contained EGFR, PIK3CA, MYC, SMO, TRIB1, FZD1, and BRCA2, while frequently lost regions contained FHIT and MACROD2. TRIB1 was selected for further study. Gene enrichment analysis showed that differentially expressed genes with respect to treatment response were involved in Wnt signalling, EGF receptor signalling, apoptosis, cell cycle, and angiogenesis. Stepwise integration of copy number and gene expression data yielded 47 candidate genes that were significantly correlated. PDCD6 was differentially expressed in all three treatment responses. Tissue microarrays were constructed for a cohort of 118 CRC patients and TRIB1 and MYC amplifications were measured using fluorescence in situ hybridisation. TRIB1 and MYC were amplified in 14.5% and 7.4% of the cohort, respectively, and these amplifications were significantly correlated (p≤0.0001). TRIB1 protein expression in the patient cohort was significantly correlated with pERK, Akt, and Caspase 3 expression. In conclusion, a set of candidate predictive biomarkers for 5-fluorouracil, oxaliplatin, and BEZ235 are described that warrant further study. Amplification of the putative oncogene TRIB1 has been described for

  12. Genistein exerts anti-leukemic effects on genetically different acute myeloid leukemia cell lines by inhibiting protein synthesis and cell proliferation while inducing apoptosis – molecular insights from an iTRAQ™ quantitative proteomics study

    PubMed Central

    Lim, Teck Kwang; Port, Sarah Alexandra; Han, Jin-Hua; Chen, Chien-Shing; Lin, Qingsong

    2015-01-01

    Acute myeloid leukemia (AML) is a form of cancer that affects the hematopoietic precursor cells with lethal effects. We investigated the prospect of using genistein as an effective alternate therapy for AML. A two-cell line model, one possessing the FLT3 gene with the ITD mutation (MV4−11) and the other with the wildtype FLT3 gene (HL−60) has been employed. Our 8−plexed iTRAQ™−based quantitative proteomics analysis together with various functional studies demonstrated that genistein exerts anti-leukemic effects on both the AML cell lines. Genistein treatment on the AML cells showed that the drug arrested the mTOR pathway leading to down−regulation of protein synthesis. Additionally, genistein treatment is found to induce cell death via apoptosis. Contrasting regulatory effects of genistein on the cell cycle of the two cell lines were also identified, with the induction of G2/M phase arrest in HL-60 cells but not in MV4−11 cells. Hence, our study highlights the potent anti-leukemic effect of genistein on AML cells irrespective of their genetic status. This suggests the potential use of genistein as an effective general drug therapy for AML patients. PMID:25859554

  13. Comparative proteomics of a model MCF10A-KRasG12V cell line reveals a distinct molecular signature of the KRasG12V cell surface.

    PubMed

    Ye, Xiaoying; Chan, King C; Waters, Andrew M; Bess, Matthew; Harned, Adam; Wei, Bih-Rong; Loncarek, Jadranka; Luke, Brian T; Orsburn, Benjamin C; Hollinger, Bradley D; Stephens, Robert M; Bagni, Rachel; Martinko, Alex; Wells, James A; Nissley, Dwight V; McCormick, Frank; Whiteley, Gordon; Blonder, Josip

    2016-12-27

    Oncogenic Ras mutants play a major role in the etiology of most aggressive and deadly carcinomas in humans. In spite of continuous efforts, effective pharmacological treatments targeting oncogenic Ras isoforms have not been developed. Cell-surface proteins represent top therapeutic targets primarily due to their accessibility and susceptibility to different modes of cancer therapy. To expand the treatment options of cancers driven by oncogenic Ras, new targets need to be identified and characterized at the surface of cancer cells expressing oncogenic Ras mutants. Here, we describe a mass spectrometry-based method for molecular profiling of the cell surface using KRasG12V transfected MCF10A (MCF10A-KRasG12V) as a model cell line of constitutively activated KRas and native MCF10A cells transduced with an empty vector (EV) as control. An extensive molecular map of the KRas surface was achieved by applying, in parallel, targeted hydrazide-based cell-surface capturing technology and global shotgun membrane proteomics to identify the proteins on the KRasG12V surface. This method allowed for integrated proteomic analysis that identified more than 500 cell-surface proteins found unique or upregulated on the surface of MCF10A-KRasG12V cells. Multistep bioinformatic processing was employed to elucidate and prioritize targets for cross-validation. Scanning electron microscopy and phenotypic cancer cell assays revealed changes at the cell surface consistent with malignant epithelial-to-mesenchymal transformation secondary to KRasG12V activation. Taken together, this dataset significantly expands the map of the KRasG12V surface and uncovers potential targets involved primarily in cell motility, cellular protrusion formation, and metastasis.

  14. Comparative proteomics of a model MCF10A-KRasG12V cell line reveals a distinct molecular signature of the KRasG12V cell surface

    PubMed Central

    Ye, Xiaoying; Chan, King C.; Waters, Andrew M.; Bess, Matthew; Harned, Adam; Wei, Bih-Rong; Loncarek, Jadranka; Luke, Brian T.; Orsburn, Benjamin C.; Hollinger, Bradley D.; Stephens, Robert M.; Bagni, Rachel; Martinko, Alex; Wells, James A.; Nissley, Dwight V.; McCormick, Frank; Whiteley, Gordon; Blonder, Josip

    2016-01-01

    Oncogenic Ras mutants play a major role in the etiology of most aggressive and deadly carcinomas in humans. In spite of continuous efforts, effective pharmacological treatments targeting oncogenic Ras isoforms have not been developed. Cell-surface proteins represent top therapeutic targets primarily due to their accessibility and susceptibility to different modes of cancer therapy. To expand the treatment options of cancers driven by oncogenic Ras, new targets need to be identified and characterized at the surface of cancer cells expressing oncogenic Ras mutants. Here, we describe a mass spectrometry–based method for molecular profiling of the cell surface using KRasG12V transfected MCF10A (MCF10A-KRasG12V) as a model cell line of constitutively activated KRas and native MCF10A cells transduced with an empty vector (EV) as control. An extensive molecular map of the KRas surface was achieved by applying, in parallel, targeted hydrazide-based cell-surface capturing technology and global shotgun membrane proteomics to identify the proteins on the KRasG12V surface. This method allowed for integrated proteomic analysis that identified more than 500 cell-surface proteins found unique or upregulated on the surface of MCF10A-KRasG12V cells. Multistep bioinformatic processing was employed to elucidate and prioritize targets for cross-validation. Scanning electron microscopy and phenotypic cancer cell assays revealed changes at the cell surface consistent with malignant epithelial-to-mesenchymal transformation secondary to KRasG12V activation. Taken together, this dataset significantly expands the map of the KRasG12V surface and uncovers potential targets involved primarily in cell motility, cellular protrusion formation, and metastasis. PMID:27894102

  15. Visual exploratory analysis of integrated chromosome 19 proteomic data derived from glioma cancer stem-cell lines based on novel nonlinear dimensional data reduction techniques

    NASA Astrophysics Data System (ADS)

    Lespinats, Sylvain; Pinker-Domenig, Katja; Meyer-Bäse, Uwe; Meyer-Bäse, Anke

    2015-05-01

    Chromosome 19 is known to be linked to neurodegeneration and many cancers. Glioma-derived cancer stem cells (GSCs) are tumor-initiating cells and may be refractory to radiation and chemotherapy and thus have important implications for tumor biology and therapeutics. The analysis and interpretation of large proteomic data sets requires the development of new data mining and visualization approaches. Traditional techniques are insufficient to interpret and visualize these resulting experimental data. The emphasis of this paper lies in the presentation of novel approaches for the visualization, clustering and projection representation to unveil hidden data structures relevant for the accurate interpretation of biological experiments. These qualitative and quantitative methods are applied to the proteomic analysis of data sets derived from the GSCs. The achieved clustering and visualization results provide a more detailed insight into the expression patterns for chromosome 19 proteins.

  16. Proteome analysis of responses to ascochlorin in a human osteosarcoma cell line by 2-D gel electrophoresis and MALDI-TOF MS.

    PubMed

    Kang, Jeong Han; Park, Kwan-Kyu; Lee, In-Seon; Magae, Junji; Ando, Kunio; Kim, Cheorl-Ho; Chang, Young-Chae

    2006-10-01

    Ascochlorin is a prenyl-phenol compound that was isolated from the fungus Ascochyta viciae. Ascochlorin reduces serum cholesterol and triglyceride levels, suppresses hypertension and tumor development, and ameliorates type I and II diabetes. Here, to better understand the mechanisms by which ascochlorin regulates physiological or pathological events and induces responses in the pharmacological treatment of cancer, we performed differential analysis of the proteome of the human osteosarcoma cells U2OS in response to ascochlorin. In addition, we established the first two-dimensional map of the U2OS proteome. The U2OS cell proteomes with and without treatment with ascochlorin were compared using two-dimensional electrophoresis, matrix-assisted laser desorption/ionization mass spectrometry and bioinformatics. The largest differences in expression were observed for the epidermal growth factor receptor (4-fold decrease), ribulose-5-phosphate-epimerase (13-fold decrease), ATP-dependent RNA helicase (8-fold decrease), and kelch-like ECH-associated protein 1 (6-fold decrease). The abundance of heterogeneous nuclear ribonucleoprotein L and minichromosome maintenance protein 7 increased 12- and 8.2-fold, respectively. In addition, Erk 2 was increased 3-fold in U2OS cells treated with ascochlorin. The expression of some selected proteins was confirmed by western blotting, zymography and RT-PCR analysis.

  17. Exosome Proteome of U-87MG Glioblastoma Cells

    PubMed Central

    Chun, Sohyun; Ahn, Seunghyun; Yeom, Chang-Hwan; Park, Seyeon

    2016-01-01

    Exosomes are small membrane vesicles between 30 and 100 nm in diameter secreted by many cell types, and are associated with a wide range of physiological and/or pathological processes. Exosomes containing proteins, lipids, mRNA, and microRNA contribute to cell-to-cell communication and cell-to-environment regulation, however, their biological functions are not yet fully understood. In this report, exosomes in the glioblastoma cell line, U-87MG, were isolated and the proteome was investigated. In addition, exosome proteome changes in U-87MG cells exposed to a low temperature were investigated to elucidate whether the exosome proteome could respond to an external stimulus. Cell culture medium was collected, and exosomes were isolated by continuous centrifugation eliminating cell debris, nucleic acids, and other particles. The morphology of exosomes was observed by cryo-tunneling electron microscopy. According to 2-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, certain proteins including collagen type VI alpha 1, putative RNA-binding protein 15B chain A, substrate induced remodeling of the active site regulates HTRA1, coatomer protein complex-subunit beta 2, myosin-heavy chain 1, and keratin-type I cytoskeletal 9 showed differences between the control proteome and the low temperature-exposed proteome. PMID:27929413

  18. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2015-09-01

    populations were successfully established from the corresponding parental cell lines (Figure 2). To generate quantized cell populations a single ...individual cells from the SN291 parental culture. Each dot represents a single cell. Color gradient indicates enrichment score for either published CD133... parental lines and quantized cell types (Specific Aim 5). We believe this program has significantly advanced genomic, proteomic and single -cell

  19. Neural Stem Cells (NSCs) and Proteomics*

    PubMed Central

    Shoemaker, Lorelei D.; Kornblum, Harley I.

    2016-01-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  20. A Cell-type-resolved Liver Proteome*

    PubMed Central

    Ding, Chen; Li, Yanyan; Guo, Feifei; Jiang, Ying; Ying, Wantao; Li, Dong; Yang, Dong; Xia, Xia; Liu, Wanlin; Zhao, Yan; He, Yangzhige; Li, Xianyu; Sun, Wei; Liu, Qiongming; Song, Lei; Zhen, Bei; Zhang, Pumin; Qian, Xiaohong; Qin, Jun; He, Fuchu

    2016-01-01

    Parenchymatous organs consist of multiple cell types, primarily defined as parenchymal cells (PCs) and nonparenchymal cells (NPCs). The cellular characteristics of these organs are not well understood. Proteomic studies facilitate the resolution of the molecular details of different cell types in organs. These studies have significantly extended our knowledge about organogenesis and organ cellular composition. Here, we present an atlas of the cell-type-resolved liver proteome. In-depth proteomics identified 6000 to 8000 gene products (GPs) for each cell type and a total of 10,075 GPs for four cell types. This data set revealed features of the cellular composition of the liver: (1) hepatocytes (PCs) express the least GPs, have a unique but highly homogenous proteome pattern, and execute fundamental liver functions; (2) the division of labor among PCs and NPCs follows a model in which PCs make the main components of pathways, but NPCs trigger the pathways; and (3) crosstalk among NPCs and PCs maintains the PC phenotype. This study presents the liver proteome at cell resolution, serving as a research model for dissecting the cell type constitution and organ features at the molecular level. PMID:27562671

  1. A comparative proteomic study identified LRPPRC and MCM7 as putative actors in imatinib mesylate cross-resistance in Lucena cell line

    PubMed Central

    2012-01-01

    Background Although chronic myeloid leukemia (CML) treatment has improved since the introduction of imatinib mesylate (IM), cases of resistance have been reported. This resistance has been associated with the emergence of multidrug resistance (MDR) phenotype, as a BCR-ABL independent mechanism. The classic pathway studied in MDR promotion is ATP-binding cassette (ABC) family transporters expression, but other mechanisms that drive drug resistance are largely unknown. To better understand IM therapy relapse due to the rise of MDR, we compared the proteomic profiles of K562 and Lucena (K562/VCR) cells. Results The use of 2-DE coupled with a MS approach resulted in the identification of 36 differentially expressed proteins. Differential mRNA levels of leucine-rich PPR motif-containing (LRPPRC) protein, minichromosome maintenance complex component 7 (MCM7) and ATP-binding cassette sub-family B (MDR/TAP) member 1 (ABCB1) were capable of defining samples from CML patients as responsive or resistant to therapy. Conclusions Through the data presented in this work, we show the relevance of MDR to IM therapy. In addition, our proteomic approach identified candidate actors involved in resistance, which could lead to additional information on BCR-ABL-independent molecular mechanisms. PMID:22458888

  2. Poly(I:C) treatment influences the expression of calreticulin and profilin-1 in a human HNSCC cell line: a proteomic study.

    PubMed

    Matijević, Tanja; Pavelić, Jasminka

    2012-08-01

    Polyinosinic:polycytidylic acid (poly (I:C)) has been formerly known to be an interferon inducer but the mechanism of its action was not revealed until the discovery of Toll-like receptors (TLRs). TLRs are members of transmembrane proteins that recognize conserved molecular motifs of viral and bacterial origin and initiate innate immune response. Recent studies have shown that they are also expressed on tumor cells, but their role in these cells is still not clear. TLR3 recognizes double-stranded RNA (poly (I:C)) and is primarily involved in the defense against viruses. TLR3 ligand binding initiates the activation of transcription factors NF-κB, IRF family members, and AP-1, which can induce wide cascading effect on the cell and consequently activate many cellular processes. Since little is known about TLR3 target genes, we have used the proteomic approach to widen the current knowledge. In this study, we have discovered 15 differentially expressed proteins, mostly connected with protein metabolic processes. Furthermore, we have confirmed by Western blot that calreticulin and profilin-1, proteins which have been shown previously to be involved in processes connected with tumor progression, are differentially expressed after poly(I:C) treatment. By using TLR3 small interfering RNA, we showed that calreticulin expression might be TLR3 dependent, unlike profilin-1.

  3. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ – a study of an industrial mAb producing CHO‐S cell line

    PubMed Central

    Chiverton, Lesley M.; Evans, Caroline; Pandhal, Jagroop; Landels, Andrew R.; Rees, Byron J.; Levison, Peter R.

    2016-01-01

    Abstract There are few studies defining CHO host cell proteins (HCPs) and the flux of these throughout a downstream purification process. Here we have applied quantitative iTRAQ proteomics to follow the HCP profile of an antibody (mAb) producing CHO‐S cell line throughout a standard downstream purification procedure consisting of a Protein A, cation and anion exchange process. We used both 6 sample iTRAQ experiment to analyze technical replicates of three samples, which were culture harvest (HCCF), Protein A flow through and Protein A eluate and an 8 sample format to analyze technical replicates of four sample types; HCCF compared to Protein A eluate and subsequent cation and anion exchange purification. In the 6 sample iTRAQ experiment, 8781 spectra were confidently matched to peptides from 819 proteins (including the mAb chains). Across both the 6 and 8 sample experiments 936 proteins were identified. In the 8 sample comparison, 4187 spectra were confidently matched to peptides from 219 proteins. We then used the iTRAQ data to enable estimation of the relative change of individual proteins across the purification steps. These data provide the basis for application of iTRAQ for process development based upon knowledge of critical HCPs. PMID:27214759

  4. Ultraviolet radiation effects on the proteome of skin cells.

    PubMed

    Muller, H Konrad; Woods, Gregory M

    2013-01-01

    Proteomic studies to date have had limited use as an investigative tool in the skin's response to UV radiation. These studies used cell lines and reconstructed skin and have shown evidence of cell injury with oxidative damage and stress induced heat shock proteins. Others changes included altered cytokeratin and cytoskeletal proteins with enhanced expression of TRIM29 as the keratinocytes regenerate. The associated DNA repair requires polη, Rad18/Rad16 and Rev1. In the whole animal these events would be associated with inflammation, remodelling of the epidermis and modulation of the immune response. Longer term changes include ageing and skin cancers such as melanoma, squamous cell carcinoma and basal cell carcinoma. In the future proteomics will be used to explore these important aspects of photobiology. Better characterisation of the proteins involved should lead to a greater understanding of the skin's response to UV radiation.

  5. Proteomics of cell-cell interactions in health and disease.

    PubMed

    Lindoso, Rafael S; Sandim, Vanessa; Collino, Federica; Carvalho, Adriana B; Dias, Juliana; da Costa, Milene R; Zingali, Russolina B; Vieyra, Adalberto

    2016-01-01

    The mechanisms of cell-cell communications are now under intense study by proteomic approaches. Proteomics has unraveled changes in protein profiling as the result of cell interactions mediated by ligand/receptor, hormones, soluble factors, and the content of extracellular vesicles. Besides being a brief overview of the main and profitable methodologies now available (evaluating theory behind the methods, their usefulness, and pitfalls), this review focuses on-from a proteome perspective-some signaling pathways and post-translational modifications (PTMs), which are essential for understanding ischemic lesions and their recovery in two vital organs in mammals, the heart, and the kidney. Knowledge of misdirection of the proteome during tissue recovery, such as represented by the convergence between fibrosis and cancer, emerges as an important tool in prognosis. Proteomics of cell-cell interaction is also especially useful for understanding how stem cells interact in injured tissues, anticipating clues for rational therapeutic interventions. In the effervescent field of induced pluripotency and cell reprogramming, proteomic studies have shown what proteins from specialized cells contribute to the recovery of infarcted tissues. Overall, we conclude that proteomics is at the forefront in helping us to understand the mechanisms that underpin prevalent pathological processes.

  6. Proteomic Definitions of Mesenchymal Stem Cells

    PubMed Central

    Maurer, Martin H.

    2011-01-01

    Mesenchymal stem cells (MSCs) are pluripotent cells isolated from the bone marrow and various other organs. They are able to proliferate and self-renew, as well as to give rise to progeny of at least the osteogenic, chondrogenic, and adipogenic lineages. Despite this functional definition, MSCs can also be defined by their expression of a distinct set of cell surface markers. In the current paper, studies investigating the proteome of human MSCs are reviewed with the aim to identify common protein markers of MSCs. The proteomic analysis of MSCs revealed a distinct set of proteins representing the basic molecular inventory, including proteins for (i) cell surface markers, (ii) the responsiveness to growth factors, (iii) the reuse of developmental signaling cascades in adult stem cells, (iv) the interaction with molecules of the extracellular matrix, (v) the expression of genes regulating transcription and translation, (vi) the control of the cell number, and (vii) the protection against cellular stress. PMID:21437194

  7. Recent advances in plant cell wall proteomics.

    PubMed

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael

    2008-02-01

    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  8. Proliferating cell nuclear antigen: a proteomics view.

    PubMed

    Naryzhny, S N

    2008-11-01

    Proliferating cell nuclear antigen (PCNA), a cell cycle marker protein, is well known as a DNA sliding clamp for DNA polymerase delta and as an essential component for eukaryotic chromosomal DNA replication and repair. Due to its mobility inside nuclei, PCNA is dynamically presented in a soluble or chromatin-associated form. The heterogeneity and specific modifications of PCNA may reflect its multiple functions and the presence of many binding partners in the cell. The recent proteomics approaches applied to characterizing PCNA interactions revealed multiple PCNA partners with a wide spectrum of activity and unveiled the possible existence of new PCNA functions. Since more than 100 PCNA-interacting proteins and several PCNA modifications have already been reported, a proteomics point of view seems exactly suitable to better understand the role of PCNA in cellular functions.

  9. Cell wall proteome of pathogenic fungi.

    PubMed

    Karkowska-Kuleta, Justyna; Kozik, Andrzej

    2015-01-01

    A fast development of a wide variety of proteomic techniques supported by mass spectrometry coupled with high performance liquid chromatography has been observed in recent years. It significantly contributes to the progress in research on the cell wall, very important part of the cells of pathogenic fungi. This complicated structure composed of different polysaccharides, proteins, lipids and melanin, plays a key role in interactions with the host during infection. Changes in the set of the surface-exposed proteins under different environmental conditions provide an effective way for pathogens to respond, adapt and survive in the new niches of infection. This work summarizes the current state of knowledge on proteins, studied both qualitatively and quantitatively, and found within the cell wall of fungal pathogens for humans, including Candida albicans, Candida glabrata, Aspergillus fumigatus, Cryptococcus neoformans and other medically important fungi. The described proteomic studies involved the isolation and fractionation of particular sets of proteins of interest with various techniques, often based on differences in their linkages to the polysaccharide scaffold. Furthermore, the proteinaceous contents of extracellular vesicles ("virulence bags") of C. albicans, C. neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis are compared, because their production can partially explain the problem of non-classical protein secretion by fungi. The role assigned to surface-exposed proteins in pathogenesis of fungal infections is enormously high, thus justifying the need for further investigation of cell wall proteomes.

  10. Docosohaexanoic acid-supplemented PACA44 cell lines and over-activation of Krebs cycle: an integrated proteomic, metabolomic and interactomic overview.

    PubMed

    D'Alessandro, Angelo; D'Amici, Gian Maria; Timperio, Anna Maria; Merendino, Nicolò; Zolla, Lello

    2011-09-06

    Recent investigations have pointed out the ability of fatty acids, in particular of docosohaexanoic acid (DHA), to induce growth inhibition and apoptosis in the human PaCa-44 pancreatic cancer cell line through a series of mechanisms which has been hypothesized to mimic apoptosis. While preliminary evidences indicated the involvement of lipid-targeting oxidative stress in DHA-induced apoptotic processes, mainly through the alteration of the glutathione (GSH) homeostasis and oxidized-glutathione (GSSG) turn-over through their extra-cellular extrusion, no further molecular data have been hitherto accumulated. To this end, we hereby propose simultaneous protein-targeting and metabolite-oriented analyses, which have been integrated through the auxilium of in silico elaboration of those protein-protein interaction pathways and enrichment of biological/molecular functions. To determine the most suitable time window for the early onset of the DHA-triggered apoptosis phenomena we performed flow cytometry-based apoptotic assessment at 24, 48 and 72 h. Results indicated that the focus of apoptosis onset ranged from 48 to 72 h. From these analyses it emerges that the metabolism of control human PaCa-44 pancreatic cancer cell line mainly leans on glycolytic pathways, while it is promptly switched to Kreb's cycle activation (overexpression of Kreb's cycle enzymes in DHA-treated cells against controls) and modulation of the GSH homeostasis through an increased production of GSSG-reducing NADPH coenzyme via the shift of the glycolytic energy flux towards the pentose phosphate pathway. Interestingly, it also emerges a role for structural protein alteration in DHA-treated cells, which might be linked to cytoskeletal alterations occurring during apoptosis.

  11. Cell wall proteins: a new insight through proteomics.

    PubMed

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Pont-Lezica, Rafael F

    2006-01-01

    Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translational modifications have been characterized in cell wall proteins to date? The purpose of this review is to discuss the experimental results obtained to date using proteomics, as well as some of the new questions challenging future research.

  12. The cell envelope proteome of Aggregatibacter actinomycetemcomitans.

    PubMed

    Smith, K P; Fields, J G; Voogt, R D; Deng, B; Lam, Y-W; Mintz, K P

    2015-04-01

    The cell envelope of gram-negative bacteria serves a critical role in maintenance of cellular homeostasis, resistance to external stress, and host-pathogen interactions. Envelope protein composition is influenced by the physiological and environmental demands placed on the bacterium. In this study, we report a comprehensive compilation of cell envelope proteins from the periodontal and systemic pathogen Aggregatibacter actinomycetemcomitans VT1169, an afimbriated serotype b strain. The urea-extracted membrane proteins were identified by mass spectrometry-based shotgun proteomics. The membrane proteome, isolated from actively growing bacteria under normal laboratory conditions, included 648 proteins representing 27% of the predicted open reading frames in the genome. Bioinformatic analyses were used to annotate and predict the cellular location and function of the proteins. Surface adhesins, porins, lipoproteins, numerous influx and efflux pumps, multiple sugar, amino acid and iron transporters, and components of the type I, II and V secretion systems were identified. Periplasmic space and cytoplasmic proteins with chaperone function were also identified. A total of 107 proteins with unknown function were associated with the cell envelope. Orthologs of a subset of these uncharacterized proteins are present in other bacterial genomes, whereas others are found exclusively in A. actinomycetemcomitans. This knowledge will contribute to elucidating the role of cell envelope proteins in bacterial growth and survival in the oral cavity.

  13. Cell line provenance.

    PubMed

    Freshney, R Ian

    2002-07-01

    Cultured cell lines have become an extremely valuable resource, both in academic research and in industrial biotechnology. However, their value is frequently compromised by misidentification and undetected microbial contamination. As detailed elsewhere in this volume, the technology, both simple and sophisticated, is available to remedy the problems of misidentification and contamination, given the will to apply it. Combined with proper records of the origin and history of the cell line, assays for authentication and contamination contribute to the provenance of the cell line. Detailed records should start from the initiation or receipt of the cell line, and should incorporate data on the donor as well as the tissue from which the cell line was derived, should continue with details of maintenance, and include any accidental as well as deliberate deviations from normal maintenance. Records should also contain details of authentication and regular checks for contamination. With this information, preferably stored in a database, and suitable backed up, the provenance of the cell line so created makes the cell line a much more valuable resource, fit for validation in industrial applications and more likely to provide reproducible experimental results when disseminated for research in other laboratories.

  14. Identification of Proteins Enriched in Rice Egg or Sperm Cells by Single-Cell Proteomics

    PubMed Central

    Abiko, Mafumi; Furuta, Kensyo; Yamauchi, Yoshio; Fujita, Chiharu; Taoka, Masato; Isobe, Toshiaki; Okamoto, Takashi

    2013-01-01

    In angiosperms, female gamete differentiation, fertilization, and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries. Despite their importance in plant reproduction and development, how the egg cell is specialized, fuses with the sperm cell, and converts into an active zygote for early embryogenesis remains unclear. This lack of knowledge is partly attributable to the difficulty of direct analyses of gametes in angiosperms. In the present study, proteins from egg and sperm cells obtained from rice flowers were separated by one-dimensional polyacrylamide gel electrophoresis and globally identified by highly sensitive liquid chromatography coupled with tandem mass spectroscopy. Proteome analyses were also conducted for seedlings, callus, and pollen grains to compare their protein expression profiles to those of gametes. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000265. A total of 2,138 and 2,179 expressed proteins were detected in egg and sperm cells, respectively, and 102 and 77 proteins were identified as preferentially expressed in egg and sperm cells, respectively. Moreover, several rice or Arabidopsis lines with mutations in genes encoding the putative gamete-enriched proteins showed clear phenotypic defects in seed set or seed development. These results suggested that the proteomic data presented in this study are foundational information toward understanding the mechanisms of reproduction and early development in angiosperms. PMID:23936051

  15. Identification of proteins enriched in rice egg or sperm cells by single-cell proteomics.

    PubMed

    Abiko, Mafumi; Furuta, Kensyo; Yamauchi, Yoshio; Fujita, Chiharu; Taoka, Masato; Isobe, Toshiaki; Okamoto, Takashi

    2013-01-01

    In angiosperms, female gamete differentiation, fertilization, and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries. Despite their importance in plant reproduction and development, how the egg cell is specialized, fuses with the sperm cell, and converts into an active zygote for early embryogenesis remains unclear. This lack of knowledge is partly attributable to the difficulty of direct analyses of gametes in angiosperms. In the present study, proteins from egg and sperm cells obtained from rice flowers were separated by one-dimensional polyacrylamide gel electrophoresis and globally identified by highly sensitive liquid chromatography coupled with tandem mass spectroscopy. Proteome analyses were also conducted for seedlings, callus, and pollen grains to compare their protein expression profiles to those of gametes. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000265. A total of 2,138 and 2,179 expressed proteins were detected in egg and sperm cells, respectively, and 102 and 77 proteins were identified as preferentially expressed in egg and sperm cells, respectively. Moreover, several rice or Arabidopsis lines with mutations in genes encoding the putative gamete-enriched proteins showed clear phenotypic defects in seed set or seed development. These results suggested that the proteomic data presented in this study are foundational information toward understanding the mechanisms of reproduction and early development in angiosperms.

  16. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks.

    PubMed

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-12-10

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quantitative mass spectrometry-based analysis to probe in-depth dynamic proteome changes during somatic cell reprogramming. Our data reveal defined waves of proteome resetting, with the first wave occurring 48 h after the activation of the reprogramming transgenes and involving specific biological processes linked to the c-Myc transcriptional network. A second wave of proteome reorganization occurs in a later stage of reprogramming, where we characterize the proteome of two distinct pluripotent cellular populations. In addition, the overlay of our proteome resource with parallel generated -omics data is explored to identify post-transcriptionally regulated proteins involved in key steps during reprogramming.

  17. Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content.

    PubMed

    Gan, Lu; Zhang, Chun-yu; Wang, Xiao-dong; Wang, Hao; Long, Yan; Yin, Yong-tai; Li, Dian-rong; Tian, Jian-Hua; Li, Zai-yun; Lin, Zhi-wei; Yu, Long-Jiang; Li, Mao-Teng

    2013-11-01

    Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.

  18. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    PubMed Central

    Fukao, Yoichiro; Kobayashi, Mami; Zargar, Sajad Majeed; Kurata, Rie; Fukui, Risa; Mori, Izumi C.; Ogata, Yoshiyuki

    2016-01-01

    The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex), respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots. PMID:28248212

  19. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots.

    PubMed

    Fukao, Yoichiro; Kobayashi, Mami; Zargar, Sajad Majeed; Kurata, Rie; Fukui, Risa; Mori, Izumi C; Ogata, Yoshiyuki

    2016-01-12

    The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex), respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  20. Cell-specific proteomic analysis in Caenorhabditis elegans

    PubMed Central

    Yuet, Kai P.; Doma, Meenakshi K.; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Moradian, Annie; Hess, Sonja; Schuman, Erin M.; Sternberg, Paul W.; Tirrell, David A.

    2015-01-01

    Proteomic analysis of rare cells in heterogeneous environments presents difficult challenges. Systematic methods are needed to enrich, identify, and quantify proteins expressed in specific cells in complex biological systems including multicellular plants and animals. Here, we have engineered a Caenorhabditis elegans phenylalanyl-tRNA synthetase capable of tagging proteins with the reactive noncanonical amino acid p-azido-l-phenylalanine. We achieved spatiotemporal selectivity in the labeling of C. elegans proteins by controlling expression of the mutant synthetase using cell-selective (body wall muscles, intestinal epithelial cells, neurons, and pharyngeal muscle) or state-selective (heat-shock) promoters in several transgenic lines. Tagged proteins are distinguished from the rest of the protein pool through bioorthogonal conjugation of the azide side chain to probes that permit visualization and isolation of labeled proteins. By coupling our methodology with stable-isotope labeling of amino acids in cell culture (SILAC), we successfully profiled proteins expressed in pharyngeal muscle cells, and in the process, identified proteins not previously known to be expressed in these cells. Our results show that tagging proteins with spatiotemporal selectivity can be achieved in C. elegans and illustrate a convenient and effective approach for unbiased discovery of proteins expressed in targeted subsets of cells. PMID:25691744

  1. How well can morphology assess cell death modality? A proteomics study

    PubMed Central

    Chernobrovkin, Alexey L; Zubarev, Roman A

    2016-01-01

    While the focus of attempts to classify cell death programs has finally shifted in 2010s from microscopy-based morphological characteristics to biochemical assays, more recent discoveries have put the underlying assumptions of many such assays under severe stress, mostly because of the limited specificity of the assays. On the other hand, proteomics can quantitatively measure the abundances of thousands of proteins in a single experiment. Thus proteomics could develop a modern alternative to both semiquantitative morphology assessment as well as single-molecule biochemical assays. Here we tested this hypothesis by analyzing the proteomes of cells dying after been treated with various chemical agents. The most striking finding is that, for a multivariate model based on the proteome changes in three cells lines, the regulation patterns of the 200–500 most abundant proteins typically attributed to household type more accurately reflect that of the proteins directly interacting with the drug than any other protein subset grouped by common function or biological process, including cell death. This is in broad agreement with the 'rigid cell death mechanics' model where drug action mechanism and morphological changes caused by it are bijectively linked. This finding, if confirmed, will open way for a broad use of proteomics in death modality assessment. PMID:27752363

  2. Glycopeptide capture for cell surface proteomics.

    PubMed

    Lee, M C Gilbert; Sun, Bingyun

    2014-05-09

    Cell surface proteins, including extracellular matrix proteins, participate in all major cellular processes and functions, such as growth, differentiation, and proliferation. A comprehensive characterization of these proteins provides rich information for biomarker discovery, cell-type identification, and drug-target selection, as well as helping to advance our understanding of cellular biology and physiology. Surface proteins, however, pose significant analytical challenges, because of their inherently low abundance, high hydrophobicity, and heavy post-translational modifications. Taking advantage of the prevalent glycosylation on surface proteins, we introduce here a high-throughput glycopeptide-capture approach that integrates the advantages of several existing N-glycoproteomics means. Our method can enrich the glycopeptides derived from surface proteins and remove their glycans for facile proteomics using LC-MS. The resolved N-glycoproteome comprises the information of protein identity and quantity as well as their sites of glycosylation. This method has been applied to a series of studies in areas including cancer, stem cells, and drug toxicity. The limitation of the method lies in the low abundance of surface membrane proteins, such that a relatively large quantity of samples is required for this analysis compared to studies centered on cytosolic proteins.

  3. A cell-based approach to the human proteome project.

    PubMed

    Kelleher, Neil L

    2012-10-01

    The general scope of a project to determine the protein molecules that comprise the cells within the human body is framed. By focusing on protein primary structure as expressed in specific cell types, this concept for a cell-based version of the Human Proteome Project (CB-HPP) is crafted in a manner analogous to the Human Genome Project while recognizing that cells provide a primary context in which to define a proteome. Several activities flow from this articulation of the HPP, which enables the definition of clear milestones and deliverables. The CB-HPP highlights major gaps in our knowledge regarding cell heterogeneity and protein isoforms, and calls for development of technology that is capable of defining all human cell types and their proteomes. The main activities will involve mapping and sorting cell types combined with the application of beyond the state-of-the art in protein mass spectrometry.

  4. A Cell-Based Approach to the Human Proteome Project

    NASA Astrophysics Data System (ADS)

    Kelleher, Neil L.

    2012-10-01

    The general scope of a project to determine the protein molecules that comprise the cells within the human body is framed. By focusing on protein primary structure as expressed in specific cell types, this concept for a cell-based version of the Human Proteome Project (CB-HPP) is crafted in a manner analogous to the Human Genome Project while recognizing that cells provide a primary context in which to define a proteome. Several activities flow from this articulation of the HPP, which enables the definition of clear milestones and deliverables. The CB-HPP highlights major gaps in our knowledge regarding cell heterogeneity and protein isoforms, and calls for development of technology that is capable of defining all human cell types and their proteomes. The main activities will involve mapping and sorting cell types combined with the application of beyond the state-of-the art in protein mass spectrometry.

  5. Maize (Zea mays L.) seedling leaf nuclear proteome and differentially expressed proteins between a hybrid and its parental lines.

    PubMed

    Guo, Baojian; Chen, Yanhong; Li, Chuan; Wang, Tianya; Wang, Rui; Wang, Bo; Hu, Sha; Du, Xiaofen; Xing, Hongyan; Song, Xiao; Yao, Yingyin; Sun, Qixin; Ni, Zhongfu

    2014-05-01

    To better understand the underlying molecular basis of leaf development in maize, a reference map of nuclear proteins in basal region of seedling leaf was established using a combination of 2DE and MALDI-TOF-MS. In total, 441 reproducible protein spots in nuclear proteome of maize leaf basal region were detected with silver staining in a pH range of 3-10, among which 203 spots corresponding to 163 different proteins were identified. As expected, proteins implicated in RNA and protein-associated functions were overrepresented in nuclear proteome. Remarkably, a high percentage (10%) of proteins was identified to be involved in cell division and growth. In addition, comparative nuclear proteomic analysis in leaf basal region of highly heterotic hybrid Mo17/B73 and its parental lines was also performed and 52 of 445 (11.69%) detected protein spots were differentially expressed between the hybrid and its parental lines, among which 16 protein spots displayed nonadditively expressed pattern. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of nuclear proteins, which may be responsible for the observed leaf size heterosis.

  6. Proteome-scale Binary Interactomics in Human Cells.

    PubMed

    Lievens, Sam; Van der Heyden, José; Masschaele, Delphine; De Ceuninck, Leentje; Petta, Ioanna; Gupta, Surya; De Puysseleyr, Veronic; Vauthier, Virginie; Lemmens, Irma; De Clercq, Dries J H; Defever, Dieter; Vanderroost, Nele; De Smet, Anne-Sophie; Eyckerman, Sven; Van Calenbergh, Serge; Martens, Lennart; De Bosscher, Karolien; Libert, Claude; Hill, David E; Vidal, Marc; Tavernier, Jan

    2016-12-01

    Because proteins are the main mediators of most cellular processes they are also prime therapeutic targets. Identifying physical links among proteins and between drugs and their protein targets is essential in order to understand the mechanisms through which both proteins themselves and the molecules they are targeted with act. Thus, there is a strong need for sensitive methods that enable mapping out these biomolecular interactions. Here we present a robust and sensitive approach to screen proteome-scale collections of proteins for binding to proteins or small molecules using the well validated MAPPIT (Mammalian Protein-Protein Interaction Trap) and MASPIT (Mammalian Small Molecule-Protein Interaction Trap) assays. Using high-density reverse transfected cell microarrays, a close to proteome-wide collection of human ORF clones can be screened for interactors at high throughput. The versatility of the platform is demonstrated through several examples. With MAPPIT, we screened a 15k ORF library for binding partners of RNF41, an E3 ubiquitin protein ligase implicated in receptor sorting, identifying known and novel interacting proteins. The potential related to the fact that MAPPIT operates in living human cells is illustrated in a screen where the protein collection is scanned for interactions with the glucocorticoid receptor (GR) in its unliganded versus dexamethasone-induced activated state. Several proteins were identified the interaction of which is modulated upon ligand binding to the GR, including a number of previously reported GR interactors. Finally, the screening technology also enables detecting small molecule target proteins, which in many drug discovery programs represents an important hurdle. We show the efficiency of MASPIT-based target profiling through screening with tamoxifen, a first-line breast cancer drug, and reversine, an investigational drug with interesting dedifferentiation and antitumor activity. In both cases, cell microarray screens

  7. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  8. Spatial proteomic and phospho-proteomic organization in three prototypical cell migration modes

    PubMed Central

    2014-01-01

    Background Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. Results Here, we use an assay that allows to biochemically purify extending protrusions of cells migrating in response to three prototypical receptors: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. Conclusions The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration. PMID:24987309

  9. Drafting the proteome landscape of myeloid-derived suppressor cells.

    PubMed

    Gato, María; Blanco-Luquin, Idoia; Zudaire, Maribel; de Morentin, Xabier Martínez; Perez-Valderrama, Estela; Zabaleta, Aintzane; Kochan, Grazyna; Escors, David; Fernandez-Irigoyen, Joaquín; Santamaría, Enrique

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that are defined by their myeloid origin, immature state, and ability to potently suppress T-cell responses. They regulate immune responses and the population significantly increases in the tumor microenvironment of patients with glioma and other malignant tumors. For their study, MDSCs are usually isolated from the spleen or directly of tumors from a large number of tumor-bearing mice although promising ex vivo differentiated MDSC production systems have been recently developed. During the last years, proteomics has emerged as a powerful approach to analyze MDSCs proteomes using shotgun-based mass spectrometry (MS), providing functional information about cellular homeostasis and metabolic state at a global level. Here, we will revise recent proteome profiling studies performed in MDSCs from different origins. Moreover, we will perform an integrative functional analysis of the protein compilation derived from these large-scale proteomic studies in order to obtain a comprehensive view of MDSCs biology. Finally, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and post-translational modifications (PTMs) during the differentiation process of MDSCs that will greatly boost the identification of novel MDSC-specific therapeutic targets to apply in cancer immunotherapy.

  10. Systematic proteomic analysis of human hepotacellular carcinoma cells reveals molecular pathways and networks involved in metastasis.

    PubMed

    Yu, Yanyan; Shen, Huali; Yu, Hongxiu; Zhong, Fan; Zhang, Yang; Zhang, Chen; Zhao, Jian; Li, Hong; Chen, Jie; Liu, Yinkun; Yang, Pengyuan

    2011-06-01

    Systematic proteomic studying of the mechanism of hepatocellular carcinoma (HCC) metastasis remains challenging. We performed comparative proteomic and pathway analysis of four human metastatic HCC cell lines to identify metastasis-associated proteins. These HCC cell lines had a similar genetic background but with an increasing potential of metastasis. Using a combination of two dimensional electrophoresis (2-DE) and MALDI-TOF mass spectrometry, a total of 125 proteins and their post-translational modification forms or isoforms were found to be differentially expressed in the cell lines. Among them, 29 were gradually up-regulated whereas 17 were down-regulated with increasing metastatic potential. Instead of a traditional single-gene readout, global bioinformatics analysis was carried out, which revealed that the glycolysis pathway was the most significantly enriched pathway. The heat shock proteins (HSPs) centered and NF-kappaB centered networks were also enriched in the result, which may imply the key function of inflaming on metastasis. Meanwhile, knockdown of HDGF, an up-regulated protein and a target of NF-kappaB, induced cell apoptosis in the metastatic HCC cells. This work provides a demonstration that a combination of bioinformatics and comparative proteomics can help in finding out potential biomarkers associated with HCC metastasis on the level of pathways.

  11. Proteome changes in tomato lines transformed with phytoene synthase-1 in the sense and antisense orientations.

    PubMed

    Robertson, Francesca P; Koistinen, P Kaisa; Gerrish, Christopher; Halket, John M; Patel, Raj K P; Fraser, Paul D; Bramley, Peter M

    2012-10-01

    The commercial cultivation of genetically engineered (GE) crops in Europe has met with considerable consumer resistance, which has led to vigorous safety assessments including the measurement of substantial equivalence between the GE and parent lines. This necessitates the identification and quantification of significant changes to the metabolome and proteome in the GE crop. In this study, the quantitative proteomic analysis of tomato fruit from lines that have been transformed with the carotenogenic gene phytoene synthase-1 (Psy-1), in the sense and antisense orientations, in comparison with a non-transformed, parental line is described. Multidimensional protein identification technology (MudPIT), with tandem mass spectrometry, has been used to identify proteins, while quantification has been carried out with isobaric tags for relative and absolute quantification (iTRAQ). Fruit from the GE plants showed significant alterations to their proteomes compared with the parental line, especially those from the Psy-1 sense transformants. These results demonstrate that MudPIT and iTRAQ are suitable techniques for the verification of substantial equivalence of the proteome in GE crops.

  12. Proteomics

    SciTech Connect

    Hixson, Kim K.; Lopez-Ferrer, Daniel; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2010-02-01

    Proteomics aims to characterize the spatial distribution and temporal dynamics of proteins in biological systems, the protein response to environmental stimuli, and the differences in protein states between diseased and control biological systems. Mass spectrometry (MS) plays a crucial role in enabling the analysis of proteomes and typically is the method of choice for identifying proteins present in biological systems. Peptide (and consequently protein) identifications are made by comparing measured masses to calculated values obtained from genome data. Several methodologies based on MS have been developed for the analysis of proteomes. The complexity of the biological systems requires that the proteome be separated prior to analysis. Both gel based and liquid chromatography based separations have proven very useful in this regard. Typically, separated proteins are analyzed with MS either intact (top-down proteomics) or are digested into peptides (bottom-up) prior to MS analysis. Additionally, several procedures, with and without stable isotopic labeling, have been introduced to facilitate protein quantitation (e.g. characterize changes in protein abundances between given biological states).

  13. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    PubMed

    Dormeyer, Wilma; van Hoof, Dennis; Braam, Stefan R; Heck, Albert J R; Mummery, Christine L; Krijgsveld, Jeroen

    2008-07-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosomal abnormalities in culture are essentially indistinguishable from hECC. Direct comparison of karyotypically normal hESCs with hECCs could lead to understanding differences between their mechanisms of growth control and contribute to implementing safe therapeutic use of stem cells without the development of germ cell cancer. While several comparisons of hECCs and hESCs have been reported, their cell surface proteomes are largely unknown, partly because plasma membrane proteomics is still a major challenge. Here, we present a strategy for the identification of plasma membrane proteins that has been optimized for application to the relatively small numbers of stem cells normally available, and that does not require tedious cell fractionation. The method led to the identification of 237 and 219 specific plasma membrane proteins in the hESC line HUES-7 and the hECC line NT2/D1, respectively. In addition to known stemness-associated cell surface markers like ALP, CD9, and CTNNB, a large number of receptors, transporters, signal transducers, and cell-cell adhesion proteins were identified. Our study revealed that several Hedgehog and Wnt pathway members are differentially expressed in hESCs and hECCs including NPC1, FZD2, FZD6, FZD7, LRP6, and SEMA4D, which play a pivotal role in stem cell self-renewal and cancer growth. Various proteins encoded on chromosome 12p, duplicated in testicular cancer, were uniquely identified in hECCs. These included GAPDH, LDHB, YARS2, CLSTN3, CSDA, LRP6, NDUFA9, and NOL1, which are known to be upregulated in testicular cancer. Distinct HLA molecules were revealed on the surface of hESCs and hECCs, despite their low abundance. Results were

  14. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    PubMed Central

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  15. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  16. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    PubMed

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  17. Proteomics and Phosphoproteomics Analysis of Human Lens Fiber Cell Membranes

    PubMed Central

    Wang, Zhen; Han, Jun; David, Larry L.; Schey, Kevin L.

    2013-01-01

    Purpose. The human lens fiber cell insoluble membrane fraction contains important membrane proteins, cytoskeletal proteins, and cytosolic proteins that are strongly associated with the membrane. The purpose of this study was to characterize the lens fiber cell membrane proteome and phosphoproteome from human lenses. Methods. HPLC-mass spectrometry–based multidimensional protein identification technology (MudPIT), without or with phosphopeptide enrichment, was applied to study the proteome and phosphoproteome of lens fiber cell membranes, respectively. Results. In total, 951 proteins were identified, including 379 integral membrane and membrane-associated proteins. Enriched gene categories and pathways based on the proteomic analysis include carbohydrate metabolism (glycolysis/gluconeogenesis, pentose phosphate pathway, pyruvate metabolism), proteasome, cell-cell signaling and communication (GTP binding, gap junction, focal adhesion), glutathione metabolism, and actin regulation. The combination of TiO2 phosphopeptide enrichment and MudPIT analysis revealed 855 phosphorylation sites on 271 proteins, including 455 phosphorylation sites that have not been previously identified. PKA, PKC, CKII, p38MAPK, and RSK are predicted as the major kinases for phosphorylation on the sites identified in the human lens membrane fraction. Conclusions. The results presented herein significantly expand the characterized proteome and phosphoproteome of the human lens fiber cell and provide a valuable reference for future research in studies of lens development and disease. PMID:23349431

  18. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    PubMed

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-03-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices.

  19. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration

    PubMed Central

    2012-01-01

    Introduction Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam). Methods We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions. Results Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility. Conclusions Our data demonstrate that the adaptive changes in the proteome of

  20. Proteomics of lung cell biology and pulmonary disease.

    PubMed

    Levine, Stewart J

    2007-10-01

    Proteomics has the goal of defining the complete protein complement of biological systems, which can then be analyzed in a comparative fashion to generate informative data regarding protein expression and function. Proteomic analyses can also facilitate the discovery of biomarkers that can be used to diagnose and monitor disease severity, activity and therapeutic response, as well as to identify new targets for drug development. A major challenge for proteomics, however, has been detecting low-abundance proteins in complex biological fluids. This review summarizes how proteomic analyses have advanced lung cell biology and facilitated the identification of new mechanisms of disease pathogenesis in respiratory disorders, such as asthma, cystic fibrosis, lung cancer, acute lung injury and sarcoidosis. The impact of nanotechnology and microfluidics, as well as studies of post-translational modifications and protein-protein interactions (the interactome), are considered. Furthermore, the application of systems-biology approaches to organize and analyze data regarding the lung proteome, interactome, genome, transcriptome, metabolome, glycome and small RNAome (regulatory RNAs), should facilitate future conceptual advances regarding lung cell biology, disease pathogenesis, biomarker discovery and drug development.

  1. Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition.

    PubMed

    Taylor, Martin S; LaCava, John; Mita, Paolo; Molloy, Kelly R; Huang, Cheng Ran Lisa; Li, Donghui; Adney, Emily M; Jiang, Hua; Burns, Kathleen H; Chait, Brian T; Rout, Michael P; Boeke, Jef D; Dai, Lixin

    2013-11-21

    LINE-1s are active human DNA parasites that are agents of genome dynamics in evolution and disease. These streamlined elements require host factors to complete their life cycles, whereas hosts have developed mechanisms to combat retrotransposition's mutagenic effects. As such, endogenous L1 expression levels are extremely low, creating a roadblock for detailed interactomic analyses. Here, we describe a system to express and purify highly active L1 RNP complexes from human suspension cell culture and characterize the copurified proteome, identifying 37 high-confidence candidate interactors. These data sets include known interactors PABPC1 and MOV10 and, with in-cell imaging studies, suggest existence of at least three types of compositionally and functionally distinct L1 RNPs. Among the findings, UPF1, a key nonsense-mediated decay factor, and PCNA, the polymerase-delta-associated sliding DNA clamp, were identified and validated. PCNA interacts with ORF2p via a PIP box motif; mechanistic studies suggest that this occurs during or immediately after target-primed reverse transcription.

  2. Plant organelle proteomics: collaborating for optimal cell function.

    PubMed

    Agrawal, Ganesh Kumar; Bourguignon, Jacques; Rolland, Norbert; Ephritikhine, Geneviève; Ferro, Myriam; Jaquinod, Michel; Alexiou, Konstantinos G; Chardot, Thierry; Chakraborty, Niranjan; Jolivet, Pascale; Doonan, John H; Rakwal, Randeep

    2011-01-01

    Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in

  3. Pediatric brain tumor cell lines.

    PubMed

    Xu, Jingying; Margol, Ashley; Asgharzadeh, Shahab; Erdreich-Epstein, Anat

    2015-02-01

    Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research.

  4. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells

    PubMed Central

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-01-01

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis. PMID:28248281

  5. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    PubMed

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  6. An enlarged cell wall proteome of Arabidopsis thaliana rosettes.

    PubMed

    Hervé, Vincent; Duruflé, Harold; San Clemente, Hélène; Albenne, Cécile; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2016-12-01

    Plant cells are surrounded by cell walls playing many roles during development and in response to environmental constraints. Cell walls are mainly composed of polysaccharides (cellulose, hemicelluloses and pectins), but they also contain proteins which are critical players in cell wall remodeling processes. Today, the cell wall proteome of Arabidopsis thaliana, a major dicot model plant, comprises more than 700 proteins predicted to be secreted (cell wall proteins-CWPs) identified in different organs or in cell suspension cultures. However, the cell wall proteome of rosettes is poorly represented with only 148 CWPs identified after extraction by vacuum infiltration. This new study allows enlarging its coverage. A destructive method starting with the purification of cell walls has been performed and two experiments have been compared. They differ by the presence/absence of protein separation by a short 1D-electrophoresis run prior to tryptic digestion and different gradient programs for peptide separation before mass spectrometry analysis. Altogether, the rosette cell wall proteome has been significantly enlarged to 361 CWPs, among which 213 newly identified in rosettes and 57 newly described. The identified CWPs fall in four major functional classes: 26.1% proteins acting on polysaccharides, 11.1% oxido-reductases, 14.7% proteases and 11.7% proteins possibly related to lipid metabolism.

  7. Quantitative Proteomic and Phosphoproteomic Comparison of 2D and 3D Colon Cancer Cell Culture Models.

    PubMed

    Yue, Xiaoshan; Lukowski, Jessica K; Weaver, Eric M; Skube, Susan B; Hummon, Amanda B

    2016-12-02

    Cell cultures are widely used model systems. Some immortalized cell lines can be grown in either two-dimensional (2D) adherent monolayers or in three-dimensional (3D) multicellular aggregates, or spheroids. Here, the quantitative proteome and phosphoproteome of colon carcinoma HT29 cells cultures in 2D monolayers and 3D spheroids were compared with a stable isotope labeling of amino acids (SILAC) labeling strategy. Two biological replicates from each sample were examined, and notable differences in both the proteome and the phosphoproteome were determined by nanoliquid chromatography tandem mass spectrometry (LC-MS/MS) to assess how growth configuration affects molecular expression. A total of 5867 protein groups, including 2523 phosphoprotein groups and 8733 phosphopeptides were identified in the samples. The Gene Ontology analysis revealed enriched GO terms in the 3D samples for RNA binding, nucleic acid binding, enzyme binding, cytoskeletal protein binding, and histone binding for their molecular functions (MF) and in the process of cell cycle, cytoskeleton organization, and DNA metabolic process for the biological process (BP). The KEGG pathway analysis indicated that 3D cultures are enriched for oxidative phosphorylation pathways, metabolic pathways, peroxisome pathways, and biosynthesis of amino acids. In contrast, analysis of the phosphoproteomes indicated that 3D cultures have decreased phosphorylation correlating with slower growth rates and lower cell-to-extracellular matrix interactions. In sum, these results provide quantitative assessments of the effects on the proteome and phosphoproteome of culturing cells in 2D versus 3D cell culture configurations.

  8. Capillary Isoelectric Focusing Immunoassay for Fat Cell Differentiation Proteomics.

    PubMed

    Johlfs, Mary G; Gorjala, Priyatham; Urasaki, Yasuyo; Le, Thuc T; Fiscus, Ronald R

    2015-01-01

    Profiling cellular proteome is critical to understanding signal integration during cell fate determination. In this study, the capability of capillary isoelectric focusing (cIEF) immunoassays to detect post-translational modifications (PTM) of protein isoforms is demonstrated. cIEF immunoassays exhibit protein detection sensitivity at up to 5 orders of magnitude higher than traditional methods. This detection ultra-sensitivity permits proteomic profiling of several nanograms of tissue samples. cIEF immunoassays are employed to simultaneously profile three protein kinases during fat cell differentiation: cGMP-dependent protein kinase type I (PKG-I) of the nitric oxide (NO) signaling pathway, protein kinase B (Akt) of the insulin signaling pathway, and extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) signaling pathway. Interestingly, a switch in the expression level of PKG- isoforms is observed during fat cell differentiation. While both PKG-Iα and PKG-Iβ isoforms are present in preadipocytes, only PKG-Iβ isoform is expressed in adipocytes. On the other hand, the phosphorylation level increases for Akt while decreases for ERK1 and ERK2 following the maturation of preadipocytes into adipocytes. Taken together, cIEF immunoassay provides a highly sensitive means to study fat cell differentiation proteomics. cIEF immunoassay should be a powerful proteomics tool to study complex protein signal integration in biological systems.

  9. Capillary Isoelectric Focusing Immunoassay for Fat Cell Differentiation Proteomics

    PubMed Central

    Johlfs, Mary G.; Gorjala, Priyatham; Urasaki, Yasuyo; Le, Thuc T.; Fiscus, Ronald R.

    2015-01-01

    Profiling cellular proteome is critical to understanding signal integration during cell fate determination. In this study, the capability of capillary isoelectric focusing (cIEF) immunoassays to detect post-translational modifications (PTM) of protein isoforms is demonstrated. cIEF immunoassays exhibit protein detection sensitivity at up to 5 orders of magnitude higher than traditional methods. This detection ultra-sensitivity permits proteomic profiling of several nanograms of tissue samples. cIEF immunoassays are employed to simultaneously profile three protein kinases during fat cell differentiation: cGMP-dependent protein kinase type I (PKG-I) of the nitric oxide (NO) signaling pathway, protein kinase B (Akt) of the insulin signaling pathway, and extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) signaling pathway. Interestingly, a switch in the expression level of PKG- isoforms is observed during fat cell differentiation. While both PKG-Iα and PKG-Iβ isoforms are present in preadipocytes, only PKG-Iβ isoform is expressed in adipocytes. On the other hand, the phosphorylation level increases for Akt while decreases for ERK1 and ERK2 following the maturation of preadipocytes into adipocytes. Taken together, cIEF immunoassay provides a highly sensitive means to study fat cell differentiation proteomics. cIEF immunoassay should be a powerful proteomics tool to study complex protein signal integration in biological systems. PMID:26132171

  10. Progress toward the tomato fruit cell wall proteome

    PubMed Central

    Ruiz-May, Eliel; Rose, Jocelyn K. C.

    2013-01-01

    The plant cell wall (CW) compartment, or apoplast, is host to a highly dynamic proteome, comprising large numbers of both enzymatic and structural proteins. This reflects its importance as the interface between adjacent cells and the external environment, the presence of numerous extracellular metabolic and signaling pathways, and the complex nature of wall structural assembly and remodeling during cell growth and differentiation. Tomato fruit ontogeny, with its distinct phases of rapid growth and ripening, provides a valuable experimental model system for CW proteomic studies, in that it involves substantial wall assembly, remodeling, and coordinated disassembly. Moreover, diverse populations of secreted proteins must be deployed to resist microbial infection and protect against abiotic stresses. Tomato fruits also provide substantial amounts of biological material, which is a significant advantage for many types of biochemical analyses, and facilitates the detection of lower abundance proteins. In this review, we describe a variety of orthogonal techniques that have been applied to identify CW localized proteins from tomato fruit, including approaches that: target the proteome of the CW and the overlying cuticle; functional “secretome” screens; lectin affinity chromatography; and computational analyses to predict proteins that enter the secretory pathway. Each has its merits and limitations, but collectively they are providing important insights into CW proteome composition and dynamics, as well as some potentially controversial issues, such as the prevalence of non-canonical protein secretion. PMID:23755055

  11. Proteomic Applications in the Study of Human Mesenchymal Stem Cells

    PubMed Central

    Mateos, Jesús; Fernández Pernas, Pablo; Fafián Labora, Juan; Blanco, Francisco; Arufe, María del Carmen

    2014-01-01

    Mesenchymal stem cells (MSCs) are undifferentiated cells with an unlimited capacity for self-renewal and able to differentiate towards specific lineages under appropriate conditions. MSCs are, a priori, a good target for cell therapy and clinical trials as an alternative to embryonic stem cells, avoiding ethical problems and the chance for malignant transformation in the host. However, regarding MSCs, several biological implications must be solved before their application in cell therapy, such as safe ex vivo expansion and manipulation to obtain an extensive cell quantity amplification number for use in the host without risk accumulation of genetic and epigenetic abnormalities. Cell surface markers for direct characterization of MSCs remain unknown, and the precise molecular mechanisms whereby growth factors stimulate their differentiation are still missing. In the last decade, quantitative proteomics has emerged as a promising set of techniques to address these questions, the answers to which will determine whether MSCs retain their potential for use in cell therapy. Proteomics provides tools to globally analyze cellular activity at the protein level. This proteomic profiling allows the elucidation of connections between broad cellular pathways and molecules that were previously impossible to determine using only traditional biochemical analysis. However; thus far, the results obtained must be orthogonally validated with other approaches. This review will focus on how these techniques have been applied in the evaluation of MSCs for their future applications in safe therapies. PMID:28250369

  12. Quantitative Analysis of Differential Proteome Expression in Bladder Cancer vs. Normal Bladder Cells Using SILAC Method

    PubMed Central

    Yang, Ganglong; Xu, Zhipeng; Lu, Wei; Li, Xiang; Sun, Chengwen; Guo, Jia; Xue, Peng; Guan, Feng

    2015-01-01

    The best way to increase patient survival rate is to identify patients who are likely to progress to muscle-invasive or metastatic disease upfront and treat them more aggressively. The human cell lines HCV29 (normal bladder epithelia), KK47 (low grade nonmuscle invasive bladder cancer, NMIBC), and YTS1 (metastatic bladder cancer) have been widely used in studies of molecular mechanisms and cell signaling during bladder cancer (BC) progression. However, little attention has been paid to global quantitative proteome analysis of these three cell lines. We labeled HCV29, KK47, and YTS1 cells by the SILAC method using three stable isotopes each of arginine and lysine. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography LTQ Orbitrap mass spectrometry. Among 3721 unique identified and annotated proteins in KK47 and YTS1 cells, 36 were significantly upregulated and 74 were significantly downregulated with >95% confidence. Differential expression of these proteins was confirmed by western blotting, quantitative RT-PCR, and cell staining with specific antibodies. Gene ontology (GO) term and pathway analysis indicated that the differentially regulated proteins were involved in DNA replication and molecular transport, cell growth and proliferation, cellular movement, immune cell trafficking, and cell death and survival. These proteins and the advanced proteome techniques described here will be useful for further elucidation of molecular mechanisms in BC and other types of cancer. PMID:26230496

  13. Proteomics research on muscle-invasive bladder transitional cell carcinoma

    PubMed Central

    2011-01-01

    Background Aimed to facilitate candidate biomarkers selection and improve network-based multi-target therapy, we perform comparative proteomics research on muscle-invasive bladder transitional cell carcinoma. Laser capture microdissection was used to harvest purified muscle-invasive bladder cancer cells and normal urothelial cells from 4 paired samples. Two-dimensional liquid chromatography tandem mass spectrometry was used to identify the proteome expression profile. The differential proteins were further analyzed using bioinformatics tools and compared with the published literature. Results A total of 885/890 proteins commonly appeared in 4 paired samples. 295/337 of the 488/493 proteins that specific expressed in tumor/normal cells own gene ontology (GO) cellular component annotation. Compared with the entire list of the international protein index (IPI), there are 42/45 GO terms exhibited as enriched and 9/5 exhibited as depleted, respectively. Several pathways exhibit significantly changes between cancer and normal cells, mainly including spliceosome, endocytosis, oxidative phosphorylation, etc. Finally, descriptive statistics show that the PI Distribution of candidate biomarkers have certain regularity. Conclusions The present study identified the proteome expression profile of muscle-invasive bladder cancer cells and normal urothelial cells, providing information for subcellular pattern research of cancer and offer candidate proteins for biomarker panel and network-based multi-target therapy. PMID:21645413

  14. Proteomic analysis of cancer stem cells in human prostate cancer cells

    SciTech Connect

    Lee, Eun-Kyung; Cho, Hyungdon; Kim, Chan-Wha

    2011-08-26

    Highlights: {yields} DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. {yields} We confirmed CD44+ DU145 cells are more proliferative and tumorigenic than CD44- DU145 cells. {yields} We analyzed and identified proteins that were differentially expressed between CD44+ and CD44- DU145 cells. {yields} Cofilin and Annexin A5 associated with cancer were found to be positively correlated with CD44 expression. -- Abstract: Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44- using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs.

  15. An improved protocol to study the plant cell wall proteome

    PubMed Central

    Printz, Bruno; Dos Santos Morais, Raphaël; Wienkoop, Stefanie; Sergeant, Kjell; Lutts, Stanley; Hausman, Jean-Francois; Renaut, Jenny

    2015-01-01

    Cell wall proteins were extracted from alfalfa stems according to a three-steps extraction procedure using sequentially CaCl2, EGTA, and LiCl-complemented buffers. The efficiency of this protocol for extracting cell wall proteins was compared with the two previously published methods optimized for alfalfa stem cell wall protein analysis. Following LC-MS/MS analysis the three-steps extraction procedure resulted in the identification of the highest number of cell wall proteins (242 NCBInr identifiers) and gave the lowest percentage of non-cell wall proteins (about 30%). However, the three protocols are rather complementary than substitutive since 43% of the identified proteins were specific to one protocol. This three-step protocol was therefore selected for a more detailed proteomic characterization using 2D-gel electrophoresis. With this technique, 75% of the identified proteins were shown to be fraction-specific and 72.7% were predicted as belonging to the cell wall compartment. Although, being less sensitive than LC-MS/MS approaches in detecting and identifying low-abundant proteins, gel-based approaches are valuable tools for the differentiation and relative quantification of protein isoforms and/or modified proteins. In particular isoforms, having variations in their amino-acid sequence and/or carrying different N-linked glycan chains were detected and characterized. This study highlights how the extracting protocols as well as the analytical techniques devoted to the study of the plant cell wall proteome are complementary and how they may be combined to elucidate the dynamism of the plant cell wall proteome in biological studies. Data are available via ProteomeXchange with identifier PXD001927. PMID:25914713

  16. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  17. [Experimental estimation of proteome size for cells and human plasma].

    PubMed

    Naryzhny, S N; Zgoda, V G; Maynskova, M A; Ronzhina, N L; Belyakova, N V; Legina, O K; Archakov, A I

    2015-01-01

    Huge range of concentrations of different protein and insufficient sensitivity of methods for detection of proteins at a single molecule level does not yet allow obtaining the whole image of human proteome. In our investigations, we tried to evaluate the size of different proteomes (cells and plasma). The approach used is based on detection of protein spots in 2-DE after staining by protein dyes with different sensitivities. The function representing the dependence of the number of protein spots on sensitivity of protein dyes was generated. Next, by extrapolation of this function curve to theoretical point of the maximum sensitivity (detection of a single smallest polypeptide) it was calculated that a single human cell (HepG2) may contain minimum 70,000 proteoforms, and plasma--1.5 mln. Utilization of this approach to other, smaller proteomes showed the competency of this extrapolation. For instance, the size of mycoplas ma (Acholeplasma laidlawii) was estimated in 1100 proteoforms, yeast (Saccharomyces cerevisiae)--40,000, E. coli--6200, P. furiosus--3400. In hepatocytes, the amount of proteoforms was the same as in HepG2--70,000. Significance of obtained data is in possibilities to estimating the proteome organization and planning next steps in its study.

  18. Proteomic techniques for characterisation of mesenchymal stem cell secretome.

    PubMed

    Kupcova Skalnikova, Helena

    2013-12-01

    Mesenchymal stem cells (MSCs) are multipotent cells with a substantial potential in human regenerative medicine due to their ability to migrate to sites of injury, capability to suppress immune response and accessibility in large amount from patient's own bone marrow or fat tissue. It has been increasingly observed that the transplanted MSCs did not necessarily engraft and differentiate at the site of injury but might exert their therapeutic effects through secreted trophic signals. The MSCs secrete a variety of autocrine/paracrine factors, called secretome, that support regenerative processes in the damaged tissue, induce angiogenesis, protect cells from apoptotic cell death and modulate immune system. The cell culture medium conditioned by MSCs or osteogenic, chondrogenic as well as adipogenic precursors derived from MSCs has become a subject of intensive proteomic profiling in the search for and identification of released factors and microvesicles that might be applicable in regenerative medicine. Jointly with the methods for MSC isolation, expansion and differentiation, proteomic analysis of MSC secretome was enabled recently mainly due to the extensive development in protein separation techniques, mass spectrometry, immunological methods and bioinformatics. This review describes proteomic techniques currently applied or prospectively applicable in MSC secretomics, with a particular focus on preparation of the secretome sample, protein/peptide separation, mass spectrometry and protein quantification techniques, analysis of posttranslational modifications, immunological techniques, isolation and characterisation of secreted vesicles and exosomes, analysis of cytokine-encoding mRNAs and bioinformatics.

  19. Proteomics analysis of E-cadherin knockdown in epithelial breast cancer cells.

    PubMed

    Vergara, Daniele; Simeone, Pasquale; Latorre, Dominga; Cascione, Francesca; Leporatti, Stefano; Trerotola, Marco; Giudetti, Anna Maria; Capobianco, Loredana; Lunetti, Paola; Rizzello, Antonia; Rinaldi, Rosaria; Alberti, Saverio; Maffia, Michele

    2015-05-20

    E-cadherin is the core protein of the epithelial adherens junction. Through its cytoplasmic domain, E-cadherin interacts with several signaling proteins; among them, α- and β-catenins mediate the link of E-cadherin to the actin cytoskeleton. Loss of E-cadherin expression is a crucial step of epithelial-mesenchymal transition (EMT) and is involved in cancer invasion and metastatization. In human tumors, down-regulation of E-cadherin is frequently associated with poor prognosis. Despite the critical role of E-cadherin in cancer progression, little is known about proteome alterations linked with its down-regulation. To address this point, we investigated proteomics, biophysical and functional changes of epithelial breast cancer cell lines upon shRNA-mediated stable knockdown of E-cadherin expression (shEcad). shEcad cells showed a distinct proteomic signature including altered expression of enzymes and proteins involved in cytoskeletal dynamic and migration. Moreover, these results suggest that, besides their role in mechanical adhesion, loss of E-cadherin expression may contribute to cancer progression by modifying a complex network of pathways that tightly regulate fundamental processes as oxidative stress, immune evasion and cell metabolism. Altogether, these results extend our knowledge on the cellular modifications associated with E-cadherin down-regulation in breast cancer cells.

  20. The Proteome of Native Adult Müller Glial Cells From Murine Retina*

    PubMed Central

    Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca

    2016-01-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  1. Cell-free protein synthesis: applications in proteomics and biotechnology.

    PubMed

    He, Mingyue

    2008-01-01

    Protein production is one of the key steps in biotechnology and functional proteomics. Expression of proteins in heterologous hosts (such as in E. coli) is generally lengthy and costly. Cell-free protein synthesis is thus emerging as an attractive alternative. In addition to the simplicity and speed for protein production, cell-free expression allows generation of functional proteins that are difficult to produce by in vivo systems. Recent exploitation of cell-free systems enables novel development of technologies for rapid discovery of proteins with desirable properties from very large libraries. This article reviews the recent development in cell-free systems and their application in the large scale protein analysis.

  2. Challenges for red blood cell biomarker discovery through proteomics.

    PubMed

    Barasa, Benjamin; Slijper, Monique

    2014-05-01

    Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. This makes RBCs highly sensitive to any aberration. If so, these RBCs are quickly removed from circulation, but if the RBC levels reduce extremely fast, this results in hemolytic anemia. Several causes of HA exist, and proteome analysis is the most straightforward way to obtain deeper insight into RBC functioning under the stress of disease. This should result in discovery of biomarkers, typical for each source of anemia. In this review, several challenges to generate in-depth RBC proteomes are described, like to obtain pure RBCs, to overcome the wide dynamic range in protein expression, and to establish which of the identified/quantified proteins are active in RBCs. The final challenge is to acquire and validate suited biomarkers unique for the changes that occur for each of the clinical questions; in red blood cell aging (also important for transfusion medicine), for thalassemias or sickle cell disease. Biomarkers for other hemolytic anemias that are caused by dysfunction of RBC membrane proteins (the RBC membrane defects) or RBC cytosolic proteins (the enzymopathies) are sometimes even harder to discover, in particular for the patients with RBC rare diseases with unknown cause. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.

  3. The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells.

    PubMed

    Munoz, Javier; Low, Teck Y; Kok, Yee J; Chin, Angela; Frese, Christian K; Ding, Vanessa; Choo, Andre; Heck, Albert J R

    2011-11-22

    Assessing relevant molecular differences between human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) is important, given that such differences may impact their potential therapeutic use. Controversy surrounds recent gene expression studies comparing hiPSCs and hESCs. Here, we present an in-depth quantitative mass spectrometry-based analysis of hESCs, two different hiPSCs and their precursor fibroblast cell lines. Our comparisons confirmed the high similarity of hESCs and hiPSCS at the proteome level as 97.8% of the proteins were found unchanged. Nevertheless, a small group of 58 proteins, mainly related to metabolism, antigen processing and cell adhesion, was found significantly differentially expressed between hiPSCs and hESCs. A comparison of the regulated proteins with previously published transcriptomic studies showed a low overlap, highlighting the emerging notion that differences between both pluripotent cell lines rather reflect experimental conditions than a recurrent molecular signature.

  4. Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function*

    PubMed Central

    Dai, Shaojun; Chen, Sixue

    2012-01-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function. PMID:22982375

  5. Single-cell-type proteomics: toward a holistic understanding of plant function.

    PubMed

    Dai, Shaojun; Chen, Sixue

    2012-12-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.

  6. Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells

    PubMed Central

    2010-01-01

    Background Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome. Results Primary human umbilical vein endothelial cells and primary human brain microvascular endothelial cells were exposed for 1 hour to 1800 MHz GSM mobile phone radiation at an average specific absorption rate of 2.0 W/kg. The cells were harvested immediately after the exposure and the protein expression patterns of the sham-exposed and radiation-exposed cells were examined using two dimensional difference gel electrophoresis-based proteomics (2DE-DIGE). There were observed numerous differences between the proteomes of human umbilical vein endothelial cells and human brain microvascular endothelial cells (both sham-exposed). These differences are most likely representing physiological differences between endothelia in different vascular beds. However, the exposure of both types of primary endothelial cells to mobile phone radiation did not cause any statistically significant changes in protein expression. Conclusions Exposure of primary human endothelial cells to the mobile phone radiation, 1800 MHz GSM signal for 1 hour at an average specific absorption rate of 2.0 W/kg, does not affect protein expression, when the proteomes were examined

  7. Comprehensive proteomic characterization of stem cell-derived extracellular matrices.

    PubMed

    Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G

    2017-06-01

    In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering.

  8. Proteomic analyses of methamphetamine (METH)-induced differential protein expression by immature dendritic cells (IDC).

    PubMed

    Reynolds, Jessica L; Mahajan, Supriya D; Sykes, Donald E; Schwartz, Stanley A; Nair, Madhavan P N

    2007-04-01

    In the US, the increase in methamphetamine (METH) use has been associated with increased human immunodeficiency virus (HIV-1) infection. Dendritic cells (DC) are the first line of defense against HIV-1. DC play a critical role in harboring HIV-1 and facilitate the infection of neighboring T cells. However, the role of METH on HIV-1 infectivity and the expression of the proteome of immature dendritic cells (IDC) has not been elucidated. We hypothesize that METH modulates the expression of a number of proteins by IDC that foster the immunopathogenesis of HIV-1 infection. We utilized LTR amplification, p24 antigen assay and the proteomic method of difference gel electrophoresis (DIGE) combined with protein identification through high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to analyze the effects of METH on HIV-1 infectivity (HIV-1 IIIB; CXCR4-tropic, X4 strain) and the proteomic profile of IDC. Our results demonstrate that METH potentiates HIV-1 replication in IDC. Furthermore, METH significantly differentially regulates the expression of several proteins including CXCR3, protein disulfide isomerase, procathepsin B, peroxiredoxin and galectin-1. Identification of unique, METH-induced proteins may help to develop novel markers for diagnostic, preventive and therapeutic targeting in METH using subjects.

  9. Proteomic characterization of the internalization of Opisthorchis viverrini excretory/secretory products in human cells.

    PubMed

    Chaiyadet, Sujittra; Smout, Michael; Laha, Thewarach; Sripa, Banchob; Loukas, Alex; Sotillo, Javier

    2016-02-09

    The association between liver fluke infection caused by Opisthorchis viverrini and cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium) has been well established. Multiple mechanisms play a role in the development of CCA, but the excretory/secretory products released by O. viverrini (OvES) represent the major interface between the parasite and its host, and their uptake by biliary epithelial cells has been suggested to be responsible for proliferation of cholangiocytes, the cells that line the biliary epithelium. Despite recent progress in the study of the molecular basis of O. viverrini-host interactions, little is known about the effects that OvES induces upon internalization by host cells. In the present study we incubated non-cancerous human cholangiocytes (H69) and human colon cancer (CaCo-2) cells with OvES and performed a time-course quantitative proteomic analysis on the cells to determine the early changes induced by the parasite. Different KEGG pathways were altered in H69 cells compared to Caco-2 cells: glycolysis/gluconeogenesis and protein processing in the endoplasmic reticulum. In addition, the Reactome pathway analysis showed a predominance of proteins involved in cellular pathways related to apoptosis and apoptotic execution phase in H69 cells after incubation with OvES. The present study provides the first proteomic analysis to address the molecular mechanisms by which OvES products interact with host cells, and Sheds light on the cellular processes involved in O. viverrini-induced CCA.

  10. Impact of the antiproliferative agent ciclopirox olamine treatment on stem cells proteome

    PubMed Central

    Dihazi, Gry H; Bibi, Asima; Jahn, Olaf; Nolte, Jessica; Mueller, Gerhard A; Engel, Wolfgang; Dihazi, Hassan

    2013-01-01

    AIM: To investigate the proteome changes of stem cells due to ciclopirox olamine (CPX) treatment compared to control and retinoic acid treated cells. METHODS: Stem cells (SCs) are cells, which have the ability to continuously divide and differentiate into various other kinds of cells. Murine embryonic stem cells (ESCs) and multipotent adult germline stem cells (maGSCs) were treated with CPX, which has been shown to have an antiproliferative effect on stem cells, and compared to stem cells treated with retinoic acid (RA), which is known to have a differentiating effect on stem cells. Classical proteomic techniques like 2-D gel electrophoresis and differential in-gel electrophoresis (DIGE) were used to generate 2D protein maps from stem cells treated with RA or CPX as well as from non-treated stem cells. The resulting 2D gels were scanned and the digitalized images were collated with the help of Delta 2D software. The differentially expressed proteins were analyzed by a MALDI-TOF-TOF mass spectrometer, and the identified proteins were investigated and categorized using bioinformatics. RESULTS: Treatment of stem cells with CPX, a synthetic antifungal clinically used to treat superficial mycoses, resulted in an antiproliferative effect in vitro, without impairment of pluripotency. To understand the mechanisms induced by CPX treatments which results in arrest of cell cycle without any marked effect on pluripotency, a comparative proteomics study was conducted. The obtained data revealed that the CPX impact on cell proliferation was accompanied with a significant alteration in stem cell proteome. By peptide mass fingerprinting and tandem mass spectrometry combined with searches of protein sequence databases, a set of 316 proteins was identified, corresponding to a library of 125 non-redundant proteins. With proteomic analysis of ESCs and maGSCs treated with CPX and RA, we could identify more than 90 single proteins, which were differently expressed in both cell lines. We

  11. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    PubMed

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future.

  12. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  13. Human fallopian tube proteome shows high coverage of mesenchymal stem cells associated proteins

    PubMed Central

    Wang, Chenyuan; Liu, Yang; Chang, Cheng; Wu, Songfeng; Gao, Jie; Zhang, Yang; Chen, Yingjie; Zhong, Fan; Deng, Gaopi

    2016-01-01

    The object of this research was to report a draft proteome of human fallopian tube (hFT) comprises 5416 identified proteins, which could be considered as a physiological reference to complement Human Proteome Draft. The proteomic raw data and metadata were stored in an integrated proteome resources centre iProX (IPX00034300). This hFT proteome contains many hFT markers newly identified by mass spectrum. This hFT proteome comprises 660 high-, 3605 medium- and 1181 low-abundant proteins. Ribosome, cytoskeleton, vesicle and protein folding associated proteins showed obvious tendency to be higher abundance in hFT. The extraordinary high coverage of mesenchymal stem cells (MSCs)-associated proteins were identified in this hFT proteome, which highly supported that hFT should contain a plenty of MSCs. PMID:26759384

  14. Cell wall proteome analysis of Arabidopsis thaliana mature stems.

    PubMed

    Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-02-02

    Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases.

  15. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines.

    PubMed

    Wang, Weiwei; Meng, Bo; Ge, Xiaomeng; Song, Shuhui; Yang, Yue; Yu, Xiaomin; Wang, Liguo; Hu, Songnian; Liu, Siqi; Yu, Jun

    2008-11-01

    Elite rice hybrids, when compared to their parental lines, exhibit increased yield and other favorable agronomical traits, such as pathogen- and water-stress resistances, which are described as heterosis, and the molecular mechanism of heterosis remains to be elucidated. Since genomic sequences of the paternal (9311) and maternal lines (P64S) of a major rice hybrid variety LYP9 (Liang-You-Pei-Jiu) were acquired recently, we performed a proteomic study on mature embryos of this hybrid triad based on 2-DE and MALDI-TOF MS analyses, and identified 54 differentially expressed proteins involved in major biological processes including nutrient reservoir, response to stress, and metabolism. We observed that most of the storage proteins exhibit overdominance and stress-induced proteins display additivity. We compared proteomic results with transcriptomic data generated from the same embryo samples and found 28 candidate heterosis-associated genes shared by the two datasets. We further traced back to their genomic structures including protein-coding and regulatory regions and found that most of these genes have multiple copies in rice genomes as paralogous genes. Based on alignment of coding and regulation regions, we found that most of the differentially expressed genes at both protein and RNA levels are recent gene duplicates (paralogous genes) with relative little difference in protein-coding regions between orthologous genes (between genes of the two parental genomes) as compared to regulatory regions that harbor numerous indels and base substitutions.

  16. A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations

    PubMed Central

    Nie, Song; McDermott, Sean P.; Deol, Yadwinder; Tan, Zhijing; Wicha, Max S.; Lubman, David M.

    2015-01-01

    Accumulating evidence has demonstrated that breast cancers are initiated and develop from a small population of stem-like cells termed cancer stem cells (CSCs). These cells are hypothesized to mediate tumor metastasis and contribute to therapeutic resistance. However, the molecular regulatory networks responsible for maintaining CSCs in an undifferentiated state have yet to be elucidated. In this study, we used CSC markers to isolate pure breast CSCs fractions (ALDH+ and CD44+CD24− cell populations) and the mature luminal cells (CD49f− EpCAM+) from the MCF7 cell line. Proteomic analysis was performed on these samples and a total of 3304 proteins were identified. A label-free quantitative method was applied to analyze differentially expressed proteins. Using the criteria of greater than twofold changes and p value <0.05, 305, 322 and 98 proteins were identified as significantly different in three pairwise comparisons of ALDH+ versus CD44+CD24−, ALDH+ versus CD49f−EpCAM+ and CD44+CD24− versus CD49f−EpCAM+, respectively. Pathway analysis of differentially expressed proteins by Ingenuity Pathway Analysis (IPA) revealed potential molecular regulatory networks that may regulate CSCs. Selected differential proteins were validated by Western blot assay and immunohistochemical staining. The use of proteomics analysis may increase our understanding of the underlying molecular mechanisms of breast CSCs. This may be of importance in the future development of anti-CSC therapeutics. PMID:26332018

  17. A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations.

    PubMed

    Nie, Song; McDermott, Sean P; Deol, Yadwinder; Tan, Zhijing; Wicha, Max S; Lubman, David M

    2015-11-01

    Accumulating evidence has demonstrated that breast cancers are initiated and develop from a small population of stem-like cells termed cancer stem cells (CSCs). These cells are hypothesized to mediate tumor metastasis and contribute to therapeutic resistance. However, the molecular regulatory networks responsible for maintaining CSCs in an undifferentiated state have yet to be elucidated. In this study, we used CSC markers to isolate pure breast CSCs fractions (ALDH+ and CD44+CD24- cell populations) and the mature luminal cells (CD49f-EpCAM+) from the MCF7 cell line. Proteomic analysis was performed on these samples and a total of 3304 proteins were identified. A label-free quantitative method was applied to analyze differentially expressed proteins. Using the criteria of greater than twofold changes and p value <0.05, 305, 322 and 98 proteins were identified as significantly different in three pairwise comparisons of ALDH+ versus CD44+CD24-, ALDH+ versus CD49f-EpCAM+ and CD44+CD24- versus CD49f-EpCAM+, respectively. Pathway analysis of differentially expressed proteins by Ingenuity Pathway Analysis (IPA) revealed potential molecular regulatory networks that may regulate CSCs. Selected differential proteins were validated by Western blot assay and immunohistochemical staining. The use of proteomics analysis may increase our understanding of the underlying molecular mechanisms of breast CSCs. This may be of importance in the future development of anti-CSC therapeutics.

  18. The nuclear proteome and DNA-binding fraction of human Raji lymphoma cells.

    PubMed

    Henrich, Silke; Cordwell, Stuart J; Crossett, Ben; Baker, Mark S; Christopherson, Richard I

    2007-04-01

    Purification of organelles and analysis of their proteins is an important initial step for biological proteomics, simplifying the proteome prior to analysis by established techniques such as two-dimensional liquid chromatography (2-DLC) or two-dimensional gel electrophoresis (2-DE). Nuclear proteins play a central role in regulating gene expression, but are often under-represented in proteomic studies due to their lower abundance in comparison to cellular 'housekeeping' metabolic enzymes and structural proteins. A reliable procedure for separation and proteomic analysis of nuclear proteins would be useful for investigations of cell proliferation and differentiation during disease processes (e.g., human cancer). In this study, we have purified nuclei from the human Burkitt's lymphoma B-cell line, Raji, using sucrose density gradient centrifugation. The integrity and purity of the nuclei were assessed by light microscopy and proteins from the nuclear fractions were separated by 2-DE and identified using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). A total of 124 unique proteins were identified, of which 91% (n=110) were predicted to be nuclear using PSORT. Proteins from the nuclear fraction were subjected to affinity chromatography on DNA-agarose to isolate DNA-binding proteins. From this purified fraction, 131 unique proteins were identified, of which 69% (n=90) were known or predicted DNA-binding proteins. Purification of nuclei and subsequent enrichment of DNA-binding proteins allowed identification of a total of 209 unique proteins, many involved in transcription and/or correlated with lymphoma, leukemia or cancer in general. The data obtained should be valuable for identification of biomarkers and targets for cancer therapy, and for furthering our understanding of the molecular mechanisms underlying lymphoma development and progression.

  19. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  20. Integrative Proteomics and Phosphoproteomics Profiling Reveals Dynamic Signaling Networks and Bioenergetics Pathways Underlying T Cell Activation.

    PubMed

    Tan, Haiyan; Yang, Kai; Li, Yuxin; Shaw, Timothy I; Wang, Yanyan; Blanco, Daniel Bastardo; Wang, Xusheng; Cho, Ji-Hoon; Wang, Hong; Rankin, Sherri; Guy, Cliff; Peng, Junmin; Chi, Hongbo

    2017-03-21

    The molecular circuits by which antigens activate quiescent T cells remain poorly understood. We combined temporal profiling of the whole proteome and phosphoproteome via multiplexed isobaric labeling proteomics technology, computational pipelines for integrating multi-omics datasets, and functional perturbation to systemically reconstruct regulatory networks underlying T cell activation. T cell receptors activated the T cell proteome and phosphoproteome with discrete kinetics, marked by early dynamics of phosphorylation and delayed ribosome biogenesis and mitochondrial activation. Systems biology analyses identified multiple functional modules, active kinases, transcription factors and connectivity between them, and mitochondrial pathways including mitoribosomes and complex IV. Genetic perturbation revealed physiological roles for mitochondrial enzyme COX10-mediated oxidative phosphorylation in T cell quiescence exit. Our multi-layer proteomics profiling, integrative network analysis, and functional studies define landscapes of the T cell proteome and phosphoproteome and reveal signaling and bioenergetics pathways that mediate lymphocyte exit from quiescence.

  1. Comparative proteomic analysis of the shoot apical meristem in maize between a ZmCCT-associated near-isogenic line and its recurrent parent

    PubMed Central

    Wu, Liuji; Wang, Xintao; Wang, Shunxi; Wu, Liancheng; Tian, Lei; Tian, Zhiqiang; Liu, Ping; Chen, Yanhui

    2016-01-01

    The ZmCCT, one of the most important genes affecting photoperiod response, delays flowering under long-day conditions in maize (Zea mays). In this study we used the isobaric tags for relative and absolute quantification (iTRAQ) technique-based proteomics approach to identify differentially expressed proteins between a near-isogenic line (NIL) and its recurrent parent, contrasting in alleles of ZmCCT. A total of 5,259 distinct proteins were identified. Among them, 386 proteins were differentially expressed between NIL-cml line (ZmCCT-positive) and H4 line (ZmCCT-negative). Functional categorization showed that the differentially proteins were mainly involved in energy production, photosynthesis, signal transduction, and cell organization and biogenesis. Our results showed that during shoot apical meristem (SAM) development cell division proteins, carbohydrate metabolism–related proteins, and flower inhibition-related proteins were more abundant in the ZmCCT-positive line than the ZmCCT-negative line. These results, taken together with morphological observations, showed that the effect of ZmCCT on flowering might be caused by its effect on one or all of these biological processes. Although the exact roles of these putative related proteins remain to be examined, our results obtained using the proteomics approach lead to a better understanding of the photoperiodicity mechanism in maize plants. PMID:27468931

  2. Transcriptomic and proteomic analyses of pericycle cells of the maize primary root.

    PubMed

    Dembinsky, Diana; Woll, Katrin; Saleem, Muhammad; Liu, Yan; Fu, Yan; Borsuk, Lisa A; Lamkemeyer, Tobias; Fladerer, Claudia; Madlung, Johannes; Barbazuk, Brad; Nordheim, Alfred; Nettleton, Dan; Schnable, Patrick S; Hochholdinger, Frank

    2007-11-01

    Each plant cell type expresses a unique transcriptome and proteome at different stages of differentiation dependent on its developmental fate. This study compared gene expression and protein accumulation in cell-cycle-competent primary root pericycle cells of maize (Zea mays) prior to their first division and lateral root initiation. These are the only root cells that maintain the competence to divide after they leave the meristematic zone. Pericycle cells of the inbred line B73 were isolated via laser capture microdissection. Microarray experiments identified 32 genes preferentially expressed in pericycle versus all other root cells that have left the apical meristem; selective subtractive hybridization identified seven genes preferentially expressed in pericycle versus central cylinder cells of the same root region. Transcription and protein synthesis represented the most abundant functional categories among these pericycle-specific genes. Moreover, 701 expressed sequence tags (ESTs) were generated from pericycle and central cylinder cells. Among those, transcripts related to protein synthesis and cell fate were significantly enriched in pericycle versus nonpericycle cells. In addition, 77 EST clusters not previously identified in maize ESTs or genomic databases were identified. Finally, among the most abundant soluble pericycle proteins separated via two-dimensional electrophoresis, 20 proteins were identified via electrospray ionization-tandem mass spectrometry, thus defining a reference dataset of the maize pericycle proteome. Among those, two proteins were preferentially expressed in the pericycle. In summary, these pericycle-specific gene expression experiments define the distinct molecular events during the specification of cell-cycle-competent pericycle cells prior to their first division and demonstrate that pericycle specification and lateral root initiation might be controlled by a different set of genes.

  3. Transcriptomic and Proteomic Analyses of Pericycle Cells of the Maize Primary Root1[W][OA

    PubMed Central

    Dembinsky, Diana; Woll, Katrin; Saleem, Muhammad; Liu, Yan; Fu, Yan; Borsuk, Lisa A.; Lamkemeyer, Tobias; Fladerer, Claudia; Madlung, Johannes; Barbazuk, Brad; Nordheim, Alfred; Nettleton, Dan; Schnable, Patrick S.; Hochholdinger, Frank

    2007-01-01

    Each plant cell type expresses a unique transcriptome and proteome at different stages of differentiation dependent on its developmental fate. This study compared gene expression and protein accumulation in cell-cycle-competent primary root pericycle cells of maize (Zea mays) prior to their first division and lateral root initiation. These are the only root cells that maintain the competence to divide after they leave the meristematic zone. Pericycle cells of the inbred line B73 were isolated via laser capture microdissection. Microarray experiments identified 32 genes preferentially expressed in pericycle versus all other root cells that have left the apical meristem; selective subtractive hybridization identified seven genes preferentially expressed in pericycle versus central cylinder cells of the same root region. Transcription and protein synthesis represented the most abundant functional categories among these pericycle-specific genes. Moreover, 701 expressed sequence tags (ESTs) were generated from pericycle and central cylinder cells. Among those, transcripts related to protein synthesis and cell fate were significantly enriched in pericycle versus nonpericycle cells. In addition, 77 EST clusters not previously identified in maize ESTs or genomic databases were identified. Finally, among the most abundant soluble pericycle proteins separated via two-dimensional electrophoresis, 20 proteins were identified via electrospray ionization-tandem mass spectrometry, thus defining a reference dataset of the maize pericycle proteome. Among those, two proteins were preferentially expressed in the pericycle. In summary, these pericycle-specific gene expression experiments define the distinct molecular events during the specification of cell-cycle-competent pericycle cells prior to their first division and demonstrate that pericycle specification and lateral root initiation might be controlled by a different set of genes. PMID:17766395

  4. Quantitative proteomic approach to understand metabolic adaptation in non-small cell lung cancer.

    PubMed

    Martín-Bernabé, Alfonso; Cortés, Roldán; Lehmann, Sylvia G; Seve, Michel; Cascante, Marta; Bourgoin-Voillard, Sandrine

    2014-11-07

    KRAS mutations in non-small cell lung cancer (NSCLC) are a predictor of resistance to EGFR-targeted therapies. Because approaches to target RAS signaling have been unsuccessful, targeting lung cancer metabolism might help to develop a new strategy that could overcome drug resistance in such cancer. In this study, we applied a large screening quantitative proteomic analysis to evidence key enzymes involved in metabolic adaptations in lung cancer. We carried out the proteomic analysis of two KRAS-mutated NSCLC cell lines (A549 and NCI-H460) and a non tumoral bronchial cell line (BEAS-2B) using an iTRAQ (isobaric tags for relative and absolute quantitation) approach combined with two-dimensional fractionation (OFFGEL/RP nanoLC) and MALDI-TOF/TOF mass spectrometry analysis. Protein targets identified by our iTRAQ approach were validated by Western blotting analysis. Among 1038 proteins identified and 834 proteins quantified, 49 and 82 proteins were respectively found differently expressed in A549 and NCI-H460 cells compared to the BEAS-2B non tumoral cell line. Regarding the metabolic pathways, enzymes involved in glycolysis (GAPDH/PKM2/LDH-A/LDH-B) and pentose phosphate pathway (PPP) (G6PD/TKT/6PGD) were up-regulated. The up-regulation of enzyme expression in PPP is correlated to their enzyme activity and will be further investigated to confirm those enzymes as promising metabolic targets for the development of new therapeutic treatments or biomarker assay for NSCLC.

  5. Proteomic characterization of Her2/neu-overexpressing breast cancer cells.

    PubMed

    Chen, Hexin; Pimienta, Genaro; Gu, Yiben; Sun, Xu; Hu, Jianjun; Kim, Min-Sik; Chaerkady, Raghothama; Gucek, Marjan; Cole, Robert N; Sukumar, Saraswati; Pandey, Akhilesh

    2010-11-01

    The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with MS/MS, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in mouse mammary tumor virus-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray data sets revealed a 23-gene signature, which can be used to predict the probability of metastasis-free survival in breast cancer patients.

  6. Proteomic characterization of Her2/neu-overexpressing breast cancer cells

    PubMed Central

    Chen, Hexin; Pimienta, Genaro; Gu, Yiben; Sun, Xu; Hu, Jianjun; Kim, Min-Sik; Chaerkady, Raghothama; Gucek, Marjan; Cole, Robert N; Sukumar, Saraswati; Pandey, Akhilesh

    2014-01-01

    The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with tandem mass spectrometry, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in MMTV-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin beta 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray datasets revealed a 23-gene signature which can be used to predict the probability of metastasis-free survival in breast cancer patients. PMID:20960451

  7. Proteome analysis of chicken embryonic gonads: identification of major proteins from cultured gonadal primordial germ cells.

    PubMed

    Han, Beom Ku; Kim, Jin Nam; Shin, Ji Hye; Kim, Jin-Kyoo; Jo, Do Hyun; Kim, Heebal; Han, Jae Yong

    2005-12-01

    The domestic chicken (Gallus gallus) is an important model for research in developmental biology because its embryonic development occurs in ovo. To examine the mechanism of embryonic germ cell development, we constructed proteome map of gonadal primordial germ cells (gPGCs) from chicken embryonic gonads. Embryonic gonads were collected from 500 embryos at 6 days of incubation, and the gPGCs were cultured in vitro until colony formed. After 7-10 days in culture, gPGC colonies were separated from gonadal stroma cells (GSCs). Soluble extracts of cultured gPGCs were then fractionated by two-dimensional gel electrophoresis (pH 4-7). A number of protein spots, including those that displayed significant expression levels, were then identified by use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and LC-MS/MS. Of the 89 gPGC spots examined, 50 yielded mass spectra that matched avian proteins found in on-line databases. Proteome map of this type will serve as an important reference for germ cell biology and transgenic research.

  8. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots

    PubMed Central

    Zhu, Yingde; Li, Hui; Bhatti, Sarabjit; Zhou, Suping; Yang, Yong; Fish, Tara; Thannhauser, Theodore W

    2016-01-01

    Single-cell-type proteomics provides the capability to revealing the genomic and proteomics information at cell-level resolution. However, the methodology for this type of research has not been well-developed. This paper reports developing a workflow of laser capture microdissection (LCM) followed by gel-liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)-based proteomics analysis for the identification of proteomes contained in individual cell layers of tomato roots. Thin-sections (~10-μm thick, 10 sections per root tip) were prepared for root tips of tomato germinating seedlings. Epidermal and cortical cells (5000–7000 cells per tissue type) were isolated under a LCM microscope. Proteins were isolated and then separated by SDS–polyacrylamide gel electrophoresis followed by in-gel-tryptic digestion. The MS and MS/MS spectra generated using nanoLC-MS/MS analysis of the tryptic peptides were searched against ITAG2.4 tomato protein database to identify proteins contained in each single-cell-type sample. Based on the biological functions, proteins with proven functions in root hair development were identified in epidermal cells but not in the cortical cells. Several of these proteins were found in Al-treated roots only. The results demonstrated that the cell-type-specific proteome is relevant for tissue-specific functions in tomato roots. Increasing the coverage of proteomes and reducing the inevitable cross-contamination from adjacent cell layers, in both vertical and cross directions when cells are isolated from slides prepared using intact root tips, are the major challenges using the technology in proteomics analysis of plant roots. PMID:27280026

  9. Proteomic analysis of mature barley grains from C-hordein antisense lines.

    PubMed

    Schmidt, Daiana; Gaziola, Salete Aparecida; Boaretto, Luis Felipe; Azevedo, Ricardo Antunes

    2016-05-01

    Hordeins are the major storage proteins in barley grains and are responsible for their low nutritional quality. Previously, antisense C-hordein barley lines were generated and were shown to contain a more balanced amino acid composition and an altered storage protein profile. In the present study, a proteomic approach that combined two-dimensional gel electrophoresis (2-DE) and mass spectrometry was used to (1) identify the changes in the protein profile of non-storage proteins (salt soluble fraction) in antisense C-hordein barley lines (L1, L2 and L3) and (2) map the differentially expressed proteins compared to the non-transgenic control line (Hordeum vulgare cv. Golden Promise). Moreover, the changes in the proteins were correlated with the more balanced amino acid composition of these lines, with special attention to the lysine content. The results showed that suppression of C-hordein expression does not exclusively affect hordein synthesis and accumulation. The more balanced amino acid composition observed in the transgenic lines L1, L2 and L3 was an indirect result of the profound alterations in the patterns of the non-storage proteins. The observed changes included up-regulated expression of the proteins involved in stress and detoxification (L1), defence (L2 and L3), and storage globulins (L1, L2 and L3). To a lesser extent, the proteins involved in grain metabolism were also changed. Thus, the increased essential amino acids content results from changes in distinct protein sources among the three antisense C-hordein lines analyzed, although the up-regulated expression of lysine-rich proteins was consistently observed in all lines.

  10. Two traditional maize inbred lines of contrasting technological abilities are discriminated by the seed flour proteome.

    PubMed

    Pinheiro, Carla; Sergeant, Kjell; Machado, Cátia M; Renaut, Jenny; Ricardo, Cândido P

    2013-07-05

    The seed proteome of two traditional maize inbred lines (pb269 and pb369) contrasting in grain hardness and in preferable use for bread-making was evaluated. The pb269 seeds, of flint type (i.e., hard endosperm), are preferably used by manufacturers, while pb369 (dent, soft endosperm) is rejected. The hypothesis that the content and relative amounts of specific proteins in the maize flour are relevant for such discrimination of the inbred lines was tested. The flour proteins were sequentially extracted following the Osborne fractionation (selective solubilization), and the four Osborne fractions were submitted to two-dimensional electrophoresis (2DE). The total amount of protein extracted from the seeds was not significantly different, but pb369 flour exhibited significantly higher proportions of salt-extracted proteins (globulins) and ethanol-extracted proteins (alcohol-soluble prolamins). The proteome analysis allowed discrimination between the two inbred lines, with pb269 demonstrating higher heterogeneity than pb369. From the 967 spots (358 common to both lines, 208 specific to pb269, and 401 specific to pb369), 588 were submitted to mass spectrometry (MS). Through the combined use of trypsin and chymotrypsin it was possible to identify proteins in 436 spots. The functional categorization in combination with multivariate analysis highlighted the most discriminant biological processes (carbohydrate metabolic process, response to stress, chitin catabolic process, oxidation-reduction process) and molecular function (nutrient reservoir activity). The inbred lines exhibited quantitative and qualitative differences in these categories. Differences were also revealed in the amounts, proportions, and distribution of several groups of storage proteins, which can have an impact on the organization of the protein body and endosperm hardness. For some proteins (granule-bound starch synthase-1, cyclophilin, zeamatin), a change in the protein solubility rather than in the

  11. Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins.

    PubMed

    Francin-Allami, Mathilde; Merah, Kahina; Albenne, Cécile; Rogniaux, Hélène; Pavlovic, Marija; Lollier, Virginie; Sibout, Richard; Guillon, Fabienne; Jamet, Elisabeth; Larré, Colette

    2015-07-01

    Cell walls play key roles during plant development. Following their deposition into the cell wall, polysaccharides are continually remodeled according to the growth stage and stress environment to accommodate cell growth and differentiation. To date, little is known concerning the enzymes involved in cell wall remodeling, especially in gramineous and particularly in the grain during development. Here, we investigated the cell wall proteome of the grain of Brachypodium distachyon. This plant is a suitable model for temperate cereal crops. Among the 601 proteins identified, 299 were predicted to be secreted. These proteins were distributed into eight functional classes; the class of proteins that act on carbohydrates was the most highly represented. Among these proteins, numerous glycoside hydrolases were found. Expansins and peroxidases, which are assumed to be involved in cell wall polysaccharide remodeling, were also identified. Approximately half of the proteins identified in this study were newly discovered in grain and were not identified in the previous proteome analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of B. distachyon infer a global cell wall proteome consisting of 460 proteins. At present, this is the most extensive cell wall proteome of a monocot species.

  12. Chapter 6. available lepidopteran insect cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter lists the known cell lines from Lepidoptera, largely based on previous compilations of insect cell lines published by W. Fred Hink. More than 320 lines from 65 species are listed. The official designation is given for each cell line as well as the species, tissue source, and, when kno...

  13. Cross-Species Analysis of Nicotine-Induced Proteomic Alterations in Pancreatic Cells

    PubMed Central

    Paulo, Joao A.; Urrutia, Raul; Kadiyala, Vivek; Banks, Peter

    2014-01-01

    Background Toxic compounds in tobacco, such as nicotine, may have adversely affect pancreatic function. We aim to determine nicotine-induced protein alterations in pancreatic cells, which may reveal a link between nicotine exposure and pancreatic disease. Methods We compared the proteomic alterations induced by nicotine treatment in cultured pancreatic cells (mouse, rat and human stellate cells and human duct cells) using mass spectrometry-based techniques, specifically GeLC-MS/MS and spectral counting. Results We identified thousands of proteins in pancreatic cells, hundreds of which were identified exclusively or in higher abundance in either nicotine-treated or untreated cells. Inter-species comparisons of stellate cell proteins revealed several differentially-abundant proteins (in nicotine treated versus untreated cells) common among the 3 species. Proteins appearing in all nicotine-treated stellate cells include amyloid beta (A4), procollagen type VI alpha 1, integral membrane protein 2B,and Toll interacting protein. Conclusions Proteins which were differentially expressed upon nicotine treatment across cell lines, were enriched in certain pathways, including nAChR, cytokine, and integrin signaling. At this analytical depth, we conclude that similar pathways are affected by nicotine, but alterations at the protein level among stellate cells of different species vary. Further interrogation of such pathways will lead to insights into the potential effect of nicotine on pancreatic cells at the biomolecular level and the extension of this concept to the effect of nicotine on pancreatic disease. PMID:23456891

  14. Forced unfolding of proteins within cells -- a proteomic method

    NASA Astrophysics Data System (ADS)

    Chase, Brian; Discher, Dennis

    2009-03-01

    Many cellular activities are mediated by conformational changes in proteins or else involve rearrangement of protein assemblies. These motions are now commonly investigated in vitro as well as at the single-molecule level. But we sought to develop an in-cell method to study these motions and to do so on a proteomic scale. We have been especially interested in studying molecular responses in cells under stress, and we initially developed a labeling technique in the simplest human cell, the red blood cell. The premise is to label cysteines with cell-viable, thiol-reactive fluorophores in both stressed and unstressed cells. Then, differential labeling of proteins would indicate that under stress, previously buried cysteine residues become exposed and thus accessible to the fluorescent probe. Fluorescence imaging and saparations provide initial clues to structures and proteins, but Mass Spectrometry precisely maps the sites that are exposed. Subsequent work on recombinants and in modeling is then used to explain the cell-derived findings, and the method has now been applied to several nucleated cell types.

  15. Differential effects of Helenalin, an anti-inflammatory sesquiterpene lactone, on the proteome, metabolome and the oxidative stress response in several immune cell types.

    PubMed

    Zwicker, Paula; Schultze, Nadin; Niehs, Sarah; Albrecht, Dirk; Methling, Karen; Wurster, Martina; Wachlin, Gerhild; Lalk, Michael; Lindequist, Ulrike; Haertel, Beate

    2016-12-18

    Extracts of Arnica spp. are traditionally used due to their anti-inflammatory effects for the topical treatment of e.g. haematoma or muscle distortions. One of the main active compounds is Helenalin, a sesquiterpene lactone that can be found in various Asteraceae. However, immunotoxic effects of the compound are only poorly analysed. In this study, a 2D gel electrophoresis based proteomic approach together with a membrane based proteomic assay, metabolomics and the detection of intracellular reactive oxygen species (iROS) were used to investigate potential immunotoxic properties of Helenalin on the human immune cell lines Jurkat and THP-1 and on human peripheral blood mononuclear cells (PBMC). The study revealed a dose-dependent cytotoxicity towards both tested cell lines and the PBMC. However, the cell lines were less sensitive to the Helenalin treatment than the PBMC. The proteomic assays showed strong effects on the carbohydrate metabolism and the protein folding in THP-1 cells but only weak impact on Jurkat cells. Metabolomic studies as well as iROS detection in THP-1 cells verified the results of the proteomic analysis. In summary, the approaches used in this study were able to identify target pathways of Helenalin especially in THP-1 monocytes and thus enable a risk assessment of the substance.

  16. N-linked Glycosylation Enrichment for In-depth Cell Surface Proteomics of Diffuse Large B-cell Lymphoma Subtypes*

    PubMed Central

    Deeb, Sally J.; Cox, Juergen; Schmidt-Supprian, Marc; Mann, Matthias

    2014-01-01

    Global analysis of lymphoma genome integrity and transcriptomes tremendously advanced our understanding of their biology. Technological advances in mass spectrometry-based proteomics promise to complete the picture by allowing the global quantification of proteins and their post-translational modifications. Here we use N-glyco FASP, a recently developed mass spectrometric approach using lectin-enrichment, in conjunction with a super-SILAC approach to quantify N-linked glycoproteins in lymphoma cells. From patient-derived diffuse large B-cell lymphoma cell lines, we mapped 2383 glycosites on 1321 protein groups, which were highly enriched for cell membrane proteins. This N-glyco subproteome alone allowed the segregation of the ABC from the GCB subtypes of diffuse large B-cell lymphoma, which before gene expression studies had been considered one disease entity. Encouragingly, many of the glycopeptides driving the segregation belong to proteins previously characterized as segregators in a deep proteome study of these subtypes (S. J. Deeb et al. MCP 2012 PMID 22442255). This conforms to the high correlation that we observed between the expression level of the glycosites and their corresponding proteins. Detailed examination of glycosites and glycoprotein expression levels uncovered, among other interesting findings, enrichment of transcription factor binding motifs, including known NF-kappa-B related ones. Thus, enrichment of a class of post-translationally modified peptides can classify cancer types as well as reveal cancer specific mechanistic changes. PMID:24190977

  17. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    PubMed

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  18. Comparative Proteomics Reveals Novel Components at the Plasma Membrane of Differentiated HepaRG Cells and Different Distribution in Hepatocyte- and Biliary-Like Cells

    PubMed Central

    Woods, Alisa G.; Lazar, Catalin; Radu, Gabriel L.; Darie, Costel C.; Branza-Nichita, Norica

    2013-01-01

    Hepatitis B virus (HBV) is a human pathogen causing severe liver disease and eventually death. Despite important progress in deciphering HBV internalization, the early virus-cell interactions leading to infection are not known. HepaRG is a human bipotent liver cell line bearing the unique ability to differentiate towards a mixture of hepatocyte- and biliary-like cells. In addition to expressing metabolic functions normally found in liver, differentiated HepaRG cells support HBV infection in vitro, thus resembling cultured primary hepatocytes more than other hepatoma cells. Therefore, extensive characterization of the plasma membrane proteome from HepaRG cells would allow the identification of new cellular factors potentially involved in infection. Here we analyzed the plasma membranes of non-differentiated and differentiated HepaRG cells using nanoliquid chromatography-tandem mass spectrometry to identify the differences between the proteomes and the changes that lead to differentiation of these cells. We followed up on differentially-regulated proteins in hepatocytes- and biliary-like cells, focusing on Cathepsins D and K, Cyclophilin A, Annexin 1/A1, PDI and PDI A4/ERp72. Major differences between the two proteomes were found, including differentially regulated proteins, protein-protein interactions and intracellular localizations following differentiation. The results advance our current understanding of HepaRG differentiation and the unique properties of these cells. PMID:23977166

  19. On-line digestion system for protein characterization and proteome analysis.

    PubMed

    López-Ferrer, Daniel; Petritis, Konstantinos; Lourette, Natacha M; Clowers, Brian; Hixson, Kim K; Heibeck, Tyler; Prior, David C; Pasa-Tolić, Ljiljana; Camp, David G; Belov, Mikhail E; Smith, Richard D

    2008-12-01

    An efficient on-line digestion system that reduces the number of sample manipulation steps has been demonstrated for high-throughput proteomics. By incorporating a pressurized sample loop into a liquid chromatography-based separation system, both sample and enzyme (e.g., trypsin) can be simultaneously introduced to produce a complete, yet rapid digestion. Both standard proteins and a complex Shewanella oneidensis global protein extract were digested and analyzed using the automated online pressurized digestion system coupled to an ion mobility time-of-flight mass spectrometer, an ion trap mass spectrometer, or both. The system denatured, digested, and separated product peptides in a manner of minutes, making it amenable to on-line high-throughput applications. In addition to simplifying and expediting sample processing, the system was easy to implement and no cross-contamination was observed among samples. As a result, the online digestion system offers a powerful approach for high-throughput screening of proteins that could prove valuable in biochemical research (rapid screening of protein-based drugs).

  20. High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation.

    PubMed

    Sebé-Pedrós, Arnau; Peña, Marcia Ivonne; Capella-Gutiérrez, Salvador; Antó, Meritxell; Gabaldón, Toni; Ruiz-Trillo, Iñaki; Sabidó, Eduard

    2016-10-24

    Cell-specific regulation of protein levels and activity is essential for the distribution of functions among multiple cell types in animals. The finding that many genes involved in these regulatory processes have a premetazoan origin raises the intriguing possibility that the mechanisms required for spatially regulated cell differentiation evolved prior to the appearance of animals. Here, we use high-throughput proteomics in Capsaspora owczarzaki, a close unicellular relative of animals, to characterize the dynamic proteome and phosphoproteome profiles of three temporally distinct cell types in this premetazoan species. We show that life-cycle transitions are linked to extensive proteome and phosphoproteome remodeling and that they affect key genes involved in animal multicellularity, such as transcription factors and tyrosine kinases. The observation of shared features between Capsaspora and metazoans indicates that elaborate and conserved phosphosignaling and proteome regulation supported temporal cell-type differentiation in the unicellular ancestor of animals.

  1. Cell wall proteomics contributes to explore the functional proteins of Brachypodium distachyon grains.

    PubMed

    Fang, Xianping; Chen, Wenyue; Ma, Huasheng

    2015-07-01

    The plant cell wall is the first barrier in response to external stimuli and cell wall proteins (CWPs) can play an important role in the modulation of plant growth and development. In the past 10 years, the plant cell wall proteomics has increasingly become a very active research filed, which provides a broader understanding of CWPs for people. The cell wall proteome of Arabidopsis, rice, and other model plants has begun to take shape, and proteomic technology has become an effective way to identify the candidate functional CWPs in large scale. The challenging work of Francin-Allami et al. (Proteomics 2015, 15, 2296-2306) is a vital step toward building the most extensive cell wall proteome of a monocot species. They identified 299 cell wall proteins in Brachypodium distachyon grains, and also compared the grain cell wall proteome with those of B. distachyon culms and leaves, which provides a new perspective for further explaining the plant cell wall structures and remodeling mechanism.

  2. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues.

    PubMed

    Xiao, Yongsheng; Guo, Lei; Wang, Yinsheng

    2014-04-01

    Kinases are among the most intensively pursued enzyme superfamilies as targets for anti-cancer drugs. Large data sets on inhibitor potency and selectivity for more than 400 human kinases became available recently, offering the opportunity to design rationally novel kinase-based anti-cancer therapies. However, the expression levels and activities of kinases are highly heterogeneous among different types of cancer and even among different stages of the same cancer. The lack of effective strategy for profiling the global kinome hampers the development of kinase-targeted cancer chemotherapy. Here, we introduced a novel global kinome profiling method, based on our recently developed isotope-coded ATP-affinity probe and a targeted proteomic method using multiple-reaction monitoring (MRM), for assessing simultaneously the expression of more than 300 kinases in human cells and tissues. This MRM-based assay displayed much better sensitivity, reproducibility, and accuracy than the discovery-based shotgun proteomic method. Approximately 250 kinases could be routinely detected in the lysate of a single cell line. Additionally, the incorporation of iRT into MRM kinome library rendered our MRM kinome assay easily transferrable across different instrument platforms and laboratories. We further employed this approach for profiling kinase expression in two melanoma cell lines, which revealed substantial kinome reprogramming during cancer progression and demonstrated an excellent correlation between the anti-proliferative effects of kinase inhibitors and the expression levels of their target kinases. Therefore, this facile and accurate kinome profiling assay, together with the kinome-inhibitor interaction map, could provide invaluable knowledge to predict the effectiveness of kinase inhibitor drugs and offer the opportunity for individualized cancer chemotherapy.

  3. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  4. Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination.

    PubMed

    Guo, Baojian; Chen, Yanhong; Zhang, Guiping; Xing, Jiewen; Hu, Zhaorong; Feng, Wanjun; Yao, Yingyin; Peng, Huiru; Du, Jinkun; Zhang, Yirong; Ni, Zhongfu; Sun, Qixin

    2013-01-01

    In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed. In total, the number of differentially expressed protein spots between hybrid and its parental lines in dry and 24 h imbibed seed embryos were 134 and 191, respectively, among which 47.01% (63/134) and 34.55% (66/191) protein spots displayed nonadditively expressed pattern. Remarkably, 54.55% of nonadditively accumulated proteins in 24 h imbibed seed embryos displayed above or equal to the level of the higher parent patterns. Moreover, 155 differentially expressed protein spots were identified, which were grouped into eight functional classes, including transcription & translation, energy & metabolism, signal transduction, disease & defense, storage protein, transposable element, cell growth & division and unclassified proteins. In addition, one of the upregulated proteins in F1 hybrids was ZmACT2, a homolog of Arabidopsis thaliana ACT7 (AtACT7). Expressing ZmACT2 driven by the AtACT7 promoter partially complemented the low germination phenotype in the Atact7 mutant. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of proteins, and it is concluded that the altered pattern of gene expression at translational level in the hybrid may be responsible for the observed heterosis.

  5. Changes in morphology, cell wall composition and soluble proteome in Rhodobacter sphaeroides cells exposed to chromate.

    PubMed

    Italiano, Francesca; Rinalducci, Sara; Agostiano, Angela; Zolla, Lello; De Leo, Francesca; Ceci, Luigi R; Trotta, Massimo

    2012-10-01

    The response of the carotenoidless Rhodobacter sphaeroides mutant R26 to chromate stress under photosynthetic conditions is investigated by biochemical and spectroscopic measurements, proteomic analysis and cell imaging. Cell cultures were found able to reduce chromate within 3-4 days. Chromate induces marked changes in the cellular dimension and morphology, as revealed by atomic force microscopy, along with compositional changes in the cell wall revealed by infrared spectroscopy. These effects are accompanied by significant changes in the level of several proteins: 15 proteins were found up-regulated and 15 down-regulated. The protein content found in chromate exposed cells is in good agreement with the biochemical, spectroscopic and microscopic results. Moreover at the present stage no specific chromate-reductase could be found in the soluble proteome, indicating that detoxification of the pollutant proceeds via aspecific reductants.

  6. Proteomic analyses of gastric cancer cells treated with vesicular stomatitis virus matrix protein.

    PubMed

    Zeng, Dequan; Zhang, Tao; Zhou, Shengtao; Hu, Hao; Li, Jingyi; Huang, Kai; Lei, Yunlong; Wang, Kui; Zhao, Yong; Liu, Rui; Li, Qiu; Wen, Yanjun; Huang, Canhua

    2011-06-01

    Gastric cancer constitutes the second leading cause of mortality worldwide and the fourth most common cancer. While chemotherapy remains the primary treatment for both resectable and advanced gastric cancer, most gastric cancers are naturally resistant to anticancer drugs, rendering new therapeutic avenues in dire need. Vesicular stomatitis virus (VSV) was proved to preferentially replicate in many types of tumor cells and eventually induce apoptosis of host cells. The vesicular stomatitis virus matrix protein (MP) plays a major role in its effects. This study proved that expression of MP could effectively inhibit proliferation and induce cell death in gastric carcinoma MKN28 cells. Furthermore, we utilized a proteomics strategy to characterize proteome-wide alterations between MP-treated MKN28 lines and their untreated counterparts. A total of 97 spots were positively identified as differentially expressed, and of these 62 proteins were up-regulated, whereas 35 proteins were down-regulated. Functional analysis unraveled three significantly modified gene product subgroups: glycolytic enzymes, reactive oxygen species-associated proteins and the proteins regulating RNA transport and maturation. Expression of three altered proteins was further validated by semi-quantitative RT-PCR or/and western blotting. Furthermore, we demonstrated that MP expression could induce rapid intracellular ROS accumulation in MKN28 cells. These results provide evidence for the anti-cancer potential of MP, and a novel MP-mediated apoptotic signaling pathway is proposed. Our findings are considered a significant step toward a better understanding the mechanism of MP-induced anti-cancer effect.

  7. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells.

    PubMed

    Bruckmann, Astrid; Hensbergen, Paul J; Balog, Crina I A; Deelder, André M; Brandt, Raymond; Snoek, I S Ishtar; Steensma, H Yde; van Heusden, G Paul H

    2009-01-30

    The yeast Saccharomyces cerevisiae is able to grow under aerobic as well as anaerobic conditions. We and others previously found that transcription levels of approximately 500 genes differed more than two-fold when cells from anaerobic and aerobic conditions were compared. Here, we addressed the effect of anaerobic growth at the post-transcriptional level by comparing the proteomes of cells isolated from steady-state glucose-limited anaerobic and aerobic cultures. Following two-dimensional gel electrophoresis and mass spectrometry we identified 110 protein spots, corresponding to 75 unique proteins, of which the levels differed more than two-fold between aerobically and anaerobically-grown cells. For 21 of the 110 spots, the intensities decreased more than two-fold whereas the corresponding mRNA levels increased or did not change significantly under anaerobic conditions. The intensities of the other 89 spots changed in the same direction as the mRNA levels of the corresponding genes, although to different extents. For some genes of glycolysis a small increase in mRNA levels, 1.5-2 fold, corresponded to a 5-10 fold increase in protein levels. Extrapolation of our results suggests that transcriptional regulation is the major but not exclusive mechanism for adaptation of S. cerevisiae to anaerobic growth conditions.

  8. Proteomic Analysis of Nasal Epithelial Cells from Cystic Fibrosis Patients

    PubMed Central

    Papon, Jean-François; Chhuon, Cerina; Zadigue, Patricia; Prulière-Escabasse, Virginie; Amselem, Serge; Escudier, Estelle; Coste, André; Edelman, Aleksander

    2014-01-01

    The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology. PMID:25268127

  9. Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development.

    PubMed

    Lesage, Véronique S; Merlino, Marielle; Chambon, Christophe; Bouchet, Brigitte; Marion, Didier; Branlard, Gérard

    2012-01-01

    Wheat kernel texture, a major trait determining the end-use quality of wheat flour, is mainly influenced by puroindolines. These small basic proteins display in vitro lipid binding and antimicrobial properties, but their cellular functions during grain development remain unknown. To gain an insight into their biological function, a comparative proteome analysis of two near-isogenic lines (NILs) of bread wheat Triticum aestivum L. cv. Falcon differing in the presence or absence of the puroindoline-a gene (Pina) and kernel hardness, was performed. Proteomes of the two NILs were compared at four developmental stages of the grain for the metabolic albumin/globulin fraction and the Triton-extracted amphiphilic fraction. Proteome variations showed that, during grain development, folding proteins and stress-related proteins were more abundant in the hard line compared with the soft one. These results, taken together with ultrastructural observations showing that the formation of the protein matrix occurred earlier in the hard line, suggested that a stress response, possibly the unfolded protein response, is induced earlier in the hard NIL than in the soft one leading to earlier endosperm cell death. Quantification of the albumin/globulin fraction and amphiphilic proteins at each developmental stage strengthened this hypothesis as a plateau was revealed from the 500 °Cd stage in the hard NIL whereas synthesis continued in the soft one. These results open new avenues concerning the function of puroindolines which could be involved in the storage protein folding machinery, consequently affecting the development of wheat endosperm and the formation of the protein matrix.

  10. Proteomic analysis of MOLT-4 cells treated by valproic acid.

    PubMed

    Vávrová, Jirina; Janovská, Sylva; Rezácová, Martina; Hernychová, Lenka; Tichá, Zuzana; Vokurková, Doris; Záskodová, Darina; Lukásová, Emilie

    2007-09-01

    The effect of valproic acid (VA) on protein expression in human T-lymphocytic leukemia cells MOLT-4 was studied. VA is an inhibitor of histonedeacetylases and has a potential use as antitumor agent in leukemia treatment. The authors in this work prove that 4 h long incubation with 2 mmol/l VA causes phosphorylation of histone H2A.X and its colocalization with 53BP1 in nuclear foci. Their co-localization is typical for DSB signaling machinery. These foci were detected in cells after 4 h exposure without increase of Annexin V positive apoptotic cells. Slight increase in apoptosis (Annexin V positivity) after 24 h is accompanied by more intensive increase in phosphorylation of H2A.X and also by formation of nuclear foci containing gammaH2A.X and 53BP1. Treatment of cells with 2 mmol/l VA resulted in induction of apoptosis affecting about 30% of cells after incubation for 72 h. The changes in protein expression were examined after cell incubation with 2 mmol/l VA for 4 h. Proteins were separated by two-dimensional electrophoresis and quantified using image evaluation system. Those exhibiting significant VA-induced abundance alterations were identified by mass spectrometry. Changes in expression of 22 proteins were detected, of which 15 proteins were down-regulated. Proteomic analysis resulted in successful identification of three proteins involving alfa-tubulin 3, tubulin-specific chaperone and heterogeneous nuclear ribonucloprotein F. Expression of seven proteins was up-regulated, including heterogeneous nuclear ribonucloprotein A/B. Identified proteins are related to microtubular system and hnRNP family. Suppression of microtubular proteins and changes of balance among hnRNPs can contribute to proliferation arrest and apoptosis induction.

  11. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    SciTech Connect

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang; and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  12. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line

    PubMed Central

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  13. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.

    PubMed

    Yang, Le; Zhang, Yanjun; Zhu, Ning; Koh, Jin; Ma, Chunquan; Pan, Yu; Yu, Bing; Chen, Sixue; Li, Haiying

    2013-11-01

    Understanding the mechanisms of plant salinity tolerance can facilitate plant engineering for enhanced salt stress tolerance. Sugar beet monosomic addition line M14 obtained from the intercross between Beta vulgaris L. and Beta corolliflora Zoss exhibits tolerance to salt stress. Here we report the salt-responsive characteristics of the M14 plants under 0, 200, and 400 mM NaCl conditions using quantitative proteomics approaches. Proteins from control and the salt treated M14 plants were separated using 2D-DIGE. Eighty-six protein spots representing 67 unique proteins in leaves and 22 protein spots representing 22 unique proteins in roots were identified. In addition, iTRAQ LC-MS/MS was employed to identify and quantify differentially expressed proteins under salt stress. Seventy-five differentially expressed proteins in leaves and 43 differentially expressed proteins in roots were identified. The proteins were mainly involved in photosynthesis, energy, metabolism, protein folding and degradation, and stress and defense. Moreover, gene transcription data obtained from the same samples were compared to the corresponding protein data. Thirteen proteins in leaves and 12 in roots showed significant correlation in gene expression and protein levels. These results suggest the important processes for the M14 tolerance to salt stress include enhancement of photosynthesis and energy metabolism, accumulation of osmolyte and antioxidant enzymes, and regulation of methionine metabolism and ion uptake/exclusion.

  14. LINE-1 Cultured Cell Retrotransposition Assay.

    PubMed

    Kopera, Huira C; Larson, Peter A; Moldovan, John B; Richardson, Sandra R; Liu, Ying; Moran, John V

    2016-01-01

    The Long INterspersed Element-1 (LINE-1 or L1) retrotransposition assay has facilitated the discovery and characterization of active (i.e., retrotransposition-competent) LINE-1 sequences from mammalian genomes. In this assay, an engineered LINE-1 containing a retrotransposition reporter cassette is transiently transfected into a cultured cell line. Expression of the reporter cassette, which occurs only after a successful round of retrotransposition, allows the detection and quantification of the LINE-1 retrotransposition efficiency. This assay has yielded insight into the mechanism of LINE-1 retrotransposition. It also has provided a greater understanding of how the cell regulates LINE-1 retrotransposition and how LINE-1 retrotransposition impacts the structure of mammalian genomes. Below, we provide a brief introduction to LINE-1 biology and then detail how the LINE-1 retrotransposition assay is performed in cultured mammalian cells.

  15. Proteomic and genetic analysis of wheat endosperm albumins and globulins using deletion lines of cultivar Chinese Spring.

    PubMed

    Merlino, Marielle; Bousbata, Sabrina; Svensson, Birte; Branlard, Gérard

    2012-11-01

    Albumins and globulins from the endosperm of Triticum aestivum L. cv Chinese Spring (CS) were analysed to establish a proteome reference map for this standard wheat cultivar. Approximately, 1,145 Coomassie-stained spots were detected by two-dimensional gel electrophoresis (2DE), 410 of which were identified using mass spectrometry and data mining. Salt-soluble endosperm proteins from 67 CS deletion lines were also separated by 2DE (four gels per line). Image analysis of the 268 2DE gels as compared to the CS reference proteome allowed the detection of qualitative and quantitative variations in endosperm proteins due to chromosomal deletions. This differential analysis of spots allowed structural or regulatory genes, encoding 211 proteins, to be located on segments of the 21 wheat chromosomes. In addition, variance analysis of quantitative variations in spot volume showed that the expression of 391 proteins is controlled by one or more chromosome bins with 262 significant increases and 196 significant decreases in spot volume. The spot volume of several proteins was increased or decreased by numerous chromosomal regions and homoeologous-like regulation was revealed for some proteins. Quantitative or qualitative variation in a total of 386 proteins was influenced by genes assigned to at least one chromosomal region, while 66 % of all stained proteins were not found to be influenced by chromosome bins. Proteomics of deletion lines can, therefore, be used to simultaneously analyse the composition and genetics of a complex tissue, such as the wheat endosperm.

  16. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells

    PubMed Central

    Yin, Zepeng; Balmant, Kelly; Geng, Sisi; Zhu, Ning; Zhang, Tong; Dufresne, Craig; Dai, Shaojun; Chen, Sixue

    2017-01-01

    Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses. PMID:28184230

  17. Proteomics indicates modulation of tubulin polymerization by L-menthol inhibiting human epithelial colorectal adenocarcinoma cell proliferation.

    PubMed

    Faridi, Uzma; Sisodia, Brijesh S; Shukla, Ashutosh K; Shukla, Rakesh K; Darokar, Mahendra P; Dwivedi, Upendra N; Shasany, Ajit K

    2011-05-01

    Menthol is a naturally occurring cyclic monoterpene used in oral hygiene products, confectionary, pharmaceuticals, cosmetics, pesticides, and as a flavoring agent. In the present study, we analyzed the differentially expressing proteome in L-menthol-treated Caco-2 cell line as it was found to inhibit cell proliferation. Interestingly, free tubulin proteins were observed to be limited after menthol treatment. Semiquantitative RT-PCR with α-tubulin primers showed no change in the level of RNA expression in menthol-treated cell line. However, tubulin polymerization assay with menthol indicated a trend similar to taxol in promoting microtubule assembly. Further, physical counting of apoptotic nuclei and active caspase-3 assays confirmed onset of apoptosis though the rate was slower as compared with that of taxol treatment. This study is the first report of a monoterpene L-menthol modulating tubulin polymerization and apoptosis to inhibit cancer cell proliferation.

  18. Isolation of cell surface proteins for mass spectrometry-based proteomics.

    PubMed

    Elschenbroich, Sarah; Kim, Yunee; Medin, Jeffrey A; Kislinger, Thomas

    2010-02-01

    Defining the cell surface proteome has profound importance for understanding cell differentiation and cell-cell interactions, as well as numerous pathogenic abnormalities. Owing to their hydrophobic nature, plasma membrane proteins that reside on the cell surface pose analytical challenges and, despite efforts to overcome difficulties, remain under-represented in proteomic studies. Limitations in the classically employed ultracentrifugation-based approaches have led to the invention of more elaborate techniques for the purification of cell surface proteins. Three of these methods--cell surface coating with cationic colloidal silica beads, biotinylation and chemical capture of surface glycoproteins--allow for marked enrichment of this subcellular proteome, with each approach offering unique advantages and characteristics for different experiments. In this article, we introduce the principles of each purification method and discuss applications from the recent literature.

  19. Bone Proteomics experiment (BOP): the first proteomics analysis of mammalian cells cultivated in weightlessness conditions

    NASA Astrophysics Data System (ADS)

    Costessi, A.; Vascotto, C.; Pines, A.; Romanello, M.; Schonenborg, R.; Schiller, P.; Moro, L.; Tell, G.

    Bone mass loss is a major consequence of extended periods of weightlessness Many studies have been performed on astronauts and animal models establishing that a decrease of the maturation process and of the bone synthesising activity of osteoblast cells play a key role in microgravity-dependent bone mass loss Several experiments on single cells and tissues showed that weightlessness can also influence cells cultivated in vitro Many molecular mechanisms are affected among which the cytoskeleton and intracellular signal transduction cascades However the underlying mechanisms of these changes and their molecular consequences are far from being fully understood and the cellular gravisensing machinery is still unknown In contrast to weightlessness dynamic mechanical loading increases bone density and strength and promotes osteoblast proliferation differentiation and matrix production by acting at the gene expression level However the molecular mechanisms by which mechanical forces are converted into biochemical signalling in bone are also poorly understood A growing body of evidence points to extracellular nucleotides i e ATP and UTP as soluble factors that are released by several cell types in response to mechanical stimulation and that eventually trigger an intracellular signal We have recently demonstrated in the HOBIT osteoblast cell line that ATP and UTP treatments can activate two fundamental transcription factors that promote osteoblast differentiation and physiology Runx2 and Egr-1 as well as their target genes galectin-3 and

  20. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    PubMed Central

    Xiong, Jimin; Menicanin, Danijela; Marino, Victor

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  1. Fast proteomic protocol for biomarker fingerprinting in cancerous cells.

    PubMed

    Armenta, Jenny M; Perez, Milagros; Yang, Xu; Shapiro, Danielle; Reed, Debby; Tuli, Leepika; Finkielstein, Carla V; Lazar, Iulia M

    2010-04-23

    The advance of novel technologies that will enable the detection of large sets of biomarker proteins, to greatly improve the sensitivity and specificity of an assay, represents a major objective in biomedical research. To demonstrate the power of mass spectrometry (MS) detection for large-scale biomarker screening in cancer research, a simple, one-step approach for fast biomarker fingerprinting in complex cellular extracts is described. MCF-7 breast cancer cells were used as a model system. Fast proteomic profiling of whole cellular extracts was achieved on a linear trap quadrupole (LTQ) mass spectrometer by one of the following techniques: (a) data-dependent liquid chromatography (LC)-MS/MS of un-labeled cell extracts, (b) data-dependent LC-MS/MS with pulsed Q dissociation (PQD) detection of iTRAQ labeled samples, and (c) multiple reaction monitoring (MRM)-MS of low abundant proteins that could not be detected with data-dependent MS/MS. The data-dependent LC-MS/MS analysis of MCF-7 cells enabled the identification of 796 proteins (p<0.001) and the simultaneous detection of 156 previously reported putative cancer biomarkers. PQD detection of iTRAQ labeled cells resulted in the detection of 389 proteins and 64 putative biomarkers. MRM-MS analysis enabled the successful monitoring of a panel of low-abundance proteins in one single experiment, highlighting the utility of this technique for targeted analysis in cancer investigations. These results demonstrate that MS-based technologies relying on a one-step separation protocol have the potential to revolutionize biomarker research and screening applications by enabling fast, sensitive and reliable detection of large panels of putative biomarkers. To further stimulate the exploration of proteins that have been previously reported in the literature to be differentially expressed in a variety of cancers, an extensive list of approximately 1100 candidate biomarkers has been compiled and included in the manuscript.

  2. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    PubMed Central

    Mindaye, Samuel T.; Lo Surdo, Jessica; Bauer, Steven R.; Alterman, Michail A.

    2015-01-01

    Bone-marrow derived mesenchymal stromal cells (BMSCs) have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5], [6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results. PMID:26702413

  3. Proteomics meets genetics: SILAC labeling of Drosophila melanogaster larvae and cells for in vivo functional studies.

    PubMed

    Cuomo, Alessandro; Sanfilippo, Roberta; Vaccari, Thomas; Bonaldi, Tiziana

    2014-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is an established and potent method for quantitative proteomics. When combined with high-resolution mass spectrometry (MS) and efficient algorithms for the analysis of quantitative MS data, SILAC has proven to be the strategy of choice for the in-depth characterization of functional states at the protein level. The fruit fly Drosophila melanogaster is one of the most widely used model systems for studies of genetics and developmental biology. Despite this, a global proteomic approach in Drosophila is rarely considered. Here, we describe an adaptation of SILAC for functional investigation of fruit flies by proteomics: We illustrate how to perform efficient SILAC labeling of cells in culture and whole fly larvae. The combination of SILAC, a highly accurate global protein quantification method, and of the fruit fly, the prime genetics and developmental model, represents a unique opportunity for quantitative proteomic studies in vivo.

  4. Proteomics Funding Opportunity - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    To expand the understanding of how cells sense and respond to changes in their physical environment, the NCI is seeking to perform proteomic assays on the panel of cell lines grown on a variety of substrates. These assays will provide insight into changes in protein levels or phosphorylation changes that could reflect the activity of mechano-transduction pathways.

  5. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  6. Cell wall biogenesis of Arabidopsis thaliana elongating cells: transcriptomics complements proteomics

    PubMed Central

    Jamet, Elisabeth; Roujol, David; San-Clemente, Hélène; Irshad, Muhammad; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Pont-Lezica, Rafael

    2009-01-01

    Background Plant growth is a complex process involving cell division and elongation. Arabidopsis thaliana hypocotyls undergo a 100-fold length increase mainly by cell elongation. Cell enlargement implicates significant changes in the composition and structure of the cell wall. In order to understand cell wall biogenesis during cell elongation, mRNA profiling was made on half- (active elongation) and fully-grown (after growth arrest) etiolated hypocotyls. Results Transcriptomic analysis was focused on two sets of genes. The first set of 856 genes named cell wall genes (CWGs) included genes known to be involved in cell wall biogenesis. A significant proportion of them has detectable levels of transcripts (55.5%), suggesting that these processes are important throughout hypocotyl elongation and after growth arrest. Genes encoding proteins involved in substrate generation or in synthesis of polysaccharides, and extracellular proteins were found to have high transcript levels. A second set of 2927 genes labeled secretory pathway genes (SPGs) was studied to search for new genes encoding secreted proteins possibly involved in wall expansion. Based on transcript level, 433 genes were selected. Genes not known to be involved in cell elongation were found to have high levels of transcripts. Encoded proteins were proteases, protease inhibitors, proteins with interacting domains, and proteins involved in lipid metabolism. In addition, 125 of them encoded proteins with yet unknown function. Finally, comparison with results of a cell wall proteomic study on the same material revealed that 48 out of the 137 identified proteins were products of the genes having high or moderate level of transcripts. About 15% of the genes encoding proteins identified by proteomics showed levels of transcripts below background. Conclusion Members of known multigenic families involved in cell wall biogenesis, and new genes that might participate in cell elongation were identified. Significant

  7. iTRAQ-based proteomic analysis of polyploid giant cancer cells and budding progeny cells reveals several distinct pathways for ovarian cancer development.

    PubMed

    Zhang, Shiwu; Mercado-Uribe, Imelda; Hanash, Samir; Liu, Jinsong

    2013-01-01

    Polyploid giant cancer cells (PGCCs) are a morphologically distinct subgroup of human tumor cells with increased nuclear size or multiple nuclei, but they are generally considered unimportant because they are presumed to be nondividing and thus nonviable. We have recently shown that these large cancer cells are not only viable but also can divide asymmetrically and yield progeny cancer cells with cancer stem-like properties via budding division. To further understand the molecular events involved in the regulation of PGCCs and the generation of their progeny cancer cells, we comparatively analyzed the proteomic profiles of PGCCs, PGCCs with budding daughter cells, and regular control cancer cells from the HEY and SKOv3 human ovarian cancer cell lines with and without CoCl2. We used a high-throughput iTRAQ-based proteomic methodology coupled with liquid chromatography-electrospray ionization tandem mass spectroscopy to determine the differentiated regulated proteins. We performed Western blotting and immunohistochemical analyses to validate the differences in the expression patterns of a variety of proteins between PGCCs or budding PGCCs and regular cancer cells identified by iTRAQ approach and also a selected group of proteins from the literature. The differentially regulated proteins included proteins involved in response to hypoxia, stem cell generation, chromatin remodeling, cell-cycle regulation, and invasion and metastasis. In particular, we found that HIF-1alpha and its known target STC1 are upregulated in PGCCs. In addition, we found that a panel of stem cell-regulating factors and epithelial-to-mesenchymal transition regulatory transcription factors were upregulated in budding PGCCs, whereas expression of the histone 1 family of nucleosomal linker proteins was consistently lower in PGCCs than in control cells. Thus, proteomic expression patterns provide valuable insight into the underlying mechanisms of PGCC formation and the relationship between PGCCs and

  8. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-01

    Abstract Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.001 PMID:25555159

  9. Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling

    PubMed Central

    Müller, Anke; Stellmacher, Anne; Freitag, Christine E.; Landgraf, Peter; Dieterich, Daniela C.

    2015-01-01

    The ability of the nervous system to undergo long-term plasticity is based on changes in cellular and synaptic proteomes. While many studies have explored dynamic alterations in neuronal proteomes during plasticity, there has been less attention paid to the astrocytic counterpart. Indeed, progress in identifying cell type-specific proteomes is limited owing to technical difficulties. Here, we present a cell type-specific metabolic tagging technique for a mammalian coculture model based on the bioorthogonal amino acid azidonorleucine and the mutated Mus musculus methionyl-tRNA synthetaseL274G enabling azidonorleucine introduction into de novo synthesized proteins. Azidonorleucine incorporation resulted in cell type-specific protein labeling and retained neuronal or astrocytic cell viability. Furthermore, we were able to label astrocytic de novo synthesized proteins and identified both Connexin-43 and 60S ribosomal protein L10a upregulated upon treatment with Brain-derived neurotrophic factor in astrocytes of a neuron-glia coculture. Taken together, we demonstrate the successful dissociation of astrocytic from neuronal proteomes by cell type-specific metabolic labeling offering new possibilities for the analyses of cell type-specific proteome dynamics. PMID:26690742

  10. The Effects of Bifidobacterium breve on Immune Mediators and Proteome of HT29 Cells Monolayers

    PubMed Central

    Sánchez, Borja; González-Rodríguez, Irene; Arboleya, Silvia; López, Patricia; Suárez, Ana

    2015-01-01

    The use of beneficial microorganisms, the so-called probiotics, to improve human health is gaining popularity. However, not all of the probiotic strains trigger the same responses and they differ in their interaction with the host. In spite of the limited knowledge on mechanisms of action some of the probiotic effects seem to be exerted through maintenance of the gastrointestinal barrier function and modulation of the immune system. In the present work, we have addressed in vitro the response of the intestinal epithelial cell line HT29 to the strain Bifidobacterium breve IPLA20004. In the array of 84 genes involved in inflammation tested, the expression of 12 was modified by the bifidobacteria. The genes of chemokine CXCL6, the chemokine receptor CCR7, and, specially, the complement component C3 were upregulated. Indeed, HT29 cells cocultivated with B. breve produced significantly higher levels of protein C3a. The proteome of HT29 cells showed increased levels of cytokeratin-8 in the presence of B. breve. Altogether, it seems that B. breve IPLA20004 could favor the recruitment of innate immune cells to the mucosa reinforcing, as well as the physical barrier of the intestinal epithelium. PMID:25793196

  11. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2

    PubMed Central

    Hung, Victoria; Udeshi, Namrata D; Lam, Stephanie S; Loh, Ken H; Cox, Kurt J; Pedram, Kayvon; Carr, Steven A; Ting, Alice Y

    2016-01-01

    This protocol describes a method to obtain spatially resolved proteomic maps of specific compartments within living mammalian cells. An engineered peroxidase, APEX2, is genetically targeted to a cellular region of interest. Upon the addition of hydrogen peroxide for 1 min to cells preloaded with a biotin-phenol substrate, APEX2 generates biotin-phenoxyl radicals that covalently tag proximal endogenous proteins. Cells are then lysed, and biotinylated proteins are enriched with streptavidin beads and identified by mass spectrometry. We describe the generation of an appropriate APEX2 fusion construct, proteomic sample preparation, and mass spectrometric data acquisition and analysis. A two-state stable isotope labeling by amino acids in cell culture (SILAC) protocol is used for proteomic mapping of membrane-enclosed cellular compartments from which APEX2-generated biotin-phenoxyl radicals cannot escape. For mapping of open cellular regions, we instead use a ‘ratiometric’ three-state SILAC protocol for high spatial specificity. Isotopic labeling of proteins takes 5–7 cell doublings. Generation of the biotinylated proteomic sample takes 1 d, acquiring the mass spectrometric data takes 2–5 d and analysis of the data to obtain the final proteomic list takes 1 week. PMID:26866790

  12. Analysis of Cell Surface Proteome Changes via Label-free, Quantitative Mass Spectrometry*S⃞

    PubMed Central

    Schiess, Ralph; Mueller, Lukas N.; Schmidt, Alexander; Mueller, Markus; Wollscheid, Bernd; Aebersold, Ruedi

    2009-01-01

    We present a mass spectrometry-based strategy for the specific detection and quantification of cell surface proteome changes. The method is based on the label-free quantification of peptide patterns acquired by high mass accuracy mass spectrometry using new software tools and the cell surface capturing technology that selectively enriches glycopeptides exposed to the cell exterior. The method was applied to monitor dynamic protein changes in the cell surface glycoproteome of Drosophila melanogaster cells. The results led to the construction of a cell surface glycoprotein atlas consisting of 202 cell surface glycoproteins of D. melanogaster Kc167 cells and indicated relative quantitative changes of cell surface glycoproteins in four different cellular states. Furthermore we specifically investigated cell surface proteome changes upon prolonged insulin stimulation. The data revealed insulin-dependent cell surface glycoprotein dynamics, including insulin receptor internalization, and linked these changes to intracellular signaling networks. PMID:19036722

  13. De Novo proteome analysis of genetically modified tumor cells by a metabolic labeling/azide-alkyne cycloaddition approach.

    PubMed

    Ballikaya, Seda; Lee, Jennifer; Warnken, Uwe; Schnölzer, Martina; Gebert, Johannes; Kopitz, Jürgen

    2014-12-01

    Activin receptor type II (ACVR2) is a member of the transforming growth factor type II receptor family and controls cell growth and differentiation, thereby acting as a tumor suppressor. ACVR2 inactivation is known to drive colorectal tumorigenesis. We used an ACVR2-deficient microsatellite unstable colon cancer cell line (HCT116) to set up a novel experimental design for comprehensive analysis of proteomic changes associated with such functional loss of a tumor suppressor. To this end we combined two existing technologies. First, the ACVR2 gene was reconstituted in an ACVR2-deficient colorectal cancer (CRC) cell line by means of recombinase-mediated cassette exchange, resulting in the generation of an inducible expression system that allowed the regulation of ACVR2 gene expression in a doxycycline-dependent manner. Functional expression in the induced cells was explicitly proven. Second, we used the methionine analog azidohomoalanine for metabolic labeling of newly synthesized proteins in our cell line model. Labeled proteins were tagged with biotin via a Click-iT chemistry approach enabling specific extraction of labeled proteins by streptavidin-coated beads. Tryptic on-bead digestion of captured proteins and subsequent ultra-high-performance LC coupled to LTQ Orbitrap XL mass spectrometry identified 513 proteins, with 25 of them differentially expressed between ACVR2-deficient and -proficient cells. Among these, several candidates that had already been linked to colorectal cancer or were known to play a key role in cell growth or apoptosis control were identified, proving the utility of the presented experimental approach. In principle, this strategy can be adapted to analyze any gene of interest and its effect on the cellular de novo proteome.

  14. Cell line fingerprinting using retroelement insertion polymorphism.

    PubMed

    Ustyugova, Svetlana V; Amosova, Anna L; Lebedev, Yuri B; Sverdlov, Eugene D

    2005-04-01

    Human cell lines are an indispensable tool for functional studies of living entities in their numerous manifestations starting with integral complex systems such as signal pathways and networks, regulation of gene ensembles, epigenetic factors, and finishing with pathological changes and impact of artificially introduced elements, such as various transgenes, on the behavior of the cell. Therefore, it is highly desirable to have reliable cell line identification techniques to make sure that the cell lines to be used in experiments are exactly what is expected. To this end, we developed a set of informative markers based on insertion polymorphism of human retroelements (REs). The set includes 47 pairs of PCR primers corresponding to introns of the human genes with dimorphic LINE1 (L1) and Alu insertions. Using locus-specific PCR assays, we have genotyped 10 human cell lines of various origins. For each of these cell lines, characteristic fingerprints were obtained. An estimated probability that two different cell lines possess the same marker genotype is about 10-18. Therefore, the proposed set of markers provides a reliable tool for cell line identification.

  15. Proteomic Analysis of Signaling Network Regulation in Renal Cell Carcinomas with Differential Hypoxia-Inducible Factor-2α Expression

    PubMed Central

    Nagaprashantha, Lokesh Dalasanur; Talamantes, Tatjana; Singhal, Jyotsana; Guo, Jia; Vatsyayan, Rit; Rauniyar, Navin; Awasthi, Sanjay

    2013-01-01

    Background The loss of von Hippel–Lindau (VHL) protein function leads to highly vascular renal tumors characterized by an aggressive course of disease and refractoriness to chemotherapy and radiotherapy. Loss of VHL in renal tumors also differs from tumors of other organs in that the oncogenic cascade is mediated by an increase in the levels of hypoxia-inducible factor-2α (HIF2α) instead of hypoxia-inducible factor-1α (HIF1α). Methods and Principal Findings We used renal carcinoma cell lines that recapitulate the differences between mutant VHL and wild-type VHL genotypes. Utilizing a method relying on extracted peptide intensities as a label-free approach for quantitation by liquid chromatography–mass spectrometry, our proteomics study revealed regulation of key proteins important for cancer cell survival, proliferation and stress-resistance, and implicated differential regulation of signaling networks in VHL-mutant renal cell carcinoma. We also observed upregulation of cellular energy pathway enzymes and the stress-responsive mitochondrial 60-kDa heat shock protein. Finding reliance on glutaminolysis in VHL-mutant renal cell carcinoma was of particular significance, given the generally predominant dependence of tumors on glycolysis. The data have been deposited to the ProteomeXchange with identifier PXD000335. Conclusions and Significance Pathway analyses provided corroborative evidence for differential regulation of molecular and cellular functions influencing cancer energetics, metabolism and cell proliferation in renal cell carcinoma with distinct VHL genotype. Collectively, the differentially regulated proteome characterized by this study can potentially guide translational research specifically aimed at effective clinical interventions for advanced VHL-mutant, HIF2α-over-expressing tumors. PMID:23940778

  16. Alterations of protein profile in zebrafish liver cells exposed to methyl parathion: a membrane proteomics approach.

    PubMed

    Huang, Qingyu; Huang, He-Qing

    2012-03-01

    Methyl parathion (MP) is an extensively used organophosphorus pesticide, which has been associated with a wide spectrum of toxic effects on environmental organisms. The aim of this study is to investigate the alterations of membrane protein profiles in zebrafish liver (ZFL) cell line exposed to MP for 24 h using proteomic approaches. Two-dimensional gel electrophoresis revealed a total of 13 protein spots, whose expression levels were significantly altered by MP. These differential proteins were subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis, and nine proteins were identified to be membrane proteins, among which seven were up-regulated, while two were down-regulated. In addition, the mRNA levels corresponding to these differential membrane proteins were further analyzed by quantitative real-time PCR. And the differential expression of arginase-2 was specially validated via Western blotting. Regarding the physiological functions, these proteins are involved in molecular chaperon, cytoskeleton system, cell metabolism, signal transduction, transport and hormone receptor respectively, suggesting the complexity of MP-mediated toxicity to ZFL cell. These data could provide useful insights for better understanding the hepatotoxic mechanisms of MP and develop novel protein biomarkers for effectively monitoring MP contamination level in aquatic environment.

  17. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    PubMed Central

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  18. Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels.

    PubMed

    Hindle, Allyson G; Grabek, Katharine R; Epperson, L Elaine; Karimpour-Fard, Anis; Martin, Sandra L

    2014-05-15

    Small-bodied hibernators partition the year between active homeothermy and hibernating heterothermy accompanied by fasting. To define molecular events underlying hibernation that are both dependent and independent of fasting, we analyzed the liver proteome among two active and four hibernation states in 13-lined ground squirrels. We also examined fall animals transitioning between fed homeothermy and fasting heterothermy. Significantly enriched pathways differing between activity and hibernation were biased toward metabolic enzymes, concordant with the fuel shifts accompanying fasting physiology. Although metabolic reprogramming to support fasting dominated these data, arousing (rewarming) animals had the most distinct proteome among the hibernation states. Instead of a dominant metabolic enzyme signature, torpor-arousal cycles featured differences in plasma proteins and intracellular membrane traffic and its regulation. Phosphorylated NSFL1C, a membrane regulator, exhibited this torpor-arousal cycle pattern; its role in autophagosome formation may promote utilization of local substrates upon metabolic reactivation in arousal. Fall animals transitioning to hibernation lagged in their proteomic adjustment, indicating that the liver is more responsive than preparatory to the metabolic reprogramming of hibernation. Specifically, torpor use had little impact on the fall liver proteome, consistent with a dominant role of nutritional status. In contrast to our prediction of reprogramming the transition between activity and hibernation by gene expression and then within-hibernation transitions by posttranslational modification (PTM), we found extremely limited evidence of reversible PTMs within torpor-arousal cycles. Rather, acetylation contributed to seasonal differences, being highest in winter (specifically in torpor), consistent with fasting physiology and decreased abundance of the mitochondrial deacetylase, SIRT3.

  19. Imaging the clear cell renal cell carcinoma proteome

    PubMed Central

    Morgan, Todd M.; Seeley, Erin H.; Fadare, Oluwole; Caprioli, Richard M.; Clark, Peter E.

    2012-01-01

    Introduction A key barrier to identification of tissue biomarkers of clear cell renal cell carcinoma (ccRCC) is the heterogeneity of protein expression within tissue. However, by providing spectra for every 0.05 mm2 area of tissue, imaging mass spectrometry (IMS) reveals the spatial distribution of peptides. We sought to determine whether this approach could be used to identify and map protein signatures of ccRCC. Methods We constructed two tissue microarrays (TMA) with two cores each of matched tumor and normal tissue from nephrectomy specimens of 70 patients with ccRCC. Samples were analyzed by matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometry (MS). Peptide signatures were identified within each TMA that differentiated cancer from normal tissue and then cross-validated. MS/MS sequencing was performed to determine identities of select differentially expressed peptides, and immunohistochemistry was used for validation. Results Peptide signatures were identified that demonstrated a classification accuracy within each TMA of 94.7–98.5% for each 0.05mm2 spot (spectrum) and 96.9–100% for each tissue core. Cross-validation across TMA's revealed classification accuracies of 82.6–84.7% for each spot and 88.9–92.4% for each core. We identified vimentin, histone 2A.X, and alpha-enolase as proteins with greater expression in cancer tissue, and validated this by immunohistochemistry. Conclusions IMS was able to identify and map specific peptides that accurately distinguished malignant from normal renal tissue, demonstrating its potential as a novel, high-throughput approach to ccRCC biomarker discovery. Given the multiple pathways and known heterogeneity involved in tumors such as ccRCC, multiple peptide signatures that maintain their spatial relationships may outperform traditional protein biomarkers. PMID:23009866

  20. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast

    PubMed Central

    Kumar, Ravinder; Srivastava, Sanjeeva

    2016-01-01

    Most of the microbial cells on earth under natural conditions exist in a dormant condition, commonly known as quiescent state. Quiescent cells exhibit low rates of transcription and translation suggesting that cellular abundance of proteins may be similar in quiescent cells. Therefore, this study aim to compare the proteome of budding yeast cells from two quiescent states viz. stationary phase/G0 and tetrads. Using iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative proteomics we identified 289 proteins, among which around 40 proteins exhibited ±1.5 fold change consistently from the four biological replicates. Proteomics data was validated by western blot and denstiometric analysis of Hsp12 and Spg4. Level of budding yeast 14-3-3 proteins was found to be similar in both the quiescent states, whereas Hsp12 and Spg4 expressed only during stress. FACS (fluorescence-activated cell sorting) analysis showed that budding yeast cells were arrested at G1 stages both in tetrads as well as in stationary phase. We also observed that quiescent states did not express Ime1 (inducer of meiosis). Taken together, our present study demonstrates that the cells in quiescent state may have similar proteome, and accumulation of proteins like Hsp12, Hsp26, and Spg4 may play an important role in retaining viability of the cells during dormancy. PMID:27558777

  1. Microchip-based single-cell functional proteomics for biomedical applications.

    PubMed

    Lu, Yao; Yang, Liu; Wei, Wei; Shi, Qihui

    2017-03-29

    Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that traditional population-based methods fail to address. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical frameworks to extract new biology. In this review article, we highlight a few biological and clinical applications in which microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating a well-controlled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies.

  2. PROTEOMICS ANALYSIS OF ROUGH ENDOPLASMIC RETICULUM IN PANCREATIC BETA CELLS

    PubMed Central

    Lee, Jin-sook; Wu, Yanning; Skallos, Patracia; Fang, Jingye; Zhang, Xuebao; Karnovsky, Alla; Woods, James; Stemmer, Paul M.; Liu, Ming; Zhang, Kezhong; Chen, Xuequn

    2015-01-01

    Pancreatic beta cells have well-developed endoplasmic reticulum (ER) to accommodate for the massive production and secretion of insulin. ER homeostasis is vital for normal beta cell function. Perturbation of ER homeostasis contributes to beta cell dysfunction in both type 1 and type 2 diabetes. To systematically identify the molecular machinery responsible for proinsulin biogenesis and maintenance of beta cell ER homeostasis, a widely used mouse pancreatic beta cell line, MIN6 cell was used to purify rough ER. Two different purification schemes were utilized. In each experiment, the ER pellets were solubilized and analyzed by one dimensional SDS-PAGE coupled with HPLC-MS/MS. A total of 1467 proteins were identified in three experiments with ≥95% confidence, among which 1117 proteins were found in at least two separate experiments and 737 proteins found in all three experiments. Gene ontology analysis revealed a comprehensive profile of known and novel players responsible for proinsulin biogenesis and ER homeostasis. Further bioinformatics analysis also identified potential beta cell specific ER proteins as well as ER proteins present in the risk genetic loci of type 2 diabetes. This dataset defines a molecular environment in the ER for proinsulin synthesis, folding and export and laid a solid foundation for further characterizations of altered ER homeostasis under diabetes-causing conditions. PMID:25546123

  3. Mitochondrial biogenesis and proteome remodeling promotes one carbon metabolism for T cell activation

    PubMed Central

    Ron-Harel, Noga; Santos, Daniel; Ghergurovich, Jonathan M.; Sage, Peter T.; Reddy, Anita; Lovitch, Scott B.; Dephoure, Noah; Satterstrom, F. Kyle; Sheffer, Michal; Spinelli, Jessica B.; Gygi, Steven; Rabinowitz, Joshua D.; Sharpe, Arlene H.; Haigis, Marcia C.

    2017-01-01

    Summary Naïve T cell stimulation activates anabolic metabolism to fuel the transition from quiescence to growth and proliferation. Here we show that naïve CD4+ T cell activation induces a unique program of mitochondrial biogenesis and remodeling. Using mass spectrometry, we quantified protein dynamics during T cell activation. We identified substantial remodeling of the mitochondrial proteome over the first 24 hr of T cell activation to generate mitochondria with a distinct metabolic signature, with one carbon metabolism as the most induced pathway. Salvage pathways and mitochondrial one carbon metabolism, fed by serine, contribute to purine and thymidine synthesis to enable T cell proliferation and survival. Genetic inhibition of the mitochondrial serine catabolic enzyme SHMT2 impaired T cell survival in culture, and antigen-specific T cell abundance in vivo. Thus, during T cell activation, mitochondrial proteome remodeling generates specialized mitochondria with enhanced one carbon metabolism that is critical for T cell activation and survival. PMID:27411012

  4. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001.

  5. Proteome profiling of seed from inbred and mutant line of sorghum (Sorghum bicolor)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain sorghum is a major staple food, with fifth rank among the cereals world-wide, considering its importance for food and feed applications. Cereals are main part of human nutrition and strategic resources. In this study, we executed a comprehensive proteomic study to investigate the seed storage ...

  6. Efficient isolation and proteomic analysis of cell plasma membrane proteins in gastric cancer reveal a novel differentiation and progression related cell surface marker, R-cadherin.

    PubMed

    Chen, Bo; Luo, Qi-Cong; Chen, Jian-Bo; Lin, Li-E; Luo, Ming-Xu; Ren, Hong-Yue; Chen, Pei-Qiong; Shi, Lian-Guo

    2016-09-01

    Cell plasma membrane proteins, playing a crucial role in cell malignant transformation and development, were the main targets of tumor detection and therapy. In this study, CyDye/biotin double-labeling proteomic approach was adopted to profile the membrane proteome of gastric cancer cell line BGC-823 and paired immortalized gastric epithelial cell GES-1. Real-time PCR, Western blotting, and immunohistochemical staining were used to validate the differential expression of a novel identified cell surface marker R-cadherin in gastric cancer cells and tissues. Clinicopathological study and survival analysis were performed to estimate its roles in tumor progression and outcome prediction. Real-time PCR and Western blotting showed that the expression level of R-cadherin in gastric cancer were significantly lower than non-cancerous epithelial cell and tissues. Clinicopathological study indicated that R-cadherin was dominantly expressed on cell surface of normal gastric epithelium, and its expression deletion in gastric cancer tissues was associated with tumor site, differentiation, lymph node metastasis, and pTNM (chi-square test, P < 0.05). Those patients with R-cadherin positive expression displayed better overall survivals than negative expression group (log-rank test, P = 0.000). Cox multivariate survival analysis revealed lacking the expression of R-cadherin was a main independent predictor for poor clinical outcome in gastric cancer (RR = 5.680, 95 % CI 2.250-14.341, P < 0.01). We have established a fundamental membrane proteome database for gastric cancer and identified R-cadherin as a tumor differentiation and progression-related cell surface marker of gastric cancer. Lacking the expression of R-cadherin indicates poor prognosis in patients with gastric cancer.

  7. Standards for Cell Line Authentication and Beyond

    PubMed Central

    Cole, Kenneth D.; Plant, Anne L.

    2016-01-01

    Different genomic technologies have been applied to cell line authentication, but only one method (short tandem repeat [STR] profiling) has been the subject of a comprehensive and definitive standard (ASN-0002). Here we discuss the power of this document and why standards such as this are so critical for establishing the consensus technical criteria and practices that can enable progress in the fields of research that use cell lines. We also examine other methods that could be used for authentication and discuss how a combination of methods could be used in a holistic fashion to assess various critical aspects of the quality of cell lines. PMID:27300367

  8. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells

    PubMed Central

    Song, BenBen; Zhou, Jianhua; Wang, Tony T.

    2016-01-01

    Hepatitis C virus (HCV) poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP), UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1) and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection. PMID:26808496

  9. Proteomic studies in zebrafish liver cells exposed to the brominated flame retardants HBCD and TBBPA.

    PubMed

    Kling, Peter; Förlin, Lars

    2009-10-01

    Proteomic effect screening in zebrafish liver cells was performed to generate hypotheses regarding single and mixed exposure to the BFRs HBCD and TBBPA. Responses at sublethal exposure were analysed by two-dimensional gel electrophoresis followed by MALDI-TOF and FT-ICR protein identification. Mixing of HBCD and TBBPA at sublethal doses of individual substances seemed to increase toxicity. Proteomic analyses revealed distinct exposure-specific and overlapping responses suggesting novel mechanisms with regard to HBCD and TBBPA exposure. While distinct HBCD responses were related to decreased protein metabolism, TBBPA revealed effects related to protein folding and NADPH production. Overlapping responses suggest increased gluconeogenesis (GAPDH and aldolase) while distinct mixture effects suggest a pronounced NADPH production and changes in proteins related to cell cycle control (prohibitin and crk-like oncogene). We conclude that mixtures containing HBCD and TBBPA may result in unexpected effects highlighting proteomics as a sensitive tool for detecting and hypothesis generation of mixture effects.

  10. Integration of molecular genetics and proteomics with cell metabolism: how to proceed; how not to proceed!

    PubMed

    Costello, Leslie C; Franklin, Renty B

    2011-10-15

    There now exists a resurgence of interest in the role of intermediary metabolism in medicine; especially in relation to medical disorders. Coupled with this is the contemporary focus on molecular biology, genetics and proteomics and their integration into studies of regulation and alterations in cellular metabolism in health and disease. This is a marriage that has vast potential for elucidation of the factors and conditions that are involved in cellular metabolic and functional changes, which heretofore could not be addressed by the earlier generations of biochemists who established the major pathways of intermediary metabolism. The achievement of this present potential requires the appropriate application and interpretation of genetic and proteomic studies relating to cell metabolism and cell function. This requires knowledge and understanding of the principles, relationships, and methodology, such as biochemistry and enzymology, which are involved in the elucidation of cellular regulatory enzymes and metabolic pathways. Unfortunately, many and possibly most contemporary molecular biologists are not adequately trained and knowledgeable in these areas of cell metabolism. This has resulted in much too common inappropriate application and misinformation from genetic/proteomic studies of cell metabolism and function. This presentation describes important relationships of cellular intermediary metabolism, and provides examples of the appropriate and inappropriate application of genetics and proteomics. It calls for the inclusion of biochemistry, enzymology, cell metabolism and cell physiology in the graduate and postgraduate training of molecular biology and other biomedical researchers.

  11. The Primary Effect on the Proteome of ARID1A-mutated Ovarian Clear Cell Carcinoma is Downregulation of the Mevalonate Pathway at the Post-transcriptional Level*

    PubMed Central

    Goldman, Aaron R.; Bitler, Benjamin G.; Schug, Zachary; Conejo-Garcia, Jose R.; Zhang, Rugang; Speicher, David W.

    2016-01-01

    Inactivating mutations in ARID1A, which encodes a subunit of the SWI/SNF chromatin-remodeling complex, are found in over half of ovarian clear cell carcinoma cases and more broadly across most types of cancers. To identify ARID1A-dependent changes in intracellular signaling pathways, we performed proteome analyses of isogenic ovarian clear cell carcinoma cell lines with or without ARID1A expression. Knockout of ARID1A in an ovarian clear cell carcinoma cell line with wild-type ARID1A, OVCA429, primarily resulted in downregulation of the mevalonate pathway, an important metabolic pathway involved in isoprenoid synthesis, cholesterol synthesis, and other downstream pathways. In a complementary experiment, expression of wild-type ARID1A in an ovarian clear cell carcinoma cell line containing mutated ARID1A, OVISE, affected the mevalonate pathway in a reciprocal manner. A striking aspect of these analyses was that, although only 5% of the detected proteome showed significant abundance changes, most proteins in the mevalonate pathway were coordinately affected by ARID1A status. There were generally corresponding changes when comparing the proteomics data to our previously published microarray data for ectopic expression of ARID1A in the OVISE cell line. However, ARID1A-dependent changes were not detected for genes within the mevalonate pathway. This discrepancy suggests that the mevalonate pathway is not regulated directly by ARID1A-mediated transcription and may be regulated post-transcriptionally. We conclude that ARID1A status indirectly influences the mevalonate pathway and probably influences other processes including glycogen metabolism and 14-3-3-mediated signaling. Further, our findings demonstrate that changes in mRNA levels are sometimes poor indicators of signaling pathways affected by gene manipulations in cancer cells. PMID:27654507

  12. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors.

    PubMed

    Jeppesen, Dennis Kjølhede; Nawrocki, Arkadiusz; Jensen, Steffen Grann; Thorsen, Kasper; Whitehead, Bradley; Howard, Kenneth A; Dyrskjøt, Lars; Ørntoft, Torben Falck; Larsen, Martin R; Ostenfeld, Marie Stampe

    2014-03-01

    Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13- to 16-fold increased exosome yield and facilitated quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ proteomics. We identified several proteins linked to epithelial-mesenchymal transition, including increased abundance of vimentin and hepatoma-derived growth factor in the membrane, and casein kinase II α and annexin A2 in the lumen of exosomes, respectively, from metastatic cells. The change in exosome protein abundance correlated little, although significant for FL3 versus T24, with changes in cellular mRNA expression. Our proteomic approach may help identification of proteins in the membrane and lumen of exosomes potentially involved in the metastatic process.

  13. Embryonic stem cell lines of nonhuman primates.

    PubMed

    Nakatsuji, Norio; Suemori, Hirofumi

    2002-06-26

    Human embryonic stem (ES) cell lines have opened great potential and expectation for cell therapy and regenerative medicine. Monkey and human ES cell lines, which are very similar to each other, have been established from monkey blastocysts and surplus human blastocysts from fertility clinics. Nonhuman primate ES cell lines provide important research tools for basic and applicative research. Firstly, they provide wider aspects of investigation of the regulative mechanisms of stem cells and cell differentiation among primate species. Secondly, their usage does not need clearance or permission from the regulative rules in many countries that are associated with the ethical aspects of human ES cells, although human and nonhuman embryos and fetuses are very similar to each other. Lastly and most importantly, they are indispensable for animal models of cell therapy to test effectiveness, safety, and immunological reaction of the allogenic transplantation in a setting similar to the treatment of human diseases. So far, ES cell lines have been established from rhesus monkey (Macaca mulatta), common marmoset (Callithrix jacchus), and cynomolgus monkey (Macaca fascicularis), using blastocysts produced naturally or by in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). These cell lines seem to have very similar characteristics. They express alkaline phosphatase activity and stage-specific embryonic antigen (SSEA)-4 and, in most cases, SSEA-3. Their pluripotency was confirmed by the formation of embryoid bodies and differentiation into various cell types in culture and also by the formation of teratomas that contained many types of differentiated tissues including derivatives of three germ layers after transplantation into the severe combined immunodeficiency (SCID) mice. The noneffectiveness of the leukemia inhibitory factor (LIF) signal makes culture of primate and human ES cell lines prone to undergo spontaneous differentiation and thus it is

  14. A Proteomics Analysis to Evaluate Cytotoxicity in NRK-52E Cells Caused by Unmodified Nano-Fe3O4

    PubMed Central

    Lin, Yi-Reng; Kuo, Chao-Jen; Wu, Chin-Jen

    2014-01-01

    We synthesized unmodified Fe3O4 nanoparticles (NPs) with particles size from 10 nm to 100 nm. We cultured NRK-52E cell lines (rat, kidney) and treated with Fe3O4 NPs to investigate and evaluate the cytotoxicity of NPs for NRK-52E cells. Through global proteomics analysis using dimethyl labeling techniques and liquid phase chromatography coupled with a tandem mass spectrometer (LC-MS/MS), we characterized 435 proteins including the programmed cell death related proteins, ras-related proteins, glutathione related proteins, and the chaperone proteins such as heat shock proteins, serpin H1, protein disulfide-isomerase A4, endoplasmin, and endoplasmic reticulum resident proteins. From the statistical data of identified proteins, we believed that NPs treatment causes cell death and promotes expression of ras-related proteins. In order to avoid apoptosis, NRK-52E cell lines induce a series of protective effects such as glutathione related proteins to reduce reactive oxygen species (ROS), and chaperone proteins to recycle damaged proteins. We suggested that, in the indigenous cellular environment, Fe3O4 NPs treatment induced an antagonistic effect for cell lines to go to which avoids apoptosis. PMID:25197711

  15. Thyroid cancer cell lines: an overview

    PubMed Central

    Saiselet, Manuel; Floor, Sébastien; Tarabichi, Maxime; Dom, Geneviève; Hébrant, Aline; van Staveren, Wilma C. G.; Maenhaut, Carine

    2012-01-01

    Human thyroid cancer cell lines are the most used models for thyroid cancer studies. They must be used with detailed knowledge of their characteristics. These in vitro cell lines originate from differentiated and dedifferentiated in vivo human thyroid tumors. However, it has been shown that mRNA expression profiles of these cell lines were closer to dedifferentiated in vivo thyroid tumors (anaplastic thyroid carcinoma, ATC) than to differentiated ones. Here an overview of the knowledge of these models was made. The mutational status of six human thyroid cancer cell lines (WRO, FTC133, BCPAP, TPC1, K1, and 8505C) was in line with previously reported findings for 10 genes frequently mutated in thyroid cancer. However, the presence of a BRAF mutation (T1799A: V600E) in WRO questions the use of this cell line as a model for follicular thyroid carcinoma (FTC). Next, to investigate the biological meaning of the modulated mRNAs in these cells, a pathway analysis on previously obtained mRNA profiles was performed on five cell lines. In five cell lines, the MHC class II pathway was down-regulated and in four of them, ribosome biosynthesis and translation pathways were up-regulated. mRNA expression profiles of the cell lines were also compared to those of the different types of thyroid cancers. Three datasets originating from different microarray platforms and derived from distinct laboratories were used. This meta-analysis showed a significant higher correlation between the profiles of the thyroid cancer cell lines and ATC, than to differentiated thyroid tumors (i.e., PTC or FTC) specifically for DNA replication. This already observed higher correlation was obtained here with an increased number of in vivo tumors and using different platforms. In summary, this would suggest that some papillary thyroid carcinoma or follicular thyroid carcinoma (PTC or FTC) cell lines (i.e., TPC-1) might have partially lost their original DNA synthesis/replication regulation mechanisms during

  16. Riboflavin deficiency induces a significant change in proteomic profiles in HepG2 cells

    PubMed Central

    Xin, Zhonghao; Pu, Lingling; Gao, Weina; Wang, Yawen; Wei, Jingyu; Shi, Tala; Yao, Zhanxin; Guo, Changjiang

    2017-01-01

    Riboflavin deficiency is widespread in many regions over the world, especially in underdeveloped countries. In this study, we investigated the effects of riboflavin deficiency on protein expression profiles in HepG2 cells in order to provide molecular information for the abnormalities induced by riboflavin deficiency. HepG2 cells were cultured in media containing different concentrations of riboflavin. Changes of cell viability and apoptosis were assessed. A comparative proteomic analysis was performed using a label-free shotgun method with LC–MS/MS to investigate the global changes of proteomic profiles in response to riboflavin deficiency. Immunoblotting test was used to validate the results of proteomic approach. The cell viability and apoptosis tests showed that riboflavin was vital in maintaining the cytoactivity of HepG2 cells. The label-free proteomic analysis revealed that a total of 37 proteins showing differential expression (±2 fold, p < 0.05) were identified after riboflavin deficiency. Bioinformatics analysis indicated that the riboflavin deficiency caused an up-regulation of Parkinson’s disease pathway, steroid catabolism, endoplasmic reticulum stress and apoptotic process, while the fatty acid metabolism, tricarboxylic citrate cycle, oxidative phosphorylation and iron metabolism were down-regulated. These findings provide a molecular basis for the elucidation of the effects caused by riboflavin deficiency. PMID:28367977

  17. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control.

    PubMed

    Grassi, Mariana Lopes; Palma, Camila de Souza; Thomé, Carolina Hassibe; Lanfredi, Guilherme Pauperio; Poersch, Aline; Faça, Vitor Marcel

    2017-01-16

    Epithelial to mesenchymal transition (EMT) is a well-orchestrated process that culminates with loss of epithelial phenotype and gain of a mesenchymal and migratory phenotype. EMT enhances cancer cell invasiveness and drug resistance, favoring metastasis. Dysregulation of transcription factors, signaling pathways, miRNAs and growth factors including EGF, TGF-beta and HGF can trigger EMT. In ovarian cancer, overexpression of the EGFR family is associated with more aggressive clinical behavior. Here, the ovarian adenocarcinoma cell line Caov-3 was induced to EMT with EGF in order to identify specific mechanisms controlled by this process. Caov-3 cells induced to EMT were thoroughly validated and a combination of subcellular proteome enrichment, GEL-LC-MS/MS and SILAC strategy allowed consistent proteome identification and quantitation. Protein network analysis of differentially expressed proteins highlighted regulation of metabolism and cell cycle. Activation of relevant signaling pathways, such as PI3K/Akt/mTOR and Ras/Erk MAPK, in response to EGF-induced EMT was validated. Also, EMT did not affected the proliferation rate of Caov-3 cells, but led to cell cycle arrest in G1 phase regulated by increased levels of p21Waf1/Cip1, independently of p53. Furthermore, a decrease in G1 and G2 checkpoint proteins was observed, supporting the involvement of EGF-induced EMT in cell cycle control.

  18. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets

    PubMed Central

    Mazzotti, Diego Robles; Evangelista, Adriane Feijó; Braga, Walter Moisés Tobias; de Lourdes Chauffaille, Maria; Leme, Adriana Franco Paes; Colleoni, Gisele Wally Braga

    2015-01-01

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings. PMID:26807199

  19. Filamin C, a dysregulated protein in cancer revealed by label-free quantitative proteomic analyses of human gastric cancer cells.

    PubMed

    Qiao, Jie; Cui, Shu-Jian; Xu, Lei-Lei; Chen, Si-Jie; Yao, Jun; Jiang, Ying-Hua; Peng, Gang; Fang, Cai-Yun; Yang, Peng-Yuan; Liu, Feng

    2015-01-20

    Gastric cancer (GC) is the fourth and fifth most common cancer in men and women, respectively. We identified 2,750 proteins at false discovery rates of 1.3% (protein) and 0.03% (spectrum) by comparing the proteomic profiles of three GC and a normal gastric cell lines. Nine proteins were significantly dysregulated in all three GC cell lines, including filamin C, a muscle-specific filamin and a large actin-cross-linking protein. Downregulation of filamin C in GC cell lines and tissues were verified using quantitative PCR and immunohistochemistry. Data-mining using public microarray datasets shown that filamin C was significantly reduced in many human primary and metastasis cancers. Transient expression or silencing of filamin C affected the proliferation and colony formation of cancer cells. Silencing of endogenous filamin C enhanced cancer cell migration and invasion, whereas ectopic expression of filamin C had opposing effects. Silencing of filamin C increased the expression of matrix metallopeptidase 2 and improved the metastasis of prostate cancer in a zebrafish model. High filamin C associated with better prognosis of prostate cancer, leukemia and breast cancer patients. These findings establish a functional role of filamin C in human cancers and these data will be valuable for further study of its mechanisms.

  20. A Comprehensive Proteomic View of Responses of A549 Type II Alveolar Epithelial Cells to Human Respiratory Syncytial Virus Infection*

    PubMed Central

    Dave, Keyur A.; Norris, Emma L.; Bukreyev, Alexander A.; Headlam, Madeleine J.; Buchholz, Ursula J.; Singh, Toshna; Collins, Peter L.; Gorman, Jeffrey J.

    2014-01-01

    Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious

  1. A comprehensive proteomic view of responses of A549 type II alveolar epithelial cells to human respiratory syncytial virus infection.

    PubMed

    Dave, Keyur A; Norris, Emma L; Bukreyev, Alexander A; Headlam, Madeleine J; Buchholz, Ursula J; Singh, Toshna; Collins, Peter L; Gorman, Jeffrey J

    2014-12-01

    Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious

  2. Proteome Analysis of Liver Cells Expressing a Full- Length Hepatitis C Virus (HCV) Replicon and Biopsy Specimens of Posttransplantation Liver from HCV-Infected Patients

    SciTech Connect

    Jacobs, Jon M.; Diamond, Deborah L.; Chan, Eric Y.; Gritsenko, Marina A.; Qian, Weijun; Stastna, Miroslava; Baas, Tracey; Camp, David G.; Carithers, Jr., Robert L.; Smith, Richard D.; Katze, Michael G.

    2005-06-01

    The development of a reproducible model system for the study of Hepatitis C virus (HCV) infection has the potential to significantly enhance the study of virus-host interactions and provide future direction for modeling the pathogenesis of HCV. While there are studies describing global gene expression changes associated with HCV infection, changes in the proteome have not been characterized. We report the first large scale proteome analysis of the highly permissive Huh-7.5 cell line containing a full length HCV replicon. We detected > 4,400 proteins in this cell line, including HCV replicon proteins, using multidimensional liquid chromatographic (LC) separations coupled to mass spectrometry (MS). The set of Huh-7.5 proteins confidently identified is, to our knowledge, the most comprehensive yet reported for a human cell line. Consistent with the literature, a comparison of Huh-7.5 cells (+) and (-) the HCV replicon identified expression changes of proteins involved in lipid metabolism. We extended these analyses to liver biopsy material from HCV-infected patients where > 1,500 proteins were detected from 2 {micro}g protein lysate using the Huh-7.5 protein database and the accurate mass and time (AMT) tag strategy. These findings demonstrate the utility of multidimensional proteome analysis of the HCV replicon model system for assisting the determination of proteins/pathways affected by HCV infection. Our ability to extend these analyses to the highly complex proteome of small liver biopsies with limiting protein yields offers the unique opportunity to begin evaluating the clinical significance of protein expression changes associated with HCV infection.

  3. Proteomic Signatures of Human Oral Epithelial Cells in HIV-Infected Subjects

    PubMed Central

    Yohannes, Elizabeth; Ghosh, Santosh K.; Jiang, Bin; McCormick, Thomas S.; Weinberg, Aaron; Hill, Edward; Faddoul, Faddy; Chance, Mark R.

    2011-01-01

    The oral epithelium, the most abundant structural tissue lining the oral mucosa, is an important line of defense against infectious microorganisms. HIV infected subjects on highly active antiretroviral therapy (HAART) are susceptible to comorbid viral, bacterial and fungal infections in the oral cavity. To provide an assessment of the molecular alterations of oral epithelia potentially associated with susceptibility to comorbid infections in such subjects, we performed various proteomic studies on over twenty HIV infected and healthy subjects. In a discovery phase two Dimensional Difference Gel Electrophoresis (2-D DIGE) analyses of human oral gingival epithelial cell (HOEC) lysates were carried out; this identified 61 differentially expressed proteins between HIV-infected on HAART subjects and healthy controls. Down regulated proteins in HIV-infected subjects include proteins associated with maintenance of protein folding and pro- and anti-inflammatory responses (e.g., heat-shock proteins, Cryab, Calr, IL-1RA, and Galectin-3-binding protein) as well as proteins involved in redox homeostasis and detoxification (e.g., Gstp1, Prdx1, and Ero1). Up regulated proteins include: protein disulfide isomerases, proteins whose expression is negatively regulated by Hsp90 (e.g., Ndrg1), and proteins that maintain cellular integrity (e.g., Vimentin). In a verification phase, proteins identified in the protein profiling experiments and those inferred from Ingenuity Pathway Analysis were analyzed using Western blotting analysis on separate HOEC lysate samples, confirming many of the discovery findings. Additionally in HIV-infected patient samples Heat Shock Factor 1 is down regulated, which explains the reduced heat shock responses, while activation of the MAPK signal transduction cascade is observed. Overall, HAART therapy provides an incomplete immune recovery of the oral epithelial cells of the oral cavity for HIV-infected subjects, and the toxic side effects of HAART and

  4. Phenobarbital induces alterations in the proteome of hepatocytes and mesenchymal cells of rat livers.

    PubMed

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme.

  5. Comparative proteomic profiling identifies potential prognostic factors for human clear cell renal cell carcinoma.

    PubMed

    Sun, Xiang; Zhang, Hongwei; Luo, Longhua; Zhong, Kezhao; Ma, Yushui; Fan, Linlin; Fu, Da; Wan, Lijuan

    2016-12-01

    The identification of markers for disease diagnostic, prognostic, or predictive purposes will have a great effect in improving patient management. Proteomic‑based approaches for biomarker discovery are promising strategies used in cancer research. In this study, we performed quantitative proteomic analysis on four patients including clear cell renal cell carcinoma (ccRCC) and paired adjacent non‑cancerous renal tissues using label‑free quantitative proteomics and liquid chromatography‑tandem mass spectrometry (LC‑MS/MS) to identify differentially expressed proteins. Among 3,061 identified non‑redundant proteins, we found that 210 proteins were differentially expressed (83 overexpressed and 127 underexpressed) in ccRCC tissue when compared with normal kidney tissues. Two most significantly dysregulated proteins (PCK1 and SNRPF) were chosen to be confirmed by western blotting. Pathway analysis of 210 differentially expressed proteins showed that dysregulated proteins are related to many cancer‑related biological processes such as oxidative phosphorylation, glycolysis and amino acid synthetic pathways. Online survival analysis indicated the prognostic value of these dysregulated proteins. In conclusion, we identified some potential diagnostic biomarkers for ccRCC and an in‑depth understanding of their involved biological pathways may help pave the way to discover new therapeutic strategies for ccRCC.

  6. Proteomic analysis of temporally stimulated ovarian cancer cells for biomarker discovery.

    PubMed

    Marzinke, Mark A; Choi, Caitlin H; Chen, Li; Shih, Ie-Ming; Chan, Daniel W; Zhang, Hui

    2013-02-01

    While ovarian cancer remains the most lethal gynecological malignancy in the United States, there are no biomarkers available that are able to predict therapeutic responses to ovarian malignancies. One major hurdle in the identification of useful biomarkers has been the ability to obtain enough ovarian cancer cells from primary tissues diagnosed in the early stages of serous carcinomas, the most deadly subtype of ovarian tumor. In order to detect ovarian cancer in a state of hyperproliferation, we analyzed the implications of molecular signaling cascades in the ovarian cancer cell line OVCAR3 in a temporal manner, using a mass-spectrometry-based proteomics approach. OVCAR3 cells were treated with EGF(1), and the time course of cell progression was monitored based on Akt phosphorylation and growth dynamics. EGF-stimulated Akt phosphorylation was detected at 12 h post-treatment, but an effect on proliferation was not observed until 48 h post-exposure. Growth-stimulated cellular lysates were analyzed for protein profiles between treatment groups and across time points using iTRAQ labeling and mass spectrometry. The protein response to EGF treatment was identified via iTRAQ analysis in EGF-stimulated lysates relative to vehicle-treated specimens across the treatment time course. Validation studies were performed on one of the differentially regulated proteins, lysosomal-associated membrane protein 1 (LAMP-1), in human tissue lysates and ovarian tumor tissue sections. Further, tissue microarray analysis was performed to demarcate LAMP-1 expression across different stages of epithelial ovarian cancers. These data support the use of this approach for the efficient identification of tissue-based markers in tumor development related to specific signaling pathways. LAMP-1 is a promising biomarker for studies of the progression of EGF-stimulated ovarian cancers and might be useful in predicting treatment responses involving tyrosine kinase inhibitors or EGF receptor

  7. Quantitative Proteomic Profiling the Molecular Signatures of Annexin A5 in Lung Squamous Carcinoma Cells

    PubMed Central

    Zhang, Liyuan; Gong, Linlin; Qi, Xiaoyu; Li, Huizhen; Wang, Faming; Chi, Xinming; Jiang, Yulin; Shao, Shujuan

    2016-01-01

    Lung cancer remains the leading cancer killer around the world. It’s crucial to identify newer mechanism-based targets to effectively manage lung cancer. Annexin A5 (ANXA5) is a protein kinase C inhibitory protein and calcium dependent phospholipid-binding protein, which may act as an endogenous regulator of various pathophysiological processes. However, its molecular mechanism in lung cancer remains poorly understood. This study was designed to determine the mechanism of ANXA5 in lung cancer with a hope to obtain useful information to provide a new therapeutic target. We used a stable isotope dimethyl labeling based quantitative proteomic method to identify differentially expressed proteins in NSCLC cell lines after ANXA5 transfection. Out of 314 proteins, we identified 26 and 44 proteins that were down- and up-regulated upon ANXA5 modulation, respectively. The IPA analysis revealed that glycolysis and gluconeogenesis were the predominant pathways modulated by ANXA5. Multiple central nodes, namely HSPA5, FN1, PDIA6, ENO1, ALDOA, JUP and KRT6A appeared to occupy regulatory nodes in the protein-protein networks upon ANXA5 modulation. Taken together, ANXA5 appears to have pleotropic effects, as it modulates multiple key signaling pathways, supporting the potential usefulness of ANXA5 as a potential target in lung cancer. This study might provide a new insight into the mechanism of ANXA5 in lung cancer. PMID:27684953

  8. Identification of serum proteome components associated with progression of non-small cell lung cancer.

    PubMed

    Pietrowska, Monika; Jelonek, Karol; Michalak, Malwina; Roś, Małgorzata; Rodziewicz, Paweł; Chmielewska, Klaudia; Polański, Krzysztof; Polańska, Joanna; Gdowicz-Kłosok, Agnieszka; Giglok, Monika; Suwiński, Rafał; Tarnawski, Rafał; Dziadziuszko, Rafał; Rzyman, Witold; Widłak, Piotr

    2014-01-01

    The aim of the present study was to perform comparative analysis of serum from patients with different stages of non-small cell lung cancer (NSCLC) using the three complementary proteomic approaches to identify proteome components associated with the progression of cancer. Serum samples were collected before any treatment from 200 patients with NSCLC, including 103 early stage, 64 locally advanced and 33 metastatic cancer samples, and from 200 donors without malignancy. The low-molecular-weight fraction of serum proteome was MALDI-profiled in all samples. Serum proteins were characterized using 2D-PAGE and LC-MS/MS approaches in a representative group of 30 donors. Several significant differences were detected between serum samples collected from patients with early stage cancer and patients with locally advanced cancer, as well as between patients with metastatic cancer and patients with local disease. Of note, serum components discriminating samples from early stage cancer and healthy persons were also detected. In general, about 70 differentiating serum proteins were identified, including inflammatory and acute phase proteins already reported to be associated with the progression of lung cancer (serum amyloid A or haptoglobin). Several differentiating proteins, including apolipoprotein H or apolipoprotein A1, were not previously associated with NSCLC. No significant differences in patterns of serum proteome components were detected between patients with adenocarcinoma and squamous cell carcinoma. In conclusion, we identified the biomarker candidates with potential importance for molecular proteomic staging of NSCLC. Additionally, several serum proteome components revealed their potential applicability in early detection of the lung cancer.

  9. Cancer Cell Line Panels Empower Genomics-Based Discovery of Precision Cancer Medicine.

    PubMed

    Kim, Hyun Seok; Sung, Yeo-Jin; Paik, Soonmyung

    2015-09-01

    Since the first human cancer cell line, HeLa, was established in the early 1950s, there has been a steady increase in the number and tumor type of available cancer cell line models. Cancer cell lines have made significant contributions to the development of various chemotherapeutic agents. Recent advances in multi-omics technologies have facilitated detailed characterizations of the genomic, transcriptomic, proteomic, and epigenomic profiles of these cancer cell lines. An increasing number of studies employ the power of a cancer cell line panel to provide predictive biomarkers for targeted and cytotoxic agents, including those that are already used in clinical practice. Different types of statistical and machine learning algorithms have been developed to analyze the large-scale data sets that have been produced. However, much work remains to address the discrepancies in drug assay results from different platforms and the frequent failures to translate discoveries from cell line models to the clinic. Nevertheless, continuous expansion of cancer cell line panels should provide unprecedented opportunities to identify new candidate targeted therapies, particularly for the so-called "dark matter" group of cancers, for which pharmacologically tractable driver mutations have not been identified.

  10. Cancer Cell Line Panels Empower Genomics-Based Discovery of Precision Cancer Medicine

    PubMed Central

    Kim, Hyun Seok; Sung, Yeo-Jin

    2015-01-01

    Since the first human cancer cell line, HeLa, was established in the early 1950s, there has been a steady increase in the number and tumor type of available cancer cell line models. Cancer cell lines have made significant contributions to the development of various chemotherapeutic agents. Recent advances in multi-omics technologies have facilitated detailed characterizations of the genomic, transcriptomic, proteomic, and epigenomic profiles of these cancer cell lines. An increasing number of studies employ the power of a cancer cell line panel to provide predictive biomarkers for targeted and cytotoxic agents, including those that are already used in clinical practice. Different types of statistical and machine learning algorithms have been developed to analyze the large-scale data sets that have been produced. However, much work remains to address the discrepancies in drug assay results from different platforms and the frequent failures to translate discoveries from cell line models to the clinic. Nevertheless, continuous expansion of cancer cell line panels should provide unprecedented opportunities to identify new candidate targeted therapies, particularly for the so-called "dark matter" group of cancers, for which pharmacologically tractable driver mutations have not been identified. PMID:26256959

  11. High-resolution proteome maps of Bacillus licheniformis cells growing in minimal medium.

    PubMed

    Voigt, Birgit; Albrecht, Dirk; Sievers, Susanne; Becher, Dörte; Bongaerts, Johannes; Evers, Stefan; Schweder, Thomas; Maurer, Karl-Heinz; Hecker, Michael

    2015-08-01

    Bacillus licheniformis is an important host for the industrial production of enzymes mainly because of its ability to secrete large amounts of protein. We analyzed the proteome of B. licheniformis cells growing in a minimal medium. Beside the cytosolic proteome, the membrane and the extracellular proteome were studied. We could identify 1470 proteins; 1168 proteins were classified as cytosolic proteins, 195 proteins with membrane-spanning domains were classified as membrane proteins, and 107 proteins, with either putative signals peptides or flagellin-like sequences, were classified as secreted proteins. The identified proteins were grouped into functional categories and used to reconstruct cellular functions and metabolic pathways of growing B. licheniformis cells. The largest group was proteins with functions in basic metabolic pathways such as carbon metabolism, amino acid and nucleotide synthesis and synthesis of fatty acids and cofactors. Many proteins detected were involved in DNA replication, transcription, and translation. Furthermore, a high number of proteins employed in the transport of a wide variety of compounds were found to be expressed in the cells. All MS data have been deposited in the ProteomeXchange with identifier PXD000791 (http://proteomecentral.proteomexchange.org/dataset/PXD000791).

  12. Deciphering diatom biochemical pathways via whole-cell proteomics

    PubMed Central

    Nunn, Brook L.; Aker, Jocelyn R.; Shaffer, Scott A.; Tsai, Shannon; Strzepek, Robert F.; Boyd, Philip W.; Freeman, Theodore Larson; Brittnacher, Mitchell; Malmström, Lars; Goodlett, David R.

    2009-01-01

    Diatoms play a critical role in the oceans’ carbon and silicon cycles; however, a mechanistic understanding of the biochemical processes that contribute to their ecological success remains elusive. Completion of the Thalassiosira pseudonana genome provided ‘blueprints’ for the potential biochemical machinery of diatoms, but offers only a limited insight into their biology under various environmental conditions. Using high-throughput shotgun proteomics, we identified a total of 1928 proteins expressed by T. pseudonana cultured under optimal growth conditions, enabling us to analyze this diatom’s primary metabolic and biosynthetic pathways. Of the proteins identified, 70% are involved in cellular metabolism, while 11% are involved in the transport of molecules. We identified all of the enzymes involved in the urea cycle, thereby describing the complete pathway to convert ammonia to urea, along with urea transporters, and the urea-degrading enzyme urease. Although metabolic exchange between these pathways remains ambiguous, their constitutive presence suggests complex intracellular nitrogen recycling. In addition, all C4 related enzymes for carbon fixation have been identified to be in abundance, with high protein sequence coverage. Quantification of mass spectra acquisitions demonstrated that the 20 most abundant proteins included an unexpectedly high expression of clathrin, which is the primary structural protein involved in endocytic transport. This result highlights a previously overlooked mechanism for the inter- and intra-cellular transport of nutrients and macromolecules in diatoms, potentially providing a missing link to organelle communication and metabolite exchange. Our results demonstrate the power of proteomics, and lay the groundwork for future comparative proteomic studies and directed analyses of specifically expressed proteins and biochemical pathways of oceanic diatoms. PMID:19829762

  13. Virus Discovery Using Tick Cell Lines

    PubMed Central

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks’ genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area. PMID:27679414

  14. Proteomic profiling of eggs from a hybrid abalone and its parental lines: Haliotis discus hannai Ino and Haliotis gigantea.

    PubMed

    Di, Guilan; Luo, Xuan; Huang, Miaoqin; Chen, Jun; Kong, Xianghui; Miao, Xiulian; Ke, Caihuan

    2015-12-01

    Proteomic analysis was performed on the eggs of hybrid abalone and their corresponding parental lines. A total of 915 ± 19 stained protein spots were detected from Haliotis discus hannai♀ × H. discus hannai♂ (DD), 935 ± 16 from H. gigantea♀ × H. gigantea♂ (GG) and 923 ± 13 from H. gigantea♀ × H. discus hannai♂ (GD). The spots from DD and GD were clustered together. The distance between DD and GG was maximal by hierarchical cluster analysis. A total of 112 protein gel spots were identified; of these, 59 were abalone proteins. The proteins were involved in major biological processes including energy metabolism, proliferation, apoptosis, signal transduction, immunity, lipid metabolism, electron carrier proteins, protein biosynthesis and decomposition, and cytoskeletal structure. Three of 20 differential expression protein spots involved in energy metabolism exhibited as upregulated in GD, 13 spots exhibited additivity, and four spots exhibited as downregulated in the offspring. Eleven protein spots were expressed at the highest level in DD. The proteins involved in stress responses included superoxide dismutase, peroxiredoxin 6, thioredoxin peroxidase and glutathione-S-transferase. Two of seven differential expression protein spots involved in response to stress exhibited as upregulated in GD, three exhibited additivity, and two exhibited as downregulated. These results might suggest that proteomic approaches are suitable for the analysis of hybrids and the functional prediction of abalone hybridization.

  15. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types. PMID:27327609

  16. Critical Points in Tumorigenesis: A Carcinogen-Initiated Phase Transition Analyzed via Single-Cell Proteomics.

    PubMed

    Poovathingal, Suresh Kumar; Kravchenko-Balasha, Nataly; Shin, Young Shik; Levine, Raphael David; Heath, James R

    2016-03-01

    A kinetic, single-cell proteomic study of chemically induced carcinogenesis is interpreted by treating the single-cell data as fluctuations of an open system transitioning between different steady states. In analogy to a first-order transition, phase coexistence and the loss of degrees of freedom are observed. The transition is detected well before the appearance of the traditional biomarker of the carcinogenic transformation.

  17. Refractory lining for electrochemical cell

    DOEpatents

    Blander, Milton; Cook, Glenn M.

    1987-01-01

    Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contcat with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  18. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells.

    PubMed

    Hildebrandt, Petra; Surmann, Kristin; Salazar, Manuela Gesell; Normann, Nicole; Völker, Uwe; Schmidt, Frank

    2016-10-01

    Staphylococcus aureus is a Gram-positive opportunistic pathogen that is able to cause a broad range of infectious diseases in humans. Furthermore, S. aureus is able to survive inside nonprofessional phagocytic host cell which serve as a niche for the pathogen to hide from the immune system and antibiotics therapies. Modern OMICs technologies provide valuable tools to investigate host-pathogen interactions upon internalization. However, these experiments are often hampered by limited capabilities to retrieve bacteria from such an experimental setting. Thus, the aim of this study was to develop a labeling strategy allowing fast detection and quantitation of S. aureus in cell lysates or infected cell lines by flow cytometry for subsequent proteome analyses. Therefore, S. aureus cells were labeled with the DNA stain SYTO(®) 9, or Vancomycin BODIPY(®) FL (VMB), a glycopeptide antibiotic binding to most Gram-positive bacteria which was conjugated to a fluorescent dye. Staining of S. aureus HG001 with SYTO 9 allowed counting of bacteria from pure cultures but not in cell lysates from infection experiments. In contrast, with VMB it was feasible to stain bacteria from pure cultures as well as from samples of infection experiments. VMB can also be applied for histocytochemistry analysis of formaldehyde fixed cell layers grown on coverslips. Proteome analyses of S. aureus labeled with VMB revealed that the labeling procedure provoked only minor changes on proteome level and allowed cell sorting and analysis of S. aureus from infection settings with sensitivity similar to continuous gfp expression. Furthermore, VMB labeling allowed precise counting of internalized bacteria and can be employed for downstream analyses, e.g., proteomics, of strains not easily amendable to genetic manipulation such as clinical isolates. © 2016 International Society for Advancement of Cytometry.

  19. Label-free quantitative proteomic analysis of benzo(a)pyrene-transformed 16HBE cells serum-free culture supernatant and xenografted nude mice sera.

    PubMed

    Zhao, Peng; Fu, Juanling; Yao, Biyun; Jia, Yongrui; Zhang, Hongtao; Li, Xuehui; Dong, Lisha; Gao, Ya; Liu, Wenli; Chen, Wen; Zhou, Zongcan

    2016-02-05

    To screen potential biomarkers of benzo(a)pyrene (BaP)-induced lung cancer, the proteomic profiles of BaP-transformed 16HBE cell line T-16HBE-C1 cells serum-free culture supernatant and xenografted nude mice sera were compared with those of 16HBE group by utilizing label-free quantitative proteomic strategy. By employing nano-LC-MS/MS technology followed by MaxQuant and Perseus processing, 489 differentially expressed proteins were identified between T-16HBE-C1 and 16HBE cells serum-free culture supernatant, and 49 significantly up-regulated proteins were identified in T-16HBE-C1 xenografted nude mice sera. Three proteins neuropilin-2 (NRP2), clusterin (CLU) and A-kinase anchor protein 12 (AKAP12) were up-regulated in the serum-free culture supernatant of T-16HBE-C1 cells. These 3 human proteins were present in the sera of nude mice xenografted with T-16HBE-C1 cells, but were undetectable in mice xenografted with 16HBE cells. The proteomic results of NRP2 and AKAP12 were confirmed by Western blotting and enzyme-linked immunosorbent assays, respectively. Moreover, the serum NRP2 levels were significantly elevated at the 4th day after tumor cell implantation and showed good positive correlation with tumor growth characterized by tumor volume. In conclusion, serum NRP2, CLU and AKAP12 could be potential biomarkers of BaP-induced lung cancer. The proteomic results will gain deeper insights into the mechanisms of BaP-induced carcinogenesis.

  20. N-linked glycan profiling in neuroblastoma cell lines.

    PubMed

    Hu, Yunli; Mayampurath, Anoop; Khan, Saira; Cohen, Joanna K; Mechref, Yehia; Volchenboum, Samuel L

    2015-05-01

    Although MYCN amplification has been associated with aggressive neuroblastoma, the molecular mechanisms that differentiate low-risk, MYCN-nonamplified neuroblastoma from high-risk, MYCN-amplified disease are largely unknown. Genomic and proteomic studies have been limited in discerning differences in signaling pathways that account for this heterogeneity. N-Linked glycosylation is a common protein modification resulting from the attachment of sugars to protein residues and is important in cell signaling and immune response. Aberrant N-linked glycosylation has been routinely linked to various cancers. In particular, glycomic markers have often proven to be useful in distinguishing cancers from precancerous conditions. Here, we perform a systematic comparison of N-linked glycomic variation between MYCN-nonamplified SY5Y and MYCN-amplified NLF cell lines with the aim of identifying changes in sugar abundance linked to high-risk neuroblastoma. Through a combination of liquid chromatography-mass spectrometry and bioinformatics analysis, we identified 16 glycans that show a statistically significant change in abundance between NLF and SY5Y samples. Closer examination revealed the preference for larger (in terms of total monosaccharide count) and more sialylated glycan structures in the MYCN-amplified samples in comparison to smaller, nonsialylated glycans that are more dominant in the MYCN-nonamplified samples. These results offer clues for deriving marker candidates for accurate neuroblastoma risk diagnosis.

  1. SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells.

    PubMed

    Böser, Alexander; Drexler, Hannes C A; Reuter, Hanna; Schmitz, Henning; Wu, Guangming; Schöler, Hans R; Gentile, Luca; Bartscherer, Kerstin

    2013-11-27

    Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC) protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA), which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research.

  2. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets

    PubMed Central

    Litou, Zoi I.; Konstandi, Ourania A.; Giannopoulou, Aikaterini F.; Anastasiadou, Ema; Voutsinas, Gerassimos E.; Tsangaris, George Th.; Stravopodis, Dimitrios J.

    2017-01-01

    Cutaneous melanoma is a malignant tumor of skin melanocytes that are pigment-producing cells located in the basal layer (stratum basale) of epidermis. Accumulation of genetic mutations within their oncogenes or tumor-suppressor genes compels melanocytes to aberrant proliferation and spread to distant organs of the body, thereby resulting in severe and/or lethal malignancy. Metastatic melanoma’s heavy mutational load, molecular heterogeneity and resistance to therapy necessitate the development of novel biomarkers and drug-based protocols that target key proteins involved in perpetuation of the disease. To this direction, we have herein employed a nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics technology to profile the deep-proteome landscape of WM-266-4 human metastatic melanoma cells. Our advanced melanoma-specific catalogue proved to contain 6,681 unique proteins, which likely constitute the hitherto largest single cell-line-derived proteomic collection of the disease. Through engagement of UNIPROT, DAVID, KEGG, PANTHER, INTACT, CYTOSCAPE, dbEMT and GAD bioinformatics resources, WM-266-4 melanoma proteins were categorized according to their sub-cellular compartmentalization, function and tumorigenicity, and successfully reassembled in molecular networks and interactomes. The obtained data dictate the presence of plastically inter-converted sub-populations of non-cancer and cancer stem cells, and also indicate the oncoproteomic resemblance of melanoma to glioma and lung cancer. Intriguingly, WM-266-4 cells seem to be subjected to both epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) programs, with 1433G and ADT3 proteins being identified in the EMT/MET molecular interface. Oncogenic addiction of WM-266-4 cells to autocrine/paracrine signaling of IL17-, DLL3-, FGF(2/13)- and OSTP-dependent sub-routines suggests their critical contribution to the metastatic melanoma chemotherapeutic refractoriness. Interestingly, the

  3. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    SciTech Connect

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  4. Proteomic analysis reveals tanshinone IIA enhances apoptosis of advanced cervix carcinoma CaSki cells through mitochondria intrinsic and endoplasmic reticulum stress pathways.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Hung, Yu-Chiang; Huang, Chun-Hsun; Rau, Kun-Ming

    2013-12-01

    Cervix cancer is the second most common cancer among women worldwide, whereas paclitaxel, the first line chemotherapeutic drug used to treat cervical cancer, shows low chemosensitivity on the advanced cervical cancer cell line. Tanshinone IIA (Tan IIA) exhibited strong growth inhibitory effect on CaSki cells (IC50 = 5.51 μM) through promoting caspase cascades with concomitant upregulating the phosphorylation of p38 and JNK signaling. Comprehensive proteomics revealed the global protein changes and the network analysis implied that Tan IIA treatment would activate ER stress pathways that finally lead to apoptotic cell death. Moreover, ER stress inhibitor could alleviate Tan IIA caused cell growth inhibition and ameliorate C/EBP-homologous protein as well as apoptosis signal-regulating kinase 1 mediated cell death. The therapeutic interventions targeting the mitochondrial-related apoptosis and ER stress responses might be promising strategies to conquer paclitaxel resistance.

  5. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells*

    PubMed Central

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host–pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick–Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These

  6. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  7. Proteomics-based identification of plasma biomarkers in oral squamous cell carcinoma.

    PubMed

    Tung, Chun-Liang; Lin, Szu-Ting; Chou, Hsiu-Chuan; Chen, Yi-Wen; Lin, Hwan-Chung; Tung, Chung-Liang; Huang, Kao-Jean; Chen, Yi-Ju; Lee, Ying-Ray; Chan, Hong-Lin

    2013-03-05

    Oral squamous cell carcinoma (OSCC) is an aggressive cancer and its occurrence is closely related to betel nut chewing in Taiwan. However, there are few prognostic and diagnostic biomarkers for this disease especially for its association with betel nut chewing. Recent progresses in quantitative proteomics have offered opportunities to discover plasma proteins as biomarkers for tracking the progression and for understanding the molecular mechanisms of OSCC. In present study, plasma samples from OSCC patients with at least 5-year history of betel nut chewing and healthy donors were analyzed by fluorescence 2D-DIGE-based proteomic analysis. Totally, 38 proteins have been firmly identified representing 13 unique gene products. These proteins mainly function in inflammatory responses (such as fibrinogen gamma chain) and transport (Apolipoprotein A-I). Additionally, the current quantitative proteomic approach has identified numerous OSCC biomarkers including fibrinogen (alpha/beta/gamma) chain, haptoglobin, leucine-rich alpha-2-glycoprotein and ribosomal protein S6 kinase alpha-3 (RSK2) which have not been reported and may be associated with the progression and development of the disease. In summary, this study reports a comprehensive patient-based proteomic approach for the identification of potential plasma biomarkers in OSCC. The potential of utilizing these markers for screening and treating OSCC warrants further investigations.

  8. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells.

    PubMed

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko

    2015-12-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR.

  9. Effects of teicoplanin on cell number of cultured cell lines

    PubMed Central

    Kashkolinejad-Koohi, Tahere; Saadat, Iraj

    2015-01-01

    Teicoplanin is a glycopeptide antibiotic with a wide variation in human serum half-life. It is also a valuable alternative of vancomycin. There is however no study on its effect on cultured cells. The aim of the present study was to test the effect of teicoplanin on cultured cell lines CHO, Jurkat E6.1 and MCF-7. The cultured cells were exposed to teicoplanin at final concentrations of 0–11000 μg/ml for 24 hours. To determine cell viability, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was performed. At low concentrations of teicoplanin the numbers of cultured cells (due to cell proliferation) were increased in the three cell lines examined. The maximum cell proliferation rates were observed at concentrations of 1000, 400, and 200 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. Cell toxicity was observed at final concentrations over 2000, 6000, and 400 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. A dose-dependent manner of cell toxicity was observed. Our present findings indicated that teicoplanin at clinically used concentrations induced cell proliferation. It should therefore be used cautiously, particularly in children, pregnant women and patients with cancer. PMID:27486356

  10. Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells.

    PubMed

    Choi, Dong-Sic; Choi, Do-Young; Hong, Bok Sil; Jang, Su Chul; Kim, Dae-Kyum; Lee, Jaewook; Kim, Yoon-Keun; Kim, Kwang Pyo; Gho, Yong Song

    2012-01-01

    Cancer cells actively release extracellular vesicles (EVs), including exosomes and microvesicles, into surrounding tissues. These EVs play pleiotropic roles in cancer progression and metastasis, including invasion, angiogenesis, and immune modulation. However, the proteomic differences between primary and metastatic cancer cell-derived EVs remain unclear. Here, we conducted comparative proteomic analysis between EVs derived from human primary colorectal cancer cells (SW480) and their metastatic derivatives (SW620). Using label-free quantitation, we identified 803 and 787 proteins in SW480 EVs and SW620 EVs, respectively. Based on comparison between the estimated abundance of EV proteins, we identified 368 SW480 EV-enriched and 359 SW620 EV-enriched proteins. SW480 EV-enriched proteins played a role in cell adhesion, but SW620 EV-enriched proteins were associated with cancer progression and functioned as diagnostic indicators of metastatic cancer; they were overexpressed in metastatic colorectal cancer and played roles in multidrug resistance. As the first proteomic analysis comparing primary and metastatic cancer-derived EVs, this study increases our understanding of the pathological function of EVs in the metastatic process and provides useful biomarkers for cancer metastasis.

  11. Radiation sensitivity of Merkel cell carcinoma cell lines

    SciTech Connect

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W.

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  12. Proteome Changes during Transition from Human Embryonic to Vascular Progenitor Cells.

    PubMed

    Tsolis, Konstantinos C; Bagli, Eleni; Kanaki, Katerina; Zografou, Sofia; Carpentier, Sebastien; Bei, Ekaterini S; Christoforidis, Savvas; Zervakis, Michalis; Murphy, Carol; Fotsis, Theodore; Economou, Anastassios

    2016-06-03

    Human embryonic stem cells (hESCs) are promising in regenerative medicine (RM) due to their differentiation plasticity and proliferation potential. However, a major challenge in RM is the generation of a vascular system to support nutrient flow to newly synthesized tissues. Here we refined an existing method to generate tight vessels by differentiating hESCs in CD34(+) vascular progenitor cells using chemically defined media and growth conditions. We selectively purified these cells from CD34(-) outgrowth populations also formed. To analyze these differentiation processes, we compared the proteomes of the hESCs with those of the CD34(+) and CD34(-) populations using high resolution mass spectrometry, label-free quantification, and multivariate analysis. Eighteen protein markers validate the differentiated phenotypes in immunological assays; nine of these were also detected by proteomics and show statistically significant differential abundance. Another 225 proteins show differential abundance between the three cell types. Sixty-three of these have known functions in CD34(+) and CD34(-) cells. CD34(+) cells synthesize proteins implicated in endothelial cell differentiation and smooth muscle formation, which support the bipotent phenotype of these progenitor cells. CD34(-) cells are more heterogeneous synthesizing muscular/osteogenic/chondrogenic/adipogenic lineage markers. The remaining >150 differentially abundant proteins in CD34(+) or CD34(-) cells raise testable hypotheses for future studies to probe vascular morphogenesis.

  13. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields

    PubMed Central

    Laffeber, Charlie; Eppink, Berina; Bezstarosti, Karel; Dekkers, Dick; Woelders, Henri; Zwamborn, A. Peter M.; Demmers, Jeroen; Lebbink, Joyce H. G.; Kanaar, Roland

    2017-01-01

    The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture. PMID:28234898

  14. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields.

    PubMed

    Kuzniar, Arnold; Laffeber, Charlie; Eppink, Berina; Bezstarosti, Karel; Dekkers, Dick; Woelders, Henri; Zwamborn, A Peter M; Demmers, Jeroen; Lebbink, Joyce H G; Kanaar, Roland

    2017-01-01

    The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture.

  15. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    SciTech Connect

    Felthaus, O.; Ettl, T.; Gosau, M.; Driemel, O.; Brockhoff, G.; Reck, A.; Zeitler, K.; Hautmann, M.; Reichert, T.E.; Schmalz, G.; Morsczeck, C.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  16. Proteomic analysis of the cell envelope fraction of Escherichia coli.

    PubMed

    Fountoulakis, M; Gasser, R

    2003-01-01

    We applied proteomics technologies to analyze a membrane preparation of Escherichia coli, wild type strain and of transformants expressing human cytochrome P450s. The proteins were analyzed by two-dimensional electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry. The membrane proteins were solubilized with both mild detergents such as CHAPS and strong detergents, such as sodium and lithium dodecyl sulfate, sodium cholate and sodium deoxycholate. In the E. colimembrane fraction, 394 different gene products were identified. Approximately 28% of them were predicted to be integral membrane proteins, of which 100 proteins have been predicted to carry one transmembrane region, ten proteins to carry two, and two proteins to include three transmembrane domains. The remaining are probably membrane-associated and cytosolic proteins. Cytochrome P450s did not enter the immobilized pH gradient strips but were efficiently analyzed in a two-dimensional, two-detergent system. Use of strong solubilizing agents resulted in the detection of about 20 membrane proteins, which were not detected following extraction with mild detergents and chaotropes. The present database is one of the largest for membrane proteins.

  17. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization

    SciTech Connect

    Wang Ying; He Qingyu; Chen Hongming; Chiu Jenfu . E-mail: jfchiu@hkucc.hku.hk

    2007-01-15

    The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor {beta} (TGF{beta}) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGF{beta} treatment, or co-treatment with TGF{beta} inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGF{beta} signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGF{beta} signaling pathway in breast cancer cells.

  18. Proteomic Studies of Nitrated Alpha-Synuclein Microglia Regulation by CD4+CD25+ T Cells

    PubMed Central

    Reynolds, Ashley D.; Stone, David K.; Mosley, R. Lee; Gendelman, Howard E.

    2009-01-01

    Microglial inflammatory responses affect Parkinson's disease (PD) associated nigrostriatal degeneration. This is triggered, in measure, by misfolded, nitrated alpha-synuclein (N-α-syn) contained within Lewy bodies that are released from dying or dead dopaminergic neurons into the extravascular space. N-α-syn-stimulated microglial immunity is regulated by CD4+ T cells. Indeed, CD4+CD25+regulatory T cells (Treg) induce neuroprotective immune responses. This is seen in rodent models of stroke, amyotrophic lateral sclerosis, human immunodeficiency virus associated dementia, and PD. To elucidate the mechanism for Treg-mediated microglial responses, we used a proteomic platform integrating difference gel electrophoresis and tandem mass spectrometry peptide sequencing. These tests served to determine the consequences of Treg on the N-α-syn stimulated microglia. The data demonstrated that Treg substantially alter the microglial proteome in response to N-α-syn. This is seen through Treg's abilities to suppress microglial neurotoxic proteins linked to cell metabolism, migration, protein transport and degradation, redox biology, cytoskeletal, and bioenergetic activities. We conclude that Treg modulate the N-α-syn microglial proteome and, in this way, can slow the tempo and course of PD. PMID:19432400

  19. Proteomic analysis of male 4C germ cell proteins involved in mouse meiosis.

    PubMed

    Guo, Xuejiang; Zhang, Ping; Qi, Yujuan; Chen, Wen; Chen, Xiangxiang; Zhou, Zuomin; Sha, Jiahao

    2011-01-01

    Male meiosis is a specialized type of cell division that gives rise to sperm. Errors in this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Until now, there has been a lack of a large-scale identification of proteins involved in male meiosis in mammals. In this study, we report the high-confidence identification of 3625 proteins in mouse male germ cells with 4C DNA content undergoing meiosis I. Of these, 397 were found to be testis specific. Bioinformatics analysis of the proteome led to the identification of 28 proteins known to be essential for male meiosis in mice. We also found 172 proteins that had yeast orthologs known to be essential for meiosis. Chromosome distribution analysis of the proteome showed underrepresentation of the identified proteins on the X chromosome, which may be due to meiotic sex chromosome inactivation. Characterization of the proteome of 4C germ cells from mouse testis provides an inventory of proteins, which is useful for understanding meiosis and the mechanisms of male infertility.

  20. Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis.

    PubMed

    de Arruda Grossklaus, Daciene; Bailão, Alexandre Melo; Vieira Rezende, Tereza Cristina; Borges, Clayton Luiz; de Oliveira, Milton Adriano Pelli; Parente, Juliana Alves; de Almeida Soares, Célia Maria

    2013-05-01

    An efficient oxidative stress response is important to the fungal pathogen Paracoccidioides to survive within the human host. In this study, oxidative stress was mimicked by exposure of yeast cells to hydrogen peroxide (2 mM H2O2). To investigate the effect of H2O2 on the proteome of Paracoccidioides, we used a large scale 2-DE protein gel electrophoresis approach to analyze differentially expressed proteins/isoforms that were detected in early (2 h) and in late (6 h) oxidative stress treatments. All proteins/isoforms were grouped based on their functional categories that revealed a global activation of antioxidant enzymes, such as catalase, superoxide dismutase, cytochrome C peroxidase and thioredoxin. A view of the metabolic cell profile, as determined by proteomics, depicted a shift in the yeast cells metabolism as suggested by the activation of the pentose phosphate pathway, a great source of cellular reducing power in the form of NADPH. Additionally, in silico analyzes depicted 34 oxidoreductases proteins/isoforms putatively involved with defense against oxidative stress. Confirmatory assays of enzymatic activity, flow cytometry, transcript levels and NADPH measurements, produced data in agreement with proteomic analysis.

  1. Proteome of Human Stem Cells from Periodontal Ligament and Dental Pulp

    PubMed Central

    Sulpizio, Marilisa; Di Giuseppe, Fabrizio; Pierdomenico, Laura; Marchisio, Marco; Giancola, Raffaella; Giammaria, Gianluigi; Miscia, Sebastiano; Caputi, Sergio; Di Ilio, Carmine; Angelucci, Stefania

    2013-01-01

    Background Many adult tissues contain a population of stem cells with the ability to regenerate structures similar to the microenvironments from which they are derived in vivo and represent a promising therapy for the regeneration of complex tissues in the clinical disorder. Human adult stem cells (SCs) including bone marrow stem cells (BMSCs), dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) have been characterized for their high proliferative potential, expression of characteristic SC-associated markers and for the plasticity to differentiate in different lineage in vitro. Methodology/Principal Findings The aim of this study is to define the molecular features of stem cells from oral tissue by comparing the proteomic profiles obtained with 2-DE followed by MALDI-TOF/TOF of ex-vivo cultured human PDLSCs, DPSCs and BMSCs. Our results showed qualitative similarities in the proteome profiles among the SCs examined including some significant quantitative differences. To enrich the knowledge of oral SCs proteome we performed an analysis in narrow range pH 4–7 and 6–9, and we found that DPSCs vs PDLSCs express differentially regulated proteins that are potentially related to growth, regulation and genesis of neuronal cells, suggesting that SCs derived from oral tissue source populations may possess the potential ability of neuronal differentiation which is very consistent with their neural crest origin. Conclusion/Significance This study identifies some differentially expressed proteins by using comparative analysis between DPSCs and PDLSCs and BMSCs and suggests that stem cells from oral tissue could have a different cell lineage potency compared to BMSCs. PMID:23940696

  2. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    PubMed Central

    Haraszti, Reka A.; Didiot, Marie-Cecile; Sapp, Ellen; Leszyk, John; Shaffer, Scott A.; Rockwell, Hannah E.; Gao, Fei; Narain, Niven R.; DiFiglia, Marian; Kiebish, Michael A.; Aronin, Neil; Khvorova, Anastasia

    2016-01-01

    Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types. PMID:27863537

  3. Deep proteomic profiling of vasopressin-sensitive collecting duct cells. I. Virtual Western blots and molecular weight distributions.

    PubMed

    Yang, Chin-Rang; Tongyoo, Pumipat; Emamian, Milad; Sandoval, Pablo C; Raghuram, Viswanathan; Knepper, Mark A

    2015-12-15

    The mouse mpkCCD cell line is a continuous cultured epithelial cell line with characteristics of renal collecting duct principal cells. This line is widely used to study epithelial transport and its regulation. To provide a data resource useful for experimental design and interpretation in studies using mpkCCD cells, we have carried out "deep" proteomic profiling of these cells using three levels of fractionation (differential centrifugation, SDS-PAGE, and HPLC) followed by tandem mass spectrometry to identify and quantify proteins. The analysis of all resulting samples generated 34.6 gigabytes of spectral data. As a result, we identified 6,766 proteins in mpkCCD cells at a high level of stringency. These proteins are expressed over eight orders of magnitude of protein abundance. The data are provided to users as a public data base (https://helixweb.nih.gov/ESBL/Database/mpkFractions/). The mass spectrometry data were mapped back to their gel slices to generate "virtual Western blots" for each protein. For most of the 6,766 proteins, the apparent molecular weight from SDS-PAGE agreed closely with the calculated molecular weight. However, a substantial fraction (>15%) of proteins was found to run aberrantly, with much higher or much lower mobilities than predicted. These proteins were analyzed to identify mechanisms responsible for altered mobility on SDS-PAGE, including high or low isoelectric point, high or low hydrophobicity, physiological cleavage, residence in the lysosome, posttranslational modifications, and expression of alternative isoforms due to alternative exon usage. Additionally, this analysis identified a previously unrecognized isoform of aquaporin-2 with apparent molecular mass <20 kDa.

  4. Proteomic and protein interaction network analysis of human T lymphocytes during cell-cycle entry

    PubMed Central

    Orr, Stephen J; Boutz, Daniel R; Wang, Rong; Chronis, Constantinos; Lea, Nicholas C; Thayaparan, Thivyan; Hamilton, Emma; Milewicz, Hanna; Blanc, Eric; Mufti, Ghulam J; Marcotte, Edward M; Thomas, N Shaun B

    2012-01-01

    Regulating the transition of cells such as T lymphocytes from quiescence (G0) into an activated, proliferating state involves initiation of cellular programs resulting in entry into the cell cycle (proliferation), the growth cycle (blastogenesis, cell size) and effector (functional) activation. We show the first proteomic analysis of protein interaction networks activated during entry into the first cell cycle from G0. We also provide proof of principle that blastogenesis and proliferation programs are separable in primary human T cells. We employed a proteomic profiling method to identify large-scale changes in chromatin/nuclear matrix-bound and unbound proteins in human T lymphocytes during the transition from G0 into the first cell cycle and mapped them to form functionally annotated, dynamic protein interaction networks. Inhibiting the induction of two proteins involved in two of the most significantly upregulated cellular processes, ribosome biogenesis (eIF6) and hnRNA splicing (SF3B2/SF3B4), showed, respectively, that human T cells can enter the cell cycle without growing in size, or increase in size without entering the cell cycle. PMID:22415777

  5. Comparative Proteomic Characterization of 4 Human Liver-Derived Single Cell Culture Models Reveals Significant Variation in the Capacity for Drug Disposition, Bioactivation, and Detoxication

    PubMed Central

    Sison-Young, Rowena L. C.; Mitsa, Dimitra; Jenkins, Rosalind E.; Mottram, David; Alexandre, Eliane; Richert, Lysiane; Aerts, Hélène; Weaver, Richard J.; Jones, Robert P.; Johann, Esther; Hewitt, Philip G.; Ingelman-Sundberg, Magnus; Goldring, Christopher E. P.; Kitteringham, Neil R.; Park, B. Kevin

    2015-01-01

    In vitro preclinical models for the assessment of drug-induced liver injury (DILI) are usually based on cryopreserved primary human hepatocytes (cPHH) or human hepatic tumor-derived cell lines; however, it is unclear how well such cell models reflect the normal function of liver cells. The physiological, pharmacological, and toxicological phenotyping of available cell-based systems is necessary in order to decide the testing purpose for which they are fit. We have therefore undertaken a global proteomic analysis of 3 human-derived hepatic cell lines (HepG2, Upcyte, and HepaRG) in comparison with cPHH with a focus on drug metabolizing enzymes and transport proteins (DMETs), as well as Nrf2-regulated proteins. In total, 4946 proteins were identified, of which 2722 proteins were common across all cell models, including 128 DMETs. Approximately 90% reduction in expression of cytochromes P450 was observed in HepG2 and Upcyte cells, and approximately 60% in HepaRG cells relative to cPHH. Drug transporter expression was also lower compared with cPHH with the exception of MRP3 and P-gp (MDR1) which appeared to be significantly expressed in HepaRG cells. In contrast, a high proportion of Nrf2-regulated proteins were more highly expressed in the cell lines compared with cPHH. The proteomic database derived here will provide a rational basis for the context-specific selection of the most appropriate ‘hepatocyte-like’ cell for the evaluation of particular cellular functions associated with DILI and, at the same time, assist in the construction of a testing paradigm which takes into account the in vivo disposition of a new drug. PMID:26160117

  6. The minotaur proteome: avoiding cross-species identifications deriving from bovine serum in cell culture models.

    PubMed

    Bunkenborg, Jakob; García, Guadalupe Espadas; Paz, Marcia Ivonne Peña; Andersen, Jens S; Molina, Henrik

    2010-08-01

    Cell culture is a fundamental tool in proteomics where mammalian cells are cultured in vitro using a growth medium often supplemented with 5-15% FBS. Contamination by bovine proteins is difficult to avoid because of adherence to the plastic vessel and the cultured cells. We have generated peptides from bovine serum using four sample preparation methods and analyzed the peptides by high mass accuracy LC-MS/MS. Distinguishing between bovine and human peptides is difficult because of a considerable overlap of identical tryptic peptide sequences. Pitfalls in interpretation, different database search strategies to minimize erroneous identifications and an augmented contaminant database are presented.

  7. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    SciTech Connect

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi; Park, Bong-Wook; Byun, June-Ho; Ahn, Chun-Seob; Kim, Jae-Won; Rho, Gyu-Jin

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.

  8. Investigating citrullinated proteins in tumour cell lines

    PubMed Central

    2013-01-01

    Background The conversion of arginine into citrulline, termed citrullination, has important consequences for the structure and function of proteins. Studies have found PADI4, an enzyme performing citrullination, to be highly expressed in a variety of malignant tumours and have shown that PADI4 participates in the process of tumorigenesis. However, as citrullinated proteins have not been systematically investigated in tumours, the present study aimed to identify novel citrullinated proteins in tumours by 2-D western blotting (2-D WB). Methods Two identical two-dimensional electrophoresis (2-DE) gels were prepared using extracts from ECA, H292, HeLa, HEPG2, Lovo, MCF-7, PANC-1, SGC, and SKOV3 tumour cell lines. The expression profiles on a 2-DE gel were trans-blotted to PVDF membranes, and the blots were then probed with an anti-citrulline antibody. By comparing the 2-DE profile with the parallel 2-D WB profile at a global level, protein spots with immuno-signals were collected from the second 2-DE gel and identified using mass spectrometry. Immunoprecipitation was used to verify the expression and citrullination of the targeted proteins in tumour cell lines. Results 2-D WB and mass spectrometry identified citrullinated α-enolase (ENO1), heat shock protein 60 (HSP60), keratin 8 (KRT8), tubulin beta (TUBB), T cell receptor chain and vimentin in these cell lines. Immunoprecipitation analyses verified the expression and citrullination of ENO1, HSP60, KRT8, and TUBB in the total protein lysates of the tumour cell lines. Conclusions The citrullination of these proteins suggests a new mechanism in the tumorigenic process. PMID:24099319

  9. Global Cell Proteome Profiling, Phospho-signaling and Quantitative 
Proteomics for Identification of New Biomarkers in Acute Myeloid 
Leukemia Patients

    PubMed Central

    Aasebø, Elise; Forthun, Rakel B.; Berven, Frode; Selheim, Frode; Hernandez-Valladares, Maria

    2016-01-01

    The identification of protein biomarkers for acute myeloid leukemia (AML) that could find applications in AML diagnosis and prognosis, treatment and the selection for bone marrow transplant requires substantial comparative analyses of the proteomes from AML patients. In the past years, several studies have suggested some biomarkers for AML diagnosis or AML classification using methods for sample preparation with low proteome coverage and low resolution mass spectrometers. However, most of the studies did not follow up, confirm or validate their candidates with more patient samples. Current proteomics methods, new high resolution and fast mass spectrometers allow the identification and quantification of several thousands of proteins obtained from few tens of μg of AML cell lysate. Enrichment methods for posttranslational modifications (PTM), such as phosphorylation, can isolate several thousands of site-specific phosphorylated peptides from AML patient samples, which subsequently can be quantified with high confidence in new mass spectrometers. While recent reports aiming to propose proteomic or phosphoproteomic biomarkers on the studied AML patient samples have taken advantage of the technological progress, the access to large cohorts of AML patients to sample from and the availability of appropriate control samples still remain challenging.

  10. Profound Re-Organization of Cell Surface Proteome in Equine Retinal Pigment Epithelial Cells in Response to In Vitro Culturing

    PubMed Central

    Szober, Christoph M.; Hauck, Stefanie M.; Euler, Kerstin N.; Fröhlich, Kristina J. H.; Alge-Priglinger, Claudia; Ueffing, Marius; Deeg, Cornelia A.

    2012-01-01

    The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses’ vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies. PMID:23203049

  11. Proteomics studies of pancreatic cancer

    PubMed Central

    Chen, Ru; Pan, Sheng; Aebersold, Ruedi; Brentnall, Teresa A.

    2008-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States, with 4% survival 5 years after diagnosis. Biomarkers are desperately needed to improve earlier, more curable cancer diagnosis and to develop new effective therapeutic targets. The development of quantitative proteomics technologies in recent years offers great promise for understanding the complex molecular events of tumorigenesis at the protein level, and has stimulated great interest in applying the technology for pancreatic cancer studies. Proteomic studies of pancreatic tissues, juice, serum/plasma, and cell lines have recently attempted to identify differentially expressed proteins in pancreatic cancer to dissect the abnormal signaling pathways underlying oncogenesis, and to detect new biomarkers. It can be expected that the continuing evolution of proteomics technology with better resolution and sensitivity will greatly enhance our capability in combating pancreatic cancer. PMID:18633454

  12. Proteome analysis in thyroid pathology.

    PubMed

    Pagni, Fabio; L'Imperio, Vincenzo; Bono, Francesca; Garancini, Mattia; Roversi, Gaia; De Sio, Gabriele; Galli, Manuel; Smith, Andrew James; Chinello, Clizia; Magni, Fulvio

    2015-08-01

    The incidence of thyroid cancer has continuously increased due to its detection in the preclinical stage. Clinical research in thyroid pathology is focusing on the development of new diagnostic tools to improve the stratification of nodules that have biological, practical and economic consequences on the management of patients. Several clinical questions related to thyroid carcinoma remain open and the use of proteomic research in the hunt for new targets with potential diagnostic applications has an important role in the solutions. Many different proteomic approaches are used to investigate thyroid lesions, including mass spectrometry profiling and imaging technologies. These approaches have been applied to different human tissues (cytological specimens, frozen sections, formalin-fixed paraffin embedded tissue or Tissue Micro Arrays). Moreover, other specimens are used for biomarker discovery, such as cell lines and the secretome. Alternative approaches, such as metabolomics and lipidomics, are also used and integrated within proteomics.

  13. Comparative proteomic analysis of biofilm and planktonic cells of Lactobacillus plantarum DB200.

    PubMed

    De Angelis, Maria; Siragusa, Sonya; Campanella, Daniela; Di Cagno, Raffaella; Gobbetti, Marco

    2015-07-01

    This study investigated the relative abundance of extracellular and cell wall associated proteins (exoproteome), cytoplasmic proteins (proteome), and related phenotypic traits of Lactobacillus plantarum grown under planktonic and biofilm conditions. Lactobacillus plantarum DB200 was preliminarily selected due to its ability to form biofilms and to adhere to Caco2 cells. As shown by fluorescence microscope analysis, biofilm cells became longer and autoaggregated at higher levels than planktonic cells. The molar ratio between glucose consumed and lactate synthesised was markedly decreased under biofilm compared to planktonic conditions. DIGE analysis showed a differential exoproteome (115 protein spots) and proteome (44) between planktonic and biofilm L. plantarum DB200 cells. Proteins up- or downregulated by at least twofold (p < 0.05) were found to belong mainly to the following functional categories: cell wall and catabolic process, cell cycle and adhesion, transport, glycolysis and carbohydrate metabolism, exopolysaccharide metabolism, amino acid and protein metabolisms, fatty acid and lipid biosynthesis, purine and nucleotide metabolism, stress response, oxidation/reduction process, and energy metabolism. Many of the above proteins showed moonlighting behavior. In accordance with the high expression levels of stress proteins (e.g., DnaK, GroEL, ClpP, GroES, and catalase), biofilm cells demonstrated enhanced survival under conditions of environmental stress.

  14. Unique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells

    PubMed Central

    Ahmed, Nuzhat; Greening, David; Samardzija, Chantel; Escalona, Ruth M.; Chen, Maoshan; Findlay, Jock K.; Kannourakis, George

    2016-01-01

    Eighty % of ovarian cancer patients diagnosed at an advanced-stage have complete remission after initial surgery and chemotherapy. However, most patients die within <5 years due to episodes of recurrences resulting from the growth of residual chemoresistant cells. In an effort to identify mechanisms associated with chemoresistance and recurrence, we compared the expression of proteins in ascites-derived tumor cells isolated from advanced-stage ovarian cancer patients obtained at diagnosis (chemonaive, CN) and after chemotherapy treatments (chemoresistant/at recurrence, CR) by using in-depth, high-resolution label-free quantitative proteomic profiling. A total of 2,999 proteins were identified. Using a stringent selection criterion to define only significantly differentially expressed proteins, we report identification of 353 proteins. There were significant differences in proteins encoding for immune surveillance, DNA repair mechanisms, cytoskeleton rearrangement, cell-cell adhesion, cell cycle pathways, cellular transport, and proteins involved with glycine/proline/arginine synthesis in tumor cells isolated from CR relative to CN patients. Pathway analyses revealed enrichment of metabolic pathways, DNA repair mechanisms and energy metabolism pathways in CR tumor cells. In conclusion, this is the first proteomics study to comprehensively analyze ascites-derived tumor cells from CN and CR ovarian cancer patients. PMID:27470985

  15. Global profiling of co- and post-translationally N-myristoylated proteomes in human cells

    PubMed Central

    Thinon, Emmanuelle; Serwa, Remigiusz A.; Broncel, Malgorzata; Brannigan, James A.; Brassat, Ute; Wright, Megan H.; Heal, William P.; Wilkinson, Anthony J.; Mann, David J.; Tate, Edward W.

    2014-01-01

    Protein N-myristoylation is a ubiquitous co- and post-translational modification that has been implicated in the development and progression of a range of human diseases. Here, we report the global N-myristoylated proteome in human cells determined using quantitative chemical proteomics combined with potent and specific human N-myristoyltransferase (NMT) inhibition. Global quantification of N-myristoylation during normal growth or apoptosis allowed the identification of >100 N-myristoylated proteins, >95% of which are identified for the first time at endogenous levels. Furthermore, quantitative dose response for inhibition of N-myristoylation is determined for >70 substrates simultaneously across the proteome. Small-molecule inhibition through a conserved substrate-binding pocket is also demonstrated by solving the crystal structures of inhibitor-bound NMT1 and NMT2. The presented data substantially expand the known repertoire of co- and post-translational N-myristoylation in addition to validating tools for the pharmacological inhibition of NMT in living cells. PMID:25255805

  16. S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure

    PubMed Central

    Spratt, Heidi M.; Gupta, Shivali; Petersen, John R.; Kuyumcu-Martinez, Muge N.

    2016-01-01

    Nitric oxide (NO) protects the heart against ischemic injury; however, NO- and superoxide-dependent S-nitrosylation (S-NO) of cysteines can affect function of target proteins and play a role in disease outcome. We employed 2D-GE with thiol-labeling FL-maleimide dye and MALDI-TOF MS/MS to capture the quantitative changes in abundance and S-NO proteome of HF patients (versus healthy controls, n = 30/group). We identified 93 differentially abundant (59-increased/34-decreased) and 111 S-NO-modified (63-increased/48-decreased) protein spots, respectively, in HF subjects (versus controls, fold-change | ≥1.5|, p ≤ 0.05). Ingenuity pathway analysis of proteome datasets suggested that the pathways involved in phagocytes' migration, free radical production, and cell death were activated and fatty acid metabolism was decreased in HF subjects. Multivariate adaptive regression splines modeling of datasets identified a panel of proteins that will provide >90% prediction success in classifying HF subjects. Proteomic profiling identified ATP-synthase, thrombospondin-1 (THBS1), and vinculin (VCL) as top differentially abundant and S-NO-modified proteins, and these proteins were verified by Western blotting and ELISA in different set of HF subjects. We conclude that differential abundance and S-NO modification of proteins serve as a mechanism in regulating cell viability and free radical production, and THBS1 and VCL evaluation will potentially be useful in the prediction of heart failure. PMID:27635260

  17. Multiple Breast Cancer Cell-Lines Derived from a Single Tumor Differ in Their Molecular Characteristics and Tumorigenic Potential

    PubMed Central

    Mosoyan, Goar; Nagi, Chandandeep; Marukian, Svetlana; Teixeira, Avelino; Simonian, Anait; Resnick-Silverman, Lois; DiFeo, Analisa; Johnston, Dean; Reynolds, Sandra R.; Roses, Daniel F.; Mosoian, Arevik

    2013-01-01

    Background Breast cancer cell lines are widely used tools to investigate breast cancer biology and to develop new therapies. Breast cancer tissue contains molecularly heterogeneous cell populations. Thus, it is important to understand which cell lines best represent the primary tumor and have similarly diverse phenotype. Here, we describe the development of five breast cancer cell lines from a single patient’s breast cancer tissue. We characterize the molecular profiles, tumorigenicity and metastatic ability in vivo of all five cell lines and compare their responsiveness to 4-hydroxytamoxifen (4-OHT) treatment. Methods Five breast cancer cell lines were derived from a single patient’s primary breast cancer tissue. Expression of different antigens including HER2, estrogen receptor (ER), CK8/18, CD44 and CD24 was determined by flow cytometry, western blotting and immunohistochemistry (IHC). In addition, a Fuorescent In Situ Hybridization (FISH) assay for HER2 gene amplification and p53 genotyping was performed on all cell lines. A xenograft model in nude mice was utilized to assess the tumorigenic and metastatic abilities of the breast cancer cells. Results We have isolated, cloned and established five new breast cancer cell lines with different tumorigenicity and metastatic abilities from a single primary breast cancer. Although all the cell lines expressed low levels of ER, their growth was estrogen-independent and all had high-levels of expression of mutated non-functional p53. The HER2 gene was rearranged in all cell lines. Low doses of 4-OHT induced proliferation of these breast cancer cell lines. Conclusions All five breast cancer cell lines have different antigenic expression profiles, tumorigenicity and organ specific metastatic abilities although they derive from a single tumor. None of the studied markers correlated with tumorigenic potential. These new cell lines could serve as a model for detailed genomic and proteomic analyses to identify mechanisms

  18. Deoxycholic Acid Could Induce Apoptosis and Trigger Gastric Carcinogenesis on Gastric Epithelial Cells by Quantitative Proteomic Analysis

    PubMed Central

    Wei, Ying; Zhang, Jing; Wang, Ye

    2016-01-01

    Background. Pathologic duodenogastric reflux can induce or aggravate gastritis because of the presence of bile acids. Bile reflux has been generally considered to be associated with intestinal metaplasia and gastric cancer. However, the pathogenic mechanisms of the effects of bile acids on gastric mucosa are still unknown. Methods. To explore the mechanisms by which bile acids induce gastric mucosal lesions, we examined cell apoptosis in the gastric epithelial cell line GES-1 and investigated the changes in protein profiles of GES-1 cells in response to a bile acid deoxycholic acid using a proteomics approach. Changes in the profiles of the differently expressed proteins were analyzed using the DAVID and STRING programs. Results. We found apoptosis was significantly induced in GES-1 cells by deoxycholic acid. Using liquid chromatographic/tandem mass spectrometric (LC-MS/MS) methods, 134 upregulated proteins and 214 downregulated proteins were identified in the bile acid treated GES-1 cells. Bioinformatics analysis revealed the interactions and signaling networks of these differentially expressed proteins. Conclusion. These findings may improve the understanding of the molecular mechanisms underlying the pathogenicity of bile acids on gastric mucosa. PMID:28070185

  19. Deoxycholic Acid Could Induce Apoptosis and Trigger Gastric Carcinogenesis on Gastric Epithelial Cells by Quantitative Proteomic Analysis.

    PubMed

    Shi, Yanyan; Wei, Ying; Zhang, Ting; Zhang, Jing; Wang, Ye; Ding, Shigang

    2016-01-01

    Background. Pathologic duodenogastric reflux can induce or aggravate gastritis because of the presence of bile acids. Bile reflux has been generally considered to be associated with intestinal metaplasia and gastric cancer. However, the pathogenic mechanisms of the effects of bile acids on gastric mucosa are still unknown. Methods. To explore the mechanisms by which bile acids induce gastric mucosal lesions, we examined cell apoptosis in the gastric epithelial cell line GES-1 and investigated the changes in protein profiles of GES-1 cells in response to a bile acid deoxycholic acid using a proteomics approach. Changes in the profiles of the differently expressed proteins were analyzed using the DAVID and STRING programs. Results. We found apoptosis was significantly induced in GES-1 cells by deoxycholic acid. Using liquid chromatographic/tandem mass spectrometric (LC-MS/MS) methods, 134 upregulated proteins and 214 downregulated proteins were identified in the bile acid treated GES-1 cells. Bioinformatics analysis revealed the interactions and signaling networks of these differentially expressed proteins. Conclusion. These findings may improve the understanding of the molecular mechanisms underlying the pathogenicity of bile acids on gastric mucosa.

  20. Integration of conventional quantitative and phospho-proteomics reveals new elements in activated Jurkat T-cell receptor pathway maintenance.

    PubMed

    Jouy, Florent; Müller, Stephan A; Wagner, Juliane; Otto, Wolfgang; von Bergen, Martin; Tomm, Janina M

    2015-01-01

    Recent years have seen a constant development of tools for the global assessment of phosphoproteins. Here, we outline a concept for integrating approaches for quantitative proteomics and phosphoproteomics. The strategy was applied to the analysis of changes in signalling and protein synthesis occurring after activation of the T-cell receptor (TCR) pathway in a T-cell line (Jurkat cells). For this purpose, peptides were obtained from four biological replicates of activated and control Jurkat T-cells and phosphopeptides enriched via a TiO2-based chromatographic step. Both phosphopeptide-enriched and flow-through fractions were analyzed by LC-MS. We observed 1314 phosphopeptides in the enriched fraction whereas 19 were detected in the flow-through, enabling the quantification of 414 and eight phosphoproteins in the respective fractions. Pathway analysis revealed the differential regulation of many metabolic pathways. Among the quantified proteins, 11 kinases with known TCR-related function were detected. A kinase-substrate database search for the phosphosites identified also confirmed the activity of a further ten kinases. In total, these two approaches provided evidence of 19 unique TCR-related kinases. The combination of phosphoproteomics and conventional quantitative shotgun analysis leads to a more comprehensive assessment of the signalling networks needed for the maintenance of the activated status of Jurkat T-cells.

  1. Qualitative changes in the proteome of extracellular vesicles accompanying cancer cell transition to mesenchymal state.

    PubMed

    Garnier, Delphine; Magnus, Nathalie; Meehan, Brian; Kislinger, Thomas; Rak, Janusz

    2013-10-15

    Transitions of the cancer cell phenotype between epithelial and mesenchymal states (EMT) are likely to alter the patterns of intercellular communication. In this regard we have previously documented that EMT-like changes trigger quantitative rearrangements in exosomal vesicle emission in A431 cancer cells driven by oncogenic epidermal growth factor receptor (EGFR). Here we report that extracellular vesicles (EVs) produced by these cancer cells in their epithelial and mesenchymal states exhibit profound qualitative differences in their proteome. Thus, induction of the EMT-like state through blockade of E-cadherin and EGFR stimulation provoked a mesenchymal shift in cellular morphology and enrichment in the CD44-high/CD24-low immunophenotype, often linked to cellular stemness. This change also resulted in reprogramming of the EV-related proteome (distinct from that of corresponding cells), which contained 30 unique protein signals, and revealed enrichment in pathways related to cellular growth, cell-to-cell signaling, and cell movement. Some of the most prominent EV-related proteins were validated, including integrin α2 and tetraspanin CD9. We propose that changes in cellular differentiation status translate into unique qualitative rearrangements in the cargo of EVs, a process that may have implications for intercellular communication and could serve as source of new biomarkers to detect EMT-like processes in cancer.

  2. The effect of fluoride on the structure, function, and proteome of a renal epithelial cell monolayer.

    PubMed

    Antonio, Ligia S; Jeggle, Pia; MacVinish, Lesley J; Bartram, James C; Miller, Henry; Jarvis, Gavin E; Levy, Flávia M; Santesso, Mariana R; Leite, Aline L; Oliveira, Rodrigo C; Buzalaf, Marília A R; Edwardson, J Michael

    2017-04-01

    High concentrations of fluoride in the body may cause toxic effects. Here, we investigated the effects of fluoride on the structure, function, and proteome of a cortical collecting duct epithelium in vitro. Kidney tubule cells (M-1) were chosen because the concentration of fluoride in the kidney is 4-5-fold higher than that in plasma. Mouse M-1 cell monolayers were incubated in fluoride-containing media, and the amiloride-sensitive short-circuit current and transepithelial resistance were measured. The Young's modulus of the epithelium was determined using atomic force microscopy, and the effect of fluoride on epithelial structure was assessed using scanning and transmission electron microscopy, and immunofluorescence. Differences in the expression of membrane proteins were evaluated using proteomics and bioinformatics. Fluoride exposure reduced both transepithelial Na(+) transport and resistance. The IC50 for fluoride was ∼300 µM for both effects, and the half-times for the decays of ion transport and resistance were 8.4 h and 3.6 days, respectively. Fluoride treatment did not affect the sensitivity of Na(+) transport to amiloride. The Young's modulus of the epithelium was also unaffected by fluoride; however, the functional effects of fluoride were accompanied by marked structural effects. Proteomic analysis revealed changes in expression of a number of proteins, and particularly mitochondrial proteins. Treatment with fluoride had profound effects on the structure, function and proteome of a model cortical collecting duct epithelium. Significantly, however, these effects were produced only at concentrations considerably higher than those likely to be encountered in vivo. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1455-1467, 2017.

  3. Comprehensive proteomic data sets for studying adipocyte-macrophage cell-cell communication.

    PubMed

    Freiwald, Anja; Weidner, Christopher; Witzke, Annabell; Huang, Sheng-Yu; Meierhofer, David; Sauer, Sascha

    2013-12-01

    Cellular communication is a fundamental process in biology. The interaction of adipocytes with macrophages is a key event in the development of common diseases such as type 2 diabetes. We applied an established bilayer cell co-culture system and comprehensive mass spectrometry analysis to detect proteome-wide the paracrine interaction of murine adipocytes and macrophages. Altogether, we identified 4486 proteins with at least two unique peptides of which 2392 proteins were informative for 3T3-L1 adipocytes and 2957 proteins for RAW 264.7 macrophages. Further, we observed over 12,000 phosphorylation sites of which we could assign 3,200 informative phosphopeptides with a single phosphosite for adipocytes and 4,514 for macrophages. Using protein set enrichment and phosphosite analyses, we deciphered regulatory protein pathways involved in cellular stress and inflammation, which can contribute to metabolic impairment of cells including insulin resistance and other disorders. The generated data sets provide a holistic, molecular pathway-centric view on the interplay of adipocytes and macrophages in disease processes and a resource for further studies.

  4. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells

    PubMed Central

    Wang, Zhen; Schey, Kevin L.

    2015-01-01

    Purpose Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids—key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Methods Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. Results A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. Conclusions These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells. PMID:26747763

  5. Eimeria bovis-induced modulation of the host cell proteome at the meront I stage.

    PubMed

    Lutz, Kathleen; Schmitt, Sigrid; Linder, Monica; Hermosilla, Carlos; Zahner, Horst; Taubert, Anja

    2011-01-01

    The proteome of Eimeria bovis meront I-carrying host cells was analyzed by two-dimensional gel electrophoresis (2DE) at 14 days p.i. and compared to non-infected control cells. A total of 221 protein spots were modulated in their abundance in E. bovis-infected host cells and were subsequently analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectometry (MALDI-TOF-MS). These analyses identified 104 proteins in total with 25 host cell proteins being up-regulated and 79 proteins being down-regulated in E. bovis-infected host cells. Moreover, 20 newly expressed proteins were identified exclusively in E. bovis-infected host cells and were most likely of parasite origin. Parasite-induced differences in protein abundance concerned distinct functional categories, with most proteins being involved in host cell metabolism, cell structure, protein fate and gene transcription. Some of the modulated molecules also indicated regulatory processes on the level of host cell stress response (HSP70, HSP90), host cell apoptosis (caspase 8) and actin elongation/depolymerization (α-actinin-1, gelsonin, tropomodulin-3, transgelin). Since merozoites I were already released shortly after cell sampling, the current data reflect the situation at the end of first merogony. This is the first proteomic approach on E. bovis-infected host cells that was undertaken to gain a rather broad insight into Eimeria-induced host cell modulation. The data processed in this investigation should provide a useful basis for more detailed analyses concerning Eimeria-host cell interactions.

  6. Biochemistry, proteomics, and phosphoproteomics of plant mitochondria from non-photosynthetic cells

    PubMed Central

    Havelund, Jesper F.; Thelen, Jay J.; Møller, Ian M.

    2013-01-01

    Mitochondria fulfill some basic roles in all plant cells. They supply the cell with energy in the form of ATP and reducing equivalents [NAD(P)H] and they provide the cell with intermediates for a range of biosynthetic pathways. In addition to this, mitochondria contribute to a number of specialized functions depending on the tissue and cell type, as well as environmental conditions. We will here review the biochemistry and proteomics of mitochondria from non-green cells and organs, which differ from those of photosynthetic organs in a number of respects. We will briefly cover purification of mitochondria and general biochemical properties such as oxidative phosphorylation. We will then mention a few adaptive properties in response to water stress, seed maturation and germination, and the ability to function under hypoxic conditions. The discussion will mainly focus on Arabidopsis cell cultures, etiolated germinating rice seedlings and potato tubers as model plants. It will cover the general proteome as well as the posttranslational modification protein phosphorylation. To date 64 phosphorylated mitochondrial proteins with a total of 103 phosphorylation sites have been identified. PMID:23494127

  7. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  8. Shotgun Quantitative Proteomic Analysis of Proteins Responding to Drought Stress in Brassica rapa L. (Inbred Line “Chiifu”)

    PubMed Central

    Kwon, Soon-Wook

    2016-01-01

    Through a comparative shotgun quantitative proteomics analysis in Brassica rapa (inbred line Chiifu), total of 3,009 nonredundant proteins were identified with a false discovery rate of 0.01 in 3-week-old plants subjected to dehydration treatment for 0, 24, and 48 h, plants subjected to drought stress. Ribulose-bisphosphate carboxylases, chlorophyll a/b-binding protein, and light harvesting complex in photosystem II were highly abundant proteins in the leaves and accounted for 9%, 2%, and 4%, respectively, of the total identified proteins. Comparative analysis of the treatments enabled detection of 440 differentially expressed proteins during dehydration. The results of clustering analysis, gene ontology (GO) enrichment analysis, and analysis of composite expression profiles of functional categories for the differentially expressed proteins indicated that drought stress reduced the levels of proteins associated with photosynthesis and increased the levels of proteins involved in catabolic processes and stress responses. We observed enhanced expression of many proteins involved in osmotic stress responses and proteins with antioxidant activities. Based on previously reported molecular functions, we propose that the following five differentially expressed proteins could provide target genes for engineering drought resistance in plants: annexin, phospholipase D delta, sDNA-binding transcriptional regulator, auxin-responsive GH3 family protein, and TRAF-like family protein. PMID:27419125

  9. Establishment and characterization of a highly immunogenic human renal carcinoma cell line

    PubMed Central

    Prattichizzo, Clelia; Gigante, Margherita; Pontrelli, Paola; Stella, Alessandro; Rocchetti, Maria Teresa; Gigante, Maddalena; Maiorano, Eugenio; Herr, Wolfgang; Battaglia, Michele; Gesualdo, Loreto; Ranieri, Elena

    2016-01-01

    Renal cell carcinoma (RCC) is the most common kidney cancer, and accounts for ~3% of all adult malignancies. RCC has proven refractory to conventional treatment modalities but appears to be the only histological form that shows any consistent response to immunotherapeutic approaches. The development of a clinically effective vaccine remains a major strategic target for devising active specific immunotherapy in RCC. We aimed to identify a highly immunogenic antigenic format for immunotherapeutic approaches, so as to boost immune responses in RCC patients. We established and cloned an immunogenic cell line, RCC85#21 named Elthem, which was derived from a non-aggressive and non-metastatic clear cell carcinoma. The cell line characterization was performed by genomics (real-time PCR, genome instability), proteomics (two dimensional electrophoresis, mass spectrometry) and immunological analysis (mixed lymphocytes tumor cell cultures). Real-time PCR confirmed the RCC85#21 cell expression of tumor antigens and cytokine genes. No difference in microsatellite instability (MSI) in RCC85#21 cell line was found as compared to control, loss of heterozygosity was observed in the RCC85#21 clone, but not in the renal cancer cell lines from which it was generated. The image analysis of RCC85#21 by two-dimensional gels showed 700±26 spots and 119 spots were identified by mass spectrometry analysis. RCC85#21 promoted a significant RCC-specific T cells activation by exhibiting a cytotoxic phenotype after mixed lymphocyte and tumor cell cultures. CD8+ T cells isolated from RCC patients displayed an elevated reactivity against RCC85#21 and efficiently lysed the RCC85#21 clone. The RCC85#21 immunogenic cell line will be suitable for immune stimulation. The identification of novel tumor associated antigens will allow the evaluation of the immune response in vitro and, subsequently, in vivo paving the way for new immunotherapeutic strategies in the RCC setting. PMID:27278998

  10. A draft map of the mouse pluripotent stem cell spatial proteome

    PubMed Central

    Christoforou, Andy; Mulvey, Claire M.; Breckels, Lisa M.; Geladaki, Aikaterini; Hurrell, Tracey; Hayward, Penelope C.; Naake, Thomas; Gatto, Laurent; Viner, Rosa; Arias, Alfonso Martinez; Lilley, Kathryn S.

    2016-01-01

    Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data. PMID:26754106

  11. SILAC-Based Quantitative Proteomic Analysis of Diffuse Large B-Cell Lymphoma Patients

    PubMed Central

    Rüetschi, Ulla; Stenson, Martin; Hasselblom, Sverker; Nilsson-Ehle, Herman; Hansson, Ulrika; Fagman, Henrik; Andersson, Per-Ola

    2015-01-01

    Diffuse large B-cell lymphoma (DLBCL), the most common lymphoma, is a heterogeneous disease where the outcome for patients with early relapse or refractory disease is very poor, even in the era of immunochemotherapy. In order to describe possible differences in global protein expression and network patterns, we performed a SILAC-based shotgun (LC-MS/MS) quantitative proteomic analysis in fresh-frozen tumor tissue from two groups of DLBCL patients with totally different clinical outcome: (i) early relapsed or refractory and (ii) long-term progression-free patients. We could identify over 3,500 proteins; more than 1,300 were quantified in all patients and 87 were significantly differentially expressed. By functional annotation analysis on the 66 proteins overexpressed in the progression-free patient group, we found an enrichment of proteins involved in the regulation and organization of the actin cytoskeleton. Also, five proteins from actin cytoskeleton regulation, applied in a supervised regression analysis, could discriminate the two patient groups. In conclusion, SILAC-based shotgun quantitative proteomic analysis appears to be a powerful tool to explore the proteome in DLBCL tumor tissue. Also, as progression-free patients had a higher expression of proteins involved in the actin cytoskeleton protein network, such a pattern indicates a functional role in the sustained response to immunochemotherapy. PMID:26060582

  12. Proteomic analysis of blood cells in fish exposed to chemotherapeutics: evidence for long term effects.

    PubMed

    Pierrard, Marie-Aline; Kestemont, Patrick; Phuong, Nguyen Thanh; Tran, Minh Phu; Delaive, Edouard; Thezenas, Marie-Laëtitia; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2012-04-18

    Proteomics technology are increasingly used in ecotoxicological studies to characterize and monitor biomarkers of exposure. The present study aims at identifying long term effects of malachite green (MG) exposure on the proteome of peripheral blood mononuclear cells (PBMC) from the Asian catfish, Pangasianodon hypophthalmus. A common (0.1 ppm) concentration for therapeutic treatment was applied twice with a 72 h interval. PBMC were collected directly at the end of the second bath of MG (T1) and after 1 month of decontamination (T2). Analytical 2D-DIGE gels were run and a total of 2551±364 spots were matched. Among them, MG induced significant changes in abundance of 116 spots with no recovery after one month of decontamination. Using LC-MS/MS and considering single identification per spot, we could identify 25 different proteins. Additionally, MG residues were measured in muscle and in blood indicating that leuco-MG has almost totally disappeared after one month of decontamination. This work highlights long term effects of MG treatment on the PBMC proteome from fish intended for human consumption.

  13. Inference Method for Developing Mathematical Models of Cell Signaling Pathways Using Proteomic Datasets.

    PubMed

    Tian, Tianhai; Song, Jiangning

    2017-01-01

    The progress in proteomics technologies has led to a rapid accumulation of large-scale proteomic datasets in recent years, which provides an unprecedented opportunity and valuable resources to understand how living organisms perform necessary functions at systems levels. This work presents a computational method for designing mathematical models based on proteomic datasets. Using the mitogen-activated protein (MAP) kinase pathway as the test system, we first develop a mathematical model including the cytosolic and nuclear subsystems. A key step of modeling is to apply a genetic algorithm to infer unknown model parameters. Then the robustness property of mathematical models is used as a criterion to select appropriate rate constants from the estimated candidates. Moreover, quantitative information such as the absolute protein concentrations is used to further refine the mathematical model. The successful application of this inference method to the MAP kinase pathway suggests that it is a useful and powerful approach for developing accurate mathematical models to gain important insights into the regulatory mechanisms of cell signaling pathways.

  14. Cell Surface Proteomics Provides Insight into Stage-Specific Remodeling of the Host-Parasite Interface in Trypanosoma brucei*

    PubMed Central

    Shimogawa, Michelle M.; Saada, Edwin A.; Vashisht, Ajay A.; Barshop, William D.; Wohlschlegel, James A.; Hill, Kent L.

    2015-01-01

    African trypanosomes are devastating human and animal pathogens transmitted by tsetse flies between mammalian hosts. The trypanosome surface forms a critical host interface that is essential for sensing and adapting to diverse host environments. However, trypanosome surface protein composition and diversity remain largely unknown. Here, we use surface labeling, affinity purification, and proteomic analyses to describe cell surface proteomes from insect-stage and mammalian bloodstream-stage Trypanosoma brucei. The cell surface proteomes contain most previously characterized surface proteins. We additionally identify a substantial number of novel proteins, whose functions are unknown, indicating the parasite surface proteome is larger and more diverse than generally appreciated. We also show stage-specific expression for individual paralogs within several protein families, suggesting that fine-tuned remodeling of the parasite surface allows adaptation to diverse host environments, while still fulfilling universally essential cellular needs. Our surface proteome analyses complement existing transcriptomic, proteomic, and in silico analyses by highlighting proteins that are surface-exposed and thereby provide a major step forward in defining the host-parasite interface. PMID:25963835

  15. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity.

    PubMed

    Zhang, Yongqian; Wang, Hongbin; Lai, Chengjun; Wang, Lu; Deng, Yulin

    2013-02-01

    Microgravity is one of the most important features in spaceflight. Previous evidence has shown that neurophysiological impairment signs occurred under microgravity. The present study was undertaken to explore the change in protein abundance in human SH-SY5Y neuroblastoma cells that were grown in a microgravity environment. The comparative proteomic method based on the (18)O labeling technique was applied to investigate the up-regulated proteins and down-regulated proteins in SH-SY5Y under simulated microgravity. Twenty-two differentially abundant proteins were quantified in human SH-SY5Y neuroblastoma cells. The cell microfilament network was disrupted under simulated microgravity, which was determined by the immunocytochemistry. The concentration of reactive oxygen species, malondialdehyde, and free Ca2+ ion significantly increased, and the level of ATP significantly decreased under simulated microgravity. However, there was no obvious cell apoptosis observed under simulated microgravity. These results provide new molecular evidence for the change in protein abundance in SH-SY5Y cells under simulated microgravity, which might unfold biological mechanisms and the development of effective countermeasures to deal with microgravity-related neurological problems. We believe that the state-of-the-art proteomic assay may be a means by which aerospace scientists will begin to understand the underlying mechanisms of space life activities at the protein level.

  16. Proteomic Analysis of Primary Human Airway Epithelial Cells Exposed to the Respiratory Toxicant Diacetyl.

    PubMed

    Foster, Matthew W; Gwinn, William M; Kelly, Francine L; Brass, David M; Valente, Ashlee M; Moseley, M Arthur; Thompson, J Will; Morgan, Daniel L; Palmer, Scott M

    2017-02-03

    Occupational exposures to the diketone flavoring agent, diacetyl, have been associated with bronchiolitis obliterans, a rare condition of airway fibrosis. Model studies in rodents have suggested that the airway epithelium is a major site of diacetyl toxicity, but the effects of diacetyl exposure upon the human airway epithelium are poorly characterized. Here we performed quantitative LC-MS/MS-based proteomics to study the effects of repeated diacetyl vapor exposures on 3D organotypic cultures of human primary tracheobronchial epithelial cells. Using a label-free approach, we quantified approximately 3400 proteins and 5700 phosphopeptides in cell lysates across four independent donors. Altered expression of proteins and phosphopeptides were suggestive of loss of cilia and increased squamous differentiation in diacetyl-exposed cells. These phenomena were confirmed by immunofluorescence staining of culture cross sections. Hyperphosphorylation and cross-linking of basal cell keratins were also observed in diacetyl-treated cells, and we used parallel reaction monitoring to confidently localize and quantify previously uncharacterized sites of phosphorylation in keratin 6. Collectively, these data identify numerous molecular changes in the epithelium that may be important to the pathogenesis of flavoring-induced bronchiolitis obliterans. More generally, this study highlights the utility of quantitative proteomics for the study of in vitro models of airway injury and disease.

  17. Quantitative proteomic analysis identifies new effectors of FOXM1 involved in breast cancer cell migration

    PubMed Central

    Ye, Xiaojuan; Zhang, Yi; He, Bin; Meng, Yuesheng; Li, Yandong; Gao, Yong

    2015-01-01

    The Forkhead Box M1 (FOXM1) transcription factor plays important roles in tumorigenesis and tumor metastasis in multiple human carcinomas. However, the underlying mechanisms for FOXM1 function remain to be classified. In the present study, we employed quantitative proteomic approach to search new downstream targets of FOXM1 in breast cancer MDA-MB-231 cells. A total of 4125 proteins were identified and quantified by label-free quantitation, of which 318 proteins were significantly changed (with P-value <0.05) between FOXM1 knockdown cells and control cells. Among them, three proteins ACSL4, CGGBP1 and PGRMC2 were significantly downregulated with FOXM1 reduction by western blot analysis. Further functional assays revealed that knockdown of the three proteins in MDA-MB-231 cells attenuated the ability of cell migration, consistent with the phenotype of FOXM1 knockdown. These results suggest that new potential downstream effectors of FOXM1 were identified by proteomic approach, and may provide new potential therapeutic targets in breast cancer. PMID:26884854

  18. Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells.

    PubMed

    Surmann, Kristin; Simon, Marjolaine; Hildebrandt, Petra; Pförtner, Henrike; Michalik, Stephan; Dhople, Vishnu M; Bröker, Barbara M; Schmidt, Frank; Völker, Uwe

    2016-06-01

    To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP) encoding a continuously expressed green fluorescent protein (GFP). Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed). Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC) standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC-MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]). They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

  19. Pancreastatin producing cell line from human pancreatic islet cell tumor.

    PubMed

    Funakoshi, A; Tateishi, K; Tsuru, M; Jimi, A; Wakasugi, H; Ikeda, Y; Kono, A

    1990-04-30

    It has been characterized that cell line QGP-1 derived from human non-functioning pancreatic islet cell tumor produces human pancreastatin. Exponentially growing cultures produced 5.7 fmol of pancreastatin/10(6) cells/hr. Human pancreastatin immunoreactivities in plasma and tumor after xenografting with QGP-1 into nude mouse were 92.7 fmol/ml and 160.2 pmol/g wet weight, respectively. Immunocytochemical study revealed both chromogranin A and pancreastatin immunoreactive cells in the tumor. Gel filtrations of culture medium and tumor extract identified heterogenous molecular forms of PST-LI which eluted as large and smaller molecular species. These results suggest that plasma pancreastatin levels may be useful as a tumor marker of endocrine tumor of the pancreas, and the pancreastatin producing cell line may be useful for studies of the mechanism of secretions and processing of chromogranin A and pancreastatin.

  20. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    PubMed Central

    Feiz, Leila; Irshad, Muhammad; Pont-Lezica, Rafael F; Canut, Hervé; Jamet, Elisabeth

    2006-01-01

    Background The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure, (ii) polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50%) of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. Results The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i) homogenization in low ionic strength acid buffer to retain CWP, (ii) purification through increasing density cushions, (iii) extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv) absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%), belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. Conclusion The new cell wall

  1. Functional Proteomics Screen Enables Enrichment of Distinct Cell Types from Human Pancreatic Islets

    PubMed Central

    Sharivkin, Revital; Walker, Michael D.; Soen, Yoav

    2015-01-01

    The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+), glucagon-producing alpha cells (CD9- /CD56+) and trypsin-producing acinar cells (CD9- /CD56-). This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples. PMID:25706282

  2. Effect of glutamate analogues on brain tumor cell lines.

    PubMed

    Campbell, G L; Bartel, R; Freidman, H S; Bigner, D D

    1985-10-01

    Glutamate analogues have been used in many different experimental approaches in neurobiology. A small number of these analogues have been classified as gliotoxic. We have examined the effect of seven glutamate analogues (five gliotoxic and two neurotoxic) on the growth and viability of four human glioma cell lines, one human medulloblastoma cell line, and one human sarcoma cell line. Aminoadipic acid and homocysteic acid predominantly affected the growth of two glioma cell lines in the presence of 4 mM glutamine. Phosphonobutyric acid predominantly affected the other two glioma cell lines and the medulloblastoma cell line in the presence of 4 mM glutamine. In medium containing no glutamine, all three analogues had marked effects on all the cell lines except the sarcoma cell line. These effects were dose dependent. We postulate that these results can in part be explained on the basis of metabolic compartmentalization.

  3. SILAC-Based Quantitative Proteomic Analysis of Human Lung Cell Response to Copper Oxide Nanoparticles

    PubMed Central

    Edelmann, Mariola J.; Shack, Leslie A.; Naske, Caitlin D.; Walters, Keisha B.; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level. PMID:25470785

  4. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles.

    PubMed

    Edelmann, Mariola J; Shack, Leslie A; Naske, Caitlin D; Walters, Keisha B; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.

  5. Proteomic analysis of cell surface proteins from Clostridium difficile.

    PubMed

    Wright, Anne; Wait, Robin; Begum, Shajna; Crossett, Ben; Nagy, Judit; Brown, Katherine; Fairweather, Neil

    2005-06-01

    Clostridium difficile is a bacterium that causes disease of the large intestine, particularly after treatment with antibiotics. The bacterium produces two toxins (A and B) that are responsible for the pathology of the disease. In addition, a number of bacterial virulence factors associated with adhesion to the gut have previously been identified, including the cell wall protein Cwp66, the high-molecular weight surface layer protein (HMW-SLP) and the flagella. As the genome sequence predicts many other cell wall associated proteins, we have investigated the diversity of proteins in cell wall extracts, with the aim of identifying further virulence factors. We have used a number of methods to remove the proteins associated with the cell wall of C. difficile. Two of the resulting extracts, obtained using low pH glycine treatment and lysozyme digestion of the cell wall, have been analysed in detail by two-dimensional electrophoresis and mass spectrometry. One hundred and nineteen spots, comprising 49 different proteins, have been identified. The two surface layer proteins (SLPs) are the most abundant proteins, and we have also found components of the flagellum. Interestingly, we have also determined that a number of paralogs of the HMW-SLP are expressed, and these could represent targets for further investigation as virulence factors.

  6. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  7. Forensic Proteomics of Poxvirus Production

    SciTech Connect

    Wunschel, David S.; Tulman, Edan; Engelmann, Heather E.; Clowers, Brian H.; Geary, Steven J.; Robinson, Aaron C.; Liao, Xiaofen

    2013-08-27

    The field of microbial forensics has recently sought to develop methods to discern biological signatures to indicate production methods for biological agents. Viral agents have received less attention to date. Their obligate propagation in living cells makes purification from cellular material a challenge. This leads to potential carryover of protein-rich signature of their production system. Here we have explored a proteomic analysis of Vaccinia virus as a model poxvirus system in which to compare samples of virus propagated in different cell lines and subjected to different purification schemes. The proteomic data sets indicated viral, host cell and culture medium proteins, and several layers of data analysis were applied to build confidence in the peptide identification and capture information on the taxonomic utility of each. The analysis showed clear shifts in protein profiles with virus purification, with successive gradient purification steps showing different levels of viral protein enrichment. Peptides from cellular proteins, including those present in purified virus preparations, provided signatures which enabled discrimination of cell line substrates, including distinguishing between cells derived from different primate species. The ability to discern multiple aspects of viral production demonstrates the potential value of proteomic analysis as tool for microbial forensics.

  8. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells

    SciTech Connect

    Hong, Dun; Chen, Hai-Xiao; Yu, Hai-Qiang; Liang, Yong; Wang, Carrie; Lian, Qing-Quan; Deng, Hai-Teng; Ge, Ren-Shan

    2010-08-15

    Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation - a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.

  9. On the Ontology Based Representation of Cell Lines

    PubMed Central

    Ganzinger, Matthias; He, Shan; Breuhahn, Kai; Knaup, Petra

    2012-01-01

    Cell lines are frequently used as highly standardized and reproducible in vitro models for biomedical analyses and assays. Cell lines are distributed by cell banks that operate databases describing their products. However, the description of the cell lines' properties are not standardized across different cell banks. Existing cell line-related ontologies mostly focus on the description of the cell lines' names, but do not cover aspects like the origin or optimal growth conditions. The objective of this work is to develop an ontology that allows for a more comprehensive description of cell lines and their metadata, which should cover the data elements provided by cell banks. This will provide the basis for the standardized annotation of cell lines and corresponding assays in biomedical research. In addition, the ontology will be the foundation for automated evaluation of such assays and their respective protocols in the future. To accomplish this, a broad range of cell bank databases as well as existing ontologies were analyzed in a comprehensive manner. We identified existing ontologies capable of covering different aspects of the cell line domain. However, not all data fields derived from the cell banks' databases could be mapped to existing ontologies. As a result, we created a new ontology called cell culture ontology (CCONT) integrating existing ontologies where possible. CCONT provides classes from the areas of cell line identification, origin, cell line properties, propagation and tests performed. PMID:23144907

  10. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.

    PubMed

    Coumans, Joëlle V F; Gau, David; Poljak, Anne; Wasinger, Valerie; Roy, Partha; Moens, Pierre D J

    2014-12-01

    Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.

  11. A 2-DE-based proteomic study on the toxicological effects of cisplatin in L02 cells.

    PubMed

    Liu, Shu; Wang, Wei; Zhou, Xueyi; Ding, Zongli; Gu, Runhuan

    2015-01-01

    Cisplatin is a chemotherapeutic agent for the treatment of various cancers. In this study, cisplatin-induced effects were characterized in vitro model of human liver cells (L02) using 2-DE-based proteomics. Results indicated that different cisplatin treatments primarily induced disturbances in protein synthesis and oxidative stress via differential mechanisms. Since the experimental concentrations of cisplatin described a hormesis effect in cell proliferation of L02 cells, it was expected to reveal the hormesis effects using proteomic markers. However, only confilin-1 was commonly up-regulated in three concentrations of cisplatin treatments showing a hormesis effects with a U-shape regulation. These results were highly consistent with many other toxico-proteomic studies, indicating that the toxico-proteomic responses based on dose-dependent protein responses were incongruent with the theoretically linear or hormetic concentration-effect relationship. Our findings suggested that a macroscopic hormesis phenomenon on the cell proliferation could not be reflected by proteomic responses induced by cisplatin treatments.

  12. Quantitative Proteomic Analysis of Enriched Nuclear Fractions from BK Polyomavirus-infected Primary Renal Proximal Tubule Epithelial Cells

    PubMed Central

    Justice, Joshua L.; Verhalen, Brandy; Kumar, Ranjit; Lefkowitz, Elliot J.; Imperiale, Michael J.; Jiang, Mengxi

    2016-01-01

    Polyomaviruses are a family of small DNA viruses that are associated with a number of severe human diseases, particularly in immunocompromised individuals. The detailed virus-host interactions during lytic polyomavirus infection are not fully understood. Here we report the first nuclear proteomic study with BK polyomavirus (BKPyV) in a primary renal proximal tubule epithelial cell culture system using stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling coupled with LC-MS/MS. We demonstrated the feasibility of SILAC labeling in these primary cells and subsequently performed reciprocal labeling-infection experiments to identify proteins that are altered by BKPyV infection. Our analyses revealed specific proteins that are significantly up- or down-regulated in the infected nuclear proteome. The genes encoding many of these proteins were not identified in a previous microarray study, suggesting that differential regulation of these proteins may be independent of transcriptional control. Western blotting experiments verified the SILAC proteomic findings. Finally, pathway and network analyses indicated that the host cell DNA damage response signaling and DNA repair pathways are among the cellular processes most affected at the protein level during polyomavirus infection. Our study provides a comprehensive view of the host nuclear proteomic changes during polyomavirus lytic infection and suggests potential novel host factors required for a productive polyomavirus infection. PMID:26354146

  13. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view.

    PubMed

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2016-08-01

    Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

  14. Proteome analysis of virus-host cell interaction: rabies virus replication in Vero cells in two different media.

    PubMed

    Kluge, Sabine; Rourou, Samia; Vester, Diana; Majoul, Samy; Benndorf, Dirk; Genzel, Yvonne; Rapp, Erdmann; Kallel, Héla; Reichl, Udo

    2013-06-01

    The use of Vero cells for rabies vaccine production was recommended from the WHO in 2005. A controlled production process is necessary to reduce the risk of contaminants in the product. One step towards this is to turn away from animal-derived components (e.g. serum, trypsin, bovine serum albumin) and face a production process in animal component-free medium. In this study, a proteomic approach was applied, using 2-D differential gel electrophoresis and mass spectrometry to compare rabies virus propagation in Vero cells under different cultivation conditions in microcarrier culture. Protein alterations were investigated for uninfected and infected Vero cells over a time span from 1 to 8 days post-infection in two different types of media (serum-free versus serum-containing media). For mock-infected cells, proteins involved in stress response, redox status, protease activity or glycolysis, and protein components in the endoplasmic reticulum were found to be differentially expressed comparing both cultivation media at all sampling points. For virus-infected cells, additionally changes in protein expression involved in general cell regulation and in calcium homeostasis were identified under both cultivation conditions. The fact that neither of these additional proteins was identified for cells during mock infection, but similar protein expression changes were found for both systems during virus propagation, indicates for a specific response of the Vero cell proteome on rabies virus infection.

  15. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver.

    PubMed

    Oberemm, Axel; Hansen, Ulf; Böhmert, Linda; Meckert, Christine; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2016-03-01

    Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml(-1) nanosilver, 0.5 and 5 µg ml(-1) AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ -1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment.

  16. A novel chromatographic method allows on-line reanalysis of the proteome.

    PubMed

    Waanders, Leonie F; Almeida, Reinaldo; Prosser, Simon; Cox, Jürgen; Eikel, Daniel; Allen, Mark H; Schultz, Gary A; Mann, Matthias

    2008-08-01

    Liquid chromatography combined with electrospray ionization is widely used for direct analysis of polar and labile molecules by LCMS. The on-line coupling in LCMS is a major strength but also causes a principal limitation that each eluting analyte has to be analyzed immediately and is not available for detailed interrogation after the LCMS run. Here we developed a new chromatographic strategy, which removes this limitation. After column separation the flow is split, one portion is analyzed directly, and the other is diverted to a capture capillary. After the direct LCMS run, the flow is switched, and the portion stored in the capillary is analyzed ("replay run"). We describe a setup consisting of an analytical column, a splitting valve, and a focusing column, which performs at full sensitivity and undiminished chromatographic resolution. We demonstrate three principal advantages of this system: nearly continuous MS utilization, duplicate analysis without requirement for additional sample, and targeting of important but undersampled features in the replay run.

  17. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  18. A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis.

    PubMed

    Herget, Meike; Scheibinger, Mirko; Guo, Zhaohua; Jan, Taha A; Adams, Christopher M; Cheng, Alan G; Heller, Stefan

    2013-01-01

    Mechanosensitive hair cells and supporting cells comprise the sensory epithelia of the inner ear. The paucity of both cell types has hampered molecular and cell biological studies, which often require large quantities of purified cells. Here, we report a strategy allowing the enrichment of relatively pure populations of vestibular hair cells and non-sensory cells including supporting cells. We utilized specific uptake of fluorescent styryl dyes for labeling of hair cells. Enzymatic isolation and flow cytometry was used to generate pure populations of sensory hair cells and non-sensory cells. We applied mass spectrometry to perform a qualitative high-resolution analysis of the proteomic makeup of both the hair cell and non-sensory cell populations. Our conservative analysis identified more than 600 proteins with a false discovery rate of <3% at the protein level and <1% at the peptide level. Analysis of proteins exclusively detected in either population revealed 64 proteins that were specific to hair cells and 103 proteins that were only detectable in non-sensory cells. Statistical analyses extended these groups by 53 proteins that are strongly upregulated in hair cells versus non-sensory cells and vice versa by 68 proteins. Our results demonstrate that enzymatic dissociation of styryl dye-labeled sensory hair cells and non-sensory cells is a valid method to generate pure enough cell populations for flow cytometry and subsequent molecular analyses.

  19. Association of ActA to Peptidoglycan Revealed by Cell Wall Proteomics of Intracellular Listeria monocytogenes*

    PubMed Central

    García-del Portillo, Francisco; Calvo, Enrique; D'Orazio, Valentina; Pucciarelli, M. Graciela

    2011-01-01

    Listeria monocytogenes is a Gram-positive intracellular bacterial pathogen that colonizes the cytosol of eukaryotic cells. Recent transcriptomic studies have revealed that intracellular L. monocytogenes alter expression of genes encoding envelope components. However, no comparative global analysis of this cell wall remodeling process is yet known at the protein level. Here, we used high resolution mass spectrometry to define the cell wall proteome of L. monocytogenes growing inside epithelial cells. When compared with extracellular bacteria growing in a nutrient-rich medium, a major difference found in the proteome was the presence of the actin assembly-inducing protein ActA in peptidoglycan purified from intracellular bacteria. ActA was also identified in the peptidoglycan of extracellular bacteria growing in a chemically defined minimal medium. In this condition, ActA maintains its membrane anchoring domain and promotes efficient bacterial entry into nonphagocytic host cells. Unexpectedly, Internalin-A, which mediates entry of extracellular L. monocytogenes into eukaryotic cells, was identified at late infection times (6 h) as an abundant protein in the cell wall of intracellular bacteria. Other surface proteins covalently bound to the peptidoglycan, as Lmo0514 and Lmo2085, were detected exclusively in intracellular and extracellular bacteria, respectively. Altogether, these data provide the first insights into the changes occurring at the protein level in the L. monocytogenes cell wall as the pathogen transits from the extracellular environment to an intracytosolic lifestyle inside eukaryotic cells. Some of these changes include alterations in the relative amount and the mode of association of certain surface proteins. PMID:21846725

  20. Proteome Analysis of Distinct Developmental Stages of Human Natural Killer (NK) Cells

    PubMed Central

    Scheiter, Maxi; Lau, Ulrike; van Ham, Marco; Bulitta, Björn; Gröbe, Lothar; Garritsen, Henk; Klawonn, Frank; König, Sebastian; Jänsch, Lothar

    2013-01-01

    The recent Natural Killer (NK) cell maturation model postulates that CD34+ hematopoietic stem cells (HSC) first develop into CD56bright NK cells, then into CD56dimCD57− and finally into terminally maturated CD56dimCD57+. The molecular mechanisms of human NK cell differentiation and maturation however are incompletely characterized. Here we present a proteome analysis of distinct developmental stages of human primary NK cells, isolated from healthy human blood donors. Peptide sequencing was used to comparatively analyze CD56bright NK cells versus CD56dim NK cells and CD56dimCD57− NK cells versus CD56dimCD57+ NK cells and revealed distinct protein signatures for all of these subsets. Quantitative data for about 3400 proteins were obtained and support the current differentiation model. Furthermore, 11 donor-independently, but developmental stage specifically regulated proteins so far undescribed in NK cells were revealed, which may contribute to NK cell development and may elucidate a molecular source for NK cell effector functions. Among those proteins, S100A4 (Calvasculin) and S100A6 (Calcyclin) were selected to study their dynamic subcellular localization. Upon activation of human primary NK cells, both proteins are recruited into the immune synapse (NKIS), where they colocalize with myosin IIa. PMID:23315794

  1. Label-free quantification proteomics reveals novel calcium binding proteins in matrix vesicles isolated from mineralizing Saos-2 cells.

    PubMed

    Zhou, Xiaoying; Cui, Yazhou; Luan, Jing; Zhou, Xiaoyan; Zhang, Genglin; Zhang, Xiumei; Han, Jinxiang

    2013-06-01

    Matrix vesicles (MVs) involved in the initiation of mineralization by deposition of hydroxyapatite (HA) in their lumen are released by the budding of mineralization-competent cells during skeletogenesis and bone development. To identify additional mineralization-related proteins, MVs were isolated from non-stimulated and stimulated Saos-2 cells in culture via an Exoquick™ approach and the corresponding proteomes were identified and quantified with label-free quantitative proteome technology. The isolated MVs were confirmed by electron microscopy, alkaline phosphatase activity (ALP), biomarkers, and mineral formation analyses. Label-free quantitative proteome analysis revealed that 19 calcium binding proteins (CaBPs), including Grp94, calnexin, calreticulin, calmodulin, and S100A4/A10, were up-regulated in MVs of Saos-2 cells upon stimulation of mineralization. This result provides new clues to study the mechanism of the initiation of MV-mediated mineralization.

  2. TBMS1 exerts its cytotoxicity in NCI-H460 lung cancer cells through nucleolar stress-induced p53/MDM2-dependent mechanism, a quantitative proteomics study.

    PubMed

    Lin, Yingying; Xie, Guobin; Xia, Ji; Su, Dan; Liu, Jie; Jiang, Fuquan; Xu, Yang

    2016-02-01

    Tubeimoside-1 (TBMS1) exerts its anticancer effects by inducing G2/M arrest and apoptosis of cancer cells. However, the precise molecular mechanism of its anti-tumor effects has not been fully elucidated, especially the signaling pathways involved in the early stage of TBMS1 stimulation. In this study, we employed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics approach and identified 439 proteins that exhibit significant differential expressions in NCI-H460 lung cancer cells upon exposure to TBMS1. Gene ontology and network analysis using DAVID and STRING on-line tools revealed that several nucleolar stress (ribosomal biogenesis) response proteins were differentially regulated by TBMS1. Functional validation demonstrated that TBMS1-induced NCI-H460 cell cytotoxicity involved nucleolar stress-induced p53/murine double minute clone 2 (MDM2), mTOR, and NF-κB signaling pathways.

  3. Proteomic analysis and identification of cell surface-associated proteins of Clostridium chauvoei.

    PubMed

    Jayaramaiah, Usharani; Singh, Neetu; Thankappan, Sabarinath; Mohanty, Ashok Kumar; Chaudhuri, Pallab; Singh, Vijendra Pal; Nagaleekar, Viswas Konasagara

    2016-06-01

    Blackleg is a highly fatal disease of cattle and sheep, caused by Clostridium chauvoei, a Gram positive, anaerobic, spore forming bacteria. Cell surface-associated proteins play a major role in inducing the protective immunity. However, the identity of a majority of cell surface-associated proteins of C. chauvoei is not known. In the present investigation, we have used SDS-PAGE, 2D-gel electrophoresis and Western blotting followed by mass spectrometry to identify cell surface-associated proteins of C. chauvoei. Among the identified proteins, which have shown to offer protective antigencity in other bacteria, Enolase, Chaperonin, Ribosomal protein L10, Glycosyl Hydrolase and Flavoprotein were characterized by sequencing and their overexpression in Escherichia coli. In conclusion, cell surface-associated proteins were identified using proteomic approach and the genes for the immunoreactive proteins were expressed, which may prove to be potential diagnostic or vaccine candidates.

  4. Modifications of wheat germ cell-free system for functional proteomics of plant membrane proteins.

    PubMed

    Nozawa, Akira; Tozawa, Yuzuru

    2014-01-01

    Functional proteomics of plant membrane proteins is an important approach to understand the comprehensive architecture of each metabolic pathway in plants. One bottleneck in the characterization of membrane proteins is the difficulty in producing sufficient quantities of functional protein for analysis. Here, we describe three methods for membrane protein production utilizing a wheat germ cell-free protein expression system. Owing to the open nature of cell-free synthesis reaction, protein synthesis can be modified with components necessary to produce functional protein. In this way we have developed modifications to a wheat germ cell-free system for the production of functional membrane proteins. Supplementation of liposomes or detergents allows the synthesis of functional integral membrane proteins. Furthermore, supplementation of myristic acid enables synthesis of N-myristylated peripheral membrane proteins. These modified cell-free synthesis methods facilitate the preparation and subsequent functional analyses of a wide variety of membrane proteins.

  5. Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis.

    PubMed

    Su, Yapeng; Shi, Qihui; Wei, Wei

    2017-02-01

    New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features, and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions.

  6. Proteomic analysis of membrane proteins of vero cells: exploration of potential proteins responsible for virus entry.

    PubMed

    Guo, Donghua; Zhu, Qinghe; Zhang, Hong; Sun, Dongbo

    2014-01-01

    Vero cells are highly susceptible to many viruses in humans and animals, and its membrane proteins (MPs) are responsible for virus entry. In our study, the MP proteome of the Vero cells was investigated using a shotgun LC-MS/MS approach. Six hundred twenty-seven proteins, including a total of 1839 peptides, were identified in MP samples of the Vero cells. In 627 proteins, 307 proteins (48.96%) were annotated in terms of biological process of gene ontology (GO) categories; 356 proteins (56.78%) were annotated in terms of molecular function of GO categories; 414 proteins (66.03%) were annotated in terms of cellular components of GO categories. Of 627 identified proteins, seventeen proteins had been revealed to be virus receptor proteins. The resulting protein lists and highlighted proteins may provide valuable information to increase understanding of virus infection of Vero cells.

  7. Establishment of two-dimensional gel electrophoresis profiles of the human acute promyelocytic leukemia cell line NB4.

    PubMed

    He, Pengcheng; Liu, Yanfeng; Zhang, Mei; Wang, Xiaoning; Wang, Huaiyu; Xi, Jieying; Wei, Kaihua; Wang, Hongli; Zhao, Jing

    2012-09-01

    To explore optimum conditions for establishing a two‑dimensional gel electrophoresis (2-DE) map of the human acute promyelocytic leukemia (APL) cell line NB4 and to analyze its protein profiles, we extracted total proteins from NB4 cells using cell disruption, liquid nitrogen freeze-thawing and fracturing by ultrasound, and quantified the extracted protein samples using Bradford's method. 2-DE was applied to separate the proteins, which were silver-stained in the gel. Well‑separated protein spots were selected from the gel using the ImageMaster™ 2D Platinum analysis system. Moreover, the effects of various protein sample sizes (140, 160 and 180 µg) on the 2-DE maps of the NB4 cells were determined and compared. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS), peptide mass fingerprinting (PMF) and database searching were used to identify the proteins. When the quantity of loading proteins was 160 µg, clear, well-resolved, reproducible 2-DE proteomic profiles of the NB4 cells were obtained. The average number of protein spots in 3 gels was 1160±51 with an average matching rate of 81%. A total of 10 proteins were identified by mass spectrometry and database queries, certain proteins were products of oncogenes and others were involved in cell cycle regulation and signal transduction. In summary, 2-DE profiles of the proteome of NB4 cells were established and certain proteins were identified by MALDI-TOF-MS and PMF which lay the foundation of further proteomic research of NB4 cells. These data should be useful for establishing a human APL proteome database.

  8. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis

    PubMed Central

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-01

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. PMID:25476450

  9. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    PubMed

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy.

  10. Proteomic Analysis Reveals the Molecular Underpinnings of Mandibular Gland Development and Lipid Metabolism in Two Lines of Honeybees (Apis mellifera ligustica).

    PubMed

    Huo, Xinmei; Wu, Bin; Feng, Mao; Han, Bin; Fang, Yu; Hao, Yue; Meng, Lifeng; Wubie, Abebe Jenberie; Fan, Pei; Hu, Han; Qi, Yuping; Li, Jianke

    2016-09-02

    The mandibular glands (MGs) of honeybee workers are vital for the secretion of lipids, for both larval nutrition and pheromones. However, knowledge of how the proteome controls MG development and functionality at the different physiological stages of worker bees is still lacking. We characterized and compared the proteome across different ages of MGs in Italian bees (ITBs) and Royal Jelly (RJ) bees (RJBs), the latter being a line bred for increasing RJ yield, originating from the ITB. All 2000 proteins that were shared by differently aged MGs in both bee lines (>4000 proteins identified in all) were strongly enriched in metabolizing protein, nucleic acid, small molecule, and lipid functional groups. The fact that these shared proteins are enriched in similar groups in both lines suggests that they are essential for basic cellular maintenance and MG functions. However, great differences were found when comparing the proteome across different MG phases in each line. In newly emerged bees (NEBs), the unique and highly abundant proteins were enriched in protein synthesis, cytoskeleton, and development related functional groups, suggesting their importance to initialize young MG development. In nurse bees (NBs), specific and highly abundant proteins were mainly enriched in substance transport and lipid synthesis, indicating their priority may be in priming high secretory activity in lipid synthesis as larval nutrition. The unique and highly abundant proteins in forager bees (FBs) were enriched in lipid metabolism, small molecule, and carbohydrate metabolism. This indicates their emphasis on 2-heptanone synthesis as an alarm pheromone to enhance colony defense or scent marker for foraging efficiency. Furthermore, a wide range of different biological processes was observed between ITBs and RJBs at different MG ages. Both bee stocks may adapt different proteome programs to drive gland development and functionality. The RJB nurse bee has reshaped its proteome by enhancing

  11. Proteome responses of Citrobacter werkmanii BF-6 planktonic cells and biofilms to calcium chloride.

    PubMed

    Zhou, Gang; Shi, Qing-shan; Huang, Xiao-mo; Xie, Xiao-bao

    2016-02-05

    Calcium ions are well-known as intracellular second messengers that also have an important extracellular structural role for bacteria. Recently, we found that denser biofilms were formed by Citrobacter werkmanii BF-6 in the presence of 400 mM Ca(2+) than that of 12.5mM Ca(2+). Therefore, we employed two-dimensional (2-D) electrophoresis methods to investigate the proteome profiles of planktonic cells and biofilms in BF-6 under different concentrations of Ca(2+). Meanwhile, BF-6 biofilm architecture was also visualized with confocal laser scanning microscopy (CLSM). The results demonstrated that BF-6 biofilms formed at the bottom of microtiter plates when grown in the presence of 400 mM Ca(2+). A total of 151 proteins from planktonic cells and biofilms after exposure of BF-6 cells to 12.5 and 400 mM Ca(2+) were successfully identified. Different gene ontology (GO) and KEGG pathways were categorized and enriched for the above proteins. Growth in the presence of 400 mM Ca(2+) induced more complex signal pathways in BF-6 than 12.5mM Ca(2+). In addition, the biofilm architectures were also affected by Ca(2+). Our results show two different modes of biofilm enhancement for C. werkmanii in the presence of excess Ca(2+) and provide a preliminary expression of these differences based on proteomic assays.

  12. Differential proteomics analysis of mononuclear cells in cerebrospinal fluid of Parkinson's disease.

    PubMed

    Xing, Lifei; Wang, Dongtao; Wang, Lihong; Lan, Wenjie; Pan, Suyue

    2015-01-01

    Parkinson's disease (PD) is one common neurodegenerative disease featured with degeneration of dopaminergic neurons in substantia nigra. Multiple factors participate in the pathogenesis and progression of PD. In this study, we investigated the proteomics profiles of mononuclear cells in cerebrospinal fluids from both PD patients and normal people, in order to explore the correlation between disease factors and PD. Cerebrospinal fluid samples were collected from both PD and normal people and were separated for mononuclear cells in vitro. Proteins were then extracted and separated by 2-dimensional gel electrophoresis. Proteins with differential expressions were identified by comparison to standard proteome expression profile map, followed by software and database analysis. In PD patients, there were 8 proteins with consistent expression profile and 16 proteins with differential expressions. Those differential proteins identified include cytoskeleton proteins (actin, myosin), signal transduction proteins (adenosine cyclase binding protein 1, calcium binding protein, talin) and anti-oxidation factor (thioredoxin peroxide reductase). PD patients had differential protein expressional profiles in the mononuclear cells of cerebrospinal fluids compared to normal people, suggesting the potential involvement of cytoskeleton and signal transduction proteins in apoptosis of neuronal apoptosis and PD pathogenesis.

  13. Effect of irradiation on cell transcriptome and proteome of rat submandibular salivary glands.

    PubMed

    Stiubea-Cohen, Raluca; David, Ran; Neumann, Yoav; Krief, Guy; Deutsch, Omer; Zacks, Batia; Aframian, Doron J; Palmon, Aaron

    2012-01-01

    Salivary glands (SGs) are irreversibly damaged by irradiation (IR) treatment in head and neck cancer patients. Here, we used an animal irradiation model to investigate and define the molecular mechanisms affecting SGs following IR, focusing on saliva proteome and global transcription profile of submandibular salivary gland (SSG) tissue.We show that saliva secretion was gradually reduced to 50% of its initial level 12 weeks post-IR. Saliva protein composition was further examined by proteomic analysis following mass spectrometry (MS) analysis that revealed proteins with reduced expression originating from SSGs and proteins with increased expression derived from the serum, both indicating salivary tissue damage. To examine alterations in mRNA expression levels microarray analysis was performed. We found significant alterations in 95 genes, including cell-cycle arrest genes, SG functional genes and a DNA repair gene.Tissue damage was seen by confocal immunofluorescence of α-amylase and c-Kit that showed an increase and decrease, respectively, in protein expression. This was coherent with real-time PCR results.This data indicates that IR damages the SSG cells' ability to produce and secrete saliva and proteins, and maintain the physiological barrier between serum and saliva. The damage does not heal due to cell-cycle arrest, which prevents tissue regeneration. Taken together, our results reveal a new insight into IR pathobiology.

  14. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    PubMed

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression.

  15. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells.

    PubMed

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhao, Ruan Jin; Zhang, Xueji; Yang, Lun; Zhou, Shu-Feng; Mao, Zong-Fu

    2015-01-01

    Plumbagin (PLB) has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC). The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, epithelial to mesenchymal transition (EMT), and reactive oxygen species generation. The proteomic study showed substantial differences in response to PLB treatment between PC-3 and DU145 cells. PLB treatment significantly modulated the expression of critical proteins that regulate cell cycle, apoptosis, and EMT signaling pathways in PC-3 cells but not in DU145 cells. Consistently, our Western blotting analysis validated the bioinformatic and proteomic data and confirmed the modulating effects of PLB on important proteins that regulated cell cycle, apoptosis, autophagy, and EMT in PC-3 and DU145 cells. The data from the Western blot assay could not display significant differences between PC-3 and DU145 cells. These findings indicate that PLB elicits different proteomic responses in PC-3 and DU145 cells involving proteins and pathways that regulate cell cycle, apoptosis, autophagy, reactive oxygen species production, and antioxidation/oxidation homeostasis. This is the first systematic study with integrated computational, proteomic, and

  16. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    PubMed

    Hindle, Allyson G; Martin, Sandra L

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  17. Single Cell Proteomics with Ultra-High Sensitivity Mass Spectrometry

    SciTech Connect

    Frank, M

    2005-02-16

    This project was a joint LDRD project between PAT, CMS and NAI with the objective to develop an instrument that analyzes the biochemical composition of single cells in real-time using bioaerosol mass spectrometry (BAMS) combined with advanced laser desorption and ionization techniques. Applications include both biological defense, fundamental cell biology and biomedical research. BAMS analyzes the biochemical composition of single, micrometer-sized particles (such as bacterial cells or spores) that can be directly sampled from air or a suspension. BAMS is based on an earlier development of aerosol time of flight mass spectrometry (ATOFMS) by members of our collaboration [1,2]. Briefly, in ATOFMS and BAMS aerosol particles are sucked directly from the atmosphere into vacuum through a series of small orifices. As the particles approach the ion source region of the mass spectrometer, they cross and scatter light from two CW laser beams separated by a known distance. The timing of the two bursts of scattered light created by each ''tracked'' particle reveals the speed, location and size of the particle. This information then enables the firing of a high-intensity laser such that the resulting laser pulse desorbs and ionizes molecules from the tracked particle just as it reaches the center of the ion source region. The full spectrum of ions is then measured using a time-of-flight mass spectrometer. The ability to rapidly analyze individual particles is clearly applicable to the rapid detection of aerosolized biological warfare agents so long as agent particles can be made to produce mass spectra that are distinct from the spectra of harmless background particles. The pattern of ions formed is determined by the properties of the laser pulse, the particle, and, in aerosol matrix-assisted laser desorption/ionization (MALDI), also the MALDI matrix used. As a result, it is critical that the properties of the laser pulses used for desorption and ionization be carefully chosen

  18. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease

    PubMed Central

    Li, Wei; Liu, Liangyi; Gomez, Aurelie; Zhang, Jilu; Zhang, Qing; Choi, Sung W.; Greenson, Joel K.; Liu, Chen; Jiang, Di; Virts, Elizabeth; Kelich, Stephanie L.; Chu, Hong Wei; Flynn, Ryan; Blazar, Bruce R.; Hanenberg, Helmut; Hanash, Samir

    2016-01-01

    Gastrointestinal graft-versus-host-disease (GI-GVHD) is a life-threatening complication occurring after allogeneic hematopoietic cell transplantation (HCT), and a blood biomarker that permits stratification of HCT patients according to their risk of developing GI-GVHD would greatly aid treatment planning. Through in-depth, large-scale proteomic profiling of presymptomatic samples, we identified a T cell population expressing both CD146, a cell adhesion molecule, and CCR5, a chemokine receptor that is upregulated as early as 14 days after transplantation in patients who develop GI-GVHD. The CD4+CD146+CCR5+ T cell population is Th17 prone and increased by ICOS stimulation. shRNA knockdown of CD146 in T cells reduced their transmigration through endothelial cells, and maraviroc, a CCR5 inhibitor, reduced chemotaxis of the CD4+CD146+CCR5+ T cell population toward CCL14. Mice that received CD146 shRNA–transduced human T cells did not lose weight, showed better survival, and had fewer CD4+CD146+CCR5+ T cells and less pathogenic Th17 infiltration in the intestine, even compared with mice receiving maraviroc with control shRNA–transduced human T cells. Furthermore, the frequency of CD4+CD146+CCR5+ Tregs was increased in GI-GVHD patients, and these cells showed increased plasticity toward Th17 upon ICOS stimulation. Our findings can be applied to early risk stratification, as well as specific preventative therapeutic strategies following HCT. PMID:27195312

  19. Integrated microscale analysis system for targeted liquid chromatography mass spectrometry proteomics on limited amounts of enriched cell populations.

    PubMed

    Martin, Jeffrey G; Rejtar, Tomas; Martin, Stephen A

    2013-11-19

    Limited samples, such as those that are in vivo sourced via biopsy, are closely representative of biological systems and contain valuable information for drug discovery. However, these precious samples are often heterogeneous and require cellular prefractionation prior to proteomic analysis to isolate specific subpopulations of interest. Enriched cells from in vivo samples are often very limited (<10(4) cells) and pose a significant challenge to proteomic nanoliquid chromatography mass spectrometry (nanoLCMS) sample preparation. To enable the streamlined analysis of these limited samples, we have developed an online cell enrichment, microscale sample preparation, nanoLCMS proteomics workflow by integrating fluorescence activated cell sorting (FACS), focused ultrasonication, microfluidics, immobilized trypsin digestion, and nanoLCMS. To assess the performance of the online FACS-Chip-LCMS workflow, 5000 fluorescent labeled cells were enriched from a 5% heterogeneous cell population and processed for LCMS proteomics in less than 2 h. Within these 5000 enriched cells, 30 peptides corresponding to 17 proteins spanning more than 4 orders of magnitude of cellular abundance were quantified using a QExactive MS. The results from the online FACS-Chip-LCMS workflow starting from 5000 enriched cells were directly compared to results from a traditional macroscale sample preparation workflow starting from 2.0 × 10(6) cells. The microscale FACS-Chip-LCMS workflow demonstrated high cellular enrichment efficiency and high peptide recovery across the wide dynamic range of targeted peptides. Overall the microscale FACS-Chip-LCMS workflow has shown effectiveness in efficiently preparing limited amounts of FACS enriched cells in an online manner for proteomic LCMS.

  20. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    PubMed

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis.

  1. Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines

    PubMed Central

    Fernández-Moreno, Mercedes; Hermida-Gómez, Tamara; Gallardo, M. Esther; Dalmao-Fernández, Andrea; Rego-Pérez, Ignacio; Garesse, Rafael

    2016-01-01

    Introduction The generation of Rho-0 cells requires the use of an immortalization process, or tumor cell selection, followed by culture in the presence of ethidium bromide (EtBr), incurring the drawbacks its use entails. The purpose of this work was to generate Rho-0 cells using human mesenchymal stem cells (hMSCs) with reagents having the ability to remove mitochondrial DNA (mtDNA) more safely than by using EtBr. Methodology Two immortalized hMSC lines (3a6 and KP) were used; 143B.TK-Rho-0 cells were used as reference control. For generation of Rho-0 hMSCs, cells were cultured in medium supplemented with each tested reagent. Total DNA was isolated and mtDNA content was measured by real-time polymerase chain reaction (PCR). Phenotypic characterization and gene expression assays were performed to determine whether 3a6 Rho-0 hMSCs maintain the same stem properties as untreated 3a6 hMSCs. To evaluate whether 3a6 Rho-0 hMSCs had a phenotype similar to that of 143B.TK-Rho-0 cells, in terms of reactive oxygen species (ROS) production, apoptotic levels and mitochondrial membrane potential (Δψm) were measured by flow cytometry and mitochondrial respiration was evaluated using a SeaHorse XFp Extracellular Flux Analyzer. The differentiation capacity of 3a6 and 3a6 Rho-0 hMSCs was evaluated using real-time PCR, comparing the relative expression of genes involved in osteogenesis, adipogenesis and chondrogenesis. Results The results showed the capacity of the 3a6 cell line to deplete its mtDNA and to survive in culture with uridine. Of all tested drugs, Stavudine (dt4) was the most effective in producing 3a6-Rho cells. The data indicate that hMSC Rho-0 cells continue to express the characteristic MSC cell surface receptor pattern. Phenotypic characterization showed that 3a6 Rho-0 cells resembled 143B.TK-Rho-0 cells, indicating that hMSC Rho-0 cells are Rho-0 cells. While the adipogenic capability was higher in 3a6 Rho-0 cells than in 3a6 cells, the osteogenic and chondrogenic

  2. Pressurized Pepsin Digestion in Proteomics

    PubMed Central

    López-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.; Hixson, Kim K.; Tian, Zhixin; Lee, Jung Hwa; Lee, Sang-Won; Tolić, Nikola; Weitz, Karl K.; Belov, Mikhail E.; Smith, Richard D.; Paša-Tolić, Ljiljana

    2011-01-01

    Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome. PMID:20627868

  3. Revealing new insights into different phosphorus-starving responses between two maize (Zea mays) inbred lines by transcriptomic and proteomic studies

    PubMed Central

    Jiang, Huimin; Zhang, Jianfeng; Han, Zhuo; Yang, Juncheng; Ge, Cailin; Wu, Qingyu

    2017-01-01

    Phosphorus (P) is an essential plant nutrient, and deficiency of P is one of the most important factors restricting maize yield. Therefore, it is necessary to develop a more efficient program of P fertilization and breeding crop varieties with enhanced Pi uptake and use efficiency, which required understanding how plants respond to Pi starvation. To understand how maize plants adapt to P-deficiency stress, we screened 116 inbred lines in the field and identified two lines, DSY2 and DSY79 that were extreme low-P resistant and sensitive, respectively. We further conducted physiological, transcriptomic, and proteomic studies using the roots of DSY2 and DSY79 under normal or low-P conditions. The results showed that the low-P resistant line, DSY2 had larger root length, surface area and volume, higher root vitality, as well as acid phosphatase activity as compared with the low-P sensitive line, DSY79 under the low-P condition. The transcriptomic and proteomic results suggest that dramatic more genes were induced in DSY2, including the plant hormone signaling, acid phosphatase, and metabolite genes, as compared with DSY79 after being challenged by low-P stress. The new insights generated in this study will be useful toward the improvement of P-utilize efficiency in maize. PMID:28276535

  4. The Karyote physico-chemical genomic, proteomic, metabolic cell modeling system.

    PubMed

    Ortoleva, P; Berry, E; Brun, Y; Fan, J; Fontus, M; Hubbard, K; Jaqaman, K; Jarymowycz, L; Navid, A; Sayyed-Ahmad, A; Shreif, Z; Stanley, F; Tuncay, K; Weitzke, E; Wu, L-C

    2003-01-01

    Modeling approaches to the dynamics of a living cell are presented that are strongly based on its underlying physical and chemical processes and its hierarchical spatio-temporal organization. Through the inclusion of a broad spectrum of processes and a rigorous analysis of the multiple scale nature of cellular dynamics, we are attempting to advance cell modeling and its applications. The presentation focuses on our cell modeling system, which integrates data archiving and quantitative physico-chemical modeling and information theory to provide a seamless approach to the modeling/data analysis endeavor. Thereby the rapidly growing mess of genomic, proteomic, metabolic, and cell physiological data can be automatically used to develop and calibrate a predictive cell model. The discussion focuses on the Karyote cell modeling system and an introduction to the CellX and VirusX models. The Karyote software system integrates three elements: (1) a model-building and data archiving module that allows one to define a cell type to be modeled through its reaction network, structure, and transport processes as well as to choose the surrounding medium and other parameters of the phenomenon to be modeled; (2) a genomic, proteomic, metabolic cell simulator that solves the equations of metabolic reaction, transcription/translation polymerization and the exchange of molecules between parts of the cell and with the surrounding medium; and (3) an information theory module (ITM) that automates model calibration and development, and integrates a variety of data types with the cell dynamic computations. In Karyote, reactions may be fast (equilibrated) or slow (finite rate), and the special effects of enzymes and other minority species yielding steady-state cycles of arbitrary complexities are accounted for. These features of the dynamics are handled via rigorous multiple scale analysis. A user interface allows for an automated generation and solution of the equations of multiple timescale

  5. Proteomic Study to Survey the CIGB-552 Antitumor Effect

    PubMed Central

    Rodríguez-Ulloa, Arielis; Gil, Jeovanis; Ramos, Yassel; Hernández-Álvarez, Lilian; Flores, Lisandra; Oliva, Brizaida; García, Dayana; Sánchez-Puente, Aniel; Musacchio-Lasa, Alexis; Fernández-de-Cossio, Jorge; Padrón, Gabriel; González López, Luis J.; Besada, Vladimir; Guerra-Vallespí, Maribel

    2015-01-01

    CIGB-552 is a cell-penetrating peptide that exerts in vitro and in vivo antitumor effect on cancer cells. In the present work, the mechanism involved in such anticancer activity was studied using chemical proteomics and expression-based proteomics in culture cancer cell lines. CIGB-552 interacts with at least 55 proteins, as determined by chemical proteomics. A temporal differential proteomics based on iTRAQ quantification method was performed to identify CIGB-552 modulated proteins. The proteomic profile includes 72 differentially expressed proteins in response to CIGB-552 treatment. Proteins related to cell proliferation and apoptosis were identified by both approaches. In line with previous findings, proteomic data revealed that CIGB-552 triggers the inhibition of NF-κB signaling pathway. Furthermore, proteins related to cell invasion were differentially modulated by CIGB-552 treatment suggesting new potentialities of CIGB-552 as anticancer agent. Overall, the current study contributes to a better understanding of the antitumor action mechanism of CIGB-552. PMID:26576414

  6. A Comparative Proteome Analysis of Escherichia coli ΔrelA Mutant Cells

    PubMed Central

    Carneiro, Sónia; Villas-Bôas, Silas; Ferreira, Eugénio C.; Rocha, Isabel

    2016-01-01

    The bacterial RelA-dependent stringent response exerts a strong influence over various processes. In this work, the impact of the relA gene mutation in Escherichia coli cells was evaluated by a quantitative proteomics analysis, employing stable-isotope labeling and high-resolution mass spectrometry. Chemostat cultures of E. coli W3110 and ΔrelA mutant strains were performed at two dilution rates (0.1 and 0.2 h−1) to assess the influence of the relA gene mutation in steady-state protein levels. A total of 121 proteins showed significant alterations in their abundance when comparing the proteome of mutant to wild-type cells. The relA gene mutation induced changes on key cellular processes, including the amino acids and nucleotide biosynthesis, the lipid metabolism, transport activities, transcription and translation processes, and responses to stress. Furthermore, some of those changes were more pronounced under specific growth conditions, as the most significant differences in protein ratios were observed at one of the dilution rates. An effect of the relA gene mutation in the acetate overflow was also observed, which confers interesting characteristics to this mutant strain that could be useful in the production of recombinant proteins. Overall, these results provide a valuable insight into the E. coli stringent response under defined steady-state conditions, suggesting that this stress response might influence multiple metabolic processes like the acetate overflow or the catabolite repression. PMID:27833909

  7. Proteomic analysis of human hepatoma cells expressing methionine adenosyltransferase I/III☆

    PubMed Central

    Schröder, Paul C.; Fernández-Irigoyen, Joaquín; Bigaud, Emilie; Serna, Antonio; Renández-Alcoceba, Rubén; Lu, Shelly C.; Mato, José M.; Prieto, Jesús; Corrales, Fernando J.

    2015-01-01

    Methionine adenosyltransferase I/III (MATI/III) synthesizes S-adenosylmethionine (SAM) in quiescent hepatocytes. Its activity is compromised in most liver diseases including liver cancer. Since SAM is a driver of hepatocytes fate we have studied the effect of re-expressing MAT1A in hepatoma Huh7 cells using proteomics. MAT1A expression leads to SAM levels close to those found in quiescent hepatocytes and induced apoptosis. Normalization of intracellular SAM induced alteration of 128 proteins identified by 2D-DIGE and gel-free methods, accounting for deregulation of central cellular functions including apoptosis, cell proliferation and survival. Human Dead-box protein 3 (DDX3X), a RNA helicase regulating RNA splicing, export, transcription and translation was down-regulated upon MAT1A expression. Our data support the regulation of DDX3X levels by SAM in a concentration and time dependent manner. Consistently, DDX3X arises as a primary target of SAM and a principal intermediate of its antitumoral effect. Based on the parallelism between SAM and DDX3X along the progression of liver disorders, and the results reported here, it is tempting to suggest that reduced SAM in the liver may lead to DDX3X up-regulation contributing to the pathogenic process and that replenishment of SAM might prove to have beneficial effects, at least in part by reducing DDX3X levels. This article is part of a Special Issue entitled: Proteomics: The clinical link. PMID:22270009

  8. Proteome Alterations of Hippocampal Cells Caused by Clostridium botulinum C3 Exoenzyme.

    PubMed

    Schröder, Anke; Rohrbeck, Astrid; Just, Ingo; Pich, Andreas

    2015-11-06

    C3bot from Clostridium botulinum is a bacterial mono-ADP-ribosylating enzyme, which transfers an ADP-ribose moiety onto the small GTPases Rho A/B/C. C3bot and the catalytic inactive mutant (C3E174Q) cause axonal and dendritic growth as well as branching in primary hippocampal neurons. In cultured murine hippocampal HT22 cells, protein abundances were analyzed in response to C3bot or C3E174Q treatment using a shotgun proteomics approach. Proteome analyses were performed at four time points over 6 days. More than 4000 protein groups were identified at each time point and quantified in triplicate analyses. On day one, 46 proteins showed an altered abundance, and after 6 days, more than 700 proteins responded to C3bot with an up- or down-regulation. In contrast, C3E174Q had no provable impact on protein abundance. Protein quantification was verified for several proteins by multiple reaction monitoring. Data analysis of altered proteins revealed different cellular processes that were affected by C3bot. They are particularly involved in mitochondrial and lysosomal processes, adhesion, carbohydrate and glucose metabolism, signal transduction, and nuclear proteins of translation and ribosome biogenesis. The results of this study gain novel insights into the function of C3bot in hippocampal cells.

  9. iTRAQ-based quantitative subcellular proteomic analysis of Avibirnavirus-infected cells.

    PubMed

    Sun, Yanting; Hu, Boli; Fan, Chengfei; Jia, Lu; Zhang, Yina; Du, Aifang; Zheng, Xiaojuan; Zhou, Jiyong

    2015-07-01

    Infectious bursal disease virus (IBDV) enters the host cells via endocytic pathway to achieve viral replication in the cytoplasm. Here, we performed LC-MS/MS coupled with isobaric tags for relative and absolute quantification labeling of differentially abundant proteins of IBDV-infected cells using a subcellular fractionation strategy. We show that the viral infection regulates the abundance and/or subcellular localization of 3211 proteins during early infection. In total, 23 cellular proteins in the cytoplasmic proteome and 34 in the nuclear proteome were significantly altered after virus infection. These differentially abundant proteins are involved in such biological processes as immune response, signal transduction, RNA processing, macromolecular biosynthesis, energy metabolism, virus binding, and cellular apoptosis. Moreover, transcriptional profiles of the 25 genes corresponding to the identified proteins were analyzed by quantitative real-time RT-PCR. Ingenuity Pathway Analysis clustered the differentially abundant proteins primarily into the mTOR pathway, PI3K/Akt pathway, and interferon-β signaling cascades. Confocal microscopy showed colocalization of the viral protein VP3 with host proteins heterogeneous nuclear ribonucleoprotein H1, nuclear factor 45, apoptosis inhibitor 5, nuclear protein localization protein 4 and DEAD-box RNA helicase 42 during the virus infection. Together, these identified subcellular constituents provide important information for understanding host-IBDV interactions and underlying mechanisms of IBDV infection and pathogenesis.

  10. Crosstalk among proteome, acetylome and succinylome in colon cancer HCT116 cell treated with sodium dichloroacetate

    PubMed Central

    Zhu, Danxi; Hou, Lidan; Hu, Bin; Zhao, Hang; Sun, Jie; Wang, Jianhua; Meng, Xiangjun

    2016-01-01

    Protein lysine acetylation and succinylation play important regulatory roles in cells, both of which or each other has a close relationship. Dichloroacetate (DCA), a well-known pyruvate dehydrogenase kinase (PDK) inhibitor, has the potential to be used as anti-cancer drugs for several tumors including colorectal cancer. However, little is known about the potential mechanism of DCA-based cancer therapy by protein posttranslational modifications (PTM) including global proteome, acetylome and succinylome. Here the combinations with stable isotope labeling (SILAC), antibody affinity enrichment and high resolution LC-MS/MS analysis were performed in human colon cancer HCT116 cells. The quantifiable proteome was annotated using bioinformatics. In total, 4,518 proteins, 1,436 acetylation sites, and 671 succinylation sites were quantified, respectively to DCA treatment. Among the quantified acetylated sites, 158 were with increased level (quantification ratio >1.5) and 145 with decreased level (quantification ratio <0.67). Meanwhile, 179 up-regulated and 114 down-regulated succinylated sites were identified. The bioinformatics analyses initially showed acetylation and succinylation were involved in a wide range of cellular functions upon DCA-based anti-cancer effects. Notably, protein-protein interaction network analyses demonstrated widespread interactions modulated by protein acetylation and succinylation. Taken together, this study may shed a light on understanding the mechanism of DCA-based cancer treatment. PMID:27874079

  11. The Translational Proteome Modulated by 20(S)-Protopanaxadiol in Endothelial Cells

    PubMed Central

    Shieh, Ying Hua; Chen, Chien Chuan; Li, Fu An; Cheng, Jen Kun; Lin, Ming Chung; Huang, Bin

    2014-01-01

    Background 20(S)-protopanaxadiol (PPD), a natural compound of dammarane ginsenoside purified from the ginseng plant, exhibits strong anticancer properties. It has also been reported to have strong antioxidant activity and plays a role in cardiovascular protection. However, the downstream signaling mechanism PPD employs is still unclear and requires further elucidation. Methods Endothelial cells (ECs) EAhy 926 were used to investigate the growth promoting effect of PPD. The protein lysates extracted from both mock- and PPD-treated cells were separated by two-dimensional gel electrophoresis (2-DE) to monitor protein changes. After image analysis, proteins with significant change in the expression level were further identified by mass spectrometry. Western blot was applied to further confirm the protein variations in the 2-DE assay. Results In the current study, we found that treatment with PPD (10 μg/ml) significantly increased ECs healing. The translational proteome was established according to 16 up-regulated and 8 down-regulated proteins identified in 2-DE. These proteins were reported to function as energy homeostasis and in the prevention of oxidative stress. The elevated expressions of heme oxygenase 1 (HO-1) and glutathione synthetase (GSS) were further confirmed in the western blot analysis. Conclusions According to the information obtained from translational proteome, we delineated that PPD mediated vascular homeostasis through the up-regulation of anti-oxidative proteins. Additional functional investigations are necessary regarding the HO-1 and GSS proteins. PMID:27122820

  12. Rapid cryopreservation of five mammalian and one mosquito cell line at -80 degrees C while attached to flasks in a serum free cryopreservative.

    PubMed

    Corsini, Joe; Mann, Ethan

    2005-01-01

    Cell culturing, and the requisite storage of cell lines at ultra-low temperatures, is used in most laboratories studying or using eukaryotic proteomics, genomics, microarray, and RNA technologies. In this study we have observed that A72(dog), CRFK(cat), NB324K(human), MCF7(human), WI38(human), and C636(mosquito) cells were effectively cryopreserved at -80 degrees C while attached to the substratum of 25 cm2 tissue culture flasks. This was accomplished using a serum free crypreservative recently developed by Corsini and co-workers. The technique allows for significant savings of time and money in laboratories that rapidly process numerous cell lines.

  13. DNA profiling and characterization of animal cell lines.

    PubMed

    Stacey, Glyn N; Byrne, Ed; Hawkins, J Ross

    2014-01-01

    The history of the culture of animal cell lines is littered with published and much unpublished experience with cell lines that have become switched, mislabelled, or cross-contaminated during laboratory handling. To deliver valid and good quality research and to avoid waste of time and resources on such rogue lines, it is vital to perform some kind of qualification for the provenance of cell lines used in research and particularly in the development of biomedical products. DNA profiling provides a valuable tool to compare different sources of the same cells and, where original material or tissue is available, to confirm the correct identity of a cell line. This chapter provides a review of some of the most useful techniques to test the identity of cells in the cell culture laboratory and gives methods which have been used in the authentication of cell lines.

  14. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2

    PubMed Central

    Pimienta, Genaro; Fok, Victor; Haslip, Maria; Nagy, Maria; Takyar, Seyedtaghi; Steitz, Joan A

    2015-01-01

    In Epstein-Barr virus (EBV) latent infection, the EBV-encoded RNAs EBER1 and EBER2 accumulate in the host cell nucleus to ~106 copies. While the expression of EBERs in cell lines is associated with transformation, a mechanistic explanation of their roles in EBV latency remains elusive. To identify EBER-specific gene expression features, we compared the proteome and mRNA transcriptome from BJAB cells (an EBV-negative B lymphoma cell line) stably transfected with an empty plasmid or with one carrying both EBER genes. We identified ~1800 proteins with at least 2 SILAC pair measurements, of which only 8 and 12 were up- and downregulated ≥ 2-fold, respectively. One upregulated protein was PIK3AP1, a B-cell specific protein adapter known to activate the PI3K-AKT signaling pathway, which regulates alternative splicing and translation in addition to its pro-survival effects. In the mRNA-seq data, the mRNA levels for some of the proteins changing in the SILAC data did not change. We instead observed isoform switch events. We validated the most relevant findings with biochemical assays. These corroborated the upregulation of PIK3AP1 and AKT activation in BJAB cells expressing high levels of both EBERs and EBNA1 (a surrogate of Burkitt’s lymphoma EBV latency I) relative to those expressing only EBNA1. The mRNA-seq data in these cells showed multiple upregulated oncogenes whose mRNAs are enriched for 3´-UTR AU-rich elements (AREs), such as ccl3, ccr7, il10, vegfa and zeb1. The CCL3, CCR7, IL10 and VEGFA proteins promote cell proliferation and are associated with EBV-mediated lymphomas. In EBV latency, ZEB1 represses the transcription of ZEBRA, an EBV lytic phase activation factor. We previously found that EBER1 interacts with AUF1 in vivo and proposed stabilization of ARE-containing mRNAs. Thus, the ~106 copies of EBER1 may promote not only cell proliferation due to an increase in the levels of ARE-containing genes like ccl3, ccr7, il10, and vegfa, but also the

  15. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2.

    PubMed

    Pimienta, Genaro; Fok, Victor; Haslip, Maria; Nagy, Maria; Takyar, Seyedtaghi; Steitz, Joan A

    2015-01-01

    In Epstein-Barr virus (EBV) latent infection, the EBV-encoded RNAs EBER1 and EBER2 accumulate in the host cell nucleus to ~10(6) copies. While the expression of EBERs in cell lines is associated with transformation, a mechanistic explanation of their roles in EBV latency remains elusive. To identify EBER-specific gene expression features, we compared the proteome and mRNA transcriptome from BJAB cells (an EBV-negative B lymphoma cell line) stably transfected with an empty plasmid or with one carrying both EBER genes. We identified ~1800 proteins with at least 2 SILAC pair measurements, of which only 8 and 12 were up- and downregulated ≥ 2-fold, respectively. One upregulated protein was PIK3AP1, a B-cell specific protein adapter known to activate the PI3K-AKT signaling pathway, which regulates alternative splicing and translation in addition to its pro-survival effects. In the mRNA-seq data, the mRNA levels for some of the proteins changing in the SILAC data did not change. We instead observed isoform switch events. We validated the most relevant findings with biochemical assays. These corroborated the upregulation of PIK3AP1 and AKT activation in BJAB cells expressing high levels of both EBERs and EBNA1 (a surrogate of Burkitt's lymphoma EBV latency I) relative to those expressing only EBNA1. The mRNA-seq data in these cells showed multiple upregulated oncogenes whose mRNAs are enriched for 3´-UTR AU-rich elements (AREs), such as ccl3, ccr7, il10, vegfa and zeb1. The CCL3, CCR7, IL10 and VEGFA proteins promote cell proliferation and are associated with EBV-mediated lymphomas. In EBV latency, ZEB1 represses the transcription of ZEBRA, an EBV lytic phase activation factor. We previously found that EBER1 interacts with AUF1 in vivo and proposed stabilization of ARE-containing mRNAs. Thus, the ~10(6) copies of EBER1 may promote not only cell proliferation due to an increase in the levels of ARE-containing genes like ccl3, ccr7, il10, and vegfa, but also the

  16. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  17. The rat red blood cell proteome is altered by priming with 2-butoxyethanol

    SciTech Connect

    Palkar, Prajakta S.; Kakhniashvili, David G.; Goodman, Steven R.; Mehendale, Harihara M.

    2008-08-01

    Administration of a low priming dose of 2-butoxyethanol (BE, 500 mg/kg, p.o.) 7 days prior to a larger LD{sub 90} dose (1500 mg BE/kg, p.o.) offers protection against the lethal dose-induced hemolysis and death in female Sprague Dawley rats because of prompt and efficient replacement of red blood cells (RBCs) with new resilient RBCs. The objective of the present work was to analyze the altered proteome of RBCs upon priming with BE in order to identify the potential anti-hemolytic survival proteins induced in the primed rat RBCs (P-RBCs) as opposed to vehicle-treated RBCs (V-RBCs). The RBCs from the two groups were fractionated into membrane and cytosolic fractions. The cytosolic fractions were further fractionated for proteomic analysis into 3 fractions. The fractions were labeled with Cy3 and Cy5 fluorescent dyes and subjected to 2-dimensional differential gel electrophoresis (DIGE) to analyze the protein profiles. Seven membrane and 8 cytosolic proteins were found to be significantly increased ({>=} 2.5 fold) in P-RBCs as compared to V-RBCs. The identified proteins can be classified into antioxidant, membrane skeleton, protein turnover, lipid raft, and energy metabolism components. Increased levels of the proteins from antioxidant and membrane skeleton groups were confirmed by Western blot analysis. The study provides the first report on protein profiling of rat RBCs as well as on alteration of the proteome upon exposure to a priming dose of hemotoxicant. Further studies are needed to prove the protective role of the identified proteins and will initiate the field of survival/protective/anti-hemolytic proteins in RBCs.

  18. A comparative proteomics study on matrix vesicles of osteoblast-like Saos-2 and U2-OS cells.

    PubMed

    Jiang, Liang; Cui, Yazhou; Luan, Jing; Zhou, Xiaoyan; Zhou, Xiaoying; Han, Jinxiang

    2013-05-01

    Matrix vesicles (MVs) play an important role in the initial stage of the process of bone mineralization, and are involved in multiple rare skeletal diseases with pathological mineralization or calcification. The aim of the study was to compare the proteomic profiling of osteoblast-like cells with and without mineralization ability (Saos-2 and U2-OS), and to identify novel mineralization-associated MV proteins. MVs were extracted using ExoQuick solution from mineralization-induced Saos-2 and U2-OS cells, and then were validated by transmission electron microscopy. A label-free quantitative proteomic method was used to compare the protein profiling of MVs from Saos-2 and U2-OS cells. Western-blots were used to confirm the expression of MVs proteins identified in proteomic studies. In our proteomic studies, we identified that 89 mineralization-related proteins were significantly up-regulated in Saos-2 MVs compared with U2-OS MVs. We further validated that two MVs proteins, protein kinase C α and ras-related protein Ral-A, were up-regulated in MVs of Saos-2 cells compared to those of U2-OS cells under mineralization-induction. Our findings suggest that protein kinase C α and ras-related protein Ral-A might be involved in bone mineralization as MVs components.

  19. Proteomic signatures of extracellular vesicles secreted by nonmineralizing and mineralizing human osteoblasts and stimulation of tumor cell growth.

    PubMed

    Morhayim, Jess; van de Peppel, Jeroen; Demmers, Jeroen A A; Kocer, Gulistan; Nigg, Alex L; van Driel, Marjolein; Chiba, Hideki; van Leeuwen, Johannes P

    2015-01-01

    Beyond forming bone, osteoblasts play pivotal roles in various biologic processes, including hematopoiesis and bone metastasis. Extracellular vesicles (EVs) have been implicated in intercellular communication via transfer of proteins and nucleic acids between cells. We focused on the proteomic characterization of nonmineralizing (NMOBs) and mineralizing (MOBs) human osteoblast (SV-HFOs) EVs and investigated their effect on human prostate cancer (PC3) cells by microscopic, proteomic, and gene expression analyses. Proteomic analysis showed that 97% of the proteins were shared among NMOB and MOB EVs, and 30% were novel osteoblast-specific EV proteins. Label-free quantification demonstrated mineralization stage-dependent 5-fold enrichment of 59 and 451 EV proteins in NMOBs and MOBs, respectively. Interestingly, bioinformatic analyses of the osteoblast EV proteomes and EV-regulated prostate cancer gene expression profiles showed that they converged on pathways involved in cell survival and growth. This was verified by in vitro proliferation assays where osteoblast EV uptake led to 2-fold increase in PC3 cell growth compared to cell-free culture medium-derived vesicle controls. Our findings elucidate the mineralization stage-specific protein content of osteoblast-secreted EVs, show a novel way by which osteoblasts communicate with prostate cancer, and open up innovative avenues for therapeutic intervention.

  20. Tumor cell metabolism: the marriage of molecular genetics and proteomics with cellular intermediary metabolism; proceed with caution!

    PubMed

    Costello, Leslie C; Franklin, Renty B

    2006-11-07

    Metabolic transformations of malignant cells are essential to the development and progression of all cancers. The understanding of the pathogenesis and progression of cancer requires the establishment of the altered genetic/metabolic factors that are essential to the development, growth, and proliferation of the malignant cells. Recognition of this important relationship has resulted in a resurgence of interest in the intermediary metabolism of tumor cells. The role of molecular genetics and proteomics and the application of molecular technology in assessing altered cellular metabolism has become a major area of biomedical research. The contemporary generation of biomedical scientists is exceptionally well trained in all areas of molecular biology and molecular technology, which are now important tools to be applied to the regulation of cellular intermediary metabolism. Simultaneously, the didactic and methodological training associated with the principles and operation of metabolic pathways, enzymology, cellular enzyme activity, and associated biochemical implications has been diminished and often eliminated from the pre- and post-doctoral programs. Interpretations and conclusions of alterations in cellular enzyme activity and associated metabolic pathways based on genetic/proteomic changes can and will result in misrepresentation of important metabolic implications in malignancy and other diseases. It is essential that the genetic/proteomic studies be coupled to biochemical/metabolic cellular events to satisfy the axiom: "genetic transformations and proteomic alterations will have little relevancy to disease processes if the genetic/proteomic alterations are not manifested in altered and impaired cellular and metabolic function". The appropriate marriage of molecular genetics/proteomics with the regulation of cellular intermediary metabolism will provide new revelations and understanding of malignancy that could not be achieved in earlier generations.

  1. Microfluidics-Based Single-Cell Functional Proteomics for Fundamental and Applied Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Zhou, Jing; Sutherland, Alex; Wei, Wei; Shin, Young Shik; Xue, Min; Heath, James R.

    2014-06-01

    We review an emerging microfluidics-based toolkit for single-cell functional proteomics. Functional proteins include, but are not limited to, the secreted signaling proteins that can reflect the biological behaviors of immune cells or the intracellular phosphoproteins associated with growth factor-stimulated signaling networks. Advantages of the microfluidics platforms are multiple. First, 20 or more functional proteins may be assayed simultaneously from statistical numbers of single cells. Second, cell behaviors (e.g., motility) may be correlated with protein assays. Third, extensions to quantized cell populations can permit measurements of cell-cell interactions. Fourth, rare cells can be functionally identified and then separated for further analysis or culturing. Finally, certain assay types can provide a conduit between biology and the physicochemical laws. We discuss the history and challenges of the field then review design concepts and uses of the microchip platforms that have been reported, with an eye toward biomedical applications. We then look to the future of the field.

  2. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications.

    PubMed

    Yu, Jing; Zhou, Jing; Sutherland, Alex; Wei, Wei; Shin, Young Shik; Xue, Min; Heath, James R

    2014-01-01

    We review an emerging microfluidics-based toolkit for single-cell functional proteomics. Functional proteins include, but are not limited to, the secreted signaling proteins that can reflect the biological behaviors of immune cells or the intracellular phosphoproteins associated with growth factor-stimulated signaling networks. Advantages of the microfluidics platforms are multiple. First, 20 or more functional proteins may be assayed simultaneously from statistical numbers of single cells. Second, cell behaviors (e.g., motility) may be correlated with protein assays. Third, extensions to quantized cell populations can permit measurements of cell-cell interactions. Fourth, rare cells can be functionally identified and then separated for further analysis or culturing. Finally, certain assay types can provide a conduit between biology and the physicochemical laws. We discuss the history and challenges of the field then review design concepts and uses of the microchip platforms that have been reported, with an eye toward biomedical applications. We then look to the future of the field.

  3. Dynamic proteomics in modeling of the living cell. Protein-protein interactions.

    PubMed

    Terentiev, A A; Moldogazieva, N T; Shaitan, K V

    2009-12-01

    This review is devoted to describing, summarizing, and analyzing of dynamic proteomics data obtained over the last few years and concerning the role of protein-protein interactions in modeling of the living cell. Principles of modern high-throughput experimental methods for investigation of protein-protein interactions are described. Systems biology approaches based on integrative view on cellular processes are used to analyze organization of protein interaction networks. It is proposed that finding of some proteins in different protein complexes can be explained by their multi-modular and polyfunctional properties; the different protein modules can be located in the nodes of protein interaction networks. Mathematical and computational approaches to modeling of the living cell with emphasis on molecular dynamics simulation are provided. The role of the network analysis in fundamental medicine is also briefly reviewed.

  4. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study

    PubMed Central

    2014-01-01

    Background Cordyceps cicadae is a medicinal fungus that is often used for treating cancer. However, the anticancer mechanisms of C. cicadae are largely unknown. This study aims to investigate the anticancer mechanisms of C. cicadae against hepatocellular carcinoma cells in vitro using a proteomic approach. Methods Human hepatocellular carcinoma MHCC97H cells were treated with a water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) for 48 h and harvested for cell viability assays. The significant differences in protein expression between control and C. cicadae-treated cells were analyzed by two-dimensional gel-based proteomics coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry. Flow cytometry analysis was employed to investigate the cell cycle and cell death. The anticancer molecular mechanism was analyzed by whole proteome mapping. Results The water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) inhibited the growth of MHCC97H cells in a dose-dependent manner via G2/M phase cell cycle arrest with no evidence of apoptosis. Among the identified proteins with upregulated expression were dynactin subunit 2, N-myc downstream-regulated gene 1, heat shock protein beta-1, alpha-enolase isoform 1, phosphatidylinositol transfer protein, and WD repeat-containing protein 1. Meanwhile, the proteins with downregulated expression were 14-3-3 gamma, BUB3, microtubule-associated protein RP/EB family member 1, thioredoxin-like protein, chloride intracellular channel protein 1, ectonucleoside triphosphate diphosphohydrolase 5, xaa-Pro dipeptidase, enoyl-CoA delta isomerase 1, protein-disulfide isomerase-related chaperone Erp29, hnRNP 2H9B, peroxiredoxin 1, WD-40 repeat protein, and serine/threonine kinase receptor-associated protein. Conclusion The water extract of C. cicadae reduced the growth of human hepatocellular carcinoma MHCC97H cells via G2/M cell cycle arrest. PMID:24872842

  5. Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency

    PubMed Central

    Gonzalez, Rodolfo; Jennings, Lori L.; Knuth, Mark; Orth, Anthony P.; Klock, Heath E.; Ou, Weija; Feuerhelm, Julie; Hull, Mitchell V.; Koesema, Eric; Wang, Yuping; Zhang, Jia; Wu, Chunlei; Cho, Charles Y.; Su, Andrew I.; Batalov, Serge; Chen, Hong; Johnson, Kristen; Laffitte, Bryan; Nguyen, Deborah G.; Snyder, Evan Y.; Schultz, Peter G.; Harris, Jennifer L.; Lesley, Scott A.

    2010-01-01

    Approximately 3,500 mammalian genes are predicted to be secreted or single-pass transmembrane proteins. The function of the majority of these genes is still unknown, and a number of the encoded proteins might find use as new therapeutic agents themselves or as targets for small molecule or antibody drug development. To analyze the physiological activities of the extracellular proteome, we developed a large-scale, high-throughput protein expression, purification, and screening platform. For this study, the complete human extracellular proteome was analyzed and prioritized based on genome-wide disease association studies to select 529 initial target genes. These genes were cloned into three expression vectors as native sequences and as N-terminal and C-terminal Fc fusions to create an initial collection of 806 purified secreted proteins. To determine its utility, this library was screened in an OCT4-based cellular assay to identify regulators of human embryonic stem-cell self-renewal. We found that the pigment epithelium-derived factor can promote long-term pluripotent growth of human embryonic stem cells without bFGF or TGFβ/Activin/Nodal ligand supplementation. Our results further indicate that activation of the pigment epithelium-derived factor receptor-Erk1/2 signaling pathway by the pigment epithelium-derived factor is sufficient to maintain the self-renewal of pluripotent human embryonic stem cells. These experiments illustrate the potential for discovering novel biological functions by directly screening protein diversity in cell-based phenotypic or reporter assays. PMID:20133595

  6. An ultra scale-down approach identifies host cell protein differences across a panel of mAb producing CHO cell line variants.

    PubMed

    Hogwood, Catherine E M; Ahmad, Shahina S; Tarrant, Richard D; Bracewell, Daniel G; Smales, C Mark

    2016-03-01

    During the manufacture of biopharmaceutical products, the final product must lie within strict pre-set specifications, for example the host cell protein (HCP) content. A number of specific HCPs have been identified in particular products and the interactions between product/HCPs have also been recently investigated; however, a comparison of the HCP dynamics between related cell lines and their response to early downstream processing to aid process development and cell line selection has not been published. We have utilised a proteomic approach coupled with an ultra scale-down study to determine the HCP profile dynamics, at harvest and during early downstream processing, across a panel of recombinant GS-CHOK1SV antibody producing cell lines. The results reveal that cell culture viability upon harvest has the greatest impact upon shear sensitivity and HCP concentration. Whilst the general HCP population/profile was broadly similar across the cell lines, the actual amounts of some specific HCPs in the supernatant differed and a number of cell line specific differences in the response to early downstream processing were observed. We anticipate that such knowledge can now be applied to cell line selection and downstream processing development to target reduction/removal of general and specific problematic HCPs before and during downstream processing.

  7. Uncovering stem cell differentiation factors for salivary gland regeneration by quantitative analysis of differential proteomes

    PubMed Central

    Park, Yun-Jong; Koh, Jin; Kwon, Jin Teak; Park, Yong-Seok; Yang, Lijun; Cha, Seunghee

    2017-01-01

    Severe xerostomia (dry mouth) compromises the quality of life in patients with Sjögren’s syndrome or radiation therapy for head and neck cancer. A clinical management of xerostomia is often unsatisfactory as most interventions are palliative with limited efficacy. Following up our previous study demonstrating that mouse BM-MSCs are capable of differentiating into salivary epithelial cells in a co-culture system, we further explored the molecular basis that governs the MSC reprogramming by utilizing high-throughput iTRAQ-2D-LC-MS/MS-based proteomics. Our data revealed the novel induction of pancreas-specific transcription factor 1a (PTF1α), muscle, intestine and stomach expression-1 (MIST-1), and achaete-scute complex homolog 3 (ASCL3) in 7 day co-cultured MSCs but not in control MSCs. More importantly, a common notion of pancreatic-specific expression of PTF1 α was challenged for the first time by our verification of PTF1 α expression in the mouse salivary glands. Furthermore, a molecular network simulation of our selected putative MSC reprogramming factors demonstrated evidence for their perspective roles in salivary gland development. In conclusion, quantitative proteomics with extensive data analyses narrowed down a set of MSC reprograming factors potentially contributing to salivary gland regeneration. Identification of their differential/synergistic impact on MSC conversion warrants further investigation. PMID:28158262

  8. Saliva proteome profiling reveals potential salivary biomarkers for detection of oral cavity squamous cell carcinoma.

    PubMed

    Wu, Chih-Ching; Chu, Hao-Wei; Hsu, Chia-Wei; Chang, Kai-Ping; Liu, Hao-Ping

    2015-10-01

    Oral cavity squamous cell carcinoma (OSCC), which is frequently associated with poor prognosis and mortality, is a leading cause of cancer-related death worldwide. Discovery of body fluid accessible biomarkers is needed to improve OSCC screening. To this end, we profiled proteomes of saliva from the healthy volunteers, the individuals with oral potentially malignant disorders (OPMD), and the OSCC patients by means of SDS-PAGE coupled with LC-MS/MS. In the control, the OPMD, and the OSCC groups, 958, 845, and 1030 salivary proteins were detected, respectively. With spectral counting-based label-free quantification, 22 overexpressed salivary proteins were identified in the OSCC group compared with the healthy controls and the OPMD individuals. Among them, resistin (RETN) was subjected to further validation with an independent cohort using ELISA. The data confirmed that the salivary RETN levels in the OSCC patients were significantly higher than that in the healthy or in the OPMD group. Moreover, the elevated levels of salivary RETN were highly correlated with late-stage primary tumors, advanced overall stage, and lymph-node metastasis. Our results not only reveal that profiling of saliva proteome is feasible for discovery of OSCC biomarkers, but also identify RETN as a potential salivary biomarker for OSCC detection.

  9. Advances of Salivary Proteomics in Oral Squamous Cell Carcinoma (OSCC) Detection: An Update

    PubMed Central

    Sannam Khan, Rabia; Khurshid, Zohaib; Akhbar, Shazia; Faraz Moin, Syed

    2016-01-01

    Oral cancer refers to malignancies that have higher morbidity and mortality rates due to the late stage diagnosis and no early detection of a reliable diagnostic marker, while oral squamous cell carcinoma (OSCC) is amongst the world’s top ten most common cancers. Diagnosis of cancer requires highly sensitive and specific diagnostic tools which can support untraceable hidden sites of OSCC, yet to be unleashed, for which plenty of biomarkers are identified; the most recommended biomarker detection medium for OSCC includes biological fluids, such as blood and saliva. Saliva holds a promising future in the search for new clinical biomarkers that are easily accessible, less complex, accurate, and cost effective as well as being a non-invasive technique to follow, by analysing the malignant cells’ molecular pathology obtained from saliva through proteomic, genomic and transcriptomic approaches. However, protein biomarkers provide an immense potential for developing novel marker-based assays for oral cancer, hence this current review offers an overall focus on the discovery of a panel of candidates as salivary protein biomarkers, as well as the proteomic tools used for their identification and their significance in early oral cancer detection. PMID:28248250

  10. Uncovering stem cell differentiation factors for salivary gland regeneration by quantitative analysis of differential proteomes.

    PubMed

    Park, Yun-Jong; Koh, Jin; Kwon, Jin Teak; Park, Yong-Seok; Yang, Lijun; Cha, Seunghee

    2017-01-01

    Severe xerostomia (dry mouth) compromises the quality of life in patients with Sjögren's syndrome or radiation therapy for head and neck cancer. A clinical management of xerostomia is often unsatisfactory as most interventions are palliative with limited efficacy. Following up our previous study demonstrating that mouse BM-MSCs are capable of differentiating into salivary epithelial cells in a co-culture system, we further explored the molecular basis that governs the MSC reprogramming by utilizing high-throughput iTRAQ-2D-LC-MS/MS-based proteomics. Our data revealed the novel induction of pancreas-specific transcription factor 1a (PTF1α), muscle, intestine and stomach expression-1 (MIST-1), and achaete-scute complex homolog 3 (ASCL3) in 7 day co-cultured MSCs but not in control MSCs. More importantly, a common notion of pancreatic-specific expression of PTF1 α was challenged for the first time by our verification of PTF1 α expression in the mouse salivary glands. Furthermore, a molecular network simulation of our selected putative MSC reprogramming factors demonstrated evidence for their perspective roles in salivary gland development. In conclusion, quantitative proteomics with extensive data analyses narrowed down a set of MSC reprograming factors potentially contributing to salivary gland regeneration. Identification of their differential/synergistic impact on MSC conversion warrants further investigation.

  11. Differential proteome analysis of bone marrow mesenchymal stem cells from adolescent idiopathic scoliosis patients.

    PubMed

    Zhuang, Qianyu; Li, Jing; Wu, Zhihong; Zhang, Jianguo; Sun, Wei; Li, Tao; Yan, Yujuan; Jiang, Ying; Zhao, Robert Chunhua; Qiu, Guixing

    2011-04-22

    Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformity of the spine. The cause and pathogenesis of scoliosis and the accompanying generalized osteopenia remain unclear despite decades of extensive research. In this study, we utilized two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) to analyze the differential proteome of bone marrow mesenchymal stem cells (BM-MSCs) from AIS patients. In total, 41 significantly altered protein spots were detected, of which 34 spots were identified by MALDI-TOF/TOF analysis and found to represent 25 distinct gene products. Among these proteins, five related to bone growth and development, including pyruvate kinase M2, annexin A2, heat shock 27 kDa protein, γ-actin, and β-actin, were found to be dysregulated and therefore selected for further validation by Western blot analysis. At the protein level, our results supported the previous hypothesis that decreased osteogenic differentiation ability of MSCs is one of the mechanisms leading to osteopenia in AIS. In summary, we analyzed the differential BM-MSCs proteome of AIS patients for the first time, which may help to elucidate the underlying molecular mechanisms of bone loss in AIS and also increase understanding of the etiology and pathogenesis of AIS.

  12. Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs

    PubMed Central

    Qu, Ying; Zhou, Bo; Yang, Wei; Han, Bingchen; Yu-Rice, Yi; Gao, Bowen; Johnson, Jeffery; Svendsen, Clive N.; Freeman, Michael R.; Giuliano, Armando E.; Sareen, Dhruv; Cui, Xiaojiang

    2016-01-01

    Surface ectoderm (SE) cells give rise to structures including the epidermis and ectodermal associated appendages such as hair, eye, and the mammary gland. In this study, we validate a protocol that utilizes BMP4 and the γ-secretase inhibitor DAPT to induce SE differentiation from human induced pluripotent stem cells (hiPSCs). hiPSC-differentiated SE cells expressed markers suggesting their commitment to the SE lineage. Computational analyses using integrated quantitative transcriptomic and proteomic profiling reveal that TGFβ superfamily signaling pathways are preferentially activated in SE cells compared with hiPSCs. SE differentiation can be enhanced by selectively blocking TGFβ-RI signaling. We also show that SE cells and neural ectoderm cells possess distinct gene expression patterns and signaling networks as indicated by functional Ingenuity Pathway Analysis. Our findings advance current understanding of early human SE cell development and pave the way for modeling of SE-derived tissue development, studying disease pathogenesis, and development of regenerative medicine approaches. PMID:27550649

  13. Quantitative proteomics reveals differential regulation of protein expression in recipient myocardium after trilineage cardiovascular cell transplantation

    PubMed Central

    Chang, Ying-Hua; Ye, Lei; Cai, Wenxuan; Lee, Yoonkyu; Guner, Huseyin; Lee, Youngsook; Kamp, Timothy J.; Zhang, Jianyi; Ge, Ying

    2015-01-01

    Intramyocardial transplantation of cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) derived from human induced pluripotent stem cells (hiPSCs) has beneficial effects on the post-infarction heart. However, the mechanisms underlying the functional improvements remain undefined. We employed large-scale label-free quantitative proteomics to identify proteins that were differentially regulated following cellular transplantation in a swine model of myocardial infarction (MI). We identified 22 proteins that were significantly up-regulated after trilineage cell transplantation compared to both MI and Sham groups. Among them, 12 proteins, including adenylyl cyclase-associated protein 1 and tropomodulin-1, are associated with positive regulation of muscular contraction whereas 11 proteins, such as desmoplakin and zyxin, are involved in embryonic and muscular development and regeneration. Moreover, we identified 21 proteins up-regulated and another 21 down-regulated in MI, but reversed after trilineage cell transplantation. Proteins up-regulated after MI but reversed by transplantation are related to fibrosis and apoptosis. Conversely, proteins down-regulated in MI but restored after cell therapy are regulators of protein nitrosylation. Our results show that the functionally beneficial effects of trilineage cell therapy are accompanied by differential regulation of protein expression in the recipient myocardium, which may contribute to the improved cardiac function. PMID:26033914

  14. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

    PubMed Central

    Kawamura, Tatsuro; Kawatani, Makoto; Muroi, Makoto; Kondoh, Yasumitsu; Futamura, Yushi; Aono, Harumi; Tanaka, Miho; Honda, Kaori; Osada, Hiroyuki

    2016-01-01

    Since recent publications suggested that the survival of cancer cells depends on MTH1 to avoid incorporation of oxidized nucleotides into the cellular DNA, MTH1 has attracted attention as a potential cancer therapeutic target. In this study, we identified new purine-based MTH1 inhibitors by chemical array screening. However, although the MTH1 inhibitors identified in this study targeted cellular MTH1, they exhibited only weak cytotoxicity against cancer cells compared to recently reported first-in-class inhibitors. We performed proteomic profiling to investigate the modes of action by which chemically distinct MTH1 inhibitors induce cancer cell death, and found mechanistic differences among the first-in-class MTH1 inhibitors. In particular, we identified tubulin as the primary target of TH287 and TH588 responsible for the antitumor effects despite the nanomolar MTH1-inhibitory activity in vitro. Furthermore, overexpression of MTH1 did not rescue cells from MTH1 inhibitor–induced cell death, and siRNA-mediated knockdown of MTH1 did not suppress cancer cell growth. Taken together, we conclude that the cytotoxicity of MTH1 inhibitors is attributable to off-target effects and that MTH1 is not essential for cancer cell survival. PMID:27210421

  15. Quantitative proteomics reveals differential regulation of protein expression in recipient myocardium after trilineage cardiovascular cell transplantation.

    PubMed

    Chang, Ying-Hua; Ye, Lei; Cai, Wenxuan; Lee, Yoonkyu; Guner, Huseyin; Lee, Youngsook; Kamp, Timothy J; Zhang, Jianyi; Ge, Ying

    2015-08-01

    Intramyocardial transplantation of cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) derived from human induced pluripotent stem cells (hiPSCs) has beneficial effects on the post-infarction heart. However, the mechanisms underlying the functional improvements remain undefined. We employed large-scale label-free quantitative proteomics to identify proteins that were differentially regulated following cellular transplantation in a swine model of myocardial infarction (MI). We identified 22 proteins that were significantly up-regulated after trilineage cell transplantation compared to both MI and Sham groups. Among them, 12 proteins, including adenylyl cyclase-associated protein 1 and tropomodulin-1, are associated with positive regulation of muscular contraction whereas 11 proteins, such as desmoplakin and zyxin, are involved in embryonic and muscular development and regeneration. Moreover, we identified 21 proteins up-regulated and another 21 down-regulated in MI, but reversed after trilineage cell transplantation. Proteins up-regulated after MI but reversed by transplantation are related to fibrosis and apoptosis. Conversely, proteins down-regulated in MI but restored after cell therapy are regulators of protein nitrosylation. Our results show that the functionally beneficial effects of trilineage cell therapy are accompanied by differential regulation of protein expression in the recipient myocardium, which may contribute to the improved cardiac function.

  16. Nitrosothiol-Trapping-Based Proteomic Analysis of S-Nitrosylation in Human Lung Carcinoma Cells

    PubMed Central

    Ben-Lulu, Shani; Ziv, Tamar; Weisman-Shomer, Pnina; Benhar, Moran

    2017-01-01

    Nitrosylation of cysteines residues (S-nitrosylation) mediates many of the cellular effects of nitric oxide in normal and diseased cells. Recent research indicates that S-nitrosylation of certain proteins could play a role in tumor progression and responsiveness to therapy. However, the protein targets of S-nitrosylation in cancer cells remain largely unidentified. In this study, we used our recently developed nitrosothiol trapping approach to explore the nitrosoproteome of human A549 lung carcinoma cells treated with S-nitrosocysteine or pro-inflammatory cytokines. Using this approach, we identified about 300 putative nitrosylation targets in S-nitrosocysteine-treated A549 cells and approximately 400 targets in cytokine-stimulated cells. Among the more than 500 proteins identified in the two screens, the majority represent novel targets of S-nitrosylation, as revealed by comparison with publicly available nitrosoproteomic data. By coupling the trapping procedure with differential thiol labeling, we identified nearly 300 potential nitrosylation sites in about 150 proteins. The proteomic results were validated for several proteins by an independent approach. Bioinformatic analysis highlighted important cellular pathways that are targeted by S-nitrosylation, notably, cell cycle and inflammatory signaling. Taken together, our results identify new molecular targets of nitric oxide in lung cancer cells and suggest that S-nitrosylation may regulate signaling pathways that are critically involved in lung cancer progression. PMID:28081246

  17. Proteome analysis of human Wharton's jelly cells during in vitro expansion

    PubMed Central

    2010-01-01

    Background The human umbilical cord contains mucoid connective tissue and fibroblast-like cells. These cells named Wharton's jelly cells, (WJCs) display properties similar to mesenchymal stem cells therefore representing a rich source of primitive cells to be potentially used in regenerative medicine. Results To better understand their self-renewal and potential in vitro expansion capacity, a reference 2D map was constructed as a proteomic data set. 158 unique proteins were identified. More than 30% of these proteins belong to cytoskeleton compartment. We also found that several proteins including Shootin1, Adenylate kinase 5 isoenzyme and Plasminogen activator-inhibitor 2 are no longer expressed after the 2nd passage of in vitro replication. This indicates that the proliferative potency of these cells is reduced after the initial stage of in vitro growing. At the end of cellular culturing, new synthesized proteins, including, ERO1-like protein alpha, Aspartyl-tRNA synthetase and Prolyl-4-hydroxylase were identified. It is suggested that these new synthesized proteins are involved in the impairment of cellular surviving during replication and differentiation time. Conclusions Our work represents an essential step towards gaining knowledge of the molecular properties of WJCs so as to better understand their possible use in the field of cell therapy and regenerative medicine. PMID:20346146

  18. Identification of novel Mycobacterium tuberculosis CD4 T-cell antigens via high throughput proteome screening

    PubMed Central

    Nayak, Kaustuv; Jing, Lichen; Russell, Ronnie M.; Davies, D. Huw; Hermanson, Gary; Molina, Douglas M.; Liang, Xiaowu; Sherman, David R.; Kwok, William W.; Yang, Junbao; Kenneth, John; Ahamed, Syed F.; Chandele, Anmol; Kaja, Murali-Krishna; Koelle, David M.

    2015-01-01

    Elicitation of CD4 IFN-gamma T cell responses to Mycobacterium tuberculosis (MTB) is a rational vaccine strategy to prevent clinical tuberculosis. Diagnosis of MTB infection is based on T-cell immune memory to MTB antigens. The MTB proteome contains over four thousand open reading frames (ORFs). We conducted a pilot antigen identification study using 164 MTB proteins and MTB-specific T-cells expanded in vitro from 12 persons with latent MTB infection. Enrichment of MTB-reactive T-cells from PBMC used cell sorting or an alternate system compatible with limited resources. MTB proteins were used as single antigens or combinatorial matrices in proliferation and cytokine secretion readouts. Overall, our study found that 44 MTB proteins were antigenic, including 27 not previously characterized as CD4 T-cell antigens. Antigen truncation, peptide, NTM homology, and HLA class II tetramer studies confirmed malate synthase G (encoded by gene Rv1837) as a CD4 T-cell antigen. This simple, scalable system has potential utility for the identification of candidate MTB vaccine and biomarker antigens. PMID:25857935

  19. 77 FR 5489 - Identification of Human Cell Lines Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... National Institute of Standards and Technology Identification of Human Cell Lines Project AGENCY: National... tandem repeat (STR) profiling up to 1500 human cell line samples as part of the Identification of Human... its intent to unambiguously identify by short tandem repeat (STR) profiling up to 1500 human cell...

  20. Proteomic Analyses Reveal Common Promiscuous Patterns of Cell Surface Proteins on Human Embryonic Stem Cells and Sperms

    PubMed Central

    Gu, Bin; Zhang, Jiarong; Wu, Ying; Zhang, Xinzong; Tan, Zhou; Lin, Yuanji; Huang, Xiao; Chen, Liangbiao; Yao, Kangshou; Zhang, Ming

    2011-01-01

    Background It has long been proposed that early embryos and reproductive organs exhibit similar gene expression profiles. However, whether this similarity is propagated to the protein level remains largely unknown. We have previously characterised the promiscuous expression pattern of cell surface proteins on mouse embryonic stem (mES) cells. As cell surface proteins also play critical functions in human embryonic stem (hES) cells and germ cells, it is important to reveal whether a promiscuous pattern of cell surface proteins also exists for these cells. Methods and Principal Findings Surface proteins of hES cells and human mature sperms (hSperms) were purified by biotin labelling and subjected to proteomic analyses. More than 1000 transmembrane or secreted cell surface proteins were identified on the two cell types, respectively. Proteins from both cell types covered a large variety of functional categories including signal transduction, adhesion and transporting. Moreover, both cell types promiscuously expressed a wide variety of tissue specific surface proteins, and some surface proteins were heterogeneously expressed. Conclusions/Significance Our findings indicate that the promiscuous expression of functional and tissue specific cell surface proteins may be a common pattern in embryonic stem cells and germ cells. The conservation of gene expression patterns between early embryonic cells and reproductive cells is propagated to the protein level. These results have deep implications for the cell surface signature characterisation of pluripotent stem cells and germ cells and may lead the way to a new area of study, i.e., the functional significance of promiscuous gene expression in pluripotent and germ cells. PMID:21559292

  1. Immunoglobulin expression and synthesis by human haemic cell lines.

    PubMed Central

    Gordon, J; Hough, D; Karpas, A; Smith, J L

    1977-01-01

    Twenty-six human cell lines derived from a variety of lymphoid and non-lymphoid malignancies, were investigated for their immunological markers, with special reference to the class of immunoglobulin expressed. Twenty-five of the lines stained positively for surface immunoglobulin and IgD together with IgM proved to be the major immunoglobulin classes on these cells. Six of the lines were chosen for a study of their immunoglobulin synthesis patterns over an 18-h period and the immunoglobulin produced was analysed on SDS-polyacrylamide gel electrophoresis. Patterns obtained from the cell lines were similar to that from normal lymph node lymphocytes and differed markedly to plasma cells. Two of the cell lines had abnormal immunoglobulin synthesis patterns characterized as free light chains in one case. The cell lines are evaluated for their usefulness as models of immunoglobulin synthesis and analogues of normal and neoplastic states. PMID:608682

  2. Multipronged functional proteomics approaches for global identification of altered cell signalling pathways in B-cell chronic lymphocytic leukaemia.

    PubMed

    Díez, Paula; Lorenzo, Seila; Dégano, Rosa M; Ibarrola, Nieves; González-González, María; Nieto, Wendy; Almeida, Julia; González, Marcos; Orfao, Alberto; Fuentes, Manuel

    2016-04-01

    Chronic lymphocytic leukaemia (CLL) is a malignant B cell disorder characterized by its high heterogeneity. Although genomic alterations have been broadly reported, protein studies are still in their early stages. Herein, a 224-antibody microarray has been employed to study the intracellular signalling pathways in a cohort of 14 newly diagnosed B-CLL patients as a preliminary study for further investigations. Several protein profiles were differentially identified across the cytogenetic and molecular alterations presented in the samples (deletion 13q14 and 17p13.1, trisomy 12, and NOTCH1 mutations) by a combination of affinity and MS/MS proteomics approaches. Among others altered cell signalling pathways, PKC family members were identified as down-regulated in nearly 75% of the samples tested with the antibody arrays. This might explain the rapid progression of the disease when showing p53, Rb1, or NOTCH1 mutations due to PKC-proteins family plays a critical role favouring the slowly progressive indolent behaviour of CLL. Additionally, the antibody microarray results were validated by a LC-MS/MS quantification strategy and compared to a transcriptomic CLL database. In summary, this research displays the usefulness of proteomic strategies to globally evaluate the protein alterations in CLL cells and select the possible biomarkers to be further studied with larger sample sizes.

  3. ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6.

    PubMed

    Eichmann, Thomas O; Grumet, Lukas; Taschler, Ulrike; Hartler, Jürgen; Heier, Christoph; Woblistin, Aaron; Pajed, Laura; Kollroser, Manfred; Rechberger, Gerald; Thallinger, Gerhard G; Zechner, Rudolf; Haemmerle, Günter; Zimmermann, Robert; Lass, Achim

    2015-10-01

    Lipid droplets (LDs) of hepatic stellate cells (HSCs) contain large amounts of vitamin A [in the form of retinyl esters (REs)] as well as other neutral lipids such as TGs. During times of insufficient vitamin A availability, RE stores are mobilized to ensure a constant supply to the body. To date, little is known about the enzymes responsible for the hydrolysis of neutral lipid esters, in particular of REs, in HSCs. In this study, we aimed to identify LD-associated neutral lipid hydrolases by a proteomic approach using the rat stellate cell line HSC-T6. First, we loaded cells with retinol and FAs to promote lipid synthesis and deposition within LDs. Then, LDs were isolated and lipid composition and the LD proteome were analyzed. Among other proteins, we found perilipin 2, adipose TG lipase (ATGL), and comparative gene identification-58 (CGI-58), known and established LD proteins. Bioinformatic search of the LD proteome for α/β-hydrolase fold-containing proteins revealed no yet uncharacterized neutral lipid hydrolases. In in vitro activity assays, we show that rat (r)ATGL, coactivated by rat (r)CGI-58, efficiently hydrolyzes TGs and REs. These findings suggest that rATGL and rCGI-58 are LD-resident proteins in HSCs and participate in the mobilization of both REs and TGs.

  4. Histone deacetylase inhibitor-induced cell death in bladder cancer is associated with chromatin modification and modifying protein expression: A proteomic approach

    PubMed Central

    LI, QINGDI QUENTIN; HAO, JIAN-JIANG; ZHANG, ZHENG; HSU, IAWEN; LIU, YI; TAO, ZHEN; LEWI, KEIDREN; METWALLI, ADAM R.; AGARWAL, PIYUSH K.

    2016-01-01

    The Cancer Genome Atlas (TCGA) project recently identified the importance of mutations in chromatin remodeling genes in human carcinomas. These findings imply that epigenetic modulators might have a therapeutic role in urothelial cancers. To exploit histone deacetylases (HDACs) as targets for cancer therapy, we investigated the HDAC inhibitors (HDACIs) romidepsin, trichostatin A, and vorinostat as potential chemotherapeutic agents for bladder cancer. We demonstrate that the three HDACIs suppressed cell growth and induced cell death in the bladder cancer cell line 5637. To identify potential mechanisms associated with the anti-proliferative and cytotoxic effects of the HDACIs, we used quantitative proteomics to determine the proteins potentially involved in these processes. Our proteome studies identified a total of 6003 unique proteins. Of these, 2472 proteins were upregulated and 2049 proteins were downregulated in response to HDACI exposure compared to the untreated controls (P<0.05). Bioinformatic analysis further revealed that those differentially expressed proteins were involved in multiple biological functions and enzyme-regulated pathways, including cell cycle progression, apoptosis, autophagy, free radical generation and DNA damage repair. HDACIs also altered the acetylation status of histones and non-histone proteins, as well as the levels of chromatin modification proteins, suggesting that HDACIs exert multiple cytotoxic actions in bladder cancer cells by inhibiting HDAC activity or altering the structure of chromatin. We conclude that HDACIs are effective in the inhibition of cell proliferation and the induction of apoptosis in the 5637 bladder cancer cells through multiple cell death-associated pathways. These observations support the notion that HDACIs provide new therapeutic options for bladder cancer treatment and thus warrant further preclinical exploration. PMID:27082124

  5. Generation and quantitative proteomics analysis of CK2α/α’(−/−) cells

    PubMed Central

    Borgo, Christian; Franchin, Cinzia; Scalco, Stefano; Bosello-Travain, Valentina; Donella-Deana, Arianna; Arrigoni, Giorgio; Salvi, Mauro; Pinna, Lorenzo A.

    2017-01-01

    CK2 is a ubiquitous, constitutively active, highly pleiotropic, acidophilic Ser/Thr protein kinase whose holoenzyme is composed of two catalytic (α and/or α’) subunits and a dimer of a non-catalytic β subunit. Abnormally high CK2 level/activity is often associated with malignancy and a variety of cancer cells have been shown to rely on it to escape apoptosis. To gain information about the actual “druggability” of CK2 and to dissect CK2 dependent cellular processes that are instrumental to the establishment and progression of neoplasia we have exploited the CRISPR/Cas9 genome editing technology to generate viable clones of C2C12 myoblasts devoid of either both the CK2 catalytic subunits or its regulatory β-subunit. Suppression of both CK2 catalytic subunits promotes the disappearance of the β-subunit as well, through its accelerated proteasomal degradation. A quantitative proteomics analysis of CK2α/α’(−/−) versus wild type cells shows that knocking out both CK2 catalytic subunits causes a rearrangement of the proteomics profile, with substantially altered level ( > 50%) of 240 proteins, 126 of which are up-regulated, while the other are down-regulated. A functional analysis reveals that up- and down-regulated proteins tend to be segregated into distinct sub-cellular compartments and play different biological roles, consistent with a global rewiring underwent by the cell to cope with the lack of CK2. PMID:28209983

  6. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics

    PubMed Central

    Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko

    2016-01-01

    The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244

  7. Comparative proteomic analysis of apomictic monosomic addition line of Beta corolliflora and Beta vulgaris L. in sugar beet.

    PubMed

    Zhu, Hong; Bi, Ying-Dong; Yu, Li-Jie; Guo, De-Dong; Wang, Bai-Chen

    2009-11-01

    Apomixis refers to a process in which plants produce seed without fertilization through female syngamy that produces embryos genetically identical to the maternal parent. In sugar beet, interspecific hybrids between diploid Beta vulgaris and tetraploid Beta corolliflora were established and monosomic addition line M14 was selected because of the apomictic phenotype. By using two-dimensional electrophoresis gels we identified the proteins which were differently expressed between the M14 and B. vulgaris. A total of 27 protein spots which varied expressed between lines were isolated and successfully identified with MALDI-TOF MS. Among them five protein spots were found to be only presented in M14 and two protein spots only expressed in Beta. According to their functional annotations described in Swissprot database, these proteins were, respectively, involved in important biological pathways, such as cell division, functionally classified using the KEGG functional classification system. The result may be useful for us to better understand the genetic mechanism of apomixes.

  8. Proteome Analysis of Human Follicular Thyroid Cancer Cells Exposed to the Random Positioning Machine

    PubMed Central

    Bauer, Johann; Kopp, Sascha; Schlagberger, Elisabeth Maria; Grosse, Jirka; Sahana, Jayashree; Riwaldt, Stefan; Wehland, Markus; Luetzenberg, Ronald; Infanger, Manfred; Grimm, Daniela

    2017-01-01

    Several years ago, we detected the formation of multicellular spheroids in experiments with human thyroid cancer cells cultured on the Random Positioning Machine (RPM), a ground-based model to simulate microgravity by continuously changing the orientation of samples. Since then, we have studied cellular mechanisms triggering the cells to leave a monolayer and aggregate to spheroids. Our work focused on spheroid-related changes in gene expression patterns, in protein concentrations, and in factors secreted to the culture supernatant during the period when growth is altered. We detected that factors inducing angiogenesis, the composition of integrins, the density of the cell monolayer exposed to microgravity, the enhanced production of caveolin-1, and the nuclear factor kappa B p65 could play a role during spheroid formation in thyroid cancer cells. In this study, we performed a deep proteome analysis on FTC-133 thyroid cancer cells cultured under conditions designed to encourage or discourage spheroid formation. The experiments revealed more than 5900 proteins. Their evaluation confirmed and explained the observations mentioned above. In addition, we learned that FTC-133 cells growing in monolayers or in spheroids after RPM-exposure incorporate vinculin, paxillin, focal adhesion kinase 1, and adenine diphosphate (ADP)-ribosylation factor 6 in different ways into the focal adhesion complex. PMID:28273809

  9. Proteome Analysis of Human Follicular Thyroid Cancer Cells Exposed to the Random Positioning Machine.

    PubMed

    Bauer, Johann; Kopp, Sascha; Schlagberger, Elisabeth Maria; Grosse, Jirka; Sahana, Jayashree; Riwaldt, Stefan; Wehland, Markus; Luetzenberg, Ronald; Infanger, Manfred; Grimm, Daniela

    2017-03-03

    Several years ago, we detected the formation of multicellular spheroids in experiments with human thyroid cancer cells cultured on the Random Positioning Machine (RPM), a ground-based model to simulate microgravity by continuously changing the orientation of samples. Since then, we have studied cellular mechanisms triggering the cells to leave a monolayer and aggregate to spheroids. Our work focused on spheroid-related changes in gene expression patterns, in protein concentrations, and in factors secreted to the culture supernatant during the period when growth is altered. We detected that factors inducing angiogenesis, the composition of integrins, the density of the cell monolayer exposed to microgravity, the enhanced production of caveolin-1, and the nuclear factor kappa B p65 could play a role during spheroid formation in thyroid cancer cells. In this study, we performed a deep proteome analysis on FTC-133 thyroid cancer cells cultured under conditions designed to encourage or discourage spheroid formation. The experiments revealed more than 5900 proteins. Their evaluation confirmed and explained the observations mentioned above. In addition, we learned that FTC-133 cells growing in monolayers or in spheroids after RPM-exposure incorporate vinculin, paxillin, focal adhesion kinase 1, and adenine diphosphate (ADP)-ribosylation factor 6 in different ways into the focal adhesion complex.

  10. Proteome characterization of sea star coelomocytes--the innate immune effector cells of echinoderms.

    PubMed

    Franco, Catarina F; Santos, Romana; Coelho, Ana V

    2011-09-01

    Sea star coelomic fluid is in contact with all internal organs, carrying signaling molecules and a large population of circulating cells, the coelomocytes. These cells, also known as echinoderm blood cells, are responsible for the innate immune responses and are also known to have an important role in the first stage of regeneration, i.e. wound closure, necessary to prevent disruption of the body fluid balance and to limit the invasion of pathogens. This study focuses on the proteome characterization of these multifunctional cells. The identification of 358 proteins was achieved using a combination of two techniques for protein separation (1-D SDS-PAGE followed by nanoLC and 2-D SDS-PAGE) and MALDI-TOF/TOF MS for protein identification. To our knowledge, the present report represents the first comprehensive list of sea star coelomocyte proteins, constituting an important database to validate many echinoderm-predicted proteins. Evidence for new pathways in these particular echinoderm cells are also described, and thus representing a valuable resource to stimulate future studies aiming to unravel the homology with vertebrate immune cells and particularly the origins of the immune system itself.

  11. Proteomic exploration of the impacts of pomegranate fruit juice on the global gene expression of prostate cancer cell.

    PubMed

    Lee, Song-Tay; Wu, Yi-Ling; Chien, Lan-Hsiang; Chen, Szu-Ting; Tzeng, Yu-Kai; Wu, Ting-Feng

    2012-11-01

    Prostate cancer has been known to be the second highest cause of death in cancer among men. Pomegranate is rich in polyphenols with the potent antioxidant activity and inhibits cell proliferation, invasion, and promotes apoptosis in various cancer cells. This study demonstrated that pomegranate fruit juice could effectively hinder the proliferation of human prostate cancer DU145 cell. The results of apoptotic analyses implicated that fruit juice might trigger the apoptosis in DU145 cells via death receptor signaling and mitochondrial damage pathway. In this study, we exploited 2DE-based proteomics to compare nine pairs of the proteome maps collected from untreated and treated DU145 cells to identify the differentially expressed proteins. Comparative proteomics indicated that 11 proteins were deregulated in affected DU145 cells with three upregulated and eight downregulated proteins. These dys-regulated proteins participated in cytoskeletal functions, antiapoptosis, proteasome activity, NF-κB signaling, cancer cell proliferation, invasion, and angiogenesis. Western immunoblotting were implemented to confirm the deregulated proteins and the downstream signaling proteins. The analytical results of this study help to provide insight into the molecular mechanism of inducing prostate cancer cell apoptosis by pomegranate fruit juice and to develop a novel mechanism-based chemopreventive strategy for prostate cancer.

  12. Continuous human cell lines and method of making same

    SciTech Connect

    Stampfer, M.R.

    1989-02-28

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. No Drawings

  13. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, M.R.

    1985-07-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.

  14. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, Martha R.

    1989-01-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.

  15. Susceptibilities of 14 cell lines to bluetongue virus infection.

    PubMed Central

    Wechsler, S J; McHolland, L E

    1988-01-01

    The effect of bluetongue virus (BTV) infection was investigated in 14 cell lines. The cell lines included the following vertebrate cells: baby hamster kidney, African green monkey kidney (Vero), rabbit kidney, bovine kidney, canine kidney, bovine turbinate, bovine endothelium (CPAE), bighorn sheep tongue, equine dermis, gekko lung, rainbow trout gonad, and mouse fibroblast (L929); they also included the following invertebrate lines: mosquito and biting midge. Comparisons between the cell lines were made on the basis of time to observed cytopathic effects, titer in 50% tissue culture infectious doses, and titer in plaque-forming units. The CPAE cell line produced the highest BTV 50% tissue culture infectious dose of all cell lines tested. The Vero and L929 cells gave the most discrete plaques in plaque assays. Of the 14 cell lines tested, the CPAE cells were the most susceptible to both cell culture-adapted and animal source BTV. Bovine endothelial cells demonstrate significant potential as a cell culture system for BTV investigations. PMID:2853175

  16. Proteomic Analysis of Epithelial to Mesenchymal Transition (EMT) Reveals Cross-talk between SNAIL and HDAC1 Proteins in Breast Cancer Cells*

    PubMed Central

    Palma, Camila de Souza; Grassi, Mariana Lopes; Thomé, Carolina Hassibe; Ferreira, Germano Aguiar; Albuquerque, Daniele; Pinto, Mariana Tomazini; Ferreira Melo, Fernanda Ursoli; Kashima, Simone; Covas, Dimas Tadeu; Pitteri, Sharon J.; Faça, Vitor M.

    2016-01-01

    Epithelial to mesenchymal transition (EMT)1 occurs naturally during embryogenesis, tissue repair, cancer progression, and metastasis. EMT induces cellular and microenvironmental changes resulting in loss of epithelial and acquisition of mesenchymal phenotypes, which promotes cellular invasive and migratory capabilities. EMT can be triggered by extracellular factors, including TGF-β, HGF, and EGF. Overexpression of transcription factors, such as SNAIL, SLUG, ZEB1/2, and TWIST1, also induces EMT and is correlated to cancer aggressiveness. Here, the breast adenocarcinoma cell line MCF7 was transduced with SNAIL to identify specific mechanisms controlled by this transcription factor during EMT. Overexpression of SNAIL led to EMT, which was thoroughly validated by molecular, morphological, and functional experiments. Subcellular proteome enrichment followed by GEL-LC-MS/MS was performed to provide extensive protein fractionation and in-depth proteomic analysis. Quantitative analysis relied on a SILAC strategy, using the invasive breast cancer cell line MDA-MB-231 as a reference for quantitation. Subsets of proteins enriched in each subcellular compartment led to a complementary list of 4289 proteins identified with high confidence. A subset of differentially expressed proteins was validated by Western blot, including regulation in specific cellular compartments, potentially caused by protein translocation. Protein network analysis highlighted complexes involved in cell cycle control and epigenetic regulation. Flow cytometry analysis indicated that SNAIL overexpression led to cell cycle arrest in G0/G1 phases. Furthermore, down-regulation of HDAC1 was observed, supporting the involvement of epigenetic processes in SNAIL-induced EMT. When HDAC1 activity was inhibited, MCF7 not only apparently initiated EMT but also up-regulated SNAIL, indicating the cross-talk between these two proteins. Both HDAC1 inhibition and SNAIL overexpression activated the AKT pathway. These

  17. Proteomic Analysis of Epithelial to Mesenchymal Transition (EMT) Reveals Cross-talk between SNAIL and HDAC1 Proteins in Breast Cancer Cells.

    PubMed

    Palma, Camila de Souza; Grassi, Mariana Lopes; Thomé, Carolina Hassibe; Ferreira, Germano Aguiar; Albuquerque, Daniele; Pinto, Mariana Tomazini; Ferreira Melo, Fernanda Ursoli; Kashima, Simone; Covas, Dimas Tadeu; Pitteri, Sharon J; Faça, Vitor M

    2016-03-01

    Epithelial to mesenchymal transition (EMT)(1) occurs naturally during embryogenesis, tissue repair, cancer progression, and metastasis. EMT induces cellular and microenvironmental changes resulting in loss of epithelial and acquisition of mesenchymal phenotypes, which promotes cellular invasive and migratory capabilities. EMT can be triggered by extracellular factors, including TGF-β, HGF, and EGF. Overexpression of transcription factors, such as SNAIL, SLUG, ZEB1/2, and TWIST1, also induces EMT and is correlated to cancer aggressiveness. Here, the breast adenocarcinoma cell line MCF7 was transduced with SNAIL to identify specific mechanisms controlled by this transcription factor during EMT. Overexpression of SNAIL led to EMT, which was thoroughly validated by molecular, morphological, and functional experiments. Subcellular proteome enrichment followed by GEL-LC-MS/MS was performed to provide extensive protein fractionation and in-depth proteomic analysis. Quantitative analysis relied on a SILAC strategy, using the invasive breast cancer cell line MDA-MB-231 as a reference for quantitation. Subsets of proteins enriched in each subcellular compartment led to a complementary list of 4289 proteins identified with high confidence. A subset of differentially expressed proteins was validated by Western blot, including regulation in specific cellular compartments, potentially caused by protein translocation. Protein network analysis highlighted complexes involved in cell cycle control and epigenetic regulation. Flow cytometry analysis indicated that SNAIL overexpression led to cell cycle arrest in G0/G1 phases. Furthermore, down-regulation of HDAC1 was observed, supporting the involvement of epigenetic processes in SNAIL-induced EMT. When HDAC1 activity was inhibited, MCF7 not only apparently initiated EMT but also up-regulated SNAIL, indicating the cross-talk between these two proteins. Both HDAC1 inhibition and SNAIL overexpression activated the AKT pathway. These

  18. Re-characterization of established human retinoblastoma cell lines.

    PubMed

    Busch, Maike; Philippeit, Claudia; Weise, Andreas; Dünker, Nicole

    2015-03-01

    Retinoblastoma (RB) is the most common malignant intraocular childhood tumor. Forty years after their first description, in the present study, we re-characterized seven established retinoblastoma cell lines with regard to their RB1 mutation status, morphology, growth pattern, endogenous apoptosis levels, colony formation efficiency in soft agar and invasiveness and dissemination capacity in chick chorioallantoic membrane (CAM) assays. All RB cell lines predominantly resemble small epithelioid cells with little cytoplasm and large nucleus, which mainly grow in cell clusters, but sometimes form chain-like structures with incident loops or three-dimensional aggregates. We observed different growth rates for the different retinoblastoma cells investigated. RBL-30, RBL-13 and RBL 383 cells grew very slowly, whereas Y-79 cells grew fastest under our culture conditions. Apoptosis rates likewise differed with highest cell death levels in RB 383 and RB 355 and lowest in WERI-Rb1 and RBL-15. Contradicting former reports, six of the seven RB cell lines analyzed were able to form colonies in soft agarose after single cell seeding within 3 weeks of incubation. Upon inoculation of four out of seven RB cell lines on the dorsal CAM, GFP-positive cells were detectable in the ventral CAM and two RB cell lines caused tumor development, indicating their intravasation and dissemination potential. All RB cell lines exhibited the potential to extravasate from the capillary system after intravenous CAM injection. Our study provides valuable new details for future therapy-related retinoblastoma basic research in vitro.

  19. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture

    PubMed Central

    Jaquinod, Michel; Villiers, Florent; Kieffer-Jaquinod, Sylvie; Hugouvieux, Véronique; Bruley, Christophe; Garin, Jérôme; Bourguignon, Jacques

    2007-01-01

    To better understand the mechanisms governing cellular traffic, storage of various metabolites and their ultimate degradation, Arabidopsis thaliana vacuoles proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures using Ficoll density gradients. Based on the specific activity of the vacuolar marker α-mannosidase, the enrichment factor of the vacuoles was estimated at approximately 42 fold with an average yield of 2.1%. Absence of significant contamination by other cellular compartments was validated by western blot using antibodies raised against specific markers of chloroplasts, mitochondria, plasma membrane and endoplasmic reticulum. Based on these results, vacuole preparations showed the necessary degree of purity for proteomic study. Therefore, a proteomic approach was developed in order to identify the protein components present in both the membrane and soluble fractions of the Arabidopsis cell vacuoles. This approach includes: (i) a mild oxidation step leading to the transformation of cysteine residues into cysteic acid and methionine to methionine sulfoxide, (ii) an in-solution proteolytic digestion of very hydrophobic proteins, (iii) a pre-fractionation of proteins by short migration on SDS-PAGE followed by analysis by liquid chromatography coupled to tandem mass spectrometry. This procedure allowed the identification of more than 650 proteins, 2/3 of which copurify with the membrane hydrophobic fraction and 1/3 with the soluble fraction. Among the 416 proteins identified from the membrane fraction, 195 were considered integral membrane proteins based on the presence of one or more predicted transmembrane domains, and 110 transporters and related proteins were identified (91 putative transporters and 19 proteins related to the V-ATPase pump). With regard to function, about 20% of the proteins identified were previously known to be associated with vacuolar

  20. [Native electrophoresis in cell proteomics: BN-PAGE and CN-PAGE].

    PubMed

    Shykoliukov, S A

    2011-01-01

    The presented mini-review aims to attract the attention of domestic researchers for rapid, cheap and easily reproducible method of native polyacrylamide gel electrophoresis (PAGE), which for some reason has not yet found application in our country. The review collected the most interesting examples of the use of three types of native electrophoresis (BN-PAGE, CN-PAGE and hrCN-PAGE) to study the peculiarities of proteomes of various animal, plant and bacterial cells. The references to fundamental reviews, basic protocols, modifications of the initial methods and the examples of the combination of native electrophoresis with other chemical or physical methods are presented. Particular attention to the principles of BN-, CN- and hrCN-PAGE as well as to their advantages and disadvantages is paid.

  1. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation.

    PubMed

    Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F

    2016-01-18

    Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and -beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function.

  2. Identification of protein interaction partners in mammalian cells using SILAC-immunoprecipitation quantitative proteomics.

    PubMed

    Emmott, Edward; Goodfellow, Ian

    2014-07-06

    Quantitative proteomics combined with immuno-affinity purification, SILAC immunoprecipitation, represent a powerful means for the discovery of novel protein:protein interactions. By allowing the accurate relative quantification of protein abundance in both control and test samples, true interactions may be easily distinguished from experimental contaminants. Low affinity interactions can be preserved through the use of less-stringent buffer conditions and remain readily identifiable. This protocol discusses the labeling of tissue culture cells with stable isotope labeled amino acids, transfection and immunoprecipitation of an affinity tagged protein of interest, followed by the preparation for submission to a mass spectrometry facility. This protocol then discusses how to analyze and interpret the data returned from the mass spectrometer in order to identify cellular partners interacting with a protein of interest. As an example this technique is applied to identify proteins binding to the eukaryotic translation initiation factors: eIF4AI and eIF4AII.

  3. Proteome Changes of Human Bone Marrow Mesenchymal Stem Cells Induced by 1,4-Benzoquinone

    PubMed Central

    2016-01-01

    Benzene is metabolized to hydroquinone in liver and subsequently transported to bone marrow for further oxidization to 1,4-benzoquinone (1,4-BQ), which may be related to the leukemia and other blood disorders. In the present study, we investigated the proteome profiles of human primary bone marrow mesenchymal stem cells (hBM-MSCs) treated by 1,4-BQ. We identified 32 proteins that were differentially expressed. Two of them, HSP27 and Vimentin, were verified at both mRNA and protein levels and their cellular localization was examined by immunofluorescence. We also found increased mRNA level of RAP1GDS1, a critical factor of metabolism that has been identified as a fusion partner in various hematopoietic malignancies. Therefore, these differentially expressed proteins can play important roles in benzene-mediated hematoxicity. PMID:28119923

  4. Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence of potassium supply.

    PubMed

    Le Lay, P; Isaure, M-P; Sarry, J-E; Kuhn, L; Fayard, B; Le Bail, J-L; Bastien, O; Garin, J; Roby, C; Bourguignon, J

    2006-11-01

    The incorporation and localisation of 133Cs in a plant cellular model and the metabolic response induced were analysed as a function of external K concentration using a multidisciplinary approach. Sucrose-fed photosynthetic Arabidopsis thaliana suspension cells, grown in a K-containing or K-depleted medium, were submitted to a 1 mM Cs stress. Cell growth, strongly diminished in absence of K, was not influenced by Cs. In contrast, the chlorophyll content, affected by a Cs stress superposed to K depletion, did not vary under the sole K depletion. The uptake of Cs was monitored in vivo using 133Cs NMR spectroscopy while the final K and Cs concentrations were determined using atomic absorption spectrometry. Cs absorption rate and final concentration increased in a K-depleted external medium; in vivo NMR revealed that intracellular Cs was distributed in two kinds of compartment. Synchrotron X-ray fluorescence microscopy indicated that one could be the chloroplasts. In parallel, the cellular response to the Cs stress was analysed using proteomic and metabolic profiling. Proteins up- and down-regulated in response to Cs, in presence of K+ or not, were analysed by 2D gel electrophoresis and identified by mass spectrometry. No salient feature was detected excepting the overexpression of antioxidant enzymes, a common response of Arabidopsis cells stressed whether by Cs or by K-depletion. 13C and 31P NMR analysis of acid extracts showed that the metabolome impact of the Cs stress was also a function of the K nutrition. These analyses suggested that sugar metabolism and glycolytic fluxes were affected in a way depending upon the medium content in K+. Metabolic flux measurements using 13C labelling would be an elegant way to pursue on this line. Using our experimental system, a progressively stronger Cs stress might point out other specific responses elicited by Cs.

  5. Proteomics reveals the importance of the dynamic redistribution of the subcellular location of proteins in breast cancer cells.

    PubMed

    Pinto, Gabriella; Alhaiek, Abdulrab Ahmed M; Godovac-Zimmermann, Jasminka

    2015-02-01

    At the molecular level, living cells are enormously complicated complex adaptive systems in which intertwined genomic, transcriptomic, proteomic and metabolic networks all play a crucial role. At the same time, cells are spatially heterogeneous systems in which subcellular compartmentalization of different functions is ubiquitous and requires efficient cross-compartmental communication. Dynamic redistribution of multitudinous proteins to different subcellular locations in response to cellular functional state is increasingly recognized as a crucial characteristic of cellular function that seems to be at least as important as overall changes in protein abundance. Characterization of the subcellular spatial dynamics of protein distribution is a major challenge for proteomics and recent results with MCF7 breast cancer cells suggest that this may be of particular importance for cancer cells.

  6. The Proteome of the Red Blood Cell: An Auspicious Source of New Insights into Membrane-Centered Regulation of Homeostasis

    PubMed Central

    Bosman, Giel J. C. G. M.

    2016-01-01

    During the past decade, the hand-in-hand development of biotechnology and bioinformatics has enabled a view of the function of the red blood cell that surpasses the supply of oxygen and removal of carbon dioxide. Comparative proteomic inventories have yielded new clues to the processes that regulate membrane–cytoskeleton interactions in health and disease, and to the ways by which red blood cells communicate with their environment. In addition, proteomic data have revealed the possibility that many, hitherto unsuspected, metabolic processes are active in the red blood cell cytoplasm. Recent metabolomic studies have confirmed and expanded this notion. Taken together, the presently available data point towards the red blood cell membrane as the hub at which all regulatory processes come together. Thus, alterations in the association of regulatory proteins with the cell membrane may be a sine qua non for the functional relevance of any postulated molecular mechanism. From this perspective, comparative proteomics centered on the red blood cell membrane constitute a powerful tool for the identification and elucidation of the physiologically and pathologically relevant pathways that regulate red blood cell homeostasis. Additionally, this perspective provides a focus for the interpretation of metabolomic studies, especially in the development of biomarkers in the blood. PMID:28248245

  7. Comparative proteomic analysis of normal and tumor stromal cells by tissue on chip based mass spectrometry (toc-MS)

    PubMed Central

    2010-01-01

    In carcinoma tissues, genetic and metabolic changes not only occur at the tumor cell level, but also in the surrounding stroma. This carcinoma-reactive stromal tissue is heterogeneous and consists e.g. of non-epithelial cells such as fibroblasts or fibrocytes, inflammatory cells and vasculature-related cells, which promote carcinoma growth and progression of carcinomas. Nevertheless, there is just little knowledge about the proteomic changes from normal connective tissue to tumor stroma. In the present study, we acquired and analysed specific protein patterns of small stromal sections surrounding head and neck cell complexes in comparison to normal subepithelial connective tissue. To gain defined stromal areas we used laser-based tissue microdissection. Because these stromal areas are limited in size we established the highly sensitive 'tissue on chip based mass spectrometry' (toc-MS). Therefore, the dissected areas were directly transferred to chromatographic arrays and the proteomic profiles were subsequently analysed with mass spectrometry. At least 100 cells were needed for an adequate spectrum. The locating of differentially expressed proteins enables a precise separation of normal and tumor stroma. The newly described toc-MS technology allows an initial insight into proteomic differences between small numbers of exactly defined cells from normal and tumor stroma. PMID:20205871

  8. The Proteome of the Red Blood Cell: An Auspicious Source of New Insights into Membrane-Centered Regulation of Homeostasis.

    PubMed

    Bosman, Giel J C G M

    2016-11-25

    During the past decade, the hand-in-hand development of biotechnology and bioinformatics has enabled a view of the function of the red blood cell that surpasses the supply of oxygen and removal of carbon dioxide. Comparative proteomic inventories have yielded new clues to the processes that regulate membrane-cytoskeleton interactions in health and disease, and to the ways by which red blood cells communicate with their environment. In addition, proteomic data have revealed the possibility that many, hitherto unsuspected, metabolic processes are active in the red blood cell cytoplasm. Recent metabolomic studies have confirmed and expanded this notion. Taken together, the presently available data point towards the red blood cell membrane as the hub at which all regulatory processes come together. Thus, alterations in the association of regulatory proteins with the cell membrane may be a sine qua non for the functional relevance of any postulated molecular mechanism. From this perspective, comparative proteomics centered on the red blood cell membrane constitute a powerful tool for the identification and elucidation of the physiologically and pathologically relevant pathways that regulate red blood cell homeostasis. Additionally, this perspective provides a focus for the interpretation of metabolomic studies, especially in the development of biomarkers in the blood.

  9. Edaravone leads to proteome changes indicative of neuronal cell protection in response to oxidative stress

    PubMed Central

    Jami, Mohammad-Saeid; Salehi-Najafabadi, Zahra; Ahmadinejad, Fereshteh; Hoedt, Esthelle; Chaleshtori, Morteza Hashemzadeh; Neubert, Thomas A.; Larsen, Jan Petter; Møller, Simon Geir

    2015-01-01

    Neuronal cell death, in neurodegenerative disorders, is mediated through a spectrum of biological processes. Excessive amounts of free radicals, such as reactive oxygen species (ROS), has detrimental effects on neurons leading to cell damage via peroxidation of unsaturated fatty acids in the cell membrane. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has been used for neurological recovery in several countries, including Japan and China, and it has been suggested that Edaravone may have cytoprotective effects in neurodegeneration. Edaravone protects nerve cells in the brain by reducing ROS and inhibiting apoptosis. To gain further insight into the cytoprotective effects of Edaravone against oxidative stress condition we have performed comparative two-dimensional gel electrophoresis (2DE)-based proteomic analyses on SH-SY5Y neuroblastoma cells exposed to oxidative stress and in combination with Edaravone. We showed that Edaravone can reverse the cytotoxic effects of H2O2 through its specific mechanism. We observed that oxidative stress changes metabolic pathways and cytoskeletal integrity. Edaravone seems to reverse the H2O2-mediated effects at both the cellular and protein level via induction of Peroxiredoxin-2. PMID:26232623

  10. Dissection of the Human Multipotent Adult Progenitor Cell Secretome by Proteomic Analysis

    PubMed Central

    van't Hof, Wouter; Newell, Laura F.; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Raber, Amy; Bogaerts, Annelies; Pinxteren, Jef; Deans, Robert J.; Maziarz, Richard T.

    2013-01-01

    Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in acute graft versus host disease clinical trials with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Our previous studies documented that MAPCs secrete factors that play a role in regulating T-cell activity. Here we expand our studies using a proteomics approach to characterize and quantify MAPC secretome components secreted over 72 hours in vitro under steady-state conditions and in the presence of the inflammatory triggers interferon-γ and lipopolysaccharide, or a tolerogenic CD74 ligand, RTL1000. MAPCs differentially responded to each of the tested stimuli, secreting molecules that regulate the biological activity of the extracellular matrix (ECM), including proteins that make up the ECM itself, proteins that regulate its construction/deconstruction, and proteins that serve to attach and detach growth factors from ECM components for redistribution upon appropriate stimulation. MAPCs secreted a wide array of proteases, some detectable in their zymogen forms. MAPCs also secreted protease inhibitors that would regulate protease activity. MAPCs secreted chemokines and cytokines that could provide molecular guidance cues to various cell types, including neutrophils, macrophages, and T cells. In addition, MAPCs secreted factors involved in maintenance of a homeostatic environment, regulating such diverse programs as innate immunity, angiogenesis/angiostasis, targeted delivery of growth factors, and the matrix-metalloprotease cascade. PMID:23981727

  11. MS/MS-based strategies for proteomic profiling of invasive cell structures.

    PubMed

    Havrylov, Serhiy; Park, Morag

    2015-01-01

    Acquired capacity of cancer cells to penetrate through the extracellular matrix of surrounding tissues is a prerequisite for tumour metastatic spread - the main source of cancer-associated mortality. Through combined efforts of many research groups, we are beginning to understand that the ability of cells to invade through the extracellular matrix is a multi-faceted phenomenon supported by variety of specialised protrusive cellular structures, primarily pseudopodia, invadopodia and podosomes. Additionally, secreted extracellular vesicles are being increasingly recognised as important mediators of invasive cell phenotypes and therefore may be considered bona fide invasive cell structures. Dissection of the molecular makings underlying biogenesis and function of all of these structures is crucial to identify novel targets for specific anti-metastatic therapies. Rapid advances and growing accessibility of MS/MS-based protein identification made this family of techniques a suitable and appropriate choice for proteomic profiling of invasive cell structures. In this review, we provide a summary of current progress in the characterisation of protein composition and topology of protein interaction networks of pseudopodia, invadopodia, podosomes and extracellular vesicles, as well as outline challenges and perspectives of the field.

  12. Chemical proteomic map of dimethyl fumarate–sensitive cysteines in primary human T cells

    PubMed Central

    Blewett, Megan M.; Xie, Jiji; Zaro, Balyn W.; Backus, Keriann M.; Altman, Amnon; Teijaro, John R.; Cravatt, Benjamin F.

    2016-01-01

    Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear, but may involve the covalent modification of proteins or DMF serving as a pro-drug that is converted to monomethyl fumarate (MMF). Here, we found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF-sensitivity of > 2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase C θ (PKCθ). Furthermore, DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology. PMID:27625306

  13. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells

    PubMed Central

    Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue

    2016-01-01

    Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789

  14. Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies.

    PubMed

    Cheng, Hsien-Jen; Lin, Chiou-Feng; Lei, Huan-Yao; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Luo, Yueh-Hsia; Lin, Yee-Shin

    2009-01-01

    We previously showed the occurrence of autoimmune responses in dengue virus (DV) infection, which has potential implications for the pathogenesis of dengue hemorrhagic syndrome. In the present study, we have used a proteomic analysis to identify several candidate proteins on HMEC-1 endothelial cells recognized by anti-DV nonstructural protein 1 (NS1) antibodies. The target proteins, including ATP synthase beta chain, protein disulfide isomerase, vimentin, and heat shock protein 60, co-localize with anti-NS1 binding sites on nonfixed HMEC-1 cells using immunohistochemical double staining and confocal microscopy. The cross-reactivity of anti-target protein antibodies with HMEC-1 cells was inhibited by NS1 protein pre-absorption. Furthermore, a cross-reactive epitope on NS1 amino acid residues 311-330 (P311-330) was predicted using homologous sequence alignment. The reactivity of dengue hemorrhagic patient sera with HMEC-1 cells was blocked by synthetic peptide P311-330 pre-absorption. Taken together, our results identify putative targets on endothelial cells recognized by anti-DV NS1 antibodies, where NS1 P311-330 possesses the shared epitope.

  15. Yeast Proteome Analysis

    NASA Astrophysics Data System (ADS)

    Matros, Andrea; Mock, Hans-Peter

    Yeast organisms, and specifically Saccharomyces cerevisiae, have become model systems for many aspects in fundamental and applied research. Consistently, many papers have been published applying proteome techniques to study these organisms. The review will give an overview on the proteome research performed on yeast systems so far; however, due to the large number of publications, only selected reports can be cited neglecting many more interesting ones in the interest of space. The review will focus on research involving mass spectrom-etry as a basic proteome technique, although many more approaches are relevant for the functional characterization of proteins in the cell, e.g. the yeast two-hybrid system. We will provide an overview on yeasts as models in the context of pro-teome analysis, and explain the basic techniques currently applied in proteome approaches. The main part of the review will deal with a survey on the current status of proteomic studies in yeasts. In a first part of this chapter, we will deal with the currently available proteome maps of yeasts, and in the following part we will discuss studies dealing with fundamental aspects, but also mention proteome studies related to applied microbiology. Finally, we will envisage future perspectives of the proteome technology for studying yeasts, and draw major conclusion on the current status reached in this field of functional genomics.

  16. Identification of cell lines permissive for human coronavirus NL63.

    PubMed

    Schildgen, Oliver; Jebbink, Maarten F; de Vries, Michel; Pyrc, Krzysztov; Dijkman, Ronald; Simon, Arne; Müller, Andreas; Kupfer, Bernd; van der Hoek, Lia

    2006-12-01

    Six cell lines routinely used in laboratories were tested for permissiveness to the infection with the newly identified human coronavirus NL63. Two monkey epithelial cell lines, LLC-MK2 and Vero-B4, showed a cytopathic effect (CPE) and clear viral replication, whereas no CPE or replication was observed in human lung fibroblasts MRC-5s. In Rhabdomyosarcoma cells, Madin-Darby-Canine-kidney cells and in an undefined monkey kidney cell line some replication was observed but massive exponential rise in virus yield lacked The results will lead to an improved routine diagnostic algorithm for the detection of the human coronavirus NL63.

  17. Mass-spectrometry-based draft of the human proteome.

    PubMed

    Wilhelm, Mathias; Schlegl, Judith; Hahne, Hannes; Gholami, Amin Moghaddas; Lieberenz, Marcus; Savitski, Mikhail M; Ziegler, Emanuel; Butzmann, Lars; Gessulat, Siegfried; Marx, Harald; Mathieson, Toby; Lemeer, Simone; Schnatbaum, Karsten; Reimer, Ulf; Wenschuh, Holger; Mollenhauer, Martin; Slotta-Huspenina, J