Science.gov

Sample records for cell line proteome

  1. Comparative proteomic profiling of Hodgkin lymphoma cell lines.

    PubMed

    Vergara, D; Simeone, P; De Matteis, S; Carloni, S; Lanuti, P; Marchisio, M; Miscia, S; Rizzello, A; Napolitano, R; Agostinelli, C; Maffia, M

    2016-01-01

    Classical Hodgkin lymphoma (cHL) is a malignancy with complex pathogenesis. The hallmark of the disease is the presence of large mononucleated Hodgkin and bi- or multinucleated Reed/Sternberg (H/RS) cells. The origin of HRS cells in cHL is controversial as these cells show the coexpression of markers of several lineages. Using a proteomic approach, we compared the protein expression profile of cHL models of T- and B-cell derivation to find proteins differentially expressed in these cell lines. A total of 67 proteins were found differentially expressed between the two cell lines including metabolic proteins and proteins involved in the regulation of the cytoskeleton and/or cell migration, which were further validated by western blotting. Additionally, the expression of selected B- and T-cell antigens was also assessed by flow cytometry to reveal significant differences in the expression of different surface markers. Bioinformatics analysis was then applied to our dataset to find enriched pathways and networks, and to identify possible key regulators. In the present study, a proteomic approach was used to compare the protein expression profiles of two cHL cell lines. The identified proteins and/or networks, many of which not previously related to cHL, may be important to better define the pathogenesis of the disease, to identify novel diagnostic markers, and to design new therapeutic strategies. PMID:26588820

  2. Comparative proteome analysis across non-small cell lung cancer cell lines.

    PubMed

    Grundner-Culemann, Kathrin; Dybowski, J Nikolaj; Klammer, Martin; Tebbe, Andreas; Schaab, Christoph; Daub, Henrik

    2016-01-01

    Non-small cell lung cancer (NSCLC) cell lines are widely used model systems to study molecular aspects of lung cancer. Comparative and in-depth proteome expression data across many NSCLC cell lines has not been generated yet, but would be of utility for the investigation of candidate targets and markers in oncogenesis. We employed a SILAC reference approach to perform replicate proteome quantifications across 23 distinct NSCLC cell lines. On average, close to 4000 distinct proteins were identified and quantified per cell line. These included many known targets and diagnostic markers, indicating that our proteome expression data represents a useful resource for NSCLC pre-clinical research. To assess proteome diversity within the NSCLC cell line panel, we performed hierarchical clustering and principal component analysis of proteome expression data. Our results indicate that general proteome diversity among NSCLC cell lines supersedes potential effects common to K-Ras or epidermal growth factor receptor (EGFR) oncoprotein expression. However, we observed partial segregation of EGFR or KRAS mutant cell lines for certain principal components, which reflected biological differences according to gene ontology enrichment analyses. Moreover, statistical analysis revealed several proteins that were significantly overexpressed in KRAS or EGFR mutant cell lines. PMID:26361996

  3. Proteomic patterns of cervical cancer cell lines, a network perspective

    PubMed Central

    2011-01-01

    Background Cervical cancer is a major mortality factor in the female population. This neoplastic is an excellent model for studying the mechanisms involved in cancer maintenance, because the Human Papilloma Virus (HPV) is the etiology factor in most cases. With the purpose of characterizing the effects of malignant transformation in cellular activity, proteomic studies constitute a reliable way to monitor the biological alterations induced by this disease. In this contextual scheme, a systemic description that enables the identification of the common events between cell lines of different origins, is required to distinguish the essence of carcinogenesis. Results With this study, we sought to achieve a systemic perspective of the common proteomic profile of six cervical cancer cell lines, both positive and negative for HPV, and which differ from the profile corresponding to the non-tumourgenic cell line, HaCaT. Our objectives were to identify common cellular events participating in cancer maintenance, as well as the establishment of a pipeline to work with proteomic-derived results. We analyzed by means of 2D SDS-PAGE and MALDI-TOF mass spectrometry the protein extracts of six cervical cancer cell lines, from which we identified a consensus of 66 proteins. We call this group of proteins, the "central core of cervical cancer". Starting from this core set of proteins, we acquired a PPI network that pointed, through topological analysis, to some proteins that may well be playing a central role in the neoplastic process, such as 14-3-3ζ. In silico overrepresentation analysis of transcription factors pointed to the overexpression of c-Myc, Max and E2F1 as key transcription factors involved in orchestrating the neoplastic phenotype. Conclusions Our findings show that there is a "central core of cervical cancer" protein expression pattern, and suggest that 14-3-3ζ is key to determine if the cell proliferates or dies. In addition, our bioinformatics analysis suggests that

  4. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  5. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    PubMed Central

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  6. Isolation of the Ubiquitin-Proteome from Tumor Cell Lines and Primary Cells Using TUBEs.

    PubMed

    Xolalpa, Wendy; Mata-Cantero, Lydia; Aillet, Fabienne; Rodriguez, Manuel S

    2016-01-01

    Tandem ubiquitin-binding entities (TUBEs) act as molecular traps to isolate polyubiquitylated proteins facilitating the study of this highly reversible posttranslational modification. We provide here sample preparation and adaptations required for TUBE-based enrichment of the ubiquitin proteome from tumor cell lines or primary cells. Our protocol is suitable to identify ubiquitin substrates, enzymes involved in the ubiquitin proteasome pathway, as well as proteasome subunits by mass spectrometry. This protocol was adapted to prepare affinity columns, reduce background, and improve the protein recovery depending on the sample source and necessities. PMID:27613034

  7. Proteomics analysis of MKN45 cell line before and after treatment with Lavender aqueous extract

    PubMed Central

    Zamanian-Azodi, Mona; Heydari-Kashal, Saeid; Kalantari, Shiva; Dailian, Sona; Zali, Hakimeh

    2012-01-01

    Aim In this study the anticancer activity of Lavender aqueous extract against MKN45 cell line was evaluated. Background Plant-based drugs are regarded as promising therapies. Lavender is a plant that has been cultivated from ancient times. An aqueous extract of Lavender has shown therapeutic effects on the nervous system in the high doses based on in-vivo studies. Gastric cancer is one of the frequent cancers in Iranian population. We therefore assessed the effect of Lavender upon a gastric cancer cell line. Patients and methods The MKN45 cancer cell line was selected for treatment with aqueous extract of Lavender. Survival of MKN45 cell line was studied in the presence of various concentrations of Lavender extract by MTT assay method. Morphological studies were performed via microscopic analyses. Flow cytometry and proteomics techniques were applied to determining pharmaceutical mechanism of lavender cytotoxic effects. Results The survival and morphological studies revealed anticancer characteristics of extract. Flow cytometry findings indicate that Lavender extract had a cytotoxic effect upon the cell line. Proteomics analysis identified a significant alternation in gastric cellular proteome expression after treating with the extract. Among 1000 spots, more than 700 spots showed changes in protein expression levels by informatics analysis. Of these proteins, expression of three cancer biomarkers, Annexin1, Anolase1 and HSP70 were suppressed by extract. Conclusion This study suggests that Lavender extract is cytotoxic and alter protein expression in a gastric cancer cell line. PMID:24834196

  8. A quantitative proteomics-based signature of platinum sensitivity in ovarian cancer cell lines

    PubMed Central

    Fan, Gaofeng; Wrzeszczynski, Kazimierz O.; Fu, Cexiong; Pappin, Darryl J.; Lucito, Robert; Tonks, Nicholas K.; Su, Gang

    2014-01-01

    Although DNA encodes the molecular instructions that underlie control of cell function, it is the proteins that are primarily responsible for implementing those instructions. Therefore, quantitative analyses of the proteome would be expected to yield insights into important candidates for the detection and treatment of disease. We present an iTRAQ (Isobaric Tagging for Relative and Absolute Quantification)-based proteomic analysis of 10 ovarian cancer cell lines and 2 normal ovarian surface epithelial cell lines. We profiled the abundance of 2659 cellular proteins, of which 1273 were common to all 12 cell lines. Of the 1273, 75 proteins exhibited elevated expression, and 164 proteins had diminished expression in the cancerous cells compared to the normal cell lines. The iTRAQ expression profiles allowed us to segregate cell lines based upon sensitivity and resistance to carboplatin. Importantly, we observed no substantial correlation between protein abundance and RNA expression or epigenetic, DNA methylation data. Furthermore, we could not discriminate between sensitivity and resistance to carboplatin on the basis of RNA expression and DNA methylation data alone. This study illustrates the importance of proteomics-based discovery for defining the basis for the carboplatin response in ovarian cancer and highlights candidate proteins, particularly involved in cellular redox regulation, homologous recombination and DNA damage repair, that otherwise could not have been predicted from whole genome and expression data sources alone. PMID:25406946

  9. Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines.

    PubMed

    Lazar, Ikrame; Clement, Emily; Ducoux-Petit, Manuelle; Denat, Laurence; Soldan, Vanessa; Dauvillier, Stéphanie; Balor, Stéphanie; Burlet-Schiltz, Odile; Larue, Lionel; Muller, Catherine; Nieto, Laurence

    2015-07-01

    Exosomes are important mediators in cell-to-cell communication and, recently, their role in melanoma progression has been brought to light. Here, we characterized exosomes secreted by seven melanoma cell lines with varying degrees of aggressivity. Extensive proteomic analysis of their exosomes confirmed the presence of characteristic exosomal markers as well as melanoma-specific antigens and oncogenic proteins. Importantly, the protein composition differed among exosomes from different lines. Exosomes from aggressive cells contained specific proteins involved in cell motility, angiogenesis, and immune response, while these proteins were less abundant or absent in exosomes from less aggressive cells. Interestingly, when exposed to exosomes from metastatic lines, less aggressive cells increased their migratory capacities, likely due to transfer of pro-migratory exosomal proteins to recipient cells. Hence, this study shows that the specific protein composition of melanoma exosomes depends on the cells' aggressivity and suggests that exosomes influence the behavior of other tumor cells and their microenvironment.

  10. Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.

    PubMed

    Díez, Paula; Droste, Conrad; Dégano, Rosa M; González-Muñoz, María; Ibarrola, Nieves; Pérez-Andrés, Martín; Garin-Muga, Alba; Segura, Víctor; Marko-Varga, Gyorgy; LaBaer, Joshua; Orfao, Alberto; Corrales, Fernando J; De Las Rivas, Javier; Fuentes, Manuel

    2015-09-01

    A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of

  11. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions.

    PubMed

    Pan, Cuiping; Kumar, Chanchal; Bohl, Sebastian; Klingmueller, Ursula; Mann, Matthias

    2009-03-01

    Biological experiments are most often performed with immortalized cell lines because they are readily available and can be expanded without limitation. However, cell lines may differ from the in vivo situation in important aspects. Here we introduce a straightforward methodology to compare cell lines to their cognate primary cells and to derive a comparative functional phenotype. We used SILAC (stable isotope labeling by amino acids in cell culture) for quantitative, mass spectrometry-based comparison of the hepatoma cell line Hepa1-6 with primary hepatocytes. The resulting quantitative proteome of 4,063 proteins had an asymmetric distribution, with many proteins down-regulated in the cell line. Bioinformatic analysis of the quantitative proteomics phenotypes revealed that Hepa1-6 cells were deficient in mitochondria, reflecting re-arrangement of metabolic pathways, drastically up-regulate cell cycle-associated functions and largely shut down drug metabolizing enzymes characteristic for the liver. This quantitative knowledge of changes provides an important basis to adapt cell lines to more closely resemble physiological conditions.

  12. Proteomic analysis of human glioblastoma cell lines differently resistant to a nitric oxide releasing agent.

    PubMed

    Leone, Roberta; Giussani, Paola; De Palma, Sara; Fania, Chiara; Capitanio, Daniele; Vasso, Michele; Brioschi, Loredana; Riboni, Laura; Viani, Paola; Gelfi, Cecilia

    2015-06-01

    Glioblastoma multiforme is the most aggressive astrocytoma characterized by the development of resistant cells to various cytotoxic stimuli. Nitric oxide (NO) is able to overcome tumor resistance in PTEN mutated rat C6 glioma cells due to its ability to inhibit cell growth by influencing the intracellular distribution of ceramide. The aim of this study is to monitor the effects of NO donor PAPANONOate on ceramide trafficking in human glioma cell lines, CCF-STTG1 (PTEN-mutated, p53-wt) and T98G (PTEN-harboring, p53-mutated), together with the assessment of their differential molecular signature by 2D-DIGE and MALDI mass spectrometry. In the CCF-STTG1 cell line, the results indicate that treatment with PAPANONOate decreased cell proliferation (<50%) and intracellular trafficking of ceramide, assessed by BODIPY-C5Cer, while these events were not observed in the T98G cell line. Proteomic results suggest that CCF-STTG1 cells are characterized by an increased expression of proteins involved in NO-associated ER stress (i.e. protein disulfide-isomerase A3, calreticulin, 78 kDa glucose-regulated protein), which could compromise ceramide delivery from ER to Golgi, leading to ceramide accumulation in ER and partial growth arrest. Conversely, T98G cell lines, resistant to NO exposure, are characterized by increased levels of cytosolic antioxidant proteins (i.e. glutathione-S-transferase P, peroxiredoxin 1), which might buffer intracellular NO. By providing differential ceramide distribution after NO exposure and differential protein expression of two high grade glioma cell lines, this study highlights specific proteins as possible markers for tumor aggressiveness. This study demonstrates that, in two different high grade glioma cell lines, NO exposure results in a different ceramide distribution and protein expression. Furthermore, this study highlights specific proteins as possible markers for tumor aggressiveness. PMID:25797839

  13. Proteomic analysis of HepaRG cells: a novel cell line that supports hepatitis B virus infection.

    PubMed

    Narayan, Ramamurthy; Gangadharan, Bevin; Hantz, Olivier; Antrobus, Robin; García, Angela; Dwek, Raymond A; Zitzmann, Nicole

    2009-01-01

    The first proteomic characterization of the HepaRG cell line, the only cell line that is susceptible to hepatitis B virus (HBV) infection and supports a complete virus life cycle, is reported. Differential analysis of naive and HBV-infected HepaRG cells by two-dimensional gel electrophoresis revealed 19 differentially regulated features, 7 increasing and 12 decreasing with HBV infection. The proteins identified in these features were involved in various cellular pathways including apoptosis, DNA/RNA processing, and hepatocellular impairment. Similar expression changes in a number of the identified proteins have already been reported for other virus systems. Identification of these expression changes is a validation of the proteomics approach and contributes to an understanding of host cellular response to HBV infection.

  14. Quantitative proteomic analysis of Araucaria angustifolia (Bertol.) Kuntze cell lines with contrasting embryogenic potential.

    PubMed

    dos Santos, André Luis Wendt; Elbl, Paula; Navarro, Bruno Viana; de Oliveira, Leandro Francisco; Salvato, Fernanda; Balbuena, Tiago Santana; Floh, Eny Iochevet Segal

    2016-01-01

    GeLC–MS/MS based label free proteomic profiling was used in the large scale identification and quantification of proteins from Brazilian pine (Araucaria angustifolia) embryogenic cell (EC) lines that showed different propensities to form somatic embryos. Using a predicted protein sequence database that was derived from A. angustifolia RNA-Seq data, 2398 non-redundant proteins were identified. The log2 of the spectral count values of 858 proteins of these proteins showed a normal distribution, and were used for statistical analysis. Statistical tests indicated that 106 proteins were significantly differentially abundant between the two EC lines, and that 35 were more abundant in the responsive genotype (EC line SE1) and 71 were more abundant in the blocked genotype (EC line SE6). An increase in the abundance of proteins related to cell defense, anti-oxidative stress responses, and storage reserve deposition was observed in SE1. Moreover, in SE6 we observed an increased abundance of two proteins associated with seed development during the embryogenic cell proliferation stage, which we suggest is associated with genotypes showing a low responsiveness to embryo formation. Differences in protein abundance between the EC lines are discussed in terms of carbohydrate metabolism, cell division, defense response, gene expression, and response to reactive oxygen species.

  15. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line

    PubMed Central

    Baldridge, Gerald D; Baldridge, Abigail S; Witthuhn, Bruce A; Higgins, LeeAnn; Markowski, Todd W; Fallon, Ann M

    2014-01-01

    Wolbachia pipientis a widespread vertically transmitted intracellular bacterium, provides a tool for insect control through manipulation of host-microbe interactions. We report proteomic characterization of wStr, a Wolbachia strain associated with a strong cytoplasmic incompatibility phenotype in its native host, Laodelphax striatellus. In the Aedes albopictus C/wStr1 mosquito cell line, wStr maintains a robust, persistent infection. MS/MS analyses of gel bands revealed a protein “footprint” dominated by Wolbachia-encoded chaperones, stress response and cell membrane proteins, including the surface antigen WspA, a peptidoglycan-associated lipoprotein and a 73 kDa outer membrane protein. Functional classifications and estimated abundance levels of 790 identified proteins suggested that expression, stabilization and secretion of proteins predominate over bacterial genome replication and cell division. High relative abundances of cysteine desulfurase, serine/glycine hydroxymethyl transferase, and components of the α-ketoglutarate dehydrogenase complex in conjunction with above average abundances of glutamate dehydrogenase and proline utilization protein A support Wolbachia genome-based predictions for amino acid metabolism as a primary energy source. wStr expresses 15 Vir proteins of a Type IV secretion system and its transcriptional regulator. Proteomic characterization of a robust insect-associated Wolbachia strain provides baseline information that will inform further development of in vitro protocols for Wolbachia manipulation. PMID:25155417

  16. Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis.

    PubMed

    Fukada, Kei; Zhang, Fujian; Vien, Alexis; Cashman, Neil R; Zhu, Haining

    2004-12-01

    Mutations in copper-zinc superoxide dismutase (SOD1) have been linked to a subset of familial amytrophic lateral sclerosis (fALS), a fatal neurodegenerative disease characterized by progressive motor neuron death. An increasing amount of evidence supports that mitochondrial dysfunction and apoptosis activation play a critical role in the fALS etiology, but little is known about the mechanisms by which SOD1 mutants cause the mitochondrial dysfunction and apoptosis. In this study, we use proteomic approaches to identify the mitochondrial proteins that are altered in the presence of a fALS-causing mutant G93A-SOD1. A comprehensive characterization of mitochondrial proteins from NSC34 cells, a motor neuron-like cell line, was achieved by two independent proteomic approaches. Four hundred seventy unique proteins were identified in the mitochondrial fraction collectively, 75 of which are newly discovered proteins that previously had only been reported at the cDNA level. Two-dimensional gel electrophoresis was subsequently used to analyze the differences between the mitochondrial proteomes of NSC34 cells expressing wild-type and G93A-SOD1. Nine and 36 protein spots displayed elevated and suppressed abundance respectively in G93A-SOD1-expressing cells. The 45 spots were identified by MS, and they include proteins involved in mitochondrial membrane transport, apoptosis, the respiratory chain, and molecular chaperones. In particular, alterations in the post-translational modifications of voltage-dependent anion channel 2 (VDAC2) were found, and its relevance to regulating mitochondrial membrane permeability and activation of apoptotic pathways is discussed. The potential role of other proteins in the mutant SOD1-mediated fALS is also discussed. This study has produced a short list of mitochondrial proteins that may hold the key to the mechanisms by which SOD1 mutants cause mitochondrial dysfunction and neuronal death. It has laid the foundation for further detailed

  17. Comparative proteomic analysis of drug sodium iron chlorophyllin addition to Hep 3B cell line.

    PubMed

    Zhang, Jun; Wang, Wenhai; Yang, Fengying; Zhou, Xinwen; Jin, Hong; Yang, Peng-yuan

    2012-09-21

    The human hepatoma 3B cell line was chosen as an experimental model for in vitro test of drug screening. The drugs included chlorophyllin and its derivatives such as fluo-chlorophyllin, sodium copper chlorophyllin, and sodium iron chlorophyllin. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method was used in this study to obtain the primary screening results. The results showed that sodium iron chlorophyllin had the best LC(50) value. Proteomic analysis was then performed for further investigation of the effect of sodium iron chlorophyllin addition to the Hep 3B cell line. The proteins identified from a total protein extract of Hep 3B before and after the drug addition were compared by two-dimensional-gel-electrophoresis. Then 32 three-fold differentially expressed proteins were successfully identified by MALDI-TOF-TOF-MS. There are 29 unique proteins among those identified proteins. These proteins include proliferating cell nuclear antigen (PCNA), T-complex protein, heterogeneous nuclear protein, nucleophosmin, heat shock protein A5 (HspA5) and peroxiredoxin. HspA5 is one of the proteins which are involved in protecting cancer cells against stress-induced apoptosis in cultured cells, protecting them against apoptosis through various mechanisms. Peroxiredoxin has anti-oxidant function and is related to cell proliferation, and signal transduction. It can protect the oxidation of other proteins. Peroxiredoxin has a close relationship with cancer and can eventually become a disease biomarker. This might help to develop a novel treatment method for carcinoma cancer.

  18. In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line

    PubMed Central

    Wang, Jigang; Zhang, Jianbin; Zhang, Chong-Jing; Wong, Yin Kwan; Lim, Teck Kwang; Hua, Zi-Chun; Liu, Bin; Tannenbaum, Steven R.; Shen, Han-Ming; Lin, Qingsong

    2016-01-01

    To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQTM quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway AnalysisTM (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death. PMID:26915414

  19. Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells.

    PubMed

    Tan, Fengwei; Lu, Lifang; Cai, Yun; Wang, Jinglan; Xie, Yunfei; Wang, Lin; Gong, Yanhua; Xu, Bing-E; Wu, Jun; Luo, Ying; Qiang, Boqin; Yuan, Jiangang; Sun, Xiaoqing; Peng, Xiaozhong

    2008-07-01

    Post-translational modification by ubiquitin (Ub) and Ub-like modifiers is one of the most important mechanisms regulating a wide range of cellular processes in eukaryotes. Through mediating 26S proteasome-dependent degradation of substrates, the covalent modification of proteins by multiple Ub (ubiquitination) can regulate many different cellular functions such as transcription, antigen processing, signal transduction and cell cycle. To better understand ubiquitination and its functions, proteomic approaches have been developed to purify and identify more protein substrates. The S5a subunit of the 26S proteasome binds to poly-Ub chains containing four or more Ub. In this study, immobilized GST-S5a fusion protein was used to affinity-purify ubiquitinated proteins from Chang liver cells. The purified proteins were then identified with multi-dimensional LC combined with MS/MS. Eighty-three potential ubiquitination substrates were identified. From these proteins, 19 potential ubiquitination sites on 17 potential substrates were determined. These potential ubiquitination substrates are mainly related to important cellular functions including metabolism, translation and transcription. Our results provide helpful information for further understanding of the relationship between ubiquitination machinery and different cell functions.

  20. A proteomic map of the unsequenced kala-azar vector Phlebotomus papatasi using cell line.

    PubMed

    Pawar, Harsh; Chavan, Sandip; Mahale, Kiran; Khobragade, Sweta; Kulkarni, Aditi; Patil, Arun; Chaphekar, Deepa; Varriar, Pratyasha; Sudeep, Anakkathil; Pai, Kalpana; Prasad, T S K; Gowda, Harsha; Patole, Milind S

    2015-12-01

    The debilitating disease kala-azar or visceral leishmaniasis is caused by the kinetoplastid protozoan parasite Leishmania donovani. The parasite is transmitted by the hematophagous sand fly vector of the genus Phlebotomus in the old world and Lutzomyia in the new world. The predominant Phlebotomine species associated with the transmission of kala-azar are Phlebotomus papatasi and Phlebotomus argentipes. Understanding the molecular interaction of the sand fly and Leishmania, during the development of parasite within the sand fly gut is crucial to the understanding of the parasite life cycle. The complete genome sequences of sand flies (Phlebotomus and Lutzomyia) are currently not available and this hinders identification of proteins in the sand fly vector. The current study utilizes a three frame translated transcriptomic data of P. papatasi in the absence of genomic sequences to analyze the mass spectrometry data of P. papatasi cell line using a proteogenomic approach. Additionally, we have carried out the proteogenomic analysis of P. papatasi by comparative homology-based searches using related sequenced dipteran protein data. This study resulted in the identification of 1313 proteins from P. papatasi based on homology. Our study demonstrates the power of proteogenomic approaches in mapping the proteomes of unsequenced organisms.

  1. A proteomic map of the unsequenced kala-azar vector Phlebotomus papatasi using cell line.

    PubMed

    Pawar, Harsh; Chavan, Sandip; Mahale, Kiran; Khobragade, Sweta; Kulkarni, Aditi; Patil, Arun; Chaphekar, Deepa; Varriar, Pratyasha; Sudeep, Anakkathil; Pai, Kalpana; Prasad, T S K; Gowda, Harsha; Patole, Milind S

    2015-12-01

    The debilitating disease kala-azar or visceral leishmaniasis is caused by the kinetoplastid protozoan parasite Leishmania donovani. The parasite is transmitted by the hematophagous sand fly vector of the genus Phlebotomus in the old world and Lutzomyia in the new world. The predominant Phlebotomine species associated with the transmission of kala-azar are Phlebotomus papatasi and Phlebotomus argentipes. Understanding the molecular interaction of the sand fly and Leishmania, during the development of parasite within the sand fly gut is crucial to the understanding of the parasite life cycle. The complete genome sequences of sand flies (Phlebotomus and Lutzomyia) are currently not available and this hinders identification of proteins in the sand fly vector. The current study utilizes a three frame translated transcriptomic data of P. papatasi in the absence of genomic sequences to analyze the mass spectrometry data of P. papatasi cell line using a proteogenomic approach. Additionally, we have carried out the proteogenomic analysis of P. papatasi by comparative homology-based searches using related sequenced dipteran protein data. This study resulted in the identification of 1313 proteins from P. papatasi based on homology. Our study demonstrates the power of proteogenomic approaches in mapping the proteomes of unsequenced organisms. PMID:26307495

  2. A new strategy for gene targeting and functional proteomics using the DT40 cell line

    PubMed Central

    Orlowska, Kinga P.; Klosowska, Kamila; Szczesny, Roman J.; Cysewski, Dominik; Krawczyk, Pawel S.; Dziembowski, Andrzej

    2013-01-01

    DT40 cells derived from chicken B lymphocytes exhibit exceptionally high homologous recombination rates. Therefore, they can be used as a convenient tool and model for gene targeting experiments. However, lack of efficient cloning strategies, protein purification protocols and a well annotated protein database limits the utility of these cells for proteomic studies. Here we describe a fast and inexpensive experimental pipeline for protein localization, quantification and mass spectrometry–based interaction studies using DT40 cells. Our newly designed set of pQuant vectors and a sequence- and ligation-independent cloning (SLIC) strategy allow for simple and efficient generation of gene targeting constructs, facilitating homologous-recombination–based protein tagging on a multi-gene scale. We also report proof of principle results using the key proteins involved in RNA decay, namely EXOSC8, EXOSC9, CNOT7 and UPF1. PMID:23892402

  3. Detection of Viral Proteins in Human Cells Lines by Xeno-Proteomics: Elimination of the Last Valid Excuse for Not Testing Every Cellular Proteome Dataset for Viral Proteins

    PubMed Central

    Chernobrovkin, Alexey L.; Zubarev, Roman A.

    2014-01-01

    Cell cultures used routinely in proteomic experiments may contain proteins from other species because of infection, transfection or just contamination. Since infection or contamination may affect the results of a biological experiment, it is important to test the samples for the presence of “alien” proteins. Usually cells are tested only for the most common infections, and most of the existing tests are targeting specific contaminations. Here we describe a three-step procedure for reliable untargeted detection of viral proteins using proteomics data, and recommend this or similar procedure to be applied to every proteomics dataset submitted for publication. PMID:24618588

  4. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  5. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    PubMed

    Permenter, Matthew G; Dennis, William E; Sutto, Thomas E; Jackson, David A; Lewis, John A; Stallings, Jonathan D

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  6. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    PubMed Central

    Permenter, Matthew G.; Dennis, William E.; Sutto, Thomas E.; Jackson, David A.; Lewis, John A.; Stallings, Jonathan D.

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies. PMID:24386269

  7. The Wolbachia WO bacteriophage proteome in the Aedes albopictus C/wStr1 cell line: evidence for lytic activity?

    PubMed

    Baldridge, Gerald D; Markowski, Todd W; Witthuhn, Bruce A; Higgins, LeeAnn; Baldridge, Abigail S; Fallon, Ann M

    2016-01-01

    Wolbachia pipientis (Rickettsiales), an obligate intracellular alphaproteobacterium in insects, manipulates host reproduction to maximize invasion of uninfected insect populations. Modification of host population structure has potential applications for control of pest species, particularly if Wolbachia can be maintained, manipulated, and genetically engineered in vitro. Although Wolbachia maintains an obligate mutualism with genome stability in nematodes, arthropods can be co-infected with distinct Wolbachia strains, and horizontal gene transfer between strains is potentially mediated by WO phages encoded within Wolbachia genomes. Proteomic analysis of a robust, persistent infection of a mosquito cell line with wStr from the planthopper, Laodelphax striatellus, revealed expression of a full array of WO phage genes, as well as nine of ten non-phage genes that occur between two distinct clusters of WOMelB genes in the genome of wMel, which infects Drosophila melanogaster. These non-phage genes encode potential host-adaptive proteins and are expressed in wStr at higher levels than phage structural proteins. A subset of seven of the non-phage genes is flanked by highly conserved non-coding sequences, including a putative promoter element, that are not present in a syntenically arranged array of homologs in plasmids from three tick-associated Rickettsia spp. These studies expand our understanding of wStr in a host cell line derived from the mosquito, Aedes albopictus, and provide a basis for investigating conditions that favor the lytic phase of the WO phage life cycle and recovery of infectious phage particles.

  8. Proteomic data analysis of glioma cancer stem-cell lines based on novel nonlinear dimensional data reduction techniques

    NASA Astrophysics Data System (ADS)

    Lespinats, Sylvain; Pinker-Domenig, Katja; Wengert, Georg; Houben, Ivo; Lobbes, Marc; Stadlbauer, Andreas; Meyer-Bäse, Anke

    2016-05-01

    Glioma-derived cancer stem cells (GSCs) are tumor-initiating cells and may be refractory to radiation and chemotherapy and thus have important implications for tumor biology and therapeutics. The analysis and interpretation of large proteomic data sets requires the development of new data mining and visualization approaches. Traditional techniques are insufficient to interpret and visualize these resulting experimental data. The emphasis of this paper lies in the application of novel approaches for the visualization, clustering and projection representation to unveil hidden data structures relevant for the accurate interpretation of biological experiments. These qualitative and quantitative methods are applied to the proteomic analysis of data sets derived from the GSCs. The achieved clustering and visualization results provide a more detailed insight into the protein-level fold changes and putative upstream regulators for the GSCs. However the extracted molecular information is insufficient in classifying GSCs and paving the pathway to an improved therapeutics of the heterogeneous glioma.

  9. Establishment of a new OSCC cell line derived from OLK and identification of malignant transformation-related proteins by differential proteomics approach

    PubMed Central

    Dong, Yan; Zhao, Qun; Ma, Xiaoyan; Ma, Guowu; Liu, Caiyun; Chen, Zhuwen; Yu, Liyuan; Liu, Xuefeng; Zhang, Yanguang; Shao, Shujuan; Xiao, Jing; Li, Jia; Zhang, Weimin; Fu, Ming; Dong, Lijia; Yang, Xiandong; Guo, Xu; Xue, Liyan; Fang, Fei; Zhan, Qimin; Zhang, Lihua

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is usually preceded by the oral premalignant lesions, mainly oral leukoplakia (OLK) after repeated insults of carcinogens, tobacco. B(a)P and DMBA are key carcinogens in tobacco smoke. In the present study, for the first time we established the cancerous cell line OSCC-BD induced by B(a)P/DMBA mixture and transformed from dysplastic oral leukoplakia cell line DOK. Cell morphology, proliferation ability, migration ability, colony formation, and tumorigenicity were studied and confirmed the malignant characteristics of OSCC-BD cells. We further identified the differential proteins between DOK and OSCC-BD cells by stable isotope dimethyl labeling based quantitative proteomic method, which showed 18 proteins up-regulated and 16 proteins down-regulated with RSD < 8%. Differential proteins are mainly related to cell cycle, cell proliferation, DNA replication, RNA splicing and apoptosis. Abberant binding function, catalysis activity and transportor activity of differential proteins might contribute to the malignant transformation of OLK. Of the 34 identified differential proteins with RSD < 8%, 13 novel cancer-related proteins were reported in the present study. This study might provide a new insight into the mechanism of OLK malignant transformation and the potent biomarkers for early diagnosis, meanwhile further facilitate the application of the quantification proteomics to carcinogenesis research. PMID:26234610

  10. Comparative proteomic analysis of primary schwann cells and a spontaneously immortalized schwann cell line RSC 96: a comprehensive overview with a focus on cell adhesion and migration related proteins.

    PubMed

    Ji, Yuhua; Shen, Mi; Wang, Xin; Zhang, Shuqiang; Yu, Shu; Chen, Gang; Gu, Xiaosong; Ding, Fei

    2012-06-01

    Schwann cells (SCs) are the principal glial cells of the peripheral nervous system (PNS). As a result of tissue heterogeneity and difficulties in the isolation and culture of primary SCs, a considerable understanding of SC biology is obtained from SC lines. However, the differences between the primary SCs and SC lines remain uncertain. In the present study, quantitative proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) labeling was conducted to obtain an unbiased view of the proteomic profiles of primary rat SCs and RSC96, a spontaneously immortalized rat SC line. Out of 1757 identified proteins (FDR < 1%), 1702 were quantified, while 61 and 78 were found to be, respectively, up- or down-regulated (90% confidence interval) in RSC96. Bioinformatics analysis indicated the unique features of spontaneous immortalization, illustrated the dedifferentiated state of RSC96, and highlighted a panel of novel proteins associated with cell adhesion and migration including CADM4, FERMT2, and MCAM. Selected proteomic data and the requirement of these novel proteins in SC adhesion and migration were properly validated. Taken together, our data collectively revealed proteome differences between primary SCs and RSC96, validated several differentially expressed proteins with potential biological significance, and generated a database that may serve as a useful resource for studies of SC biology and pathology.

  11. Proteomic analysis of cell proliferation in a human hepatic cell line (HL-7702) induced by perfluorooctane sulfonate using iTRAQ.

    PubMed

    Cui, Ruina; Zhang, Hongxia; Guo, Xuejiang; Cui, Qianqian; Wang, Jianshe; Dai, Jiayin

    2015-12-15

    Perfluorooctane sulfonate (PFOS) is a commonly used and widely distributed perfluorinated compound proven to cause adverse health outcomes. However, how PFOS affects liver cell proliferation is not well understood. In this experiment, we exposed a human liver cell line (HL-7702) to 50 μM PFOS for 48 h and 96 h. We identified 52 differentially expressed proteins using a quantitative proteomic approach. Among them, 27 were associated with cell proliferation, including hepatoma-derived growth factor (Hdgf) and proliferation biomarkers Mk167 (Ki67) and Top2α. Results from MTT, cell counting, and cell cycle analysis showed low-dose PFOS (<200 μM) stimulated HL-7702 cell viability at 48 h and 96 h, reduced the G0/G1 percentage, and increased the S+G2/M percentage. Moreover, levels of Cyclin D1, Cyclin E2, Cyclin A2, Cyclin B1 and their partner Cdks were elevated, and the expression of regulating proteins like c-Myc, p53, p21 waf/cip1 and Myt1, as well as the phosphorylation levels of p-Wee1(S642), p-Chk1(S345) and p-Chk2(T68), were disturbed. We hypothesized that low-dose PFOS stimulated HL-7702 proliferation by driving cells into G1 through elevating cyclins/cdks expression, and by promoting cell cycle progression through altering other regulating proteins. This research will shed light on the mechanisms behind PFOS-mediated human hepatotoxicity. PMID:26143199

  12. Evaluation of reverse phase protein array (RPPA)-based pathway-activation profiling in 84 non-small cell lung cancer (NSCLC) cell lines as platform for cancer proteomics and biomarker discovery.

    PubMed

    Ummanni, Ramesh; Mannsperger, Heiko A; Sonntag, Johanna; Oswald, Marcus; Sharma, Ashwini K; König, Rainer; Korf, Ulrike

    2014-05-01

    The reverse phase protein array (RPPA) approach was employed for a quantitative analysis of 71 cancer-relevant proteins and phosphoproteins in 84 non-small cell lung cancer (NSCLC) cell lines and by monitoring the activation state of selected receptor tyrosine kinases, PI3K/AKT and MEK/ERK1/2 signaling, cell cycle control, apoptosis, and DNA damage. Additional information on NSCLC cell lines such as that of transcriptomic data, genomic aberrations, and drug sensitivity was analyzed in the context of proteomic data using supervised and non-supervised approaches for data analysis. First, the unsupervised analysis of proteomic data indicated that proteins clustering closely together reflect well-known signaling modules, e.g. PI3K/AKT- and RAS/RAF/ERK-signaling, cell cycle regulation, and apoptosis. However, mutations of EGFR, ERBB2, RAF, RAS, TP53, and PI3K were found dispersed across different signaling pathway clusters. Merely cell lines with an amplification of EGFR and/or ERBB2 clustered closely together on the proteomic, but not on the transcriptomic level. Secondly, supervised data analysis revealed that sensitivity towards anti-EGFR drugs generally correlated better with high level EGFR phosphorylation than with EGFR abundance itself. High level phosphorylation of RB and high abundance of AURKA were identified as candidates that can potentially predict sensitivity towards the aurora kinase inhibitor VX680. Examples shown demonstrate that the RPPA approach presents a useful platform for targeted proteomics with high potential for biomarker discovery. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.

  13. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line.

    PubMed

    Chiverton, Lesley M; Evans, Caroline; Pandhal, Jagroop; Landels, Andrew R; Rees, Byron J; Levison, Peter R; Wright, Phillip C; Smales, C Mark

    2016-08-01

    There are few studies defining CHO host cell proteins (HCPs) and the flux of these throughout a downstream purification process. Here we have applied quantitative iTRAQ proteomics to follow the HCP profile of an antibody (mAb) producing CHO-S cell line throughout a standard downstream purification procedure consisting of a Protein A, cation and anion exchange process. We used both 6 sample iTRAQ experiment to analyze technical replicates of three samples, which were culture harvest (HCCF), Protein A flow through and Protein A eluate and an 8 sample format to analyze technical replicates of four sample types; HCCF compared to Protein A eluate and subsequent cation and anion exchange purification. In the 6 sample iTRAQ experiment, 8781 spectra were confidently matched to peptides from 819 proteins (including the mAb chains). Across both the 6 and 8 sample experiments 936 proteins were identified. In the 8 sample comparison, 4187 spectra were confidently matched to peptides from 219 proteins. We then used the iTRAQ data to enable estimation of the relative change of individual proteins across the purification steps. These data provide the basis for application of iTRAQ for process development based upon knowledge of critical HCPs.

  14. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ - a study of an industrial mAb producing CHO-S cell line.

    PubMed

    Chiverton, Lesley M; Evans, Caroline; Pandhal, Jagroop; Landels, Andrew R; Rees, Byron J; Levison, Peter R; Wright, Phillip C; Smales, C Mark

    2016-08-01

    There are few studies defining CHO host cell proteins (HCPs) and the flux of these throughout a downstream purification process. Here we have applied quantitative iTRAQ proteomics to follow the HCP profile of an antibody (mAb) producing CHO-S cell line throughout a standard downstream purification procedure consisting of a Protein A, cation and anion exchange process. We used both 6 sample iTRAQ experiment to analyze technical replicates of three samples, which were culture harvest (HCCF), Protein A flow through and Protein A eluate and an 8 sample format to analyze technical replicates of four sample types; HCCF compared to Protein A eluate and subsequent cation and anion exchange purification. In the 6 sample iTRAQ experiment, 8781 spectra were confidently matched to peptides from 819 proteins (including the mAb chains). Across both the 6 and 8 sample experiments 936 proteins were identified. In the 8 sample comparison, 4187 spectra were confidently matched to peptides from 219 proteins. We then used the iTRAQ data to enable estimation of the relative change of individual proteins across the purification steps. These data provide the basis for application of iTRAQ for process development based upon knowledge of critical HCPs. PMID:27214759

  15. Proteome-Wide Effect of 17-β-Estradiol and Lipoxin A4 in an Endometriotic Epithelial Cell Line

    PubMed Central

    Sobel, Jonathan A.; Waridel, Patrice; Gori, Ilaria; Quadroni, Manfredo; Canny, Geraldine O.

    2016-01-01

    Endometriosis affects approximately 10% of women of reproductive age. This chronic, gynecological inflammatory disease results in a decreased quality of life for patients, with the main symptoms including chronic pelvic pain and infertility. The steroid hormone 17-β Estradiol (E2) plays a key role in the pathology. Our previous studies showed that the anti-inflammatory lipid Lipoxin A4 (LXA4) acts as an estrogen receptor-alpha agonist in endometrial epithelial cells, inhibiting certain E2-mediated effects. LXA4 also prevents the progression of endometriosis in a mouse model via anti-proliferative mechanisms and by impacting mediators downstream of ER signaling. The aim of the present study was therefore to examine global proteomic changes evoked by E2 and LXA4 in endometriotic epithelial cells. E2 impacted a greater number of proteins in endometriotic epithelial cells than LXA4. Interestingly, the combination of E2 and LXA4 resulted in a reduced number of regulated proteins, with LXA4 mediating a suppressive effect on E2-mediated signaling. These proteins are involved in diverse pathways of relevance to endometriosis pathology and metabolism, including mRNA translation, growth, proliferation, proteolysis, and immune responses. In summary, this study sheds light on novel pathways involved in endometriosis pathology and further understanding of signaling pathways activated by estrogenic molecules in endometriotic epithelial cells. PMID:26779118

  16. Suberoylanilide Hydroxamic Acid Treatment Reveals Crosstalks among Proteome, Ubiquitylome and Acetylome in Non-Small Cell Lung Cancer A549 Cell Line

    PubMed Central

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  17. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  18. Quantitative Proteomics Analysis of Leukemia Cells.

    PubMed

    Halbach, Sebastian; Dengjel, Jörn; Brummer, Tilman

    2016-01-01

    Chronic myeloid leukemia (CML) is driven by the oncogenic fusion kinase Bcr-Abl, which organizes its own signaling network with various proteins. These proteins, their interactions, and their role in relevant signaling pathways can be analyzed by quantitative mass spectrometry (MS) approaches in various models systems, e.g., in cell culture models. In this chapter, we describe in detail immunoprecipitations and quantitative proteomics analysis using stable isotope labeling by amino acids in cell culture (SILAC) of components of the Bcr-Abl signaling pathway in the human CML cell line K562. PMID:27581145

  19. Multi-Scale Genomic, Transcriptomic and Proteomic Analysis of Colorectal Cancer Cell Lines to Identify Novel Biomarkers

    PubMed Central

    Briffa, Romina; Um, Inhwa; Faratian, Dana; Zhou, Ying; Turnbull, Arran K.; Langdon, Simon P.; Harrison, David J.

    2015-01-01

    Selecting colorectal cancer (CRC) patients likely to respond to therapy remains a clinical challenge. The objectives of this study were to establish which genes were differentially expressed with respect to treatment sensitivity and relate this to copy number in a panel of 15 CRC cell lines. Copy number variations of the identified genes were assessed in a cohort of CRCs. IC50’s were measured for 5-fluorouracil, oxaliplatin, and BEZ-235, a PI3K/mTOR inhibitor. Cell lines were profiled using array comparative genomic hybridisation, Illumina gene expression analysis, reverse phase protein arrays, and targeted sequencing of KRAS hotspot mutations. Frequent gains were observed at 2p, 3q, 5p, 7p, 7q, 8q, 12p, 13q, 14q, and 17q and losses at 2q, 3p, 5q, 8p, 9p, 9q, 14q, 18q, and 20p. Frequently gained regions contained EGFR, PIK3CA, MYC, SMO, TRIB1, FZD1, and BRCA2, while frequently lost regions contained FHIT and MACROD2. TRIB1 was selected for further study. Gene enrichment analysis showed that differentially expressed genes with respect to treatment response were involved in Wnt signalling, EGF receptor signalling, apoptosis, cell cycle, and angiogenesis. Stepwise integration of copy number and gene expression data yielded 47 candidate genes that were significantly correlated. PDCD6 was differentially expressed in all three treatment responses. Tissue microarrays were constructed for a cohort of 118 CRC patients and TRIB1 and MYC amplifications were measured using fluorescence in situ hybridisation. TRIB1 and MYC were amplified in 14.5% and 7.4% of the cohort, respectively, and these amplifications were significantly correlated (p≤0.0001). TRIB1 protein expression in the patient cohort was significantly correlated with pERK, Akt, and Caspase 3 expression. In conclusion, a set of candidate predictive biomarkers for 5-fluorouracil, oxaliplatin, and BEZ235 are described that warrant further study. Amplification of the putative oncogene TRIB1 has been described for

  20. Integrative analysis of extracellular and intracellular bladder cancer cell line proteome with transcriptome: improving coverage and validity of –omics findings

    PubMed Central

    Latosinska, Agnieszka; Makridakis, Manousos; Frantzi, Maria; Borràs, Daniel M.; Janssen, Bart; Mullen, William; Zoidakis, Jerome; Merseburger, Axel S.; Jankowski, Vera; Mischak, Harald; Vlahou, Antonia

    2016-01-01

    Characterization of disease-associated proteins improves our understanding of disease pathophysiology. Obtaining a comprehensive coverage of the proteome is challenging, mainly due to limited statistical power and an inability to verify hundreds of putative biomarkers. In an effort to address these issues, we investigated the value of parallel analysis of compartment-specific proteomes with an assessment of findings by cross-strategy and cross-omics (proteomics-transcriptomics) agreement. The validity of the individual datasets and of a “verified” dataset based on cross-strategy/omics agreement was defined following their comparison with published literature. The proteomic analysis of the cell extract, Endoplasmic Reticulum/Golgi apparatus and conditioned medium of T24 vs. its metastatic subclone T24M bladder cancer cells allowed the identification of 253, 217 and 256 significant changes, respectively. Integration of these findings with transcriptomics resulted in 253 “verified” proteins based on the agreement of at least 2 strategies. This approach revealed findings of higher validity, as supported by a higher level of agreement in the literature data than those of individual datasets. As an example, the coverage and shortlisting of targets in the IL-8 signalling pathway are discussed. Collectively, an integrative analysis appears a safer way to evaluate -omics datasets and ultimately generate models from valid observations. PMID:27167498

  1. Visual exploratory analysis of integrated chromosome 19 proteomic data derived from glioma cancer stem-cell lines based on novel nonlinear dimensional data reduction techniques

    NASA Astrophysics Data System (ADS)

    Lespinats, Sylvain; Pinker-Domenig, Katja; Meyer-Bäse, Uwe; Meyer-Bäse, Anke

    2015-05-01

    Chromosome 19 is known to be linked to neurodegeneration and many cancers. Glioma-derived cancer stem cells (GSCs) are tumor-initiating cells and may be refractory to radiation and chemotherapy and thus have important implications for tumor biology and therapeutics. The analysis and interpretation of large proteomic data sets requires the development of new data mining and visualization approaches. Traditional techniques are insufficient to interpret and visualize these resulting experimental data. The emphasis of this paper lies in the presentation of novel approaches for the visualization, clustering and projection representation to unveil hidden data structures relevant for the accurate interpretation of biological experiments. These qualitative and quantitative methods are applied to the proteomic analysis of data sets derived from the GSCs. The achieved clustering and visualization results provide a more detailed insight into the expression patterns for chromosome 19 proteins.

  2. Proteomic analysis of Chinese hamster ovary cells.

    PubMed

    Baycin-Hizal, Deniz; Tabb, David L; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N; Krag, Sharon S; Cole, Robert N; Palsson, Bernhard O; Zhang, Hui; Betenbaugh, Michael

    2012-11-01

    To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. Five-hundred four of the detected proteins included N-acetylation modifications, and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  3. Neural Stem Cells (NSCs) and Proteomics*

    PubMed Central

    Shoemaker, Lorelei D.; Kornblum, Harley I.

    2016-01-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  4. Neural Stem Cells (NSCs) and Proteomics.

    PubMed

    Shoemaker, Lorelei D; Kornblum, Harley I

    2016-02-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  5. A Cell-type-resolved Liver Proteome*

    PubMed Central

    Ding, Chen; Li, Yanyan; Guo, Feifei; Jiang, Ying; Ying, Wantao; Li, Dong; Yang, Dong; Xia, Xia; Liu, Wanlin; Zhao, Yan; He, Yangzhige; Li, Xianyu; Sun, Wei; Liu, Qiongming; Song, Lei; Zhen, Bei; Zhang, Pumin; Qian, Xiaohong; Qin, Jun; He, Fuchu

    2016-01-01

    Parenchymatous organs consist of multiple cell types, primarily defined as parenchymal cells (PCs) and nonparenchymal cells (NPCs). The cellular characteristics of these organs are not well understood. Proteomic studies facilitate the resolution of the molecular details of different cell types in organs. These studies have significantly extended our knowledge about organogenesis and organ cellular composition. Here, we present an atlas of the cell-type-resolved liver proteome. In-depth proteomics identified 6000 to 8000 gene products (GPs) for each cell type and a total of 10,075 GPs for four cell types. This data set revealed features of the cellular composition of the liver: (1) hepatocytes (PCs) express the least GPs, have a unique but highly homogenous proteome pattern, and execute fundamental liver functions; (2) the division of labor among PCs and NPCs follows a model in which PCs make the main components of pathways, but NPCs trigger the pathways; and (3) crosstalk among NPCs and PCs maintains the PC phenotype. This study presents the liver proteome at cell resolution, serving as a research model for dissecting the cell type constitution and organ features at the molecular level. PMID:27562671

  6. A comparative proteomic study identified LRPPRC and MCM7 as putative actors in imatinib mesylate cross-resistance in Lucena cell line

    PubMed Central

    2012-01-01

    Background Although chronic myeloid leukemia (CML) treatment has improved since the introduction of imatinib mesylate (IM), cases of resistance have been reported. This resistance has been associated with the emergence of multidrug resistance (MDR) phenotype, as a BCR-ABL independent mechanism. The classic pathway studied in MDR promotion is ATP-binding cassette (ABC) family transporters expression, but other mechanisms that drive drug resistance are largely unknown. To better understand IM therapy relapse due to the rise of MDR, we compared the proteomic profiles of K562 and Lucena (K562/VCR) cells. Results The use of 2-DE coupled with a MS approach resulted in the identification of 36 differentially expressed proteins. Differential mRNA levels of leucine-rich PPR motif-containing (LRPPRC) protein, minichromosome maintenance complex component 7 (MCM7) and ATP-binding cassette sub-family B (MDR/TAP) member 1 (ABCB1) were capable of defining samples from CML patients as responsive or resistant to therapy. Conclusions Through the data presented in this work, we show the relevance of MDR to IM therapy. In addition, our proteomic approach identified candidate actors involved in resistance, which could lead to additional information on BCR-ABL-independent molecular mechanisms. PMID:22458888

  7. Profiling of the cell surface proteome.

    PubMed

    Jang, Jun Ho; Hanash, Samir

    2003-10-01

    The in depth-mining of the proteome necessitates the comprehensive analysis of proteins in individual subcellular compartments to uncover interesting patterns of protein expression that include assessment of protein location, trafficking and of post-translational modifications that are location specific. One of the compartments of substantial interest from a diagnostic and therapeutic point of view is the plasma membrane which contains intrinsic membrane proteins and other proteins expressed on the cell surface. Technologies are currently available for the comprehensive profiling of the cell surface proteome that rely on protein tagging of intact cells. Studies are emerging that point to unexpected patterns of expression of specific proteins on the cell surface, with a common occurrence of proteins previously considered to occur predominantly in other compartments, notably the endoplasmic reticulum. The profiling of the cell surface and plasma membrane proteomes will likely provide novel insights and uncover disease related alterations. PMID:14625857

  8. Proteomic profiling of the human T-cell nucleolus.

    PubMed

    Jarboui, Mohamed Ali; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2011-12-01

    The nucleolus, site of ribosome biogenesis, is a dynamic subnuclear organelle involved in diverse cellular functions. The size, number and organisation of nucleoli are cell-specific and while it remains to be established, the nucleolar protein composition would be expected to reflect lineage-specific transcriptional regulation of rDNA genes and have cell-type functional components. Here, we describe the first characterisation of the human T-cell nucleolar proteome. Using the Jurkat T-cell line and a reproducible organellar proteomic approach, we identified 872 nucleolar proteins. In addition to ribosome biogenesis and RNA processing networks, network modeling and topological analysis of nucleolar proteome revealed distinct macromolecular complexes known to orchestrate chromatin structure and to contribute to the regulation of gene expression, replication, recombination and repair, and chromosome segregation. Furthermore, among our dataset, we identified proteins known to functionally participate in T-cell biology, including RUNX1, ILF3, ILF2, STAT3, LSH, TCF-1, SATB1, CTCF, HMGB3, BCLAF1, FX4L1, ZAP70, TIAM1, RAC2, THEMIS, LCP1, RPL22, TOPK, RETN, IFI-16, MCT-1, ISG15, and 14-3-3τ, which support cell-specific composition of the Jurkat nucleolus. Subsequently, the nucleolar localisation of RUNX1, ILF3, STAT3, ZAP70 and RAC2 was further validated by Western Blot analysis and immunofluorescence microscopy. Overall, our T-cell nucleolar proteome dataset not only further expands the existing repertoire of the human nucleolar proteome but support a cell type-specific composition of the nucleolus in T cell and highlights the potential roles of the nucleoli in lymphocyte biology.

  9. Quantitative definition and monitoring of the host cell protein proteome using iTRAQ – a study of an industrial mAb producing CHO‐S cell line

    PubMed Central

    Chiverton, Lesley M.; Evans, Caroline; Pandhal, Jagroop; Landels, Andrew R.; Rees, Byron J.; Levison, Peter R.

    2016-01-01

    Abstract There are few studies defining CHO host cell proteins (HCPs) and the flux of these throughout a downstream purification process. Here we have applied quantitative iTRAQ proteomics to follow the HCP profile of an antibody (mAb) producing CHO‐S cell line throughout a standard downstream purification procedure consisting of a Protein A, cation and anion exchange process. We used both 6 sample iTRAQ experiment to analyze technical replicates of three samples, which were culture harvest (HCCF), Protein A flow through and Protein A eluate and an 8 sample format to analyze technical replicates of four sample types; HCCF compared to Protein A eluate and subsequent cation and anion exchange purification. In the 6 sample iTRAQ experiment, 8781 spectra were confidently matched to peptides from 819 proteins (including the mAb chains). Across both the 6 and 8 sample experiments 936 proteins were identified. In the 8 sample comparison, 4187 spectra were confidently matched to peptides from 219 proteins. We then used the iTRAQ data to enable estimation of the relative change of individual proteins across the purification steps. These data provide the basis for application of iTRAQ for process development based upon knowledge of critical HCPs. PMID:27214759

  10. Changes in the proteomic profile during the differential polarization status of the human monocyte-derived macrophage THP-1 cell line.

    PubMed

    Zhang, Fan; Liu, Hao; Jiang, Guanmin; Wang, Hongsheng; Wang, Xianfeng; Wang, Hao; Fang, Rui; Cai, Shaohui; Du, Jun

    2015-02-01

    Macrophages are heterogeneous and plastic populations that are an essential component of inflammation and host defense. To understand how macrophages respond to cytokine signals, we used 2DE to identify protein profiles in macrophages stimulated with interleukin 4 (M2) and those stimulated with lipopolysaccharide and interferon γ (M1). In total, 32 differentially expressed proteins in THP-1 cells were identified by MALDI-TOF MS/MS analysis. The different proteins were mainly involved in cellular structure, protein metabolism, stress response, oxidative response, and nitric oxide production during macrophage polarization. In particular, proteins playing important roles in production of nitric oxide (NO) were downregulated in M2 macrophages. Many antioxidant and heat shock proteins, which are related to oxidative response, were upregulated in M2 macrophages. More importantly, a remarkable decrease in intracellular ROS and NO production were detected in M2 macrophages. Our results provide a proteomic profile of differentially polarized macrophages and validate the function of the identified proteins, which may indicate possible mechanism of macrophage polarization process.

  11. Docosohaexanoic acid-supplemented PACA44 cell lines and over-activation of Krebs cycle: an integrated proteomic, metabolomic and interactomic overview.

    PubMed

    D'Alessandro, Angelo; D'Amici, Gian Maria; Timperio, Anna Maria; Merendino, Nicolò; Zolla, Lello

    2011-09-01

    Recent investigations have pointed out the ability of fatty acids, in particular of docosohaexanoic acid (DHA), to induce growth inhibition and apoptosis in the human PaCa-44 pancreatic cancer cell line through a series of mechanisms which has been hypothesized to mimic apoptosis. While preliminary evidences indicated the involvement of lipid-targeting oxidative stress in DHA-induced apoptotic processes, mainly through the alteration of the glutathione (GSH) homeostasis and oxidized-glutathione (GSSG) turn-over through their extra-cellular extrusion, no further molecular data have been hitherto accumulated. To this end, we hereby propose simultaneous protein-targeting and metabolite-oriented analyses, which have been integrated through the auxilium of in silico elaboration of those protein-protein interaction pathways and enrichment of biological/molecular functions. To determine the most suitable time window for the early onset of the DHA-triggered apoptosis phenomena we performed flow cytometry-based apoptotic assessment at 24, 48 and 72 h. Results indicated that the focus of apoptosis onset ranged from 48 to 72 h. From these analyses it emerges that the metabolism of control human PaCa-44 pancreatic cancer cell line mainly leans on glycolytic pathways, while it is promptly switched to Kreb's cycle activation (overexpression of Kreb's cycle enzymes in DHA-treated cells against controls) and modulation of the GSH homeostasis through an increased production of GSSG-reducing NADPH coenzyme via the shift of the glycolytic energy flux towards the pentose phosphate pathway. Interestingly, it also emerges a role for structural protein alteration in DHA-treated cells, which might be linked to cytoskeletal alterations occurring during apoptosis.

  12. Rare cell proteomic reactor applied to stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics study of human embryonic stem cell differentiation.

    PubMed

    Tian, Ruijun; Wang, Shuai; Elisma, Fred; Li, Li; Zhou, Hu; Wang, Lisheng; Figeys, Daniel

    2011-02-01

    The molecular basis governing the differentiation of human embryonic stem cells (hESCs) remains largely unknown. Systems-level analysis by proteomics provides a unique approach to tackle this question. However, the requirement of a large number of cells for proteomics analysis (i.e. 10(6)-10(7) cells) makes this assay challenging, especially for the study of rare events during hESCs lineage specification. Here, a fully integrated proteomics sample processing and analysis platform, termed rare cell proteomic reactor (RCPR), was developed for large scale quantitative proteomics analysis of hESCs with ∼50,000 cells. hESCs were completely extracted by a defined lysis buffer, and all of the proteomics sample processing procedures, including protein preconcentration, reduction, alkylation, and digestion, were integrated into one single capillary column with a strong cation exchange monolith matrix. Furthermore, on-line two-dimensional LC-MS/MS analysis was performed directly using RCPR as the first dimension strong cation exchange column. 2,281 unique proteins were identified on this system using only 50,000 hESCs. For stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative study, a ready-to-use and chemically defined medium and an in situ differentiation procedure were developed for complete SILAC labeling of hESCs with well characterized self-renewal and differentiation properties. Mesoderm-enriched differentiation was studied by RCPR using 50,000 hESCs, and 1,086 proteins were quantified with a minimum of two peptides per protein. Of these, 56 proteins exhibited significant changes during mesoderm-enriched differentiation, and eight proteins were demonstrated for the first time to be overexpressed during early mesoderm development. This work provides a new platform for the study of rare cells and in particular for further elucidating proteins that govern the mesoderm lineage specification of human pluripotent stem cells.

  13. The cell envelope proteome of Aggregatibacter actinomycetemcomitans

    PubMed Central

    Smith, Kenneth P.; Fields, Julia G.; Voogt, Richard D.; Deng, Bin; Lam, Ying-Wai; Mintz, Keith P.

    2014-01-01

    Summary The cell envelope of Gram-negative bacteria serves a critical role in maintenance of cellular homeostasis, resistance to external stress, and host-pathogen interactions. Envelope protein composition is influenced by the physiological and environmental demands placed on the bacterium. In this study, we report a comprehensive compilation of cell envelope proteins from the periodontal and systemic pathogen Aggregatibacter actinomycetemcomitans VT1169, an afimbriated serotype b strain. The urea-extracted membrane proteins were identified by mass spectrometry-based shotgun proteomics. The membrane proteome, isolated from actively growing bacteria under normal laboratory conditions, included 648 proteins representing 28% of the predicted ORFs in the genome. Bioinformatic analyses were used to annotate and predict the cellular location and function of the proteins. Surface adhesins, porins, lipoproteins, numerous influx and efflux pumps, multiple sugar, amino acid and iron transporters, and components of the type I, II and V secretion systems were identified. Periplasmic space and cytoplasmic proteins with chaperone function were also identified. 107 proteins with unknown function were associated with the cell envelope. Orthologs of a subset of these uncharacterized proteins are present in other bacterial genomes, while others are found exclusively in A. actinomycetemcomitans. This knowledge will contribute to elucidating the role of cell envelope proteins in bacterial growth and survival in the oral cavity. PMID:25055881

  14. Proteomic and Bioinformatic Profile of Primary Human Oral Epithelial Cells

    PubMed Central

    Ghosh, Santosh K.; Yohannes, Elizabeth; Bebek, Gurkan; Weinberg, Aaron; Jiang, Bin; Willard, Belinda; Chance, Mark R.; Kinter, Michael T.; McCormick, Thomas S.

    2012-01-01

    Wounding of the oral mucosa occurs frequently in a highly septic environment. Remarkably, these wounds heal quickly and the oral cavity, for the most part, remains healthy. Deciphering the normal human oral epithelial cell (NHOEC) proteome is critical for understanding the mechanism(s) of protection elicited when the mucosal barrier is intact, as well as when it is breached. Combining 2D gel electrophoresis with shotgun proteomics resulted in identification of 1662 NHOEC proteins. Proteome annotations were performed based on protein classes, molecular functions, disease association and membership in canonical and metabolic signaling pathways. Comparing the NHOEC proteome with a database of innate immunity-relevant interactions (InnateDB) identified 64 common proteins associated with innate immunity. Comparison with published salivary proteomes revealed that 738/1662 NHOEC proteins were common, suggesting that significant numbers of salivary proteins are of epithelial origin. Gene ontology analysis showed similarities in the distributions of NHOEC and saliva proteomes with regard to biological processes, and molecular functions. We also assessed the inter-individual variability of the NHOEC proteome and observed it to be comparable with other primary cells. The baseline proteome described in this study should serve as a resource for proteome studies of the oral mucosa, especially in relation to disease processes. PMID:23035736

  15. Medullospheres from DAOY, UW228 and ONS-76 Cells: Increased Stem Cell Population and Proteomic Modifications

    PubMed Central

    Zanini, Cristina; Ercole, Elisabetta; Mandili, Giorgia; Salaroli, Roberta; Poli, Alice; Renna, Cristiano; Papa, Valentina; Cenacchi, Giovanna; Forni, Marco

    2013-01-01

    Background Medulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies. Methodology/Principal Findings The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. Conclusions/Significance Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB. PMID:23717474

  16. Cell-type-resolved quantitative proteomics of murine liver.

    PubMed

    Azimifar, S Babak; Nagaraj, Nagarjuna; Cox, Juergen; Mann, Matthias

    2014-12-01

    Mass spectrometry (MS)-based proteomics provides a powerful approach to globally investigate the biological function of individual cell types in mammalian organs. Here, we applied this technology to the in-depth analysis of purified hepatic cell types from mouse. We quantified 11,520 proteins, making this the most comprehensive proteomic resource of any organ to date. Global protein copy number determination demonstrated that a large proportion of the hepatocyte proteome is dedicated to fatty acid and xenobiotic metabolism. We identified as-yet-unknown components of the TGF-β signaling pathway and extracellular matrix in hepatic stellate cells, uncovering their regulative role in liver physiology. Moreover, our high-resolution proteomic data set enabled us to compare the distinct functional roles of hepatic cell types in cholesterol flux, cellular trafficking, and growth factor receptor signaling. This study provides a comprehensive resource for liver biology and biomedicine.

  17. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells.

    PubMed

    Kulak, Nils A; Pichler, Garwin; Paron, Igor; Nagaraj, Nagarjuna; Mann, Matthias

    2014-03-01

    Mass spectrometry (MS)-based proteomics typically employs multistep sample-preparation workflows that are subject to sample contamination and loss. We report an in-StageTip method for performing sample processing, from cell lysis through elution of purified peptides, in a single, enclosed volume. This robust and scalable method largely eliminates contamination or loss. Peptides can be eluted in several fractions or in one step for single-run proteome analysis. In one day, we obtained the largest proteome coverage to date for budding and fission yeast, and found that protein copy numbers in these cells were highly correlated (R(2) = 0.78). Applying the in-StageTip method to quadruplicate measurements of a human cell line, we obtained copy-number estimates for 9,667 human proteins and observed excellent quantitative reproducibility between replicates (R(2) = 0.97). The in-StageTip method is straightforward and generally applicable in biological or clinical applications.

  18. How well can morphology assess cell death modality? A proteomics study

    PubMed Central

    Chernobrovkin, Alexey L; Zubarev, Roman A

    2016-01-01

    While the focus of attempts to classify cell death programs has finally shifted in 2010s from microscopy-based morphological characteristics to biochemical assays, more recent discoveries have put the underlying assumptions of many such assays under severe stress, mostly because of the limited specificity of the assays. On the other hand, proteomics can quantitatively measure the abundances of thousands of proteins in a single experiment. Thus proteomics could develop a modern alternative to both semiquantitative morphology assessment as well as single-molecule biochemical assays. Here we tested this hypothesis by analyzing the proteomes of cells dying after been treated with various chemical agents. The most striking finding is that, for a multivariate model based on the proteome changes in three cells lines, the regulation patterns of the 200–500 most abundant proteins typically attributed to household type more accurately reflect that of the proteins directly interacting with the drug than any other protein subset grouped by common function or biological process, including cell death. This is in broad agreement with the 'rigid cell death mechanics' model where drug action mechanism and morphological changes caused by it are bijectively linked. This finding, if confirmed, will open way for a broad use of proteomics in death modality assessment. PMID:27752363

  19. The Cell Surface Proteome of Human Mesenchymal Stromal Cells

    PubMed Central

    Pursche, Theresia; Bornhäuser, Martin; Corbeil, Denis; Hoflack, Bernard

    2011-01-01

    Background Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. Methodology/Principal Findings To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously. Conclusions/Significance Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention. PMID:21637820

  20. A Cell-Based Approach to the Human Proteome Project

    NASA Astrophysics Data System (ADS)

    Kelleher, Neil L.

    2012-10-01

    The general scope of a project to determine the protein molecules that comprise the cells within the human body is framed. By focusing on protein primary structure as expressed in specific cell types, this concept for a cell-based version of the Human Proteome Project (CB-HPP) is crafted in a manner analogous to the Human Genome Project while recognizing that cells provide a primary context in which to define a proteome. Several activities flow from this articulation of the HPP, which enables the definition of clear milestones and deliverables. The CB-HPP highlights major gaps in our knowledge regarding cell heterogeneity and protein isoforms, and calls for development of technology that is capable of defining all human cell types and their proteomes. The main activities will involve mapping and sorting cell types combined with the application of beyond the state-of-the art in protein mass spectrometry.

  1. Advancing cell biology through proteomics in space and time (PROSPECTS).

    PubMed

    Lamond, Angus I; Uhlen, Mathias; Horning, Stevan; Makarov, Alexander; Robinson, Carol V; Serrano, Luis; Hartl, F Ulrich; Baumeister, Wolfgang; Werenskiold, Anne Katrin; Andersen, Jens S; Vorm, Ole; Linial, Michal; Aebersold, Ruedi; Mann, Matthias

    2012-03-01

    The term "proteomics" encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new "third generation" proteomics strategy that offers an indispensible tool for cell biology and molecular medicine.

  2. Proteomic Analysis of Chikungunya Virus Infected Microgial Cells

    PubMed Central

    Abere, Bizunesh; Wikan, Nitwara; Ubol, Sukathida; Auewarakul, Prasert; Paemanee, Atchara; Kittisenachai, Suthathip; Roytrakul, Sittiruk; Smith, Duncan R.

    2012-01-01

    Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms. PMID:22514668

  3. Spatial proteomic and phospho-proteomic organization in three prototypical cell migration modes

    PubMed Central

    2014-01-01

    Background Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. Results Here, we use an assay that allows to biochemically purify extending protrusions of cells migrating in response to three prototypical receptors: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. Conclusions The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration. PMID:24987309

  4. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  5. Drafting the proteome landscape of myeloid-derived suppressor cells.

    PubMed

    Gato, María; Blanco-Luquin, Idoia; Zudaire, Maribel; de Morentin, Xabier Martínez; Perez-Valderrama, Estela; Zabaleta, Aintzane; Kochan, Grazyna; Escors, David; Fernandez-Irigoyen, Joaquín; Santamaría, Enrique

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that are defined by their myeloid origin, immature state, and ability to potently suppress T-cell responses. They regulate immune responses and the population significantly increases in the tumor microenvironment of patients with glioma and other malignant tumors. For their study, MDSCs are usually isolated from the spleen or directly of tumors from a large number of tumor-bearing mice although promising ex vivo differentiated MDSC production systems have been recently developed. During the last years, proteomics has emerged as a powerful approach to analyze MDSCs proteomes using shotgun-based mass spectrometry (MS), providing functional information about cellular homeostasis and metabolic state at a global level. Here, we will revise recent proteome profiling studies performed in MDSCs from different origins. Moreover, we will perform an integrative functional analysis of the protein compilation derived from these large-scale proteomic studies in order to obtain a comprehensive view of MDSCs biology. Finally, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and post-translational modifications (PTMs) during the differentiation process of MDSCs that will greatly boost the identification of novel MDSC-specific therapeutic targets to apply in cancer immunotherapy. PMID:26403437

  6. Maize (Zea mays L.) seedling leaf nuclear proteome and differentially expressed proteins between a hybrid and its parental lines.

    PubMed

    Guo, Baojian; Chen, Yanhong; Li, Chuan; Wang, Tianya; Wang, Rui; Wang, Bo; Hu, Sha; Du, Xiaofen; Xing, Hongyan; Song, Xiao; Yao, Yingyin; Sun, Qixin; Ni, Zhongfu

    2014-05-01

    To better understand the underlying molecular basis of leaf development in maize, a reference map of nuclear proteins in basal region of seedling leaf was established using a combination of 2DE and MALDI-TOF-MS. In total, 441 reproducible protein spots in nuclear proteome of maize leaf basal region were detected with silver staining in a pH range of 3-10, among which 203 spots corresponding to 163 different proteins were identified. As expected, proteins implicated in RNA and protein-associated functions were overrepresented in nuclear proteome. Remarkably, a high percentage (10%) of proteins was identified to be involved in cell division and growth. In addition, comparative nuclear proteomic analysis in leaf basal region of highly heterotic hybrid Mo17/B73 and its parental lines was also performed and 52 of 445 (11.69%) detected protein spots were differentially expressed between the hybrid and its parental lines, among which 16 protein spots displayed nonadditively expressed pattern. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of nuclear proteins, which may be responsible for the observed leaf size heterosis.

  7. Tagging and Enriching Proteins Enables Cell-Specific Proteomics.

    PubMed

    Elliott, Thomas S; Bianco, Ambra; Townsley, Fiona M; Fried, Stephen D; Chin, Jason W

    2016-07-21

    Cell-specific proteomics in multicellular systems and whole animals is a promising approach to understand the differentiated functions of cells and tissues. Here, we extend our stochastic orthogonal recoding of translation (SORT) approach for the co-translational tagging of proteomes with a cyclopropene-containing amino acid in response to diverse codons in genetically targeted cells, and create a tetrazine-biotin probe containing a cleavable linker that offers a way to enrich and identify tagged proteins. We demonstrate that SORT with enrichment, SORT-E, efficiently recovers and enriches SORT tagged proteins and enables specific identification of enriched proteins via mass spectrometry, including low-abundance proteins. We show that tagging at distinct codons enriches overlapping, but distinct sets of proteins, suggesting that tagging at more than one codon enhances proteome coverage. Using SORT-E, we accomplish cell-specific proteomics in the fly. These results suggest that SORT-E will enable the definition of cell-specific proteomes in animals during development, disease progression, and learning and memory. PMID:27447048

  8. Proteomics Based Identification of Proteins with Deregulated Expression in B Cell Lymphomas.

    PubMed

    Wu, Rui; Nijland, Marcel; Rutgers, Bea; Veenstra, Rianne; Langendonk, Myra; van der Meeren, Lotte E; Kluin, Philip M; Li, Guanwu; Diepstra, Arjan; Chiu, Jen-Fu; van den Berg, Anke; Visser, Lydia

    2016-01-01

    Follicular lymphoma and diffuse large B cell lymphomas comprise the main entities of adult B cell malignancies. Although multiple disease driving gene aberrations have been identified by gene expression and genomic studies, only a few studies focused at the protein level. We applied 2 dimensional gel electrophoresis to compare seven GC B cell non Hodgkin lymphoma (NHL) cell lines with a lymphoblastoid cell line (LCL). An average of 130 spots were at least two folds different in intensity between NHL cell lines and the LCL. We selected approximately 38 protein spots per NHL cell line and linked them to 145 unique spots based on the location in the gel. 34 spots that were found altered in at least three NHL cell lines when compared to LCL, were submitted for LC-MS/MS. This resulted in 28 unique proteins, a substantial proportion of these proteins were involved in cell motility and cell metabolism. Loss of expression of B2M, and gain of expression of PRDX1 and PPIA was confirmed in the cell lines and primary lymphoma tissue. Moreover, inhibition of PPIA with cyclosporine A blocked cell growth of the cell lines, the effect size was associated with the PPIA expression levels. In conclusion, we identified multiple differentially expressed proteins by 2-D proteomics, and showed that some of these proteins might play a role in the pathogenesis of NHL. PMID:26752561

  9. Proteome changes in tomato lines transformed with phytoene synthase-1 in the sense and antisense orientations.

    PubMed

    Robertson, Francesca P; Koistinen, P Kaisa; Gerrish, Christopher; Halket, John M; Patel, Raj K P; Fraser, Paul D; Bramley, Peter M

    2012-10-01

    The commercial cultivation of genetically engineered (GE) crops in Europe has met with considerable consumer resistance, which has led to vigorous safety assessments including the measurement of substantial equivalence between the GE and parent lines. This necessitates the identification and quantification of significant changes to the metabolome and proteome in the GE crop. In this study, the quantitative proteomic analysis of tomato fruit from lines that have been transformed with the carotenogenic gene phytoene synthase-1 (Psy-1), in the sense and antisense orientations, in comparison with a non-transformed, parental line is described. Multidimensional protein identification technology (MudPIT), with tandem mass spectrometry, has been used to identify proteins, while quantification has been carried out with isobaric tags for relative and absolute quantification (iTRAQ). Fruit from the GE plants showed significant alterations to their proteomes compared with the parental line, especially those from the Psy-1 sense transformants. These results demonstrate that MudPIT and iTRAQ are suitable techniques for the verification of substantial equivalence of the proteome in GE crops.

  10. Proteomics

    SciTech Connect

    Hixson, Kim K.; Lopez-Ferrer, Daniel; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2010-02-01

    Proteomics aims to characterize the spatial distribution and temporal dynamics of proteins in biological systems, the protein response to environmental stimuli, and the differences in protein states between diseased and control biological systems. Mass spectrometry (MS) plays a crucial role in enabling the analysis of proteomes and typically is the method of choice for identifying proteins present in biological systems. Peptide (and consequently protein) identifications are made by comparing measured masses to calculated values obtained from genome data. Several methodologies based on MS have been developed for the analysis of proteomes. The complexity of the biological systems requires that the proteome be separated prior to analysis. Both gel based and liquid chromatography based separations have proven very useful in this regard. Typically, separated proteins are analyzed with MS either intact (top-down proteomics) or are digested into peptides (bottom-up) prior to MS analysis. Additionally, several procedures, with and without stable isotopic labeling, have been introduced to facilitate protein quantitation (e.g. characterize changes in protein abundances between given biological states).

  11. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    PubMed Central

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  12. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    PubMed

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte; Corbeil, Denis; Hoflack, Bernard

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  13. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  14. Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents.

    PubMed

    Xu, Chenping; Sullivan, Joe H; Garrett, Wesley M; Caperna, Thomas J; Natarajan, Savithiry

    2008-01-01

    Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was used to systematically investigate the impact of solar ultraviolet-B (UV-B) radiation on the soybean leaf proteome. In order to investigate the protective role of flavonoids against UV-B, two isolines of the Clark cultivar (the standard line with moderate levels of flavonoids and the magenta line with reduced flavonoids) were grown in the field with or without natural levels of UV-B. The 12-day-old first trifoliates were harvested for proteomic analysis. More than 300 protein spots were reproducibly resolved and detected on each gel. Statistical analysis showed that 67 protein spots were significantly (P<0.05) affected by solar UV-B. Many more spots were altered by UV-B in the magenta line than in the standard line. Another 12 protein spots were not altered by UV-B but showed significantly (P<0.05) different accumulations between the two lines, and for most spots the line-specific differences were also observed under UV-B exclusion. Most of the differentially accumulated spots were identified by mass spectrometry. The proteins were quite diverse, and were involved in metabolism, energy, protein destination/storage, protein synthesis, disease/defense, transcription, and secondary metabolism. The results suggest that high levels of flavonoids lead to a reduction in UV-B sensitivity at the proteomic level.

  15. The membrane proteome of the mouse lens fiber cell

    PubMed Central

    Wilmarth, Phillip A.; David, Larry L.

    2009-01-01

    Purpose Fiber cells of the ocular lens are bounded by a highly specialized plasma membrane. Despite the pivotal role that membrane proteins play in the physiology and pathophysiology of the lens, our knowledge of the structure and composition of the fiber cell plasma membrane remains fragmentary. In the current study, we utilized mass spectrometry-based shotgun proteomics to provide a comprehensive survey of the mouse lens fiber cell membrane proteome. Methods Membranes were purified from young mouse lenses and subjected to MudPIT (Multidimensional protein identification technology) analysis. The resulting proteomic data were analyzed further by reference to publically available microarray databases. Results More than 200 membrane proteins were identified by MudPIT, including Type I, Type II, Type III (multi-pass), lipid-anchored, and GPI-anchored membrane proteins, in addition to membrane-associated cytoskeletal elements and extracellular matrix components. The membrane proteins of highest apparent abundance included Mip, Lim2, and the lens-specific connexin proteins Gja3, Gja8, and Gje1. Significantly, many proteins previously unsuspected in the lens were also detected, including proteins with roles in cell adhesion, solute transport, and cell signaling. Conclusions The MudPIT technique constitutes a powerful technique for the analysis of the lens membrane proteome and provides valuable insights into the composition of the lens fiber cell unit membrane. PMID:19956408

  16. Proteomics and Phosphoproteomics Analysis of Human Lens Fiber Cell Membranes

    PubMed Central

    Wang, Zhen; Han, Jun; David, Larry L.; Schey, Kevin L.

    2013-01-01

    Purpose. The human lens fiber cell insoluble membrane fraction contains important membrane proteins, cytoskeletal proteins, and cytosolic proteins that are strongly associated with the membrane. The purpose of this study was to characterize the lens fiber cell membrane proteome and phosphoproteome from human lenses. Methods. HPLC-mass spectrometry–based multidimensional protein identification technology (MudPIT), without or with phosphopeptide enrichment, was applied to study the proteome and phosphoproteome of lens fiber cell membranes, respectively. Results. In total, 951 proteins were identified, including 379 integral membrane and membrane-associated proteins. Enriched gene categories and pathways based on the proteomic analysis include carbohydrate metabolism (glycolysis/gluconeogenesis, pentose phosphate pathway, pyruvate metabolism), proteasome, cell-cell signaling and communication (GTP binding, gap junction, focal adhesion), glutathione metabolism, and actin regulation. The combination of TiO2 phosphopeptide enrichment and MudPIT analysis revealed 855 phosphorylation sites on 271 proteins, including 455 phosphorylation sites that have not been previously identified. PKA, PKC, CKII, p38MAPK, and RSK are predicted as the major kinases for phosphorylation on the sites identified in the human lens membrane fraction. Conclusions. The results presented herein significantly expand the characterized proteome and phosphoproteome of the human lens fiber cell and provide a valuable reference for future research in studies of lens development and disease. PMID:23349431

  17. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration

    PubMed Central

    2012-01-01

    Introduction Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam). Methods We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions. Results Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility. Conclusions Our data demonstrate that the adaptive changes in the proteome of

  18. Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition

    PubMed Central

    Taylor, Martin S.; LaCava, John; Mita, Paolo; Molloy, Kelly R.; Huang, Cheng Ran Lisa; Li, Donghui; Adney, Emily M.; Jiang, Hua; Burns, Kathleen H.; Chait, Brian T.; Rout, Michael P.; Boeke, Jef D.; Dai, Lixin

    2014-01-01

    LINE-1s are active human DNA parasites that are agents of genome dynamics in evolution and disease. These streamlined elements require host factors to complete their lifecycles, whereas hosts have developed mechanisms to combat retrotransposition’s mutagenic effects. As such, endogenous L1 expression levels are extremely low, creating a roadblock for detailed interactomic analyses. Here we describe a system to express and purify highly active L1 RNP complexes from human suspension cell culture and characterize the co-purified proteome, identifying 37 high-confidence candidate interactors. These datasets include known interactors PABPC1 and MOV10 and, with in-cell imaging studies, suggest existence of at least three types of compositionally and functionally distinct L1 RNPs. Among the novel findings, UPF1, a key nonsense-mediated decay factor, and PCNA, the polymerase-delta-associated sliding DNA clamp, were identified and validated. PCNA interacts with ORF2p via a PIP box motif; mechanistic studies suggest this occurs during or immediately after target-primed reverse transcription. PMID:24267889

  19. Cell type- and brain region-resolved mouse brain proteome.

    PubMed

    Sharma, Kirti; Schmitt, Sebastian; Bergner, Caroline G; Tyanova, Stefka; Kannaiyan, Nirmal; Manrique-Hoyos, Natalia; Kongi, Karina; Cantuti, Ludovico; Hanisch, Uwe-Karsten; Philips, Mari-Anne; Rossner, Moritz J; Mann, Matthias; Simons, Mikael

    2015-12-01

    Brain transcriptome and connectome maps are being generated, but an equivalent effort on the proteome is currently lacking. We performed high-resolution mass spectrometry-based proteomics for in-depth analysis of the mouse brain and its major brain regions and cell types. Comparisons of the 12,934 identified proteins in oligodendrocytes, astrocytes, microglia and cortical neurons with deep sequencing data of the transcriptome indicated deep coverage of the proteome. Cell type-specific proteins defined as tenfold more abundant than average expression represented about a tenth of the proteome, with an overrepresentation of cell surface proteins. To demonstrate the utility of our resource, we focused on this class of proteins and identified Lsamp, an adhesion molecule of the IgLON family, as a negative regulator of myelination. Our findings provide a framework for a system-level understanding of cell-type diversity in the CNS and serves as a rich resource for analyses of brain development and function. PMID:26523646

  20. Capillary Isoelectric Focusing Immunoassay for Fat Cell Differentiation Proteomics

    PubMed Central

    Johlfs, Mary G.; Gorjala, Priyatham; Urasaki, Yasuyo; Le, Thuc T.; Fiscus, Ronald R.

    2015-01-01

    Profiling cellular proteome is critical to understanding signal integration during cell fate determination. In this study, the capability of capillary isoelectric focusing (cIEF) immunoassays to detect post-translational modifications (PTM) of protein isoforms is demonstrated. cIEF immunoassays exhibit protein detection sensitivity at up to 5 orders of magnitude higher than traditional methods. This detection ultra-sensitivity permits proteomic profiling of several nanograms of tissue samples. cIEF immunoassays are employed to simultaneously profile three protein kinases during fat cell differentiation: cGMP-dependent protein kinase type I (PKG-I) of the nitric oxide (NO) signaling pathway, protein kinase B (Akt) of the insulin signaling pathway, and extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) signaling pathway. Interestingly, a switch in the expression level of PKG- isoforms is observed during fat cell differentiation. While both PKG-Iα and PKG-Iβ isoforms are present in preadipocytes, only PKG-Iβ isoform is expressed in adipocytes. On the other hand, the phosphorylation level increases for Akt while decreases for ERK1 and ERK2 following the maturation of preadipocytes into adipocytes. Taken together, cIEF immunoassay provides a highly sensitive means to study fat cell differentiation proteomics. cIEF immunoassay should be a powerful proteomics tool to study complex protein signal integration in biological systems. PMID:26132171

  1. Quantitative Proteomic Analysis of Ovarian Cancer Cells Identified Mitochondrial Proteins Associated with Paclitaxel Resistance

    PubMed Central

    Tian, Yuan; Tan, Aik-Choon; Sun, Xiaer; Olson, Matthew T; Xie, Zhi; Jinawath, Natini; Chan, Daniel W.; Shih, Ie-Ming; Zhang, Zhen; Zhang, Hui

    2010-01-01

    Paclitaxel has been widely used as an anti-mitotic agent in chemotherapy for a variety of cancers and adds substantial efficacy as the first-line chemotherapeutic regimen for ovarian cancers. However, the frequent occurrence of paclitaxel resistance limits its function in long-term management. Despite abundant clinical and cellular demonstration of paclitaxel resistant tumors, the molecular mechanisms leading to paclitaxel resistance are poorly understood. Using genomic approaches, we have previously identified an association between a BTB/POZ gene, Nac1, and paclitaxel resistance in ovarian cancer. The experiments presented here have applied multiple quantitative proteomic methods to identify protein changes associated with paclitaxel resistance and Nac1 function. The SKOV-3 ovarian serous carcinoma cell line, which has inducible expression of dominant negative Nac1, was used to determine the paclitaxel treatment associated changes in the presence and absence of functional Nac1. Quantitative proteomic analyses were performed using iTRAQ labeling and mass spectrometry. Two label-free quantitative proteomic methods: LC-MS and spectral count were used to increase confidence of proteomic quantification. A total of 1371 proteins were quantified by at least one of the quantitative proteomic methods. Candidate proteins related to paclitaxel and NAC1 function were identified in this study. Go analysis of the protein changes identified upon paclitaxel resistance revealed that cell component enrichment related to mitochondria. Moreover, tubulin and mitochondrial proteins were the major cellular components with changes associated with paclitaxel treatment. This suggests that mitochondria may play a role in paclitaxel resistance. PMID:21113235

  2. Progress toward the tomato fruit cell wall proteome

    PubMed Central

    Ruiz-May, Eliel; Rose, Jocelyn K. C.

    2013-01-01

    The plant cell wall (CW) compartment, or apoplast, is host to a highly dynamic proteome, comprising large numbers of both enzymatic and structural proteins. This reflects its importance as the interface between adjacent cells and the external environment, the presence of numerous extracellular metabolic and signaling pathways, and the complex nature of wall structural assembly and remodeling during cell growth and differentiation. Tomato fruit ontogeny, with its distinct phases of rapid growth and ripening, provides a valuable experimental model system for CW proteomic studies, in that it involves substantial wall assembly, remodeling, and coordinated disassembly. Moreover, diverse populations of secreted proteins must be deployed to resist microbial infection and protect against abiotic stresses. Tomato fruits also provide substantial amounts of biological material, which is a significant advantage for many types of biochemical analyses, and facilitates the detection of lower abundance proteins. In this review, we describe a variety of orthogonal techniques that have been applied to identify CW localized proteins from tomato fruit, including approaches that: target the proteome of the CW and the overlying cuticle; functional “secretome” screens; lectin affinity chromatography; and computational analyses to predict proteins that enter the secretory pathway. Each has its merits and limitations, but collectively they are providing important insights into CW proteome composition and dynamics, as well as some potentially controversial issues, such as the prevalence of non-canonical protein secretion. PMID:23755055

  3. Biology of SNU Cell Lines

    PubMed Central

    Ku, Ja-Lok

    2005-01-01

    SNU (Seoul National University) cell lines have been established from Korean cancer patients since 1982. Of these 109 cell lines have been characterized and reported, i.e., 17 colorectal carcinoma, 12 hepatocellular carcinoma, 11 gastric carcinoma, 12 uterine cervical carcinoma, 17 B-lymphoblastoid cell lines derived from cancer patients, 5 ovarian carcinoma, 3 malignant mixed Mllerian tumor, 6 laryngeal squamous cell carcinoma, 7 renal cell carcinoma, 9 brain tumor, 6 biliary tract, and 4 pancreatic carcinoma cell lines. These SNU cell lines have been distributed to biomedical researchers domestic and worldwide through the KCLB (Korean Cell Line Bank), and have proven to be of value in various scientific research fields. The characteristics of these cell lines have been reported in over 180 international journals by our laboratory and by many other researchers from 1987. In this paper, the cellular and molecular characteristics of SNU human cancer cell lines are summarized according to their genetic and epigenetic alterations and functional analysis. PMID:19956504

  4. Quantitative Analysis of Differential Proteome Expression in Bladder Cancer vs. Normal Bladder Cells Using SILAC Method

    PubMed Central

    Yang, Ganglong; Xu, Zhipeng; Lu, Wei; Li, Xiang; Sun, Chengwen; Guo, Jia; Xue, Peng; Guan, Feng

    2015-01-01

    The best way to increase patient survival rate is to identify patients who are likely to progress to muscle-invasive or metastatic disease upfront and treat them more aggressively. The human cell lines HCV29 (normal bladder epithelia), KK47 (low grade nonmuscle invasive bladder cancer, NMIBC), and YTS1 (metastatic bladder cancer) have been widely used in studies of molecular mechanisms and cell signaling during bladder cancer (BC) progression. However, little attention has been paid to global quantitative proteome analysis of these three cell lines. We labeled HCV29, KK47, and YTS1 cells by the SILAC method using three stable isotopes each of arginine and lysine. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography LTQ Orbitrap mass spectrometry. Among 3721 unique identified and annotated proteins in KK47 and YTS1 cells, 36 were significantly upregulated and 74 were significantly downregulated with >95% confidence. Differential expression of these proteins was confirmed by western blotting, quantitative RT-PCR, and cell staining with specific antibodies. Gene ontology (GO) term and pathway analysis indicated that the differentially regulated proteins were involved in DNA replication and molecular transport, cell growth and proliferation, cellular movement, immune cell trafficking, and cell death and survival. These proteins and the advanced proteome techniques described here will be useful for further elucidation of molecular mechanisms in BC and other types of cancer. PMID:26230496

  5. Proteomic analysis of cell lines expressing small hepatitis B surface antigen revealed decreased glucose-regulated protein 78 kDa expression in association with higher susceptibility to apoptosis.

    PubMed

    Zhao, Chao; Zhang, Wei; Tian, Xiaochen; Fang, Caiyun; Lu, Haojie; Yuan, Zhenghong; Yang, Pengyuan; Wen, Yumei

    2010-01-01

    Accumulating evidence suggests a key role of hepatocyte apoptosis in the pathogenesis of viral hepatitis B. It was found in this study that stable expression of small hepatitis B surface antigen (SHBs) in HepG2 and Huh7 cells increased susceptibility to apoptosis. Proteomic analysis of SHBs expressing HepG2 cells revealed 43 down-regulated and 38 up-regulated proteins. Some have been implicated in apoptosis, including glucose-regulated protein 78 kDa (GRP78), heterogeneous nuclear ribonucleoprotein H3 (hnRNP H), Rho GDP dissociation inhibitor (GDI), cystatin B, far upstream element-binding protein (FUSEbp), and TNF receptor-associated protein 1 (TRAP1). Differential expression of GRP78 and several other proteins was confirmed by Western blot analysis. Replenishing GRP78 improved cellular resistance to apoptosis, whereas reduction of GRP78 by siRNA increased susceptibility even in the absence of SHBs. Taken together, these results suggest that HBsAg plays a pro-apoptotic role through down-regulation of GRP78.

  6. Proteomic analysis of cancer stem cells in human prostate cancer cells

    SciTech Connect

    Lee, Eun-Kyung; Cho, Hyungdon; Kim, Chan-Wha

    2011-08-26

    Highlights: {yields} DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. {yields} We confirmed CD44+ DU145 cells are more proliferative and tumorigenic than CD44- DU145 cells. {yields} We analyzed and identified proteins that were differentially expressed between CD44+ and CD44- DU145 cells. {yields} Cofilin and Annexin A5 associated with cancer were found to be positively correlated with CD44 expression. -- Abstract: Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44- using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs.

  7. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  8. New insights into autophagic cell death in the gypsy moth Lymantria dispar: a proteomic approach.

    PubMed

    Malagoli, Davide; Boraldi, Federica; Annovi, Giulia; Quaglino, Daniela; Ottaviani, Enzo

    2009-04-01

    Autophagy is an evolutionary ancient process based on the activity of genes conserved from yeast to metazoan taxa. Whereas its role as a mechanism to provide energy during cell starvation is commonly accepted, debate continues about the occurrence of autophagy as a means specifically activated to achieve cell death. The IPLB-LdFB insect cell line, derived from the larval fat body of the lepidoptera Lymantria dispar, represents a suitable model to address this question, as both autophagic and apoptotic cell death can be induced by various stimuli. Using morphological and functional approaches, we have observed that the culture medium conditioned by IPLB-LdFB cells committed to death by the ATPase inhibitor oligomycin A stimulates autophagic cell death in untreated IPLB-LdFB cells. Moreover, proteomic analysis of the conditioned media suggests that, in IPLB-LdFB cells, oligomycin A promotes a shift towards lipid metabolism, increases oxidative stress and specifically directs the cells towards autophagic activity.

  9. Proteomic analysis of the molecular response of Raji cells to maslinic acid treatment.

    PubMed

    Yap, W H; Khoo, K S; Lim, S H; Yeo, C C; Lim, Y M

    2012-01-15

    Maslinic acid, a natural pentacyclic triterpene has been shown to inhibit growth and induce apoptosis in some tumour cell lines. We studied the molecular response of Raji cells towards maslinic acid treatment. A proteomics approach was employed to identify the target proteins. Seventeen differentially expressed proteins including those involved in DNA replication, microtubule filament assembly, nucleo-cytoplasmic trafficking, cell signaling, energy metabolism and cytoskeletal organization were identified by MALDI TOF-TOF MS. The down-regulation of stathmin, Ran GTPase activating protein-1 (RanBP1), and microtubule associated protein RP/EB family member 1 (EB1) were confirmed by Western blotting. The study of the effect of maslinic acid on Raji cell cycle regulation showed that it induced a G1 cell cycle arrest. The differential proteomic changes in maslinic acid-treated Raji cells demonstrated that it also inhibited expression of dUTPase and stathmin which are known to induce early S and G2 cell cycle arrests. The mechanism of maslinic acid-induced cell cycle arrest may be mediated by inhibiting cyclin D1 expression and enhancing the levels of cell cycle-dependent kinase (CDK) inhibitor p21 protein. Maslinic acid suppressed nuclear factor-kappa B (NF-κB) activity which is known to stimulate expression of anti-apoptotic and cell cycle regulatory gene products. These results suggest that maslinic acid affects multiple signaling molecules and inhibits fundamental pathways regulating cell growth and survival in Raji cells. PMID:21893403

  10. Proteomics analysis of E-cadherin knockdown in epithelial breast cancer cells.

    PubMed

    Vergara, Daniele; Simeone, Pasquale; Latorre, Dominga; Cascione, Francesca; Leporatti, Stefano; Trerotola, Marco; Giudetti, Anna Maria; Capobianco, Loredana; Lunetti, Paola; Rizzello, Antonia; Rinaldi, Rosaria; Alberti, Saverio; Maffia, Michele

    2015-05-20

    E-cadherin is the core protein of the epithelial adherens junction. Through its cytoplasmic domain, E-cadherin interacts with several signaling proteins; among them, α- and β-catenins mediate the link of E-cadherin to the actin cytoskeleton. Loss of E-cadherin expression is a crucial step of epithelial-mesenchymal transition (EMT) and is involved in cancer invasion and metastatization. In human tumors, down-regulation of E-cadherin is frequently associated with poor prognosis. Despite the critical role of E-cadherin in cancer progression, little is known about proteome alterations linked with its down-regulation. To address this point, we investigated proteomics, biophysical and functional changes of epithelial breast cancer cell lines upon shRNA-mediated stable knockdown of E-cadherin expression (shEcad). shEcad cells showed a distinct proteomic signature including altered expression of enzymes and proteins involved in cytoskeletal dynamic and migration. Moreover, these results suggest that, besides their role in mechanical adhesion, loss of E-cadherin expression may contribute to cancer progression by modifying a complex network of pathways that tightly regulate fundamental processes as oxidative stress, immune evasion and cell metabolism. Altogether, these results extend our knowledge on the cellular modifications associated with E-cadherin down-regulation in breast cancer cells.

  11. The Proteome of Native Adult Müller Glial Cells From Murine Retina.

    PubMed

    Grosche, Antje; Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca; von Toerne, Christine; Merl-Pham, Juliane; Hauck, Stefanie M

    2016-02-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  12. Systems analysis of endothelial cell plasma membrane proteome of rat lung microvasculature

    PubMed Central

    2011-01-01

    Background Endothelial cells line all blood vessels to form the blood-tissue interface which is critical for maintaining organ homeostasis and facilitates molecular exchange. We recently used tissue subcellular fractionation combined with several multi-dimensional mass spectrometry-based techniques to enhance identification of lipid-embedded proteins for large-scale proteomic mapping of luminal endothelial cell plasma membranes isolated directly from rat lungs in vivo. The biological processes and functions of the proteins expressed at this important blood-tissue interface remain unexplored at a large scale. Results We performed an unbiased systems analysis of the endothelial cell surface proteome containing over 1800 proteins to unravel the major functions and pathways apparent at this interface. As expected, many key functions of plasma membranes in general (i.e., cell surface signaling pathways, cytoskeletal organization, adhesion, membrane trafficking, metabolism, mechanotransduction, membrane fusion, and vesicle-mediated transport) and endothelial cells in particular (i.e., blood vessel development and maturation, angiogenesis, regulation of endothelial cell proliferation, protease activity, and endocytosis) were significantly overrepresented in this proteome. We found that endothelial cells express multiple proteins that mediate processes previously reported to be restricted to neuronal cells, such as neuronal survival and plasticity, axon growth and regeneration, synaptic vesicle trafficking and neurotransmitter metabolic process. Surprisingly, molecular machinery for protein synthesis was also detected as overrepresented, suggesting that endothelial cells, like neurons, can synthesize proteins locally at the cell surface. Conclusion Our unbiased systems analysis has led to the potential discovery of unexpected functions in normal endothelium. The discovery of the existence of protein synthesis at the plasma membrane in endothelial cells provides new insight

  13. Single-cell-type proteomics: toward a holistic understanding of plant function.

    PubMed

    Dai, Shaojun; Chen, Sixue

    2012-12-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.

  14. Quantitative-Proteomic Comparison of Alpha and Beta Cells to Uncover Novel Targets for Lineage Reprogramming

    PubMed Central

    Mertins, Philipp; Udeshi, Namrata D.; Dančík, Vlado; Fomina-Yadlin, Dina; Kubicek, Stefan; Clemons, Paul A.; Schreiber, Stuart L.; Carr, Steven A.; Wagner, Bridget K.

    2014-01-01

    Type-1 diabetes (T1D) is an autoimmune disease in which insulin-secreting pancreatic beta cells are destroyed by the immune system. An emerging strategy to regenerate beta-cell mass is through transdifferentiation of pancreatic alpha cells to beta cells. We previously reported two small molecules, BRD7389 and GW8510, that induce insulin expression in a mouse alpha cell line and provide a glimpse into potential intermediate cell states in beta-cell reprogramming from alpha cells. These small-molecule studies suggested that inhibition of kinases in particular may induce the expression of several beta-cell markers in alpha cells. To identify potential lineage reprogramming protein targets, we compared the transcriptome, proteome, and phosphoproteome of alpha cells, beta cells, and compound-treated alpha cells. Our phosphoproteomic analysis indicated that two kinases, BRSK1 and CAMKK2, exhibit decreased phosphorylation in beta cells compared to alpha cells, and in compound-treated alpha cells compared to DMSO-treated alpha cells. Knock-down of these kinases in alpha cells resulted in expression of key beta-cell markers. These results provide evidence that perturbation of the kinome may be important for lineage reprogramming of alpha cells to beta cells. PMID:24759943

  15. Proteomic and phosphoproteomic comparison of human ES and iPS cells.

    PubMed

    Phanstiel, Douglas H; Brumbaugh, Justin; Wenger, Craig D; Tian, Shulan; Probasco, Mitchell D; Bailey, Derek J; Swaney, Danielle L; Tervo, Mark A; Bolin, Jennifer M; Ruotti, Victor; Stewart, Ron; Thomson, James A; Coon, Joshua J

    2011-01-01

    Combining high-mass-accuracy mass spectrometry, isobaric tagging and software for multiplexed, large-scale protein quantification, we report deep proteomic coverage of four human embryonic stem cell and four induced pluripotent stem cell lines in biological triplicate. This 24-sample comparison resulted in a very large set of identified proteins and phosphorylation sites in pluripotent cells. The statistical analysis afforded by our approach revealed subtle but reproducible differences in protein expression and protein phosphorylation between embryonic stem cells and induced pluripotent cells. Merging these results with RNA-seq analysis data, we found functionally related differences across each tier of regulation. We also introduce the Stem Cell-Omics Repository (SCOR), a resource to collate and display quantitative information across multiple planes of measurement, including mRNA, protein and post-translational modifications.

  16. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    PubMed

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future.

  17. Cell-selective labelling of proteomes in Drosophila melanogaster

    PubMed Central

    Erdmann, Ines; Marter, Kathrin; Kobler, Oliver; Niehues, Sven; Abele, Julia; Müller, Anke; Bussmann, Julia; Storkebaum, Erik; Ziv, Tamar; Thomas, Ulrich; Dieterich, Daniela C.

    2015-01-01

    The specification and adaptability of cells rely on changes in protein composition. Nonetheless, uncovering proteome dynamics with cell-type-specific resolution remains challenging. Here we introduce a strategy for cell-specific analysis of newly synthesized proteomes by combining targeted expression of a mutated methionyl-tRNA synthetase (MetRS) with bioorthogonal or fluorescent non-canonical amino-acid-tagging techniques (BONCAT or FUNCAT). Substituting leucine by glycine within the MetRS-binding pocket (MetRSLtoG) enables incorporation of the non-canonical amino acid azidonorleucine (ANL) instead of methionine during translation. Newly synthesized proteins can thus be labelled by coupling the azide group of ANL to alkyne-bearing tags through ‘click chemistry'. To test these methods for applicability in vivo, we expressed MetRSLtoG cell specifically in Drosophila. FUNCAT and BONCAT reveal ANL incorporation into proteins selectively in cells expressing the mutated enzyme. Cell-type-specific FUNCAT and BONCAT, thus, constitute eligible techniques to study protein synthesis-dependent processes in complex and behaving organisms. PMID:26138272

  18. Proteomics Analysis of Normal and Senescent NG108-15 Cells: GRP78 Plays a Negative Role in Cisplatin-Induced Senescence in the NG108-15 Cell Line

    PubMed Central

    Li, Wei; Wang, Wei; Li, Yan; Wang, Wenwen; Wang, Tian; Li, Li; Han, Zhiqiang; Wang, Shixuan; Ma, Ding; Wang, Hui

    2014-01-01

    Accelerated senescence (ACS) leading to proliferative arrest is a physiological mechanism of the DNA damage response that occurs during tumor therapy. Our experiment was designed to detect unknown genes that may play important roles in cisplatin-induced senescence and to illustrate the related senescence mechanism. Using 2-dimension electrophoresis (2-DE), we identified 5 protein spots with different expression levels in the normal and senescent NG108-15 cells. According to MALDI-TOF MS analysis, the 5 proteins were determined to be peptidylprolyl isomerase A (PPIA), peroxiredoxin 1 (PRX1), glutathione S-transferase mu 1 (GSTM1), vimentin (VIM) and glucose-regulated protein 78 (GRP78). Then, we investigated how cisplatin-induced senescence was mediated by GRP78 in the NG108-15 cells. Knockdown of GRP78 significantly increased P53 expression in NG108-15 cells. Additionally, 2-deoxy-D-glucose (2DG)-induced GRP78 overexpression protected the NG108-15 cells from cisplatin-induced senescence, which was accompanied by the obvious suppression of P53 and p-CDC2 expression. Inhibition of Ca2+ release from endoplasmic reticulum (ER) stores was also found to be associated with the anti-senescence effect of 2DG-induced GRP78 overexpression. In conclusion, we found 5 proteins that were differentially expressed in normal NG108-15 cells and senescent NG108-15 cells. GRP78 plays an important role in cisplatin-induced senescence in NG108-15 cells, mainly through its regulation of P53 expression and ER calcium efflux. PMID:24621580

  19. Proteomic analysis of CD44(+) and CD44(-) gastric cancer cells.

    PubMed

    Yu, Dayeon; Shin, Hyun-Soo; Choi, Go; Lee, Yong Chan

    2014-11-01

    CD44 is a cell surface protein and it is widely used as a cancer stem cell marker in various cancer types including gastric cancer. We conducted proteomic analysis in CD44(+) and CD44(-) gastric cancer cells to understand characteristics of CD44(+) and CD44(-) cells. In the present study, we sorted cells from the gastric cancer cell line MKN45 according to CD44 expression to separate out CD44(+) and CD44(-) cells. And we conducted RT-PCR to identify mRNA expression of cancer stem cell markers in CD44(+) and CD44(-) cells. Cancer stem cell markers showed upregulated expression in CD44(+) cells. Next, we performed two-dimensional electrophoresis analysis to determine the differential expression pattern of proteins in each group; control, CD44(+), and CD44(-) MKN45 cells. We found a total of 113 spots that varied in expression between CD44(+) and CD44(-) cells, and subjected 20 of those protein spots to MALDI-MS. We selected the three proteins (HSPA8; heat shock cognate 71 kDa protein isoform 1, ezrin, α-enolase) upregulated in CD44(+) cells than CD44(-) cells and one protein (prohibitin) showed increased expression in CD44(-) cells. We validated the protein expression levels of four selected proteins by Western blot. We suggest that our study could be a helpful background to study CD44(+) cancer stem-like cells and differences between CD44(+) and CD44(-) cells in gastric cancer. PMID:25081334

  20. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes. PMID:1726925

  1. Human fallopian tube proteome shows high coverage of mesenchymal stem cells associated proteins.

    PubMed

    Wang, Chenyuan; Liu, Yang; Chang, Cheng; Wu, Songfeng; Gao, Jie; Zhang, Yang; Chen, Yingjie; Zhong, Fan; Deng, Gaopi

    2016-01-01

    The object of this research was to report a draft proteome of human fallopian tube (hFT) comprises 5416 identified proteins, which could be considered as a physiological reference to complement Human Proteome Draft. The proteomic raw data and metadata were stored in an integrated proteome resources centre iProX (IPX00034300). This hFT proteome contains many hFT markers newly identified by mass spectrum. This hFT proteome comprises 660 high-, 3605 medium- and 1181 low-abundant proteins. Ribosome, cytoskeleton, vesicle and protein folding associated proteins showed obvious tendency to be higher abundance in hFT. The extraordinary high coverage of mesenchymal stem cells (MSCs)-associated proteins were identified in this hFT proteome, which highly supported that hFT should contain a plenty of MSCs. PMID:26759384

  2. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D.

    PubMed

    Lu, Jin-Jian; Lu, De-Zhao; Chen, Yu-Fei; Dong, Ya-Ting; Zhang, Jun-Ren; Li, Ting; Tang, Zheng-Hai; Yang, Zhen

    2015-09-01

    Platycodin D (PD), a triterpenoid saponin isolated from Platycodonis Radix, is a famous Chinese herbal medicine that has been shown to have anti-proliferative effects in several cancer cell lines. The aim of this study was to determine the changes in cellular proteins after the treatment of hepatocellular carcinoma HepG2 cells with PD using proteomics approaches. The cell viability was determined using the MTT assay. The proteome was analyzed by two-dimensional difference gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Western blot analysis was used to confirm the expression of changed proteins. Our results showed that PD inhibited the proliferation of HepG2 cells in concentration- and time-dependent manners. Sixteen proteins were identified to be up-regulated in PD-treated HepG2 cells, including ATP5H, OXCT1, KRT9, CCDC40, ERP29, RCN1, ZNF175, HNRNPH1, HSP27, PA2G4, PHB, BANF1, TPM3, ECH1, LGALS1, and MYL6. Three proteins (i.e., RPS12, EMG1, and KRT1) decreased in HepG2 cells after treatment with PD. The changes in HSP27 and PHB were further confirmed by Western blotting. In conclusion, our results shed new lights on the mechanisms of action for the anti-cancer activity of PD.

  3. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D.

    PubMed

    Lu, Jin-Jian; Lu, De-Zhao; Chen, Yu-Fei; Dong, Ya-Ting; Zhang, Jun-Ren; Li, Ting; Tang, Zheng-Hai; Yang, Zhen

    2015-09-01

    Platycodin D (PD), a triterpenoid saponin isolated from Platycodonis Radix, is a famous Chinese herbal medicine that has been shown to have anti-proliferative effects in several cancer cell lines. The aim of this study was to determine the changes in cellular proteins after the treatment of hepatocellular carcinoma HepG2 cells with PD using proteomics approaches. The cell viability was determined using the MTT assay. The proteome was analyzed by two-dimensional difference gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Western blot analysis was used to confirm the expression of changed proteins. Our results showed that PD inhibited the proliferation of HepG2 cells in concentration- and time-dependent manners. Sixteen proteins were identified to be up-regulated in PD-treated HepG2 cells, including ATP5H, OXCT1, KRT9, CCDC40, ERP29, RCN1, ZNF175, HNRNPH1, HSP27, PA2G4, PHB, BANF1, TPM3, ECH1, LGALS1, and MYL6. Three proteins (i.e., RPS12, EMG1, and KRT1) decreased in HepG2 cells after treatment with PD. The changes in HSP27 and PHB were further confirmed by Western blotting. In conclusion, our results shed new lights on the mechanisms of action for the anti-cancer activity of PD. PMID:26412427

  4. Proteomic profiling of rat lung epithelial cells induced by acrolein

    PubMed Central

    Sarkar, Poonam; Hayes, Barbara E.

    2009-01-01

    Aims Acrolein is a highly toxic unsaturated aldehyde and is also an endogenous byproduct produced from lipid peroxidation. It can be formed from the breakdown of certain pollutants in outdoor air or from burning tobacco or gasoline. Inhalation and dermal exposure to acrolein are extremely toxic to human tissue. Although it is known that acrolein is toxic to lung tissue, no studies have attempted to address the changes induced by acrolein on a global scale. Main methods In the present study we have attempted to address the changes in global protein expression induced by acrolein using proteomics analysis in rat lung epithelial cells. Key findings Our analysis reveals a comprehensive profiling of the proteins that includes a heterogeneous class of proteins and this compels one to consider that the toxic response to acrolein is very complex. There were 34 proteins that showed changes between the control cells and after acrolein treatment. The expression of 18 proteins was increased and the expression of 16 proteins was decreased following exposure to acrolein. We have further validated two differentially expressed proteins namely annexin II (ANXII) and prohibitin (PHB) in lung epithelial cells treated with acrolein. Significance Based on the results of the overall proteomic analysis, acrolein appears to induce changes in a diverse range of proteins suggesting a complex mechanism of acrolein-induced toxicity in lung epithelial cells. PMID:19490921

  5. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  6. Cell surface proteome of the marine planctomycete Rhodopirellula baltica.

    PubMed

    Voigt, Birgit; Hieu, Cao Xuan; Hempel, Kristina; Becher, Dörte; Schlüter, Rabea; Teeling, Hanno; Glöckner, Frank Oliver; Amann, Rudolf; Hecker, Michael; Schweder, Thomas

    2012-06-01

    The surface proteome (surfaceome) of the marine planctomycete Rhodopirellula baltica SH1(T) was studied using a biotinylation and a proteinase K approach combined with SDS-PAGE and mass spectrometry. 52 of the proteins identified in both approaches could be assigned to the group of potential surface proteins. Among them are some high molecular weight proteins, potentially involved in cell-cell attachment, that contain domains shown before to be typical for surface proteins like cadherin/dockerin domains, a bacterial adhesion domain or the fasciclin domain. The identification of proteins with enzymatic functions in the R. baltica surfaceome provides further clues for the suggestion that some degradative enzymes may be anchored onto the cell surface. YTV proteins, which have been earlier supposed to be components of the proteinaceous cell wall of R. baltica, were detected in the surface proteome. Additionally, 8 proteins with a novel protein structure combining a conserved type IV pilin/N-methylation domain and a planctomycete-typical DUF1559 domain were identified. PMID:22623273

  7. Bovine neonatal pancytopenia - Comparative proteomic characterization of two BVD vaccines and the producer cell surface proteome (MDBK)

    PubMed Central

    2013-01-01

    Background Bovine neonatal pancytopenia (BNP) is a disease syndrome in newborn calves of up to four weeks of age, first observed in southern Germany in 2006. By now, cases have been reported in several countries around the globe. Many affected calves die within days due to multiple haemorrhages, thrombocytopenia, leukocytopenia and bone marrow depletion. A certain vaccine directed against Bovine Virus Diarrhoea Virus (BVDV) was recently shown to be associated with BNP pathogenesis. Immunized cows develop alloantibodies that are transferred to newborn calves via colostrum intake. In order to further elucidate BNP pathogenesis, the purpose of this study was to characterize and compare the protein composition of the associated vaccine to another vaccine directed against BVDV not related to BNP and the cell surface proteome of MDBK (Madin-Darby Bovine Kidney) cells, the cell line used for production of the associated vaccine. Results By SDS-PAGE and mass spectrometry, we were able to detect several coagulation-related and immune modulatory proteins, as well as cellular and serum derived molecules being shared between the associated vaccine and MDBK cells. Furthermore, the number of proteins identified in the BNP related vaccine was almost as high as the number of surface proteins detected on MDBK cells and exceeded the amount of proteins identified in the non-BNP related vaccine over 3.5 fold. The great amount of shared cellular and serum derived proteins confirm that the BNP associated vaccine contained many molecules originating from MDBK cells and vaccine production. Conclusions The respective vaccine was not purified enough to prevent the development of alloantibodies. To narrow down possible candidate proteins, those most likely to represent a trigger for BNP pathogenesis are presented in this study, giving a fundament for further analysis in future research. PMID:23343349

  8. Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches.

    PubMed

    Hammer, Elke; Bien, Sandra; Salazar, Manuela Gesell; Steil, Leif; Scharf, Christian; Hildebrandt, Petra; Schroeder, Henry W S; Kroemer, Heyo K; Völker, Uwe; Ritter, Christoph A

    2010-01-01

    HepG-2 cells are widely used as a cell model to investigate hepatocellular carcinomas and the effect of anticancer drugs such as doxorubicin, an effective antineoplastic agent, which has broad antitumoral activity against many solid and hematological malignancies. To investigate the effect of doxorubicin on the protein pattern, we used complementary proteomic workflows including 2-D gel-based and gel-free methods. The analysis of crude HepG2 cell extracts by 2-D DIGE provided data on 1835 protein spots which was then complemented by MS-centered analysis of stable isotope labeling by amino acids in cell culture-labeled cells. The monitoring of more than 1300 distinct proteins, including proteins of the membrane fraction provides the most comprehensive overview on the proteome of the widely used model cell line HepG2. Of the proteins monitored in total, 155 displayed doxorubicin-induced changes in abundance. Functional analysis revealed major influences of doxorubicin on proteins involved in protein synthesis, DNA damage control, electron transport/mitochondrial function, and tumor growth. The strongest decrease in level was found for proteins involved in DNA replication and protein synthesis, whereas proteins with a function in DNA damage control and oxidative stress management displayed increased levels following treatment with doxorubicin compared with control cells. Furthermore, the doxorubicin-associated increase in levels of multiple forms of keratins 8, 18, and 19 and other structural proteins revealed an influence on the cytoskeleton network.

  9. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction.

    PubMed

    Genshaft, Alex S; Li, Shuqiang; Gallant, Caroline J; Darmanis, Spyros; Prakadan, Sanjay M; Ziegler, Carly G K; Lundberg, Martin; Fredriksson, Simon; Hong, Joyce; Regev, Aviv; Livak, Kenneth J; Landegren, Ulf; Shalek, Alex K

    2016-01-01

    We present a scalable, integrated strategy for coupled protein and RNA detection from single cells. Our approach leverages the DNA polymerase activity of reverse transcriptase to simultaneously perform proximity extension assays and complementary DNA synthesis in the same reaction. Using the Fluidigm C1™ system, we profile the transcriptomic and proteomic response of a human breast adenocarcinoma cell line to a chemical perturbation, benchmarking against in situ hybridizations and immunofluorescence staining, as well as recombinant proteins, ERCC Spike-Ins, and population lysate dilutions. Through supervised and unsupervised analyses, we demonstrate synergies enabled by simultaneous measurement of single-cell protein and RNA abundances. Collectively, our generalizable approach highlights the potential for molecular metadata to inform highly-multiplexed single-cell analyses. PMID:27640647

  10. Cell Shape and Cardiosphere Differentiation: A Revelation by Proteomic Profiling

    PubMed Central

    Kawaguchi, Nanako; Machida, Mitsuyo; Nakanishi, Toshio

    2013-01-01

    Stem cells (embryonic stem cells, somatic stem cells such as neural stem cells, and cardiac stem cells) and cancer cells are known to aggregate and form spheroid structures. This behavior is common in undifferentiated cells and may be necessary for adapting to certain conditions such as low-oxygen levels or to maintain undifferentiated status in microenvironments including stem cell niches. In order to decipher the meaning of this spheroid structure, we established a cardiosphere clone (CSC-21E) derived from the rat heart which can switch its morphology between spheroid and nonspheroid. Two forms, floating cardiospheres and dish-attached flat cells, could be switched reversibly by changing the cell culture condition. We performed differential proteome analysis studies and obtained protein profiles distinct between spherical forms and flat cells. From protein profiling analysis, we found upregulation of glycolytic enzymes in spheroids with some stress proteins switched in expression levels between these two forms. Evidence has been accumulating that certain chaperone/stress proteins are upregulated in concert with cellular changes including proliferation and differentiation. We would like to discuss the possible mechanism of how these aggregates affect cell differentiation and/or other cellular functions. PMID:24073335

  11. Comparative proteomic analysis of the shoot apical meristem in maize between a ZmCCT-associated near-isogenic line and its recurrent parent

    PubMed Central

    Wu, Liuji; Wang, Xintao; Wang, Shunxi; Wu, Liancheng; Tian, Lei; Tian, Zhiqiang; Liu, Ping; Chen, Yanhui

    2016-01-01

    The ZmCCT, one of the most important genes affecting photoperiod response, delays flowering under long-day conditions in maize (Zea mays). In this study we used the isobaric tags for relative and absolute quantification (iTRAQ) technique-based proteomics approach to identify differentially expressed proteins between a near-isogenic line (NIL) and its recurrent parent, contrasting in alleles of ZmCCT. A total of 5,259 distinct proteins were identified. Among them, 386 proteins were differentially expressed between NIL-cml line (ZmCCT-positive) and H4 line (ZmCCT-negative). Functional categorization showed that the differentially proteins were mainly involved in energy production, photosynthesis, signal transduction, and cell organization and biogenesis. Our results showed that during shoot apical meristem (SAM) development cell division proteins, carbohydrate metabolism–related proteins, and flower inhibition-related proteins were more abundant in the ZmCCT-positive line than the ZmCCT-negative line. These results, taken together with morphological observations, showed that the effect of ZmCCT on flowering might be caused by its effect on one or all of these biological processes. Although the exact roles of these putative related proteins remain to be examined, our results obtained using the proteomics approach lead to a better understanding of the photoperiodicity mechanism in maize plants. PMID:27468931

  12. Comparative proteomic analysis of the shoot apical meristem in maize between a ZmCCT-associated near-isogenic line and its recurrent parent.

    PubMed

    Wu, Liuji; Wang, Xintao; Wang, Shunxi; Wu, Liancheng; Tian, Lei; Tian, Zhiqiang; Liu, Ping; Chen, Yanhui

    2016-01-01

    The ZmCCT, one of the most important genes affecting photoperiod response, delays flowering under long-day conditions in maize (Zea mays). In this study we used the isobaric tags for relative and absolute quantification (iTRAQ) technique-based proteomics approach to identify differentially expressed proteins between a near-isogenic line (NIL) and its recurrent parent, contrasting in alleles of ZmCCT. A total of 5,259 distinct proteins were identified. Among them, 386 proteins were differentially expressed between NIL-cml line (ZmCCT-positive) and H4 line (ZmCCT-negative). Functional categorization showed that the differentially proteins were mainly involved in energy production, photosynthesis, signal transduction, and cell organization and biogenesis. Our results showed that during shoot apical meristem (SAM) development cell division proteins, carbohydrate metabolism-related proteins, and flower inhibition-related proteins were more abundant in the ZmCCT-positive line than the ZmCCT-negative line. These results, taken together with morphological observations, showed that the effect of ZmCCT on flowering might be caused by its effect on one or all of these biological processes. Although the exact roles of these putative related proteins remain to be examined, our results obtained using the proteomics approach lead to a better understanding of the photoperiodicity mechanism in maize plants. PMID:27468931

  13. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes.

  14. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. PMID:26661933

  15. Learning robust cell signalling models from high throughput proteomic data

    PubMed Central

    Koch, Mitchell; Broom, Bradley M.; Subramanian, Devika

    2015-01-01

    We propose a framework for learning robust Bayesian network models of cell signalling from high-throughput proteomic data. We show that model averaging using Bayesian bootstrap resampling generates more robust structures than procedures that learn structures using all of the data. We also develop an algorithm for ranking the importance of network features using bootstrap resample data. We apply our algorithms to derive the T-cell signalling network from the flow cytometry data of Sachs et al. (2005). Our learning algorithm has identified, with high confidence, several new crosstalk mechanisms in the T-cell signalling network. Many of them have already been confirmed experimentally in the recent literature and six new crosstalk mechanisms await experimental validation. PMID:19525198

  16. Proteomic characterization of Her2/neu-overexpressing breast cancer cells

    PubMed Central

    Chen, Hexin; Pimienta, Genaro; Gu, Yiben; Sun, Xu; Hu, Jianjun; Kim, Min-Sik; Chaerkady, Raghothama; Gucek, Marjan; Cole, Robert N; Sukumar, Saraswati; Pandey, Akhilesh

    2014-01-01

    The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with tandem mass spectrometry, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in MMTV-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin beta 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray datasets revealed a 23-gene signature which can be used to predict the probability of metastasis-free survival in breast cancer patients. PMID:20960451

  17. Proteomic characterization of Her2/neu-overexpressing breast cancer cells.

    PubMed

    Chen, Hexin; Pimienta, Genaro; Gu, Yiben; Sun, Xu; Hu, Jianjun; Kim, Min-Sik; Chaerkady, Raghothama; Gucek, Marjan; Cole, Robert N; Sukumar, Saraswati; Pandey, Akhilesh

    2010-11-01

    The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with MS/MS, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in mouse mammary tumor virus-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray data sets revealed a 23-gene signature, which can be used to predict the probability of metastasis-free survival in breast cancer patients.

  18. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots

    PubMed Central

    Zhu, Yingde; Li, Hui; Bhatti, Sarabjit; Zhou, Suping; Yang, Yong; Fish, Tara; Thannhauser, Theodore W

    2016-01-01

    Single-cell-type proteomics provides the capability to revealing the genomic and proteomics information at cell-level resolution. However, the methodology for this type of research has not been well-developed. This paper reports developing a workflow of laser capture microdissection (LCM) followed by gel-liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)-based proteomics analysis for the identification of proteomes contained in individual cell layers of tomato roots. Thin-sections (~10-μm thick, 10 sections per root tip) were prepared for root tips of tomato germinating seedlings. Epidermal and cortical cells (5000–7000 cells per tissue type) were isolated under a LCM microscope. Proteins were isolated and then separated by SDS–polyacrylamide gel electrophoresis followed by in-gel-tryptic digestion. The MS and MS/MS spectra generated using nanoLC-MS/MS analysis of the tryptic peptides were searched against ITAG2.4 tomato protein database to identify proteins contained in each single-cell-type sample. Based on the biological functions, proteins with proven functions in root hair development were identified in epidermal cells but not in the cortical cells. Several of these proteins were found in Al-treated roots only. The results demonstrated that the cell-type-specific proteome is relevant for tissue-specific functions in tomato roots. Increasing the coverage of proteomes and reducing the inevitable cross-contamination from adjacent cell layers, in both vertical and cross directions when cells are isolated from slides prepared using intact root tips, are the major challenges using the technology in proteomics analysis of plant roots. PMID:27280026

  19. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots.

    PubMed

    Zhu, Yingde; Li, Hui; Bhatti, Sarabjit; Zhou, Suping; Yang, Yong; Fish, Tara; Thannhauser, Theodore W

    2016-01-01

    Single-cell-type proteomics provides the capability to revealing the genomic and proteomics information at cell-level resolution. However, the methodology for this type of research has not been well-developed. This paper reports developing a workflow of laser capture microdissection (LCM) followed by gel-liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)-based proteomics analysis for the identification of proteomes contained in individual cell layers of tomato roots. Thin-sections (~10-μm thick, 10 sections per root tip) were prepared for root tips of tomato germinating seedlings. Epidermal and cortical cells (5000-7000 cells per tissue type) were isolated under a LCM microscope. Proteins were isolated and then separated by SDS-polyacrylamide gel electrophoresis followed by in-gel-tryptic digestion. The MS and MS/MS spectra generated using nanoLC-MS/MS analysis of the tryptic peptides were searched against ITAG2.4 tomato protein database to identify proteins contained in each single-cell-type sample. Based on the biological functions, proteins with proven functions in root hair development were identified in epidermal cells but not in the cortical cells. Several of these proteins were found in Al-treated roots only. The results demonstrated that the cell-type-specific proteome is relevant for tissue-specific functions in tomato roots. Increasing the coverage of proteomes and reducing the inevitable cross-contamination from adjacent cell layers, in both vertical and cross directions when cells are isolated from slides prepared using intact root tips, are the major challenges using the technology in proteomics analysis of plant roots.

  20. Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots.

    PubMed

    Zhu, Yingde; Li, Hui; Bhatti, Sarabjit; Zhou, Suping; Yang, Yong; Fish, Tara; Thannhauser, Theodore W

    2016-01-01

    Single-cell-type proteomics provides the capability to revealing the genomic and proteomics information at cell-level resolution. However, the methodology for this type of research has not been well-developed. This paper reports developing a workflow of laser capture microdissection (LCM) followed by gel-liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)-based proteomics analysis for the identification of proteomes contained in individual cell layers of tomato roots. Thin-sections (~10-μm thick, 10 sections per root tip) were prepared for root tips of tomato germinating seedlings. Epidermal and cortical cells (5000-7000 cells per tissue type) were isolated under a LCM microscope. Proteins were isolated and then separated by SDS-polyacrylamide gel electrophoresis followed by in-gel-tryptic digestion. The MS and MS/MS spectra generated using nanoLC-MS/MS analysis of the tryptic peptides were searched against ITAG2.4 tomato protein database to identify proteins contained in each single-cell-type sample. Based on the biological functions, proteins with proven functions in root hair development were identified in epidermal cells but not in the cortical cells. Several of these proteins were found in Al-treated roots only. The results demonstrated that the cell-type-specific proteome is relevant for tissue-specific functions in tomato roots. Increasing the coverage of proteomes and reducing the inevitable cross-contamination from adjacent cell layers, in both vertical and cross directions when cells are isolated from slides prepared using intact root tips, are the major challenges using the technology in proteomics analysis of plant roots. PMID:27280026

  1. System-based proteomic analysis of the interferon response in human liver cells

    PubMed Central

    Yan, Wei; Lee, Hookeun; Yi, Eugene C; Reiss, David; Shannon, Paul; Kwieciszewski, Bartlomiej K; Coito, Carlos; Li, Xiao-jun; Keller, Andrew; Eng, Jimmy; Galitski, Timothy; Goodlett, David R; Aebersold, Ruedi; Katze, Michael G

    2004-01-01

    Background Interferons (IFNs) play a critical role in the host antiviral defense and are an essential component of current therapies against hepatitis C virus (HCV), a major cause of liver disease worldwide. To examine liver-specific responses to IFN and begin to elucidate the mechanisms of IFN inhibition of virus replication, we performed a global quantitative proteomic analysis in a human hepatoma cell line (Huh7) in the presence and absence of IFN treatment using the isotope-coded affinity tag (ICAT) method and tandem mass spectrometry (MS/MS). Results In three subcellular fractions from the Huh7 cells treated with IFN (400 IU/ml, 16 h) or mock-treated, we identified more than 1,364 proteins at a threshold that corresponds to less than 5% false-positive error rate. Among these, 54 were induced by IFN and 24 were repressed by more than two-fold, respectively. These IFN-regulated proteins represented multiple cellular functions including antiviral defense, immune response, cell metabolism, signal transduction, cell growth and cellular organization. To analyze this proteomics dataset, we utilized several systems-biology data-mining tools, including Gene Ontology via the GoMiner program and the Cytoscape bioinformatics platform. Conclusions Integration of the quantitative proteomics with global protein interaction data using the Cytoscape platform led to the identification of several novel and liver-specific key regulatory components of the IFN response, which may be important in regulating the interplay between HCV, interferon and the host response to virus infection. PMID:15287976

  2. Targeted genetic modification of cell lines for recombinant protein production

    PubMed Central

    Piskareva, Olga; Muniyappa, Mohan

    2007-01-01

    Considerable increases in productivity have been achieved in biopharmaceutical production processes over the last two decades. Much of this has been a result of improvements in media formulation and process development. Though advances have been made in cell line development, there remains considerable opportunity for improvement in this area. The wealth of transcriptional and proteomic data being generated currently hold the promise of specific molecular interventions to improve the performance of production cell lines in the bioreactor. Achieving this—particularly for multi-gene modification—will require specific, targeted and controlled genetic manipulation of these cells. This review considers some of the current and potential future techniques that might be employed to realise this goal. PMID:19003191

  3. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells.

    PubMed

    Prokhorova, Tatyana A; Rigbolt, Kristoffer T G; Johansen, Pia T; Henningsen, Jeanette; Kratchmarova, Irina; Kassem, Moustapha; Blagoev, Blagoy

    2009-05-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research mainly because of the complex nature of hESC culture conditions. Here we describe complete SILAC labeling of hESCs with fully preserved pluripotency, self-renewal capabilities, and overall proteome status that was quantitatively analyzed to a depth of 1556 proteins and 527 phosphorylation events. SILAC-labeled hESCs appear to be perfectly suitable for functional studies, and we exploited a SILAC-based proteomics strategy for discovery of hESC-specific surface markers. We determined and quantitatively compared the membrane proteomes of the self-renewing versus differentiating cells of two distinct human embryonic stem cell lines. Of the 811 identified membrane proteins, six displayed significantly higher expression levels in the undifferentiated state compared with differentiating cells. This group includes the established marker CD133/Prominin-1 as well as novel candidates for hESC surface markers: Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase zeta (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell populations.

  4. Proteomic analysis of mature barley grains from C-hordein antisense lines.

    PubMed

    Schmidt, Daiana; Gaziola, Salete Aparecida; Boaretto, Luis Felipe; Azevedo, Ricardo Antunes

    2016-05-01

    Hordeins are the major storage proteins in barley grains and are responsible for their low nutritional quality. Previously, antisense C-hordein barley lines were generated and were shown to contain a more balanced amino acid composition and an altered storage protein profile. In the present study, a proteomic approach that combined two-dimensional gel electrophoresis (2-DE) and mass spectrometry was used to (1) identify the changes in the protein profile of non-storage proteins (salt soluble fraction) in antisense C-hordein barley lines (L1, L2 and L3) and (2) map the differentially expressed proteins compared to the non-transgenic control line (Hordeum vulgare cv. Golden Promise). Moreover, the changes in the proteins were correlated with the more balanced amino acid composition of these lines, with special attention to the lysine content. The results showed that suppression of C-hordein expression does not exclusively affect hordein synthesis and accumulation. The more balanced amino acid composition observed in the transgenic lines L1, L2 and L3 was an indirect result of the profound alterations in the patterns of the non-storage proteins. The observed changes included up-regulated expression of the proteins involved in stress and detoxification (L1), defence (L2 and L3), and storage globulins (L1, L2 and L3). To a lesser extent, the proteins involved in grain metabolism were also changed. Thus, the increased essential amino acids content results from changes in distinct protein sources among the three antisense C-hordein lines analyzed, although the up-regulated expression of lysine-rich proteins was consistently observed in all lines.

  5. Cross-Species Analysis of Nicotine-Induced Proteomic Alterations in Pancreatic Cells

    PubMed Central

    Paulo, Joao A.; Urrutia, Raul; Kadiyala, Vivek; Banks, Peter

    2014-01-01

    Background Toxic compounds in tobacco, such as nicotine, may have adversely affect pancreatic function. We aim to determine nicotine-induced protein alterations in pancreatic cells, which may reveal a link between nicotine exposure and pancreatic disease. Methods We compared the proteomic alterations induced by nicotine treatment in cultured pancreatic cells (mouse, rat and human stellate cells and human duct cells) using mass spectrometry-based techniques, specifically GeLC-MS/MS and spectral counting. Results We identified thousands of proteins in pancreatic cells, hundreds of which were identified exclusively or in higher abundance in either nicotine-treated or untreated cells. Inter-species comparisons of stellate cell proteins revealed several differentially-abundant proteins (in nicotine treated versus untreated cells) common among the 3 species. Proteins appearing in all nicotine-treated stellate cells include amyloid beta (A4), procollagen type VI alpha 1, integral membrane protein 2B,and Toll interacting protein. Conclusions Proteins which were differentially expressed upon nicotine treatment across cell lines, were enriched in certain pathways, including nAChR, cytokine, and integrin signaling. At this analytical depth, we conclude that similar pathways are affected by nicotine, but alterations at the protein level among stellate cells of different species vary. Further interrogation of such pathways will lead to insights into the potential effect of nicotine on pancreatic cells at the biomolecular level and the extension of this concept to the effect of nicotine on pancreatic disease. PMID:23456891

  6. Role of Proteome Physical Chemistry in Cell Behavior.

    PubMed

    Ghosh, Kingshuk; de Graff, Adam M R; Sawle, Lucas; Dill, Ken A

    2016-09-15

    We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell's proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell's proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2-3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells. PMID:27513457

  7. Combination of metallomics and proteomics to study the effects of the metallodrug RAPTA-T on human cancer cells.

    PubMed

    Wolters, Dirk A; Stefanopoulou, Maria; Dyson, Paul J; Groessl, Michael

    2012-11-01

    An approach to characterize the interactions of RAPTA-T, a novel ruthenium-based anticancer drug candidate with intriguing antimetastatic properties, with human ovarian cancer cells in vitro is described. The distribution profile of the metallodrug within the cancer cells was determined by (size exclusion chromatography)-inductively coupled mass spectrometry combined with subcellular fractionation procedures (metallomics). Multidimensional protein identification technology (MudPIT) was then used to obtain insight into the alteration of the cellular proteome upon RAPTA-T treatment. The metallomics approach reveals striking differences in the intracellular behavior of the drug between cisplatin-sensitive and resistant cell lines and provides clues on possible mechanisms of action as well as detoxification, quantitative proteomics based on spectral counting sheds light on cellular response mechanisms to metallodrug treatment.

  8. Comparative Mitochondrial Proteomic Analysis of Raji Cells Exposed to Adriamycin

    PubMed Central

    Jiang, Yu-Jie; Sun, Qing; Fang, Xiao-Sheng; Wang, Xin

    2009-01-01

    The antitumor mechanisms of adriamycin (ADR) have been thought to contribute to induction of apoptosis and inefficiency of DNA repair, processes that are to a large extent mediated by mitochondria. This study aimed to investigate characteristics of ADR, including its antineoplastic activity, drug resistance, and unexpected toxicity in non-Hodgkin lymphoma (NHL) Raji cells at the mitochondrial proteomic level. The alterations of the mitochondrial proteome of Raji cells treated with ADR were analyzed by two-dimensional differential in-gel electrophoresis (2D-DIGE) coupled with linear ion trap quadrupole–electrospray ionization tandem mass spectrometry (LTQ-ESI-MS/MS).The altered patterns of three identified proteins were validated by Western blot and analyzed by pathway studio software. The results showed that 34 proteins were downregulated and 3 proteins upregulated in the study group compared with the control group. The differentially expressed proteins distributed their functions in reduction-oxidation reactions, DNA repair, cell cycle regulation, transporters and channels, and oxidative phosphorylation. Furthermore, heat shock protein 70 (HSP70), ATP-binding cassette transporter isoform B6 (ABCB6), and prohibitin (PHB) identified in this study may be closely related to chemoresistance and could serve as potential chemotherapeutic targets for NHL. Collectively, these results suggest that specific mitochondrial proteins are uniquely susceptible to alterations in abundance following exposure to ADR and carry implications for the investigation of therapeutic and prognostic markers. Further studies focusing on these identified proteins will be used to predict treatment response and reverse apoptosis resistance,and to explore drug-combination strategies associated with ADR for NHL therapy. PMID:19209238

  9. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells.

    PubMed

    Brooke, Greg N; Gamble, Simon C; Hough, Michael A; Begum, Shajna; Dart, D Alwyn; Odontiadis, Michael; Powell, Sue M; Fioretti, Flavia M; Bryan, Rosie A; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L

    2015-05-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  10. Antiandrogens Act as Selective Androgen Receptor Modulators at the Proteome Level in Prostate Cancer Cells*

    PubMed Central

    Brooke, Greg N.; Gamble, Simon C.; Hough, Michael A.; Begum, Shajna; Dart, D. Alwyn; Odontiadis, Michael; Powell, Sue M.; Fioretti, Flavia M.; Bryan, Rosie A.; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L.

    2015-01-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  11. Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte- and biliary-like cells.

    PubMed

    Petrareanu, Catalina; Macovei, Alina; Sokolowska, Izabela; Woods, Alisa G; Lazar, Catalin; Radu, Gabriel L; Darie, Costel C; Branza-Nichita, Norica

    2013-01-01

    Hepatitis B virus (HBV) is a human pathogen causing severe liver disease and eventually death. Despite important progress in deciphering HBV internalization, the early virus-cell interactions leading to infection are not known. HepaRG is a human bipotent liver cell line bearing the unique ability to differentiate towards a mixture of hepatocyte- and biliary-like cells. In addition to expressing metabolic functions normally found in liver, differentiated HepaRG cells support HBV infection in vitro, thus resembling cultured primary hepatocytes more than other hepatoma cells. Therefore, extensive characterization of the plasma membrane proteome from HepaRG cells would allow the identification of new cellular factors potentially involved in infection. Here we analyzed the plasma membranes of non-differentiated and differentiated HepaRG cells using nanoliquid chromatography-tandem mass spectrometry to identify the differences between the proteomes and the changes that lead to differentiation of these cells. We followed up on differentially-regulated proteins in hepatocytes- and biliary-like cells, focusing on Cathepsins D and K, Cyclophilin A, Annexin 1/A1, PDI and PDI A4/ERp72. Major differences between the two proteomes were found, including differentially regulated proteins, protein-protein interactions and intracellular localizations following differentiation. The results advance our current understanding of HepaRG differentiation and the unique properties of these cells.

  12. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    PubMed

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  13. Human Adrenocortical Carcinoma Cell Lines

    PubMed Central

    Wang, Tao; Rainey, William E.

    2011-01-01

    Summary The human adrenal cortex secretes mineralocorticoids, glucocorticoids and adrenal androgens. These steroids are produced from unique cell types located within the three distinct zones of the adrenal cortex. Disruption of adrenal steroid production results in a variety of diseases that can lead to hypertension, metabolic syndrome, infertility and androgen excess. The adrenal cortex is also a common site for the development of adenomas, and rarely the site for the development of carcinomas. The adenomas can lead to diseases associated with adrenal steroid excess, while the carcinomas are particularly aggressive and have a poor prognosis. In vitro cell culture models provide an important tool to examine molecular and cellular mechanisms controlling both the normal and pathologic function of the adrenal cortex. Herein we discuss the human adrenocortical cell lines and their use as model systems for adrenal studies. PMID:21924324

  14. Quantitative Proteomics: TGFβ2 Signaling in Trabecular Meshwork Cells

    PubMed Central

    Bollinger, Kathryn E.; Crabb, John S.; Yuan, Xianglin; Putliwala, Tasneem; Clark, Abbot F.

    2011-01-01

    Purpose. Transforming growth factor beta 2 (TGFβ2) is often elevated in the aqueous humor (AH) and trabecular meshwork (TM) of patients with primary open-angle glaucoma (POAG) and appears to contribute to POAG pathogenesis. To better understand TGFβ2 signaling in the eye, TGFβ2-induced proteomic changes were identified in cells cultured from the TM, a tissue involved in intraocular pressure (IOP) elevation in glaucoma. Methods. Primary cultures of human TM cells from four donors were treated with or without TGFβ2 (5 ng/mL) for 48 hours; then cellular protein was analyzed by liquid chromatography–mass spectrometry iTRAQ (isobaric tags for relative and absolute quantitation) technology. Results. A total of 853 proteins were quantified. TGFβ2 treatment significantly altered the abundance of 47 proteins, 40 of which have not previously been associated with TGFβ2 signaling in the eye. More than half the 30 elevated proteins support growing evidence that TGFβ2 induces extracellular matrix remodeling and abnormal cytoskeletal interactions in the TM. The levels of 17 proteins were reduced, including four cytoskeletal and six regulatory proteins. Both elevated and decreased regulatory proteins implicate TGFβ2-altered processes involving transcription, translation, and the glutamate/glutamine cycle. Altered levels of eight mitochondrial proteins support TGFβ2-induced mitochondrial dysfunction in the TM that in POAG could contribute to oxidative damage in the AH outflow pathway, TM senescence, and elevated IOP. Conclusions. The results expand the repertoire of proteins known to participate in TGFβ2 signaling, provide new molecular insight into POAG, and establish a quantitative proteomics database for the TM that includes candidate glaucoma biomarkers for future validation studies. PMID:21917933

  15. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    PubMed Central

    2011-01-01

    Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL) 11 regulates human endometrial epithelial cells (hEEC) adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE) electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2) and flotillin-1 (FLOT1), were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa) and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle). Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary hEEC and ECC-1 whilst

  16. Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism

    PubMed Central

    Sood, Anup; Miller, Alexandra M.; Brogi, Edi; Sui, Yunxia; Armenia, Joshua; McDonough, Elizabeth; Santamaria-Pang, Alberto; Stamper, Aleksandra; Campos, Carl; Pang, Zhengyu; Li, Qing; Port, Elisa; Graeber, Thomas G.; Schultz, Nikolaus; Ginty, Fiona; Larson, Steven M.

    2016-01-01

    The phenotypic diversity of cancer results from genetic and nongenetic factors. Most studies of cancer heterogeneity have focused on DNA alterations, as technologies for proteomic measurements in clinical specimen are currently less advanced. Here, we used a multiplexed immunofluorescence staining platform to measure the expression of 27 proteins at the single-cell level in formalin-fixed and paraffin-embedded samples from treatment-naive stage II/III human breast cancer. Unsupervised clustering of protein expression data from 638,577 tumor cells in 26 breast cancers identified 8 clusters of protein coexpression. In about one-third of breast cancers, over 95% of all neoplastic cells expressed a single protein coexpression cluster. The remaining tumors harbored tumor cells representing multiple protein coexpression clusters, either in a regional distribution or intermingled throughout the tumor. Tumor uptake of the radiotracer 18F-fluorodeoxyglucose was associated with protein expression clusters characterized by hormone receptor loss, PTEN alteration, and HER2 gene amplification. Our study demonstrates an approach to generate cellular heterogeneity metrics in routinely collected solid tumor specimens and integrate them with in vivo cancer phenotypes. PMID:27182557

  17. Transcriptomic and Proteomic Research To Explore Bruchid-Resistant Genes in Mungbean Isogenic Lines.

    PubMed

    Lin, Wu-Jui; Ko, Chia-Yun; Liu, Mao-Sen; Kuo, Chien-Yen; Wu, Dung-Chi; Chen, Chien-Yu; Schafleitner, Roland; Chen, Long-Fang O; Lo, Hsiao-Feng

    2016-08-31

    Mungbean (Vigna radiata (L.) Wilczek) is an important rotation legume crop for human nutrition in Asia. Bruchids (Callosobruchus spp.) currently cause heavy damage as pests of grain legumes during storage. We used omics-related technologies to study the mechanisms of bruchid resistance in seeds of the nearly isogenic lines VC1973A (bruchid-susceptible) and VC6089A (bruchid-resistant). A total of 399 differentially expressed genes (DEGs) were identified between the two lines by transcriptome sequencing. Among these DEGs, 251 exhibited high expression levels and 148 expressed low expression levels in seeds of VC6089A. Forty-five differential proteins (DPs) were identified by isobaric tags for relative and absolute quantification (iTRAQ); 21 DPs had higher abundances in VC6089A, and 24 DPs had higher abundances in VC1973A. According to transcriptome and proteome data, only three DEGs/DPs, including resistant-specific protein (g39185), gag/pol polyprotein (g34458), and aspartic proteinase (g5551), were identified and located on chromosomes 5, 1, and 7, respectively. Both g39185 and g34458 genes encode a protein containing a BURP domain. In previous research on bruchid molecular markers, the g39185 gene located close to the molecular markers of major bruchid-resistant locus may be a bruchid-resistant gene. PMID:27508985

  18. Transcriptomic and Proteomic Research To Explore Bruchid-Resistant Genes in Mungbean Isogenic Lines.

    PubMed

    Lin, Wu-Jui; Ko, Chia-Yun; Liu, Mao-Sen; Kuo, Chien-Yen; Wu, Dung-Chi; Chen, Chien-Yu; Schafleitner, Roland; Chen, Long-Fang O; Lo, Hsiao-Feng

    2016-08-31

    Mungbean (Vigna radiata (L.) Wilczek) is an important rotation legume crop for human nutrition in Asia. Bruchids (Callosobruchus spp.) currently cause heavy damage as pests of grain legumes during storage. We used omics-related technologies to study the mechanisms of bruchid resistance in seeds of the nearly isogenic lines VC1973A (bruchid-susceptible) and VC6089A (bruchid-resistant). A total of 399 differentially expressed genes (DEGs) were identified between the two lines by transcriptome sequencing. Among these DEGs, 251 exhibited high expression levels and 148 expressed low expression levels in seeds of VC6089A. Forty-five differential proteins (DPs) were identified by isobaric tags for relative and absolute quantification (iTRAQ); 21 DPs had higher abundances in VC6089A, and 24 DPs had higher abundances in VC1973A. According to transcriptome and proteome data, only three DEGs/DPs, including resistant-specific protein (g39185), gag/pol polyprotein (g34458), and aspartic proteinase (g5551), were identified and located on chromosomes 5, 1, and 7, respectively. Both g39185 and g34458 genes encode a protein containing a BURP domain. In previous research on bruchid molecular markers, the g39185 gene located close to the molecular markers of major bruchid-resistant locus may be a bruchid-resistant gene.

  19. Proteomic Analysis of Silk Viability in Maize Inbred Lines and Their Corresponding Hybrids

    PubMed Central

    Wang, Yafei; Zhao, Xiaofeng; Zhang, Fangfang; Tang, Jihua; Fu, Zhiyuan

    2015-01-01

    A long period of silk viability is critical for a good seed setting rate in maize (Zea mays L.), especially for inbred lines and hybrids with a long interval between anthesis and silking. To explore the molecular mechanism of silk viability and its heterosis, three inbred lines with different silk viability characteristics (Xun928, Lx9801, and Zong3) and their two hybrids (Xun928×Zong3 and Lx9801×Zong3) were analyzed at different developmental stages by a proteomic method. The differentially accumulated proteins were identified by mass spectrometry and classified into metabolism, protein biosynthesis and folding, signal transduction and hormone homeostasis, stress and defense responses, and cellular processes. Proteins involved in nutrient (methionine) and energy (ATP) supply, which support the pollen tube growth in the silk, were important for silk viability and its heterosis. The additive and dominant effects at a single locus, as well as complex epistatic interactions at two or more loci in metabolic pathways, were the primary contributors for mid-parent heterosis of silk viability. Additionally, the proteins involved in the metabolism of anthocyanins, which indirectly negatively regulate local hormone accumulation, were also important for the mid-parent heterosis of silk viability. These results also might imply the developmental dependence of heterosis, because many of the differentially accumulated proteins made distinct contributions to the heterosis of silk viability at specific developmental stages. PMID:26630375

  20. Comparative transcriptional and proteomic profiling of bread wheat cultivar and its derived transgenic line over-expressing a low molecular weight glutenin subunit gene in the endosperm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have carried out a parallel transcriptional and proteomic comparison of seeds from a transformed bread wheat line that over-expresses a transgenic low molecular weight glutenin subunit gene relative to the corresponding non-transformed genotype. Proteomic analyses showed that, during seed develop...

  1. Proteomic Profiling of Rabbit Embryonic Stem Cells Derived from Parthenotes and Fertilized Embryos

    PubMed Central

    Hsieh, Ya-Chen; Lo, Neng-Wen; Lee, Kun-Hsiung; Huang, San-Yuan; Ju, Jyh-Cherng

    2013-01-01

    Rabbit embryonic stem (rES) cells can be derived from various sources of embryos. However, understanding of the gene expression profile, which distincts embryonic stem (ES) cells from other cell types, is still extremely limited. In this study, we compared the protein profiles of three independent lines of rabbit cells, i.e., fibroblasts, fertilized embryo-derived stem (f-rES) cells, and parthenote-derived ES (p-rES) cells. Proteomic analyses were performed using two-dimensional gel electrophoresis (2-DE) and mass spectrometry. Collectively, the expression levels of 100 out of 284 protein spots differed significantly among these three cell types (p<0.05). Of those differentially expressed spots, 91% were identified in the protein database and represented 63 distinct proteins. Proteins with known identities are mainly localized in the cytoplasmic compartments (48%), nucleus (14%), and cytoskeletal machineries (13%). These proteins were majorly involved in biological functions of energy and metabolic pathways (25%), cell growth and maintenance (25%), signal transduction (14%), and protein metabolisms (10%). When protein expression levels among cell types were compared, six proteins associated with a variety of cellular activities, including structural constituents of the cytoskeleton (tubulins), structural molecule (KRT8), catalytic molecules (α-enolase), receptor complex scaffold (14-3-3 protein sigma), microfilament motor proteins (Myosin-9), and heat shock protein (HSP60), were found highly expressed in p-rES cells. Two proteins related to HSP activity and structural constituent of cytoskeleton in f-rES cells, and one structural molecule activity protein in fibroblasts showed significantly higher expression levels (p<0.05). Marker protein expressions in f-rES and p-rES cells were further confirmed by Western blotting and immunocytochemical staining. This study demonstrated unique proteomic profiles of the three rabbit cell types and revealed some novel proteins

  2. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  3. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging

    PubMed Central

    Hung, Victoria; Zou, Peng; Rhee, Hyun-Woo; Udeshi, Namrata D.; Cracan, Valentin; Svinkina, Tanya; Carr, Steven A.; Mootha, Vamsi K.; Ting, Alice Y.

    2016-01-01

    Summary Obtaining complete protein inventories for subcellular regions is a challenge that often limits our understanding of cellular function, especially for regions that are impossible to purify and are therefore inaccessible to traditional proteomic analysis. We recently developed a method to map proteomes in living cells with an engineered peroxidase (APEX) that bypasses the need for organellar purification when applied to membrane-bound compartments; however, it lacked specificity when applied to unbounded regions that allow APEX-generated radicals to escape. Here, we combine APEX technology with a SILAC-based ratiometric tagging strategy to substantially reduce unwanted background and achieve nanometer spatial resolution. This is applied to map the proteome of the mitochondrial intermembrane space (IMS), which can freely exchange small molecules with the cytosol. Our IMS proteome of 127 proteins has >94% specificity and includes nine novel mitochondrial proteins. This approach will enable scientists to map proteomes of cellular regions that were previously inaccessible. PMID:25002142

  4. Proteomic analysis of nasal epithelial cells from cystic fibrosis patients.

    PubMed

    Jeanson, Ludovic; Guerrera, Ida Chiara; Papon, Jean-François; Chhuon, Cerina; Zadigue, Patricia; Prulière-Escabasse, Virginie; Amselem, Serge; Escudier, Estelle; Coste, André; Edelman, Aleksander

    2014-01-01

    The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology.

  5. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics.

    PubMed

    Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A

    2014-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover. PMID:24952180

  6. Cell line: 2004-2014.

    PubMed

    2014-11-20

    2014 marks Cell's 40th anniversary, and over the year we have looked back at how discoveries of the last four decades have molded our understanding of biology. The final decade of the Cell Line features a selection of the exceptional scientific work-both landmark papers and essential reviews. Select entries can be read as an "Annotated Classic," which includes the original paper and accompanying reflections of a leading scientist, considering the work from our current vantage point. Our last installment includes a harbinger of the interplay between microbiota and mammalian hosts in 2004, revolutionary papers in 2006 and 2007 unlocking cellular reprogramming, the discovery of beige adipocytes in 2012, and the first example of CRISPR-based genome editing in a nonhuman primate in 2014. In addition to landmark publications, there were innovative developments at the journal in this decade, with the complete redesign of the print journal and the creation of Leading Edge in late 2005 and the restructuring of the online display of the article in 2010. Keeping pace with the changing nature of biological research, over the decade Cell added new article types, introduced guidelines for the organization of supplementary material, and expanded the journal's web-based content to bring editors' and authors' excitement and perspective on individual papers to the readership. An interactive version of the timeline, with links to the papers, full author lists, and Annotated Classics, is available at http://dx.doi.org/10.1016/j.cell.2014.11.004. PMID:25416957

  7. Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with CB1 or CB2 agonists.

    PubMed

    Brandi, Jessica; Dando, Ilaria; Palmieri, Marta; Donadelli, Massimo; Cecconi, Daniela

    2013-05-01

    The pancreatic adenocarcinoma cell line Panc1 was treated with cannabinoid receptor ligands (arachidonylcyclopropylamide or GW405833) in order to elucidate the molecular mechanism of their anticancer effect. A proteomic approach was used to analyze the protein and phosphoprotein profiles. Western blot and functional data mining were also employed in order to validate results, classify proteins, and explore their potential relationships. We demonstrated that the two cannabinoids act through a widely common mechanism involving up- and down-regulation of proteins related to energetic metabolism and cell growth regulation. Overall, the results reported might contribute to the development of a therapy based on cannabinoids for pancreatic adenocarcinoma.

  8. Comparative Proteomic Analysis of Embryos between a Maize Hybrid and Its Parental Lines during Early Stages of Seed Germination

    PubMed Central

    Zhang, Guiping; Xing, Jiewen; Hu, Zhaorong; Feng, Wanjun; Yao, Yingyin; Peng, Huiru; Du, Jinkun; Zhang, Yirong; Ni, Zhongfu; Sun, Qixin

    2013-01-01

    In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed. In total, the number of differentially expressed protein spots between hybrid and its parental lines in dry and 24 h imbibed seed embryos were 134 and 191, respectively, among which 47.01% (63/134) and 34.55% (66/191) protein spots displayed nonadditively expressed pattern. Remarkably, 54.55% of nonadditively accumulated proteins in 24 h imbibed seed embryos displayed above or equal to the level of the higher parent patterns. Moreover, 155 differentially expressed protein spots were identified, which were grouped into eight functional classes, including transcription & translation, energy & metabolism, signal transduction, disease & defense, storage protein, transposable element, cell growth & division and unclassified proteins. In addition, one of the upregulated proteins in F1 hybrids was ZmACT2, a homolog of Arabidopsis thaliana ACT7 (AtACT7). Expressing ZmACT2 driven by the AtACT7 promoter partially complemented the low germination phenotype in the Atact7 mutant. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of proteins, and it is concluded that the altered pattern of gene expression at translational level in the hybrid may be responsible for the observed heterosis. PMID:23776561

  9. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    SciTech Connect

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang; and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  10. Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development.

    PubMed

    Lesage, Véronique S; Merlino, Marielle; Chambon, Christophe; Bouchet, Brigitte; Marion, Didier; Branlard, Gérard

    2012-01-01

    Wheat kernel texture, a major trait determining the end-use quality of wheat flour, is mainly influenced by puroindolines. These small basic proteins display in vitro lipid binding and antimicrobial properties, but their cellular functions during grain development remain unknown. To gain an insight into their biological function, a comparative proteome analysis of two near-isogenic lines (NILs) of bread wheat Triticum aestivum L. cv. Falcon differing in the presence or absence of the puroindoline-a gene (Pina) and kernel hardness, was performed. Proteomes of the two NILs were compared at four developmental stages of the grain for the metabolic albumin/globulin fraction and the Triton-extracted amphiphilic fraction. Proteome variations showed that, during grain development, folding proteins and stress-related proteins were more abundant in the hard line compared with the soft one. These results, taken together with ultrastructural observations showing that the formation of the protein matrix occurred earlier in the hard line, suggested that a stress response, possibly the unfolded protein response, is induced earlier in the hard NIL than in the soft one leading to earlier endosperm cell death. Quantification of the albumin/globulin fraction and amphiphilic proteins at each developmental stage strengthened this hypothesis as a plateau was revealed from the 500 °Cd stage in the hard NIL whereas synthesis continued in the soft one. These results open new avenues concerning the function of puroindolines which could be involved in the storage protein folding machinery, consequently affecting the development of wheat endosperm and the formation of the protein matrix.

  11. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    PubMed Central

    Xiong, Jimin; Menicanin, Danijela; Marino, Victor

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  12. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells.

    PubMed

    Xiong, Jimin; Menicanin, Danijela; Zilm, Peter S; Marino, Victor; Bartold, P Mark; Gronthos, Stan

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein "spots" were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  13. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line.

    PubMed

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  14. Differential Proteomic Analysis of Anthers between Cytoplasmic Male Sterile and Maintainer Lines in Capsicum annuum L

    PubMed Central

    Wu, Zhiming; Cheng, Jiaowen; Qin, Cheng; Hu, Zhiqun; Yin, Caixia; Hu, Kailin

    2013-01-01

    Cytoplasmic male sterility (CMS), widely used in the production of hybrid seeds, is a maternally inherited trait resulting in a failure to produce functional pollen. In order to identify some specific proteins associated with CMS in pepper, two-dimensional gel electrophoresis (2-DE) was applied to proteomic analysis of anthers/buds between a CMS line (designated NA3) and its maintainer (designated NB3) in Capsicum annuum L. Thirty-three spots showed more than 1.5-fold in either CMS or its maintainer. Based on mass spectrometry, 27 spots representing 23 distinct proteins in these 33 spots were identified. Proteins down-regulated in CMS anthers/buds includes ATP synthase D chain, formate dehydrogenase, alpha-mannosidas, RuBisCO large subunit-binding protein subunit beta, chloroplast manganese stabilizing protein-II, glutathione S-transferase, adenosine kinase isoform 1T-like protein, putative DNA repair protein RAD23-4, putative caffeoyl-CoA 3-O-methyltransferase, glutamine synthetase (GS), annexin Cap32, glutelin, allene oxide cyclase, etc. In CMS anthers/buds, polyphenol oxidase, ATP synthase subunit beta, and actin are up-regulated. It was predicted that male sterility in NA3 might be related to energy metabolism turbulence, excessive ethylene synthesis, and suffocation of starch synthesis. The present study lays a foundation for future investigations of gene functions associated with pollen development and cytoplasmic male sterility, and explores the molecular mechanism of CMS in pepper. PMID:24264042

  15. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line

    PubMed Central

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  16. Bone Proteomics experiment (BOP): the first proteomics analysis of mammalian cells cultivated in weightlessness conditions

    NASA Astrophysics Data System (ADS)

    Costessi, A.; Vascotto, C.; Pines, A.; Romanello, M.; Schonenborg, R.; Schiller, P.; Moro, L.; Tell, G.

    Bone mass loss is a major consequence of extended periods of weightlessness Many studies have been performed on astronauts and animal models establishing that a decrease of the maturation process and of the bone synthesising activity of osteoblast cells play a key role in microgravity-dependent bone mass loss Several experiments on single cells and tissues showed that weightlessness can also influence cells cultivated in vitro Many molecular mechanisms are affected among which the cytoskeleton and intracellular signal transduction cascades However the underlying mechanisms of these changes and their molecular consequences are far from being fully understood and the cellular gravisensing machinery is still unknown In contrast to weightlessness dynamic mechanical loading increases bone density and strength and promotes osteoblast proliferation differentiation and matrix production by acting at the gene expression level However the molecular mechanisms by which mechanical forces are converted into biochemical signalling in bone are also poorly understood A growing body of evidence points to extracellular nucleotides i e ATP and UTP as soluble factors that are released by several cell types in response to mechanical stimulation and that eventually trigger an intracellular signal We have recently demonstrated in the HOBIT osteoblast cell line that ATP and UTP treatments can activate two fundamental transcription factors that promote osteoblast differentiation and physiology Runx2 and Egr-1 as well as their target genes galectin-3 and

  17. Qualitative and quantitative comparison of the proteome of erythroid cells differentiated from human iPSCs and adult erythroid cells by multiplex TMT labelling and nanoLC-MS/MS.

    PubMed

    Trakarnsanga, Kongtana; Wilson, Marieangela C; Griffiths, Rebecca E; Toye, Ashley M; Carpenter, Lee; Heesom, Kate J; Parsons, Steve F; Anstee, David J; Frayne, Jan

    2014-01-01

    Induced pluripotent stem cells (iPSC) are an attractive progenitor source for the generation of in vitro blood products. However, before iPSC-derived erythroid cells can be considered for therapeutic use their similarity to adult erythroid cells must be confirmed. We have analysed the proteome of erythroid cells differentiated from the iPSC fibroblast derived line (C19) and showed they express hallmark RBC proteins, including all those of the ankyrin and 4.1R complex. We next compared the proteome of erythroid cells differentiated from three iPSC lines (C19, OCE1, OPM2) with that of adult and cord blood progenitors. Of the 1989 proteins quantified <3% differed in level by 2-fold or more between the different iPSC-derived erythroid cells. When compared to adult cells, 11% of proteins differed in level by 2-fold or more, falling to 1.9% if a 5-fold threshold was imposed to accommodate slight inter-cell line erythropoietic developmental variation. Notably, the level of >30 hallmark erythroid proteins was consistent between the iPSC lines and adult cells. In addition, a sub-population (10-15%) of iPSC erythroid cells in each of the iPSC lines completed enucleation. Aberrant expression of some cytoskeleton proteins may contribute to the failure of the majority of the cells to enucleate since we detected some alterations in cytoskeletal protein abundance. In conclusion, the proteome of erythroid cells differentiated from iPSC lines is very similar to that of normal adult erythroid cells, but further work to improve the induction of erythroid cells in existing iPSC lines or to generate novel erythroid cell lines is required before iPSC-derived red cells can be considered suitable for transfusion therapy.

  18. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides.

    PubMed

    Turek, Ilona; Wheeler, Janet I; Gehring, Chris; Irving, Helen R; Marondedze, Claudius

    2015-09-01

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC-MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article "Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress" by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386. PMID:26217812

  19. Integrated Proteomic and Glycoproteomic Analyses of Prostate Cancer Cells Reveal Glycoprotein Alteration in Protein Abundance and Glycosylation.

    PubMed

    Shah, Punit; Wang, Xiangchun; Yang, Weiming; Toghi Eshghi, Shadi; Sun, Shisheng; Hoti, Naseruddin; Chen, Lijun; Yang, Shuang; Pasay, Jered; Rubin, Abby; Zhang, Hui

    2015-10-01

    Prostate cancer is the most common cancer among men in the U.S. and worldwide, and androgen-deprivation therapy remains the principal treatment for patients. Although a majority of patients initially respond to androgen-deprivation therapy, most will eventually develop castration resistance. An increased understanding of the mechanisms that underline the pathogenesis of castration resistance is therefore needed to develop novel therapeutics. LNCaP and PC3 prostate cancer cell lines are models for androgen-dependence and androgen-independence, respectively. Herein, we report the comparative analysis of these two prostate cancer cell lines using integrated global proteomics and glycoproteomics. Global proteome profiling of the cell lines using isobaric tags for relative and absolute quantitation (iTRAQ) labeling and two- dimensional (2D) liquid chromatography-tandem MS (LC-MS/MS) led to the quantification of 8063 proteins. To analyze the glycoproteins, glycosite-containing peptides were isolated from the same iTRAQ-labeled peptides from the cell lines using solid phase extraction followed by LC-MS/MS analysis. Among the 1810 unique N-linked glycosite-containing peptides from 653 identified N-glycoproteins, 176 glycoproteins were observed to be different between the two cell lines. A majority of the altered glycoproteins were also observed with changes in their global protein expression levels. However, alterations in 21 differentially expressed glycoproteins showed no change at the protein abundance level, indicating that the glycosylation site occupancy was different between the two cell lines. To determine the glycosylation heterogeneity at specific glycosylation sites, we further identified and quantified 1145 N-linked glycopeptides with attached glycans in the same iTRAQ-labeled samples. These intact glycopeptides contained 67 glycan compositions and showed increased fucosylation in PC3 cells in several of the examined glycosylation sites. The increase in

  20. Integrated Proteomic and Glycoproteomic Analyses of Prostate Cancer Cells Reveal Glycoprotein Alteration in Protein Abundance and Glycosylation.

    PubMed

    Shah, Punit; Wang, Xiangchun; Yang, Weiming; Toghi Eshghi, Shadi; Sun, Shisheng; Hoti, Naseruddin; Chen, Lijun; Yang, Shuang; Pasay, Jered; Rubin, Abby; Zhang, Hui

    2015-10-01

    Prostate cancer is the most common cancer among men in the U.S. and worldwide, and androgen-deprivation therapy remains the principal treatment for patients. Although a majority of patients initially respond to androgen-deprivation therapy, most will eventually develop castration resistance. An increased understanding of the mechanisms that underline the pathogenesis of castration resistance is therefore needed to develop novel therapeutics. LNCaP and PC3 prostate cancer cell lines are models for androgen-dependence and androgen-independence, respectively. Herein, we report the comparative analysis of these two prostate cancer cell lines using integrated global proteomics and glycoproteomics. Global proteome profiling of the cell lines using isobaric tags for relative and absolute quantitation (iTRAQ) labeling and two- dimensional (2D) liquid chromatography-tandem MS (LC-MS/MS) led to the quantification of 8063 proteins. To analyze the glycoproteins, glycosite-containing peptides were isolated from the same iTRAQ-labeled peptides from the cell lines using solid phase extraction followed by LC-MS/MS analysis. Among the 1810 unique N-linked glycosite-containing peptides from 653 identified N-glycoproteins, 176 glycoproteins were observed to be different between the two cell lines. A majority of the altered glycoproteins were also observed with changes in their global protein expression levels. However, alterations in 21 differentially expressed glycoproteins showed no change at the protein abundance level, indicating that the glycosylation site occupancy was different between the two cell lines. To determine the glycosylation heterogeneity at specific glycosylation sites, we further identified and quantified 1145 N-linked glycopeptides with attached glycans in the same iTRAQ-labeled samples. These intact glycopeptides contained 67 glycan compositions and showed increased fucosylation in PC3 cells in several of the examined glycosylation sites. The increase in

  1. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    PubMed

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed.

  2. Proteomics Funding Opportunity - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    To expand the understanding of how cells sense and respond to changes in their physical environment, the NCI is seeking to perform proteomic assays on the panel of cell lines grown on a variety of substrates. These assays will provide insight into changes in protein levels or phosphorylation changes that could reflect the activity of mechano-transduction pathways.

  3. Improved recovery and identification of membrane proteins from rat hepatic cells using a centrifugal proteomic reactor.

    PubMed

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-10-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥ 2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism.

  4. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  5. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  6. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.

  7. Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research

    PubMed Central

    2013-01-01

    Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing approaches for directly elucidating phosphoprotein signaling networks in cancer cells or for capturing high-resolution snapshots of immune system function in patients with various disease conditions. We discuss advances in single-cell proteomics platforms, with an emphasis on microchip methods. These methods can provide a direct correlation of morphological, functional and molecular signatures at the single-cell level. We also provide examples of how those platforms are being applied to both fundamental biology and clinical studies, focusing on immune-system monitoring and phosphoprotein signaling networks in cancer. PMID:23998271

  8. AMP-Activated Protein Kinase Regulates the Cell Surface Proteome and Integrin Membrane Traffic

    PubMed Central

    Thavarajah, Thanusi; Medvedev, Sergei; Bowden, Peter; Marshall, John G.; Antonescu, Costin N.

    2015-01-01

    The cell surface proteome controls numerous cellular functions including cell migration and adhesion, intercellular communication and nutrient uptake. Cell surface proteins are controlled by acute changes in protein abundance at the plasma membrane through regulation of endocytosis and recycling (endomembrane traffic). Many cellular signals regulate endomembrane traffic, including metabolic signaling; however, the extent to which the cell surface proteome is controlled by acute regulation of endomembrane traffic under various conditions remains incompletely understood. AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated upon reduced cellular energy availability. AMPK activation alters the endomembrane traffic of a few specific proteins, as part of an adaptive response to increase energy intake and reduce energy expenditure. How increased AMPK activity during energy stress may globally regulate the cell surface proteome is not well understood. To study how AMPK may regulate the cell surface proteome, we used cell-impermeable biotinylation to selectively purify cell surface proteins under various conditions. Using ESI-MS/MS, we found that acute (90 min) treatment with the AMPK activator A-769662 elicits broad control of the cell surface abundance of diverse proteins. In particular, A-769662 treatment depleted from the cell surface proteins with functions in cell migration and adhesion. To complement our mass spectrometry results, we used other methods to show that A-769662 treatment results in impaired cell migration. Further, A-769662 treatment reduced the cell surface abundance of β1-integrin, a key cell migration protein, and AMPK gene silencing prevented this effect. While the control of the cell surface abundance of various proteins by A-769662 treatment was broad, it was also selective, as this treatment did not change the cell surface abundance of the transferrin receptor. Hence, the cell surface proteome is subject to acute

  9. The Effects of Bifidobacterium breve on Immune Mediators and Proteome of HT29 Cells Monolayers

    PubMed Central

    Sánchez, Borja; González-Rodríguez, Irene; Arboleya, Silvia; López, Patricia; Suárez, Ana

    2015-01-01

    The use of beneficial microorganisms, the so-called probiotics, to improve human health is gaining popularity. However, not all of the probiotic strains trigger the same responses and they differ in their interaction with the host. In spite of the limited knowledge on mechanisms of action some of the probiotic effects seem to be exerted through maintenance of the gastrointestinal barrier function and modulation of the immune system. In the present work, we have addressed in vitro the response of the intestinal epithelial cell line HT29 to the strain Bifidobacterium breve IPLA20004. In the array of 84 genes involved in inflammation tested, the expression of 12 was modified by the bifidobacteria. The genes of chemokine CXCL6, the chemokine receptor CCR7, and, specially, the complement component C3 were upregulated. Indeed, HT29 cells cocultivated with B. breve produced significantly higher levels of protein C3a. The proteome of HT29 cells showed increased levels of cytokeratin-8 in the presence of B. breve. Altogether, it seems that B. breve IPLA20004 could favor the recruitment of innate immune cells to the mucosa reinforcing, as well as the physical barrier of the intestinal epithelium. PMID:25793196

  10. HLA expression in hepatocellular carcinoma cell lines.

    PubMed

    Wadee, A A; Paterson, A; Coplan, K A; Reddy, S G

    1994-08-01

    The present study undertook to investigate the biological significance of human leucocyte antigen expression in hepatocellular carcinoma and to elucidate the role of potential modulating agents on human leucocyte antigen expression. These studies used several hepatic tumour-derived cell lines as in vitro model systems. The cell lines included PLC/PRF/5 (Alexander cell line), Hep3B, HepG2, TONG PHC, HA22T/VGH, HA59T/VGH and Mahlavu. The cell lines K562 and Raji were used as negative and positive controls, respectively. K562, a B lymphoid-derived cell line, was shown to express negligible amounts of human leucocyte antigens, while Raji, an erythromyeloid-derived cell line, expressed both class I and class II human leucocyte antigens as well as their respective invariant chains, beta 2-microglobulin and Ii. Using an ELISA, experiments performed on these cell lines confirmed the natural expression of class I and class II antigens by the HA22T/VGH and HA59T/VGH cell lines, whereas PLC/PRF/5 displayed class II surface antigens only. The effects of modulating agents such as interferon-gamma sodium butyrate and clofazimine on human leucocyte antigen expression were investigated using the HA22T/VGH, HA59T/VGH and TONG PHC cell lines. These agents increased class II and class II human leucocyte antigen expression on HA22T/VGH and TONG PHC cells, but had no effect on the HA59T/VGH cell line. The results suggest a potential use for these agents as modulators of human leucocyte antigen expression by human heptocellular cell lines.

  11. SuperSILAC Quantitative Proteome Profiling of Murine Middle Ear Epithelial Cell Remodeling with NTHi

    PubMed Central

    Val, Stéphanie; Burgett, Katelyn; Brown, Kristy J.; Preciado, Diego

    2016-01-01

    Background Chronic Otitis Media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Non-typeable Haemophilus influenzae (NTHi), the most common acute Otitis Media (OM) pathogen, is postulated to promote middle ear epithelial remodeling in the progression of OM from acute to chronic. The goals of this study were to examine histopathological and quantitative proteomic epithelial effects of NTHi challenge in a murine middle ear epithelial cell line. Methods NTHi lysates were generated and used to stimulate murine epithelial cells (mMEEC) cultured at air-liquid interface over 48 hours– 1 week. Conditional quantitative Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) of cell lysates was performed to interrogate the global protein production in the cells, using the SuperSILAC technique. Histology of the epithelium over time was done to measure bacterial dependent remodeling. Results Mass spectrometry analysis identified 2,565 proteins across samples, of which 74 exhibited differential enrichment or depletion in cell lysates (+/-2.0 fold-change; p value<0.05). The key molecular functions regulated by NTHi lysates exposure were related to cell proliferation, death, migration, adhesion and inflammation. Finally, chronic exposure induced significant epithelial thickening of cells grown at air liquid interface. Conclusions NTHi lysates drive pathways responsible of cell remodeling in murine middle ear epithelium which likely contributes to observed epithelial hyperplasia in vitro. Further elucidation of these mediators will be critical in understanding the progression of OM from acute to chronic at the molecular level. PMID:26859300

  12. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2

    PubMed Central

    Hung, Victoria; Udeshi, Namrata D; Lam, Stephanie S; Loh, Ken H; Cox, Kurt J; Pedram, Kayvon; Carr, Steven A; Ting, Alice Y

    2016-01-01

    This protocol describes a method to obtain spatially resolved proteomic maps of specific compartments within living mammalian cells. An engineered peroxidase, APEX2, is genetically targeted to a cellular region of interest. Upon the addition of hydrogen peroxide for 1 min to cells preloaded with a biotin-phenol substrate, APEX2 generates biotin-phenoxyl radicals that covalently tag proximal endogenous proteins. Cells are then lysed, and biotinylated proteins are enriched with streptavidin beads and identified by mass spectrometry. We describe the generation of an appropriate APEX2 fusion construct, proteomic sample preparation, and mass spectrometric data acquisition and analysis. A two-state stable isotope labeling by amino acids in cell culture (SILAC) protocol is used for proteomic mapping of membrane-enclosed cellular compartments from which APEX2-generated biotin-phenoxyl radicals cannot escape. For mapping of open cellular regions, we instead use a ‘ratiometric’ three-state SILAC protocol for high spatial specificity. Isotopic labeling of proteins takes 5–7 cell doublings. Generation of the biotinylated proteomic sample takes 1 d, acquiring the mass spectrometric data takes 2–5 d and analysis of the data to obtain the final proteomic list takes 1 week. PMID:26866790

  13. Green fluorescent protein expression triggers proteome changes in breast cancer cells

    PubMed Central

    Coumans, J.V.F.; Gau, D.; Poljak, A.; Wasinger, V.; Roy, P.; Moens, P.

    2013-01-01

    Green fluorescent protein (GFP) is the most commonly used reporter of expression in cell biology despite evidence that it affects the cell physiology. The molecular mechanism of GFP-associated modifications has been largely unexplored. In this paper we investigated the proteome modifications following stable expression of GFP in breast cancer cells (MDA-MB-231). A combination of three different proteome analysis methods (2-DE, iTRAQ, label-free) was used to maximise proteome coverage. We found that GFP expression induces changes in expression of proteins that are associated with protein folding, cytoskeletal organisation and cellular immune response. In view of these findings, the use of GFP as a cell reporter should be carefully monitored. PMID:23899627

  14. Proteomics approaches in the identification of molecular signatures of mesenchymal stem cells.

    PubMed

    Xiao, Yin; Chen, Jiezhong

    2013-01-01

    Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor-stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs.

  15. Proteomic Signatures of Acquired Letrozole Resistance in Breast Cancer: Suppressed Estrogen Signaling and Increased Cell Motility and Invasiveness*

    PubMed Central

    Tilghman, Syreeta L.; Townley, Ian; Zhong, Qiu; Carriere, Patrick P.; Zou, Jin; Llopis, Shawn D.; Preyan, Lynez C.; Williams, Christopher C.; Skripnikova, Elena; Bratton, Melyssa R.; Zhang, Qiang; Wang, Guangdi

    2013-01-01

    Aromatase inhibitors, such as letrozole, have become the first-line treatment for postmenopausal women with estrogen-dependent breast cancer. However, acquired resistance remains a major clinical obstacle. Previous studies demonstrated constitutive activation of the MAPK signaling, overexpression of HER2, and down-regulation of aromatase and ERα in letrozole-resistant breast cancer cells. Given the complex signaling network involved in letrozole-refractory breast cancer and the lack of effective treatment for hormone resistance, further investigation of aromatase inhibitor resistance by a novel systems biology approach may reveal previously unconsidered molecular changes that could be utilized as therapeutic targets. This study was undertaken to characterize for the first time global proteomic alterations occurring in a letrozole-resistant cell line. A quantitative proteomic analysis of the whole cell lysates of LTLT-Ca (resistant) versus AC-1 cells (sensitive) was performed to identify significant protein expression changes. A total of 1743 proteins were identified and quantified, of which 411 were significantly up-regulated and 452 significantly down-regulated (p < 0.05, fold change > 1.20). Bioinformatics analysis revealed that acquired letrozole resistance is associated with a hormone-independent, more aggressive phenotype. LTLT-Ca cells exhibited 84% and 138% increase in migration and invasion compared with the control cells. The ROCK inhibitor partially abrogated the enhanced migration and invasion of the letrozole-resistant cells. Flow cytometric analyses also demonstrated an increase in vimentin and twist expression in letrozole-resistance cells, suggesting an onset of epithelial to mesenchymal transition (EMT). Moreover, targeted gene expression arrays confirmed a 28-fold and sixfold up-regulation of EGFR and HER2, respectively, whereas ERα and pS2 were dramatically reduced by 28-fold and 1100-fold, respectively. Taken together, our study revealed global

  16. Data for identification of GPI-anchored peptides and ω-sites in cancer cell lines

    PubMed Central

    Masuishi, Yusuke; Kimura, Yayoi; Arakawa, Noriaki; Hirano, Hisashi

    2016-01-01

    We present data obtained using a focused proteomics approach to identify the glycosylphosphatidylinositol (GPI)-anchored peptides in 19 human cancer cell lines. GPI-anchored proteins (GPI-APs), which localize to the outer leaflet of the membrane microdomains commonly referred to as lipid rafts play important roles in diverse biological processes. Due to the complex structure of the GPI-anchor moiety, it has been difficult to identify GPI-anchored peptide sequences on the proteomic scale by database searches using tools such as MASCOT. Here we provide data from 73 ω-sites derived from 49 GPI-APs in 19 human cancer cell lines. This article contains data related to the research article entitled “Identification of glycosylphosphatidylinositol-anchored proteins and ω-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment” (Masuishi et al., 2016) [1]. PMID:27141528

  17. Data for identification of GPI-anchored peptides and ω-sites in cancer cell lines.

    PubMed

    Masuishi, Yusuke; Kimura, Yayoi; Arakawa, Noriaki; Hirano, Hisashi

    2016-06-01

    We present data obtained using a focused proteomics approach to identify the glycosylphosphatidylinositol (GPI)-anchored peptides in 19 human cancer cell lines. GPI-anchored proteins (GPI-APs), which localize to the outer leaflet of the membrane microdomains commonly referred to as lipid rafts play important roles in diverse biological processes. Due to the complex structure of the GPI-anchor moiety, it has been difficult to identify GPI-anchored peptide sequences on the proteomic scale by database searches using tools such as MASCOT. Here we provide data from 73 ω-sites derived from 49 GPI-APs in 19 human cancer cell lines. This article contains data related to the research article entitled "Identification of glycosylphosphatidylinositol-anchored proteins and ω-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment" (Masuishi et al., 2016) [1]. PMID:27141528

  18. Proteomic Analysis of Cell Walls of Two Developmental Stages of Alfalfa Stems

    PubMed Central

    Verdonk, Julian C.; Hatfield, Ronald D.; Sullivan, Michael L.

    2012-01-01

    Cell walls are important for the growth and development of all plants. They are also valuable resources for feed and fiber, and more recently as a potential feedstock for bioenergy production. Cell wall proteins comprise only a fraction of the cell wall, but play important roles in establishing the walls and in the chemical interactions (e.g., crosslinking) of cell wall components. This crosslinking provides structure, but restricts digestibility of cell wall complex carbohydrates, limiting available energy in animal and bioenergy production systems. Manipulation of cell wall proteins could be a strategy to improve digestibility. An analysis of the cell wall proteome of apical alfalfa stems (less mature, more digestible) and basal alfalfa stems (more mature, less digestible) was conducted using a recently developed low-salt/density gradient method for the isolation of cell walls. Walls were subsequently subjected to a modified extraction utilizing EGTA to remove pectins, followed by a LiCl extraction to isolate more tightly bound proteins. Recovered proteins were identified using shotgun proteomics. We identified 272 proteins in the alfalfa stem cell wall proteome, 153 of which had not previously been identified in cell wall proteomic analyses. Nearly 70% of the identified proteins were predicted to be secreted, as would be expected for most cell wall proteins, an improvement over previously published studies using traditional cell wall isolation methods. A comparison of our and several other cell wall proteomic studies indicates little overlap in identified proteins among them, which may be largely due to differences in the tissues used as well as differences in experimental approach. PMID:23248635

  19. Comparative proteomic analysis on human L-02 liver cells treated with varying concentrations of trichloroethylene.

    PubMed

    Liu, Jianjun; Huang, Haiyan; Xing, Xiumei; Xi, Renrong; Zhuang, Zhixiong; Yuan, Jianhui; Yang, Fan; Zhao, Jin

    2007-03-01

    To determine the differential proteomic expressions in human L-02 liver cells induced by varying concentrations of trichloroethylene (TCE), comparative proteomic analysis was performed on human L-02 liver cells which were treated with varying concentrations of TCE. According to the result of MTT test, we designed four different groups, in which the cells were treated with 0 microM (control group), 3, 10 or 40 microM TCE for 24 h, respectively. Comparative analysis of approximately 800 spots resolved by two-dimensional gel electrophoresis (2DE) in the soluble proteomes of L-02 cells from the four different groups resulted in 10 differential proteins. To identify the differential spots, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) was carried out; if the results from the tool were insufficient, tandem MS (MALDI-TOF-TOF-MS) was then performed. The raw data of peptide mass fingerprints (PMFs) and MS/MS spectra were searched against the IPI human data base for exact matches. Then western blot was employed to verify the result of proteomic analysis, the following result confirmed that the results of proteomic analysis were reliable. These results might provide an insight into the underlying mechanism of TCE intoxication and find biological markers for diagnosis and therapy of TCE-induced diseases.

  20. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast.

    PubMed

    Kumar, Ravinder; Srivastava, Sanjeeva

    2016-01-01

    Most of the microbial cells on earth under natural conditions exist in a dormant condition, commonly known as quiescent state. Quiescent cells exhibit low rates of transcription and translation suggesting that cellular abundance of proteins may be similar in quiescent cells. Therefore, this study aim to compare the proteome of budding yeast cells from two quiescent states viz. stationary phase/G0 and tetrads. Using iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative proteomics we identified 289 proteins, among which around 40 proteins exhibited ±1.5 fold change consistently from the four biological replicates. Proteomics data was validated by western blot and denstiometric analysis of Hsp12 and Spg4. Level of budding yeast 14-3-3 proteins was found to be similar in both the quiescent states, whereas Hsp12 and Spg4 expressed only during stress. FACS (fluorescence-activated cell sorting) analysis showed that budding yeast cells were arrested at G1 stages both in tetrads as well as in stationary phase. We also observed that quiescent states did not express Ime1 (inducer of meiosis). Taken together, our present study demonstrates that the cells in quiescent state may have similar proteome, and accumulation of proteins like Hsp12, Hsp26, and Spg4 may play an important role in retaining viability of the cells during dormancy. PMID:27558777

  1. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast

    PubMed Central

    Kumar, Ravinder; Srivastava, Sanjeeva

    2016-01-01

    Most of the microbial cells on earth under natural conditions exist in a dormant condition, commonly known as quiescent state. Quiescent cells exhibit low rates of transcription and translation suggesting that cellular abundance of proteins may be similar in quiescent cells. Therefore, this study aim to compare the proteome of budding yeast cells from two quiescent states viz. stationary phase/G0 and tetrads. Using iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative proteomics we identified 289 proteins, among which around 40 proteins exhibited ±1.5 fold change consistently from the four biological replicates. Proteomics data was validated by western blot and denstiometric analysis of Hsp12 and Spg4. Level of budding yeast 14-3-3 proteins was found to be similar in both the quiescent states, whereas Hsp12 and Spg4 expressed only during stress. FACS (fluorescence-activated cell sorting) analysis showed that budding yeast cells were arrested at G1 stages both in tetrads as well as in stationary phase. We also observed that quiescent states did not express Ime1 (inducer of meiosis). Taken together, our present study demonstrates that the cells in quiescent state may have similar proteome, and accumulation of proteins like Hsp12, Hsp26, and Spg4 may play an important role in retaining viability of the cells during dormancy. PMID:27558777

  2. Global Metabonomic and Proteomic Analysis of Human Conjunctival Epithelial Cells (IOBA-NHC) in Response to Hyperosmotic Stress.

    PubMed

    Chen, Liyan; Li, Jing; Guo, Tiannan; Ghosh, Sujoy; Koh, Siew Kwan; Tian, Dechao; Zhang, Liang; Jia, Deyong; Beuerman, Roger W; Aebersold, Ruedi; Chan, Eric Chun Yong; Zhou, Lei

    2015-09-01

    "Dry eye" is a multifactorial inflammatory disease affecting the ocular surface. Tear hyperosmolarity in dry eye contributes to inflammation and cell damage. Recent research efforts on dry eye have been directed toward biomarker discovery for diagnosis, response to treatment, and disease mechanisms. This study employed a spontaneously immortalized normal human conjunctival cell line, IOBA-NHC, as a model to investigate hyperosmotic stress-induced changes of metabolites and proteins. Global and targeted metabonomic analyses as well as proteomic analysis were performed on IOBA-NHC cells incubated in serum-free media at 280 (control), 380, and 480 mOsm for 24 h. Twenty-one metabolites and seventy-six iTRAQ-identified proteins showed significant changes under at least one hyperosmotic stress treatment as compared with controls. SWATH-based proteomic analysis further confirmed the involvement of inflammatory pathways such as prostaglandin 2 synthesis in IOBA-NHC cells under hyperosmotic stress. This study is the first to identify glycerophosphocholine synthesis and O-linked β-N-acetylglucosamine glycosylation as key activated pathways in ocular surface cells under hyperosmotic stress. These findings extend the current knowledge in metabolite markers of dry eye and provide potential therapeutic targets for its treatment.

  3. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    PubMed Central

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  4. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151

  5. Proteomics Based Identification of Cell Migration Related Proteins in HBV Expressing HepG2 Cells

    PubMed Central

    Feng, Huixing; Li, Xi; Chan, Vincent; Chen, Wei Ning

    2014-01-01

    Proteomics study was performed to investigate the specific protein expression profiles of HepG2 cells transfected with mutant HBV compared with wildtype HBV genome, aiming to identify the specific functions of SH3 binding domain (proline rich region) located in HBx. In addition to the cell movement and kinetics changes due to the expression of HBV genome we have observed previously, here we further targeted to explore the specific changes of cellular proteins and potential intracellular protein interactions, which might provide more information of the potential cellular mechanism of the differentiated cell movements. Specific changes of a number of proteins were shown in global protein profiling in HepG2 cells expressing wildtype HBV, including cell migration related proteins, and interestingly the changes were found recovered by SH3 binding domain mutated HBV. The distinctive expressions of proteins were validated by Western blot analysis. PMID:24763314

  6. Defining central themes in breast cancer biology by differential proteomics: conserved regulation of cell spreading and focal adhesion kinase.

    PubMed

    Bateman, Nicholas W; Sun, Mai; Hood, Brian L; Flint, Melanie S; Conrads, Thomas P

    2010-10-01

    Breast cancer is a highly heterogeneous disease, an observation that underscores the importance of elucidating conserved molecular characteristics, such as gene and protein expression, across breast cancer cell types toward providing a greater understanding of context-specific features central to this disease. Motivated by the goal of defining central biological themes across breast cancer cell subtypes, we conducted a global proteomic analysis of three breast cancer cell lines, MCF7, SK-BR-3, and MDA-MB-231, and compared these to a model of nontransformed mammary cells (MCF10A). Our results demonstrate modulation of proteins localized to the extracellular matrix, plasma membrane, and nucleus, along with coordinate decreases in proteins that regulate "cell spreading," a cellular event previously shown to be dysregulated in transformed cells. Protein interaction network analysis revealed the clustering of focal adhesion kinase (FAK), a fundamental regulator of cell spreading, with several proteins identified as mutually, differentially abundant across breast cancer cell lines that impact expression and activity of FAK, such as neprilysin and keratin 19. These analyses provide insights into conservation of protein expression across breast cancer cell subtypes, a subset of which warrants further investigation for their roles in the regulation of cell spreading and FAK in breast cancer.

  7. Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels

    PubMed Central

    Hindle, Allyson G.; Grabek, Katharine R.; Epperson, L. Elaine; Karimpour-Fard, Anis

    2014-01-01

    Small-bodied hibernators partition the year between active homeothermy and hibernating heterothermy accompanied by fasting. To define molecular events underlying hibernation that are both dependent and independent of fasting, we analyzed the liver proteome among two active and four hibernation states in 13-lined ground squirrels. We also examined fall animals transitioning between fed homeothermy and fasting heterothermy. Significantly enriched pathways differing between activity and hibernation were biased toward metabolic enzymes, concordant with the fuel shifts accompanying fasting physiology. Although metabolic reprogramming to support fasting dominated these data, arousing (rewarming) animals had the most distinct proteome among the hibernation states. Instead of a dominant metabolic enzyme signature, torpor-arousal cycles featured differences in plasma proteins and intracellular membrane traffic and its regulation. Phosphorylated NSFL1C, a membrane regulator, exhibited this torpor-arousal cycle pattern; its role in autophagosome formation may promote utilization of local substrates upon metabolic reactivation in arousal. Fall animals transitioning to hibernation lagged in their proteomic adjustment, indicating that the liver is more responsive than preparatory to the metabolic reprogramming of hibernation. Specifically, torpor use had little impact on the fall liver proteome, consistent with a dominant role of nutritional status. In contrast to our prediction of reprogramming the transition between activity and hibernation by gene expression and then within-hibernation transitions by posttranslational modification (PTM), we found extremely limited evidence of reversible PTMs within torpor-arousal cycles. Rather, acetylation contributed to seasonal differences, being highest in winter (specifically in torpor), consistent with fasting physiology and decreased abundance of the mitochondrial deacetylase, SIRT3. PMID:24642758

  8. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target

    PubMed Central

    Toman, O.; Kabickova, T.; Vit, O.; Fiser, R.; Polakova, K. Machova; Zach, J.; Linhartova, J.; Vyoral, D.; Petrak, J.

    2016-01-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib-resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  9. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells.

    PubMed

    Liu, Shufeng; Zhao, Ting; Song, BenBen; Zhou, Jianhua; Wang, Tony T

    2016-01-01

    Hepatitis C virus (HCV) poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP), UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1) and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection. PMID:26808496

  10. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells

    PubMed Central

    Song, BenBen; Zhou, Jianhua; Wang, Tony T.

    2016-01-01

    Hepatitis C virus (HCV) poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP), UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1) and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection. PMID:26808496

  11. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells

    PubMed Central

    Lorkova, Lucie; Scigelova, Michaela; Arrey, Tabiwang Ndipanquang; Vit, Ondrej; Pospisilova, Jana; Doktorova, Eliska; Klanova, Magdalena; Alam, Mahmudul; Vockova, Petra; Maswabi, Bokang

    2015-01-01

    Mantle cell lymphoma (MCL) is a chronically relapsing aggressive type of B-cell non-Hodgkin lymphoma considered incurable by currently used treatment approaches. Fludarabine is a purine analog clinically still widely used in the therapy of relapsed MCL. Molecular mechanisms of fludarabine resistance have not, however, been studied in the setting of MCL so far. We therefore derived fludarabine-resistant MCL cells (Mino/FR) and performed their detailed functional and proteomic characterization compared to the original fludarabine sensitive cells (Mino). We demonstrated that Mino/FR were highly cross-resistant to other antinucleosides (cytarabine, cladribine, gemcitabine) and to an inhibitor of Bruton tyrosine kinase (BTK) ibrutinib. Sensitivity to other types of anti-lymphoma agents was altered only mildly (methotrexate, doxorubicin, bortezomib) or remained unaffacted (cisplatin, bendamustine). The detailed proteomic analysis of Mino/FR compared to Mino cells unveiled over 300 differentially expressed proteins. Mino/FR were characterized by the marked downregulation of deoxycytidine kinase (dCK) and BTK (thus explaining the observed crossresistance to antinucleosides and ibrutinib), but also by the upregulation of several enzymes of de novo nucleotide synthesis, as well as the up-regulation of the numerous proteins of DNA repair and replication. The significant upregulation of the key antiapoptotic protein Bcl-2 in Mino/FR cells was associated with the markedly increased sensitivity of the fludarabine-resistant MCL cells to Bcl-2-specific inhibitor ABT199 compared to fludarabine-sensitive cells. Our data thus demonstrate that a detailed molecular analysis of drug-resistant tumor cells can indeed open a way to personalized therapy of resistant malignancies. PMID:26285204

  12. Proteome profiling of seed from inbred and mutant line of sorghum (Sorghum bicolor)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain sorghum is a major staple food, with fifth rank among the cereals world-wide, considering its importance for food and feed applications. Cereals are main part of human nutrition and strategic resources. In this study, we executed a comprehensive proteomic study to investigate the seed storage ...

  13. Discovery of Human sORF-Encoded Polypeptides (SEPs) in Cell Lines and Tissue

    PubMed Central

    2015-01-01

    The existence of nonannotated protein-coding human short open reading frames (sORFs) has been revealed through the direct detection of their sORF-encoded polypeptide (SEP) products. The discovery of novel SEPs increases the size of the genome and the proteome and provides insights into the molecular biology of mammalian cells, such as the prevalent usage of non-AUG start codons. Through modifications of the existing SEP-discovery workflow, we discover an additional 195 SEPs in K562 cells and extend this methodology to identify novel human SEPs in additional cell lines and human tissue for a final tally of 237 new SEPs. These results continue to expand the human genome and proteome and demonstrate that SEPs are a ubiquitous class of nonannotated polypeptides that require further investigation. PMID:24490786

  14. Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies.

    PubMed

    Zizkova, Martina; Sucha, Rita; Tyleckova, Jirina; Jarkovska, Karla; Mairychova, Katerina; Kotrcova, Eva; Marsala, Martin; Gadher, Suresh Jivan; Kovarova, Hana

    2015-02-01

    Neurodegenerative diseases are devastating disorders and the demands on their treatment are set to rise in connection with higher disease incidence. Knowledge of the spatiotemporal profile of cellular protein expression during neural differentiation and definition of a set of markers highly specific for targeted neural populations is a key challenge. Intracellular proteins may be utilized as a readout for follow-up transplantation and cell surface proteins may facilitate isolation of the cell subpopulations, while secreted proteins could help unravel intercellular communication and immunomodulation. This review summarizes the potential of proteomics in revealing molecular mechanisms underlying neural differentiation of stem cells and presents novel candidate proteins of neural subpopulations, where understanding of their functionality may accelerate transition to cell replacement therapies.

  15. A Proteomics Analysis to Evaluate Cytotoxicity in NRK-52E Cells Caused by Unmodified Nano-Fe3O4

    PubMed Central

    Lin, Yi-Reng; Kuo, Chao-Jen; Wu, Chin-Jen

    2014-01-01

    We synthesized unmodified Fe3O4 nanoparticles (NPs) with particles size from 10 nm to 100 nm. We cultured NRK-52E cell lines (rat, kidney) and treated with Fe3O4 NPs to investigate and evaluate the cytotoxicity of NPs for NRK-52E cells. Through global proteomics analysis using dimethyl labeling techniques and liquid phase chromatography coupled with a tandem mass spectrometer (LC-MS/MS), we characterized 435 proteins including the programmed cell death related proteins, ras-related proteins, glutathione related proteins, and the chaperone proteins such as heat shock proteins, serpin H1, protein disulfide-isomerase A4, endoplasmin, and endoplasmic reticulum resident proteins. From the statistical data of identified proteins, we believed that NPs treatment causes cell death and promotes expression of ras-related proteins. In order to avoid apoptosis, NRK-52E cell lines induce a series of protective effects such as glutathione related proteins to reduce reactive oxygen species (ROS), and chaperone proteins to recycle damaged proteins. We suggested that, in the indigenous cellular environment, Fe3O4 NPs treatment induced an antagonistic effect for cell lines to go to which avoids apoptosis. PMID:25197711

  16. Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines.

    PubMed

    Xu, Guilian; Stevens, Stanley M; Kobeissy, Firas; Kobiessy, Firas; Brown, Hilda; McClung, Scott; Gold, Mark S; Borchelt, David R

    2012-01-01

    Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y) and glial (CCF-STTG1) lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48) residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress. PMID:23145051

  17. Proteomic differences in recombinant CHO cells producing two similar antibody fragments

    PubMed Central

    Sommeregger, Wolfgang; Mayrhofer, Patrick; Steinfellner, Willibald; Reinhart, David; Henry, Michael; Clynes, Martin

    2016-01-01

    ABSTRACT Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the production of biopharmaceuticals. To overcome unfavorable features of CHO cells, a lot of effort is put into cell engineering to improve phenotype. “Omics” studies investigating elevated growth rate and specific productivities as well as extracellular stimulus have already revealed many interesting engineering targets. However, it remains largely unknown how physicochemical properties of the recombinant product itself influence the host cell. In this study, we used quantitative label‐free LC‐MS proteomic analyses to investigate product‐specific proteome differences in CHO cells producing two similar antibody fragments. We established recombinant CHO cells producing the two antibodies, 3D6 and 2F5, both as single‐chain Fv‐Fc homodimeric antibody fragments (scFv‐Fc). We applied three different vector strategies for transgene delivery (i.e., plasmid, bacterial artificial chromosome, recombinase‐mediated cassette exchange), selected two best performing clones from transgene variants and transgene delivery methods and investigated three consecutively passaged cell samples by label‐free proteomic analysis. LC‐MS‐MS profiles were compared in several sample combinations to gain insights into different aspects of proteomic changes caused by overexpression of two different heterologous proteins. This study suggests that not only the levels of specific product secretion but the product itself has a large impact on the proteome of the cell. Biotechnol. Bioeng. 2016;113: 1902–1912. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26913574

  18. Proteomic Cornerstones of Hematopoietic Stem Cell Differentiation: Distinct Signatures of Multipotent Progenitors and Myeloid Committed Cells*

    PubMed Central

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon; Vakhrushev, Sergey Y.; Trumpp, Andreas; Krijgsveld, Jeroen

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem/progenitor cells (HSPCs, LinnegSca-1+c-Kit+) or myeloid committed precursors (LinnegSca-1−c-Kit+). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical evaluation, 893 proteins were found differentially expressed between multipotent and myeloid committed cells. The differential protein content in these cell populations points to a distinct structural organization of the cytoskeleton including remodeling activity. In addition, we found a marked difference in the expression of metabolic enzymes, including a clear shift of specific protein isoforms of the glycolytic pathway. Proteins involved in translation showed a collective higher expression in myeloid progenitors, indicating an increased translational activity. Strikingly, the data uncover a unique signature related to immune defense mechanisms, centering on the RIG-I and type-1 interferon response systems, which are installed in multipotent progenitors but not evident in myeloid committed cells. This suggests that specific, and so far unrecognized, mechanisms protect these immature cells before they mature. In conclusion, this study indicates that the transition of hematopoietic stem/progenitors toward myeloid commitment is accompanied by a profound change in processing of

  19. A proteomics approach to decipher the molecular nature of planarian stem cells

    PubMed Central

    2011-01-01

    Background In recent years, planaria have emerged as an important model system for research into stem cells and regeneration. Attention is focused on their unique stem cells, the neoblasts, which can differentiate into any cell type present in the adult organism. Sequencing of the Schmidtea mediterranea genome and some expressed sequence tag projects have generated extensive data on the genetic profile of these cells. However, little information is available on their protein dynamics. Results We developed a proteomic strategy to identify neoblast-specific proteins. Here we describe the method and discuss the results in comparison to the genomic high-throughput analyses carried out in planaria and to proteomic studies using other stem cell systems. We also show functional data for some of the candidate genes selected in our proteomic approach. Conclusions We have developed an accurate and reliable mass-spectra-based proteomics approach to complement previous genomic studies and to further achieve a more accurate understanding and description of the molecular and cellular processes related to the neoblasts. PMID:21356107

  20. A proteomic perspective of the interplay of Staphylococcus aureus and human alveolar epithelial cells during infection.

    PubMed

    Surmann, Kristin; Simon, Marjolaine; Hildebrandt, Petra; Pförtner, Henrike; Michalik, Stephan; Stentzel, Sebastian; Steil, Leif; Dhople, Vishnu M; Bernhardt, Jörg; Schlüter, Rabea; Depke, Maren; Gierok, Philipp; Lalk, Michael; Bröker, Barbara M; Schmidt, Frank; Völker, Uwe

    2015-10-14

    Infectious diseases caused by pathogens such as Staphylococcus aureus are still a major threat for human health. Proteome analyses allow detailed monitoring of the molecular interplay between pathogen and host upon internalization. However, the investigation of the responses of both partners is complicated by the large excess of host cell proteins compared to bacterial proteins as well as by the fact that only a fraction of host cells are infected. In the present study we infected human alveolar epithelial A549 cells with S. aureus HG001 pMV158GFP and separated intact bacteria from host cell debris or infected from non-infected A549 cells by cell sorting to enable detailed proteome analysis. During the first 6.5h in the intracellular milieu S. aureus displayed reduced growth rate, induction of the stringent response, adaptation to microaerobic conditions as well as cell wall stress. Interestingly, both truly infected host cells and those not infected but exposed to secreted S. aureus proteins and host cell factors showed differences in the proteome pattern compared to A549 cells which had never been in contact with S. aureus. However, adaptation reactions were more pronounced in infected compared to non-infected A549 bystander cells.

  1. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets

    PubMed Central

    Mazzotti, Diego Robles; Evangelista, Adriane Feijó; Braga, Walter Moisés Tobias; de Lourdes Chauffaille, Maria; Leme, Adriana Franco Paes; Colleoni, Gisele Wally Braga

    2015-01-01

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings. PMID:26807199

  2. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets.

    PubMed

    Fernando, Rodrigo Carlini; de Carvalho, Fabricio; Mazzotti, Diego Robles; Evangelista, Adriane Feijó; Braga, Walter Moisés Tobias; de Lourdes Chauffaille, Maria; Paes Leme, Adriana Franco; Colleoni, Gisele Wally Braga

    2015-11-01

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings. PMID:26807199

  3. A comprehensive proteomic view of responses of A549 type II alveolar epithelial cells to human respiratory syncytial virus infection.

    PubMed

    Dave, Keyur A; Norris, Emma L; Bukreyev, Alexander A; Headlam, Madeleine J; Buchholz, Ursula J; Singh, Toshna; Collins, Peter L; Gorman, Jeffrey J

    2014-12-01

    Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious

  4. A Comprehensive Proteomic View of Responses of A549 Type II Alveolar Epithelial Cells to Human Respiratory Syncytial Virus Infection*

    PubMed Central

    Dave, Keyur A.; Norris, Emma L.; Bukreyev, Alexander A.; Headlam, Madeleine J.; Buchholz, Ursula J.; Singh, Toshna; Collins, Peter L.; Gorman, Jeffrey J.

    2014-01-01

    Human respiratory syncytial virus is a major respiratory pathogen for which there are no suitable antivirals or vaccines. A better understanding of the host cell response to this virus may redress this problem. The present report concerns analysis of multiple independent biological replicates of control and 24 h infected lysates of A549 cells by two different proteomic workflows. One workflow involved fractionation of lysates by in-solution protein IEF and individual fractions were digested using trypsin prior to capillary HPLC-LTQ-OrbitrapXL-MS/MS. A second workflow involved digestion of whole cell lysates and analysis by nanoUltraHPLC-LTQ-OrbitrapElite-MS/MS. Both workflows resulted in the quantification of viral proteins exclusively in lysates of infected cells in the relative abundances anticipated from previous studies. Unprecedented numbers (3247 - 5010) of host cell protein groups were also quantified and the infection-specific regulation of a large number (191) of these protein groups was evident based on a stringent false discovery rate cut-off (<1%). Bioinformatic analyses revealed that most of the regulated proteins were potentially regulated by type I, II, and III interferon, TNF-α and noncanonical NF-κB2 mediated antiviral response pathways. Regulation of specific protein groups by infection was validated by quantitative Western blotting and the cytokine-/key regulator-specific nature of their regulation was confirmed by comparable analyses of cytokine treated A549 cells. Overall, it is evident that the workflows described herein have produced the most comprehensive proteomic characterization of host cell responses to human respiratory syncytial virus published to date. These workflows will form the basis for analysis of the impacts of specific genes of human respiratory syncytial virus responses of A549 and other cell lines using a gene-deleted version of the virus. They should also prove valuable for the analysis of the impact of other infectious

  5. Proteome Analysis of Liver Cells Expressing a Full- Length Hepatitis C Virus (HCV) Replicon and Biopsy Specimens of Posttransplantation Liver from HCV-Infected Patients

    SciTech Connect

    Jacobs, Jon M.; Diamond, Deborah L.; Chan, Eric Y.; Gritsenko, Marina A.; Qian, Weijun; Stastna, Miroslava; Baas, Tracey; Camp, David G.; Carithers, Jr., Robert L.; Smith, Richard D.; Katze, Michael G.

    2005-06-01

    The development of a reproducible model system for the study of Hepatitis C virus (HCV) infection has the potential to significantly enhance the study of virus-host interactions and provide future direction for modeling the pathogenesis of HCV. While there are studies describing global gene expression changes associated with HCV infection, changes in the proteome have not been characterized. We report the first large scale proteome analysis of the highly permissive Huh-7.5 cell line containing a full length HCV replicon. We detected > 4,400 proteins in this cell line, including HCV replicon proteins, using multidimensional liquid chromatographic (LC) separations coupled to mass spectrometry (MS). The set of Huh-7.5 proteins confidently identified is, to our knowledge, the most comprehensive yet reported for a human cell line. Consistent with the literature, a comparison of Huh-7.5 cells (+) and (-) the HCV replicon identified expression changes of proteins involved in lipid metabolism. We extended these analyses to liver biopsy material from HCV-infected patients where > 1,500 proteins were detected from 2 {micro}g protein lysate using the Huh-7.5 protein database and the accurate mass and time (AMT) tag strategy. These findings demonstrate the utility of multidimensional proteome analysis of the HCV replicon model system for assisting the determination of proteins/pathways affected by HCV infection. Our ability to extend these analyses to the highly complex proteome of small liver biopsies with limiting protein yields offers the unique opportunity to begin evaluating the clinical significance of protein expression changes associated with HCV infection.

  6. Phenobarbital Induces Alterations in the Proteome of Hepatocytes and Mesenchymal Cells of Rat Livers

    PubMed Central

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme. PMID:24204595

  7. Phenobarbital induces alterations in the proteome of hepatocytes and mesenchymal cells of rat livers.

    PubMed

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme.

  8. Quantitative Proteomic Profiling the Molecular Signatures of Annexin A5 in Lung Squamous Carcinoma Cells

    PubMed Central

    Zhang, Liyuan; Gong, Linlin; Qi, Xiaoyu; Li, Huizhen; Wang, Faming; Chi, Xinming; Jiang, Yulin; Shao, Shujuan

    2016-01-01

    Lung cancer remains the leading cancer killer around the world. It’s crucial to identify newer mechanism-based targets to effectively manage lung cancer. Annexin A5 (ANXA5) is a protein kinase C inhibitory protein and calcium dependent phospholipid-binding protein, which may act as an endogenous regulator of various pathophysiological processes. However, its molecular mechanism in lung cancer remains poorly understood. This study was designed to determine the mechanism of ANXA5 in lung cancer with a hope to obtain useful information to provide a new therapeutic target. We used a stable isotope dimethyl labeling based quantitative proteomic method to identify differentially expressed proteins in NSCLC cell lines after ANXA5 transfection. Out of 314 proteins, we identified 26 and 44 proteins that were down- and up-regulated upon ANXA5 modulation, respectively. The IPA analysis revealed that glycolysis and gluconeogenesis were the predominant pathways modulated by ANXA5. Multiple central nodes, namely HSPA5, FN1, PDIA6, ENO1, ALDOA, JUP and KRT6A appeared to occupy regulatory nodes in the protein-protein networks upon ANXA5 modulation. Taken together, ANXA5 appears to have pleotropic effects, as it modulates multiple key signaling pathways, supporting the potential usefulness of ANXA5 as a potential target in lung cancer. This study might provide a new insight into the mechanism of ANXA5 in lung cancer. PMID:27684953

  9. Identification of serum proteome components associated with progression of non-small cell lung cancer.

    PubMed

    Pietrowska, Monika; Jelonek, Karol; Michalak, Malwina; Roś, Małgorzata; Rodziewicz, Paweł; Chmielewska, Klaudia; Polański, Krzysztof; Polańska, Joanna; Gdowicz-Kłosok, Agnieszka; Giglok, Monika; Suwiński, Rafał; Tarnawski, Rafał; Dziadziuszko, Rafał; Rzyman, Witold; Widłak, Piotr

    2014-01-01

    The aim of the present study was to perform comparative analysis of serum from patients with different stages of non-small cell lung cancer (NSCLC) using the three complementary proteomic approaches to identify proteome components associated with the progression of cancer. Serum samples were collected before any treatment from 200 patients with NSCLC, including 103 early stage, 64 locally advanced and 33 metastatic cancer samples, and from 200 donors without malignancy. The low-molecular-weight fraction of serum proteome was MALDI-profiled in all samples. Serum proteins were characterized using 2D-PAGE and LC-MS/MS approaches in a representative group of 30 donors. Several significant differences were detected between serum samples collected from patients with early stage cancer and patients with locally advanced cancer, as well as between patients with metastatic cancer and patients with local disease. Of note, serum components discriminating samples from early stage cancer and healthy persons were also detected. In general, about 70 differentiating serum proteins were identified, including inflammatory and acute phase proteins already reported to be associated with the progression of lung cancer (serum amyloid A or haptoglobin). Several differentiating proteins, including apolipoprotein H or apolipoprotein A1, were not previously associated with NSCLC. No significant differences in patterns of serum proteome components were detected between patients with adenocarcinoma and squamous cell carcinoma. In conclusion, we identified the biomarker candidates with potential importance for molecular proteomic staging of NSCLC. Additionally, several serum proteome components revealed their potential applicability in early detection of the lung cancer. PMID:24872961

  10. Development of a Malignancy-Associated Proteomic Signature for Diffuse Large B-Cell Lymphoma

    PubMed Central

    Romesser, Paul B.; Perlman, David H.; Faller, Douglas V.; Costello, Catherine E.; McComb, Mark E.; Denis, Gerald V.

    2009-01-01

    The extreme pathological diversity of non-Hodgkin’s lymphomas has made their accurate histological assessment difficult. New diagnostics and treatment modalities are urgently needed for these lymphomas, particularly in drug development for cancer-specific targets. Previously, we showed that a subset of B cell lymphoma, diffuse large B cell lymphoma, may be characterized by two major, orthogonal axes of gene expression: one set of transcripts that is differentially expressed between resting and proliferating, nonmalignant cells (ie, a “proliferative signature”) and another set that is expressed only in proliferating malignant cells (ie, a “cancer signature”). A differential proteomic analysis of B cell proliferative states, similar to previous transcriptional profiling analyses, holds great promise either to reveal novel factors that participate in lymphomagenesis or to define biomarkers of onset or progression. Here, we use a murine model of diffuse large B cell lymphoma to conduct unbiased two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomic analyses of malignant proliferating B cells and tissue-matched, normal resting, or normal proliferating cells. We show that the expression patterns of particular proteins or isoforms across these states fall into eight specific trends that provide a framework to identify malignancy-associated biomarkers and potential drug targets, a signature proteome. Our results support the central hypothesis that clusters of proteins of known function represent a panel of expression markers uniquely associated with malignancy and not normal proliferation. PMID:19498000

  11. Detailed proteome analysis of growing cells of the planctomycete Rhodopirellula baltica SH1T.

    PubMed

    Hieu, Cao Xuan; Voigt, Birgit; Albrecht, Dirk; Becher, Dörte; Lombardot, Thierry; Glöckner, Frank Oliver; Amann, Rudolf; Hecker, Michael; Schweder, Thomas

    2008-04-01

    Rhodopirellula baltica SH1(T), which was isolated from the water column of the Kieler Bight, a bay in the southwestern Baltic Sea, is a marine aerobic, heterotrophic representative of the ubiquitous bacterial phylum Planctomycetes. We analyzed the R. baltica proteome by applying different preanalytical protein as well as peptide separation techniques (1-D and 2-DE, HPLC separation) prior to MS. That way, we could identify a total of 1115 nonredundant proteins from the intracellular proteome and from different cell wall protein fractions. With the contribution of 709 novel proteins resulting from this study, the current comprehensive R. baltica proteomic dataset consists of 1267 unique proteins (accounting for 17.3% of the total putative protein-coding ORFs), including 261 proteins with a predicted signal peptide. The identified proteins were functionally categorized using Clusters of Orthologous Groups (COGs), and their potential cellular locations were predicted by bioinformatic tools. A unique protein family that contains several YTV domains and is rich in cysteine and proline was found to be a component of the R. baltica proteinaceous cell wall. Based on this comprehensive proteome analysis a global schema of the major metabolic pathways of growing R. baltica cells was deduced. PMID:18340632

  12. Proteomic profiles of mesenchymal stem cells induced by a liver differentiation protocol.

    PubMed

    Leelawat, Kawin; Narong, Siriluck; Chaijan, Suthidarak; Sa-Ngiamsuntorn, Khanit; Disthabanchong, Sinee; Wongkajornsilp, Adisak; Hongeng, Suradej

    2010-01-01

    The replacement of disease hepatocytes and the stimulation of endogenous or exogenous regeneration by human mesenchymal stem cells (MSCs) are promising candidates for liver-directed cell therapy. In this study, we isolated MSCs from adult bone marrow by plastic adhesion and induced differentiation with a liver differentiation protocol. Western blot analyses were used to assess the expression of liver-specific markers. Next, MSC-specific proteins were analyzed with two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). To confirm the results from the proteomic study, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed. We demonstrated that MSCs treated with the liver differentiation protocol expressed significantly more albumin, CK19 and CK20, than did undifferentiated cells. In addition the results of proteomic study demonstrated increases expression of FEM1B, PSMC2 and disulfide-isomerase A3 in MSCs treated with the liver differentiation protocol. These results from proteomic profiling will not only provide insight into the global responses of MSCs to hepatocyte differentiation, but will also lead to in-depth studies on the mechanisms of proteomic changes in MSCs.

  13. Cancer Cell Line Panels Empower Genomics-Based Discovery of Precision Cancer Medicine.

    PubMed

    Kim, Hyun Seok; Sung, Yeo-Jin; Paik, Soonmyung

    2015-09-01

    Since the first human cancer cell line, HeLa, was established in the early 1950s, there has been a steady increase in the number and tumor type of available cancer cell line models. Cancer cell lines have made significant contributions to the development of various chemotherapeutic agents. Recent advances in multi-omics technologies have facilitated detailed characterizations of the genomic, transcriptomic, proteomic, and epigenomic profiles of these cancer cell lines. An increasing number of studies employ the power of a cancer cell line panel to provide predictive biomarkers for targeted and cytotoxic agents, including those that are already used in clinical practice. Different types of statistical and machine learning algorithms have been developed to analyze the large-scale data sets that have been produced. However, much work remains to address the discrepancies in drug assay results from different platforms and the frequent failures to translate discoveries from cell line models to the clinic. Nevertheless, continuous expansion of cancer cell line panels should provide unprecedented opportunities to identify new candidate targeted therapies, particularly for the so-called "dark matter" group of cancers, for which pharmacologically tractable driver mutations have not been identified.

  14. Cancer Cell Line Panels Empower Genomics-Based Discovery of Precision Cancer Medicine

    PubMed Central

    Kim, Hyun Seok; Sung, Yeo-Jin

    2015-01-01

    Since the first human cancer cell line, HeLa, was established in the early 1950s, there has been a steady increase in the number and tumor type of available cancer cell line models. Cancer cell lines have made significant contributions to the development of various chemotherapeutic agents. Recent advances in multi-omics technologies have facilitated detailed characterizations of the genomic, transcriptomic, proteomic, and epigenomic profiles of these cancer cell lines. An increasing number of studies employ the power of a cancer cell line panel to provide predictive biomarkers for targeted and cytotoxic agents, including those that are already used in clinical practice. Different types of statistical and machine learning algorithms have been developed to analyze the large-scale data sets that have been produced. However, much work remains to address the discrepancies in drug assay results from different platforms and the frequent failures to translate discoveries from cell line models to the clinic. Nevertheless, continuous expansion of cancer cell line panels should provide unprecedented opportunities to identify new candidate targeted therapies, particularly for the so-called "dark matter" group of cancers, for which pharmacologically tractable driver mutations have not been identified. PMID:26256959

  15. Neuroblastoma cell lines showing smooth muscle cell phenotypes.

    PubMed

    Sugimoto, T; Mine, H; Horii, Y; Takahashi, K; Nagai, R; Morishita, R; Komada, M; Asada, Y; Sawada, T

    2000-12-01

    Neuroblastoma is a tumor that is derived from the neural crest. Recent studies demonstrated that several human neuroblastoma cell lines exhibit at least three morphologic types: neuroblastic (N)-type, substrate-adhesive (S)-type and intermediate (I)-type cells. However, the origin of the S-type cells has not been clearly identified. In this study, the expressions of smooth muscle-specific proteins (desmin, alpha-smooth muscle actin, basic calponin and the smooth muscle myosin heavy-chain isoforms of SM1 and SM2) in three parent and four cloned neuroblastoma cell lines, composed of S-type cells, were examined by indirect immunofluorescence, Western blot and/or by reverse transcription-polymerase chain reaction (RT-PCR). Desmin was found in two of the seven cell lines, and alpha-smooth muscle actin and basic calponin were detected in all of seven of the cell lines. In three parent cell lines and one cloned cell line composed of N-type cells, none of three smooth muscle-specific proteins were detected. In smooth muscle myosin heavy-chain isoforms, SM1 was detected in two parent cell lines composed of S-type cells (MP-N-MS and KP-N-YS) by immunofluorescence, Western blot and/or by RT-PCR, whereas the SM2 isoform was detected in one parent cell line (MP-N-MS) by RT-PCR. These findings indicate that S-type cells have either the immature or mature smooth muscle cell phenotype, and neural crest cells very likely have the ability of to differentiate into smooth muscle cells in the human system.

  16. Quantitative profiling of the detergent-resistant membrane proteome of iota-b toxin induced vero cells.

    PubMed

    Blonder, Josip; Hale, Martha L; Chan, King C; Yu, Li-Rong; Lucas, David A; Conrads, Thomas P; Zhou, Ming; Popoff, Michel R; Issaq, Haleem J; Stiles, Bradley G; Veenstra, Timothy D

    2005-01-01

    Enzyme-mediated 18O/16O differential labeling of proteome samples often suffers from incomplete exchange of the carboxy-terminus oxygen atoms, resulting in ambiguity in the measurable abundance differences. In this study, an 18O/16O labeling strategy was optimized for and applied to the solution-based comparative analysis of the detergent-resistant membrane proteome (DRMP) of untreated and Iota-b (Ib)-induced Vero cells. Solubilization and tryptic digestion of the DRMP was conducted in a buffer containing 60% methanol. Unfortunately, the activity of trypsin is attenuated at this methanol concentration hampering the ability to obtain complete oxygen atom turnover. Therefore, the incorporation of the 18O atoms was decoupled from the protein digestion step by carrying out the trypsin-mediated heavy atom incorporation in a buffer containing 20% methanol; a concentration at which trypsin activity is enhanced compared to purely aqueous conditions. After isotopic labeling, the samples were combined, fractionated by strong cation exchange and analyzed by microcapillary reversed-phase liquid chromatography coupled on-line with electrospray ionization tandem mass spectrometry. In total, over 1400 unique peptides, corresponding to almost 600 proteins, were identified and quantitated, including all known caveolar and lipid raft marker proteins. The quantitative profiling of Ib-induced DRMP from Vero cells revealed several proteins with altered expression levels suggesting their possible role in Ib binding/uptake.

  17. Proteomic Analysis of the Action of the Mycobacterium ulcerans Toxin Mycolactone: Targeting Host Cells Cytoskeleton and Collagen

    PubMed Central

    Gama, José B.; Ohlmeier, Steffen; Martins, Teresa G.; Fraga, Alexandra G.; Sampaio-Marques, Belém; Carvalho, Maria A.; Proença, Fernanda; Silva, Manuel T.; Pedrosa, Jorge; Ludovico, Paula

    2014-01-01

    Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis. PMID:25101965

  18. Virus Discovery Using Tick Cell Lines

    PubMed Central

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks’ genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area. PMID:27679414

  19. Virus Discovery Using Tick Cell Lines

    PubMed Central

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks’ genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area.

  20. Virus Discovery Using Tick Cell Lines.

    PubMed

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks' genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area. PMID:27679414

  1. Quantitative Proteomics of the Neisseria Gonorrhoeae Cell Envelope and Membrane Vesicles for the Discovery of Potential Therapeutic Targets*

    PubMed Central

    Zielke, Ryszard A.; Wierzbicki, Igor H.; Weber, Jacob V.; Gafken, Philip R.; Sikora, Aleksandra E.

    2014-01-01

    Neisseria gonorrhoeae (GC) is a human-specific pathogen, and the agent of a sexually transmitted disease, gonorrhea. There is a critical need for new approaches to study and treat GC infections because of the growing threat of multidrug-resistant isolates and the lack of a vaccine. Despite the implied role of the GC cell envelope and membrane vesicles in colonization and infection of human tissues and cell lines, comprehensive studies have not been undertaken to elucidate their constituents. Accordingly, in pursuit of novel molecular therapeutic targets, we have applied isobaric tagging for absolute quantification coupled with liquid chromatography and mass spectrometry for proteome quantitative analyses. Mining the proteome of cell envelopes and native membrane vesicles revealed 533 and 168 common proteins, respectively, in analyzed GC strains FA1090, F62, MS11, and 1291. A total of 22 differentially abundant proteins were discovered including previously unknown proteins. Among those proteins that displayed similar abundance in four GC strains, 34 were found in both cell envelopes and membrane vesicles fractions. Focusing on one of them, a homolog of an outer membrane protein LptD, we demonstrated that its depletion caused loss of GC viability. In addition, we selected for initial characterization six predicted outer membrane proteins with unknown function, which were identified as ubiquitous in the cell envelopes derived from examined GC isolates. These studies entitled a construction of deletion mutants and analyses of their resistance to different chemical probes. Loss of NGO1985, in particular, resulted in dramatically decreased GC viability upon treatment with detergents, polymyxin B, and chloramphenicol, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Together, these findings underscore the concept that the cell envelope and membrane vesicles contain crucial, yet under-explored determinants of GC

  2. Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets.

    PubMed

    Zielke, Ryszard A; Wierzbicki, Igor H; Weber, Jacob V; Gafken, Philip R; Sikora, Aleksandra E

    2014-05-01

    Neisseria gonorrhoeae (GC) is a human-specific pathogen, and the agent of a sexually transmitted disease, gonorrhea. There is a critical need for new approaches to study and treat GC infections because of the growing threat of multidrug-resistant isolates and the lack of a vaccine. Despite the implied role of the GC cell envelope and membrane vesicles in colonization and infection of human tissues and cell lines, comprehensive studies have not been undertaken to elucidate their constituents. Accordingly, in pursuit of novel molecular therapeutic targets, we have applied isobaric tagging for absolute quantification coupled with liquid chromatography and mass spectrometry for proteome quantitative analyses. Mining the proteome of cell envelopes and native membrane vesicles revealed 533 and 168 common proteins, respectively, in analyzed GC strains FA1090, F62, MS11, and 1291. A total of 22 differentially abundant proteins were discovered including previously unknown proteins. Among those proteins that displayed similar abundance in four GC strains, 34 were found in both cell envelopes and membrane vesicles fractions. Focusing on one of them, a homolog of an outer membrane protein LptD, we demonstrated that its depletion caused loss of GC viability. In addition, we selected for initial characterization six predicted outer membrane proteins with unknown function, which were identified as ubiquitous in the cell envelopes derived from examined GC isolates. These studies entitled a construction of deletion mutants and analyses of their resistance to different chemical probes. Loss of NGO1985, in particular, resulted in dramatically decreased GC viability upon treatment with detergents, polymyxin B, and chloramphenicol, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Together, these findings underscore the concept that the cell envelope and membrane vesicles contain crucial, yet under-explored determinants of GC

  3. Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells.

    PubMed

    Mulvey, Claire M; Schröter, Christian; Gatto, Laurent; Dikicioglu, Duygu; Fidaner, Isik Baris; Christoforou, Andy; Deery, Michael J; Cho, Lily T Y; Niakan, Kathy K; Martinez-Arias, Alfonso; Lilley, Kathryn S

    2015-09-01

    During mammalian preimplantation development, the cells of the blastocyst's inner cell mass differentiate into the epiblast and primitive endoderm lineages, which give rise to the fetus and extra-embryonic tissues, respectively. Extra-embryonic endoderm (XEN) differentiation can be modeled in vitro by induced expression of GATA transcription factors in mouse embryonic stem cells. Here, we use this GATA-inducible system to quantitatively monitor the dynamics of global proteomic changes during the early stages of this differentiation event and also investigate the fully differentiated phenotype, as represented by embryo-derived XEN cells. Using mass spectrometry-based quantitative proteomic profiling with multivariate data analysis tools, we reproducibly quantified 2,336 proteins across three biological replicates and have identified clusters of proteins characterized by distinct, dynamic temporal abundance profiles. We first used this approach to highlight novel marker candidates of the pluripotent state and XEN differentiation. Through functional annotation enrichment analysis, we have shown that the downregulation of chromatin-modifying enzymes, the reorganization of membrane trafficking machinery, and the breakdown of cell-cell adhesion are successive steps of the extra-embryonic differentiation process. Thus, applying a range of sophisticated clustering approaches to a time-resolved proteomic dataset has allowed the elucidation of complex biological processes which characterize stem cell differentiation and could establish a general paradigm for the investigation of these processes.

  4. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue.

    PubMed

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.

  5. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types. PMID:27327609

  6. Killer cell lines against Shope carcinoma cells in rabbits.

    PubMed

    Takahashi, M; Yamade, I; Seto, A

    1991-09-01

    Killer cell activity against Shope carcinoma cells was not detected in PBL nor in spleen cells from tumor-bearing B/J rabbits, but was induced by in vitro culture of these cells in the presence of IL-2 and X-irradiated carcinoma cells. HTLV-I-transformed killer cell lines were successfully obtained by the culturing of PBL from an HTLV-I-infected and tumor-bearing Chbb:HM rabbit. These killer cells included large cells with azurophilic granules in the cytoplasm and with a reniform nucleus, thus resembling large granular lymphocytes. The killer activity was similar against the Vx2K cell line from a random-bred rabbit and SCB cell lines from an B/J rabbit, suggesting the absence of MHC restriction. PMID:1655241

  7. Proteomic profiling of eggs from a hybrid abalone and its parental lines: Haliotis discus hannai Ino and Haliotis gigantea.

    PubMed

    Di, Guilan; Luo, Xuan; Huang, Miaoqin; Chen, Jun; Kong, Xianghui; Miao, Xiulian; Ke, Caihuan

    2015-12-01

    Proteomic analysis was performed on the eggs of hybrid abalone and their corresponding parental lines. A total of 915 ± 19 stained protein spots were detected from Haliotis discus hannai♀ × H. discus hannai♂ (DD), 935 ± 16 from H. gigantea♀ × H. gigantea♂ (GG) and 923 ± 13 from H. gigantea♀ × H. discus hannai♂ (GD). The spots from DD and GD were clustered together. The distance between DD and GG was maximal by hierarchical cluster analysis. A total of 112 protein gel spots were identified; of these, 59 were abalone proteins. The proteins were involved in major biological processes including energy metabolism, proliferation, apoptosis, signal transduction, immunity, lipid metabolism, electron carrier proteins, protein biosynthesis and decomposition, and cytoskeletal structure. Three of 20 differential expression protein spots involved in energy metabolism exhibited as upregulated in GD, 13 spots exhibited additivity, and four spots exhibited as downregulated in the offspring. Eleven protein spots were expressed at the highest level in DD. The proteins involved in stress responses included superoxide dismutase, peroxiredoxin 6, thioredoxin peroxidase and glutathione-S-transferase. Two of seven differential expression protein spots involved in response to stress exhibited as upregulated in GD, three exhibited additivity, and two exhibited as downregulated. These results might suggest that proteomic approaches are suitable for the analysis of hybrids and the functional prediction of abalone hybridization. PMID:26447358

  8. Proteomic profiling of eggs from a hybrid abalone and its parental lines: Haliotis discus hannai Ino and Haliotis gigantea.

    PubMed

    Di, Guilan; Luo, Xuan; Huang, Miaoqin; Chen, Jun; Kong, Xianghui; Miao, Xiulian; Ke, Caihuan

    2015-12-01

    Proteomic analysis was performed on the eggs of hybrid abalone and their corresponding parental lines. A total of 915 ± 19 stained protein spots were detected from Haliotis discus hannai♀ × H. discus hannai♂ (DD), 935 ± 16 from H. gigantea♀ × H. gigantea♂ (GG) and 923 ± 13 from H. gigantea♀ × H. discus hannai♂ (GD). The spots from DD and GD were clustered together. The distance between DD and GG was maximal by hierarchical cluster analysis. A total of 112 protein gel spots were identified; of these, 59 were abalone proteins. The proteins were involved in major biological processes including energy metabolism, proliferation, apoptosis, signal transduction, immunity, lipid metabolism, electron carrier proteins, protein biosynthesis and decomposition, and cytoskeletal structure. Three of 20 differential expression protein spots involved in energy metabolism exhibited as upregulated in GD, 13 spots exhibited additivity, and four spots exhibited as downregulated in the offspring. Eleven protein spots were expressed at the highest level in DD. The proteins involved in stress responses included superoxide dismutase, peroxiredoxin 6, thioredoxin peroxidase and glutathione-S-transferase. Two of seven differential expression protein spots involved in response to stress exhibited as upregulated in GD, three exhibited additivity, and two exhibited as downregulated. These results might suggest that proteomic approaches are suitable for the analysis of hybrids and the functional prediction of abalone hybridization.

  9. Proteogenomics Dashboard for the Human Proteome Project.

    PubMed

    Tabas-Madrid, Daniel; Alves-Cruzeiro, Joao; Segura, Victor; Guruceaga, Elizabeth; Vialas, Vital; Prieto, Gorka; García, Carlos; Corrales, Fernando J; Albar, Juan Pablo; Pascual-Montano, Alberto

    2015-09-01

    dasHPPboard is a novel proteomics-based dashboard that collects and reports the experiments produced by the Spanish Human Proteome Project consortium (SpHPP) and aims to help HPP to map the entire human proteome. We have followed the strategy of analog genomics projects like the Encyclopedia of DNA Elements (ENCODE), which provides a vast amount of data on human cell lines experiments. The dashboard includes results of shotgun and selected reaction monitoring proteomics experiments, post-translational modifications information, as well as proteogenomics studies. We have also processed the transcriptomics data from the ENCODE and Human Body Map (HBM) projects for the identification of specific gene expression patterns in different cell lines and tissues, taking special interest in those genes having little proteomic evidence available (missing proteins). Peptide databases have been built using single nucleotide variants and novel junctions derived from RNA-Seq data that can be used in search engines for sample-specific protein identifications on the same cell lines or tissues. The dasHPPboard has been designed as a tool that can be used to share and visualize a combination of proteomic and transcriptomic data, providing at the same time easy access to resources for proteogenomics analyses. The dasHPPboard can be freely accessed at: http://sphppdashboard.cnb.csic.es.

  10. Identification of Thalidomide-Specific Transcriptomics and Proteomics Signatures during Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Meganathan, Kesavan; Jagtap, Smita; Wagh, Vilas; Winkler, Johannes; Gaspar, John Antonydas; Hildebrand, Diana; Trusch, Maria; Lehmann, Karola; Hescheler, Jürgen; Schlüter, Hartmut; Sachinidis, Agapios

    2012-01-01

    Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs). Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value, thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity, only a few test systems accurately reflect human physiology. We used global gene expression and proteomics profiling (two dimensional electrophoresis (2DE) coupled with Tandem Mass spectrometry) to demonstrate hESC differentiation and thalidomide embryotoxicity/teratogenecity with clinically relevant dose(s). Proteome analysis showed loss of POU5F1 regulatory proteins PKM2 and RBM14 and an over expression of proteins involved in neuronal development (such as PAK2, PAFAH1B2 and PAFAH1B3) after 14 days of differentiation. The genomic and proteomic expression pattern demonstrated differential expression of limb, heart and embryonic development related transcription factors and biological processes. Moreover, this study uncovered novel possible mechanisms, such as the inhibition of RANBP1, that participate in the nucleocytoplasmic trafficking of proteins and inhibition of glutathione transferases (GSTA1, GSTA2), that protect the cell from secondary oxidative stress. As a proof of principle, we demonstrated that a combination of transcriptomics and proteomics, along with consistent differentiation of hESCs, enabled the detection of canonical and novel teratogenic intracellular mechanisms of thalidomide. PMID:22952932

  11. Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins

    PubMed Central

    Champer, Jackson; Ito, James I.; Clemons, Karl V.; Stevens, David A.; Kalkum, Markus

    2016-01-01

    We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry—Elevated Collision Energy). Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4), Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here. PMID:26878023

  12. Sample preparation method for isolation of single-cell types from mouse liver for proteomic studies.

    PubMed

    Liu, Wei; Hou, Yufang; Chen, Huahai; Wei, Handong; Lin, Weiran; Li, Jichang; Zhang, Ming; He, Fuchu; Jiang, Ying

    2011-09-01

    It becomes increasingly clear that separation of pure cell populations provides a uniquely sensitive and accurate approach to protein profiling in biological systems and opens up a new area for proteomic analysis. The method we described could simultaneously isolate population of hepatocytes (HCs), hepatic stellate cells (HSCs), Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs) by a combination of collagenase-based density gradient centrifugation and magnetic activated cell sorting with high purity and yield for the first time. More than 98% of the isolated HCs were positive for cytokeratin 18, with a viability of 91%. Approximately 97% of the isolated HSCs expressed glial fibrillary acidic protein with a viability of 95%. Nearly 98% of isolated KCs expressed F4/80 with a viability of 94%. And the purity of LSECs reached up to 91% with a viability of 94%. And yield for HCs, HSCs, LSECs and KCs were 6.3, 1.3, 2.6 and 5.0 million per mouse. This systematic isolation method enables us to study the proteome profiling of different types of liver cells with high purity and yield, which is especially useful for sample preparation of Human Liver Proteome Project.

  13. Label-free quantitative proteomic analysis of benzo(a)pyrene-transformed 16HBE cells serum-free culture supernatant and xenografted nude mice sera.

    PubMed

    Zhao, Peng; Fu, Juanling; Yao, Biyun; Jia, Yongrui; Zhang, Hongtao; Li, Xuehui; Dong, Lisha; Gao, Ya; Liu, Wenli; Chen, Wen; Zhou, Zongcan

    2016-02-01

    To screen potential biomarkers of benzo(a)pyrene (BaP)-induced lung cancer, the proteomic profiles of BaP-transformed 16HBE cell line T-16HBE-C1 cells serum-free culture supernatant and xenografted nude mice sera were compared with those of 16HBE group by utilizing label-free quantitative proteomic strategy. By employing nano-LC-MS/MS technology followed by MaxQuant and Perseus processing, 489 differentially expressed proteins were identified between T-16HBE-C1 and 16HBE cells serum-free culture supernatant, and 49 significantly up-regulated proteins were identified in T-16HBE-C1 xenografted nude mice sera. Three proteins neuropilin-2 (NRP2), clusterin (CLU) and A-kinase anchor protein 12 (AKAP12) were up-regulated in the serum-free culture supernatant of T-16HBE-C1 cells. These 3 human proteins were present in the sera of nude mice xenografted with T-16HBE-C1 cells, but were undetectable in mice xenografted with 16HBE cells. The proteomic results of NRP2 and AKAP12 were confirmed by Western blotting and enzyme-linked immunosorbent assays, respectively. Moreover, the serum NRP2 levels were significantly elevated at the 4th day after tumor cell implantation and showed good positive correlation with tumor growth characterized by tumor volume. In conclusion, serum NRP2, CLU and AKAP12 could be potential biomarkers of BaP-induced lung cancer. The proteomic results will gain deeper insights into the mechanisms of BaP-induced carcinogenesis.

  14. Refractory lining for electrochemical cell

    DOEpatents

    Blander, Milton; Cook, Glenn M.

    1987-01-01

    Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contcat with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  15. SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells.

    PubMed

    Böser, Alexander; Drexler, Hannes C A; Reuter, Hanna; Schmitz, Henning; Wu, Guangming; Schöler, Hans R; Gentile, Luca; Bartscherer, Kerstin

    2013-11-27

    Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC) protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA), which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research.

  16. Microsomal proteomics.

    PubMed

    Wong, Diana M; Adeli, Khosrow

    2009-01-01

    Proteomic profiling of subcellular compartments has many advantages over traditional proteomic approaches using whole cell lysates as it allows for detailed proteome analysis of a specific organelle and corresponding functional characteristics. The microsome is a critical, membranous compartment involved in the synthesis, sorting, and secretion of proteins as well as other metabolic functions. This chapter will describe detailed methods for the isolation of microsomal organelles including the ER, Golgi, and prechylomicron transport vesicle (PCTV), a recently identified vesicular system involved in intestinal lipoprotein assembly and secretion. Particular focus is given to the isolation of microsomes from primary hepatocytes and enterocytes freshly isolated from rodent liver and intestinal tissue, and their proteomic profiling using a combination of two-dimensional gel electrophoresis and mass spectrometry.

  17. Exploring analytical proteomics platforms toward the definition of human cardiac stem cells receptome.

    PubMed

    Gomes-Alves, Patrícia; Serra, Margarida; Brito, Catarina; R-Borlado, Luis; López, Juan A; Vázquez, Jesús; Carrondo, Manuel J T; Bernad, António; Alves, Paula M

    2015-04-01

    Human cardiac stem cells (hCSC) express a portfolio of plasma membrane receptors that are involved in the regulatory auto/paracrine feedback loop mechanism of activation of these cells, and consequently contribute to myocardial regeneration. In order to attain a comprehensive description of hCSC receptome and overcoming the inability demonstrated by other technologies applied in receptor identification, mainly due to the transmembrane nature, high hydrophobic character and relative low concentration of these proteins, we have exploited and improved a proteomics workflow. This approach was based on the enrichment of hCSC plasma membrane fraction and addition of prefractionation steps prior to MS analysis. More than 100 plasma membrane receptors were identified. The data reported herein constitute a valuable source of information to further understand cardiac stem cells activation mechanisms and the subsequent cardiac repair process. All MS data have been deposited in the ProteomeXchange with identifier PXD001117 (http://proteomecentral.proteomexchange.org/dataset/PXD001117).

  18. Distinct protein classes in human red cell proteome revealed by similarity of phylogenetic profiles.

    PubMed

    Szczesny, Paweł; Mykowiecka, Agnieszka; Pawłowski, Krzysztof; Grynberg, Marcin

    2013-01-01

    The minimal set of proteins necessary to maintain a vertebrate cell forms an interesting core of cellular machinery. The known proteome of human red blood cell consists of about 1400 proteins. We treated this protein complement of one of the simplest human cells as a model and asked the questions on its function and origins. The proteome was mapped onto phylogenetic profiles, i.e. vectors of species possessing homologues of human proteins. A novel clustering approach was devised, utilising similarity in the phylogenetic spread of homologues as distance measure. The clustering based on phylogenetic profiles yielded several distinct protein classes differing in phylogenetic taxonomic spread, presumed evolutionary history and functional properties. Notably, small clusters of proteins common to vertebrates or Metazoa and other multicellular eukaryotes involve biological functions specific to multicellular organisms, such as apoptosis or cell-cell signaling, respectively. Also, a eukaryote-specific cluster is identified, featuring GTP-ase signalling and ubiquitination. Another cluster, made up of proteins found in most organisms, including bacteria and archaea, involves basic molecular functions such as oxidation-reduction and glycolysis. Approximately one third of erythrocyte proteins do not fall in any of the clusters, reflecting the complexity of protein evolution in comparison to our simple model. Basically, the clustering obtained divides the proteome into old and new parts, the former originating from bacterial ancestors, the latter from inventions within multicellular eukaryotes. Thus, the model human cell proteome appears to be made up of protein sets distinct in their history and biological roles. The current work shows that phylogenetic profiles concept allows protein clustering in a way relevant both to biological function and evolutionary history. PMID:23349899

  19. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    SciTech Connect

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  20. Proteomic analysis reveals tanshinone IIA enhances apoptosis of advanced cervix carcinoma CaSki cells through mitochondria intrinsic and endoplasmic reticulum stress pathways.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Hung, Yu-Chiang; Huang, Chun-Hsun; Rau, Kun-Ming

    2013-12-01

    Cervix cancer is the second most common cancer among women worldwide, whereas paclitaxel, the first line chemotherapeutic drug used to treat cervical cancer, shows low chemosensitivity on the advanced cervical cancer cell line. Tanshinone IIA (Tan IIA) exhibited strong growth inhibitory effect on CaSki cells (IC50 = 5.51 μM) through promoting caspase cascades with concomitant upregulating the phosphorylation of p38 and JNK signaling. Comprehensive proteomics revealed the global protein changes and the network analysis implied that Tan IIA treatment would activate ER stress pathways that finally lead to apoptotic cell death. Moreover, ER stress inhibitor could alleviate Tan IIA caused cell growth inhibition and ameliorate C/EBP-homologous protein as well as apoptosis signal-regulating kinase 1 mediated cell death. The therapeutic interventions targeting the mitochondrial-related apoptosis and ER stress responses might be promising strategies to conquer paclitaxel resistance. PMID:24167031

  1. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  2. Umbelliprenin Induces Apoptosis in CLL Cell Lines.

    PubMed

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V-FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate.

  3. Umbelliprenin Induces Apoptosis in CLL Cell Lines

    PubMed Central

    Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

    2012-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V–FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate. PMID:24250490

  4. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells.

    PubMed

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko

    2015-12-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR.

  5. Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology.

    PubMed

    Wesseling, Hendrik; Guest, Paul C; Lago, Santiago G; Bahn, Sabine

    2014-08-01

    Proteomic studies have increased our understanding of the molecular pathways affected in psychiatric disorders. Mass spectrometry and two-dimensional gel electrophoresis analyses of post-mortem brain samples from psychiatric patients have revealed effects on synaptic, cytoskeletal, antioxidant and mitochondrial protein networks. Multiplex immunoassay profiling studies have found alterations in hormones, growth factors, transport and inflammation-related proteins in serum and plasma from living first-onset patients. Despite these advances, there are still difficulties in translating these findings into platforms for improved treatment of patients and for discovery of new drugs with better efficacy and side effect profiles. This review describes how the next phase of proteomic investigations in psychiatry should include stringent replication studies for validation of biomarker candidates and functional follow-up studies which can be used to test the impact on physiological function. All biomarker candidates should now be tested in series with traditional and emerging cell biological approaches. This should include investigations of the effects of post-translational modifications, protein dynamics and network analyses using targeted proteomic approaches. Most importantly, there is still an urgent need for development of disease-relevant cellular models for improved translation of proteomic findings into a means of developing novel drug treatments for patients with these life-altering disorders.

  6. Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome

    PubMed Central

    Díaz-Mejía, Juan Javier; Babu, Mohan; Emili, Andrew

    2009-01-01

    The bacterial cell-envelope consists of a complex arrangement of lipids, proteins and carbohydrates that serves as the interface between a microorganism and its environment or, with pathogens, a human host. Escherichia coli has long been investigated as a leading model system to elucidate the fundamental mechanisms underlying microbial cell-envelope biology. This includes extensive descriptions of the molecular identities, biochemical activities and evolutionary trajectories of integral transmembrane proteins, many of which play critical roles in infectious disease and antibiotic resistance. Strikingly, however, only half of the c. 1200 putative cell-envelope-related proteins of E. coli currently have experimentally attributed functions, indicating an opportunity for discovery. In this review, we summarize the state of the art of computational and proteomic approaches for determining the components of the E. coli cell-envelope proteome, as well as exploring the physical and functional interactions that underlie its biogenesis and functionality. We also provide a comprehensive comparative benchmarking analysis on the performance of different bioinformatic and proteomic methods commonly used to determine the subcellular localization of bacterial proteins. PMID:19054114

  7. [Characterization of a liver metastatic cell line derived from a human gastric cancer cell line].

    PubMed

    Wakasugi, J

    1990-08-01

    This study was carried out to investigate whether there is any difference of biological characteristics between a gastric cancer cell line (KATOIII) and another cell line derived from liver metastasis of the same cell line (KATOIII-H2). The liver metastasis was produced by intrasplenic injection of the fluid containing of KATOIII in nude mouse and new cell line was established using the cells of metastatic site. The results are as follows. 1) Inoculation of KATOIII-H2 into the spleen produced liver metastases in all of the experimental animals, whereas the same procedure with KATOIII produced metastasis only in 30% of the animals. 2) KATOIII-H2 exhibited more prominent platelet-aggregating activity than KATOIII. 3) There is no difference between two cell lines on doubling time, histological findings of the xenografts and chromosomal number. 4) DNA index of KATOIII-H2 is lower than KATOIII and the trisomy in NO. 20 chromosome of KATOIII-H2 was noted. The results indicate that metastatic potential is different between two cell lines and this fact is probably in a part because of the different platelet-aggregating activity of each cell line. PMID:2233668

  8. Distinct proteomic features of two fibrogenic liver cell populations: hepatic stellate cells and portal myofibroblasts.

    PubMed

    Bosselut, Nelly; Housset, Chantal; Marcelo, Paulo; Rey, Colette; Burmester, Thorsten; Vinh, Jöelle; Vaubourdolle, Michel; Cadoret, Axelle; Baudin, Bruno

    2010-03-01

    In chronic liver diseases, the accumulation of extracellular matrix leading to fibrosis is caused by myofibroblasts, the origins of which are debatable. We performed a comparative proteomic study to identify markers and gain insight into distinct functions of myofibroblasts derived either from hepatic stellate cells (HSCs) or from portal mesenchymal cells. After isolation from normal liver and culture in similar conditions, myofibroblastic HSCs (MF-HSCs) presented enlarged cytoplasms whereas portal myofibroblasts (PMFs) were more proliferative, and formed more stress fibers. The two cell types were subjected to comparative analyses by 2-D MS/MS. Six proteins were overexpressed in PMFs, with myofibroblast-related typical functions. Among them, cofilin-1 showed the greatest difference in expression and a lower pI than expected. Immunoblot demonstrated higher levels of phosphorylation, a modification of the protein implicated in stress fiber formation. Eleven proteins, mostly involved in stress response, were overexpressed in MF-HSCs. Cytoglobin had the highest level of overexpression, as confirmed by reverse transcription quantitative real-time PCR, immunoblot and immunocytochemical analyses. These results identify cytoglobin as the best marker for distinguishing MF-HSCs from PMFs and suggest different functions for the two cell populations in the liver wound healing response, with a prominent role for PMFs in scar formation.

  9. Proteomic Characterization of Golgi Membranes Enriched from Arabidopsis Suspension Cell Cultures.

    PubMed

    Hansen, Sara Fasmer; Ebert, Berit; Rautengarten, Carsten; Heazlewood, Joshua L

    2016-01-01

    The plant Golgi apparatus has a central role in the secretory pathway and is the principal site within the cell for the assembly and processing of macromolecules. The stacked membrane structure of the Golgi apparatus along with its interactions with the cytoskeleton and endoplasmic reticulum has historically made the isolation and purification of this organelle difficult. Density centrifugation has typically been used to enrich Golgi membranes from plant microsomal preparations, and aside from minor adaptations, the approach is still widely employed. Here we outline the enrichment of Golgi membranes from an Arabidopsis cell suspension culture that can be used to investigate the proteome of this organelle. We also provide a useful workflow for the examination of proteomic data as the result of multiple analyses. Finally, we highlight a simple technique to validate the subcellular localization of proteins by fluorescent tags after their identification by tandem mass spectrometry. PMID:27632004

  10. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-29

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics.

  11. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells

    PubMed Central

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-01

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics. PMID:26822725

  12. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-01

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics. PMID:26822725

  13. Proteome Changes during Transition from Human Embryonic to Vascular Progenitor Cells.

    PubMed

    Tsolis, Konstantinos C; Bagli, Eleni; Kanaki, Katerina; Zografou, Sofia; Carpentier, Sebastien; Bei, Ekaterini S; Christoforidis, Savvas; Zervakis, Michalis; Murphy, Carol; Fotsis, Theodore; Economou, Anastassios

    2016-06-01

    Human embryonic stem cells (hESCs) are promising in regenerative medicine (RM) due to their differentiation plasticity and proliferation potential. However, a major challenge in RM is the generation of a vascular system to support nutrient flow to newly synthesized tissues. Here we refined an existing method to generate tight vessels by differentiating hESCs in CD34(+) vascular progenitor cells using chemically defined media and growth conditions. We selectively purified these cells from CD34(-) outgrowth populations also formed. To analyze these differentiation processes, we compared the proteomes of the hESCs with those of the CD34(+) and CD34(-) populations using high resolution mass spectrometry, label-free quantification, and multivariate analysis. Eighteen protein markers validate the differentiated phenotypes in immunological assays; nine of these were also detected by proteomics and show statistically significant differential abundance. Another 225 proteins show differential abundance between the three cell types. Sixty-three of these have known functions in CD34(+) and CD34(-) cells. CD34(+) cells synthesize proteins implicated in endothelial cell differentiation and smooth muscle formation, which support the bipotent phenotype of these progenitor cells. CD34(-) cells are more heterogeneous synthesizing muscular/osteogenic/chondrogenic/adipogenic lineage markers. The remaining >150 differentially abundant proteins in CD34(+) or CD34(-) cells raise testable hypotheses for future studies to probe vascular morphogenesis. PMID:27146950

  14. The proteome of schizophrenia

    PubMed Central

    Nascimento, Juliana M; Martins-de-Souza, Daniel

    2015-01-01

    On observing schizophrenia from a clinical point of view up to its molecular basis, one may conclude that this is likely to be one of the most complex human disorders to be characterized in all aspects. Such complexity is the reflex of an intricate combination of genetic and environmental components that influence brain functions since pre-natal neurodevelopment, passing by brain maturation, up to the onset of disease and disease establishment. The perfect function of tissues, organs, systems, and finally the organism depends heavily on the proper functioning of cells. Several lines of evidence, including genetics, genomics, transcriptomics, neuropathology, and pharmacology, have supported the idea that dysfunctional cells are causative to schizophrenia. Together with the above-mentioned techniques, proteomics have been contributing to understanding the biochemical basis of schizophrenia at the cellular and tissue level through the identification of differentially expressed proteins and consequently their biochemical pathways, mostly in the brain tissue but also in other cells. In addition, mass spectrometry-based proteomics have identified and precisely quantified proteins that may serve as biomarker candidates to prognosis, diagnosis, and medication monitoring in peripheral tissue. Here, we review all data produced by proteomic investigation in the last 5 years using tissue and/or cells from schizophrenic patients, focusing on postmortem brain tissue and peripheral blood serum and plasma. This information has provided integrated pictures of the biochemical systems involved in the pathobiology, and has suggested potential biomarkers, and warrant potential targets to alternative treatment therapies to schizophrenia. PMID:27336025

  15. Coupled Global and Targeted Proteomics of Human Embryonic Stem Cells during Induced Differentiation*S⃞

    PubMed Central

    Yocum, Anastasia K.; Gratsch, Theresa E.; Leff, Nancy; Strahler, John R.; Hunter, Christie L.; Walker, Angela K.; Michailidis, George; Omenn, Gilbert S.; O'Shea, K. Sue; Andrews, Philip C.

    2008-01-01

    Elucidating the complex combinations of growth factors and signaling molecules that maintain pluripotency or, alternatively, promote the controlled differentiation of human embryonic stem cells (hESCs) has important implications for the fundamental understanding of human development, devising cell replacement therapies, and cancer cell biology. hESCs are commonly grown on irradiated mouse embryonic fibroblasts (MEFs) or in conditioned medium from MEFs. These culture conditions interfere with many experimental conclusions and limit the ability to perform conclusive proteomics studies. The current investigation avoided the use of MEFs or MEF-conditioned medium for hESC culture, allowing global proteomics analysis without these confounding conditions, and elucidated neural cell-specific signaling pathways involved in noggin-induced hESC differentiation. Based on these analyses, we propose the following early markers of hESC neural differentiation: collapsin response mediator proteins 2 and 4 and the nuclear autoantigenic sperm protein as a marker of pluripotent hESCs. We then developed a directed mass spectrometry assay using multiple reaction monitoring (MRM) to identify and quantify these markers and in addition the epidermal ectoderm marker cytokeratin-8. Analysis of global proteomics, quantitative RT-PCR, and MRM data led to testing the isoform interference hypothesis where redundant peptides dilute quantification measurements of homologous proteins. These results show that targeted MRM analysis on non-redundant peptides provides more exact quantification of homologous proteins. This study describes the facile transition from discovery proteomics to targeted MRM analysis and allowed us to identify and verify several potential biomarkers for hESCs during noggin-induced neural and BMP4-induced epidermal ectoderm differentiation. PMID:18304949

  16. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    SciTech Connect

    Felthaus, O.; Ettl, T.; Gosau, M.; Driemel, O.; Brockhoff, G.; Reck, A.; Zeitler, K.; Hautmann, M.; Reichert, T.E.; Schmalz, G.; Morsczeck, C.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  17. Proteome Profile of Swine Testicular Cells Infected with Porcine Transmissible Gastroenteritis Coronavirus

    PubMed Central

    Ma, Ruili; Zhang, Yanming; Liu, Haiquan; Ning, Pengbo

    2014-01-01

    The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV)-infected swine testicular (ST) cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ)-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1), caspase-8, and heat shock protein 90 alpha (HSP90α) were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis. PMID:25333634

  18. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization

    SciTech Connect

    Wang Ying; He Qingyu; Chen Hongming; Chiu Jenfu . E-mail: jfchiu@hkucc.hku.hk

    2007-01-15

    The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor {beta} (TGF{beta}) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGF{beta} treatment, or co-treatment with TGF{beta} inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGF{beta} signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGF{beta} signaling pathway in breast cancer cells.

  19. Proteomic Analyses of the Effects of Drugs of Abuse on Monocyte-Derived Mature Dendritic Cells

    PubMed Central

    Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikunar; Nair, B.; Sykes, Donald E.; Schwartz, Stanley A.

    2010-01-01

    Drug abuse has become a global health concern. Understanding how drug abuse modulates the immune system and how the immune system responds to pathogens associated with drug abuse, such hepatitis C virus (HCV) and human immunodeficiency virus (HIV-1), can be assessed by an integrated approach comparing proteomic analyses and quantitation of gene expression. Two-dimensional (2D) difference gel electrophoresis was used to determine the molecular mechanisms underlying the proteomic changes that alter normal biological processes when monocyte-derived mature dendritic cells were treated with cocaine or methamphetamine. Both drugs differentially regulated the expression of several functional classes of proteins including those that modulate apoptosis, protein folding, protein kinase activity, and metabolism and proteins that function as intracellular signal transduction molecules. Proteomic data were validated using a combination of quantitative, real-time PCR and Western blot analyses. These studies will help to identify the molecular mechanisms, including the expression of several functionally important classes of proteins that have emerged as potential mediators of pathogenesis. These proteins may predispose immunocompetent cells, including dendritic cells, to infection with viruses such as HCV and HIV-1, which are associated with drug abuse. PMID:19811410

  20. Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells.

    PubMed

    Ge, Feng; Lu, Xin-Peng; Zeng, Hui-Lan; He, Quan-Yuan; Xiong, Sheng; Jin, Lin; He, Qing-Yu

    2009-06-01

    Multiple myeloma (MM) is an incurable plasma cell malignancy with a terminal phase marked by increased proliferation and resistance to therapy. Arsenic trioxide (ATO), an antitumor agent with a multifaceted mechanism of action, displayed clinical activity in patients with late-stage multiple myeloma. However, the precise mechanism(s) of action of ATO has not been completely elucidated. In the present study, we used proteomics to analyze the ATO-induced protein alterations in MM cell line U266 and then investigated the molecular pathways responsible for the anticancer actions of ATO. Several clusters of proteins altered in expression in U266 cells upon ATO treatment were identified, including down-regulated signal transduction proteins and ubiquitin/proteasome members, and up-regulated immunity and defense proteins. Significantly regulated 14-3-3zeta and heat shock proteins (HSPs) were selected for further functional studies. Overexpression of 14-3-3zeta in MM cells attenuated ATO-induced cell death, whereas RNAi-based 14-3-3zeta knock-down or the inhibition of HSP90 enhanced tumor cell sensitivity to the ATO induction. These observations implicate 14-3-3zeta and HSP90 as potential molecular targets for drug intervention of multiple myeloma and thus improve our understanding on the mechanisms of antitumor activity of ATO.

  1. Deep proteomic profiling of vasopressin-sensitive collecting duct cells. I. Virtual Western blots and molecular weight distributions.

    PubMed

    Yang, Chin-Rang; Tongyoo, Pumipat; Emamian, Milad; Sandoval, Pablo C; Raghuram, Viswanathan; Knepper, Mark A

    2015-12-15

    The mouse mpkCCD cell line is a continuous cultured epithelial cell line with characteristics of renal collecting duct principal cells. This line is widely used to study epithelial transport and its regulation. To provide a data resource useful for experimental design and interpretation in studies using mpkCCD cells, we have carried out "deep" proteomic profiling of these cells using three levels of fractionation (differential centrifugation, SDS-PAGE, and HPLC) followed by tandem mass spectrometry to identify and quantify proteins. The analysis of all resulting samples generated 34.6 gigabytes of spectral data. As a result, we identified 6,766 proteins in mpkCCD cells at a high level of stringency. These proteins are expressed over eight orders of magnitude of protein abundance. The data are provided to users as a public data base (https://helixweb.nih.gov/ESBL/Database/mpkFractions/). The mass spectrometry data were mapped back to their gel slices to generate "virtual Western blots" for each protein. For most of the 6,766 proteins, the apparent molecular weight from SDS-PAGE agreed closely with the calculated molecular weight. However, a substantial fraction (>15%) of proteins was found to run aberrantly, with much higher or much lower mobilities than predicted. These proteins were analyzed to identify mechanisms responsible for altered mobility on SDS-PAGE, including high or low isoelectric point, high or low hydrophobicity, physiological cleavage, residence in the lysosome, posttranslational modifications, and expression of alternative isoforms due to alternative exon usage. Additionally, this analysis identified a previously unrecognized isoform of aquaporin-2 with apparent molecular mass <20 kDa.

  2. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion.

    PubMed

    Stiess, Michael; Wegehingel, Sabine; Nguyen, Chuong; Nickel, Walter; Bradke, Frank; Cambridge, Sidney B

    2015-08-01

    Recent evidence suggests that the extracellular protein milieu is much more complex than previously assumed as various secretome analyses from different cell types described the release of hundreds to thousands of proteins. The extracellular function of many of these proteins has yet to be determined particularly in the context of three-dimensional tissues with abundant cell-cell contacts. Toward this goal, we developed a strategy of dual SILAC labeling astrocytic cultures for in silico exclusion of unlabeled proteins from serum or neurons used for stimulation. For constitutive secretion, this strategy allowed the precise quantification of the extra-to-intracellular protein ratio of more than 2000 identified proteins. Ratios covered 4 orders of magnitude indicating that the intracellular vs extracellular contributions of different proteins can be variable. Functionally, the secretome of labeled forebrain astrocytic cultures specifically changed within hours after adding unlabeled, "physiological" forebrain neurons. "Nonphysiological" cerebellar hindbrain neurons, however, elicited a different, highly repulsive secretory response. Our data also suggest a significant association of constitutive secretion with the classical secretion pathway and regulated secretion with unconventional pathways. We conclude that quantitative proteomics can help to elucidate general principles of cellular secretion and provide functional insight into the abundant extracellular presence of proteins.

  3. Comparative Proteomic Characterization of 4 Human Liver-Derived Single Cell Culture Models Reveals Significant Variation in the Capacity for Drug Disposition, Bioactivation, and Detoxication

    PubMed Central

    Sison-Young, Rowena L. C.; Mitsa, Dimitra; Jenkins, Rosalind E.; Mottram, David; Alexandre, Eliane; Richert, Lysiane; Aerts, Hélène; Weaver, Richard J.; Jones, Robert P.; Johann, Esther; Hewitt, Philip G.; Ingelman-Sundberg, Magnus; Goldring, Christopher E. P.; Kitteringham, Neil R.; Park, B. Kevin

    2015-01-01

    In vitro preclinical models for the assessment of drug-induced liver injury (DILI) are usually based on cryopreserved primary human hepatocytes (cPHH) or human hepatic tumor-derived cell lines; however, it is unclear how well such cell models reflect the normal function of liver cells. The physiological, pharmacological, and toxicological phenotyping of available cell-based systems is necessary in order to decide the testing purpose for which they are fit. We have therefore undertaken a global proteomic analysis of 3 human-derived hepatic cell lines (HepG2, Upcyte, and HepaRG) in comparison with cPHH with a focus on drug metabolizing enzymes and transport proteins (DMETs), as well as Nrf2-regulated proteins. In total, 4946 proteins were identified, of which 2722 proteins were common across all cell models, including 128 DMETs. Approximately 90% reduction in expression of cytochromes P450 was observed in HepG2 and Upcyte cells, and approximately 60% in HepaRG cells relative to cPHH. Drug transporter expression was also lower compared with cPHH with the exception of MRP3 and P-gp (MDR1) which appeared to be significantly expressed in HepaRG cells. In contrast, a high proportion of Nrf2-regulated proteins were more highly expressed in the cell lines compared with cPHH. The proteomic database derived here will provide a rational basis for the context-specific selection of the most appropriate ‘hepatocyte-like’ cell for the evaluation of particular cellular functions associated with DILI and, at the same time, assist in the construction of a testing paradigm which takes into account the in vivo disposition of a new drug. PMID:26160117

  4. Comparative Proteomic Characterization of 4 Human Liver-Derived Single Cell Culture Models Reveals Significant Variation in the Capacity for Drug Disposition, Bioactivation, and Detoxication.

    PubMed

    Sison-Young, Rowena L C; Mitsa, Dimitra; Jenkins, Rosalind E; Mottram, David; Alexandre, Eliane; Richert, Lysiane; Aerts, Hélène; Weaver, Richard J; Jones, Robert P; Johann, Esther; Hewitt, Philip G; Ingelman-Sundberg, Magnus; Goldring, Christopher E P; Kitteringham, Neil R; Park, B Kevin

    2015-10-01

    In vitro preclinical models for the assessment of drug-induced liver injury (DILI) are usually based on cryopreserved primary human hepatocytes (cPHH) or human hepatic tumor-derived cell lines; however, it is unclear how well such cell models reflect the normal function of liver cells. The physiological, pharmacological, and toxicological phenotyping of available cell-based systems is necessary in order to decide the testing purpose for which they are fit. We have therefore undertaken a global proteomic analysis of 3 human-derived hepatic cell lines (HepG2, Upcyte, and HepaRG) in comparison with cPHH with a focus on drug metabolizing enzymes and transport proteins (DMETs), as well as Nrf2-regulated proteins. In total, 4946 proteins were identified, of which 2722 proteins were common across all cell models, including 128 DMETs. Approximately 90% reduction in expression of cytochromes P450 was observed in HepG2 and Upcyte cells, and approximately 60% in HepaRG cells relative to cPHH. Drug transporter expression was also lower compared with cPHH with the exception of MRP3 and P-gp (MDR1) which appeared to be significantly expressed in HepaRG cells. In contrast, a high proportion of Nrf2-regulated proteins were more highly expressed in the cell lines compared with cPHH. The proteomic database derived here will provide a rational basis for the context-specific selection of the most appropriate 'hepatocyte-like' cell for the evaluation of particular cellular functions associated with DILI and, at the same time, assist in the construction of a testing paradigm which takes into account the in vivo disposition of a new drug.

  5. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    SciTech Connect

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi; Park, Bong-Wook; Byun, June-Ho; Ahn, Chun-Seob; Kim, Jae-Won; Rho, Gyu-Jin

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.

  6. Unique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells.

    PubMed

    Ahmed, Nuzhat; Greening, David; Samardzija, Chantel; Escalona, Ruth M; Chen, Maoshan; Findlay, Jock K; Kannourakis, George

    2016-01-01

    Eighty % of ovarian cancer patients diagnosed at an advanced-stage have complete remission after initial surgery and chemotherapy. However, most patients die within <5 years due to episodes of recurrences resulting from the growth of residual chemoresistant cells. In an effort to identify mechanisms associated with chemoresistance and recurrence, we compared the expression of proteins in ascites-derived tumor cells isolated from advanced-stage ovarian cancer patients obtained at diagnosis (chemonaive, CN) and after chemotherapy treatments (chemoresistant/at recurrence, CR) by using in-depth, high-resolution label-free quantitative proteomic profiling. A total of 2,999 proteins were identified. Using a stringent selection criterion to define only significantly differentially expressed proteins, we report identification of 353 proteins. There were significant differences in proteins encoding for immune surveillance, DNA repair mechanisms, cytoskeleton rearrangement, cell-cell adhesion, cell cycle pathways, cellular transport, and proteins involved with glycine/proline/arginine synthesis in tumor cells isolated from CR relative to CN patients. Pathway analyses revealed enrichment of metabolic pathways, DNA repair mechanisms and energy metabolism pathways in CR tumor cells. In conclusion, this is the first proteomics study to comprehensively analyze ascites-derived tumor cells from CN and CR ovarian cancer patients. PMID:27470985

  7. Comparative proteomic analysis of biofilm and planktonic cells of Lactobacillus plantarum DB200.

    PubMed

    De Angelis, Maria; Siragusa, Sonya; Campanella, Daniela; Di Cagno, Raffaella; Gobbetti, Marco

    2015-07-01

    This study investigated the relative abundance of extracellular and cell wall associated proteins (exoproteome), cytoplasmic proteins (proteome), and related phenotypic traits of Lactobacillus plantarum grown under planktonic and biofilm conditions. Lactobacillus plantarum DB200 was preliminarily selected due to its ability to form biofilms and to adhere to Caco2 cells. As shown by fluorescence microscope analysis, biofilm cells became longer and autoaggregated at higher levels than planktonic cells. The molar ratio between glucose consumed and lactate synthesised was markedly decreased under biofilm compared to planktonic conditions. DIGE analysis showed a differential exoproteome (115 protein spots) and proteome (44) between planktonic and biofilm L. plantarum DB200 cells. Proteins up- or downregulated by at least twofold (p < 0.05) were found to belong mainly to the following functional categories: cell wall and catabolic process, cell cycle and adhesion, transport, glycolysis and carbohydrate metabolism, exopolysaccharide metabolism, amino acid and protein metabolisms, fatty acid and lipid biosynthesis, purine and nucleotide metabolism, stress response, oxidation/reduction process, and energy metabolism. Many of the above proteins showed moonlighting behavior. In accordance with the high expression levels of stress proteins (e.g., DnaK, GroEL, ClpP, GroES, and catalase), biofilm cells demonstrated enhanced survival under conditions of environmental stress.

  8. Unique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells

    PubMed Central

    Ahmed, Nuzhat; Greening, David; Samardzija, Chantel; Escalona, Ruth M.; Chen, Maoshan; Findlay, Jock K.; Kannourakis, George

    2016-01-01

    Eighty % of ovarian cancer patients diagnosed at an advanced-stage have complete remission after initial surgery and chemotherapy. However, most patients die within <5 years due to episodes of recurrences resulting from the growth of residual chemoresistant cells. In an effort to identify mechanisms associated with chemoresistance and recurrence, we compared the expression of proteins in ascites-derived tumor cells isolated from advanced-stage ovarian cancer patients obtained at diagnosis (chemonaive, CN) and after chemotherapy treatments (chemoresistant/at recurrence, CR) by using in-depth, high-resolution label-free quantitative proteomic profiling. A total of 2,999 proteins were identified. Using a stringent selection criterion to define only significantly differentially expressed proteins, we report identification of 353 proteins. There were significant differences in proteins encoding for immune surveillance, DNA repair mechanisms, cytoskeleton rearrangement, cell-cell adhesion, cell cycle pathways, cellular transport, and proteins involved with glycine/proline/arginine synthesis in tumor cells isolated from CR relative to CN patients. Pathway analyses revealed enrichment of metabolic pathways, DNA repair mechanisms and energy metabolism pathways in CR tumor cells. In conclusion, this is the first proteomics study to comprehensively analyze ascites-derived tumor cells from CN and CR ovarian cancer patients. PMID:27470985

  9. Quantitative proteomic analysis of the cell envelopes and native membrane vesicles derived from gram-negative bacteria.

    PubMed

    Zielke, Ryszard A; Gafken, Philip R; Sikora, Aleksandra E

    2014-08-01

    Proteins localized to the cell envelope and naturally released membrane vesicles (MVs) play diverse functions in physiology and pathogenesis of Gram-negative bacteria. Study of these proteome fractions is essential for better understanding the basic physiological processes, development of vaccines, and identification of potential drug targets. This unit presents gel-free quantitative proteomic methods for comprehensive proteomic profiling of the cell envelopes and MVs. The procedure starts with the precipitation of the isolated proteome fractions to remove any potential compounds that may interfere with downstream experimental steps. Subsequently, the proteins are reduced, alkylated, and subjected to trypsin digestion. The trypsinized peptides are labeled using isobaric tagging for relative and absolute quantification (iTRAQ), and analyzed samples are pooled and subjected to rigorous prefractionations by strong cation exchange (SCX) and reversed-phase (RP) liquid chromatography (LC). Finally, the tandem mass spectrometry (MS/MS) fragmentation enables peptides identification and quantification.

  10. Spontaneous Cell Competition in Immortalized Mammalian Cell Lines

    PubMed Central

    Penzo-Méndez, Alfredo I.; Chen, Yi-Ju; Li, Jinyang; Witze, Eric S.; Stanger, Ben Z.

    2015-01-01

    Cell competition is a form of cell-cell interaction by which cells compare relative levels of fitness, resulting in the active elimination of less-fit cells, “losers,” by more-fit cells, “winners.” Here, we show that in three routinely-used mammalian cell lines – U2OS, 3T3, and MDCK cells – sub-clones arise stochastically that exhibit context-dependent competitive behavior. Specifically, cell death is elicited when winner and loser sub-clones are cultured together but not alone. Cell competition and elimination in these cell lines is caspase-dependent and requires cell-cell contact but does not require de novo RNA synthesis. Moreover, we show that the phenomenon involves differences in cellular metabolism. Hence, our study demonstrates that cell competition is a common feature of immortalized mammalian cells in vitro and implicates cellular metabolism as a mechanism by which cells sense relative levels of “fitness.” PMID:26200654

  11. Effect of long-term exposure of SH-SY5Y cells to morphine: a whole cell proteomic analysis

    PubMed Central

    Neasta, Jérémie; Uttenweiler-Joseph, Sandrine; Chaoui, Karima; Monsarrat, Bernard; Meunier, Jean-Claude; Moulédous, Lionel

    2006-01-01

    Background Opiate addiction reflects plastic changes that endurably alter synaptic transmission within relevant neuronal circuits. The biochemical mechanisms of these adaptations remain largely unknown and proteomics-based approaches could lead to a broad characterization of the molecular events underlying adaptations to chronic drug exposure. Results Thus, we have started proteomic analyses of the effects of chronic morphine exposure in a recombinant human neuroblastoma SH-SY5Y clone that stably overexpresses the μ-opioid receptor. Cells were treated with morphine for 6, 24 and 72 hours, the proteins were separated by 2-D gel electrophoresis and stained with Coomassie blue, and the protein map was compared with that obtained from untreated cells. Spots showing a statistically significant variation were selected for identification using mass spectrometric analyses. Conclusion A total of 45 proteins were identified, including proteins involved in cellular metabolism, cytoskeleton organization, vesicular trafficking, transcriptional and translational regulation, and cell signaling. PMID:17184524

  12. Experience with the Vero cell line.

    PubMed

    Montagnon, B J; Vincent-Falquet, J C

    1998-01-01

    The Vero cell line has been managed with the Cell Bank system to produce at the 142nd passage IPV, OPV and rabies vaccines since 1982 by Pasteur Mérieux Serums & Vaccins (PMsv). The safety of the cell line was regularly validated at the Working Cell Bank (WCB) level according to the WHO and European Pharmacopoeia requirements for absence of bacteria, fungi, mycoplasma and viruses. A special emphasis was devoted to research on the absence of simian viruses (SV40, SIV, Retro-D virus and simian CMV). All these specific researches were negative. At a low level of passage, the Vero cells are not tumorigenic. Vaccines have been prepared in low passage level Vero cells and together with the excellent downstream purification have resulted in excellent safety as attested by pharmacovigilance of more than 100 million doses of IPV during 12 years, more than 20 million doses of rabies vaccine during 10 years and more than 1 billion of OPV during eight years.

  13. Proteomic analysis of the human cyclin-dependent kinase family reveals a novel CDK5 complex involved in cell growth and migration.

    PubMed

    Xu, Shuangbing; Li, Xu; Gong, Zihua; Wang, Wenqi; Li, Yujing; Nair, Binoj Chandrasekharan; Piao, Hailong; Yang, Kunyu; Wu, Gang; Chen, Junjie

    2014-11-01

    Cyclin-dependent kinases (CDKs) are the catalytic subunits of a family of mammalian heterodimeric serine/threonine kinases that play critical roles in the control of cell-cycle progression, transcription, and neuronal functions. However, the functions, substrates, and regulation of many CDKs are poorly understood. To systematically investigate these features of CDKs, we conducted a proteomic analysis of the CDK family and identified their associated protein complexes in two different cell lines using a modified SAINT (Significance Analysis of INTeractome) method. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000593 and DOI 10.6019/PXD000593. We identified 753 high-confidence candidate interaction proteins (HCIPs) in HEK293T cells and 352 HCIPs in MCF10A cells. We subsequently focused on a neuron-specific CDK, CDK5, and uncovered two novel CDK5-binding partners, KIAA0528 and fibroblast growth factor (acidic) intracellular binding protein (FIBP), in non-neuronal cells. We showed that these three proteins form a stable complex, with KIAA0528 and FIBP being required for the assembly and stability of the complex. Furthermore, CDK5-, KIAA0528-, or FIBP-depleted breast cancer cells displayed impaired proliferation and decreased migration, suggesting that this complex is required for cell growth and migration in non-neural cells. Our study uncovers new aspects of CDK functions, which provide direction for further investigation of these critical protein kinases. PMID:25096995

  14. S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure.

    PubMed

    Koo, Sue-Jie; Spratt, Heidi M; Soman, Kizhake V; Stafford, Susan; Gupta, Shivali; Petersen, John R; Zago, Maria P; Kuyumcu-Martinez, Muge N; Brasier, Allan R; Wiktorowicz, John E; Garg, Nisha Jain

    2016-01-01

    Nitric oxide (NO) protects the heart against ischemic injury; however, NO- and superoxide-dependent S-nitrosylation (S-NO) of cysteines can affect function of target proteins and play a role in disease outcome. We employed 2D-GE with thiol-labeling FL-maleimide dye and MALDI-TOF MS/MS to capture the quantitative changes in abundance and S-NO proteome of HF patients (versus healthy controls, n = 30/group). We identified 93 differentially abundant (59-increased/34-decreased) and 111 S-NO-modified (63-increased/48-decreased) protein spots, respectively, in HF subjects (versus controls, fold-change | ≥1.5|, p ≤ 0.05). Ingenuity pathway analysis of proteome datasets suggested that the pathways involved in phagocytes' migration, free radical production, and cell death were activated and fatty acid metabolism was decreased in HF subjects. Multivariate adaptive regression splines modeling of datasets identified a panel of proteins that will provide >90% prediction success in classifying HF subjects. Proteomic profiling identified ATP-synthase, thrombospondin-1 (THBS1), and vinculin (VCL) as top differentially abundant and S-NO-modified proteins, and these proteins were verified by Western blotting and ELISA in different set of HF subjects. We conclude that differential abundance and S-NO modification of proteins serve as a mechanism in regulating cell viability and free radical production, and THBS1 and VCL evaluation will potentially be useful in the prediction of heart failure. PMID:27635260

  15. S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure

    PubMed Central

    Spratt, Heidi M.; Gupta, Shivali; Petersen, John R.; Kuyumcu-Martinez, Muge N.

    2016-01-01

    Nitric oxide (NO) protects the heart against ischemic injury; however, NO- and superoxide-dependent S-nitrosylation (S-NO) of cysteines can affect function of target proteins and play a role in disease outcome. We employed 2D-GE with thiol-labeling FL-maleimide dye and MALDI-TOF MS/MS to capture the quantitative changes in abundance and S-NO proteome of HF patients (versus healthy controls, n = 30/group). We identified 93 differentially abundant (59-increased/34-decreased) and 111 S-NO-modified (63-increased/48-decreased) protein spots, respectively, in HF subjects (versus controls, fold-change | ≥1.5|, p ≤ 0.05). Ingenuity pathway analysis of proteome datasets suggested that the pathways involved in phagocytes' migration, free radical production, and cell death were activated and fatty acid metabolism was decreased in HF subjects. Multivariate adaptive regression splines modeling of datasets identified a panel of proteins that will provide >90% prediction success in classifying HF subjects. Proteomic profiling identified ATP-synthase, thrombospondin-1 (THBS1), and vinculin (VCL) as top differentially abundant and S-NO-modified proteins, and these proteins were verified by Western blotting and ELISA in different set of HF subjects. We conclude that differential abundance and S-NO modification of proteins serve as a mechanism in regulating cell viability and free radical production, and THBS1 and VCL evaluation will potentially be useful in the prediction of heart failure. PMID:27635260

  16. S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure

    PubMed Central

    Spratt, Heidi M.; Gupta, Shivali; Petersen, John R.; Kuyumcu-Martinez, Muge N.

    2016-01-01

    Nitric oxide (NO) protects the heart against ischemic injury; however, NO- and superoxide-dependent S-nitrosylation (S-NO) of cysteines can affect function of target proteins and play a role in disease outcome. We employed 2D-GE with thiol-labeling FL-maleimide dye and MALDI-TOF MS/MS to capture the quantitative changes in abundance and S-NO proteome of HF patients (versus healthy controls, n = 30/group). We identified 93 differentially abundant (59-increased/34-decreased) and 111 S-NO-modified (63-increased/48-decreased) protein spots, respectively, in HF subjects (versus controls, fold-change | ≥1.5|, p ≤ 0.05). Ingenuity pathway analysis of proteome datasets suggested that the pathways involved in phagocytes' migration, free radical production, and cell death were activated and fatty acid metabolism was decreased in HF subjects. Multivariate adaptive regression splines modeling of datasets identified a panel of proteins that will provide >90% prediction success in classifying HF subjects. Proteomic profiling identified ATP-synthase, thrombospondin-1 (THBS1), and vinculin (VCL) as top differentially abundant and S-NO-modified proteins, and these proteins were verified by Western blotting and ELISA in different set of HF subjects. We conclude that differential abundance and S-NO modification of proteins serve as a mechanism in regulating cell viability and free radical production, and THBS1 and VCL evaluation will potentially be useful in the prediction of heart failure.

  17. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    PubMed

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures. PMID:27508218

  18. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    PubMed

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

  19. High-throughput proteomics of breast carcinoma cells: a focus on FTICR-MS

    SciTech Connect

    Umar, Arzu; Jaremko, Malgorzata; Burgers, Peter C.; Luider, Theo M.; Foekens, John A.; Pasa-Tolic, Ljiljana

    2008-06-05

    Discovery of better biomarkers for diagnosis, prognosis, and therapy-response prediction is the most critical task of a scientific quest aimed at developing newly designed, tailor-made therapies for patients with cancer. Consequently, a proteome wide analysis, in addition to genomic studies, is an absolute requirement for a complete functional understanding of tumor biology. Ultra-sensitive, high-performance Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) currently holds an important role in fulfilling the demands of biomarker discovery. In this review, we describe the applicability of FTICR MS for breast cancer proteomics, particularly for the analysis of complex protein mixtures obtained from a limited number of cells typically available from clinical specimens.

  20. Proteomic Analysis of Laser Microdissected Melanoma Cells from Skin Organ Cultures

    PubMed Central

    Hood, Brian L.; Grahovac, Jelena; Flint, Melanie S.; Sun, Mai; Charro, Nuno; Becker, Dorothea; Wells, Alan; Conrads, Thomas P

    2010-01-01

    Gaining insights into the molecular events that govern the progression from melanoma in situ to advanced melanoma, and understanding how the local microenvironment at the melanoma site influences this progression, are two clinically pivotal aspects that to date are largely unexplored. In an effort to identify key regulators of the crosstalk between melanoma cells and the melanoma-skin microenvironment, primary and metastatic human melanoma cells were seeded into skin organ cultures (SOCs), and grown for two weeks. Melanoma cells were recovered from SOCs by laser microdissection and whole-cell tryptic digests analyzed by nanoflow liquid chromatography-tandem mass spectrometry with an LTQ-Orbitrap. The differential protein abundances were calculated by spectral counting, the results of which provides evidence that cell-matrix and cell-adhesion molecules that are upregulated in the presence of these melanoma cells recapitulate proteomic data obtained from comparative analysis of human biopsies of invasive melanoma and a tissue sample of adjacent, non-involved skin. This concordance demonstrates the value of SOCs for conducting proteomic investigations of the melanoma microenvironment. PMID:20459140

  1. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells

    PubMed Central

    Wang, Zhen; Schey, Kevin L.

    2015-01-01

    Purpose Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids—key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Methods Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. Results A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. Conclusions These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells. PMID:26747763

  2. Biochemistry, proteomics, and phosphoproteomics of plant mitochondria from non-photosynthetic cells

    PubMed Central

    Havelund, Jesper F.; Thelen, Jay J.; Møller, Ian M.

    2013-01-01

    Mitochondria fulfill some basic roles in all plant cells. They supply the cell with energy in the form of ATP and reducing equivalents [NAD(P)H] and they provide the cell with intermediates for a range of biosynthetic pathways. In addition to this, mitochondria contribute to a number of specialized functions depending on the tissue and cell type, as well as environmental conditions. We will here review the biochemistry and proteomics of mitochondria from non-green cells and organs, which differ from those of photosynthetic organs in a number of respects. We will briefly cover purification of mitochondria and general biochemical properties such as oxidative phosphorylation. We will then mention a few adaptive properties in response to water stress, seed maturation and germination, and the ability to function under hypoxic conditions. The discussion will mainly focus on Arabidopsis cell cultures, etiolated germinating rice seedlings and potato tubers as model plants. It will cover the general proteome as well as the posttranslational modification protein phosphorylation. To date 64 phosphorylated mitochondrial proteins with a total of 103 phosphorylation sites have been identified. PMID:23494127

  3. Cell Wall Proteome in the Maize Primary Root Elongation Zone. I. Extraction and Identification of Water-Soluble and Lightly Ionically Bound Proteins1

    PubMed Central

    Zhu, Jinming; Chen, Sixue; Alvarez, Sophie; Asirvatham, Victor S.; Schachtman, Daniel P.; Wu, Yajun; Sharp, Robert E.

    2006-01-01

    Cell wall proteins (CWPs) play important roles in various processes, including cell elongation. However, relatively little is known about the composition of CWPs in growing regions. We are using a proteomics approach to gain a comprehensive understanding of the identity of CWPs in the maize (Zea mays) primary root elongation zone. As the first step, we examined the effectiveness of a vacuum infiltration-centrifugation technique for extracting water-soluble and loosely ionically bound (fraction 1) CWPs from the root elongation zone. The purity of the CWP extract was evaluated by comparing with total soluble proteins extracted from homogenized tissue. Several lines of evidence indicated that the vacuum infiltration-centrifugation technique effectively enriched for CWPs. Protein identification revealed that 84% of the CWPs were different from the total soluble proteins. About 40% of the fraction 1 CWPs had traditional signal peptides and 33% were predicted to be nonclassical secretory proteins, whereas only 3% and 11%, respectively, of the total soluble proteins were in these categories. Many of the CWPs have previously been shown to be involved in cell wall metabolism and cell elongation. In addition, maize has type II cell walls, and several of the CWPs identified in this study have not been identified in previous cell wall proteomics studies that have focused only on type I walls. These proteins include endo-1,3;1,4-β-d-glucanase and α-l-arabinofuranosidase, which act on the major polysaccharides only or mainly present in type II cell walls. PMID:16377746

  4. Identification and characterization of angiogenesis targets through proteomic profiling of endothelial cells in human cancer tissues.

    PubMed

    Mesri, Mehdi; Birse, Charlie; Heidbrink, Jenny; McKinnon, Kathy; Brand, Erin; Bermingham, Candy Lee; Feild, Brian; Fitzhugh, William; He, Tao; Ruben, Steve; Moore, Paul A

    2013-01-01

    Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS) as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs) from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total) tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC) including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3.

  5. Identification and Characterization of Angiogenesis Targets through Proteomic Profiling of Endothelial Cells in Human Cancer Tissues

    PubMed Central

    Mesri, Mehdi; Birse, Charlie; Heidbrink, Jenny; McKinnon, Kathy; Brand, Erin; Bermingham, Candy Lee; Feild, Brian; FitzHugh, William; He, Tao; Ruben, Steve; Moore, Paul A.

    2013-01-01

    Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS) as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs) from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total) tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC) including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3. PMID:24236063

  6. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments.

    PubMed

    Herranz, Raul; Manzano, Ana I; van Loon, Jack J W A; Christianen, Peter C M; Medina, F Javier

    2013-03-01

    Earth-based microgravity simulation techniques are required due to space research constraints. Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to environments with different levels of effective gravity and magnetic field strengths (B) simultaneously. The environments included simulated 0 g* at B=10.1 T, an internal 1 g* control (B=16.5 T), and hypergravity (2 g* at B=10.1 T). Furthermore, samples were also exposed to altered gravity environments that were created with mechanical devices, such as the Random Positioning Machine (simulated μg) and the Large Diameter Centrifuge (2 g). We have determined the proteomic signature of cell cultures exposed to these altered-gravity environments by means of the difference gel electrophoresis (DiGE) technique, and we have compared the results with microarray-based transcriptomes from the same samples. The magnetic field itself produced a low number of proteomic alterations, but the combination of gravitational alteration and magnetic field exposure produced synergistic effects on the proteome of plants (the number of significant changes is 3-7 times greater). Tandem mass spectrometry identification of 19 overlapping spots in the different conditions corroborates a major role of abiotic stress and secondary metabolism proteins in the molecular adaptation of plants to unusual environments, including microgravity.

  7. A draft map of the mouse pluripotent stem cell spatial proteome

    PubMed Central

    Christoforou, Andy; Mulvey, Claire M.; Breckels, Lisa M.; Geladaki, Aikaterini; Hurrell, Tracey; Hayward, Penelope C.; Naake, Thomas; Gatto, Laurent; Viner, Rosa; Arias, Alfonso Martinez; Lilley, Kathryn S.

    2016-01-01

    Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data. PMID:26754106

  8. Inmembrane, a bioinformatic workflow for annotation of bacterial cell-surface proteomes

    PubMed Central

    2013-01-01

    Background The annotation of surface exposed bacterial membrane proteins is an important step in interpretation and validation of proteomic experiments. In particular, proteins detected by cell surface protease shaving experiments can indicate exposed regions of membrane proteins that may contain antigenic determinants or constitute vaccine targets in pathogenic bacteria. Results Inmembrane is a tool to predict the membrane proteins with surface-exposed regions of polypeptide in sets of bacterial protein sequences. We have re-implemented a protocol for Gram-positive bacterial proteomes, and developed a new protocol for Gram-negative bacteria, which interface with multiple predictors of subcellular localization and membrane protein topology. Through the use of a modern scripting language, inmembrane provides an accessible code-base and extensible architecture that is amenable to modification for related sequence annotation tasks. Conclusions Inmembrane easily integrates predictions from both local binaries and web-based queries to help gain an overview of likely surface exposed protein in a bacterial proteome. The program is hosted on the Github repository http://github.com/boscoh/inmembrane. PMID:23506117

  9. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments.

    PubMed

    Herranz, Raul; Manzano, Ana I; van Loon, Jack J W A; Christianen, Peter C M; Medina, F Javier

    2013-03-01

    Earth-based microgravity simulation techniques are required due to space research constraints. Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to environments with different levels of effective gravity and magnetic field strengths (B) simultaneously. The environments included simulated 0 g* at B=10.1 T, an internal 1 g* control (B=16.5 T), and hypergravity (2 g* at B=10.1 T). Furthermore, samples were also exposed to altered gravity environments that were created with mechanical devices, such as the Random Positioning Machine (simulated μg) and the Large Diameter Centrifuge (2 g). We have determined the proteomic signature of cell cultures exposed to these altered-gravity environments by means of the difference gel electrophoresis (DiGE) technique, and we have compared the results with microarray-based transcriptomes from the same samples. The magnetic field itself produced a low number of proteomic alterations, but the combination of gravitational alteration and magnetic field exposure produced synergistic effects on the proteome of plants (the number of significant changes is 3-7 times greater). Tandem mass spectrometry identification of 19 overlapping spots in the different conditions corroborates a major role of abiotic stress and secondary metabolism proteins in the molecular adaptation of plants to unusual environments, including microgravity. PMID:23510084

  10. SILAC-Based Quantitative Proteomic Analysis of Diffuse Large B-Cell Lymphoma Patients

    PubMed Central

    Rüetschi, Ulla; Stenson, Martin; Hasselblom, Sverker; Nilsson-Ehle, Herman; Hansson, Ulrika; Fagman, Henrik; Andersson, Per-Ola

    2015-01-01

    Diffuse large B-cell lymphoma (DLBCL), the most common lymphoma, is a heterogeneous disease where the outcome for patients with early relapse or refractory disease is very poor, even in the era of immunochemotherapy. In order to describe possible differences in global protein expression and network patterns, we performed a SILAC-based shotgun (LC-MS/MS) quantitative proteomic analysis in fresh-frozen tumor tissue from two groups of DLBCL patients with totally different clinical outcome: (i) early relapsed or refractory and (ii) long-term progression-free patients. We could identify over 3,500 proteins; more than 1,300 were quantified in all patients and 87 were significantly differentially expressed. By functional annotation analysis on the 66 proteins overexpressed in the progression-free patient group, we found an enrichment of proteins involved in the regulation and organization of the actin cytoskeleton. Also, five proteins from actin cytoskeleton regulation, applied in a supervised regression analysis, could discriminate the two patient groups. In conclusion, SILAC-based shotgun quantitative proteomic analysis appears to be a powerful tool to explore the proteome in DLBCL tumor tissue. Also, as progression-free patients had a higher expression of proteins involved in the actin cytoskeleton protein network, such a pattern indicates a functional role in the sustained response to immunochemotherapy. PMID:26060582

  11. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  12. Establishment and characterization of a highly immunogenic human renal carcinoma cell line

    PubMed Central

    Prattichizzo, Clelia; Gigante, Margherita; Pontrelli, Paola; Stella, Alessandro; Rocchetti, Maria Teresa; Gigante, Maddalena; Maiorano, Eugenio; Herr, Wolfgang; Battaglia, Michele; Gesualdo, Loreto; Ranieri, Elena

    2016-01-01

    Renal cell carcinoma (RCC) is the most common kidney cancer, and accounts for ~3% of all adult malignancies. RCC has proven refractory to conventional treatment modalities but appears to be the only histological form that shows any consistent response to immunotherapeutic approaches. The development of a clinically effective vaccine remains a major strategic target for devising active specific immunotherapy in RCC. We aimed to identify a highly immunogenic antigenic format for immunotherapeutic approaches, so as to boost immune responses in RCC patients. We established and cloned an immunogenic cell line, RCC85#21 named Elthem, which was derived from a non-aggressive and non-metastatic clear cell carcinoma. The cell line characterization was performed by genomics (real-time PCR, genome instability), proteomics (two dimensional electrophoresis, mass spectrometry) and immunological analysis (mixed lymphocytes tumor cell cultures). Real-time PCR confirmed the RCC85#21 cell expression of tumor antigens and cytokine genes. No difference in microsatellite instability (MSI) in RCC85#21 cell line was found as compared to control, loss of heterozygosity was observed in the RCC85#21 clone, but not in the renal cancer cell lines from which it was generated. The image analysis of RCC85#21 by two-dimensional gels showed 700±26 spots and 119 spots were identified by mass spectrometry analysis. RCC85#21 promoted a significant RCC-specific T cells activation by exhibiting a cytotoxic phenotype after mixed lymphocyte and tumor cell cultures. CD8+ T cells isolated from RCC patients displayed an elevated reactivity against RCC85#21 and efficiently lysed the RCC85#21 clone. The RCC85#21 immunogenic cell line will be suitable for immune stimulation. The identification of novel tumor associated antigens will allow the evaluation of the immune response in vitro and, subsequently, in vivo paving the way for new immunotherapeutic strategies in the RCC setting. PMID:27278998

  13. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity.

    PubMed

    Zhang, Yongqian; Wang, Hongbin; Lai, Chengjun; Wang, Lu; Deng, Yulin

    2013-02-01

    Microgravity is one of the most important features in spaceflight. Previous evidence has shown that neurophysiological impairment signs occurred under microgravity. The present study was undertaken to explore the change in protein abundance in human SH-SY5Y neuroblastoma cells that were grown in a microgravity environment. The comparative proteomic method based on the (18)O labeling technique was applied to investigate the up-regulated proteins and down-regulated proteins in SH-SY5Y under simulated microgravity. Twenty-two differentially abundant proteins were quantified in human SH-SY5Y neuroblastoma cells. The cell microfilament network was disrupted under simulated microgravity, which was determined by the immunocytochemistry. The concentration of reactive oxygen species, malondialdehyde, and free Ca2+ ion significantly increased, and the level of ATP significantly decreased under simulated microgravity. However, there was no obvious cell apoptosis observed under simulated microgravity. These results provide new molecular evidence for the change in protein abundance in SH-SY5Y cells under simulated microgravity, which might unfold biological mechanisms and the development of effective countermeasures to deal with microgravity-related neurological problems. We believe that the state-of-the-art proteomic assay may be a means by which aerospace scientists will begin to understand the underlying mechanisms of space life activities at the protein level.

  14. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity.

    PubMed

    Zhang, Yongqian; Wang, Hongbin; Lai, Chengjun; Wang, Lu; Deng, Yulin

    2013-02-01

    Microgravity is one of the most important features in spaceflight. Previous evidence has shown that neurophysiological impairment signs occurred under microgravity. The present study was undertaken to explore the change in protein abundance in human SH-SY5Y neuroblastoma cells that were grown in a microgravity environment. The comparative proteomic method based on the (18)O labeling technique was applied to investigate the up-regulated proteins and down-regulated proteins in SH-SY5Y under simulated microgravity. Twenty-two differentially abundant proteins were quantified in human SH-SY5Y neuroblastoma cells. The cell microfilament network was disrupted under simulated microgravity, which was determined by the immunocytochemistry. The concentration of reactive oxygen species, malondialdehyde, and free Ca2+ ion significantly increased, and the level of ATP significantly decreased under simulated microgravity. However, there was no obvious cell apoptosis observed under simulated microgravity. These results provide new molecular evidence for the change in protein abundance in SH-SY5Y cells under simulated microgravity, which might unfold biological mechanisms and the development of effective countermeasures to deal with microgravity-related neurological problems. We believe that the state-of-the-art proteomic assay may be a means by which aerospace scientists will begin to understand the underlying mechanisms of space life activities at the protein level. PMID:23421552

  15. 7keto-stigmasterol and 7keto-cholesterol induce differential proteome changes to intestinal epitelial (Caco-2) cells.

    PubMed

    Laparra, J M; Alfonso-García, A; Alegría, A; Barberá, R; Cilla, A

    2015-10-01

    Recent studies have expanded the appreciation of the roles of oxysterols triggering inflammatory, immune cytotoxic and apoptotic processes, but have not been considered for proteome analysis. A comparative proteomic study in intestinal epithelial cell cultures incubated (60 μM/24 h) with 7keto-cholesterol or 7keto-stigmasterol was performed. The influence of both compounds was studied following the nLC-TripleTOF analysis. Findings were compared to results for control cultures. In the principal component analysis (PCA) of proteome patterns, two components were extracted accounting for 99.8% of the variance in the protein expression. PCA analysis clearly discriminated between the perturbations in the proteome of cell cultures incubated with 7keto-cholesterol and 7keto-stigmasterol. These proteins participate in mitochondrial function, lipid homeostasis, inflammation and immunity and cell proliferation. Remarkable differences between proteome patterns in cell cultures exposed to 7keto-cholesterol and 7keto-stigmasterol affect macrophage migration inhibitory factor, apolipoprotein E, Bcl-2-associated transcription factor and cellular retinoic acid-binding protein. Besides, exposure to 7keto-stigmasterol increased the concentration of ubiquitin-conjugating enzyme E2 and the mitochondrial superoxide dismutase protein. Such findings raise new questions about safety studies and the regulatory potential of oxysterols in the differentiation and function of intestinal and associated immune cells, their response to environmental stimuli and impairment of absorption processes. PMID:26140950

  16. Cytosine methylation profiling of cancer cell lines

    PubMed Central

    Ehrich, Mathias; Turner, Julia; Gibbs, Peter; Lipton, Lara; Giovanneti, Mara; Cantor, Charles; van den Boom, Dirk

    2008-01-01

    DNA-methylation changes in human cancer are complex and vary between the different types of cancer. Capturing this epigenetic variability in an atlas of DNA-methylation changes will be beneficial for basic research as well as translational medicine. Hypothesis-free approaches that interrogate methylation patterns genome-wide have already generated promising results. However, these methods are still limited by their quantitative accuracy and the number of CpG sites that can be assessed individually. Here, we use a unique approach to measure quantitative methylation patterns in a set of >400 candidate genes. In this high-resolution study, we employed a cell-line model consisting of 59 cancer cell lines provided by the National Cancer Institute and six healthy control tissues for discovery of methylation differences in cancer-related genes. To assess the effect of cell culturing, we validated the results from colon cancer cell lines by using clinical colon cancer specimens. Our results show that a large proportion of genes (78 of 400 genes) are epigenetically altered in cancer. Although most genes show methylation changes in only one tumor type (35 genes), we also found a set of genes that changed in many different forms of cancer (seven genes). This dataset can easily be expanded to develop a more comprehensive and ultimately complete map of quantitative methylation changes. Our methylation data also provide an ideal starting point for further translational research where the results can be combined with existing large-scale datasets to develop an approach that integrates epigenetic, transcriptional, and mutational findings. PMID:18353987

  17. Functional Proteomics Screen Enables Enrichment of Distinct Cell Types from Human Pancreatic Islets

    PubMed Central

    Sharivkin, Revital; Walker, Michael D.; Soen, Yoav

    2015-01-01

    The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+), glucagon-producing alpha cells (CD9- /CD56+) and trypsin-producing acinar cells (CD9- /CD56-). This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples. PMID:25706282

  18. Shotgun Quantitative Proteomic Analysis of Proteins Responding to Drought Stress in Brassica rapa L. (Inbred Line "Chiifu").

    PubMed

    Kwon, Soon-Wook; Kim, Mijeong; Kim, Hijin; Lee, Joohyun

    2016-01-01

    Through a comparative shotgun quantitative proteomics analysis in Brassica rapa (inbred line Chiifu), total of 3,009 nonredundant proteins were identified with a false discovery rate of 0.01 in 3-week-old plants subjected to dehydration treatment for 0, 24, and 48 h, plants subjected to drought stress. Ribulose-bisphosphate carboxylases, chlorophyll a/b-binding protein, and light harvesting complex in photosystem II were highly abundant proteins in the leaves and accounted for 9%, 2%, and 4%, respectively, of the total identified proteins. Comparative analysis of the treatments enabled detection of 440 differentially expressed proteins during dehydration. The results of clustering analysis, gene ontology (GO) enrichment analysis, and analysis of composite expression profiles of functional categories for the differentially expressed proteins indicated that drought stress reduced the levels of proteins associated with photosynthesis and increased the levels of proteins involved in catabolic processes and stress responses. We observed enhanced expression of many proteins involved in osmotic stress responses and proteins with antioxidant activities. Based on previously reported molecular functions, we propose that the following five differentially expressed proteins could provide target genes for engineering drought resistance in plants: annexin, phospholipase D delta, sDNA-binding transcriptional regulator, auxin-responsive GH3 family protein, and TRAF-like family protein.

  19. Shotgun Quantitative Proteomic Analysis of Proteins Responding to Drought Stress in Brassica rapa L. (Inbred Line "Chiifu").

    PubMed

    Kwon, Soon-Wook; Kim, Mijeong; Kim, Hijin; Lee, Joohyun

    2016-01-01

    Through a comparative shotgun quantitative proteomics analysis in Brassica rapa (inbred line Chiifu), total of 3,009 nonredundant proteins were identified with a false discovery rate of 0.01 in 3-week-old plants subjected to dehydration treatment for 0, 24, and 48 h, plants subjected to drought stress. Ribulose-bisphosphate carboxylases, chlorophyll a/b-binding protein, and light harvesting complex in photosystem II were highly abundant proteins in the leaves and accounted for 9%, 2%, and 4%, respectively, of the total identified proteins. Comparative analysis of the treatments enabled detection of 440 differentially expressed proteins during dehydration. The results of clustering analysis, gene ontology (GO) enrichment analysis, and analysis of composite expression profiles of functional categories for the differentially expressed proteins indicated that drought stress reduced the levels of proteins associated with photosynthesis and increased the levels of proteins involved in catabolic processes and stress responses. We observed enhanced expression of many proteins involved in osmotic stress responses and proteins with antioxidant activities. Based on previously reported molecular functions, we propose that the following five differentially expressed proteins could provide target genes for engineering drought resistance in plants: annexin, phospholipase D delta, sDNA-binding transcriptional regulator, auxin-responsive GH3 family protein, and TRAF-like family protein. PMID:27419125

  20. Shotgun Quantitative Proteomic Analysis of Proteins Responding to Drought Stress in Brassica rapa L. (Inbred Line “Chiifu”)

    PubMed Central

    Kwon, Soon-Wook

    2016-01-01

    Through a comparative shotgun quantitative proteomics analysis in Brassica rapa (inbred line Chiifu), total of 3,009 nonredundant proteins were identified with a false discovery rate of 0.01 in 3-week-old plants subjected to dehydration treatment for 0, 24, and 48 h, plants subjected to drought stress. Ribulose-bisphosphate carboxylases, chlorophyll a/b-binding protein, and light harvesting complex in photosystem II were highly abundant proteins in the leaves and accounted for 9%, 2%, and 4%, respectively, of the total identified proteins. Comparative analysis of the treatments enabled detection of 440 differentially expressed proteins during dehydration. The results of clustering analysis, gene ontology (GO) enrichment analysis, and analysis of composite expression profiles of functional categories for the differentially expressed proteins indicated that drought stress reduced the levels of proteins associated with photosynthesis and increased the levels of proteins involved in catabolic processes and stress responses. We observed enhanced expression of many proteins involved in osmotic stress responses and proteins with antioxidant activities. Based on previously reported molecular functions, we propose that the following five differentially expressed proteins could provide target genes for engineering drought resistance in plants: annexin, phospholipase D delta, sDNA-binding transcriptional regulator, auxin-responsive GH3 family protein, and TRAF-like family protein. PMID:27419125

  1. An integrated genomic and proteomic approach to identify signatures of endosulfan exposure in hepatocellular carcinoma cells.

    PubMed

    Gandhi, Deepa; Tarale, Prashant; Naoghare, Pravin K; Bafana, Amit; Krishnamurthi, Kannan; Arrigo, Patrizio; Saravanadevi, Sivanesan

    2015-11-01

    Present study reports the identification of genomic and proteomic signatures of endosulfan exposure in hepatocellular carcinoma cells (HepG2). HepG2 cells were exposed to sublethal concentration (15μM) of endosulfan for 24h. DNA microarray and MALDI-TOF-MS analyses revealed that endosulfan induced significant alterations in the expression level of genes and proteins involved in multiple cellular pathways (apoptosis, transcription, immune/inflammatory response, carbohydrate metabolism, etc.). Furthermore, downregulation of PHLDA gene, upregulation of ACIN1 protein and caspase-3 activation in exposed cells indicated that endosulfan can trigger apoptotic cascade in hepatocellular carcinoma cells. In total 135 transcripts and 19 proteins were differentially expressed. This study presents an integrated approach to identify the alteration of biological/cellular pathways in HepG2 cells upon endosulfan exposure.

  2. SILAC-Based Quantitative Proteomic Analysis of Human Lung Cell Response to Copper Oxide Nanoparticles

    PubMed Central

    Edelmann, Mariola J.; Shack, Leslie A.; Naske, Caitlin D.; Walters, Keisha B.; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level. PMID:25470785

  3. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles.

    PubMed

    Edelmann, Mariola J; Shack, Leslie A; Naske, Caitlin D; Walters, Keisha B; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.

  4. Evolution of early eukaryotic cells: genomes, proteomes, and compartments.

    PubMed

    Bogorad, Lawrence

    2008-01-01

    Eukaryotes arose from an endosymbiotic association of an alpha-proteobacterium-like organism (the ancestor of mitochondria) with a host cell (lacking mitochondria or plastids). Plants arose by the addition of a cyanobacterium-like endosymbiont (the ancestor of plastids) to the two-member association. Each member of the association brought a unique internal environment and a unique genome. Analyses of recently acquired genomic sequences with newly developed algorithms have revealed (a) that the number of endosymbiont genes that remain in eukaryotic cells-principally in the nucleus-is surprisingly large, (b) that protein products of a large number of genes (or their descendents) that entered the association in the genome of the host are now directed to an organelle derived from an endosymbiont, and (c) that protein products of genes traceable to endosymbiont genomes are directed to the nucleo-cytoplasmic compartment. Consideration of these remarkable findings has led to the present suggestion that contemporary eukaryotic cells evolved through continual chance relocation and testing of genes as well as combinations of gene products and biochemical processes in each unique cell compartment derived from a member of the eukaryotic association. Most of these events occurred during about 300 million years, or so, before contemporary forms of eukaryotic cells appear in the fossil record; they continue today. PMID:17912611

  5. The cellular and proteomic response of primary and immortalized murine Kupffer cells following immune stimulation diverges from that of monocyte-derived macrophages.

    PubMed

    Tweedell, Rebecca; Tao, Dingyin; Dinglasan, Rhoel R

    2015-01-01

    Kupffer cells (KCs) are the first line of defense in the liver against pathogens, yet several microbes successfully target the liver, bypass immune surveillance, and effectively develop in this tissue. Our current, albeit poor, understanding of KC-pathogen interactions has been largely achieved through the study of primary cells, requiring isolation from large numbers of animals. To facilitate the study of KC biology, an immortalized rat KC line 1, RKC1, was developed. We performed a comparative global proteomic analysis of RKC1 and primary rat KCs (PRKC) to characterize their respective responses to lipopolysaccharide-mediated immune stimulation. We identified patent differences in the proteomic response profile of RKC1 and PRKC to lipopolysaccharide. We observed that PRKC upregulated more immune function pathways and exhibited marked changes in cellular morphology following stimulation. We consequently analyzed the cytoskeletal signaling pathways of these cells in light of the fact that macrophages are known to induce cytoskeletal changes in response to pathogens. Our findings suggest that KCs respond differently to inflammatory stimulus than do monocyte-derived macrophages, and such data may provide insight into how pathogens, such as the malaria parasite, may have evolved mechanisms of liver entry through KCs without detection.

  6. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells

    SciTech Connect

    Hong, Dun; Chen, Hai-Xiao; Yu, Hai-Qiang; Liang, Yong; Wang, Carrie; Lian, Qing-Quan; Deng, Hai-Teng; Ge, Ren-Shan

    2010-08-15

    Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation - a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.

  7. CellLineNavigator: a workbench for cancer cell line analysis.

    PubMed

    Krupp, Markus; Itzel, Timo; Maass, Thorsten; Hildebrandt, Andreas; Galle, Peter R; Teufel, Andreas

    2013-01-01

    The CellLineNavigator database, freely available at http://www.medicalgenomics.org/celllinenavigator, is a web-based workbench for large scale comparisons of a large collection of diverse cell lines. It aims to support experimental design in the fields of genomics, systems biology and translational biomedical research. Currently, this compendium holds genome wide expression profiles of 317 different cancer cell lines, categorized into 57 different pathological states and 28 individual tissues. To enlarge the scope of CellLineNavigator, the database was furthermore closely linked to commonly used bioinformatics databases and knowledge repositories. To ensure easy data access and search ability, a simple data and an intuitive querying interface were implemented. It allows the user to explore and filter gene expression, focusing on pathological or physiological conditions. For a more complex search, the advanced query interface may be used to query for (i) differentially expressed genes; (ii) pathological or physiological conditions; or (iii) gene names or functional attributes, such as Kyoto Encyclopaedia of Genes and Genomes pathway maps. These queries may also be combined. Finally, CellLineNavigator allows additional advanced analysis of differentially regulated genes by a direct link to the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources.

  8. Protein Profiling of Human Nonpigmented Ciliary Epithelium Cell Secretome: The Differentiation Factors Characterization for Retinal Ganglion Cell line

    PubMed Central

    Yang, Ming-Hui; Krishnamoorthy, Raghu R.; Jong, Shiang-Bin; Chu, Pei-Yu; Yang, Yuan-Han; Chen, Wen-Cheng; Chen, Sharon Chia-Ju; Dibas, Adnan; Yorio, Thomas; Chung, Tze-Wen; Tyan, Yu-Chang

    2011-01-01

    The purpose of this paper was to characterize proteins secreted from the human nonpigmented ciliary epithelial (HNPE) cells, which have differentiated a rat retinal ganglion cell line, RGC-5. Undifferentiated RGC-5 cells have been shown to express several marker proteins characteristic of retinal ganglion cells. However, RGC-5 cells do not respond to N-methyl-D aspartate (NMDA), or glutamate. HNPE cells have been shown to secrete numbers of neuropeptides or neuroproteins also found in the aqueous humor, many of which have the ability to influence the activity of neuronal cells. This paper details the profile of HNPE cell-secreted proteins by proteomic approaches. The experimental results revealed the identification of 132 unique proteins from the HNPE cell-conditioned SF-medium. The biological functions of a portion of these identified proteins are involved in cell differentiation. We hypothesized that a differentiation system of HNPE cell-conditioned SF-medium with RGC-5 cells can induce a differentiated phenotype in RGC-5 cells, with functional characteristics that more closely resemble primary cultures of rat retinal ganglion cells. These proteins may replace harsh chemicals, which are currently used to induce cell differentiation. PMID:21860587

  9. Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomics studies

    PubMed Central

    Zhang, Ying; Bottinelli, Dario; Lisacek, Frédérique; Luban, Jeremy; De Castillia, Caterina Strambio; Varesio, Emmanuel; Hopfgartner, Gérard

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize mass spectrometry coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilisation and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA buffer, was shown to be the method of choice based on total protein extraction and on the solubilisation and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than by 10% TCA/acetone, allowing greater than 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone-wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate in the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6-11% more distinct peptides and 14-19% more total proteins identified than using 0.5M triethylammonium bicarbonate alone with the greatest increase (34%) for hydrophobic proteins. PMID:25983236

  10. Proteomic identification of potential Clonorchis sinensis excretory/secretory products capable of binding and activating human hepatic stellate cells.

    PubMed

    Wang, Xiaoyun; Hu, Fengyu; Hu, Xuchu; Chen, Wenjun; Huang, Yan; Yu, Xinbing

    2014-08-01

    Epidemiological and experimental evidence demonstrated that Clonorchis sinensis is an important risk factor of hepatic fibrosis and cholangiocarcinoma. C. sinensis excretory/secretory products (CsESPs) are protein complex including proteases, antioxidant enzymes, and metabolic enzymes, which may contribute to pathogenesis of liver fluke-associated hepatobiliary diseases. However, potential CsESP candidates involved into hepatic fibrosis and cholangiocarcinoma still remain to be elucidated. In the present study, we performed proteomic identification of CsESP candidates capable of binding and activating human hepatic stellate cell line LX-2. Immunofluorescence analysis confirmed the interaction of CsESPs with LX-2 cell membrane. LX-2 cells could be stimulated by CsESPs from 24 h post incubation (p < 0.05). Specifically, 50 μg/ml of CsESPs showed the strongest effect on cell proliferation in methyl thiazolyl tetrazolium (MTT) assay which could also be demonstrated by flow cytometry analysis (p < 0.01). Furthermore, expression level of human type III collagen in LX-2 cells treated with CsESPs was significantly higher than that in control cells measured by molecular beacon and semiquantitative reverse transcription (RT)-PCR approaches (p < 0.01). Finally, CsESPs before and after incubation with LX-2 cells were subjected to two-dimensional gel electrophoresis (2-DE) analysis and matrix associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. Nine proteins with abundance change above threefold were Rho GTPase-activating protein, mitochondrial cytochrome c oxidase subunit Va, α-enolase, phospholipase C, interleukin-15, insect-derived growth factor, cytochrome c oxidase subunit VI, DNAH1 protein, and kinesin light chain. Taken together, we identified potential CsESP candidates capable of binding and activating human hepatic stellate cells, providing more direct evidences that are previously unknown to accelerate strategies

  11. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view.

    PubMed

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2016-08-01

    Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

  12. Quantitative Proteomic Analysis of Enriched Nuclear Fractions from BK Polyomavirus-Infected Primary Renal Proximal Tubule Epithelial Cells.

    PubMed

    Justice, Joshua L; Verhalen, Brandy; Kumar, Ranjit; Lefkowitz, Elliot J; Imperiale, Michael J; Jiang, Mengxi

    2015-10-01

    Polyomaviruses are a family of small DNA viruses that are associated with a number of severe human diseases, particularly in immunocompromised individuals. The detailed virus-host interactions during lytic polyomavirus infection are not fully understood. Here, we report the first nuclear proteomic study with BK polyomavirus (BKPyV) in a primary renal proximal tubule epithelial cell culture system using stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling coupled with liquid chromatography-tandem mass spectrometry. We demonstrated the feasibility of SILAC labeling in these primary cells and subsequently performed reciprocal labeling-infection experiments to identify proteins that are altered by BKPyV infection. Our analyses revealed specific proteins that are significantly up- or down-regulated in the infected nuclear proteome. The genes encoding many of these proteins were not identified in a previous microarray study, suggesting that differential regulation of these proteins may be independent of transcriptional control. Western blotting experiments verified the SILAC proteomic findings. Finally, pathway and network analyses indicated that the host cell DNA damage response signaling and DNA repair pathways are among the cellular processes most affected at the protein level during polyomavirus infection. Our study provides a comprehensive view of the host nuclear proteomic changes during polyomavirus lytic infection and suggests potential novel host factors required for a productive polyomavirus infection.

  13. Quantitative Proteomic Analysis of Enriched Nuclear Fractions from BK Polyomavirus-infected Primary Renal Proximal Tubule Epithelial Cells

    PubMed Central

    Justice, Joshua L.; Verhalen, Brandy; Kumar, Ranjit; Lefkowitz, Elliot J.; Imperiale, Michael J.; Jiang, Mengxi

    2016-01-01

    Polyomaviruses are a family of small DNA viruses that are associated with a number of severe human diseases, particularly in immunocompromised individuals. The detailed virus-host interactions during lytic polyomavirus infection are not fully understood. Here we report the first nuclear proteomic study with BK polyomavirus (BKPyV) in a primary renal proximal tubule epithelial cell culture system using stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling coupled with LC-MS/MS. We demonstrated the feasibility of SILAC labeling in these primary cells and subsequently performed reciprocal labeling-infection experiments to identify proteins that are altered by BKPyV infection. Our analyses revealed specific proteins that are significantly up- or down-regulated in the infected nuclear proteome. The genes encoding many of these proteins were not identified in a previous microarray study, suggesting that differential regulation of these proteins may be independent of transcriptional control. Western blotting experiments verified the SILAC proteomic findings. Finally, pathway and network analyses indicated that the host cell DNA damage response signaling and DNA repair pathways are among the cellular processes most affected at the protein level during polyomavirus infection. Our study provides a comprehensive view of the host nuclear proteomic changes during polyomavirus lytic infection and suggests potential novel host factors required for a productive polyomavirus infection. PMID:26354146

  14. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  15. Forensic Proteomics of Poxvirus Production

    SciTech Connect

    Wunschel, David S.; Tulman, Edan; Engelmann, Heather E.; Clowers, Brian H.; Geary, Steven J.; Robinson, Aaron C.; Liao, Xiaofen

    2013-08-27

    The field of microbial forensics has recently sought to develop methods to discern biological signatures to indicate production methods for biological agents. Viral agents have received less attention to date. Their obligate propagation in living cells makes purification from cellular material a challenge. This leads to potential carryover of protein-rich signature of their production system. Here we have explored a proteomic analysis of Vaccinia virus as a model poxvirus system in which to compare samples of virus propagated in different cell lines and subjected to different purification schemes. The proteomic data sets indicated viral, host cell and culture medium proteins, and several layers of data analysis were applied to build confidence in the peptide identification and capture information on the taxonomic utility of each. The analysis showed clear shifts in protein profiles with virus purification, with successive gradient purification steps showing different levels of viral protein enrichment. Peptides from cellular proteins, including those present in purified virus preparations, provided signatures which enabled discrimination of cell line substrates, including distinguishing between cells derived from different primate species. The ability to discern multiple aspects of viral production demonstrates the potential value of proteomic analysis as tool for microbial forensics.

  16. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver.

    PubMed

    Oberemm, Axel; Hansen, Ulf; Böhmert, Linda; Meckert, Christine; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2016-03-01

    Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml(-1) nanosilver, 0.5 and 5 µg ml(-1) AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ -1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment.

  17. On the Ontology Based Representation of Cell Lines

    PubMed Central

    Ganzinger, Matthias; He, Shan; Breuhahn, Kai; Knaup, Petra

    2012-01-01

    Cell lines are frequently used as highly standardized and reproducible in vitro models for biomedical analyses and assays. Cell lines are distributed by cell banks that operate databases describing their products. However, the description of the cell lines' properties are not standardized across different cell banks. Existing cell line-related ontologies mostly focus on the description of the cell lines' names, but do not cover aspects like the origin or optimal growth conditions. The objective of this work is to develop an ontology that allows for a more comprehensive description of cell lines and their metadata, which should cover the data elements provided by cell banks. This will provide the basis for the standardized annotation of cell lines and corresponding assays in biomedical research. In addition, the ontology will be the foundation for automated evaluation of such assays and their respective protocols in the future. To accomplish this, a broad range of cell bank databases as well as existing ontologies were analyzed in a comprehensive manner. We identified existing ontologies capable of covering different aspects of the cell line domain. However, not all data fields derived from the cell banks' databases could be mapped to existing ontologies. As a result, we created a new ontology called cell culture ontology (CCONT) integrating existing ontologies where possible. CCONT provides classes from the areas of cell line identification, origin, cell line properties, propagation and tests performed. PMID:23144907

  18. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.

    PubMed

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wisniewski, Jacek R; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools.

  19. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes

    PubMed Central

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V.; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J.; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wiśniewski, Jacek R.; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools. PMID:17090601

  20. Proteomic analysis of V-ATPase-rich cells harvested from the kidney and epididymis by fluorescence-activated cell sorting

    PubMed Central

    Da Silva, Nicolas; Pisitkun, Trairak; Belleannée, Clémence; Miller, Lance R.; Nelson, Raoul; Knepper, Mark A.; Brown, Dennis

    2010-01-01

    Proton-transporting cells are located in several tissues where they acidify the extracellular environment. These cells express the vacuolar H+-ATPase (V-ATPase) B1 subunit (ATP6V1B1) in their plasma membrane. We provide here a comprehensive catalog of the proteins that are expressed in these cells, after their isolation by enzymatic digestion and fluorescence-activated cell sorting (FACS) from transgenic B1-enhanced green fluorescent protein (EGFP) mice. In these mice, type A and B intercalated cells and connecting segment cells of the kidney, and narrow and clear cells of the epididymis, which all express ATP6V1B1, also express EGFP, while all other cell types are negative. The proteome of renal and epididymal EGFP-positive (EGFP+) cells was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and compared with their respective EGFP-negative (EGFP−) cell populations. A total of 2,297 and 1,564 proteins were detected in EGFP+ cells from the kidney and epididymis, respectively. Out of these proteins, 202 and 178 were enriched by a factor greater than 1.5 in EGFP+ cells compared with EGFP− cells, in the kidney and epididymis respectively, and included subunits of the V-ATPase (B1, a4, and A). In addition, several proteins involved in intracellular trafficking, signaling, and cytoskeletal dynamics were identified. A novel common protein that was enriched in renal and epididymal EGFP+ cells is the progesterone receptor, which might be a potential candidate for the regulation of V-ATPase-dependent proton transport. These proteomic databases provide a framework for comprehensive future analysis of the common and distinct functions of V-ATPase-B1-expressing cells in the kidney and epididymis. PMID:20181927

  1. Cell Type-Specific Effects of Mutant DISC1: A Proteomics Study.

    PubMed

    Xia, Meng; Broek, Jantine A C; Jouroukhin, Yan; Schoenfelder, Jeannine; Abazyan, Sofya; Jaaro-Peled, Hanna; Sawa, Akira; Bahn, Sabine; Pletnikov, Mikhail

    2016-05-01

    Despite the recent progress in psychiatric genetics, very few studies have focused on genetic risk factors in glial cells that, compared to neurons, can manifest different molecular pathologies underlying psychiatric disorders. In order to address this issue, we studied the effects of mutant disrupted in schizophrenia 1 (DISC1), a genetic risk factor for schizophrenia, in cultured primary neurons and astrocytes using an unbiased mass spectrometry-based proteomic approach. We found that selective expression of mutant DISC1 in neurons affects a wide variety of proteins predominantly involved in neuronal development (e.g., SOX1) and vesicular transport (Rab proteins), whereas selective expression of mutant DISC1 in astrocytes produces changes in the levels of mitochondrial (GDPM), nuclear (TMM43) and cell adhesion (ECM2) proteins. The present study demonstrates that DISC1 variants can perturb distinct molecular pathways in a cell type-specific fashion to contribute to psychiatric disorders through heterogenic effects in diverse brain cells. PMID:27606318

  2. Cell Type-Specific Effects of Mutant DISC1: A Proteomics Study.

    PubMed

    Xia, Meng; Broek, Jantine A C; Jouroukhin, Yan; Schoenfelder, Jeannine; Abazyan, Sofya; Jaaro-Peled, Hanna; Sawa, Akira; Bahn, Sabine; Pletnikov, Mikhail

    2016-05-01

    Despite the recent progress in psychiatric genetics, very few studies have focused on genetic risk factors in glial cells that, compared to neurons, can manifest different molecular pathologies underlying psychiatric disorders. In order to address this issue, we studied the effects of mutant disrupted in schizophrenia 1 (DISC1), a genetic risk factor for schizophrenia, in cultured primary neurons and astrocytes using an unbiased mass spectrometry-based proteomic approach. We found that selective expression of mutant DISC1 in neurons affects a wide variety of proteins predominantly involved in neuronal development (e.g., SOX1) and vesicular transport (Rab proteins), whereas selective expression of mutant DISC1 in astrocytes produces changes in the levels of mitochondrial (GDPM), nuclear (TMM43) and cell adhesion (ECM2) proteins. The present study demonstrates that DISC1 variants can perturb distinct molecular pathways in a cell type-specific fashion to contribute to psychiatric disorders through heterogenic effects in diverse brain cells.

  3. Modifications of wheat germ cell-free system for functional proteomics of plant membrane proteins.

    PubMed

    Nozawa, Akira; Tozawa, Yuzuru

    2014-01-01

    Functional proteomics of plant membrane proteins is an important approach to understand the comprehensive architecture of each metabolic pathway in plants. One bottleneck in the characterization of membrane proteins is the difficulty in producing sufficient quantities of functional protein for analysis. Here, we describe three methods for membrane protein production utilizing a wheat germ cell-free protein expression system. Owing to the open nature of cell-free synthesis reaction, protein synthesis can be modified with components necessary to produce functional protein. In this way we have developed modifications to a wheat germ cell-free system for the production of functional membrane proteins. Supplementation of liposomes or detergents allows the synthesis of functional integral membrane proteins. Furthermore, supplementation of myristic acid enables synthesis of N-myristylated peripheral membrane proteins. These modified cell-free synthesis methods facilitate the preparation and subsequent functional analyses of a wide variety of membrane proteins. PMID:24136528

  4. Proteomic identification of pterostilbene-mediated anticancer activities in HepG2 cells.

    PubMed

    Suganya, N; Bhakkiyalakshmi, E; Subin, T S; Krishnamurthi, K; Devi, S Saravana; Lau, K; Sekar, T V; Paulmurugan, R; Ramkumar, K M

    2014-07-21

    In the present study, we attempt to shed light on the underlying molecular mechanism of the anticancer activity of pterostilbene (PTS) in HepG2 cells through the proteomic approach. PTS was found to induce apoptosis by altering the expression of apoptotic genes and the G2/M phase of cell cycle arrest. Further, the 2-DE map showed the expression of 72 differentially regulated proteins in PTS-treated HepG2 cells, of which 8 spots with >2 fold up- or down-regulated level were identified by MALDI-TOF analysis, which has a regulatory role in apoptosis. These findings for the first time offer valuable insights into the mechanism of apoptotis by PTS in HepG2 cells.

  5. Proteomic Analysis of Membrane Proteins of Vero Cells: Exploration of Potential Proteins Responsible for Virus Entry

    PubMed Central

    Guo, Donghua; Zhu, Qinghe; Zhang, Hong

    2014-01-01

    Vero cells are highly susceptible to many viruses in humans and animals, and its membrane proteins (MPs) are responsible for virus entry. In our study, the MP proteome of the Vero cells was investigated using a shotgun LC-MS/MS approach. Six hundred twenty-seven proteins, including a total of 1839 peptides, were identified in MP samples of the Vero cells. In 627 proteins, 307 proteins (48.96%) were annotated in terms of biological process of gene ontology (GO) categories; 356 proteins (56.78%) were annotated in terms of molecular function of GO categories; 414 proteins (66.03%) were annotated in terms of cellular components of GO categories. Of 627 identified proteins, seventeen proteins had been revealed to be virus receptor proteins. The resulting protein lists and highlighted proteins may provide valuable information to increase understanding of virus infection of Vero cells. PMID:24286161

  6. 77 FR 5489 - Identification of Human Cell Lines Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... National Institute of Standards and Technology Identification of Human Cell Lines Project AGENCY: National... tandem repeat (STR) profiling up to 1500 human cell line samples as part of the Identification of Human Cell Lines Project. All data and corresponding information will be posted in a publically held...

  7. Proteomic analysis of livers from a transgenic mouse line with activated polyamine catabolism.

    PubMed

    Cerrada-Gimenez, Marc; Häyrinen, Jukka; Juutinen, Sisko; Reponen, Tuula; Jänne, Juhani; Alhonen, Leena

    2010-02-01

    We have generated a transgenic mouse line that over expresses the rate-controlling enzyme of the polyamine catabolism, spermidine/spermine N (1)-acetyltransferase, under the control of a heavy metal inducible promoter. This line is characterized by a notable increase in SSAT activity in liver, pancreas and kidneys and a moderate increase in the rest of the tissues. SSAT induction results in an enhanced polyamine catabolism manifested as a depletion of spermidine and spermine and an overaccumulation of putrescine in all tissues. To study how the activation of polyamine catabolism affects other metabolic pathways, protein expression pattern of the livers of transgenic animals was analyzed by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. A total of 23 proteins were shown to be differentially expressed in the transgenic from the wild-type animals. Many of the identified proteins showed expression patterns associated with polyamine catabolism activation. However, the expression pattern of other proteins, such as repression of GST pi and selenium-binding protein 2 and 60 kDa heat-shock protein, could be explained by the overexpression of peroxisome proliferator-activated receptor gamma co-activator 1alpha in response to depleted ATP pools. The activation of the latter proteins is thought to lead to the improved insulin sensitivity seen in the MT-SSAT animals.

  8. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  9. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis

    PubMed Central

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-01

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. PMID:25476450

  10. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    PubMed

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy.

  11. Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus.

    PubMed

    Munday, Diane C; Emmott, Edward; Surtees, Rebecca; Lardeau, Charles-Hugues; Wu, Weining; Duprex, W Paul; Dove, Brian K; Barr, John N; Hiscox, Julian A

    2010-11-01

    Human respiratory syncytial virus (HRSV) is a major cause of pediatric lower respiratory tract disease to which there is no vaccine or efficacious chemotherapeutic strategy. Although RNA synthesis and virus assembly occur in the cytoplasm, HRSV is known to induce nuclear responses in the host cell as replication alters global gene expression. Quantitative proteomics was used to take an unbiased overview of the protein changes in transformed human alveolar basal epithelial cells infected with HRSV. Underpinning this was the use of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS, which allowed the direct and simultaneous identification and quantification of both cellular and viral proteins. To reduce sample complexity and increase data return on potential protein localization, cells were fractionated into nuclear and cytoplasmic extracts. This resulted in the identification of 1,140 cellular proteins and six viral proteins. The proteomics data were analyzed using Ingenuity Pathways Analysis to identify defined canonical pathways and functional groupings. Selected data were validated using Western blot, direct and indirect immunofluorescence confocal microscopy, and functional assays. The study served to validate and expand upon known HRSV-host cell interactions, including those associated with the antiviral response and alterations in subnuclear structures such as the nucleolus and ND10 (promyelocytic leukemia bodies). In addition, novel changes were observed in mitochondrial proteins and functions, cell cycle regulatory molecules, nuclear pore complex proteins and nucleocytoplasmic trafficking proteins. These data shed light into how the cell is potentially altered to create conditions more favorable for infection. Additionally, the study highlights the application and advantage of stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS for the analysis of virus-host interactions.

  12. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells

    PubMed Central

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhao, Ruan Jin; Zhang, Xueji; Yang, Lun; Zhou, Shu-Feng; Mao, Zong-Fu

    2015-01-01

    Plumbagin (PLB) has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC). The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a critical role in the regulation of cell cycle, apoptosis, autophagy, epithelial to mesenchymal transition (EMT), and reactive oxygen species generation. The proteomic study showed substantial differences in response to PLB treatment between PC-3 and DU145 cells. PLB treatment significantly modulated the expression of critical proteins that regulate cell cycle, apoptosis, and EMT signaling pathways in PC-3 cells but not in DU145 cells. Consistently, our Western blotting analysis validated the bioinformatic and proteomic data and confirmed the modulating effects of PLB on important proteins that regulated cell cycle, apoptosis, autophagy, and EMT in PC-3 and DU145 cells. The data from the Western blot assay could not display significant differences between PC-3 and DU145 cells. These findings indicate that PLB elicits different proteomic responses in PC-3 and DU145 cells involving proteins and pathways that regulate cell cycle, apoptosis, autophagy, reactive oxygen species production, and antioxidation/oxidation homeostasis. This is the first systematic study with integrated computational, proteomic, and

  13. Exploring analytical proteomics platforms toward the definition of human cardiac stem cells receptome.

    PubMed

    Gomes-Alves, Patrícia; Serra, Margarida; Brito, Catarina; R-Borlado, Luis; López, Juan A; Vázquez, Jesús; Carrondo, Manuel J T; Bernad, António; Alves, Paula M

    2015-04-01

    Human cardiac stem cells (hCSC) express a portfolio of plasma membrane receptors that are involved in the regulatory auto/paracrine feedback loop mechanism of activation of these cells, and consequently contribute to myocardial regeneration. In order to attain a comprehensive description of hCSC receptome and overcoming the inability demonstrated by other technologies applied in receptor identification, mainly due to the transmembrane nature, high hydrophobic character and relative low concentration of these proteins, we have exploited and improved a proteomics workflow. This approach was based on the enrichment of hCSC plasma membrane fraction and addition of prefractionation steps prior to MS analysis. More than 100 plasma membrane receptors were identified. The data reported herein constitute a valuable source of information to further understand cardiac stem cells activation mechanisms and the subsequent cardiac repair process. All MS data have been deposited in the ProteomeXchange with identifier PXD001117 (http://proteomecentral.proteomexchange.org/dataset/PXD001117). PMID:25504917

  14. Differential proteomics analysis of mononuclear cells in cerebrospinal fluid of Parkinson’s disease

    PubMed Central

    Xing, Lifei; Wang, Dongtao; Wang, Lihong; Lan, Wenjie; Pan, Suyue

    2015-01-01

    Parkinson’s disease (PD) is one common neurodegenerative disease featured with degeneration of dopaminergic neurons in substantia nigra. Multiple factors participate in the pathogenesis and progression of PD. In this study, we investigated the proteomics profiles of mononuclear cells in cerebrospinal fluids from both PD patients and normal people, in order to explore the correlation between disease factors and PD. Cerebrospinal fluid samples were collected from both PD and normal people and were separated for mononuclear cells in vitro. Proteins were then extracted and separated by 2-dimensional gel electrophoresis. Proteins with differential expressions were identified by comparison to standard proteome expression profile map, followed by software and database analysis. In PD patients, there were 8 proteins with consistent expression profile and 16 proteins with differential expressions. Those differential proteins identified include cytoskeleton proteins (actin, myosin), signal transduction proteins (adenosine cyclase binding protein 1, calcium binding protein, talin) and anti-oxidation factor (thioredoxin peroxide reductase). PD patients had differential protein expressional profiles in the mononuclear cells of cerebrospinal fluids compared to normal people, suggesting the potential involvement of cytoskeleton and signal transduction proteins in apoptosis of neuronal apoptosis and PD pathogenesis. PMID:26823915

  15. Proteome responses of Citrobacter werkmanii BF-6 planktonic cells and biofilms to calcium chloride.

    PubMed

    Zhou, Gang; Shi, Qing-shan; Huang, Xiao-mo; Xie, Xiao-bao

    2016-02-01

    Calcium ions are well-known as intracellular second messengers that also have an important extracellular structural role for bacteria. Recently, we found that denser biofilms were formed by Citrobacter werkmanii BF-6 in the presence of 400 mM Ca(2+) than that of 12.5mM Ca(2+). Therefore, we employed two-dimensional (2-D) electrophoresis methods to investigate the proteome profiles of planktonic cells and biofilms in BF-6 under different concentrations of Ca(2+). Meanwhile, BF-6 biofilm architecture was also visualized with confocal laser scanning microscopy (CLSM). The results demonstrated that BF-6 biofilms formed at the bottom of microtiter plates when grown in the presence of 400 mM Ca(2+). A total of 151 proteins from planktonic cells and biofilms after exposure of BF-6 cells to 12.5 and 400 mM Ca(2+) were successfully identified. Different gene ontology (GO) and KEGG pathways were categorized and enriched for the above proteins. Growth in the presence of 400 mM Ca(2+) induced more complex signal pathways in BF-6 than 12.5mM Ca(2+). In addition, the biofilm architectures were also affected by Ca(2+). Our results show two different modes of biofilm enhancement for C. werkmanii in the presence of excess Ca(2+) and provide a preliminary expression of these differences based on proteomic assays.

  16. Growth condition-dependent cell surface proteome analysis of Enterococcus faecium.

    PubMed

    Sinnige, Jan C; de Been, Mark; Zhou, Miaomiao; Bonten, Marc J M; Willems, Rob J L; Top, Janetta

    2015-11-01

    The last 30 years Enterococcus faecium has become an important nosocomial pathogen in hospitals worldwide. The aim of this study was to obtain insight in the cell surface proteome of E. faecium when grown in laboratory and clinically relevant conditions. Enterococcus faecium E1162, a clinical blood stream isolate, was grown until mid-log phase in brain heart infusion medium (BHI) with, or without 0.02% bile salts, Tryptic Soy Broth with 1% glucose (TSBg) and urine, and its cell surface was "shaved" using immobilized trypsin. Peptides were identified using MS/MS. Mapping against the translated E1162 whole genome sequence identified 67 proteins that were differentially detected in different conditions. In urine, 14 proteins were significantly more and nine proteins less abundant relative to the other conditions. Growth in BHI-bile and TSBg, revealed four and six proteins, respectively, which were uniquely present in these conditions while two proteins were uniquely present in both conditions. Thus, proteolytic shaving of E. faecium cells identified differentially surface exposed proteins in different growth conditions. These proteins are of special interest as they provide more insight in the adaptive mechanisms and may serve as targets for the development of novel therapeutics against this multi-resistant emerging pathogen. All MS data have been deposited in the ProteomeXchange with identifier PXD002497 (http://proteomecentral.proteomexchange.org/dataset/PXD002497).

  17. Potential mechanism of apoptosis induced by ultrasound in human hepatocarcinoma cells via comparative proteomic analysis.

    PubMed

    Feng, Yi; Wan, Mingxi

    2015-01-01

    To analyze the potential molecular mechanism of ultrasound induced apoptosis in cancer cells, comparative proteomic methods were introduced in the study. After ultrasound exposure at the intensity of 1.2 W/cm2, the human SMMC-7721 hepatocarcinoma cells were stained by trypan blue to detect the morphologic changes, and then the flow cytometry was used to examine the percentage of early apoptosis via double staining of FITC-labelled Annexin V and Propidium iodide. The proteins were separated by two-dimensional (2D) SDS polyacrylamide gel electrophoresis (PAGE). Among them, the differently expressed proteins were identified by MALDI-TOF mass spectrometry to reveal the key proteins response to ultrasound exposure. It's proved early apoptosis of cells were induced by focused ultrasound. After ultrasound exposure, the expressing characteristics of several proteins changed, in which some proteins in HSP family are associated with apoptosis initiation. It is suggested that the focused ultrasound could be applied in the assistant cancer therapy. Moreover, it is proved the comparative proteomic methods could supply information about the protein expression to analyze the metabolic processes related to bio-effects of biomedical ultrasound.

  18. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    PubMed

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression.

  19. Establishment of two-dimensional gel electrophoresis profiles of the human acute promyelocytic leukemia cell line NB4.

    PubMed

    He, Pengcheng; Liu, Yanfeng; Zhang, Mei; Wang, Xiaoning; Wang, Huaiyu; Xi, Jieying; Wei, Kaihua; Wang, Hongli; Zhao, Jing

    2012-09-01

    To explore optimum conditions for establishing a two‑dimensional gel electrophoresis (2-DE) map of the human acute promyelocytic leukemia (APL) cell line NB4 and to analyze its protein profiles, we extracted total proteins from NB4 cells using cell disruption, liquid nitrogen freeze-thawing and fracturing by ultrasound, and quantified the extracted protein samples using Bradford's method. 2-DE was applied to separate the proteins, which were silver-stained in the gel. Well‑separated protein spots were selected from the gel using the ImageMaster™ 2D Platinum analysis system. Moreover, the effects of various protein sample sizes (140, 160 and 180 µg) on the 2-DE maps of the NB4 cells were determined and compared. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS), peptide mass fingerprinting (PMF) and database searching were used to identify the proteins. When the quantity of loading proteins was 160 µg, clear, well-resolved, reproducible 2-DE proteomic profiles of the NB4 cells were obtained. The average number of protein spots in 3 gels was 1160±51 with an average matching rate of 81%. A total of 10 proteins were identified by mass spectrometry and database queries, certain proteins were products of oncogenes and others were involved in cell cycle regulation and signal transduction. In summary, 2-DE profiles of the proteome of NB4 cells were established and certain proteins were identified by MALDI-TOF-MS and PMF which lay the foundation of further proteomic research of NB4 cells. These data should be useful for establishing a human APL proteome database. PMID:22736039

  20. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease

    PubMed Central

    Li, Wei; Liu, Liangyi; Gomez, Aurelie; Zhang, Jilu; Zhang, Qing; Choi, Sung W.; Greenson, Joel K.; Liu, Chen; Jiang, Di; Virts, Elizabeth; Kelich, Stephanie L.; Chu, Hong Wei; Flynn, Ryan; Blazar, Bruce R.; Hanenberg, Helmut; Hanash, Samir

    2016-01-01

    Gastrointestinal graft-versus-host-disease (GI-GVHD) is a life-threatening complication occurring after allogeneic hematopoietic cell transplantation (HCT), and a blood biomarker that permits stratification of HCT patients according to their risk of developing GI-GVHD would greatly aid treatment planning. Through in-depth, large-scale proteomic profiling of presymptomatic samples, we identified a T cell population expressing both CD146, a cell adhesion molecule, and CCR5, a chemokine receptor that is upregulated as early as 14 days after transplantation in patients who develop GI-GVHD. The CD4+CD146+CCR5+ T cell population is Th17 prone and increased by ICOS stimulation. shRNA knockdown of CD146 in T cells reduced their transmigration through endothelial cells, and maraviroc, a CCR5 inhibitor, reduced chemotaxis of the CD4+CD146+CCR5+ T cell population toward CCL14. Mice that received CD146 shRNA–transduced human T cells did not lose weight, showed better survival, and had fewer CD4+CD146+CCR5+ T cells and less pathogenic Th17 infiltration in the intestine, even compared with mice receiving maraviroc with control shRNA–transduced human T cells. Furthermore, the frequency of CD4+CD146+CCR5+ Tregs was increased in GI-GVHD patients, and these cells showed increased plasticity toward Th17 upon ICOS stimulation. Our findings can be applied to early risk stratification, as well as specific preventative therapeutic strategies following HCT. PMID:27195312

  1. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    PubMed

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis. PMID:23525364

  2. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    PubMed

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis.

  3. Responses of CHO cell lines to increased pCO2 at normal (37 °C) and reduced (33 °C) culture temperatures.

    PubMed

    Darja, Obrstar; Stanislav, Mandelc; Saša, Stojković; Andrej, Francky; Lea, Bojić; Branka, Javornik

    2016-02-10

    The correlation between dissolved carbon dioxide (pCO2) and cell growth, cell metabolism, productivity and product quality has often been reported. However, since pCO2 values in bioprocesses always vary concurrently with other bioprocess variables, it is very difficult to distinguish only the effect of pCO2. The aim of our work was to investigate further the specific effect of pCO2 and cell response on a proteome level. Proteome responses of three different CHO-Der3 cell lines in the exponential growth phase at normal (37 °C) and reduced (33 °C) culture temperatures, with normal (10%) and increased (20%) pCO2, were studied by comparative proteomic analysis (2D-DIGE). Cell viability and cell density, and the concentration of glucose, glutamine and lactate monitored over 72-h cultures showed that elevated pCO2 did not affect cell viability or productivity at either culture temperature, while metabolic activity was reduced. The specific metabolic profile also indicated altered glucose metabolism toward a less efficient anaerobic metabolism. Two-way ANOVA of proteomic data discriminated many more pCO2-specific changes in protein abundance (p<0.01) at 33 °C than at 37 °C and PCA analysis was able to distinguish clusters distinguishing cell lines and culture conditions at low temperature and elevated pCO2, indicating substantial proteome changes under these culture conditions. Cell sensitivity to increased pCO2 at the lower temperature was further confirmed by a significantly increased abundance of twelve proteins involved in anti- oxidative mechanisms and increased abundance of six proteins involved in glycolysis, including L-lactate dehydrogenase. Proteomic results support the metabolic data and the proposed pCO2 invoked metabolic switch toward anaerobic pathways. Anti- oxidative mechanisms, together with the anaerobic metabolism, allow the cells to detoxify while maintaining sufficient energy levels to preserve their vitality and functionality. This study provides

  4. Proteome Profiling in Lung Injury after Hematopoietic Stem Cell Transplantation.

    PubMed

    Bhargava, Maneesh; Viken, Kevin J; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Jagtap, Pratik D; Higgins, LeeAnn; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J; Kumar, Vipin; Arora, Mukta; Bitterman, Peter B; Ingbar, David H; Wendt, Chris H

    2016-08-01

    Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion). Adult subjects were classified as having IPS or infectious lung injury by the criteria outlined in the 2011 American Thoracic Society statement. BALF was depleted of hemoglobin and 14 high-abundance proteins, treated with trypsin, and labeled with isobaric tagging for relative and absolute quantification (iTRAQ) 8-plex reagent for two-dimensional capillary liquid chromatography (LC) and data dependent peptide tandem mass spectrometry (MS) on an Orbitrap Velos system in higher-energy collision-induced dissociation activation mode. Protein identification employed a target-decoy strategy using ProteinPilot within Galaxy P. The relative protein abundance was determined with reference to a global internal standard consisting of pooled BALF from patients with respiratory failure and no history of HSCT. A variance weighted t-test controlling for a false discovery rate of ≤5% was used to identify proteins that showed differential expression between IPS and infectious lung injury. The biological relevance of these proteins was determined by using gene ontology enrichment analysis and Ingenuity Pathway Analysis. We characterized 12 IPS and 18 infectious lung injury BALF samples. In the 5 iTRAQ LC-MS/MS experiments 845, 735, 532, 615, and 594 proteins were identified for a total of 1125 unique proteins and 368 common proteins across all 5 LC-MS/MS experiments. When comparing IPS to

  5. Proteomic Analysis Reveals the Molecular Underpinnings of Mandibular Gland Development and Lipid Metabolism in Two Lines of Honeybees (Apis mellifera ligustica).

    PubMed

    Huo, Xinmei; Wu, Bin; Feng, Mao; Han, Bin; Fang, Yu; Hao, Yue; Meng, Lifeng; Wubie, Abebe Jenberie; Fan, Pei; Hu, Han; Qi, Yuping; Li, Jianke

    2016-09-01

    The mandibular glands (MGs) of honeybee workers are vital for the secretion of lipids, for both larval nutrition and pheromones. However, knowledge of how the proteome controls MG development and functionality at the different physiological stages of worker bees is still lacking. We characterized and compared the proteome across different ages of MGs in Italian bees (ITBs) and Royal Jelly (RJ) bees (RJBs), the latter being a line bred for increasing RJ yield, originating from the ITB. All 2000 proteins that were shared by differently aged MGs in both bee lines (>4000 proteins identified in all) were strongly enriched in metabolizing protein, nucleic acid, small molecule, and lipid functional groups. The fact that these shared proteins are enriched in similar groups in both lines suggests that they are essential for basic cellular maintenance and MG functions. However, great differences were found when comparing the proteome across different MG phases in each line. In newly emerged bees (NEBs), the unique and highly abundant proteins were enriched in protein synthesis, cytoskeleton, and development related functional groups, suggesting their importance to initialize young MG development. In nurse bees (NBs), specific and highly abundant proteins were mainly enriched in substance transport and lipid synthesis, indicating their priority may be in priming high secretory activity in lipid synthesis as larval nutrition. The unique and highly abundant proteins in forager bees (FBs) were enriched in lipid metabolism, small molecule, and carbohydrate metabolism. This indicates their emphasis on 2-heptanone synthesis as an alarm pheromone to enhance colony defense or scent marker for foraging efficiency. Furthermore, a wide range of different biological processes was observed between ITBs and RJBs at different MG ages. Both bee stocks may adapt different proteome programs to drive gland development and functionality. The RJB nurse bee has reshaped its proteome by enhancing

  6. Proteomic Analysis Reveals the Molecular Underpinnings of Mandibular Gland Development and Lipid Metabolism in Two Lines of Honeybees (Apis mellifera ligustica).

    PubMed

    Huo, Xinmei; Wu, Bin; Feng, Mao; Han, Bin; Fang, Yu; Hao, Yue; Meng, Lifeng; Wubie, Abebe Jenberie; Fan, Pei; Hu, Han; Qi, Yuping; Li, Jianke

    2016-09-01

    The mandibular glands (MGs) of honeybee workers are vital for the secretion of lipids, for both larval nutrition and pheromones. However, knowledge of how the proteome controls MG development and functionality at the different physiological stages of worker bees is still lacking. We characterized and compared the proteome across different ages of MGs in Italian bees (ITBs) and Royal Jelly (RJ) bees (RJBs), the latter being a line bred for increasing RJ yield, originating from the ITB. All 2000 proteins that were shared by differently aged MGs in both bee lines (>4000 proteins identified in all) were strongly enriched in metabolizing protein, nucleic acid, small molecule, and lipid functional groups. The fact that these shared proteins are enriched in similar groups in both lines suggests that they are essential for basic cellular maintenance and MG functions. However, great differences were found when comparing the proteome across different MG phases in each line. In newly emerged bees (NEBs), the unique and highly abundant proteins were enriched in protein synthesis, cytoskeleton, and development related functional groups, suggesting their importance to initialize young MG development. In nurse bees (NBs), specific and highly abundant proteins were mainly enriched in substance transport and lipid synthesis, indicating their priority may be in priming high secretory activity in lipid synthesis as larval nutrition. The unique and highly abundant proteins in forager bees (FBs) were enriched in lipid metabolism, small molecule, and carbohydrate metabolism. This indicates their emphasis on 2-heptanone synthesis as an alarm pheromone to enhance colony defense or scent marker for foraging efficiency. Furthermore, a wide range of different biological processes was observed between ITBs and RJBs at different MG ages. Both bee stocks may adapt different proteome programs to drive gland development and functionality. The RJB nurse bee has reshaped its proteome by enhancing

  7. Effects of altered gravity on the cell cycle, actin cytoskeleton and proteome in Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    He, Jie; Zhang, Xiaoxian; Gao, Yong; Li, Shuijie; Sun, Yeqing

    Some researchers suggest that the changes of cell cycle under the effect of microgravity may be associated with many serious adverse physiological changes. In the search for underlying mechanisms and possible new countermeasures, we used the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony to study the effects of altered gravity on the cell cycle, actin cytoskeleton and proteome. In parallel, the cell cycle was analyzed in Physarum incubated (1) in altered gravity for 20 h, (2) in altered gravity for 40 h, (3) in altered gravity for 80 h, and (4) in ground controls. The cell cycle, the actin cytoskeleton, and proteome in the altered gravity and ground controls were examined. The results indicated that the duration of the G2 phase was lengthened 20 min in high aspect ratio vessel (HARV) for 20 h, and prolonged 2 h in altered gravity either for 40 h or for 80 h, whereas the duration of other phases in the cell cycle was unchanged with respect to the control. The microfilaments in G2 phase had a reduced number of fibers and a unique abnormal morphology in altered gravity for 40 h, whereas the microfilaments in other phases of cell cycle were unchanged when compared to controls. Employing classical two-dimensional electrophoresis (2-DE), we examined the effect of the altered gravity on P. polycephalum proteins. The increase in the duration of G2 phase in altered gravity for 40 h was accompanied by changes in the 2-DE protein profiles, over controls. Out of a total of 200 protein spots investigated in G2 phase, which were reproducible in repeated experiments, 72 protein spots were visually identified as specially expressed, and 11 proteins were up-regulated by 2-fold and 28 proteins were down-regulated by 2-fold over controls. Out of a total of three low-expressed proteins in G2 phase in altered gravity for 40 h, two proteins were unknown proteins, and one protein was spherulin 3b by MALDI-TOF mass spectrometry (MS

  8. Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines

    PubMed Central

    Fernández-Moreno, Mercedes; Hermida-Gómez, Tamara; Gallardo, M. Esther; Dalmao-Fernández, Andrea; Rego-Pérez, Ignacio; Garesse, Rafael

    2016-01-01

    Introduction The generation of Rho-0 cells requires the use of an immortalization process, or tumor cell selection, followed by culture in the presence of ethidium bromide (EtBr), incurring the drawbacks its use entails. The purpose of this work was to generate Rho-0 cells using human mesenchymal stem cells (hMSCs) with reagents having the ability to remove mitochondrial DNA (mtDNA) more safely than by using EtBr. Methodology Two immortalized hMSC lines (3a6 and KP) were used; 143B.TK-Rho-0 cells were used as reference control. For generation of Rho-0 hMSCs, cells were cultured in medium supplemented with each tested reagent. Total DNA was isolated and mtDNA content was measured by real-time polymerase chain reaction (PCR). Phenotypic characterization and gene expression assays were performed to determine whether 3a6 Rho-0 hMSCs maintain the same stem properties as untreated 3a6 hMSCs. To evaluate whether 3a6 Rho-0 hMSCs had a phenotype similar to that of 143B.TK-Rho-0 cells, in terms of reactive oxygen species (ROS) production, apoptotic levels and mitochondrial membrane potential (Δψm) were measured by flow cytometry and mitochondrial respiration was evaluated using a SeaHorse XFp Extracellular Flux Analyzer. The differentiation capacity of 3a6 and 3a6 Rho-0 hMSCs was evaluated using real-time PCR, comparing the relative expression of genes involved in osteogenesis, adipogenesis and chondrogenesis. Results The results showed the capacity of the 3a6 cell line to deplete its mtDNA and to survive in culture with uridine. Of all tested drugs, Stavudine (dt4) was the most effective in producing 3a6-Rho cells. The data indicate that hMSC Rho-0 cells continue to express the characteristic MSC cell surface receptor pattern. Phenotypic characterization showed that 3a6 Rho-0 cells resembled 143B.TK-Rho-0 cells, indicating that hMSC Rho-0 cells are Rho-0 cells. While the adipogenic capability was higher in 3a6 Rho-0 cells than in 3a6 cells, the osteogenic and chondrogenic

  9. The Karyote physico-chemical genomic, proteomic, metabolic cell modeling system.

    PubMed

    Ortoleva, P; Berry, E; Brun, Y; Fan, J; Fontus, M; Hubbard, K; Jaqaman, K; Jarymowycz, L; Navid, A; Sayyed-Ahmad, A; Shreif, Z; Stanley, F; Tuncay, K; Weitzke, E; Wu, L-C

    2003-01-01

    Modeling approaches to the dynamics of a living cell are presented that are strongly based on its underlying physical and chemical processes and its hierarchical spatio-temporal organization. Through the inclusion of a broad spectrum of processes and a rigorous analysis of the multiple scale nature of cellular dynamics, we are attempting to advance cell modeling and its applications. The presentation focuses on our cell modeling system, which integrates data archiving and quantitative physico-chemical modeling and information theory to provide a seamless approach to the modeling/data analysis endeavor. Thereby the rapidly growing mess of genomic, proteomic, metabolic, and cell physiological data can be automatically used to develop and calibrate a predictive cell model. The discussion focuses on the Karyote cell modeling system and an introduction to the CellX and VirusX models. The Karyote software system integrates three elements: (1) a model-building and data archiving module that allows one to define a cell type to be modeled through its reaction network, structure, and transport processes as well as to choose the surrounding medium and other parameters of the phenomenon to be modeled; (2) a genomic, proteomic, metabolic cell simulator that solves the equations of metabolic reaction, transcription/translation polymerization and the exchange of molecules between parts of the cell and with the surrounding medium; and (3) an information theory module (ITM) that automates model calibration and development, and integrates a variety of data types with the cell dynamic computations. In Karyote, reactions may be fast (equilibrated) or slow (finite rate), and the special effects of enzymes and other minority species yielding steady-state cycles of arbitrary complexities are accounted for. These features of the dynamics are handled via rigorous multiple scale analysis. A user interface allows for an automated generation and solution of the equations of multiple timescale

  10. Cytoskeletal Regulation Dominates Temperature-Sensitive Proteomic Changes of Hibernation in Forebrain of 13-Lined Ground Squirrels

    PubMed Central

    Hindle, Allyson G.; Martin, Sandra L.

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy – wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  11. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    PubMed

    Hindle, Allyson G; Martin, Sandra L

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  12. Proteomic profiling of nuclear fractions from native renal inner medullary collecting duct cells.

    PubMed

    Pickering, Christina M; Grady, Cameron; Medvar, Barbara; Emamian, Milad; Sandoval, Pablo C; Zhao, Yue; Yang, Chin-Rang; Jung, Hyun Jun; Chou, Chung-Lin; Knepper, Mark A

    2016-02-01

    The control of renal water excretion occurs in part by regulation of transcription in response to vasopressin in cells of the collecting duct. A systems biology-based approach to understanding transcriptional control in renal collecting duct cells depends on knowledge of what transcription factors and other regulatory proteins are present in the cells' nuclei. The goal of this article is to report comprehensive proteomic profiling of cellular fractions enriched in nuclear proteins from native inner medullary collecting duct (IMCD) cells of the rat. Multidimensional separation procedures and state-of-the art protein mass spectrometry produced 18 GB of spectral data that allowed the high-stringency identification of 5,048 proteins in nuclear pellet (NP) and nuclear extract (NE) fractions of biochemically isolated rat IMCD cells (URL: https://helixweb.nih.gov/ESBL/Database/IMCD_Nucleus/). The analysis identified 369 transcription factor proteins out of the 1,371 transcription factors coded by the rat genome. The analysis added 1,511 proteins to the recognized proteome of rat IMCD cells, now amounting to 8,290 unique proteins. Analysis of samples treated with the vasopressin analog dDAVP (1 nM for 30 min) or its vehicle revealed 99 proteins in the NP fraction and 88 proteins in the NE fraction with significant changes in spectral counts (Fisher exact test, P < 0.005). Among those altered by vasopressin were seven distinct histone proteins, all of which showed decreased abundance in the NP fraction, consistent with a possible effect of vasopressin to induce chromatin remodeling. The results provide a data resource for future studies of vasopressin-mediated transcriptional regulation in the renal collecting duct.

  13. Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells.

    PubMed

    Chen, Mei; Zhao, Le; Sun, Yong-Le; Cui, Su-Xia; Zhang, Li-Fang; Yang, Bin; Wang, Jie; Kuang, Ting-Yun; Huang, Fang

    2010-08-01

    The green alga Chlamydomonas reinhardtii is a model organism to study H(2) metabolism in photosynthetic eukaryotes. To understand the molecular mechanism of H(2) metabolism, we used 2-DE coupled with MALDI-TOF and MALDI-TOF/TOF-MS to investigate proteomic changes of Chlamydomonas cells that undergo sulfur-depleted H(2) photoproduction process. In this report, we obtained 2-D PAGE soluble protein profiles of Chlamydomonas at three time points representing different phases leading to H(2) production. We found over 105 Coomassie-stained protein spots, corresponding to 82 unique gene products, changed in abundance throughout the process. Major changes included photosynthetic machinery, protein biosynthetic apparatus, molecular chaperones, and 20S proteasomal components. A number of proteins related to sulfate, nitrogen and acetate assimilation, and antioxidative reactions were also changed significantly. Other proteins showing alteration during the sulfur-depleted H(2) photoproduction process were proteins involved in cell wall and flagella metabolisms. In addition, among these differentially expressed proteins, 11 were found to be predicted proteins without functional annotation in the Chlamydomonas genome database. The results of this proteomic analysis provide new insight into molecular basis of H(2) photoproduction in Chlamydomonas under sulfur depletion.

  14. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses

    PubMed Central

    Breker, Michal; Gymrek, Melissa

    2013-01-01

    Uncovering the mechanisms underlying robust responses of cells to stress is crucial for our understanding of cellular physiology. Indeed, vast amounts of data have been collected on transcriptional responses in Saccharomyces cerevisiae. However, only a handful of pioneering studies describe the dynamics of proteins in response to external stimuli, despite the fact that regulation of protein levels and localization is an essential part of such responses. Here we characterized unprecedented proteome plasticity by systematically tracking the localization and abundance of 5,330 yeast proteins at single-cell resolution under three different stress conditions (DTT, H2O2, and nitrogen starvation) using the GFP-tagged yeast library. We uncovered a unique “fingerprint” of changes for each stress and elucidated a new response arsenal for adapting to radical environments. These include bet-hedging strategies, organelle rearrangement, and redistribution of protein localizations. All data are available for download through our online database, LOQATE (localization and quantitation atlas of yeast proteome). PMID:23509072

  15. Effects of raspberry phytochemical extract on cell proliferation, apoptosis, and serum proteomics in a rat model.

    PubMed

    Chen, Hong-Sheng; Liu, Ming; Shi, Li-Jun; Zhao, Jin-Lu; Zhang, Chun-Peng; Lin, Luo-Qiang; Liu, Yan; Zhang, Shu-Jun; Jin, Jun-Chao; Wang, Lei; Shen, Bao-Zhong; Liu, Jia-Ren

    2011-10-01

    The red raspberry extract possesses potent antioxidant capacity and anticancerous activity in vitro and in vivo. The objective of this study was to determine whether red raspberry extract affected the cell cycle, angiogenesis, and apoptosis in hepatic lesion tissues from a rat model induced by diethylnitrosamine (DEN) as well as changes of serum proteomics. Rats were treated with red raspberry extract (0.75, 1.5, or 3.0 g/kg of body weight) by gavage starting 2 h after DEN administration and continued for 20 wk. Red raspberry extract inhibited cell proliferation, vascular endothelial growth factor VEGF expression, and induced apoptosis in the hepatic lesion tissues. In addition, 2 protein peaks (2597.93 and 4513.88 m/z) were identified to differentially express in the 3.0 g/kg body weight and positive control groups by serum proteomics. These results suggest that a dietary supplement with red raspberry effectively protects against chemically induced hepatic lesions in rats.

  16. Proteome Alterations of Hippocampal Cells Caused by Clostridium botulinum C3 Exoenzyme.

    PubMed

    Schröder, Anke; Rohrbeck, Astrid; Just, Ingo; Pich, Andreas

    2015-11-01

    C3bot from Clostridium botulinum is a bacterial mono-ADP-ribosylating enzyme, which transfers an ADP-ribose moiety onto the small GTPases Rho A/B/C. C3bot and the catalytic inactive mutant (C3E174Q) cause axonal and dendritic growth as well as branching in primary hippocampal neurons. In cultured murine hippocampal HT22 cells, protein abundances were analyzed in response to C3bot or C3E174Q treatment using a shotgun proteomics approach. Proteome analyses were performed at four time points over 6 days. More than 4000 protein groups were identified at each time point and quantified in triplicate analyses. On day one, 46 proteins showed an altered abundance, and after 6 days, more than 700 proteins responded to C3bot with an up- or down-regulation. In contrast, C3E174Q had no provable impact on protein abundance. Protein quantification was verified for several proteins by multiple reaction monitoring. Data analysis of altered proteins revealed different cellular processes that were affected by C3bot. They are particularly involved in mitochondrial and lysosomal processes, adhesion, carbohydrate and glucose metabolism, signal transduction, and nuclear proteins of translation and ribosome biogenesis. The results of this study gain novel insights into the function of C3bot in hippocampal cells. PMID:26393427

  17. Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis.

    PubMed

    Conde, João; Larguinho, Miguel; Cordeiro, Ana; Raposo, Luís R; Costa, Pedro M; Santos, Susana; Diniz, Mário S; Fernandes, Alexandra R; Baptista, Pedro V

    2014-08-01

    Antisense therapy is a powerful tool for post-transcriptional gene silencing suitable for down-regulating target genes associated to disease. Gold nanoparticles have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an antisense gold-nanobeacon consisting of a stem-looped oligonucleotide double-labelled with 3'-Cy3 and 5'-Thiol-C6 and tested for the effective blocking of gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridisation to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.

  18. Proteomic Study to Survey the CIGB-552 Antitumor Effect

    PubMed Central

    Rodríguez-Ulloa, Arielis; Gil, Jeovanis; Ramos, Yassel; Hernández-Álvarez, Lilian; Flores, Lisandra; Oliva, Brizaida; García, Dayana; Sánchez-Puente, Aniel; Musacchio-Lasa, Alexis; Fernández-de-Cossio, Jorge; Padrón, Gabriel; González López, Luis J.; Besada, Vladimir; Guerra-Vallespí, Maribel

    2015-01-01

    CIGB-552 is a cell-penetrating peptide that exerts in vitro and in vivo antitumor effect on cancer cells. In the present work, the mechanism involved in such anticancer activity was studied using chemical proteomics and expression-based proteomics in culture cancer cell lines. CIGB-552 interacts with at least 55 proteins, as determined by chemical proteomics. A temporal differential proteomics based on iTRAQ quantification method was performed to identify CIGB-552 modulated proteins. The proteomic profile includes 72 differentially expressed proteins in response to CIGB-552 treatment. Proteins related to cell proliferation and apoptosis were identified by both approaches. In line with previous findings, proteomic data revealed that CIGB-552 triggers the inhibition of NF-κB signaling pathway. Furthermore, proteins related to cell invasion were differentially modulated by CIGB-552 treatment suggesting new potentialities of CIGB-552 as anticancer agent. Overall, the current study contributes to a better understanding of the antitumor action mechanism of CIGB-552. PMID:26576414

  19. Pressurized Pepsin Digestion in Proteomics

    PubMed Central

    López-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.; Hixson, Kim K.; Tian, Zhixin; Lee, Jung Hwa; Lee, Sang-Won; Tolić, Nikola; Weitz, Karl K.; Belov, Mikhail E.; Smith, Richard D.; Paša-Tolić, Ljiljana

    2011-01-01

    Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome. PMID:20627868

  20. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis.

    PubMed

    Parsons, Harriet T; Christiansen, Katy; Knierim, Bernhard; Carroll, Andrew; Ito, Jun; Batth, Tanveer S; Smith-Moritz, Andreia M; Morrison, Stephanie; McInerney, Peter; Hadi, Masood Z; Auer, Manfred; Mukhopadhyay, Aindrila; Petzold, Christopher J; Scheller, Henrik V; Loqué, Dominique; Heazlewood, Joshua L

    2012-05-01

    The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized. PMID:22430844

  1. Platelet proteomics.

    PubMed

    Zufferey, Anne; Fontana, Pierre; Reny, Jean-Luc; Nolli, Severine; Sanchez, Jean-Charles

    2012-01-01

    Platelets are small cell fragments, produced by megakaryocytes, in the bone marrow. They play an important role in hemostasis and diverse thrombotic disorders. They are therefore primary targets of antithrombotic therapies. They are implicated in several pathophysiological pathways, such as inflammation or wound repair. In blood circulation, platelets are activated by several pathways including subendothelial matrix and thrombin, triggering the formation of the platelet plug. Studying their proteome is a powerful approach to understand their biology and function. However, particular attention must be paid to different experimental parameters, such as platelet quality and purity. Several technologies are involved during the platelet proteome processing, yielding information on protein identification, characterization, localization, and quantification. Recent technical improvements in proteomics combined with inter-disciplinary strategies, such as metabolomic, transcriptomics, and bioinformatics, will help to understand platelets biological mechanisms. Therefore, a comprehensive analysis of the platelet proteome under different environmental conditions may contribute to elucidate complex processes relevant to platelet function regarding bleeding disorders or platelet hyperreactivity and identify new targets for antiplatelet therapy.

  2. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2

    PubMed Central

    Pimienta, Genaro; Fok, Victor; Haslip, Maria; Nagy, Maria; Takyar, Seyedtaghi; Steitz, Joan A

    2015-01-01

    In Epstein-Barr virus (EBV) latent infection, the EBV-encoded RNAs EBER1 and EBER2 accumulate in the host cell nucleus to ~106 copies. While the expression of EBERs in cell lines is associated with transformation, a mechanistic explanation of their roles in EBV latency remains elusive. To identify EBER-specific gene expression features, we compared the proteome and mRNA transcriptome from BJAB cells (an EBV-negative B lymphoma cell line) stably transfected with an empty plasmid or with one carrying both EBER genes. We identified ~1800 proteins with at least 2 SILAC pair measurements, of which only 8 and 12 were up- and downregulated ≥ 2-fold, respectively. One upregulated protein was PIK3AP1, a B-cell specific protein adapter known to activate the PI3K-AKT signaling pathway, which regulates alternative splicing and translation in addition to its pro-survival effects. In the mRNA-seq data, the mRNA levels for some of the proteins changing in the SILAC data did not change. We instead observed isoform switch events. We validated the most relevant findings with biochemical assays. These corroborated the upregulation of PIK3AP1 and AKT activation in BJAB cells expressing high levels of both EBERs and EBNA1 (a surrogate of Burkitt’s lymphoma EBV latency I) relative to those expressing only EBNA1. The mRNA-seq data in these cells showed multiple upregulated oncogenes whose mRNAs are enriched for 3´-UTR AU-rich elements (AREs), such as ccl3, ccr7, il10, vegfa and zeb1. The CCL3, CCR7, IL10 and VEGFA proteins promote cell proliferation and are associated with EBV-mediated lymphomas. In EBV latency, ZEB1 represses the transcription of ZEBRA, an EBV lytic phase activation factor. We previously found that EBER1 interacts with AUF1 in vivo and proposed stabilization of ARE-containing mRNAs. Thus, the ~106 copies of EBER1 may promote not only cell proliferation due to an increase in the levels of ARE-containing genes like ccl3, ccr7, il10, and vegfa, but also the

  3. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2.

    PubMed

    Pimienta, Genaro; Fok, Victor; Haslip, Maria; Nagy, Maria; Takyar, Seyedtaghi; Steitz, Joan A

    2015-01-01

    In Epstein-Barr virus (EBV) latent infection, the EBV-encoded RNAs EBER1 and EBER2 accumulate in the host cell nucleus to ~10(6) copies. While the expression of EBERs in cell lines is associated with transformation, a mechanistic explanation of their roles in EBV latency remains elusive. To identify EBER-specific gene expression features, we compared the proteome and mRNA transcriptome from BJAB cells (an EBV-negative B lymphoma cell line) stably transfected with an empty plasmid or with one carrying both EBER genes. We identified ~1800 proteins with at least 2 SILAC pair measurements, of which only 8 and 12 were up- and downregulated ≥ 2-fold, respectively. One upregulated protein was PIK3AP1, a B-cell specific protein adapter known to activate the PI3K-AKT signaling pathway, which regulates alternative splicing and translation in addition to its pro-survival effects. In the mRNA-seq data, the mRNA levels for some of the proteins changing in the SILAC data did not change. We instead observed isoform switch events. We validated the most relevant findings with biochemical assays. These corroborated the upregulation of PIK3AP1 and AKT activation in BJAB cells expressing high levels of both EBERs and EBNA1 (a surrogate of Burkitt's lymphoma EBV latency I) relative to those expressing only EBNA1. The mRNA-seq data in these cells showed multiple upregulated oncogenes whose mRNAs are enriched for 3´-UTR AU-rich elements (AREs), such as ccl3, ccr7, il10, vegfa and zeb1. The CCL3, CCR7, IL10 and VEGFA proteins promote cell proliferation and are associated with EBV-mediated lymphomas. In EBV latency, ZEB1 represses the transcription of ZEBRA, an EBV lytic phase activation factor. We previously found that EBER1 interacts with AUF1 in vivo and proposed stabilization of ARE-containing mRNAs. Thus, the ~10(6) copies of EBER1 may promote not only cell proliferation due to an increase in the levels of ARE-containing genes like ccl3, ccr7, il10, and vegfa, but also the

  4. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette

    2015-01-01

    Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308

  5. The rat red blood cell proteome is altered by priming with 2-butoxyethanol

    SciTech Connect

    Palkar, Prajakta S.; Kakhniashvili, David G.; Goodman, Steven R.; Mehendale, Harihara M.

    2008-08-01

    Administration of a low priming dose of 2-butoxyethanol (BE, 500 mg/kg, p.o.) 7 days prior to a larger LD{sub 90} dose (1500 mg BE/kg, p.o.) offers protection against the lethal dose-induced hemolysis and death in female Sprague Dawley rats because of prompt and efficient replacement of red blood cells (RBCs) with new resilient RBCs. The objective of the present work was to analyze the altered proteome of RBCs upon priming with BE in order to identify the potential anti-hemolytic survival proteins induced in the primed rat RBCs (P-RBCs) as opposed to vehicle-treated RBCs (V-RBCs). The RBCs from the two groups were fractionated into membrane and cytosolic fractions. The cytosolic fractions were further fractionated for proteomic analysis into 3 fractions. The fractions were labeled with Cy3 and Cy5 fluorescent dyes and subjected to 2-dimensional differential gel electrophoresis (DIGE) to analyze the protein profiles. Seven membrane and 8 cytosolic proteins were found to be significantly increased ({>=} 2.5 fold) in P-RBCs as compared to V-RBCs. The identified proteins can be classified into antioxidant, membrane skeleton, protein turnover, lipid raft, and energy metabolism components. Increased levels of the proteins from antioxidant and membrane skeleton groups were confirmed by Western blot analysis. The study provides the first report on protein profiling of rat RBCs as well as on alteration of the proteome upon exposure to a priming dose of hemotoxicant. Further studies are needed to prove the protective role of the identified proteins and will initiate the field of survival/protective/anti-hemolytic proteins in RBCs.

  6. Derivation of three new human embryonic stem cell lines.

    PubMed

    Bradley, Cara K; Chami, Omar; Peura, Teija T; Bosman, Alexis; Dumevska, Biljana; Schmidt, Uli; Stojanov, Tomas

    2010-04-01

    Human embryonic stem cells are pluripotent cells capable of extensive self-renewal and differentiation to all cells of the embryo proper. Here, we describe the derivation and characterization of three Sydney IVF human embryonic stem cell lines not already reported elsewhere, designated SIVF001, SIVF002, and SIVF014. The cell lines display typical compact colony morphology of embryonic stem cells, have stable growth rates over more than 40 passages and are cytogenetically normal. Furthermore, the cell lines express pluripotency markers including Nanog, Oct4, SSEA3 and Tra-1-81, and are capable of generating teratoma cells derived from each of the three germ layers in immunodeficient mice. These experiments show that the cell lines constitute pluripotent stem cell lines. PMID:20198447

  7. Proteomic signatures of extracellular vesicles secreted by nonmineralizing and mineralizing human osteoblasts and stimulation of tumor cell growth.

    PubMed

    Morhayim, Jess; van de Peppel, Jeroen; Demmers, Jeroen A A; Kocer, Gulistan; Nigg, Alex L; van Driel, Marjolein; Chiba, Hideki; van Leeuwen, Johannes P

    2015-01-01

    Beyond forming bone, osteoblasts play pivotal roles in various biologic processes, including hematopoiesis and bone metastasis. Extracellular vesicles (EVs) have been implicated in intercellular communication via transfer of proteins and nucleic acids between cells. We focused on the proteomic characterization of nonmineralizing (NMOBs) and mineralizing (MOBs) human osteoblast (SV-HFOs) EVs and investigated their effect on human prostate cancer (PC3) cells by microscopic, proteomic, and gene expression analyses. Proteomic analysis showed that 97% of the proteins were shared among NMOB and MOB EVs, and 30% were novel osteoblast-specific EV proteins. Label-free quantification demonstrated mineralization stage-dependent 5-fold enrichment of 59 and 451 EV proteins in NMOBs and MOBs, respectively. Interestingly, bioinformatic analyses of the osteoblast EV proteomes and EV-regulated prostate cancer gene expression profiles showed that they converged on pathways involved in cell survival and growth. This was verified by in vitro proliferation assays where osteoblast EV uptake led to 2-fold increase in PC3 cell growth compared to cell-free culture medium-derived vesicle controls. Our findings elucidate the mineralization stage-specific protein content of osteoblast-secreted EVs, show a novel way by which osteoblasts communicate with prostate cancer, and open up innovative avenues for therapeutic intervention.

  8. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  9. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications.

    PubMed

    Yu, Jing; Zhou, Jing; Sutherland, Alex; Wei, Wei; Shin, Young Shik; Xue, Min; Heath, James R

    2014-01-01

    We review an emerging microfluidics-based toolkit for single-cell functional proteomics. Functional proteins include, but are not limited to, the secreted signaling proteins that can reflect the biological behaviors of immune cells or the intracellular phosphoproteins associated with growth factor-stimulated signaling networks. Advantages of the microfluidics platforms are multiple. First, 20 or more functional proteins may be assayed simultaneously from statistical numbers of single cells. Second, cell behaviors (e.g., motility) may be correlated with protein assays. Third, extensions to quantized cell populations can permit measurements of cell-cell interactions. Fourth, rare cells can be functionally identified and then separated for further analysis or culturing. Finally, certain assay types can provide a conduit between biology and the physicochemical laws. We discuss the history and challenges of the field then review design concepts and uses of the microchip platforms that have been reported, with an eye toward biomedical applications. We then look to the future of the field.

  10. Proteomic insight into the effects of the Salmonella ubiquitin ligase SlrP on host cells.

    PubMed

    Cordero-Alba, Mar; García-Gómez, Juan José; Aguilera-Herce, Julia; Ramos-Morales, Francisco

    2016-04-01

    The virulence of the human and animal pathogen Salmonella enterica serovar Typhimurium is dependent on two type III secretion systems. These systems translocate proteins called effectors into eukaryotic host cells. SlrP is a Salmonella type III secretion effector with ubiquitin ligase activity. Here, we used two complementary proteomic approaches, two-dimensional gel electrophoresis and iTRAQ (isobaric tags for relative and absolute quantification) to study the consequences of the presence of SlrP in human epithelial cells. We identified 37 proteins that were differentially expressed in HeLa cells expressing slrP compared to control cells. Microarray analysis revealed that more than a half of differentially expressed proteins did not show changes in the transcriptome, suggesting post-transcriptional regulation. A gene ontology overrepresentation test carried out on the differentially expressed proteins revealed enrichment of ontology terms related to several types of junctions mediating adhesion in epithelial cells. Consistently, slrP-transfected cells showed defects in migration and adhesion. Our results suggest that the modification of cell-cell interaction ability of the host could be one of the final consequences of the action of SlrP during an infection.

  11. Proteomic methodological recommendations for studies involving human plasma, platelets, and peripheral blood mononuclear cells.

    PubMed

    de Roos, Baukje; Duthie, Susan J; Polley, Abigael C J; Mulholland, Francis; Bouwman, Freek G; Heim, Carolin; Rucklidge, Garry J; Johnson, Ian T; Mariman, Edwin C; Daniel, Hannelore; Elliott, Ruan M

    2008-06-01

    This study was designed to develop, optimize and validate protocols for blood processing prior to proteomic analysis of plasma, platelets and peripheral blood mononuclear cells (PBMC) and to determine analytical variation of a single sample of depleted plasma, platelet and PBMC proteins within and between four laboratories each using their own standard operating protocols for 2D gel electrophoresis. Plasma depleted either using the Beckman Coulter IgY-12 proteome partitioning kit or the Amersham albumin and IgG depletion columns gave good quality gels, but reproducibility appeared better with the single-use immuno-affinity column. The use of the Millipore Filter Device for protein concentration gave a 16% ( p < 0.005) higher recovery of protein in flow-through sample compared with acetone precipitation. The use of OptiPrep gave the lowest level of platelet contamination (1:0.8) during the isolation of PBMC from blood. Several proteins (among which are alpha-tropomyosin, fibrinogen and coagulation factor XIII A) were identified that may be used as biomarkers of platelet contamination in future studies. When identifying preselected spots, at least three out of the four centers found similar identities for 10 out of the 10 plasma proteins, 8 out of the 10 platelet proteins and 8 out of the 10 PBMC proteins. The discrepancy in spot identifications has been described before and may be explained by the mis-selection of spots due to laboratory-to-laboratory variation in gel formats, low scores on the peptide analysis leading to no or only tentative identifications, or incomplete resolution of different proteins in what appears as a single abundant spot. The average within-laboratory coefficient of variation (CV) for each of the matched spots after automatic matching using either PDQuest or ProteomWeaver software ranged between 18 and 69% for depleted plasma proteins, between 21 and 55% for platelet proteins, and between 22 and 38% for PBMC proteins. Subsequent manual

  12. Combination of virtual and experimental 2DE together with ESI LC-MS/MS gives a clearer view about proteomes of human cells and plasma.

    PubMed

    Naryzhny, Stanislav N; Zgoda, Victor G; Maynskova, Maria A; Novikova, Svetlana E; Ronzhina, Natalia L; Vakhrushev, Igor V; Khryapova, Elena V; Lisitsa, Andrey V; Tikhonova, Olga V; Ponomarenko, Elena A; Archakov, Alexander I

    2016-01-01

    Virtual and experimental 2DE coupled with ESI LC-MS/MS was introduced to obtain better representation of the information about human proteome. The proteins from HEPG2 cells and human blood plasma were run by 2DE. After staining and protein spot identification by MALDI-TOF MS, the protein maps were generated. The experimental physicochemical parameters (pI/Mw) of the proteoforms further detected by ESI LC-MS/MS in these spots were obtained. Next, the theoretical pI and Mw of identified proteins were calculated using program Compute pI/Mw (http://web.expasy.org/compute_pi/pi_tool-doc.html). Accordingly, the relationship between theoretical and experimental parameters was analyzed, and the correlation plots were built. Additionally, virtual/experimental information about different protein species/proteoforms from the same genes was extracted. As it was revealed from the plots, the major proteoforms detected in HepG2 cell line have pI/Mw parameters similar to theoretical values. In opposite, the minor protein species have mainly very different from theoretical pI and Mw parameters. A similar situation was observed in plasma in much higher degree. It means that minor protein species are heavily modified in cell and even more in plasma proteome.

  13. Dynamic changes in the proteome of human peripheral blood mononuclear cells with low dose ionizing radiation.

    PubMed

    Nishad, S; Ghosh, Anu

    2016-02-01

    Humans are continually exposed to ionizing radiation from natural as well as anthropogenic sources. Though biological effects of high dose radiation exposures have been well accepted, studies on low-to-moderate dose exposures (in the range of 50-500 mGy) have been strongly debated even as researchers continue to search for elusive 'radiation signatures' in humans. Proteins are considered as dynamic functional players that drive cellular responses. However, there is little proteomic information available in context of human exposure to ionizing radiation. In this study, we determined differential expressed proteins in G0 peripheral blood mononuclear cells (PBMCs) from healthy individuals 1h and 4h after 'ex vivo' exposure with two radiation doses (300 mGy and 1 Gy). Twenty-three proteins were found to be significantly altered in irradiated cells when compared to sham irradiated cells with fold change ± 1.5-fold (p ≤ 0.05), with only three proteins showing ≥ 2.5-fold change, either with dose or with time. Mass spectrometry analyses identified redox sensor protein, chloride intracellular channel protein 1 (CLIC-1), the antioxidant protein, peroxiredoxin-6 and the pro-survival molecular chaperone 78 KDa glucose regulated protein (GRP78) among the 23 modulated proteins. The mean coefficient of variation (CV) for the twenty-three radiation responsive protein spots was found to be 33.7% for 300 mGy and 48.3% for 1 Gy. We thus, conclude that the radiation proteomic response of G0 human PBMCs, which are in the resting stage of the cell cycle, involves moderate upregulation of protective mechanisms, with low inter-individual variability. This study will help further our understanding of cellular effects of low dose acute radiation in humans and contribute toward differential biomarker discovery. PMID:26921016

  14. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.

    PubMed

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas; Lyon, David; Mullari, Meeli; Madsen, Maria V; Daniel, Jeremy A; Jensen, Lars J; Nielsen, Michael L

    2016-01-01

    The posttranslational modification of proteins by arginine methylation is functionally important, yet the breadth of this modification is not well characterized. Using high-resolution mass spectrometry, we identified 8030 arginine methylation sites within 3300 human proteins in human embryonic kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified by methylation. Through quantitative proteomics and RNA interference to examine arginine methylation stoichiometry, we unexpectedly found that the protein arginine methyltransferase (PRMT) family of arginine methyltransferases catalyzed methylation independently of arginine sequence context. In contrast to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially regulated the functions of the pre-mRNA splicing factor SRSF2 (serine/arginine-rich splicing factor 2) and the RNA transport ribonucleoprotein HNRNPUL1 (heterogeneous nuclear ribonucleoprotein U-like 1). Knocking down PRMT5 impaired the RNA binding function of SRSF2, whereas knocking down PRMT4 [also known as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human arginine methylome provides a missing piece in the global and integrative view of cellular physiology and protein regulation. PMID:27577262

  15. Differential proteomic profile of spermatogenic and Sertoli cells from peri-pubertal testes of three different bovine breeds

    PubMed Central

    Tripathi, Utkarsh K.; Aslam, Muhammad K. M.; Pandey, Shashank; Nayak, Samiksha; Chhillar, Shivani; Srinivasan, A.; Mohanty, T. K.; Kadam, Prashant H.; Chauhan, M. S.; Yadav, Savita; Kumaresan, Arumugam

    2014-01-01

    Sub-fertility is one of the most common problems observed in crossbred males, but the etiology remains unknown in most of the cases. Although proteomic differences in the spermatozoa and seminal plasma between breeds have been investigated, the possible differences at the sperm precursor cells and supporting/nourishing cells have not been studied. The present study reports the differential proteomic profile of spermatogenic and Sertoli cells in crossbred and purebred bulls. Testis was removed by unilateral castration of 12 peri-pubertal bulls (10 months age), four each from crossbred (Holstein Friesian × Tharparkar), exotic purebred [Holstein Friesian (HF)] and indigenous purebred [Tharparkar (TP)] bulls. Spermatogenic and Sertoli cells were isolated and subjected to proteomic analysis. Protein extracts from the Sertoli and spermatogenic cells of each breed were analyzed with 2-dimensional difference gel electrophoresis (2D-DIGE) and analyzed with Decyder™ software. Compared to HF, 26 protein spots were over expressed and 14 protein spots were under expressed in spermatogenic cells of crossbred bulls. Similarly, 7 protein spots were over expressed and 15 protein spots were under expressed in the spermatogenic cells of TP bulls compared to that of crossbred bulls. Out of 12 selected protein spots identified through mass spectrometry, Phosphatidyl ethanolamine binding protein was found to be over expressed in the spermatogenic cells of crossbred bulls compared to TP bulls. The protein, gamma actin was found to be over expressed in the Sertoli cells of HF bulls, whereas Speedy Protein-A was found to be over expressed in Sertoli cells of crossbred bulls. It may be concluded that certain proteomic level differences exist in sperm precursor cells and nourishing cells between breeds, which might be associated with differences in the fertility among these breeds. PMID:25364731

  16. Proteomic Analysis of the Herpes Simplex Virus 1 Virion Protein 16 Transactivator Protein in Infected Cells

    PubMed Central

    Oh, Hyung Suk; Knipe, David M.

    2015-01-01

    The herpes simplex virus 1 VP16 tegument protein forms a transactivation complex with the cellular proteins HCF-1 and Oct-1 upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times post-infection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 hours post-infection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the ICP4 immediate-early transactivator protein. These results raise the potential for a new function for VP16 in associating with the immediate-early ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of immediate-early gene expression. PMID:25809282

  17. Proteomic Analysis of Mesenchymal Stem Cells from Normal and Deep Carious Dental Pulp

    PubMed Central

    Gao, Jie; Yan, Wenjuan; Liu, Ying; Xu, Shuaimei; Wu, Buling

    2014-01-01

    Dental pulp stem cells (DPSCs), precursor cells of odontoblasts, are ideal seed cells for tooth tissue engineering and regeneration. Our previous study has demonstrated that stem cells exist in dental pulp with deep caries and are called carious dental pulp stem cells (CDPSCs). The results indicated that CDPSCs had a higher proliferative and stronger osteogenic differentiation potential than DPSCs. However, the molecular mechanisms responsible for the biological differences between DPSCs and CDPSCs are poorly understood. The aim of this study was to define the molecular features of DPSCs and CDPSCs by comparing the proteomic profiles using two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Our results revealed that there were 18 protein spots differentially expressed between DPSCs and CDPSCs in a narrow pH range of 4 to 7. These differently expressed proteins are mostly involved in the regulation of cell proliferation, differentiation, cell cytoskeleton and motility. In addition, our results suggested that CDPSCs had a higher expression of antioxidative proteins that might protect CDPSCs from oxidative stress. This study explores some potential proteins responsible for the biological differences between DPSCs and CDPSCs and expands our understanding on the molecular mechanisms of mineralization of DPSCs in the formation of the dentin-pulp complex. PMID:24809979

  18. Identification of novel Mycobacterium tuberculosis CD4 T-cell antigens via high throughput proteome screening

    PubMed Central

    Nayak, Kaustuv; Jing, Lichen; Russell, Ronnie M.; Davies, D. Huw; Hermanson, Gary; Molina, Douglas M.; Liang, Xiaowu; Sherman, David R.; Kwok, William W.; Yang, Junbao; Kenneth, John; Ahamed, Syed F.; Chandele, Anmol; Kaja, Murali-Krishna; Koelle, David M.

    2015-01-01

    Elicitation of CD4 IFN-gamma T cell responses to Mycobacterium tuberculosis (MTB) is a rational vaccine strategy to prevent clinical tuberculosis. Diagnosis of MTB infection is based on T-cell immune memory to MTB antigens. The MTB proteome contains over four thousand open reading frames (ORFs). We conducted a pilot antigen identification study using 164 MTB proteins and MTB-specific T-cells expanded in vitro from 12 persons with latent MTB infection. Enrichment of MTB-reactive T-cells from PBMC used cell sorting or an alternate system compatible with limited resources. MTB proteins were used as single antigens or combinatorial matrices in proliferation and cytokine secretion readouts. Overall, our study found that 44 MTB proteins were antigenic, including 27 not previously characterized as CD4 T-cell antigens. Antigen truncation, peptide, NTM homology, and HLA class II tetramer studies confirmed malate synthase G (encoded by gene Rv1837) as a CD4 T-cell antigen. This simple, scalable system has potential utility for the identification of candidate MTB vaccine and biomarker antigens. PMID:25857935

  19. Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs

    PubMed Central

    Qu, Ying; Zhou, Bo; Yang, Wei; Han, Bingchen; Yu-Rice, Yi; Gao, Bowen; Johnson, Jeffery; Svendsen, Clive N.; Freeman, Michael R.; Giuliano, Armando E.; Sareen, Dhruv; Cui, Xiaojiang

    2016-01-01

    Surface ectoderm (SE) cells give rise to structures including the epidermis and ectodermal associated appendages such as hair, eye, and the mammary gland. In this study, we validate a protocol that utilizes BMP4 and the γ-secretase inhibitor DAPT to induce SE differentiation from human induced pluripotent stem cells (hiPSCs). hiPSC-differentiated SE cells expressed markers suggesting their commitment to the SE lineage. Computational analyses using integrated quantitative transcriptomic and proteomic profiling reveal that TGFβ superfamily signaling pathways are preferentially activated in SE cells compared with hiPSCs. SE differentiation can be enhanced by selectively blocking TGFβ-RI signaling. We also show that SE cells and neural ectoderm cells possess distinct gene expression patterns and signaling networks as indicated by functional Ingenuity Pathway Analysis. Our findings advance current understanding of early human SE cell development and pave the way for modeling of SE-derived tissue development, studying disease pathogenesis, and development of regenerative medicine approaches. PMID:27550649

  20. Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs

    PubMed Central

    Qu, Ying; Zhou, Bo; Yang, Wei; Han, Bingchen; Yu-Rice, Yi; Gao, Bowen; Johnson, Jeffery; Svendsen, Clive N.; Freeman, Michael R.; Giuliano, Armando E.; Sareen, Dhruv; Cui, Xiaojiang

    2016-01-01

    Surface ectoderm (SE) cells give rise to structures including the epidermis and ectodermal associated appendages such as hair, eye, and the mammary gland. In this study, we validate a protocol that utilizes BMP4 and the γ-secretase inhibitor DAPT to induce SE differentiation from human induced pluripotent stem cells (hiPSCs). hiPSC-differentiated SE cells expressed markers suggesting their commitment to the SE lineage. Computational analyses using integrated quantitative transcriptomic and proteomic profiling reveal that TGFβ superfamily signaling pathways are preferentially activated in SE cells compared with hiPSCs. SE differentiation can be enhanced by selectively blocking TGFβ-RI signaling. We also show that SE cells and neural ectoderm cells possess distinct gene expression patterns and signaling networks as indicated by functional Ingenuity Pathway Analysis. Our findings advance current understanding of early human SE cell development and pave the way for modeling of SE-derived tissue development, studying disease pathogenesis, and development of regenerative medicine approaches. PMID:27550649

  1. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

    PubMed Central

    Kawamura, Tatsuro; Kawatani, Makoto; Muroi, Makoto; Kondoh, Yasumitsu; Futamura, Yushi; Aono, Harumi; Tanaka, Miho; Honda, Kaori; Osada, Hiroyuki

    2016-01-01

    Since recent publications suggested that the survival of cancer cells depends on MTH1 to avoid incorporation of oxidized nucleotides into the cellular DNA, MTH1 has attracted attention as a potential cancer therapeutic target. In this study, we identified new purine-based MTH1 inhibitors by chemical array screening. However, although the MTH1 inhibitors identified in this study targeted cellular MTH1, they exhibited only weak cytotoxicity against cancer cells compared to recently reported first-in-class inhibitors. We performed proteomic profiling to investigate the modes of action by which chemically distinct MTH1 inhibitors induce cancer cell death, and found mechanistic differences among the first-in-class MTH1 inhibitors. In particular, we identified tubulin as the primary target of TH287 and TH588 responsible for the antitumor effects despite the nanomolar MTH1-inhibitory activity in vitro. Furthermore, overexpression of MTH1 did not rescue cells from MTH1 inhibitor–induced cell death, and siRNA-mediated knockdown of MTH1 did not suppress cancer cell growth. Taken together, we conclude that the cytotoxicity of MTH1 inhibitors is attributable to off-target effects and that MTH1 is not essential for cancer cell survival. PMID:27210421

  2. Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs.

    PubMed

    Qu, Ying; Zhou, Bo; Yang, Wei; Han, Bingchen; Yu-Rice, Yi; Gao, Bowen; Johnson, Jeffery; Svendsen, Clive N; Freeman, Michael R; Giuliano, Armando E; Sareen, Dhruv; Cui, Xiaojiang

    2016-01-01

    Surface ectoderm (SE) cells give rise to structures including the epidermis and ectodermal associated appendages such as hair, eye, and the mammary gland. In this study, we validate a protocol that utilizes BMP4 and the γ-secretase inhibitor DAPT to induce SE differentiation from human induced pluripotent stem cells (hiPSCs). hiPSC-differentiated SE cells expressed markers suggesting their commitment to the SE lineage. Computational analyses using integrated quantitative transcriptomic and proteomic profiling reveal that TGFβ superfamily signaling pathways are preferentially activated in SE cells compared with hiPSCs. SE differentiation can be enhanced by selectively blocking TGFβ-RI signaling. We also show that SE cells and neural ectoderm cells possess distinct gene expression patterns and signaling networks as indicated by functional Ingenuity Pathway Analysis. Our findings advance current understanding of early human SE cell development and pave the way for modeling of SE-derived tissue development, studying disease pathogenesis, and development of regenerative medicine approaches. PMID:27550649

  3. The Proteomic Landscape of Human Ex Vivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements

    PubMed Central

    Procaccini, Claudio; Carbone, Fortunata; Di Silvestre, Dario; Brambilla, Francesca; De Rosa, Veronica; Galgani, Mario; Faicchia, Deriggio; Marone, Gianni; Tramontano, Donatella; Corona, Marco; Alviggi, Carlo; Porcellini, Antonio; La Cava, Antonio; Mauri, Pierluigi; Matarese, Giuseppe

    2016-01-01

    Summary Human CD4+CD25hiFoxp3+CD127− Treg and CD4+CD25−Foxp3− Tconv cell functions are governed by their metabolic requirements. Here we report a comprehensive comparative analysis between ex vivo human Treg and Tconv cells that comprises analyses of the proteomic networks in subcellular compartments. We identified a dominant proteomic signature at the metabolic level that primarily impacted the highly-tuned balance between glucose and fatty-acid oxidation in the two cell types. Ex vivo Treg cells were highly glycolytic while Tconv cells used predominantly fatty-acid oxidation (FAO). When cultured in vitro, Treg cells engaged both glycolysis and FAO to proliferate, while Tconv cell proliferation mainly relied on glucose metabolism. Our unbiased proteomic analysis provides a molecular picture of the impact of metabolism on ex vivo human Treg versus Tconv cell functions that might be relevant for therapeutic manipulations of these cells. PMID:26885861

  4. Integration of genomic and proteomic data to identify candidate genes in HT-29 cells after incubation with Bifidobacterium bifidum ATCC 29521.

    PubMed

    Wang, Bao-Gui; Wu, Yaoping; Qiu, Liang; Shah, Nagendra P; Xu, Feng; Wei, Hua

    2016-09-01

    As the predominant group inhabiting the human gastrointestinal tract, bifidobacteria play a vital role in human nutrition, therapeutics, and health by shaping and maintaining the gut ecosystem, reducing blood cholesterol, and promoting the supply of nutrients. The interaction between bacterial cells and human intestinal epithelial cell lines has been studied for decades in an attempt to understand the mechanisms of action. These studies, however, have been limited by lack of genomic and proteomic database to aid in achieving comprehensive understanding of these mechanisms at molecular levels. Microarray data (GSE: 74119) coupled with isobaric tags for relative and absolute quantitation (iTRAQ) were performed to detect differentially expressed genes and proteins in HT-29 cells after incubation with Bifidobacterium bifidum. Real-time quantitative PCR, gene ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were further conducted for mRNA validation, functional annotation, and pathway identification, respectively. According to the results of microarray, 1,717 differentially expressed genes, including 1,693 upregulated and 24 downregulated genes, were selected and classified by the gene ontology database. The iTRAQ analysis identified 43 differentially expressed proteins, where 29 proteins were upregulated and 14 proteins were downregulated. Eighty-two candidate genes showing consistent differences with microarray and iTRAQ were further validated in HT-29 and Caco-2 cells by real-time quantitative PCR. Nine of the top genes showing interesting results with high confidence were further investigated in vivo in mice intestine samples. Integration of genomic and proteomic data provides an approach to identify candidate genes that are more likely to function in ubiquitin-mediated proteolysis, positive regulation of apoptosis, membrane proteins, and transferase catalysis. These findings might contribute to our understanding of molecular mechanisms regulating the

  5. Selection of Neospora caninum antigens stimulating bovine CD4+ve T cell responses through immuno-potency screening and proteomic approaches

    PubMed Central

    2011-01-01

    Neospora caninum is recognised worldwide as a major cause of bovine infectious abortion. There is a real need to develop effective strategies to control infection during pregnancy which may lead to either abortion or congenital transmission. Due to the intracellular nature of the parasite, cell-mediated immune (CMI) responses involving CD4+ve, CD8+ve, γ/δ TCR+ve T cells and NK cells, as well as production of IFN-γ, are thought to be important for protective immunity. In this study we applied a combination of proteomic and immunological approaches to identify antigens of N. caninum that are recognized by CD4+ve T cell lines derived from infected cattle. Initially, N. caninum tachyzoite Water Soluble Antigens (NcWSA) were fractionated by size-exclusion HPLC and then screened for immune-potency using CD4+ve T cell lines. LC-ESI-MS/MS (liquid chromatography electrospray ionisation tandem mass spectrometry) was employed to catalogue and identify the proteins comprising three immunologically selected fractions and led to the identification of six N. caninum target proteins as well as sixteen functional orthologues of Toxoplasma gondii. This approach allows the screening of biologically reactive antigenic fractions by the immune cells responsible for protection (such as bovine CD4+ve cells) and the subsequent identification of the stimulating components using tandem mass spectrometry. PMID:21813001

  6. Development and characterization of a new human hepatic cell line.

    PubMed

    Ramboer, Eva; De Craene, Bram; De Kock, Joey; Berx, Geert; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics. PMID:26869867

  7. Development and characterization of a new human hepatic cell line

    PubMed Central

    Ramboer, Eva; De Craene, Bram; De Kock, Joey; Berx, Geert; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics. PMID:26869867

  8. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    PubMed

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation.

  9. Histone deacetylase inhibitor-induced cell death in bladder cancer is associated with chromatin modification and modifying protein expression: A proteomic approach

    PubMed Central

    LI, QINGDI QUENTIN; HAO, JIAN-JIANG; ZHANG, ZHENG; HSU, IAWEN; LIU, YI; TAO, ZHEN; LEWI, KEIDREN; METWALLI, ADAM R.; AGARWAL, PIYUSH K.

    2016-01-01

    The Cancer Genome Atlas (TCGA) project recently identified the importance of mutations in chromatin remodeling genes in human carcinomas. These findings imply that epigenetic modulators might have a therapeutic role in urothelial cancers. To exploit histone deacetylases (HDACs) as targets for cancer therapy, we investigated the HDAC inhibitors (HDACIs) romidepsin, trichostatin A, and vorinostat as potential chemotherapeutic agents for bladder cancer. We demonstrate that the three HDACIs suppressed cell growth and induced cell death in the bladder cancer cell line 5637. To identify potential mechanisms associated with the anti-proliferative and cytotoxic effects of the HDACIs, we used quantitative proteomics to determine the proteins potentially involved in these processes. Our proteome studies identified a total of 6003 unique proteins. Of these, 2472 proteins were upregulated and 2049 proteins were downregulated in response to HDACI exposure compared to the untreated controls (P<0.05). Bioinformatic analysis further revealed that those differentially expressed proteins were involved in multiple biological functions and enzyme-regulated pathways, including cell cycle progression, apoptosis, autophagy, free radical generation and DNA damage repair. HDACIs also altered the acetylation status of histones and non-histone proteins, as well as the levels of chromatin modification proteins, suggesting that HDACIs exert multiple cytotoxic actions in bladder cancer cells by inhibiting HDAC activity or altering the structure of chromatin. We conclude that HDACIs are effective in the inhibition of cell proliferation and the induction of apoptosis in the 5637 bladder cancer cells through multiple cell death-associated pathways. These observations support the notion that HDACIs provide new therapeutic options for bladder cancer treatment and thus warrant further preclinical exploration. PMID:27082124

  10. Establishment of a proteome profile and identification of molecular markers for mouse spermatogonial stem cells

    PubMed Central

    Zhou, Quan; Guo, Yueshuai; Zheng, Bo; Shao, Binbin; Jiang, Min; Wang, Gaigai; Zhou, Tao; Wang, Lei; Zhou, Zuomin; Guo, Xuejiang; Huang, Xiaoyan

    2015-01-01

    Spermatogonial stem cells (SSCs) are undifferentiated cells that are required to maintain spermatogenesis throughout the reproductive life of mammals. Although SSC transplantation and culture provide a powerful tool to identify the mechanisms regulating SSC function, the precise signalling mechanisms governing SSC self-renewal and specific surface markers for purifying SSCs remain to be clearly determined. In the present study, we established a steady SSC culture according to the method described by Shinohara's lab. Fertile progeny was produced after transplantation of cultured SSCs into infertile mouse testis, and the red fluorescence exhibited by the culture cell membranes was stably and continuously transmitted to the offspring. Next, via advanced mass spectrometry and an optimized proteomics platform, we constructed the proteome profile, with 682 proteins expressed in SSCs. Furthermore bioinformatics analysis showed that the list contained several known molecules that are regulated in SSCs. Several nucleoproteins and membrane proteins were chosen for further exploration using immunofluorescence and RT-PCR. The results showed that SALL1, EZH2, and RCOR2 are possibly involved in the self-renewal mechanism of SSCs. Furthermore, the results of tissue-specific expression analysis showed that Gpat2 and Pld6 were uniquely and highly expressed in mouse testes and cultured SSCs. The cellular localization of PLD6 was further explored and the results showed it was primarily expressed in the spermatogonial membrane of mouse testes and cultured SSCs. The proteins identified in this study form the basis for further exploring the molecular mechanism of self-renewal in SSCs and for identifying specific surface markers of SSCs. PMID:25352495

  11. Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana

    PubMed Central

    Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea

    2012-01-01

    Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647

  12. Distinct differentiation characteristics of individual human embryonic stem cell lines

    PubMed Central

    Mikkola, Milla; Olsson, Cia; Palgi, Jaan; Ustinov, Jarkko; Palomaki, Tiina; Horelli-Kuitunen, Nina; Knuutila, Sakari; Lundin, Karolina; Otonkoski, Timo; Tuuri, Timo

    2006-01-01

    Background Individual differences between human embryonic stem cell (hESC) lines are poorly understood. Here, we describe the derivation of five hESC lines (called FES 21, 22, 29, 30 and 61) from frozen-thawed human embryos and compare their individual differentiation characteristic. Results The cell lines were cultured either on human or mouse feeder cells. The cells grew significantly faster and could be passaged enzymatically only on mouse feeders. However, this was found to lead to chromosomal instability after prolonged culture. All hESC lines expressed the established markers of pluripotent cells as well as several primordial germ cell (PGC) marker genes in a uniform manner. However, the cell lines showed distinct features in their spontaneous differentiation patterns. The embryoid body (EB) formation frequency of FES 30 cell line was significantly lower than that of other lines and cells within the EBs differentiated less readily. Likewise, teratomas derived from FES 30 cells were constantly cystic and showed only minor solid tissue formation with a monotonous differentiation pattern as compared with the other lines. Conclusion hESC lines may differ substantially in their differentiation properties although they appear similar in the undifferentiated state. PMID:16895598

  13. Dynamic Proteomic Analysis of Pancreatic Mesenchyme Reveals Novel Factors That Enhance Human Embryonic Stem Cell to Pancreatic Cell Differentiation.

    PubMed

    Russ, Holger A; Landsman, Limor; Moss, Christopher L; Higdon, Roger; Greer, Renee L; Kaihara, Kelly; Salamon, Randy; Kolker, Eugene; Hebrok, Matthias

    2016-01-01

    Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Laminin α-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation.

  14. Biochemical Characterization of the Cell-Biomaterial Interface by Quantitative Proteomics

    PubMed Central

    Tong, W. Y.; Liang, Y. M.; Tam, V.; Yip, H. K.; Kao, Y. T.; Cheung, K. M. C.; Yeung, K. W. K.; Lam, Y. W.

    2010-01-01

    Surface topography and texture of cell culture substrata can affect the differentiation and growth of adherent cells. The biochemical basis of the transduction of the physical and mechanical signals to cellular responses is not well understood. The lack of a systematic characterization of cell-biomaterial interaction is the major bottleneck. This study demonstrated the use of a novel subcellular fractionation method combined with quantitative MS-based proteomics to enable the robust and high-throughput analysis of proteins at the adherence interface of Madin-Darby canine kidney cells. This method revealed the enrichment of extracellular matrix proteins and membrane and stress fibers proteins at the adherence surface, whereas it shows depletion of extracellular matrix belonging to the cytoplasmic, nucleus, and lateral and apical membranes. The asymmetric distribution of proteins between apical and adherence sides was also profiled. Apart from classical proteins with clear involvement in cell-material interactions, proteins previously not known to be involved in cell attachment were also discovered. PMID:20562470

  15. Quantitative proteomic analysis of human breast epithelial cells with differential telomere length

    SciTech Connect

    Yu, Li-Rong . E-mail: lyu@ncifcrf.gov; Chan, King C.; Tahara, Hidetoshi; Lucas, David A.; Chatterjee, Koushik; Issaq, Haleem J.; Veenstra, Timothy D. . E-mail: veenstra@ncifcrf.gov

    2007-05-18

    Telomeres play important functional roles in cell proliferation, cell cycle regulation, and genetic stability, in which telomere length is critical. In this study, quantitative proteome comparisons for the human breast epithelial cells with short and long telomeres (184-hTERT{sub L} vs. 184-hTERT{sub S} and 90P-hTERT{sub L} vs. 90P-hTERT{sub S}), resulting from transfection of the human telomerase reverse transcriptase (hTERT) gene, were performed using cleavable isotope-coded affinity tags. More than 2000 proteins were quantified in each comparative experiment, with approximately 77% of the proteins identified in both analyses. In the cells with long telomeres, significant and consistent alterations were observed in metabolism (amino acid, nucleotide, and lipid metabolism), genetic information transmission (transcription and translation regulation, spliceosome and ribosome complexes), and cell signaling. Interestingly, the DNA excision repair pathway is enhanced, while integrin and its ligands are downregulated in the cells with long telomeres. These results may provide valuable information related to telomere functions.

  16. Proteomic analysis of host responses in HepG2 cells during dengue virus infection.

    PubMed

    Pattanakitsakul, Sa-Nga; Rungrojcharoenkit, Kamonthip; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Noisakran, Sansanee; Chen, Shui-Tein; Malasit, Prida; Thongboonkerd, Visith

    2007-12-01

    Dengue virus infection remains a public health problem worldwide. However, its pathogenic mechanisms and pathophysiology are still poorly understood. We performed proteomic analysis to evaluate early host responses (as indicated by altered proteins) in human target cells during dengue virus infection. HepG2 cells were infected with dengue virus serotype 2 (DEN-2) at multiplicity of infection (MOI) of 0.1, 0.5, and 1.0. Quantitative analyses of DEN-2 infection and cell death at 12, 24, and 48 h postinfection showed that the MOI of 1.0 with 24 h postinfection duration was the optimal condition to evaluate early host responses, as this condition provided the high %Infection ( approximately 80%), while %Cell death ( approximately 20%) was comparable to that of the mock-control cells. Proteins derived from the mock-control and DEN-2-infected cells were resolved by 2-D PAGE ( n = 5 gels for each group) and visualized by SYPRO Ruby stain. Quantitative intensity analysis revealed 17 differentially expressed proteins, which were successfully identified by peptide mass fingerprinting. Most of these altered proteins were the key factors involved in transcription and translation processes. Further functional study on these altered proteins may lead to better understanding of the pathogenic mechanisms and host responses to dengue virus infection, and also to the identification of new therapeutic targets for dengue virus infection.

  17. Proteomic exploration of the impacts of pomegranate fruit juice on the global gene expression of prostate cancer cell.

    PubMed

    Lee, Song-Tay; Wu, Yi-Ling; Chien, Lan-Hsiang; Chen, Szu-Ting; Tzeng, Yu-Kai; Wu, Ting-Feng

    2012-11-01

    Prostate cancer has been known to be the second highest cause of death in cancer among men. Pomegranate is rich in polyphenols with the potent antioxidant activity and inhibits cell proliferation, invasion, and promotes apoptosis in various cancer cells. This study demonstrated that pomegranate fruit juice could effectively hinder the proliferation of human prostate cancer DU145 cell. The results of apoptotic analyses implicated that fruit juice might trigger the apoptosis in DU145 cells via death receptor signaling and mitochondrial damage pathway. In this study, we exploited 2DE-based proteomics to compare nine pairs of the proteome maps collected from untreated and treated DU145 cells to identify the differentially expressed proteins. Comparative proteomics indicated that 11 proteins were deregulated in affected DU145 cells with three upregulated and eight downregulated proteins. These dys-regulated proteins participated in cytoskeletal functions, antiapoptosis, proteasome activity, NF-κB signaling, cancer cell proliferation, invasion, and angiogenesis. Western immunoblotting were implemented to confirm the deregulated proteins and the downstream signaling proteins. The analytical results of this study help to provide insight into the molecular mechanism of inducing prostate cancer cell apoptosis by pomegranate fruit juice and to develop a novel mechanism-based chemopreventive strategy for prostate cancer.

  18. Shotgun proteomics and network analysis between plasma membrane and extracellular matrix proteins from rat olfactory ensheathing cells.

    PubMed

    Liu, Yisong; Teng, Xiaohua; Yang, Xiaoxu; Song, Qing; Lu, Rong; Xiong, Jixian; Liu, Bo; Zeng, Nianju; Zeng, Yu; Long, Jia; Cao, Rui; Lin, Yong; He, Quanze; Chen, Ping; Lu, Ming; Liang, Songping

    2010-01-01

    Olfactory ensheathing cells (OECs) are a special type of glial cells that have characteristics of both astrocytes and Schwann cells. Evidence suggests that the regenerative capacity of OECs is induced by soluble, secreted factors that influence their microenvironment. These factors may regulate OECs self-renewal and/or induce their capacity to augment spinal cord regeneration. Profiling of plasma membrane and extracellular matrix through a high-throughput expression proteomics approach was undertaken to identify plasma membrane and extracellular matrix proteins of OECs under serum-free conditions. 1D-shotgun proteomics followed with gene ontology (GO) analysis was used to screen proteins from primary culture rat OECs. Four hundred and seventy nonredundant plasma membrane proteins and 168 extracellular matrix proteins were identified, the majority of which were never before reported to be produced by OECs. Furthermore, plasma membrane and extracellular proteins were classified based on their protein-protein interaction predicted by STRING quantitatively integrates interaction data. The proteomic profiling of the OECs plasma membrane proteins and their connection with the secretome in serum-free culture conditions provides new insights into the nature of their in vivo microenvironmental niche. Proteomic analysis for the discovery of clinical biomarkers of OECs mechanism warrants further study.

  19. ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6.

    PubMed

    Eichmann, Thomas O; Grumet, Lukas; Taschler, Ulrike; Hartler, Jürgen; Heier, Christoph; Woblistin, Aaron; Pajed, Laura; Kollroser, Manfred; Rechberger, Gerald; Thallinger, Gerhard G; Zechner, Rudolf; Haemmerle, Günter; Zimmermann, Robert; Lass, Achim

    2015-10-01

    Lipid droplets (LDs) of hepatic stellate cells (HSCs) contain large amounts of vitamin A [in the form of retinyl esters (REs)] as well as other neutral lipids such as TGs. During times of insufficient vitamin A availability, RE stores are mobilized to ensure a constant supply to the body. To date, little is known about the enzymes responsible for the hydrolysis of neutral lipid esters, in particular of REs, in HSCs. In this study, we aimed to identify LD-associated neutral lipid hydrolases by a proteomic approach using the rat stellate cell line HSC-T6. First, we loaded cells with retinol and FAs to promote lipid synthesis and deposition within LDs. Then, LDs were isolated and lipid composition and the LD proteome were analyzed. Among other proteins, we found perilipin 2, adipose TG lipase (ATGL), and comparative gene identification-58 (CGI-58), known and established LD proteins. Bioinformatic search of the LD proteome for α/β-hydrolase fold-containing proteins revealed no yet uncharacterized neutral lipid hydrolases. In in vitro activity assays, we show that rat (r)ATGL, coactivated by rat (r)CGI-58, efficiently hydrolyzes TGs and REs. These findings suggest that rATGL and rCGI-58 are LD-resident proteins in HSCs and participate in the mobilization of both REs and TGs.

  20. ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6[S

    PubMed Central

    Eichmann, Thomas O.; Grumet, Lukas; Taschler, Ulrike; Hartler, Jürgen; Heier, Christoph; Woblistin, Aaron; Pajed, Laura; Kollroser, Manfred; Rechberger, Gerald; Thallinger, Gerhard G.; Zechner, Rudolf; Haemmerle, Günter; Zimmermann, Robert; Lass, Achim

    2015-01-01

    Lipid droplets (LDs) of hepatic stellate cells (HSCs) contain large amounts of vitamin A [in the form of retinyl esters (REs)] as well as other neutral lipids such as TGs. During times of insufficient vitamin A availability, RE stores are mobilized to ensure a constant supply to the body. To date, little is known about the enzymes responsible for the hydrolysis of neutral lipid esters, in particular of REs, in HSCs. In this study, we aimed to identify LD-associated neutral lipid hydrolases by a proteomic approach using the rat stellate cell line HSC-T6. First, we loaded cells with retinol and FAs to promote lipid synthesis and deposition within LDs. Then, LDs were isolated and lipid composition and the LD proteome were analyzed. Among other proteins, we found perilipin 2, adipose TG lipase (ATGL), and comparative gene identification-58 (CGI-58), known and established LD proteins. Bioinformatic search of the LD proteome for α/β-hydrolase fold-containing proteins revealed no yet uncharacterized neutral lipid hydrolases. In in vitro activity assays, we show that rat (r)ATGL, coactivated by rat (r)CGI-58, efficiently hydrolyzes TGs and REs. These findings suggest that rATGL and rCGI-58 are LD-resident proteins in HSCs and participate in the mobilization of both REs and TGs. PMID:26330055

  1. ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6.

    PubMed

    Eichmann, Thomas O; Grumet, Lukas; Taschler, Ulrike; Hartler, Jürgen; Heier, Christoph; Woblistin, Aaron; Pajed, Laura; Kollroser, Manfred; Rechberger, Gerald; Thallinger, Gerhard G; Zechner, Rudolf; Haemmerle, Günter; Zimmermann, Robert; Lass, Achim

    2015-10-01

    Lipid droplets (LDs) of hepatic stellate cells (HSCs) contain large amounts of vitamin A [in the form of retinyl esters (REs)] as well as other neutral lipids such as TGs. During times of insufficient vitamin A availability, RE stores are mobilized to ensure a constant supply to the body. To date, little is known about the enzymes responsible for the hydrolysis of neutral lipid esters, in particular of REs, in HSCs. In this study, we aimed to identify LD-associated neutral lipid hydrolases by a proteomic approach using the rat stellate cell line HSC-T6. First, we loaded cells with retinol and FAs to promote lipid synthesis and deposition within LDs. Then, LDs were isolated and lipid composition and the LD proteome were analyzed. Among other proteins, we found perilipin 2, adipose TG lipase (ATGL), and comparative gene identification-58 (CGI-58), known and established LD proteins. Bioinformatic search of the LD proteome for α/β-hydrolase fold-containing proteins revealed no yet uncharacterized neutral lipid hydrolases. In in vitro activity assays, we show that rat (r)ATGL, coactivated by rat (r)CGI-58, efficiently hydrolyzes TGs and REs. These findings suggest that rATGL and rCGI-58 are LD-resident proteins in HSCs and participate in the mobilization of both REs and TGs. PMID:26330055

  2. Proteomics analysis of nasopharyngeal carcinoma cell secretome using a hollow fiber culture system and mass spectrometry.

    PubMed

    Wu, Hsin-Yi; Chang, Ying-Hwa; Chang, Yu-Chen; Liao, Pao-Chi

    2009-01-01

    Secreted proteins, referred to as the secretome, are known to regulate a variety of biological functions and are involved in a multitude of pathological processes. However, some secreted proteins from cell cultures are difficult to detect because of their intrinsic low abundance. They are frequently masked by proteins shed from lysed cells and the substantial amounts of serum proteins used in culture medium. We have proposed an analytical platform for sensitive detection of secreted proteins by utilizing a hollow fiber culture (HFC) system coupled with proteomic approaches. The HFC system enables culture of high-density cells in a small volume where secreted proteins can be accumulated. In addition, cell lysis rates can be greatly reduced, which alleviates the contamination from lysed cells. In this study, nasopharyngeal carcinoma (NPC) cells were utilized to evaluate the efficiency of this system in the collection and analysis of the cell secretome. Cells were adapted to serum-free medium and inoculated into the HFC system. The cell lysis rate in the culture system was estimated to be 0.001-0.022%, as determined by probing four intracellular proteins in the conditioned medium (CM), while a cell lysis rate of 0.32-1.84% was observed in dish cultures. Proteins in the CM were analyzed using SDS-PAGE and liquid chromatography tandem mass spectrometry (LC-MS/MS). A total of 134 proteins were identified in 62 gel bands, of which 61% possess a signal peptide and/or a transmembrane domain. In addition, 37% of the identified secretome were classified as extracellular or membrane proteins, whereas 98% of the lysate proteins were identified as intracellular proteins. We suggest that the HFC system may be used to collect secreted proteins efficiently and facilitate comprehensive characterization of cell secretome. PMID:19012429

  3. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, M.R.

    1985-07-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.

  4. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, Martha R.

    1989-01-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.

  5. Comparative proteomic analysis of normal and tumor stromal cells by tissue on chip based mass spectrometry (toc-MS)

    PubMed Central

    2010-01-01

    In carcinoma tissues, genetic and metabolic changes not only occur at the tumor cell level, but also in the surrounding stroma. This carcinoma-reactive stromal tissue is heterogeneous and consists e.g. of non-epithelial cells such as fibroblasts or fibrocytes, inflammatory cells and vasculature-related cells, which promote carcinoma growth and progression of carcinomas. Nevertheless, there is just little knowledge about the proteomic changes from normal connective tissue to tumor stroma. In the present study, we acquired and analysed specific protein patterns of small stromal sections surrounding head and neck cell complexes in comparison to normal subepithelial connective tissue. To gain defined stromal areas we used laser-based tissue microdissection. Because these stromal areas are limited in size we established the highly sensitive 'tissue on chip based mass spectrometry' (toc-MS). Therefore, the dissected areas were directly transferred to chromatographic arrays and the proteomic profiles were subsequently analysed with mass spectrometry. At least 100 cells were needed for an adequate spectrum. The locating of differentially expressed proteins enables a precise separation of normal and tumor stroma. The newly described toc-MS technology allows an initial insight into proteomic differences between small numbers of exactly defined cells from normal and tumor stroma. PMID:20205871

  6. Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF.

    PubMed

    Luo, Junling; Ning, Tingting; Sun, Yunfang; Zhu, Jinghua; Zhu, Yingguo; Lin, Qishan; Yang, Daichang

    2009-02-01

    The accumulation of significant levels of transgenic products in plant cells is required not only for crop improvement, but also for molecular pharming. However, knowledge about the fate of transgenic products and endogenous proteins in grain cells is lacking. Here, we utilized a quantitative mass spectrometry-based proteomic approach for comparative analysis of expression profiles of transgenic rice endosperm cells in response to expression of a recombinant pharmaceutical protein, human granulocyte-macrophage colony stimulation factor (hGM-CSF). This study provided the first available evidence concerning the fate of exogenous and endogenous proteins in grain cells. Among 1883 identified proteins with a false positive rate of 5%, 103 displayed significant changes (p-value < 0.05) between the transgenic and the wild-type endosperm cells. Notably, endogenous storage proteins and most carbohydrate metabolism-related proteins were down-regulated, while 26S proteasome-related proteins and chaperones were up-regulated in the transgenic rice endosperm. Furthermore, it was observed that expression of hGM-CSF induced endoplasmic reticulum stress and activated the ubiquitin/26S-proteasome pathway, which led to ubiquitination of this foreign gene product in the transgenic rice endosperm.

  7. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells.

    PubMed

    Blewett, Megan M; Xie, Jiji; Zaro, Balyn W; Backus, Keriann M; Altman, Amnon; Teijaro, John R; Cravatt, Benjamin F

    2016-01-01

    Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear but may involve the covalent modification of proteins or DMF serving as a prodrug that is converted to monomethyl fumarate (MMF). We found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF sensitivity of >2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase Cθ (PKCθ). DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology. PMID:27625306

  8. Proteomic analysis of secreted proteins by human bronchial epithelial cells in response to cadmium toxicity.

    PubMed

    Chen, De-Ju; Xu, Yan-Ming; Zheng, Wei; Huang, Dong-Yang; Wong, Wing-Yan; Tai, William Chi-Shing; Cho, Yong-Yeon; Lau, Andy T Y

    2015-09-01

    For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure.

  9. Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF.

    PubMed

    Luo, Junling; Ning, Tingting; Sun, Yunfang; Zhu, Jinghua; Zhu, Yingguo; Lin, Qishan; Yang, Daichang

    2009-02-01

    The accumulation of significant levels of transgenic products in plant cells is required not only for crop improvement, but also for molecular pharming. However, knowledge about the fate of transgenic products and endogenous proteins in grain cells is lacking. Here, we utilized a quantitative mass spectrometry-based proteomic approach for comparative analysis of expression profiles of transgenic rice endosperm cells in response to expression of a recombinant pharmaceutical protein, human granulocyte-macrophage colony stimulation factor (hGM-CSF). This study provided the first available evidence concerning the fate of exogenous and endogenous proteins in grain cells. Among 1883 identified proteins with a false positive rate of 5%, 103 displayed significant changes (p-value < 0.05) between the transgenic and the wild-type endosperm cells. Notably, endogenous storage proteins and most carbohydrate metabolism-related proteins were down-regulated, while 26S proteasome-related proteins and chaperones were up-regulated in the transgenic rice endosperm. Furthermore, it was observed that expression of hGM-CSF induced endoplasmic reticulum stress and activated the ubiquitin/26S-proteasome pathway, which led to ubiquitination of this foreign gene product in the transgenic rice endosperm. PMID:18778094

  10. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    PubMed Central

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  11. Proteomic study of Galectin-1 expression in human mesenchymal stem cells.

    PubMed

    Kadri, T; Lataillade, J-J; Doucet, C; Marie, A; Ernou, I; Bourin, P; Joubert-Caron, R; Caron, M; Lutomski, D

    2005-04-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are known to interact with hematopoietic stem cells (HSCs) and immune cells, and are of potential interest to be used as therapeutic agents for enhancing allogenic hematopoietic engraftment and preventing graft-versus-host disease (GVHD). Galectin 1 (Gal1) belongs to a family of structurally related molecules expressed in many vertebrate tissues that exert their functions both by binding to glycoconjugates, and by interaction with protein partners. In this work using a proteomic approach, we looked for the presence and the localization of Gal1 in short- and long-term culture of human (h) hMSC. We first determined, that Gal1 is one of the major proteins expressed in hMSC. We futher demonstrated that its expression is maintained when hMSC are expanded through a subculturing process up to five passages. Moreover, Gal1 is secreted and found at the cell surface of MSC, participating in extra cellular matrix (ECM)-cell interactions. Given the immunomodulatory properties of Gal1, its potential involvement in immunological functions of hMSC could be suggested.

  12. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells.

    PubMed

    Blewett, Megan M; Xie, Jiji; Zaro, Balyn W; Backus, Keriann M; Altman, Amnon; Teijaro, John R; Cravatt, Benjamin F

    2016-09-13

    Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear but may involve the covalent modification of proteins or DMF serving as a prodrug that is converted to monomethyl fumarate (MMF). We found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF sensitivity of >2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase Cθ (PKCθ). DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology.

  13. Chemical proteomic map of dimethyl fumarate–sensitive cysteines in primary human T cells

    PubMed Central

    Blewett, Megan M.; Xie, Jiji; Zaro, Balyn W.; Backus, Keriann M.; Altman, Amnon; Teijaro, John R.; Cravatt, Benjamin F.

    2016-01-01

    Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear, but may involve the covalent modification of proteins or DMF serving as a pro-drug that is converted to monomethyl fumarate (MMF). Here, we found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF-sensitivity of > 2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase C θ (PKCθ). Furthermore, DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology. PMID:27625306

  14. An investigation of hormesis of trichloroethylene in L-02 liver cells by differential proteomic analysis.

    PubMed

    Huang, Hai-Yan; Liu, Jian-Jun; Xi, Ren-Rong; Xing, Xiu-Mei; Yuan, Jian-Hui; Yang, Lin-Qing; Tao, Gong-Hua; Gong, Chun-Mei; Zhuang, Zhi-Xiong

    2009-11-01

    Hormesis is the dose-response pattern of the biological responses to toxic chemicals, characterized by low-dose stimulation and high-dose inhibition. Although it is known that some cell types exhibit an adaptive response to low levels of cytotoxic agents, its molecular mechanism is still unclear and it has yet to be established whether this is a universal phenomenon that occurs in all cell types in response to exposure to every chemical. Trichloroethylene (TCE) is an organic solvent widely used and is released into the atmosphere from industrial degreasing operations. Acute (short-term) and chronic (long-term) inhalation exposure to trichloroethylene can affect the human health. In order to elucidate a cell-survival adaptive response of L-02 liver cells exposed to low dose of TCE, CCK-8 assay was used to assess cytotoxicity, and examined the possible mechanisms of hormesis by proteomics technology. We found that exposure of L-02 liver cells to low level of TCE resulted in adaptation to further exposure to higher level, about 1,000 protein-spots were obtained by two-dimensional electrophoresis (2-DE) and five protein spots were identified by matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry sequencing of tryptic peptides. Our results suggest that a relationship may exist between identified proteins and TCE-induced hormesis, which are very useful for further study of the mechanism and risk assessment of TCE.

  15. Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor.

    PubMed

    Tian, Ruijun; Wang, Haopeng; Gish, Gerald D; Petsalaki, Evangelia; Pasculescu, Adrian; Shi, Yu; Mollenauer, Marianne; Bagshaw, Richard D; Yosef, Nir; Hunter, Tony; Gingras, Anne-Claude; Weiss, Arthur; Pawson, Tony

    2015-03-31

    Systematic characterization of intercellular signaling approximating the physiological conditions of stimulation that involve direct cell-cell contact is challenging. We describe a proteomic strategy to analyze physiological signaling mediated by the T-cell costimulatory receptor CD28. We identified signaling pathways activated by CD28 during direct cell-cell contact by global analysis of protein phosphorylation. To define immediate CD28 targets, we used phosphorylated forms of the CD28 cytoplasmic region to obtain the CD28 interactome. The interaction profiles of selected CD28-interacting proteins were further characterized in vivo for amplifying the CD28 interactome. The combination of the global phosphorylation and interactome analyses revealed broad regulation of CD28 and its interactome by phosphorylation. Among the cellular phosphoproteins influenced by CD28 signaling, CapZ-interacting protein (CapZIP), a regulator of the actin cytoskeleton, was implicated by functional studies. The combinatorial approach applied herein is widely applicable for characterizing signaling networks associated with membrane receptors with short cytoplasmic tails. PMID:25829543

  16. Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence of potassium supply.

    PubMed

    Le Lay, P; Isaure, M-P; Sarry, J-E; Kuhn, L; Fayard, B; Le Bail, J-L; Bastien, O; Garin, J; Roby, C; Bourguignon, J

    2006-11-01

    The incorporation and localisation of 133Cs in a plant cellular model and the metabolic response induced were analysed as a function of external K concentration using a multidisciplinary approach. Sucrose-fed photosynthetic Arabidopsis thaliana suspension cells, grown in a K-containing or K-depleted medium, were submitted to a 1 mM Cs stress. Cell growth, strongly diminished in absence of K, was not influenced by Cs. In contrast, the chlorophyll content, affected by a Cs stress superposed to K depletion, did not vary under the sole K depletion. The uptake of Cs was monitored in vivo using 133Cs NMR spectroscopy while the final K and Cs concentrations were determined using atomic absorption spectrometry. Cs absorption rate and final concentration increased in a K-depleted external medium; in vivo NMR revealed that intracellular Cs was distributed in two kinds of compartment. Synchrotron X-ray fluorescence microscopy indicated that one could be the chloroplasts. In parallel, the cellular response to the Cs stress was analysed using proteomic and metabolic profiling. Proteins up- and down-regulated in response to Cs, in presence of K+ or not, were analysed by 2D gel electrophoresis and identified by mass spectrometry. No salient feature was detected excepting the overexpression of antioxidant enzymes, a common response of Arabidopsis cells stressed whether by Cs or by K-depletion. 13C and 31P NMR analysis of acid extracts showed that the metabolome impact of the Cs stress was also a function of the K nutrition. These analyses suggested that sugar metabolism and glycolytic fluxes were affected in a way depending upon the medium content in K+. Metabolic flux measurements using 13C labelling would be an elegant way to pursue on this line. Using our experimental system, a progressively stronger Cs stress might point out other specific responses elicited by Cs.

  17. Comparative proteomic analysis of apomictic monosomic addition line of Beta corolliflora and Beta vulgaris L. in sugar beet.

    PubMed

    Zhu, Hong; Bi, Ying-Dong; Yu, Li-Jie; Guo, De-Dong; Wang, Bai-Chen

    2009-11-01

    Apomixis refers to a process in which plants produce seed without fertilization through female syngamy that produces embryos genetically identical to the maternal parent. In sugar beet, interspecific hybrids between diploid Beta vulgaris and tetraploid Beta corolliflora were established and monosomic addition line M14 was selected because of the apomictic phenotype. By using two-dimensional electrophoresis gels we identified the proteins which were differently expressed between the M14 and B. vulgaris. A total of 27 protein spots which varied expressed between lines were isolated and successfully identified with MALDI-TOF MS. Among them five protein spots were found to be only presented in M14 and two protein spots only expressed in Beta. According to their functional annotations described in Swissprot database, these proteins were, respectively, involved in important biological pathways, such as cell division, functionally classified using the KEGG functional classification system. The result may be useful for us to better understand the genetic mechanism of apomixes.

  18. VOLIN and KJON-Two novel hyperdiploid myeloma cell lines.

    PubMed

    Våtsveen, Thea Kristin; Børset, Magne; Dikic, Aida; Tian, Erming; Micci, Francesca; Lid, Ana H B; Meza-Zepeda, Leonardo A; Coward, Eivind; Waage, Anders; Sundan, Anders; Kuehl, W Michael; Holien, Toril

    2016-11-01

    Multiple myeloma can be divided into two distinct genetic subgroups: hyperdiploid (HRD) or nonhyperdiploid (NHRD) myeloma. Myeloma cell lines are important tools to study myeloma cell biology and are commonly used for preclinical screening and testing of new drugs. With few exceptions human myeloma cell lines are derived from NHRD patients, even though about half of the patients have HRD myeloma. Thus, there is a need for cell lines of HRD origin to enable more representative preclinical studies. Here, we present two novel myeloma cell lines, VOLIN and KJON. Both of them were derived from patients with HRD disease and shared the same genotype as their corresponding primary tumors. The cell lines' chromosomal content, genetic aberrations, gene expression, immunophenotype as well as some of their growth characteristics are described. Neither of the cell lines was found to harbor immunoglobulin heavy chain translocations. The VOLIN cell line was established from a bone marrow aspirate and KJON from peripheral blood. We propose that these unique cell lines may be used as tools to increase our understanding of myeloma cell biology. © 2016 Wiley Periodicals, Inc. PMID:27311012

  19. Proteomic profiling of cellular targets of lipopolysaccharide-induced signalling in Nicotiana tabacum BY-2 cells.

    PubMed

    Gerber, Isak B; Laukens, Kris; De Vijlder, Thomas; Witters, Erwin; Dubery, Ian A

    2008-11-01

    Plants constantly monitor for pathogen challenge and utilize a diverse array of adaptive defense mechanisms, including differential protein regulation, during pathogen attack. A proteomic analysis of Nicotiana tabacum BY-2 cells was performed in order to investigate the dynamic changes following perception of bacterial lipopolysaccharides. A multiplexed proteome analysis, employing two-dimensional difference-in-gel-electrophoresis with CyDye DIGE fluors, as well as Ruthenium II tris (bathophenanthroline disulfonate) fluorescence staining and Pro-Q Diamond phosphoprotein-specific gel staining, monitored over 1500 proteins and resulted in the identification of 88 differentially regulated proteins and phosphoproteins responsive to LPS(B.cep.)-elicitation. Functional clustering of the proteins both at the level of their abundance and phosphorylation status, revealed 9 proteins involved in transport, ion homeostasis and signal transduction. A large number of responsive proteins were found to be involved in metabolism- and energy-related processes (36), representing various metabolic pathways. Another abundant category corresponded to proteins classified as molecular chaperones and involved in protein destination/targeting (12). Other categories of proteins found to be LPS(B.cep.)-responsive and differentially regulated include cell structure- and cytoskeletal rearrangement proteins (8) and proteins involved in transcription and translation as well as degradation (11). The results indicate that LPS(B.cep.) induces metabolic reprogramming and changes in cellular activities supporting protein synthesis, -folding, vesicle trafficking and secretion; accompanied by changes to the cytoskeleton and proteosome function. Many of the identified proteins are known to be interconnected at various levels through a complex web of activation/deactivation, complex formation, protein-protein interactions, and chaperoning reactions. The presented data offers novel insights and further

  20. Proteomic Analysis of Oral Cavity Squamous Cell Carcinoma Specimens Identifies Patient Outcome–Associated Proteins

    PubMed Central

    Harris, Thomas M.; Du, Peicheng; Kawachi, Nicole; Belbin, Thomas J.; Wang, Yanhua; Schlecht, Nicolas F.; Ow, Thomas J.; Keller, Christian E.; Childs, Geoffrey J.; Smith, Richard V.; Angeletti, Ruth Hogue; Prystowsky, Michael B.; Lim, Jihyeon

    2015-01-01

    Context Global proteomic analysis of oral cavity squamous cell carcinoma was performed to identify changes that reflect patient outcomes. Objectives To identify differentially expressed proteins associated with patient outcomes and to explore the use of imaging mass spectrometry as a clinical tool to identify clinically relevant proteins. Design Two-dimensional separation of digested peptides generated from 43 specimens with high-resolution mass spectrometry identified proteins associated with disease-specific death, distant metastasis, and loco-regional recurrence. RNA expressions had been correlated to protein levels to test transcriptional regulation of clinically relevant proteins. Imaging mass spectrometry explored an alternative platform for assessing clinically relevant proteins that would complement surgical pathologic diagnosis. Results Seventy-two peptide features were found to be associated with 3 patient outcomes: disease-specific death (9), distant metastasis (16), and loco-regional recurrence (39); 8 of them were associated with multiple outcomes. Functional ontology revealed major changes in cell adhesion and calcium binding. Thirteen RNAs showed strong correlation with their encoded proteins, implying transcriptional control. Reduction of DSP, PKP1, and TRIM29 was associated with significantly shorter time to onset of distant metastasis. Reduction of PKP1 and TRIM29 correlated with poorer disease-specific survival. Additionally, S100A8 and S100A9 reductions were verified for their association with poor prognosis using imaging mass spectrometry, a platform more adaptable for use with surgical pathology. Conclusions Using global proteomic analysis, we have identified proteins associated with clinical outcomes. The list of clinically relevant proteins observed will provide a means to develop clinical assays for prognosis and optimizing treatment selection. PMID:25295583

  1. Proteomic analysis as a means to approach limbal stem cell biology in a search for stem cell markers.

    PubMed

    Honoré, Bent; Vorum, Henrik

    2014-04-01

    The cornea consists of three main layers: an outer surface epithelium, the stroma, and the endothelium. A clear cornea is necessary for optimal vision and is maintained and repaired from limbal epithelial stem cells located in the limbus between the cornea and the sclera. Diseases and injury may result in deficiency of the stem cells impairing their ability to renew the corneal epithelium. Patients with limbal stem cell deficiency experience chronic pain and ultimately blindness. Attempts to treat the disease are based on replacement of the stem cells by transplantation or by culturing the stem cells. We here review the proteomic techniques that so far have been used to approach characterization of limbal stem cells and markers to identify them. It is apparent that the field is in a rather inchoate state due to the scarcity and relative inaccessibility of the stem cells. However, the importance of revealing limbal stem cell biology and identifying stem cell biomarkers calls for greater use of emerging methodology. Strategies for future studies are discussed.

  2. Proteomic analysis as a means to approach limbal stem cell biology in a search for stem cell markers.

    PubMed

    Honoré, Bent; Vorum, Henrik

    2014-04-01

    The cornea consists of three main layers: an outer surface epithelium, the stroma, and the endothelium. A clear cornea is necessary for optimal vision and is maintained and repaired from limbal epithelial stem cells located in the limbus between the cornea and the sclera. Diseases and injury may result in deficiency of the stem cells impairing their ability to renew the corneal epithelium. Patients with limbal stem cell deficiency experience chronic pain and ultimately blindness. Attempts to treat the disease are based on replacement of the stem cells by transplantation or by culturing the stem cells. We here review the proteomic techniques that so far have been used to approach characterization of limbal stem cells and markers to identify them. It is apparent that the field is in a rather inchoate state due to the scarcity and relative inaccessibility of the stem cells. However, the importance of revealing limbal stem cell biology and identifying stem cell biomarkers calls for greater use of emerging methodology. Strategies for future studies are discussed. PMID:24497450

  3. Cell lines used for the selection of recombinant baculovirus.

    PubMed

    Maruniak, J E; Garcia-Canedo, A; Rodrigues, J J

    1994-04-01

    Four insect cell lines were used to isolate two recombinant baculoviruses which had the beta-galactosidase (beta-gal) gene for colorimetric assay purposes. Plaque assays were performed using two Trichoplusia ni cell lines: BTI-TN-5B1-4 and TN-368, and two Spodptera frugiperda cell lines: IPLB-SF-21AE and SF9. The number of plaques (occlusion positive and blue beta-gal+ recombinants) formed in the Trichoplusia cells was higher than in the Spodoptera cells. The appearance of Autographa californica NPV polyhedra was also faster in the T. ni cell lines. The effect of cell passage on the plaque formation proved to be critical when two different passages of the SF9 cells were tested. The higher passage produced a lower viral titration. The size and time of appearance of the plaques was also different.

  4. Authentication of the R06E Fruit Bat Cell Line

    PubMed Central

    Jordan, Ingo; Munster, Vincent J.; Sandig, Volker

    2012-01-01

    Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus). To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery. PMID:22754654

  5. T-cell recognition is shaped by epitope sequence conservation in the host proteome and microbiome.

    PubMed

    Bresciani, Anne; Paul, Sinu; Schommer, Nina; Dillon, Myles B; Bancroft, Tara; Greenbaum, Jason; Sette, Alessandro; Nielsen, Morten; Peters, Bjoern

    2016-05-01

    Several mechanisms exist to avoid or suppress inflammatory T-cell immune responses that could prove harmful to the host due to targeting self-antigens or commensal microbes. We hypothesized that these mechanisms could become evident when comparing the immunogenicity of a peptide from a pathogen or allergen with the conservation of its sequence in the human proteome or the healthy human microbiome. Indeed, performing such comparisons on large sets of validated T-cell epitopes, we found that epitopes that are similar with self-antigens above a certain threshold showed lower immunogenicity, presumably as a result of negative selection of T cells capable of recognizing such peptides. Moreover, we also found a reduced level of immune recognition for epitopes conserved in the commensal microbiome, presumably as a result of peripheral tolerance. These findings indicate that the existence (and potentially the polarization) of T-cell responses to a given epitope is influenced and to some extent predictable based on its similarity to self-antigens and commensal antigens.

  6. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification.

    PubMed

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the Metacore(TM) database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  7. Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers

    PubMed Central

    Billing, Anja M.; Ben Hamidane, Hisham; Dib, Shaima S.; Cotton, Richard J.; Bhagwat, Aditya M.; Kumar, Pankaj; Hayat, Shahina; Yousri, Noha A.; Goswami, Neha; Suhre, Karsten; Rafii, Arash; Graumann, Johannes

    2016-01-01

    Mesenchymal stem cells (MSC) are multipotent cells with great potential in therapy, reflected by more than 500 MSC-based clinical trials registered with the NIH. MSC are derived from multiple tissues but require invasive harvesting and imply donor-to-donor variability. Embryonic stem cell-derived MSC (ESC-MSC) may provide an alternative, but how similar they are to ex vivo MSC is unknown. Here we performed an in depth characterization of human ESC-MSC, comparing them to human bone marrow-derived MSC (BM-MSC) as well as human embryonic stem cells (hESC) by transcriptomics (RNA-seq) and quantitative proteomics (nanoLC-MS/MS using SILAC). Data integration highlighted and validated a central role of vesicle-mediated transport and exosomes in MSC biology and also demonstrated, through enrichment analysis, their versatility and broad application potential. Particular emphasis was placed on comparing profiles between ESC-MSC and BM-MSC and assessing their equivalency. Data presented here shows that differences between ESC-MSC and BM-MSC are similar in magnitude to those reported for MSC of different origin and the former may thus represent an alternative source for therapeutic applications. Finally, we report an unprecedented coverage of MSC CD markers, as well as membrane associated proteins which may benefit immunofluorescence-based applications and contribute to a refined molecular description of MSC. PMID:26857143

  8. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification

    PubMed Central

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed