Diversity of miRNAs, siRNAs, and piRNAs across 25 Drosophila cell lines
Wen, Jiayu; Mohammed, Jaaved; Bortolamiol-Becet, Diane; Tsai, Harrison; Robine, Nicolas; Westholm, Jakub O.; Ladewig, Erik; Dai, Qi; Okamura, Katsutomo; Flynt, Alex S.; Zhang, Dayu; Andrews, Justen; Cherbas, Lucy; Kaufman, Thomas C.; Cherbas, Peter; Siepel, Adam; Lai, Eric C.
2014-01-01
We expanded the knowledge base for Drosophila cell line transcriptomes by deeply sequencing their small RNAs. In total, we analyzed more than 1 billion raw reads from 53 libraries across 25 cell lines. We verify reproducibility of biological replicate data sets, determine common and distinct aspects of miRNA expression across cell lines, and infer the global impact of miRNAs on cell line transcriptomes. We next characterize their commonalities and differences in endo-siRNA populations. Interestingly, most cell lines exhibit enhanced TE-siRNA production relative to tissues, suggesting this as a common aspect of cell immortalization. We also broadly extend annotations of cis-NAT-siRNA loci, identifying ones with common expression across diverse cells and tissues, as well as cell-restricted loci. Finally, we characterize small RNAs in a set of ovary-derived cell lines, including somatic cells (OSS and OSC) and a mixed germline/somatic cell population (fGS/OSS) that exhibits ping-pong piRNA signatures. Collectively, the ovary data reveal new genic piRNA loci, including unusual configurations of piRNA-generating regions. Together with the companion analysis of mRNAs described in a previous study, these small RNA data provide comprehensive information on the transcriptional landscape of diverse Drosophila cell lines. These data should encourage broader usage of fly cell lines, beyond the few that are presently in common usage. PMID:24985917
Evaluating cell lines as tumour models by comparison of genomic profiles
Domcke, Silvia; Sinha, Rileen; Levine, Douglas A.; Sander, Chris; Schultz, Nikolaus
2013-01-01
Cancer cell lines are frequently used as in vitro tumour models. Recent molecular profiles of hundreds of cell lines from The Cancer Cell Line Encyclopedia and thousands of tumour samples from the Cancer Genome Atlas now allow a systematic genomic comparison of cell lines and tumours. Here we analyse a panel of 47 ovarian cancer cell lines and identify those that have the highest genetic similarity to ovarian tumours. Our comparison of copy-number changes, mutations and mRNA expression profiles reveals pronounced differences in molecular profiles between commonly used ovarian cancer cell lines and high-grade serous ovarian cancer tumour samples. We identify several rarely used cell lines that more closely resemble cognate tumour profiles than commonly used cell lines, and we propose these lines as the most suitable models of ovarian cancer. Our results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types. PMID:23839242
Stabley, Deborah L; Holbrook, Jennifer; Harris, Ashlee W; Swoboda, Kathryn J; Crawford, Thomas O; Sol-Church, Katia; Butchbach, Matthew E R
2017-05-01
Fibroblasts and lymphoblastoid cell lines (LCLs) derived from individuals with spinal muscular atrophy (SMA) have been and continue to be essential for translational SMA research. Authentication of cell lines helps ensure reproducibility and rigor in biomedical research. This quality control measure identifies mislabeling or cross-contamination of cell lines and prevents misinterpretation of data. Unfortunately, authentication of SMA cell lines used in various studies has not been possible because of a lack of a reference. In this study, we provide said reference so that SMA cell lines can be subsequently authenticated. We use short tandem repeat (STR) profiling and digital PCR (dPCR), which quantifies SMN1 and SMN2 copy numbers, to generate molecular identity codes for fibroblasts and LCLs that are commonly used in SMA research. Using these molecular identity codes, we clarify the familial relationships within a set of fibroblasts commonly used in SMA research. This study presents the first cell line reference set for the SMA research community and demonstrates its usefulness for re-identification and authentication of lines commonly used as in vitro models for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls
Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.
2013-01-01
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450
The transcriptional diversity of 25 Drosophila cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherbas, Lucy; Willingham, Aarron; Zhang, Dayu
2010-12-22
Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signalingmore » pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what those patterns reveal about the origins of the lines and the stability of spatial expression patterns. In addition, we offer an initial analysis of previously unannotated transcripts in the cell lines.« less
A common deletion in two gamma ray induced rat pulmonary tumor cell lines.
Van Klaveren, P; De Bruijne, J; Van der Winden, H; Kal, H B; Bentvelzen, P
1994-01-01
Subtraction hybridization was performed on normal WAG/Rij rat DNA with DNA from a syngeneic Ir-192 induced pulmonary tumor cell line L37. The residual DNA was amplified by means of sequence-independent PCR. This procedure yielded a sequence, of which multiple copies are present in normal rat DNA. In the tumor line L37 two restriction fragments hybridizing with this repeat sequence are lacking. In another Ir-192 induced pulmonary tumor line, L33, one of these fragments was also lacking. This indicates a common deletion in the two tumor lines.
Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Labra-Barrios, Maria Luisa; Bazán-Méndez, César Isaac; Tavera-Tapia, Alejandra; Herrera-Aguirre, Marí;aEsther; Sánchez del Pino, Manuel M.; Gallegos-Pérez, José Luis; González-Márquez, Humberto; Hernández-Hernández, Jose Manuel; León-Ávila, Gloria; Rodríguez-Cuevas, Sergio; Guisa-Hohenstein, Fernando; Luna-Arias, Juan Pedro
2015-01-01
Breast cancer is the most common and the leading cause of mortality in women worldwide. There is a dire necessity of the identification of novel molecules useful in diagnosis and prognosis. In this work we determined the differentially expression profiles of four breast cancer cell lines compared to a control cell line. We identified 1020 polypeptides labelled with iTRAQ with more than 95% in confidence. We analysed the common proteins in all breast cancer cell lines through IPA software (IPA core and Biomarkers). In addition, we selected the specific overexpressed and subexpressed proteins of the different molecular classes of breast cancer cell lines, and classified them according to protein class and biological process. Data in this article is related to the research article “Determination of the protein expression profiles of breast cancer cell lines by Quantitative Proteomics using iTRAQ Labelling and Tandem Mass Spectrometry” (Calderón-González et al. [1] in press). PMID:26217805
Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment.
Eguchi, Takanori; Sogawa, Chiharu; Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-Ichi; Okamoto, Kuniaki; Calderwood, Stuart K
2018-01-01
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.
Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment
Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-ichi; Okamoto, Kuniaki; Calderwood, Stuart K.
2018-01-01
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression. PMID:29415026
Stamps, A C; Davies, S C; Burman, J; O'Hare, M J
1994-06-15
A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.
Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research
Girard, Luc; Lockwood, William W.; Lam, Wan L.; Minna, John D.
2010-01-01
Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non–small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel. PMID:20679594
Molecular characterization of breast cancer cell lines through multiple omic approaches.
Smith, Shari E; Mellor, Paul; Ward, Alison K; Kendall, Stephanie; McDonald, Megan; Vizeacoumar, Frederick S; Vizeacoumar, Franco J; Napper, Scott; Anderson, Deborah H
2017-06-05
Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated in common or unique ways. These two new kinase or "Kin-OMIC" analyses add another dimension of important data about these frequently used breast cancer cell lines. This will assist researchers in selecting the most appropriate cell lines to use for breast cancer studies and provide context for the interpretation of the emerging results.
Ong, Edison; Xie, Jiangan; Ni, Zhaohui; Liu, Qingping; Sarntivijai, Sirarat; Lin, Yu; Cooper, Daniel; Terryn, Raymond; Stathias, Vasileios; Chung, Caty; Schürer, Stephan; He, Yongqun
2017-12-21
Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.
Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M
2017-08-01
Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.
Cozar-Castellano, Irene; Harb, George; Selk, Karen; Takane, Karen; Vasavada, Rupangi; Sicari, Brian; Law, Brian; Zhang, Pili; Scott, Donald K.; Fiaschi-Taesch, Nathalie; Stewart, Andrew F.
2008-01-01
OBJECTIVE—Rodent insulinoma cell lines may serve as a model for designing continuously replicating human β-cell lines and provide clues as to the central cell cycle regulatory molecules in the β-cell. RESEARCH DESIGN AND METHODS—We performed a comprehensive G1/S proteome analysis on the four most widely studied rodent insulinoma cell lines and defined their flow cytometric profiles and growth characteristics. RESULTS—1) Despite their common T-antigen–derived origins, MIN6 and BTC3 cells display markedly different G1/S expression profiles; 2) despite their common radiation origins, RINm5F and INS1 cells display striking differences in cell cycle protein profiles; 3) phosphorylation of pRb is absent in INS1 and RINm5F cells; 4) cyclin D2 is absent in RINm5F and BTC3 cells and therefore apparently dispensable for their proliferation; 5) every cell cycle inhibitor is upregulated, presumably in a futile attempt to halt proliferation; 6) among the G1/S proteome members, seven are pro-proliferation molecules: cyclin-dependent kinase-1, -2, -4, and -6 and cyclins A, E, and D3; and 7) overexpression of the combination of these seven converts arrested proliferation rates in primary rat β-cells to those in insulinoma cells. Unfortunately, this therapeutic overexpression appears to mildly attenuate β-cell differentiation and function. CONCLUSIONS—These studies underscore the importance of characterizing the cell cycle at the protein level in rodent insulinoma cell lines. They also emphasize the hazards of interpreting data from rodent insulinoma cell lines as modeling normal cell cycle progression. Most importantly, they provide seven candidate targets for inducing proliferation in human β-cells. PMID:18650366
2013-01-01
Background CpG dinucleotide-rich genomic DNA regions, known as CpG islands (CGIs), can be methylated at their cytosine residues as an epigenetic mark that is stably inherited during cell mitosis. Differentially methylated regions (DMRs) are genomic regions showing different degrees of DNA methylation in multiple samples. In this study, we focused our attention on CGIs showing different DNA methylation between two culture replicas of the same cell line. Results We used methylation data of 35 cell lines from the Encyclopedia of DNA Elements (ENCODE) consortium to identify CpG islands that were differentially methylated between replicas of the same cell line and denoted them Inter Replicas Differentially Methylated CpG islands (IRDM-CGIs). We identified a group of IRDM-CGIs that was consistently shared by different cell lines, and denoted it common IRDM-CGIs. X chromosome CGIs were overrepresented among common IRDM-CGIs. Autosomal IRDM-CGIs were preferentially located in gene bodies and intergenic regions had a lower G + C content, a smaller mean length, and a reduced CpG percentage. Functional analysis of the genes associated with autosomal IRDM-CGIs showed that many of them are involved in DNA binding and development. Conclusions Our results show that several specific functional and structural features characterize common IRDM-CGIs. They may represent a specific subset of CGIs that are more prone to being differentially methylated for their intrinsic characteristics. PMID:24106769
Avitzour, Michal; Mor-Shaked, Hagar; Yanovsky-Dagan, Shira; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Eldar-Geva, Talia; Schonberger, Oshrat; Levy-Lahad, Ephrat; Epsztejn-Litman, Silvina; Eiges, Rachel
2014-01-01
Summary Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5′-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%). In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases. PMID:25418717
Avitzour, Michal; Mor-Shaked, Hagar; Yanovsky-Dagan, Shira; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Eldar-Geva, Talia; Schonberger, Oshrat; Levy-Lahad, Ephrat; Epsztejn-Litman, Silvina; Eiges, Rachel
2014-11-11
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5'-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%). In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases.
Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna
2014-05-09
ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.
Clonogenic assay: adherent cells.
Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C
2011-03-13
The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 1956. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811). Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation.
Swaminathan, T Raja; Basheer, V S; Kumar, Raj; Kathirvelpandian, A; Sood, Neeraj; Jena, J K
2015-08-01
Cyprinus carpio koi fin (CCKF) cell line was established and characterized from the caudal fin tissue of ornamental common carp, C. carpio koi. This cell line has been maintained in L-15 medium supplemented with 15% foetal bovine serum (FBS) and subcultured more than 52 times over a period of 24 mo. The CCKF cell line consisted of epithelial cells and was able to grow at temperatures between 22 and 35°C with an optimum temperature of 28°C. The growth rate of these cells increased as the proportion of FBS increased from 2 to 20% with optimum growth at the concentrations of 15% FBS. Karyotype analysis revealed that the modal chromosome number of CCKF cells was 2n = 100. Partial amplification and sequencing of fragments of two mitochondrial genes 16S rRNA and COI confirmed that CCKF cell line originated from ornamental common carp. The CCKF cells showed strong reaction to the cytokeratin marker, indicating that it was epithelial in nature. The extracellular products of Vibrio cholerae MTCC 3904 and Aeromonas hydrophila were toxic to the CCKF cells and not susceptible to viral nervous necrosis virus (VNNV). These CCKF cells were confirmed for the absence of Mycoplasma sp. by polymerase chain reaction. Furthermore, 90% of viable cells could be effectively revived 4 mo after cryopreservation from CCKF cell population suggesting the possibility of long-term storage of the cells.
Karlgren, Maria; Simoff, Ivailo; Backlund, Maria; Wegler, Christine; Keiser, Markus; Handin, Niklas; Müller, Janett; Lundquist, Patrik; Jareborg, Anne-Christine; Oswald, Stefan; Artursson, Per
2017-09-01
Madin-Darby canine kidney (MDCK) II cells stably transfected with transport proteins are commonly used models for drug transport studies. However, endogenous expression of especially canine MDR1 (cMDR1) confounds the interpretation of such studies. Here we have established an MDCK cell line stably overexpressing the human MDR1 transporter (hMDR1; P-glycoprotein), and used CRISPR-Cas9 gene editing to knockout the endogenous cMDR1. Genomic screening revealed the generation of a clonal cell line homozygous for a 4-nucleotide deletion in the canine ABCB1 gene leading to a frameshift and a premature stop codon. Knockout of cMDR1 expression was verified by quantitative protein analysis and functional studies showing retained activity of the human MDR1 transporter. Application of this cell line allowed unbiased reclassification of drugs previously defined as both substrates and non-substrates in different studies using commonly used MDCK-MDR1 clones. Our new MDCK-hMDR1 cell line, together with a previously developed control cell line, both with identical deletions in the canine ABCB1 gene and lack of cMDR1 expression represent excellent in vitro tools for use in drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A
2017-06-01
Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.
Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donnell, Christopher D., E-mail: codonn3@uic.ed; Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612; Kovacs, Maria, E-mail: marcsika101@yahoo.co
2010-02-20
Heparan sulfate (HS) proteoglycans are commonly exploited by multiple viruses for initial attachment to host cells. Herpes simplex virus-1 (HSV-1) is unique because it can use HS for both attachment and penetration, provided specific binding sites for HSV-1 envelope glycoprotein gD are present. The interaction with gD is mediated by specific HS moieties or 3-O sulfated HS (3-OS HS), which are generated by all but one of the seven isoforms of 3-O sulfotransferases (3-OSTs). Here we demonstrate that several common experimental cell lines express unique sets of 3-OST isoforms. While the isoforms 3-OST-3, -5 and -6 were most commonly expressed,more » isoforms 3-OST-2 and -4 were undetectable in the cell lines examined. Since most cell lines expressed multiple 3-OST isoforms, we addressed the significance of 3-OS HS in HSV-1 entry by down-regulating 2-O-sulfation, a prerequisite for 3-OS HS formation, by knocking down 2-OST expression by RNA interference (RNAi). 2-OST knockdown was verified by reverse-transcriptase PCR and Western blot analysis, while 3-OS HS knockdown was verified by immunofluorescence. Cells showed a significant decrease in viral entry, suggesting an important role for 3-OS HS. Implicating 3-OS HS further, cells knocked down for 2-OST expression also demonstrated decreased cell-cell fusion when cocultivated with effector cells transfected with HSV-1 glycoproteins. Our findings suggest that 3-OS HS may play an important role in HSV-1 entry into many different cell lines.« less
Molluscan cells in culture: primary cell cultures and cell lines
Yoshino, T. P.; Bickham, U.; Bayne, C. J.
2013-01-01
In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436
Mix-ups and mycoplasma: the enemies within.
Drexler, Hans G; Uphoff, Cord C; Dirks, Willy G; MacLeod, Roderick A F
2002-04-01
Human leukemia-lymphoma (LL) cell lines represent important tools for experimental research. Among the various problems associated with cell lines, the two most common concern contaminations: (1) cross-contamination with unrelated cells and (2) contamination with microorganisms, in particular mycoplasma. The bad news is that about one-third of the cell lines are either cross-contaminated or mycoplasma-infected or both. The good news is that there are means to recognize and overcome these problems. In cases where, during attempts to establish new LL cell lines, primary LL cultures are cross-contaminated with continuous cell lines, intended new cell lines simply cannot be established ("early" cross-contamination). In cases of "late" cross-contamination of existing LL cell lines where the intrusive cells have a growth advantage, the original ("uncontaminated") cell lines may still be available elsewhere. DNA fingerprinting and cytogenetic analysis appear to be the most suitable approaches to detect cross-contaminations and to authenticate LL cell lines. A different but related aspect of "false" LL cell lines is the frequent misclassification of cell lines whereby the actual cell type of the cell line does not correspond to the purported model character of the cell line. Mycoplasma infection can have a multitude of effects on the eukaryotic cells which, due to the variety of infecting mycoplasma species and many other contributing parameters, cannot be predicted, rendering resulting data questionable at best. Practical procedures for the detection and elimination of mycoplasma contamination have been developed. Diagnostic and preventive strategies in order to hem the alarming increase in "false" and mycoplasma-positive LL cell lines are recommended.
Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito
2018-01-01
Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983
Possible involvement of loss of imprinting in immortalization of human fibroblasts.
Okamura, Kotaro; Ohno, Maki; Tsutsui, Takeki
2011-04-01
Disruption of the normal pattern of parental origin-specific gene expression is referred to as loss of imprinting (LOI), which is common in various cancers. To investigate a possible role of LOI in the early stage of human cell transformation, we studied LOI in 18 human fibroblast cell lines immortalized spontaneously, by viral oncogenes, by chemical or physical carcinogens, or by infection with a retrovirus vector encoding the human telomerase catalytic subunit, hTERT cDNA. LOI was observed in all the 18 immortal cell lines. The gene most commonly exhibiting LOI was NDN which displayed LOI in 15 of the 18 cell lines (83%). The other genes exhibiting LOI at high frequencies were PEG3 (50%), MAGE-L2 (61%) and ZNF 127 (50%). Expression of NDN that was lost in the immortal cell lines was restored by treatment with 5-aza-2'-deoxycytidine. The ratio of histone H3 lysine 9 methylation to histone H3 lysine 4 methylation of the chromatin containing the NDN promoter in the immortal WI-38VA13 cells was greater than that in the parental cells, suggesting chromatin structure-mediated regulation of NDN expression. We previously demonstrated that inactivation of the p16INK4a/pRb pathway is necessary for immortalization of human cells. Human fibroblasts in the pre-crisis phase and cells with an extended lifespan that eventually senesce, both of which have the normal p16INK4a/pRb pathway, did not show LOI at any imprinted gene examined. Although it is not clear if LOI plays a causal role in immortalization of human cells or is merely coincidental, these findings indicate a possible involvement of LOI in immortalization of human cells or a common mechanism involved in both processes.
Anticancer effects of resveratrol in canine hemangiosarcoma cell lines.
Carlson, A; Alderete, K S; Grant, M K O; Seelig, D M; Sharkey, L C; Zordoky, B N M
2018-06-01
Hemangiosarcoma (HSA) is a highly malignant tumour with aggressive biological behaviour. HSAs are more common in dogs than other domestic animals. The median survival time of dogs with HSA remains short, even with chemotherapy and surgery. Therefore, there is a critical need to improve the adjuvant chemotherapeutic regimens to improve clinical outcomes in dogs with HSA. Resveratrol has been shown to possess strong anti-proliferative and/or pro-apoptotic properties in human cancer cell lines. Nevertheless, the potential anticancer effects of resveratrol have not been reported in canine HSAs. The objective of this study is to determine the growth inhibitory effects of resveratrol in HSA cells when used alone or in combination with doxorubicin, a commonly used chemotherapeutic agent. Frog and DD-1 canine HSA cell lines were treated with varying concentrations of resveratrol with and without doxorubicin. Cell viability was measured by the MTT assay. The expression of apoptotic proteins, activation of p38 mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were assessed by western blotting. Similar to human cancer cell lines, resveratrol markedly inhibited the growth and induced apoptosis in both HSA cell lines. Mechanistically, resveratrol activated p38 MAPK, but did not affect the AMPK or the ERK1/2 pathways. Additional experiments showed that resveratrol augmented the growth-inhibitory and apoptotic effects of doxorubicin in both HSA cell lines. These findings suggest that resveratrol has pro-apoptotic effects in canine HSA cells; therefore, its use as a potential adjunct therapy in canine HSA patients warrants further investigation. © 2017 John Wiley & Sons Ltd.
Skog, Johan; Mei, Ya-Fang; Wadell, Göran
2002-06-01
Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.
USDA-ARS?s Scientific Manuscript database
Bacterial Cold Water Disease (BCWD) is a chronic disease of rainbow trout, and is caused by the gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp...
Phuchareon, Janyaporn; Ohta, Yoshihito; Woo, Jonathan M.; Eisele, David W.; Tetsu, Osamu
2009-01-01
Adenoid cystic carcinoma (ACC) is the second most common malignant neoplasm of the salivary glands. Most patients survive more than 5 years after surgery and postoperative radiation therapy. The 10 year survival rate, however, drops to 40%, due to locoregional recurrences and distant metastases. Improving long-term survival in ACC requires the development of more effective systemic therapies based on a better understanding of the biologic behavior of ACC. Much preclinical research in this field involves the use of cultured cells and, to date, several ACC cell lines have been established. Authentication of these cell lines, however, has not been reported. We performed DNA fingerprint analysis on six ACC cell lines using short tandem repeat (STR) examinations and found that all six cell lines had been contaminated with other cells. ACC2, ACC3, and ACCM were determined to be cervical cancer cells (HeLa cells), whereas the ACCS cell line was composed of T24 urinary bladder cancer cells. ACCNS and CAC2 cells were contaminated with cells derived from non-human mammalian species: the cells labeled ACCNS were mouse cells and the CAC2 cells were rat cells. These observations suggest that future studies using ACC cell lines should include cell line authentication to avoid the use of contaminated or non-human cells. PMID:19557180
Winton, J.; Batts, W.; DeKinkelin, P.; LeBerre, M.; Bremont, M.; Fijan, N.
2010-01-01
Initially established from proliferative skin lesions of the common carp, Cyprinus carpio L., the epithelioma papulosum cyprini (EPC) cell line (Fijan, Sulimanovic, Bearzotti, Muzinic, Zwillenberg, Chilmonczyk, Vautherot & de Kinkelin 1983) has become one of the most widely used tools for research on fish viruses and the diagnosis of fish viral diseases.
Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.
2017-01-01
A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260
Hedberg, Annica; Knutsen, Erik; Løvhaugen, Anne Silje; Jørgensen, Tor Erik; Perander, Maria; Johansen, Steinar D
2018-04-19
Low-level mitochondrial heteroplasmy is a common phenomenon in both normal and cancer cells. Here, we investigate the link between low-level heteroplasmy and mitogenome mutations in a human breast cancer matched cell line by high-throughput sequencing. We identified 23 heteroplasmic sites, of which 15 were common between normal cells (Hs578Bst) and cancer cells (Hs578T). Most sites were clustered within the highly conserved Complex IV and ribosomal RNA genes. Two heteroplasmic variants in normal cells were found as fixed mutations in cancer cells. This indicates a positive selection of these variants in cancer cells. RNA-Seq analysis identified upregulated L-strand specific transcripts in cancer cells, which include three mitochondrial long non-coding RNA molecules. We hypothesize that this is due to two cancer cell-specific mutations in the control region.
Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar
2017-03-01
Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10μg/mL of Arctium lappa root extract and 5 μM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies. Creative Commons Attribution License
Clonogenic Assay: Adherent Cells
Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T.; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C.
2011-01-01
The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 19561. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture1. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811)2. Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation. PMID:21445039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, K.; Chubb, C.; Huberman, E.
High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteinsmore » were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.« less
Second-line treatment for metastatic clear cell renal cell cancer: experts' consensus algorithms.
Rothermundt, C; von Rappard, J; Eisen, T; Escudier, B; Grünwald, V; Larkin, J; McDermott, D; Oldenburg, J; Porta, C; Rini, B; Schmidinger, M; Sternberg, C N; Putora, P M
2017-04-01
Second-line systemic treatment options for metastatic clear cell renal cell cancer (mccRCC) are diverse and treatment strategies are variable among experts. Our aim was to investigate the approach for the second-line treatment after first-line therapy with a tyrosine kinase inhibitor (TKI). Recently two phase III trials have demonstrated a potential role for nivolumab (NIV) and cabozantinib (CAB) in this setting. We aimed to estimate the impact of these trials on clinical decision making. Eleven international experts were asked to provide their treatment strategies for second-line systemic therapy for mccRCC in the current setting and once NIV and CAB will be approved and available. The treatment strategies were analyzed with the objective consensus approach. The analysis of the decision trees revealed everolimus (EVE), axitinib (AXI), NIV and TKI switch (sTKI) as therapeutic options after first-line TKI therapy in the current situation and mostly NIV and CAB in the future setting. The most commonly used criteria for treatment decisions were duration of response, TKI tolerance and zugzwang a composite of several related criteria. In contrast to the first-line setting, recommendations for second-line systemic treatment of mccRCC among experts were not as heterogeneous. The agents mostly used after disease progression on a first-line TKI included: EVE, AXI, NIV and sTKI. In the future setting of NIV and CAB availability, NIV was the most commonly chosen drug, whereas several experts identified situations where CAB would be preferred.
Shiozawa, Seiji; Kawai, Kenji; Okada, Yohei; Tomioka, Ikuo; Maeda, Takuji; Kanda, Akifumi; Shinohara, Haruka; Suemizu, Hiroshi; James Okano, Hirotaka; Sotomaru, Yusuke; Sasaki, Erika; Okano, Hideyuki
2011-09-01
Nonhuman primate embryonic stem (ES) cells have vast promise for preclinical studies. Genetic modification in nonhuman primate ES cells is an essential technique for maximizing the potential of these cells. The common marmoset (Callithrix jacchus), a nonhuman primate, is expected to be a useful transgenic model for preclinical studies. However, genetic modification in common marmoset ES (cmES) cells has not yet been adequately developed. To establish efficient and stable genetic modifications in cmES cells, we inserted the enhanced green fluorescent protein (EGFP) gene with heterotypic lox sites into the β-actin (ACTB) locus of the cmES cells using gene targeting. The resulting knock-in ES cells expressed EGFP ubiquitously under the control of the endogenous ACTB promoter. Using inserted heterotypic lox sites, we demonstrated Cre recombinase-mediated cassette exchange (RMCE) and successfully established a monomeric red fluorescent protein (mRFP) knock-in cmES cell line. Further, a herpes simplex virus-thymidine kinase (HSV-tk) knock-in cmES cell line was established using RMCE. The growth of tumor cells originating from the cell line was significantly suppressed by the administration of ganciclovir. Therefore, the HSV-tk/ganciclovir system is promising as a safeguard for stem cell therapy. The stable and ubiquitous expression of EGFP before RMCE enables cell fate to be tracked when the cells are transplanted into an animal. Moreover, the creation of a transgene acceptor locus for site-specific transgenesis will be a powerful tool, similar to the ROSA26 locus in mice.
McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta
2014-01-01
The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical drug resistance. PMID:24639951
Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation
Quentmeier, Hilmar; Pommerenke, Claudia; Ammerpohl, Ole; Geffers, Robert; Hauer, Vivien; MacLeod, Roderick AF; Nagel, Stefan; Romani, Julia; Rosati, Emanuela; Rosén, Anders; Uphoff, Cord C; Zaborski, Margarete; Drexler, Hans G
2016-01-01
Genetic heterogeneity though common in tumors has been rarely documented in cell lines. To examine how often B-lymphoma cell lines are comprised of subclones, we performed immunoglobulin (IG) heavy chain hypermutation analysis. Revealing that subclones are not rare in B-cell lymphoma cell lines, 6/49 IG hypermutated cell lines (12%) consisted of subclones with individual IG mutations. Subclones were also identified in 2/284 leukemia/lymphoma cell lines exhibiting bimodal CD marker expression. We successfully isolated 10 subclones from four cell lines (HG3, SU-DHL-5, TMD-8, U-2932). Whole exome sequencing was performed to molecularly characterize these subclones. We describe in detail the clonal structure of cell line HG3, derived from chronic lymphocytic leukemia. HG3 consists of three subclones each bearing clone-specific aberrations, gene expression and DNA methylation patterns. While donor patient leukemic cells were CD5+, two of three HG3 subclones had independently lost this marker. CD5 on HG3 cells was regulated by epigenetic/transcriptional mechanisms rather than by alternative splicing as reported hitherto. In conclusion, we show that the presence of subclones in cell lines carrying individual mutations and characterized by sets of differentially expressed genes is not uncommon. We show also that these subclones can be useful isogenic models for regulatory and functional studies. PMID:27566572
Zhao, Mei; Sano, Daisuke; Pickering, Curtis R.; Jasser, Samar A.; Henderson, Ying C.; Clayman, Gary L.; Sturgis, Erich M.; Ow, Thomas J.; Lotan, Reuben; Carey, Thomas E.; Sacks, Peter G.; Grandis, Jennifer R.; Sidransky, David; Heldin, Nils Erik; Myers, Jeffrey N.
2011-01-01
Purpose Human cell lines are useful for studying cancer biology and pre-clinically modeling cancer therapy, but can be misidentified and cross contamination is unfortunately common. The purpose of this study was to develop a panel of validated head and neck cell lines representing the spectrum of tissue sites and histologies that could be used for studying the molecular, genetic, and phenotypic diversity of head and neck cancer. Methods A panel of 122 clinically and phenotypically diverse head and neck cell lines from head and neck squamous cell carcinoma (HNSCC), thyroid cancer, cutaneous squamous cell carcinoma, adenoid cystic carcinoma, oral leukoplakia, immortalized primary keratinocytes, and normal epithelium, was assembled from the collections of several individuals and institutions. Authenticity was verified by performing short tandem repeat (STR) analysis. Human papillomavirus (HPV) status and cell morphology were also determined. Results Eighty-five of the 122 cell lines had unique genetic profiles. HPV-16 DNA was detected in 2 cell lines. These 85 cell lines included cell lines from the major head and neck primary tumor sites, and close examination demonstrates a wide range of in vitro phenotypes. Conclusion This panel of 85 genomically validated head and neck cell lines represents a valuable resource for the head and neck cancer research community that can help advance understanding of the disease by providing a standard reference for cell lines that can be utilized for biological as well as preclinical studies. PMID:21868764
Singh, Ankita; Kildegaard, Helene F; Andersen, Mikael R
2018-05-15
Chinese hamster ovary (CHO) cell lines can fold, assemble and modify proteins post-translationally to produce human-like proteins; as a consequence, it is the single most common expression systems for industrial production of recombinant therapeutic proteins. A thorough knowledge of cultivation conditions of different CHO cell lines has been developed over the last decade, but comprehending gene or pathway-specific distinctions between CHO cell lines at transcriptome level remains a challenge. To address these challenges, we compiled a compendium of 23 RNA-Seq studies from public and in-house data on CHO cell lines, i.e. CHO-S, CHO-K1 and DG44. Significantly differentially expressed (DE) genes particularly related to subcellular structure and macromolecular categories were used to identify differences between the cell lines. A R-based web application was developed specifically for CHO cell lines to further visualize expression values across different cell lines, and make available the normalized full CHO data set graphically as a CHO research community resource. This study quantitatively categorizes CHO cell lines based on patterns at transcriptomic level and detects gene and pathway specific key distinctions among sibling cell lines. Studies such as this can be used to select desired characteristics across various CHO cell lines. Furthermore, the availability of the data as an internet-based application can be applied to broad range of CHO engineering applications. This article is protected by copyright. All rights reserved.
A drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. To address this challenge, we present a method for assessing the impact of cellular metabolism on chemical-based cellular toxicity. A cell line with low endogenous meta...
Optimization of a cAMP response element signal pathway reporter system.
Shan, Qiang; Storm, Daniel R
2010-08-15
A sensitive cAMP response element (CRE) reporter system is essential for studying the cAMP/protein kinase A/cAMP response element binding protein signal pathway. Here we have tested a few CRE promoters and found one with high sensitivity to external stimuli. Using this optimal CRE promoter and the enhanced green fluorescent protein as the reporter, we have established a CRE reporter cell line. This cell line can be used to study the signal pathway by fluorescent microscope, fluorescence-activated cell analysis and luciferase assay. This cell line's sensitivity to forskolin, using the technique of fluorescence-activated cell sorting, was increased to approximately seven times that of its parental HEK 293 cell line, which is currently the most commonly used cell line in the field for the signal pathway study. Therefore, this newly created cell line is potentially useful for studying the signal pathway's modulators, which generally have weaker effect than its mediators. Our research has also established a general procedure for optimizing transcription-based reporter cell lines, which might be useful in performing the same task when studying many other transcription-based signal pathways. (c) 2010 Elsevier B.V. All rights reserved.
Population differences in the rate of proliferation of international HapMap cell lines.
Stark, Amy L; Zhang, Wei; Zhou, Tong; O'Donnell, Peter H; Beiswanger, Christine M; Huang, R Stephanie; Cox, Nancy J; Dolan, M Eileen
2010-12-10
The International HapMap Project is a resource for researchers containing genotype, sequencing, and expression information for EBV-transformed lymphoblastoid cell lines derived from populations across the world. The expansion of the HapMap beyond the four initial populations of Phase 2, referred to as Phase 3, has increased the sample number and ethnic diversity available for investigation. However, differences in the rate of cellular proliferation between the populations can serve as confounders in phenotype-genotype studies using these cell lines. Within the Phase 2 populations, the JPT and CHB cell lines grow faster (p < 0.0001) than the CEU or YRI cell lines. Phase 3 YRI cell lines grow significantly slower than Phase 2 YRI lines (p < 0.0001), with no widespread genetic differences based on common SNPs. In addition, we found significant growth differences between the cell lines in the Phase 2 ASN populations and the Han Chinese from the Denver metropolitan area panel in Phase 3 (p < 0.0001). Therefore, studies that separate HapMap panels into discovery and replication sets must take this into consideration. Copyright © 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata
2010-05-11
We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.
Establishing a Cell-based Assay for Assessment of Cellular Metabolism on Chemical Toxicity
A major drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. To help address this challenge, we are established a method for assessing the impact of cellular metabolism on chemical-based cellular toxicity. A commonly used h...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheard, Michael A., E-mail: msheard@chla.usc.edu; Ghent, Matthew V., E-mail: mattghent@gmail.com; Cabral, Daniel J., E-mail: dcabral14@gmail.com
2015-05-15
Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival,more » expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.« less
NASA Astrophysics Data System (ADS)
Qiu, Hao; Mizutani, Tomoko; Saraya, Takuya; Hiramoto, Toshiro
2015-04-01
The commonly used four metrics for write stability were measured and compared based on the same set of 2048 (2k) six-transistor (6T) static random access memory (SRAM) cells by the 65 nm bulk technology. The preferred one should be effective for yield estimation and help predict edge of stability. Results have demonstrated that all metrics share the same worst SRAM cell. On the other hand, compared to butterfly curve with non-normality and write N-curve where no cell state flip happens, bit-line and word-line margins have good normality as well as almost perfect correlation. As a result, both bit line method and word line method prove themselves preferred write stability metrics.
Cole, Sara L.; Dagg, Rebecca A.; Lau, Loretta M. S.; Duncan, Emma L.; Moy, Elsa L.; Reddel, Roger R.
2012-01-01
Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT. PMID:23185534
Characterization of three new serous epithelial ovarian cancer cell lines
Ouellet, Véronique; Zietarska, Magdalena; Portelance, Lise; Lafontaine, Julie; Madore, Jason; Puiffe, Marie-Line; Arcand, Suzanna L; Shen, Zhen; Hébert, Josée; Tonin, Patricia N; Provencher, Diane M; Mes-Masson, Anne-Marie
2008-01-01
Background Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946). Methods In addition to growth parameters, the cell lines were characterized for anchorage independent growth, migration and invasion potential, ability to form spheroids and xenografts in SCID mice. Results While all cell lines were capable of anchorage independent growth, only the TOV-1946 and OV-1946 cell lines were able to form spheroid and produce tumors. Profiling of keratins, p53 and Her2 protein expression was assessed by immunohistochemistry and western blot analyses. Somatic TP53 mutations were found in all cell lines, with TOV-1946 and OV-1946 harboring the same mutation, and none harbored the commonly observed somatic mutations in BRAF, KRAS or germline BRCA1/2 mutations found to recur in the French Canadian population. Conventional cytogenetics and spectral karyotype (SKY) analyses revealed complex karyotypes often observed in ovarian disease. Conclusion This is the first report of the establishment of matched EOC cell lines derived from both solid tumor and ascites of the same patient. PMID:18507860
Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma
Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang
2017-01-01
Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578
Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma.
Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang
2017-12-12
This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification ( P =0.009) or deletion ( P =0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly ( P =1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Chromosomal CNVs may contribute to their transcript expression in cervical cancer.
Reliable in vitro studies require appropriate ovarian cancer cell lines
2014-01-01
Ovarian cancer is the fifth most common cause of cancer death in women and the leading cause of death from gynaecological malignancies. Of the 75% women diagnosed with locally advanced or disseminated disease, only 30% will survive five years following treatment. This poor prognosis is due to the following reasons: limited understanding of the tumor origin, unclear initiating events and early developmental stages of ovarian cancer, lack of reliable ovarian cancer-specific biomarkers, and drug resistance in advanced cases. In the past, in vitro studies using cell line models have been an invaluable tool for basic, discovery-driven cancer research. However, numerous issues including misidentification and cross-contamination of cell lines have hindered research efforts. In this study we examined all ovarian cancer cell lines available from cell banks. Hereby, we identified inconsistencies in the reporting, difficulties in the identification of cell origin or clinical data of the donor patients, restricted ethnic and histological type representation, and a lack of tubal and peritoneal cancer cell lines. We recommend that all cell lines should be distributed via official cell banks only with strict guidelines regarding the minimal available information required to improve the quality of ovarian cancer research in future. PMID:24936210
CellLineNavigator: a workbench for cancer cell line analysis
Krupp, Markus; Itzel, Timo; Maass, Thorsten; Hildebrandt, Andreas; Galle, Peter R.; Teufel, Andreas
2013-01-01
The CellLineNavigator database, freely available at http://www.medicalgenomics.org/celllinenavigator, is a web-based workbench for large scale comparisons of a large collection of diverse cell lines. It aims to support experimental design in the fields of genomics, systems biology and translational biomedical research. Currently, this compendium holds genome wide expression profiles of 317 different cancer cell lines, categorized into 57 different pathological states and 28 individual tissues. To enlarge the scope of CellLineNavigator, the database was furthermore closely linked to commonly used bioinformatics databases and knowledge repositories. To ensure easy data access and search ability, a simple data and an intuitive querying interface were implemented. It allows the user to explore and filter gene expression, focusing on pathological or physiological conditions. For a more complex search, the advanced query interface may be used to query for (i) differentially expressed genes; (ii) pathological or physiological conditions; or (iii) gene names or functional attributes, such as Kyoto Encyclopaedia of Genes and Genomes pathway maps. These queries may also be combined. Finally, CellLineNavigator allows additional advanced analysis of differentially regulated genes by a direct link to the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources. PMID:23118487
Wu, Liang; Ehlin-Henriksson, Barbro; Zhou, Xiaoying; Zhu, Hong; Ernberg, Ingemar; Kis, Lorand L; Klein, George
2017-12-01
Diffuse large B-cell lymphoma (DLBCL), the most common type of malignant lymphoma, accounts for 30% of adult non-Hodgkin lymphomas. Epstein-Barr virus (EBV) -positive DLBCL of the elderly is a newly recognized subtype that accounts for 8-10% of DLBCLs in Asian countries, but is less common in Western populations. Five DLBCL-derived cell lines were employed to characterize patterns of EBV latent gene expression, as well as response to cytokines and chemotaxis. Interleukin-4 and interleukin-21 modified LMP1, EBNA1 and EBNA2 expression depending on cell phenotype and type of EBV latent programme (type I, II or III). These cytokines also affected CXCR4- or CCR7-mediated chemotaxis in two of the cell lines, Farage (type III) and Val (type II). Further, we investigated the effect of EBV by using dominant-negative EBV nuclear antigen 1(dnEBNA1) to eliminate EBV genomes. This resulted in decreased chemotaxis. By employing an alternative way to eliminate EBV genomes, Roscovitine, we show an increase of apoptosis in the EBV-positive lines. These results show that EBV plays an important role in EBV-positive DLBCL lines with regard to survival and chemotactic response. Our findings provide evidence for the impact of microenvironment on EBV-carrying DLBCL cells and might have therapeutic implications. © 2017 John Wiley & Sons Ltd.
Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick
2015-05-15
Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. Copyright © 2015. Published by Elsevier Inc.
Bundscherer, Anika C; Malsy, Manuela; Gruber, Michael A; Graf, Bernhard M; Sinner, Barbara
2018-02-01
The perioperative phase is supposed to be a period with high vulnerability for cancer dissemination. Acetaminophen and metamizole are common analgesics administered during this phase. We investigated the effect of acetaminophen, metamizole and 4-methylaminoantipyrine (MAA) on proliferation and apoptosis of colon carcinoma cell lines (SW 480 and HT 29). Proliferation was detected by cell proliferation ELISA BrdU, and apoptosis by Annexin V staining. Cytochrome c and caspase 3, 8 and 9 expression levels were detected by western blot. Acetaminophen, metamizole or MAA caused slight changes in proliferation. Acetaminophen, metamizole or the combination increased apoptosis in both cell lines. All agents decreased caspase 3 and 8 expression in SW480. Acetaminophen decreased caspase 9 expression in both cell lines. In clinically relevant doses, acetaminophen and/or metamizole induce apoptosis in both colon cancer cell lines. Both mitochondrial and death receptor pathways might be involved in acetaminophen-induced apoptosis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Malignant Mesothelioma—Health Professional Version
Epithelial mesothelioma is the most common type of malignant mesothelioma, which forms in the cells that line organs. The other types begin in spindle-shaped cells called sarcomatoid cells or are a mixture of both cell types. Find evidence-based information on malignant mesothelioma treatment.
Common genetic variation drives molecular heterogeneity in human iPSCs.
Kilpinen, Helena; Goncalves, Angela; Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard; Stegle, Oliver; Gaffney, Daniel J
2017-06-15
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
HUANG, HAIZHI; CHEN, ALLEN Y.; YE, XINGQIAN; LI, BINGYUN; ROJANASAKUL, YON; RANKIN, GARY O.; CHEN, YI CHARLIE
2015-01-01
Cisplatin is a commonly used drug for cancer treatment by crosslinking DNA, leading to apoptosis of cancer cells, resistance to cisplatin treatment often occurs, leading to relapse. Therefore, there is a need for the development of more effective treatment strategies that can overcome chemoresistance. Myricetin is a flavonoid from fruits and vegetables, showing anticancer activity in various cancer cells. In this study, we found myricetin exhibited greater cytotoxicity than cisplatin in two cisplatin-resistant ovarian cancer cell lines, OVCAR-3 and A2780/CP70, and it was less cytotoxic to the normal ovarian cell line IOSE-364. Myricetin selectively induced apoptosis in both cisplatin-resistant cancer cell lines, but did not induce apoptosis in the normal ovarian cell line. It induced both Bcl-2 family-dependent intrinsic and DR5 dependent extrinsic apoptosis in OVCAR-3 cells. P53, a multifunctional tumor suppressor, regulated apoptosis in OVCAR-3 cells through a Bcl-2 family protein-dependent pathway. Myricetin did not induce cell cycle arrest in either ovarian cancer cell line. Because of its potency and selectivity against cisplatin-resistant cancer cells, myricetin could potentially be used to overcome cancer chemoresistance against platinum-based therapy. PMID:26315556
Khan, Mahmud Tareq Hassan; Lampronti, Ilaria; Martello, Dino; Bianchi, Nicoletta; Jabbar, Shaila; Choudhuri, Mohammad Shahabuddin Kabir; Datta, Bidduyt Kanti; Gambari, Roberto
2002-07-01
In this study we compared the in vitro antiproliferative activity of extracts from medicinal plants toward human tumor cell lines, including human erythromyeloid K562, B-lymphoid Raji, T-lymphoid Jurkat, erythroleukemic HEL cell lines. Extracts from Emblica officinalis were the most active in inhibiting in vitro cell proliferation, after comparison to those from Terminalia arjuna, Aphanamixis polystachya, Oroxylum indicum, Cuscuta reflexa, Aegle marmelos, Saraca asoka, Rumex maritimus, Lagerstroemia speciosa, Red Sandalwood. Emblica officinalis extracts have been studied previously, due to their hepatoprotective, antioxidant, antifungal, antimicrobial and anti-inflammatory medicinal activities. Gas chromatography/mass spectrometry analyses allowed to identify pyrogallol as the common compound present both in unfractionated and n-butanol fraction of Emblica officinalis extracts. Antiproliferative effects of pyrogallol were therefore determined on human tumor cell lines thus identifying pyrogallol as an active component of Emblica officinalis extracts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Z.Q.; Gault, E.A.; Gobeil, P.
2008-04-10
It is now widely recognized that BPV-1 and less commonly BPV-2 are the causative agents of equine sarcoids. Here we present the generation of equine cell lines harboring BPV-1 genomes and expressing viral genes. These lines have been either explanted from sarcoid biopsies or generated in vitro by transfection of primary fibroblasts with BPV-1 DNA. Previously detected BPV-1 genome variations in equine sarcoids are also found in sarcoid cell lines, and only variant BPV-1 genomes can transform equine cells. These equine cell lines are morphologically transformed, proliferate faster than parental cells, have an extended life span and can grow independentlymore » of substrate. These characteristics are more marked the higher the level of viral E5, E6 and E7 gene expression. These findings confirm that the virus has an active role in the induction of sarcoids and the lines will be invaluable for further studies on the role of BPV-1 in sarcoid pathology.« less
Parton, Angela; Bayne, Christopher J.; Barnes, David W.
2010-01-01
Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories “envelope” and “oxidoreductase activity” but the SAE transcripts did not. GO analysis of SAE transcripts identified the category “anatomical structure formation” that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. PMID:20471924
Parton, Angela; Bayne, Christopher J; Barnes, David W
2010-09-01
Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories "envelope" and "oxidoreductase activity" but the SAE transcripts did not. GO analysis of SAE transcripts identified the category "anatomical structure formation" that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. Copyright 2010 Elsevier Inc. All rights reserved.
Thomas, Andrew J; Hailey, Dale W; Stawicki, Tamara M; Wu, Patricia; Coffin, Allison B; Rubel, Edwin W; Raible, David W; Simon, Julian A; Ou, Henry C
2013-03-06
Cisplatin, one of the most commonly used anticancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analog of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line.
Wirtz, Eric D; Hoshino, Daisuke; Maldonado, Anthony T; Tyson, Darren R; Weaver, Alissa M
2015-06-01
The PIK3CA mutation is one of the most common mutations in head and neck squamous cell carcinoma (HNSCC). Through this research we attempt to elicit the role of oncogene dependence and effects of targeted therapy on this PIK3CA mutation. (1) To determine the role of oncogene dependence on PIK3CA-one of the more common and targetable oncogenes in HNSCC, and (2) to evaluate the consequence of this oncogene on the effectiveness of newly developed targeted therapies. This was a cell culture-based, in vitro study performed at an academic research laboratory assessing the viability of PIK3CA-mutated head and neck cell lines when treated with targeted therapy. PIK3CA-mutated head and neck cell lines were treated with 17-AAG, GDC-0941, trametinib, and BEZ-235. Assessment of cell viability of HNSCC cell lines characterized for PIK3CA mutations or SCC25 cells engineered to express the PIK3CA hotspot mutations E545K or H1047R. Surprisingly, in engineered cell lines, the hotspot E545K and H1047R mutations conferred increased, rather than reduced, IC50 assay measurements when treated with the respective HSP90, PI3K, and MEK inhibitors, 17-AAG, GDC-0941, and trametinib, compared with the SCC25 control cell lines. When treated with BEZ-235, H1047R-expressing cell lines showed increased sensitivity to inhibition compared with control, whereas those expressing E545K showed slightly increased sensitivity of unclear significance. (1) The PIK3CA mutations within our engineered cell model did not lead to enhanced oncogene-dependent cell death when treated with direct inhibition of the PI3K enzyme yet did show increased sensitivity compared with control with dual PI3K/mTOR inhibition. (2) Oncogene addiction to PIK3CA hotspot mutations, if it occurs, is likely to evolve in vivo in the context of additional molecular changes that remain to be identified. Additional study is required to develop new model systems and approaches to determine the role of targeted therapy in the treatment of PI3K-overactive HNSCC tumors.
Engineered Herpes Simplex Viruses for the Treatment of Malignant Peripheral Nerve Sheath Tumors
2015-11-01
lines). This is an entry receptor usually limited to lymphoid cells has not been previously identified in neuroectodermal tissue. Year 3: As a... innate and adaptive immune 327 response. However, resistance is common in vitro and therefore, to the extent that tumor cell lines 328 maintain the...Handgretinger R, et al. Innate immune 461 defense defines susceptibility of sarcoma cells to measles vaccine virus-based oncolysis. J Virol. 462 2013;87
Goswami, M; Sharma, B S; Tripathi, A K; Yadav, Kamalendra; Bahuguna, S N; Nagpure, N S; Lakra, W S; Jena, J K
2012-05-25
Puntius (Tor) chelynoides, commonly known as dark mahseer, is a commercially important coldwater fish species which inhabits fast-flowing hill-streams of India and Nepal. Cell culture systems were developed from eye, fin, heart and swim bladder tissues of P. chelynoides using explant method. The cell culture system developed from eye has been maintained towards a continuous cell line designated as PCE. The cells were grown in 25cm(2) tissue culture flasks with Leibovitz' L-15 media supplemented with 20 % fetal bovine serum (FBS) at 24°C. The PCE cell line consists of predominantly fibroblast-like cells and showed high plating efficiency. The monolayer formed from the fin and heart explants were comprised of epithelial as well as fibroblast-like cells, a prominent and rhythmic heartbeat was also observed in heart explants. Monolayer formed from swim bladder explants showed the morphology of fibroblast-like cells. All the cells from different tissues are able to grow at an optimum temperature of 24°C and growth rate increased as the FBS concentration increased. The PCE cell line was characterized using amplification of mitochondrial cytochrome oxidase subunit I (COI) & 16S rRNA genes which confirmed that the cell line originated from P. chelynoides. Cytogenetic analysis of PCE cell line and cells from fin revealed a diploid count of 100 chromosomes. Upon transfection with pEGFP-C1 plasmid, bright fluorescent signals were observed, suggesting that this cell line can be used for transgenic and genetic manipulation studies. Further, genotoxicity assessment of PCE cells illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The PCE cell line was successfully cryopreserved and revived at different passage levels. The cell line and culture systems are being maintained to develop continuous cell lines for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Flow Line, Durafill VS, and Dycal toxicity to dental pulp cells: effects of growth factors
Furey, Alyssa; Hjelmhaug, Julie; Lobner, Doug
2010-01-01
Introduction The objective was to determine the effects of growth factor treatment on dental pulp cell sensitivity to toxicity of two composite restoration materials, Flow Line and Durafill VS, and a calcium hydroxide pulp capping material, Dycal. Methods Toxicity of the dental materials to cultures of primary dental pulp cells was determined by the MTT metabolism assay. The ability of six different growth factors to influence the toxicity was tested. Results A 24 hour exposure to either Flow Line or Durafill VS caused approximately 40% cell death, while Dycal exposure caused approximately 80% cell death. The toxicity of Flow Line and Durafill VS was mediated by oxidative stress. Four of the growth factors tested (BMP-2, BMP-7, EGF, and TGF-β) decreased the basal MTT values while making the cells resistant to Flow Line and Durafill VS toxicity, except BMP-2 which made the cells more sensitive to Flow Line. Treatment with FGF-2 caused no change in basal MTT metabolism, prevented the toxicity of Durafill VS, but increased the toxicity of Flow Line. Treatment with IGF-I increased basal MTT metabolism and made the cells resistant to Flow Line and Durafill VS toxicity. None of the growth factors made the cells resistant to Dycal toxicity. Conclusions The results indicate that growth factors can be used to alter the sensitivity of dental pulp cells to commonly used restoration materials. The growth factors BMP-7, EGF, TGF-β, and IGF-I provided the best profile of effects, making the cells resistant to both Flow Line and Durafill VS toxicity. PMID:20630288
Campos, M S; Rodini, C O; Pinto-Júnior, D S; Nunes, F D
2009-02-01
The selection of housekeeping genes is critical for gene expression studies. To address this issue, four candidate housekeeping genes, including several commonly used ones, were investigated in oral squamous cell carcinoma cell lines. A simple quantitative RT-PCR approach was employed by comparing relative expression of the four candidate genes within two cancerous cell lines (HN6 and HN31) and one noncancerous cell line (HaCaT) treated or not with EGF and TGF-beta1. Data were analyzed using ANOVA followed by the NormFinder software program. On this basis, stability of the candidate housekeeping genes was ranked and non statistical differences were found using ANOVA test. On the other hand, the NormFinder was able to show that GAPD and TUBB presented the less variable results, representing appropriated housekeeping genes for the samples and conditions analyzed. In conclusion, this study suggests that the GAPD and the TUBB represent adequate normalizers for gene profiling studies in OSCC cell lines, covering, respectively, high and low expression levels genes.
Hsiao, Yen-Ling; Hsieh, Tai-Zu; Liou, Chian-Jiun; Cheng, Yeong-Hsiang; Lin, Chung-Tien; Chang, Chi-Yao; Lai, Yu-Shen
2014-09-30
Canine mammary tumors (CMTs) are the most common type of cancer found in female dogs. Establishment and evaluation of tumor cell lines can facilitate investigations of the biological mechanisms of cancer. Different cell models are used to investigate genetic, epigenetic, and cellular pathways, cancer progression, and cancer therapeutics. Establishment of new cell models will greatly facilitate research in this field. In the present study, we established and characterized two new CMT cell lines derived from a single CMT. We established two cell lines from a single malignant CMT specimen: DTK-E and DTK-SME. Morphologically, the DTK-E cells were large, flat, and epithelial-like, whereas DTK-SME cells were round and epithelial-like. Doubling times were 24 h for DTK-E and 18 h for DTK-SME. On western blots, both cell lines expressed cytokeratin AE1, vimentin, cytokeratin 7 (CK7), and heat shock protein 27 (HSP27). Moreover, investigation of chemoresistance revealed that DTK-SME was more resistant to doxorubicin-induced apoptosis than DTK-E was. After xenotransplantation, both DTK-E and DTK-SME tumors appeared within 14 days, but the average size of DTK-SME tumors was greater than that of DTK-E tumors after 56 days. We established two new cell lines from a single CMT, which exhibit significant diversity in cell morphology, protein marker expression, tumorigenicity, and chemoresistance. The results of this study revealed that the DTK-SME cell line was more resistant to doxorubicin-induced apoptosis and exhibited higher tumorigenicity in vivo than the DTK-E cell line. We anticipate that the two novel CMT cell lines established in this study will be useful for investigating the tumorigenesis of mammary carcinomas and for screening anticancer drugs.
Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines.
Zandi, K; Ahmadzadeh, S; Tajbakhsh, S; Rastian, Z; Yousefi, F; Farshadpour, F; Sartavi, K
2010-08-01
Antitumor drug resistance and side effects of antitumor compounds are the most common problems in medicine. Therefore, finding new antitumor agents with low side effects could be interesting. This study was designed to assay antitumor activity of the extract from brown alga Sargassum oligocystum, gathered from Persian Gulf seashore, against K562 and Daudi human cancer cell lines. The research was performed as an in vitro study. The effect of the alga extract on proliferation of cell lines were measured by two methods: MTT assay and trypan blue exclusion test. The most effective antitumor activity has been shown at concentrations 500 microg/ml and 400 microg/ml of the alga extract against Daudi and K562 cell lines, respectively. The results showed that the extracts of brown alga Sargassum oligocystum have remarkable antitumor activity against K562 and Daudi cell lines. It is justified to be suggested for further research such as algal extract fractionation and purification and in vivo studies in order to formulate natural compounds with antitumor activities.
Yancopoulos, G D; Blackwell, T K; Suh, H; Hood, L; Alt, F W
1986-01-31
We have recently proposed that a common recombinase performs all of the many variable region gene assembly events in B and T cells, and that the specificity of these joining events is mediated by regulating the "accessibility" of the involved gene segments. To test this possibility, we have introduced "accessible" T cell receptor (TCR) variable region gene segments into a pre-B cell line capable of recombining endogenous and transfected immunoglobulin (Ig) variable region gene segments. Although the corresponding "inaccessible" endogenous TCR gene segments do not rearrange in this line or in B cells in general, the introduced TCR gene segments join very frequently and, in fact, closely resemble introduced Ig gene segments in their recombination characteristics. These observations suggest a new role for conventional Ig transcriptional enhancers--recombinational enhancement. Our studies provide insight into additional aspects of the joining mechanism such as N region insertion, aberrant joining, and recombination-recognition sequence requirements for joining.
Spontaneous pyrogen production by mouse histiocytic and myelomonocytic tumor cell lines in vitro.
Bodel, P
1978-05-01
Tumor-associated fever occurs commonly in acute leukemias and lymphomas. We investigated the capacity for in vitro production of pyrogen by three mouse histiocytic lymphoma cell lines (J-774, PU5-1.8, p 388 D1), one myelomonoyctic line (WEHI-3), and tow lymphoma-derived lines, RAW-8 and R-8. Pyrogen was released spontaneously into the culture medium during growth by all cell lines with macrophage or myeloid characteristics including lysozyme production; R-8 cells, of presumed B-lymphocyte origin, did not produce pyrogen. When injected into mice, the pyrogens gave fever curves typical of endogenous pyrogen, were inactived by heating to 56 degrees C and by pronase digestion, and appeared to be secreted continuously by viable cells. Two pyrogenic molecular species produced by H-774 cells were identified by Sephadex filtration, one of mol wt approximately equal to 30,000, and the other greater than or equal to 60,000. By contrast, three carcinoma cell lines of human origin and SV-40 3T3 mouse fibroblasts did not produce pyrogen in vitro. These results suggest that some malignant cells derived from phagocytic cells of bone marrow origin retain their capacity for pyrogen production, and may spontaneously secrete pyrogen during growth.
The husk fiber of Cocos nucifera L. (Palmae) is a source of anti-neoplastic activity.
Koschek, P R; Alviano, D S; Alviano, C S; Gattass, C R
2007-10-01
In the present study, we investigated the in vitro anti-tumoral activities of fractions from aqueous extracts of the husk fiber of the typical A and common varieties of Cocos nucifera (Palmae). Cytotoxicity against leukemia cells was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Cells (2 x 10(4)/well) were incubated with 0, 5, 50 or 500 microg/mL high- or low-molecular weight fractions for 48 h, treated with MTT and absorbance was measured with an ELISA reader. The results showed that both varieties have almost similar antitumoral activity against the leukemia cell line K562 (60.1 +/- 8.5 and 47.5 +/- 11.9% for the typical A and common varieties, respectively). Separation of the crude extracts with Amicon membranes yielded fractions with molecular weights ranging in size from 1-3 kDa (fraction A) to 3-10 kDa (fraction B) and to more than 10 kDa (fraction C). Cells were treated with 500 microg/mL of these fractions and cytotoxicity was evaluated by MTT. Fractions ranging in molecular weight from 1-10 kDa had higher cytotoxicity. Interestingly, C. nucifera extracts were also active against Lucena 1, a multidrug-resistant leukemia cell line. Their cytotoxicity against this cell line was about 50% (51.9 +/- 3.2 and 56.3 +/- 2.9 for varieties typical A and common, respectively). Since the common C. nucifera variety is extensively cultured in Brazil and the husk fiber is its industrial by-product, the results obtained in the present study suggest that it might be a very inexpensive source of new antineoplastic and anti-multidrug resistant drugs that warrants further investigation.
Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith
2016-08-01
Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.
Naora, H; Nishida, T; Shindo, Y; Adachi, M; Naora, H
1998-04-01
Apoptosis is induced by the transcriptional inhibitor actinomycin D (Act D) in various cell types, particularly many leukemic cell lines such as HL-60. A common feature of these cell lines is their high constitutive expression level of the nbl gene, which was originally isolated by virtue of its abundance in a Namalwa Burkitt lymphoma cDNA library. In contrast, cell lines which constitutively express nbl at low levels appear not to undergo typical apoptotic death in response to Act D. Apoptotic induction by Act D in cells which normally express nbl at high levels was found in this study to be closely associated with a decline in nbl mRNA levels, raising the possibility that apoptosis could be induced by lowering nbl expression levels in such cells. Transient expression of nbl antisense sequences in HL-60 cells decreased cell viability, and induced typical apoptotic morphology such as cell shrinkage, chromatin condensation and nuclear fragmentation. Incubation with nbl antisense oligomers also induced similar features in HL-60 cells and in another high nb-expressing cell line, Jurkat, but had little effect in HepG2 cells which constitutively express nbl at low levels. These findings suggest that lowering constitutively high levels of nbl expression can induce apoptosis.
2012-01-01
Background Chondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce. Methods We developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential. Results We show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type. Conclusions Based on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies. PMID:22928481
Characterization of stem-like cells in a new astroblastoma cell line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coban, Esra Aydemir; Kasikci, Ezgi; Karatas, Omer Faruk
Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells andmore » cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.« less
Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.
2010-01-01
We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464
Li, Bing; Su, Trent; Ferrari, Roberto; Li, Jing-Yu; Kurdistani, Siavash K
2014-02-01
The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.
Networking of differentially expressed genes in human cancer cells resistant to methotrexate
2009-01-01
Background The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). Methods Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. Results Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. Conclusions Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX. PMID:19732436
Pulito, Claudio; Mori, Federica; Sacconi, Andrea; Casadei, Luca; Ferraiuolo, Maria; Valerio, Maria Cristina; Santoro, Raffaela; Goeman, Frauke; Maidecchi, Anna; Mattoli, Luisa; Manetti, Cesare; Di Agostino, Silvia; Muti, Paola; Blandino, Giovanni; Strano, Sabrina
2015-07-20
Malignant pleural mesothelioma is a poorly treated neoplasia arising from the pleural mesothelial lining. Here we document that the leaf extract of Cynara scolymus exerts broad antitumoral effects both in vitro and in vivo on mesothelioma cell lines. We found that Cynara scolymus treatment affects strongly cell growth, migration and tumor engraftment of mesothelioma cell lines. Strikingly, dietary feeding with Cynara scolymus leaf extract reduces the growth of mesothelioma xenografted tumors similarly to pemetrexed, a commonly employed drug in the treatment of mesothelioma. In aggregate our findings suggest that leaf extract of Cynara scolymus holds therapeutic potential for the treatment of mesothelioma.
Pulito, Claudio; Mori, Federica; Sacconi, Andrea; Casadei, Luca; Ferraiuolo, Maria; Valerio, Maria Cristina; Santoro, Raffaela; Goeman, Frauke; Maidecchi, Anna; Mattoli, Luisa; Manetti, Cesare; Di Agostino, Silvia; Muti, Paola; Blandino, Giovanni; Strano, Sabrina
2015-01-01
Malignant pleural mesothelioma is a poorly treated neoplasia arising from the pleural mesothelial lining. Here we document that the leaf extract of Cynara scolymus exerts broad antitumoral effects both in vitro and in vivo on mesothelioma cell lines. We found that Cynara scolymus treatment affects strongly cell growth, migration and tumor engraftment of mesothelioma cell lines. Strikingly, dietary feeding with Cynara scolymus leaf extract reduces the growth of mesothelioma xenografted tumors similarly to pemetrexed, a commonly employed drug in the treatment of mesothelioma. In aggregate our findings suggest that leaf extract of Cynara scolymus holds therapeutic potential for the treatment of mesothelioma. PMID:26136339
Characterization of immortalized human mammary epithelial cell line HMEC 2.6.
Joshi, Pooja S; Modur, Vishnu; Cheng, JiMing; Robinson, Kathy; Rao, Krishna
2017-10-01
Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.
Characterization of endogenous calcium responses in neuronal cell lines.
Vetter, Irina; Lewis, Richard J
2010-03-15
An increasing number of putative therapeutic targets have been identified in recent years for the treatment of neuronal pathophysiologies including pain, epilepsy, stroke and schizophrenia. Many of these targets signal through calcium (Ca(2+)), either by directly facilitating Ca(2+) influx through an ion channel, or through activation of G proteins that couple to intracellular Ca(2+) stores or voltage-gated Ca(2+) channels. Immortalized neuronal cell lines are widely used models to study neuropharmacology. However, systematic pharmacological characterization of the receptors and ion channels expressed in these cell lines is lacking. In this study, we systematically assessed endogenous Ca(2+) signaling in response to addition of agonists at potential therapeutic targets in a range of cell lines of neuronal origin (ND7/23, SH-SY5Y, 50B11, F11 and Neuro2A cells) as well as HEK293 cells, a cell line commonly used for over-expression of receptors and ion channels. This study revealed a remarkable diversity of endogenous Ca(2+) responses in these cell lines, with one or more cell lines responding to addition of trypsin, bradykinin, ATP, nicotine, acetylcholine, histamine and neurotensin. Subtype specificity of these responses was inferred from agonist potency and the effect of receptor subtype specific antagonist. Surprisingly, HEK293 and SH-SY5Y cells responded to the largest number of agonists with potential roles in neuronal signaling. These findings have implications for the heterologous expression of neuronal receptors and ion channels in these cell lines, and highlight the potential of neuron-derived cell lines for the study of a range of endogenously expressed receptors and ion channels that signal through Ca(2+). Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.
Zwollo, Patty; Ray, Jocelyn C; Sestito, Michael; Kiernan, Elizabeth; Wiens, Gregory D; Kaattari, Steve; StJacques, Brittany; Epp, Lidia
2015-01-01
Bacterial cold water disease (BCWD) is a chronic disease of rainbow trout, and is caused by the Gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp-resistant trout (ARS-Fp-R or R-line trout) and a line of susceptible trout (ARS-Fp-S, or S-line). Little is known about how phenotypic selection alters immune response parameters or how such changes relate to genetic disease resistance. Herein, we quantify interindividual variation in the distribution and abundance of B cell populations (B cell signatures) and examine differences between genetic lines of naive animals. There are limited trout-specific cell surface markers currently available to resolve B cell subpopulations and thus we developed an alternative approach based on detection of differentially expressed transcription factors and intracellular cytokines. B cell signatures were compared between R-line and S-line trout by flow cytometry using antibodies against transcription factors early B cell factor-1 (EBF1) and paired domain box protein Pax5, the pro-inflammatory cytokine IL-1β, and the immunoglobulin heavy chain mu. R-line trout had higher percentages of EBF(+) B myeloid/ progenitor and pre-B cells in PBL, anterior and posterior kidney tissues compared to S-line trout. The opposite pattern was detected in more mature B cell populations: R-line trout had lower percentages of both IgM(+) mature B cells and IgM-secreting cells in anterior kidney and PBL compared to S-line trout. In vitro LPS-activation studies of PBL and spleen cell cultures revealed no significant induction differences between R-line and S-line trout. Together, our findings suggest that selective resistance to BCWD may be associated with shifts in naive animal developmental lineage commitment that result in decreased B lymphopoiesis and increased myelopoiesis in BCWD resistant trout relative to susceptible trout. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bauer, Kerry M; Lambert, Paul A; Hummon, Amanda B
2012-06-01
A label-free mass spectrometric strategy was used to examine the effect of 5-fluorouracil (5-FU) on the primary and metastatic colon carcinoma cell lines, SW480 and SW620, with and without treatment. 5-FU is the most common chemotherapeutic treatment for colon cancer. Pooled biological replicates were analyzed by nanoLC-MS/MS and protein quantification was determined via spectral counting. Phenotypic and proteomic changes were evident and often similar in both cell lines. The SW620 cells were more resistant to 5-FU treatment, with an IC(50) 2.7-fold higher than that for SW480. In addition, both cell lines showed pronounced abundance changes in pathways relating to antioxidative stress response and cell adhesion remodeling due to 5-FU treatment. For example, the detoxification enzyme NQO1 was increased with treatment in both cell lines, while disparate members of the peroxiredoxin family, PRDX2 or PRDX5 and PRDX6, were elevated with 5-FU exposure in either SW480 or SW620, respectively. Cell adhesion-associated proteins CTNNB1 and RhoA showed decreased expression with 5-FU treatment in both cell lines. The differential quantitative response in the proteomes of these patient-matched cell lines to drug treatment underscores the subtle molecular differences separating primary and metastatic cancer cells. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thomas, Andrew J.; Hailey, Dale W.; Stawicki, Tamara M.; Wu, Patricia; Coffin, Allison B.; Rubel, Edwin W.; Raible, David W.; Simon, Julian A.; Ou, Henry C.
2013-01-01
Cisplatin, one of the most commonly used anti-cancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analogue of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line. PMID:23467357
Modi, Tapan G; Chalishazar, Monali; Kumar, Malay
2018-01-01
Odontogenic cysts are the most common cysts of the jaws and are formed from the remnants of the odontogenic apparatus. Among these odontogenic cysts, radicular cysts (RCs) (about 60% of all diagnosed jaw cysts), dentigerous cysts (DCs) (16.6% of all jaw cysts) and odontogenic keratocysts (OKCs) (11.2% of all developmental odontogenic cysts) are the most common. The behavior of any lesion is generally reflected by its growth potential. Growth potential is determined by measuring the cell proliferative activity. The cell proliferative activity is measured by various methods among which immunohistochemistry (IHC) is the commonly used technique. Most of the IHC studies on cell proliferation have been based on antibodies such as Ki-67 and proliferating cell nuclear antigen. In the present study, the total sample size comprised of 45 cases of odontogenic cysts, with 15 cases each of OKC, RC and DC. Here, an attempt is made to study immunohistochemical (streptavidin-biotin detection system HRP-DAB) method to assess the expression of Ki-67 in different layers of the epithelial lining of OKCs, RCs and DCs. Ki-67 positive cells were highest in epithelium of OKC as compared to DC and RC. The increased Ki-67 labeling index and its expression in suprabasal cell layers of epithelial lining in OKC and its correlation with suprabasal cell layers of epithelial lining in DC and RC could contribute toward its clinically aggressive behavior. OKC is of more significance to the oral pathologist and oral surgeon because of its specific histopathological features, high recurrence rate and aggressive behavior.
Herrmann, Jens; Gressner, Axel M; Weiskirchen, Ralf
2007-01-01
Abstract At the cellular level, the activation and transdifferentiation of quiescent hepatic stellate cells (HSC) into myofibroblasts is the key process involved in hepatic fibrogenesis that is associated with an increased and altered deposition of extracellular matrix components in the liver. The temporal sequence of molecular events associated with stellate cell activation turned out to be appropriately mimicked when HSC isolated from normal livers are cultured on uncoated plastic surface. Therefore, cultured primary cells isolated from rodents and human beings are common in vitro models in investigations addressing these issues of hepatic stellate biology and function. However, the limited supply, cost-effective isolation procedure and the ever growing need have resulted in efforts to establish immortalized stellate cell lines having the advantage of virtually unlimited access. They allow rapid screening for disease-associated factors and restrict the necessary number of animal experiments. From the first description of an immortal HSC line in 1986, a huge number of studies were conducted with these established cell lines. However, differences in morphology, growth characteristics and anomalies of chromosome number and structure make the applications of these models questionable. Here, we summarize the history and cellular characteristics of respective cell lines and discuss the differences of continuous HSC lines and their primary counterparts. PMID:17760834
Herrmann, Jens; Gressner, Axel M; Weiskirchen, Ralf
2007-01-01
At the cellular level, the activation and transdifferentiation of quiescent hepatic stellate cells (HSC) into myofibroblasts is the key process involved in hepatic fibrogenesis that is associated with an increased and altered deposition of extracellular matrix components in the liver. The temporal sequence of molecular events associated with stellate cell activation turned out to be appropriately mimicked when HSC isolated from normal livers are cultured on uncoated plastic surface. Therefore, cultured primary cells isolated from rodents and human beings are common in vitro models in investigations addressing these issues of hepatic stellate biology and function. However, the limited supply, cost-effective isolation procedure and the ever growing need have resulted in efforts to establish immortalized stellate cell lines having the advantage of virtually unlimited access. They allow rapid screening for disease-associated factors and restrict the necessary number of animal experiments. From the first description of an immortal HSC line in 1986, a huge number of studies were conducted with these established cell lines. However, differences in morphology, growth characteristics and anomalies of chromosome number and structure make the applications of these models questionable. Here, we summarize the history and cellular characteristics of respective cell lines and discuss the differences of continuous HSC lines and their primary counterparts.
Ghasemi, Farhad; Black, Morgan; Sun, Ren X; Vizeacoumar, Frederick; Pinto, Nicole; Ruicci, Kara M; Yoo, John; Fung, Kevin; MacNeil, Danielle; Palma, David A; Winquist, Eric; Mymryk, Joe S; Ailles, Laurie A; Datti, Alessandro; Barrett, John W; Boutros, Paul C; Nichols, Anthony C
2018-05-25
Head and neck squamous cell carcinoma (HNSCC) is a common cancer diagnosis worldwide. Despite advances in treatment, HNSCC has very poor survival outcomes, emphasizing an ongoing need for development of improved therapeutic options. The distinct tumor characteristics of human papillomavirus (HPV)-positive vs . HPV-negative disease necessitate development of treatment strategies tailored to tumor HPV-status. High-throughput robotic screening of 1,433 biologically and pharmacologically relevant compounds at a single dose (4 μM) was carried out against 6 HPV-positive and 20 HPV-negative HNSCC cell lines for preliminary identification of therapeutically relevant compounds. Statistical analysis was further carried out to differentiate compounds with preferential activity against cell lines stratified by the HPV-status. These analyses yielded 57 compounds with higher activity in HPV-negative cell lines, and 34 with higher-activity in HPV-positive ones. Multi-point dose-response curves were generated for six of these compounds (Ryuvidine, MK-1775, SNS-032, Flavopiridol, AZD-7762 and ARP-101), confirming Ryuvidine to have preferential potency against HPV-negative cell lines, and MK-1775 to have preferential potency against HPV-positive cell lines. These data comprise a valuable resource for further investigation of compounds with therapeutic potential in the HNSCC.
Masuzawa, Mikio; Masuzawa, Mamiko; Hamada, Yuhko; Arakawa, Nobuko; Mori, Mari; Ishii, Masako; Nishiyama, Shigeo
2012-08-01
The concept of "lymphangiosarcoma" remains obscure. Therefore, we reported a patient with lymphangiosarcoma, resistant to immunotherapy. The patient presented with impressive and discriminative features: clinically an ill-defined edematous lesion with lymphorrhea and pathologically atypical vascular channel formation without extravasation of blood, clearly distinguished from common angiosarcoma with hemorrhage. From this case, a lymphangiosarcoma cell line, MO-LAS, was established and its characteristics were compared with the hemangiosarcoma cell line, ISO-HAS. Flow cytometric analysis revealed that MO-LAS was negative for factor VIII-related antigen, but positive for CD31, D2-40, NZ-1, and vascular endothelial growth factor receptor-3 (VEGFR-3), similar to ISO-HAS. However, MO-LAS expressed a much higher level of homeobox gene PROX1, indicating a lymphatic phenotype, compared with ISO-HAS. Furthermore, MO-LAS showed a much lesser expression of oncogenes and much lower sensitivity against lymphokine-activated killer (LAK) cells. Lymphangiosarcoma may be difficult to recognize by the immune system. Conclusively, the establishment of MO-LAS, a novel angiosarcoma cell line bearing lymphatic characters, strongly suggests the entity of lymphangiosarcoma.
Berardocco, Martina; Radeghieri, Annalisa; Busatto, Sara; Gallorini, Marialucia; Raggi, Chiara; Gissi, Clarissa; D'Agnano, Igea; Bergese, Paolo; Felsani, Armando; Berardi, Anna C
2017-10-10
Liver cancer (LC) is one of the most common cancers and represents the third highest cause of cancer-related deaths worldwide. Extracellular vesicle (EVs) cargoes, which are selectively enriched in RNA, offer great promise for the diagnosis, prognosis and treatment of LC. Our study analyzed the RNA cargoes of EVs derived from 4 liver-cancer cell lines: HuH7, Hep3B, HepG2 (hepato-cellular carcinoma) and HuH6 (hepatoblastoma), generating two different sets of sequencing libraries for each. One library was size-selected for small RNAs and the other targeted the whole transcriptome. Here are reported genome wide data of the expression level of coding and non-coding transcripts, microRNAs, isomiRs and snoRNAs providing the first comprehensive overview of the extracellular-vesicle RNA cargo released from LC cell lines. The EV-RNA expression profiles of the four liver cancer cell lines share a similar background, but cell-specific features clearly emerge showing the marked heterogeneity of the EV-cargo among the individual cell lines, evident both for the coding and non-coding RNA species.
Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes.
Terao, Naoko; Takamatsu, Shinji; Minehira, Tomomi; Sobajima, Tomoaki; Nakayama, Kotarosumitomo; Kamada, Yoshihiro; Miyoshi, Eiji
2015-04-07
To evaluate/isolate cancer stem cells (CSCs) from tissue or cell lines according to various definitions and cell surface markers. Lectin microarray analysis was conducted on CSC-like fractions of the human pancreatic cancer cell line Panc1 by establishing anti-cancer drug-resistant cells. Changes in glycan structure of CSC-like cells were also investigated in sphere-forming cells as well as in CSC fractions obtained from overexpression of CD24 and CD44. Several types of fucosylation were increased under these conditions, and the expression of fucosylation regulatory genes such as fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporters were dramatically enhanced in CSC-like cells. These changes were significant in gemcitabine-resistant cells and sphere cells of a human pancreatic cancer cell line, Panc1. However, downregulation of cellular fucosylation by knockdown of the GDP-fucose transporter did not alter gemcitabine resistance, indicating that increased cellular fucosylation is a result of CSC-like transformation. Fucosylation might be a biomarker of CSC-like cells in pancreatic cancer.
THP-1 cell line: an in vitro cell model for immune modulation approach.
Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J
2014-11-01
THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. Copyright © 2013. Published by Elsevier B.V.
Wang, Yuanyuan; Lin, Xiangde; Fu, Xinghao; Yan, Wei; Lin, Fusheng; Kuang, Penghao; Luo, Yezhe; Lin, Ende; Hong, Xiaoquan; Wu, Guoyang
2018-06-18
Thyroid cancer is one of the most common malignant tumors of the endocrine system. Among all thyroid cancers, papillary thyroid carcinoma (PTC) is the most common type. The BRAF-activated non-coding RNA (BANCR) is a 693-bp nucleotide transcript which was first identified in melanoma. However, the role of BANCR in the development of thyroid cancer remains unclear. Therefore, the present study investigated the potential involvement of BANCR in the development of thyroid cancer in vitro using patient tissue samples and a panel of thyroid cancer cell lines, and in vivo using a xenograft mouse model. We observed that BANCR was expressed at a higher level in human thyroid tumor tissues than that noted in the adjacent normal tissues. The expression level of BANCR differed between cultured thyroid cancer cell lines; BANCR expression was lower in the BCPAP cell line than that observed in the CAL-62, WRO and FTC-133 cell lines. Western blot analysis and flow cytometry revealed that overexpression of BANCR in the BCPAP cell line resulted in increased expression of the cancer stem cell markers, LGR5 and EpCAM. Single-clone formation experiments showed that upregulated expression of BANCR in the BCPAP cell line promoted an increase in the number of clones formed. Similarly, in microsphere formation experiments, overexpression of BANCR resulted in increased number and size of microspheres compared with the control cell line. Western blotting experiments showed that BANCR overexpression in BCPAP upregulated the expression of phosphorylated c-Raf, MEK1/2 and ERK1/2. Inhibition of c-Raf via U0126 decreased the expression of LGR5 and EpCAM, as well as phosphorylated levels of c-Raf, MEK1/2 and ERK1/2 in the BCPAP cells, compared to levels in the DMSO controls. In the xenograft mouse model, BANCR overexpression in the thyroid cancer cells significantly increased tumor growth. Taken together, these results suggest that BANCR plays a role in PTC development by regulating the expression of cancer stem cell markers LGR5 and EpCAM via the c-Raf/MEK/ERK signaling pathway. Therefore, BANCR may be used as a novel prognostic marker for PTC.
Establishment of immortalized murine mesothelial cells and a novel mesothelioma cell line.
Blum, Walter; Pecze, László; Felley-Bosco, Emanuela; Worthmüller-Rodriguez, Janine; Wu, Licun; Vrugt, Bart; de Perrot, Marc; Schwaller, Beat
2015-08-01
Mesothelial cells are susceptible to asbestos fiber-induced cytotoxicity and on longer time scales to transformation; the resulting mesothelioma is a highly aggressive neoplasm that is considered as incurable at the present time Zucali et al. (Cancer Treatment Reviews 37:543-558, 2011). Only few murine cell culture models of immortalized mesothelial cells and mesothelioma cell lines exist to date. We generated SV40-immortalized cell lines derived from wild-type (WT) and neurofibromatosis 2 (merlin) heterozygote (Nf2+/-) mice, both on a commonly used genetic background, C57Bl/6J. All immortalized mesothelial clones consistently grow in DMEM supplemented with fetal bovine serum. Cells can be passaged for more than 40 times without any signs of morphological changes or a decrease in proliferation rate. The tumor suppressor gene NF2 is one of the most frequently mutated genes in human mesothelioma, but its detailed function is still unknown. Thus, these genotypically distinct cell lines likely relevant for malignant mesothelioma formation are expected to serve as useful in vitro models, in particular to compare with in vivo studies in mice of the same genotype. Furthermore, we generated a novel murine mesothelioma cell line RN5 originating from an Nf2+/- mouse subjected to repeated crocidolite exposure. RN5 cells are highly tumorigenic.
Responses of human cells to ZnO nanoparticles: a gene transcription study†
Moos, Philip J.; Olszewski, Kyle; Honeggar, Matthew; Cassidy, Pamela; Leachman, Sancy; Woessner, David; Cutler, N. Shane; Veranth, John M.
2013-01-01
The gene transcript profile responses to metal oxide nanoparticles was studied using human cell lines derived from the colon and skin tumors. Much of the research on nanoparticle toxicology has focused on models of inhalation and intact skin exposure, and effects of ingestion exposure and application to diseased skin are relatively unknown. Powders of nominally nanosized SiO2, TiO2, ZnO and Fe2O3 were chosen because these substances are widely used in consumer products. The four oxides were evaluated using colon-derived cell lines, RKO and CaCo-2, and ZnO and TiO2 were evaluated further using skin-derived cell lines HaCaT and SK Mel-28. ZnO induced the most notable gene transcription changes, even though this material was applied at the lowest concentration. Nano-sized and conventional ZnO induced similar responses suggesting common mechanisms of action. The results showed neither a non-specific response pattern common to all substances nor synergy of the particles with TNF-α cotreatment. The response to ZnO was not consistent with a pronounced proinflammatory signature, but involved changes in metal metabolism, chaperonin proteins, and protein folding genes. This response was observed in all cell lines when ZnO was in contact with the human cells. When the cells were exposed to soluble Zn, the genes involved in metal metabolism were induced but the genes involved in protein refoldling were unaffected. This provides some of the first data on the effects of commercial metal oxide nanoparticles on human colon-derived and skin-derived cells. PMID:21769377
Audelo-del-Valle, Josefina; Clement-Mellado, Oliva; Magaña-Hernández, Anastasia; Flisser, Ana; Briseño-García, Baltasar
2003-01-01
Taura syndrome virus (TSV) affects shrimp cultured for human consumption. Although TSV is related to the Cricket Paralysis virus, it belongs to the “picornavirus superfamily,” the most common cause of viral illnesses. Here we demonstrate that TSV also infects human cell lines, which may suggest that Penaeus is a potential reservoir of this virus. PMID:12604003
Molla Kazemiha, Vahid; Bonakdar, Shahin; Amanzadeh, Amir; Azari, Shahram; Memarnejadian, Arash; Shahbazi, Shirin; Shokrgozar, Mohammad Ali; Mahdian, Reza
2016-08-01
Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.
Cold-induced retrotransposition of fish LINEs.
Chen, Shue; Yu, Mengchao; Chu, Xu; Li, Wenhao; Yin, Xiujuan; Chen, Liangbiao
2017-08-20
Classes of retrotransposons constitute a large portion of metazoan genome. There have been cases reported that genomic abundance of retrotransposons is correlated with the severity of low environmental temperatures. However, the molecular mechanisms underlying such correlation are unknown. We show here by cell transfection assays that retrotransposition (RTP) of a long interspersed nuclear element (LINE) from an Antarctic notothenioid fish Dissostichus mawsoni (dmL1) could be activated by low temperature exposure, causing increased dmL1 copies in the host cell genome. The cold-induced dmL1 propagation was demonstrated to be mediated by the mitogen-activated protein kinases (MAPK)/p38 signaling pathway, which is activated by accumulation of reactive oxygen species (ROS) in cold-stressed conditions. Surprisingly, dmL1 transfected cells showed an increase in the number of viable cells after prolonged cold exposures than non-transfected cells. Features of cold inducibility of dmL1 were recapitulated in LINEs of zebrafish origin both in cultured cell lines and tissues, suggesting existence of a common cold-induced LINE amplification in fishes. The findings reveal an important function of LINEs in temperature adaptation and provid insights into the MAPK/p38 stress responsive pathway that shapes LINE composition in fishes facing cold stresses. Copyright © 2017. Published by Elsevier Ltd.
Canning, Corene; Sun, Shi; Ji, Xiangming; Gupta, Smiti; Zhou, Kequan
2013-05-02
The stem bark of Mammea africana is widely distributed in tropical Africa and commonly used in traditional medicine. This study aims to identify the active compound in Mammea africana and to evaluate its antimicrobial and antiproliferative activity. Methanol extract from the bark of the Mammea africana was separated by liquid-liquid extraction, followed by open column chromatography. A principal antimicrobial compound was purified by high performance liquid chromatography (HPLC) and its structure was elucidated by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). The antibacterial activity of the purified compound was determined using the broth microdilution method against 7 common pathogenic bacteria. The compound was also evaluated for cytotoxicity by cell proliferation assay (MTS) using the mouse embryonic fibroblast cell line NIH 3T3 and the non-small cell lung cancer cell line A549. The purified active compound was determined to be mammea A/AA and was found to be highly active against Campylobacter jejuni (MIC=0.5 μg/ml), Streptococcus pneumoniae (MIC=0.25 μg/ml), and Clostridium difficile (MIC=0.25 μg/ml). The compound exhibited significant antiproliferative activities against both NIH 3T3 and A549 cell lines. Mammea A/AA isolated from Mammea africana exerts specific inhibitory activity against Campylobacter jejuni, Streptococcus pneumoniae, and Campylobacter difficile. Mammea A/AA was also found to exhibit significant cytotoxicity against both cancer and normal cell lines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Rolland, J.B.; Bouchard, D.; Coll, J.; Winton, J.R.
2005-01-01
Infectious salmon anemia (ISA) is a severe disease primarily affecting commercially farmed Atlantic salmon (Salmo salar) in seawater. The disease has been reported in portions of Canada, the United Kingdom, the Faroe Islands, and the United States. Infectious salmon anemia virus (ISAV), the causative agent of ISA, has also been isolated from several asymptomatic marine and salmonid fish species. Diagnostic assays for the detection of ISAV include virus isolation in cell culture, a reverse transcriptase-PCR, an enzyme-linked immunosorbent assay, and an indirect fluorescent antibody test. Virus isolation is considered the gold standard, and 5 salmonid cell lines are known to support growth of ISAV. In this study, the relative performance of the salmon head kidney 1 (SHK-1), Atlantic salmon kidney (ASK), and CHSE-214 cell lines in detecting ISAV was evaluated using samples from both experimentally and naturally infected Atlantic salmon. Interlaboratory comparisons were conducted using a quality control-quality assurance ring test. Both the ASK and SHK-1 cell lines performed well in detecting ISAV, although the SHK-1 line was more variable in its sensitivity to infection and somewhat slower in the appearance of cytopathic effect. Relative to the SHK-1 and ASK lines, the CHSE-214 cell line performed poorly. Although the ASK line appeared to represent a good alternative to the more commonly used SHK-1 line, use of a single cell line for diagnostic assays may increase the potential for false-negative results. Thus, the SHK-1 and ASK cell lines can be used in combination to provide enhanced ability to detect ISAV.
The effects of baicalein on canine osteosarcoma cell proliferation and death.
Helmerick, E C; Loftus, J P; Wakshlag, J J
2014-12-01
Flavonoids are a group of modified triphenolic compounds from plants with medicinal properties. Baicalein, a specific flavone primarily isolated from plant roots (Scutellaria baicalensis), is commonly used in Eastern medicine for its anti-inflammatory and antineoplastic properties. Previous research shows greater efficacy for baicalein than most flavonoids; however, there has been little work examining their effects on sarcoma cells, let alone canine cells. Three canine osteosarcoma cell lines (HMPOS, D17 and OS 2.4) were treated with baicalein to examine cell viability, cell cycle kinetics, anchorage-independent growth and apoptosis. Results showed that osteosarcoma cells were sensitive to baicalein at concentrations from approximately 1 to 25 μM. Modest cell cycle changes were observed in one cell line. Baicalein was effective in inducing apoptosis and did not prevent doxorubicin cell proliferation inhibition in all the cell lines. The mechanism for induction of apoptosis has not been fully elucidated; however, changes in mitochondrial permeability supersede the apoptotic response. © 2012 Blackwell Publishing Ltd.
A physical sciences network characterization of non-tumorigenic and metastatic cells
Agus, David B.; Alexander, Jenolyn F.; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E.; Austin, Robert H.; Backman, Vadim; Bethel, Kelly J.; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C.; Curley, Steven A.; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C. W.; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I.; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A.; Geng, Yue; Gerecht, Sharon; Gillies, Robert J.; Godin, Biana; Grady, William M.; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L.; Hielscher, Abigail; Hillis, W. Daniel; Holland, Eric C.; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H.; Joo, Ahyoung; Katz, Jonathan E.; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R.; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M.; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N.; Lambert, Guillaume; Liao, David; Licht, Jonathan D.; Liphardt, Jan T.; Liu, Liyu; Lloyd, Mark C.; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J. T.; Meldrum, Deirdre R.; Michor, Franziska; Mumenthaler, Shannon M.; Nandakumar, Vivek; O’Halloran, Thomas V.; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J.; Philips, Kevin G.; Poultney, Christopher S.; Rana, Kuldeepsinh; Reinhart-King, Cynthia A.; Ros, Robert; Semenza, Gregg L.; Senechal, Patti; Shuler, Michael L.; Srinivasan, Srimeenakshi; Staunton, Jack R.; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D.; Tormoen, Garth W.; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S.; Wan, Jenny C.; Weaver, Valerie M.; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun
2013-01-01
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences–Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis. PMID:23618955
A physical sciences network characterization of non-tumorigenic and metastatic cells.
Agus, David B; Alexander, Jenolyn F; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E; Austin, Robert H; Backman, Vadim; Bethel, Kelly J; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C; Curley, Steven A; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C W; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A; Geng, Yue; Gerecht, Sharon; Gillies, Robert J; Godin, Biana; Grady, William M; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L; Hielscher, Abigail; Hillis, W Daniel; Holland, Eric C; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H; Joo, Ahyoung; Katz, Jonathan E; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N; Lambert, Guillaume; Liao, David; Licht, Jonathan D; Liphardt, Jan T; Liu, Liyu; Lloyd, Mark C; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J T; Meldrum, Deirdre R; Michor, Franziska; Mumenthaler, Shannon M; Nandakumar, Vivek; O'Halloran, Thomas V; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J; Philips, Kevin G; Poultney, Christopher S; Rana, Kuldeepsinh; Reinhart-King, Cynthia A; Ros, Robert; Semenza, Gregg L; Senechal, Patti; Shuler, Michael L; Srinivasan, Srimeenakshi; Staunton, Jack R; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D; Tormoen, Garth W; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S; Wan, Jenny C; Weaver, Valerie M; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun
2013-01-01
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.
A physical sciences network characterization of non-tumorigenic and metastatic cells
NASA Astrophysics Data System (ADS)
Physical Sciences-Oncology Centers Network; Agus, David B.; Alexander, Jenolyn F.; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E.; Austin, Robert H.; Backman, Vadim; Bethel, Kelly J.; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C.; Curley, Steven A.; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C. W.; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I.; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A.; Geng, Yue; Gerecht, Sharon; Gillies, Robert J.; Godin, Biana; Grady, William M.; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L.; Hielscher, Abigail; Hillis, W. Daniel; Holland, Eric C.; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H.; Joo, Ahyoung; Katz, Jonathan E.; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R.; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M.; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N.; Lambert, Guillaume; Liao, David; Licht, Jonathan D.; Liphardt, Jan T.; Liu, Liyu; Lloyd, Mark C.; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J. T.; Meldrum, Deirdre R.; Michor, Franziska; Mumenthaler, Shannon M.; Nandakumar, Vivek; O'Halloran, Thomas V.; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J.; Philips, Kevin G.; Poultney, Christopher S.; Rana, Kuldeepsinh; Reinhart-King, Cynthia A.; Ros, Robert; Semenza, Gregg L.; Senechal, Patti; Shuler, Michael L.; Srinivasan, Srimeenakshi; Staunton, Jack R.; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D.; Tormoen, Garth W.; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S.; Wan, Jenny C.; Weaver, Valerie M.; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun
2013-04-01
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.
Sánchez-Céspedes, R; Maniscalco, L; Iussich, S; Martignani, E; Guil-Luna, S; De Maria, R; Martín de Las Mulas, J; Millán, Y
2013-08-01
Mammary gland tumours, the most common malignant neoplasm in bitches, often display myoepithelial (ME) cell proliferation. The aim of this study was to isolate, purify, culture and characterise ME cells from normal and neoplastic canine mammary glands. Monodispersed cells from three normal canine mammary glands and five canine mammary tumours were incubated with an anti-Thy1 antibody and isolated by magnetic-activated cell sorting (MACS). Cells isolated from two normal glands (cell lines CmME-N1 and CmME-N2) and four tumours (cell lines CmME-K1 from a complex carcinoma, CmME-K2 from a simple tubulopapillary carcinoma, and CmME-K3 and CmME-K4 from two carcinomas within benign tumours) were cultured in supplemented DMEM/F12 media for 40days. Cell purity was >90%. Tumour-derived ME cell lines exhibited heterogeneous morphology, growth patterns and immunocytochemical expression of cytokeratins, whereas cell lines from normal glands retained their morphology and levels of cytokeratin expression during culture. Cell lines from normal glands and carcinomas within benign tumours grew more slowly than those from simple and complex carcinomas. This methodology has the potential to be used for in vitro analysis of the role of ME cells in the growth and progression of canine mammary tumours. Copyright © 2013 Elsevier Ltd. All rights reserved.
Youns, Mаhmoud; Abdel Halim Hegazy, Wael
2017-01-01
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.
Youns, Mаhmoud; Abdel Halim Hegazy, Wael
2017-01-01
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097
Yu, Kenny Kwok-Hei; Taylor, Jessica T; Pathmanaban, Omar N; Youshani, Amir Saam; Beyit, Deniz; Dutko-Gwozdz, Joanna; Benson, Roderick; Griffiths, Gareth; Peers, Ian; Cueppens, Peter; Telfer, Brian A; Williams, Kaye J; McBain, Catherine; Kamaly-Asl, Ian D; Bigger, Brian W
2018-01-01
Glioblastoma (GBM) is the most common primary brain malignancy in adults, yet survival outcomes remain poor. First line treatment is well established, however disease invariably recurs and improving prognosis is challenging. With the aim of personalizing therapy at recurrence, we have established a high content screening (HCS) platform to analyze the sensitivity profile of seven patient-derived cancer stem cell lines to 83 FDA-approved chemotherapy drugs, with and without irradiation. Seven cancer stem cell lines were derived from patients with GBM and, along with the established cell line U87-MG, each patient-derived line was cultured in tandem in serum-free conditions as adherent monolayers and three-dimensional neurospheres. Chemotherapeutics were screened at multiple concentrations and cells double-stained to observe their effect on both cell death and proliferation. Sensitivity was classified using high-throughput algorithmic image analysis. Cell line specific drug responses were observed across the seven patient-derived cell lines. Few agents were seen to have radio-sensitizing effects, yet some drug classes showed a marked difference in efficacy between monolayers and neurospheres. In vivo validation of six drugs suggested that cell death readout in a three-dimensional culture scenario is a more physiologically relevant screening model and could be used effectively to assess the chemosensitivity of patient-derived GBM lines. The study puts forward a number of non-standard chemotherapeutics that could be useful in the treatment of recurrent GBM, namely mitoxantrone, bortezomib and actinomycin D, whilst demonstrating the potential of HCS to be used for personalized treatment based on the chemosensitivity profile of patient tumor cells.
Hansen-Hagge, T E; Yokota, S; Reuter, H J; Schwarz, K; Bartram, C R
1992-11-01
Rearrangements of the T-cell receptor (TCR) delta locus are observed in the majority of human B-cell precursor acute lymphoblastic leukemias (ALL) with a striking predominance of V delta 2(D)D delta 3 recombinations in common ALL (cALL) patients. Recently, we and others showed that almost 20% of cALL cases are characterized by further recombination of V delta 2(D)D delta 3 segments to J alpha elements, thereby deleting the TCR delta locus in analogy to the delta Rec/psi J alpha pathway in differentiating alpha/beta-positive T cells. We report here that two human cALL-derived cell lines, REH and Nalm-6, are competent to recombine the TCR delta/alpha locus under standard tissue culture conditions. Analysis of different REH subclones obtained by limiting dilution of the initial culture showed a biased recombination of V delta 2D delta 3 to distinct J alpha elements. During prolonged tissue culture, a subclone acquired growth advantage and displaced parental cells as well as other subclones. Frequently, the DJ junctions of REH subclones contained extended stretches of palindromic sequences derived from modified D delta 3 coding elements. The other cell line, Nalm-6, started the TCR delta/alpha recombination with an unusual signal joint of a cryptic recombinase signal sequence (RSS) upstream of D delta 3 to the 3' RSS of D delta 3. The RSS dimer was subsequently rearranged in all investigated subclones to an identical J alpha element. Both cell lines might become valuable tools to unravel the complex regulation of TCR delta/alpha recombination pathways in malignant and normal lymphopoiesis.
Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations.
Lin, Yao-Cheng; Boone, Morgane; Meuris, Leander; Lemmens, Irma; Van Roy, Nadine; Soete, Arne; Reumers, Joke; Moisse, Matthieu; Plaisance, Stéphane; Drmanac, Radoje; Chen, Jason; Speleman, Frank; Lambrechts, Diether; Van de Peer, Yves; Tavernier, Jan; Callewaert, Nico
2014-09-03
The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect.
Wirtz, Eric D; Hoshino, Daisuke; Maldonado, Anthony T; Tyson, Darren R; Weaver, Alissa M
2015-01-01
Importance The PIK3CA mutation is one of the most common mutations in Head and Neck Squamous Cell Carcinoma (HNSCC). Through this research we attempt to elicit the role of oncogene dependence and effects of targeted therapy on this PIK3CA mutation. Objectives 1) To determine the role of oncogene dependence on one of the more common and targetable oncogenes in HNSCC – PIK3CA; 2) To evaluate the consequence of this oncogene on the effectiveness of newly developed targeted therapies. Study Design In vitro study. Setting Academic research laboratory. Participants Cell culture based study assessing the viability of PIK3CA mutated head and neck cell lines when treated with targeted therapy. Exposures PIK3CA mutated head and neck cell lines were treated with 17-AAG, GDC-0941, trametinib, and BEZ-235. Main Outcome and Measures Assessment of cell viability of HNSCC cell lines characterized for PIK3CA mutations or SCC25 cells engineered to express the PIK3CA hotspot mutations E545K or H1047R Results Surprisingly, in engineered cell lines, the hotspot E545K and H1047R mutations conferred decreased, rather than increased, sensitivity as measured by IC50 when treated with the respective HSP90, PI3K, and MEK inhibitors, 17-AAG, GDC-0941, and trametinib, compared to the SCC25 control cell lines. When treated with BEZ-235, H1047R-expressing cell lines showed increased sensitivity to inhibition compared to control while those expressing E545K showed slightly increased sensitivity of unclear significance. Conclusions and Relevance 1) The PIK3CA mutations within our engineered cell model did not lead to enhanced oncogene-dependent cell death when treated with direct inhibition of the PI3K enzyme yet did show increased sensitivity compared to control with dual PI3K/mTOR inhibition. 2) Oncogene addiction to PIK3CA hot spot mutations, if it occurs, is likely to evolve in vivo molecular changes that remain to be identified. Additional study is required to develop new model systems and approaches to determine the role of targeted therapy in the treatment of PI3K-overactive HNSCC tumors. PMID:25855885
Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity.
Basciani, Sabrina; Brama, Marina; Mariani, Stefania; De Luca, Gabriele; Arizzi, Mario; Vesci, Loredana; Pisano, Claudio; Dolci, Susanna; Spera, Giovanni; Gnessi, Lucio
2005-03-01
Leydig cell tumors are usually benign tumors of the male gonad. However, if the tumor is malignant, no effective treatments are currently available. Leydig cell tumors express platelet-derived growth factor (PDGF), kit ligand and their respective receptors, PDGFR and c-kit. We therefore evaluated the effects of imatinib mesylate (imatinib), a selective inhibitor of the c-kit and PDGFR tyrosine kinases, on the growth of rodent Leydig tumor cell lines in vivo and in vitro, and examined, in human Leydig cell tumor samples, the expression of activated PDGFR and c-kit and the mutations in exons of the c-kit gene commonly associated with solid tumors. Imatinib caused concentration-dependent decreases in the viability of Leydig tumor cell lines, which coincided with apoptosis and inhibition of proliferation and ligand-stimulated phosphorylation of c-kit and PDGFRs. Mice bearing s.c. allografts of a Leydig tumor cell line treated with imatinib p.o., had an almost complete inhibition of tumor growth, less tumor cell proliferation, increased apoptosis, and a lesser amount of tumor-associated mean vessel density compared with controls. No drug-resistant tumors appeared during imatinib treatment but tumors regrew after drug withdrawal. Human Leydig cell tumors showed an intense expression of the phosphorylated form of c-kit and a less intense expression of phosphorylated PDGFRs. No activating mutations in common regions of mutation of the c-kit gene were found. Our studies suggest that Leydig cell tumors might be a potential target for imatinib therapy.
Zhang, Rui; Thamm, Douglas H; Misra, Vikram
2015-02-07
We had previously shown that the bLZip domain-containing transcription factor, Zhangfei/CREBZF inhibits the growth and the unfolded protein response (UPR) in cells of the D-17 canine osteosarcoma (OS) line and that the effects of Zhangfei are mediated by it stabilizing the tumour suppressor protein p53. To determine if our observations with D-17 cells applied more universally to canine OS, we examined three other independently isolated canine OS cell lines--Abrams, McKinley and Gracie. Like D-17, the three cell lines expressed p53 proteins that were capable of activating promoters with p53 response elements on their own, and synergistically with Zhangfei. Furthermore, as with D-17 cells, Zhangfei suppressed the growth and UPR-related transcripts in the OS cell lines. Zhangfei also induced the activation of osteocalcin expression, a marker of osteoblast differentiation and triggered programmed cell death. Osteosarcomas are common malignancies in large breeds of dogs. Although there has been dramatic progress in their treatment, these therapies often fail, leading to recurrence of the tumour and metastatic spread. Our results indicate that induction of the expression of Zhangfei in OS, where p53 is functional, may be an effective modality for the treatment of OS.
1995-04-13
rhodamine-coupled goat anti -mouse antibody . A rare , fused Cl 1 D giant cell was selected to show (Al, while extensive fusion was common throughout the...mouse anti - MHV-AS9 antiserum. To quantify the lev el of susceptibility of cells to MHV infection , ten randomly selected fields for each sample...named CealO) was discovered and found to be co-expressed with MHVR in the CI 1 D and F40 lines of mouse fibroblasts. A monoclonal anti - MHVR
β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells.
Sui, Lina; Danzl, Nichole; Campbell, Sean R; Viola, Ryan; Williams, Damian; Xing, Yuan; Wang, Yong; Phillips, Neil; Poffenberger, Greg; Johannesson, Bjarki; Oberholzer, Jose; Powers, Alvin C; Leibel, Rudolph L; Chen, Xiaojuan; Sykes, Megan; Egli, Dieter
2018-01-01
β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy. © 2017 by the American Diabetes Association.
Susceptibility of ATM-deficient pancreatic cancer cells to radiation.
Ayars, Michael; Eshleman, James; Goggins, Michael
2017-05-19
Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.
Modi, Tapan G; Chalishazar, Monali; Kumar, Malay
2018-01-01
Introduction and Objectives: Odontogenic cysts are the most common cysts of the jaws and are formed from the remnants of the odontogenic apparatus. Among these odontogenic cysts, radicular cysts (RCs) (about 60% of all diagnosed jaw cysts), dentigerous cysts (DCs) (16.6% of all jaw cysts) and odontogenic keratocysts (OKCs) (11.2% of all developmental odontogenic cysts) are the most common. The behavior of any lesion is generally reflected by its growth potential. Growth potential is determined by measuring the cell proliferative activity. The cell proliferative activity is measured by various methods among which immunohistochemistry (IHC) is the commonly used technique. Most of the IHC studies on cell proliferation have been based on antibodies such as Ki-67 and proliferating cell nuclear antigen. Materials and Method: In the present study, the total sample size comprised of 45 cases of odontogenic cysts, with 15 cases each of OKC, RC and DC. Here, an attempt is made to study immunohistochemical (streptavidin-biotin detection system HRP-DAB) method to assess the expression of Ki-67 in different layers of the epithelial lining of OKCs, RCs and DCs. Observations and Results: Ki-67 positive cells were highest in epithelium of OKC as compared to DC and RC. Conclusion: The increased Ki-67 labeling index and its expression in suprabasal cell layers of epithelial lining in OKC and its correlation with suprabasal cell layers of epithelial lining in DC and RC could contribute toward its clinically aggressive behavior. OKC is of more significance to the oral pathologist and oral surgeon because of its specific histopathological features, high recurrence rate and aggressive behavior. PMID:29731577
2014-01-01
Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents. PMID:24886633
Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.
Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M
1990-06-01
It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and intestinal-type metaplastic changes of epithelial cells lining the main and interlobular ducts of the pancreas.
Jiang, Xiaowen; Wang, Wenxian; Zhang, Yiping
2016-04-20
Targeted therapy has become an indispensable therapy method in advanced non-small cell lung cancer (NSCLC) treatment. Epithelial growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) can significantly prolong the survival of patients harboring EGFR gene mutation. Icotinb is China's first EGFR-TKI with independent intellectual property rights. The aim of this study is to investigate the clinical characteristics about the beneficiary of advanced NSCLC patients with EGFR Common mutation who were treated with Icotinib. Retrospectively collect the data about beneficiary [progression-free survival (PFS)≥6 months] and analysis of the related risk factors for prognosis. From September 1, 2011 to September 30, 2015, 231 cases of advanced NSCLC beneficiary with EGFR common mutation were enrolled for treatment with icotinib in Zhejiang Cancer Hospital. The one year benefit rate was 67.9% in the group treated with Icotinib as first line, and in the groupas second line or above was 53.6%, which is statisticallysignificant. The two years benefit rate was 18.7% and 9.3%, respectively. The median PFS of first line group and the second line or above was 16.7 and 12.4 months, respectively. The presence of brain metastasis (P=0.010), Prior chemotherapy (P=0.001), Eastern Cooperative Oncology Group (ECOG) score (P=0.001) were the main factors influencing the prognosis. The most common adverse were skin rashes (51 cases, 22.1%) and diarrhea (27 cases, 11.7%). Icotinib offers long-term clinical benefit and good tolerance for advanced NSCLC harboring EGFR gene mutation. Its advantage groups in addition to the patients with brain metastases and better ECOG score, the curative effect of patients with the first-line treatment is superior to second or further line. .
Wloch-Salamon, Dominika M; Tomala, Katarzyna; Aggeli, Dimitra; Dunn, Barbara
2017-06-07
Over its evolutionary history, Saccharomyces cerevisiae has evolved to be well-adapted to fluctuating nutrient availability. In the presence of sufficient nutrients, yeast cells continue to proliferate, but upon starvation haploid yeast cells enter stationary phase and differentiate into nonquiescent (NQ) and quiescent (Q) cells. Q cells survive stress better than NQ cells and show greater viability when nutrient-rich conditions are restored. To investigate the genes that may be involved in the differentiation of Q and NQ cells, we serially propagated yeast populations that were enriched for either only Q or only NQ cell types over many repeated growth-starvation cycles. After 30 cycles (equivalent to 300 generations), each enriched population produced a higher proportion of the enriched cell type compared to the starting population, suggestive of adaptive change. We also observed differences in each population's fitness suggesting possible tradeoffs: clones from NQ lines were better adapted to logarithmic growth, while clones from Q lines were better adapted to starvation. Whole-genome sequencing of clones from Q- and NQ-enriched lines revealed mutations in genes involved in the stress response and survival in limiting nutrients ( ECM21 , RSP5 , MSN1 , SIR4 , and IRA2 ) in both Q and NQ lines, but also differences between the two lines: NQ line clones had recurrent independent mutations affecting the Ssy1p-Ptr3p-Ssy5p (SPS) amino acid sensing pathway, while Q line clones had recurrent, independent mutations in SIR3 and FAS1 Our results suggest that both sets of enriched-cell type lines responded to common, as well as distinct, selective pressures. Copyright © 2017 Wloch-Salamon et al.
Calcagno, Danielle Queiroz; Takeno, Sylvia Santomi; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Chen, Elizabeth Suchi; Araújo, Taíssa Maíra Thomaz; Lima, Eleonidas Moura; Melaragno, Maria Isabel; Demachki, Samia; Assumpção, Paulo Pimentel; Burbano, Rommel Rodriguez; Smith, Marília Cardoso
2016-01-01
AIM To identify common copy number alterations on gastric cancer cell lines. METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis. RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively. CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer. PMID:27920471
Berardocco, Martina; Radeghieri, Annalisa; Busatto, Sara; Gallorini, Marialucia; Raggi, Chiara; Gissi, Clarissa; D’Agnano, Igea; Bergese, Paolo; Felsani, Armando; Berardi, Anna C.
2017-01-01
Liver cancer (LC) is one of the most common cancers and represents the third highest cause of cancer-related deaths worldwide. Extracellular vesicle (EVs) cargoes, which are selectively enriched in RNA, offer great promise for the diagnosis, prognosis and treatment of LC. Our study analyzed the RNA cargoes of EVs derived from 4 liver-cancer cell lines: HuH7, Hep3B, HepG2 (hepato-cellular carcinoma) and HuH6 (hepatoblastoma), generating two different sets of sequencing libraries for each. One library was size-selected for small RNAs and the other targeted the whole transcriptome. Here are reported genome wide data of the expression level of coding and non-coding transcripts, microRNAs, isomiRs and snoRNAs providing the first comprehensive overview of the extracellular-vesicle RNA cargo released from LC cell lines. The EV-RNA expression profiles of the four liver cancer cell lines share a similar background, but cell-specific features clearly emerge showing the marked heterogeneity of the EV-cargo among the individual cell lines, evident both for the coding and non-coding RNA species. PMID:29137313
La, Elizabeth M; Smyth, Emily Nash; Talbird, Sandra E; Li, Li; Kaye, James A; Lin, Aimee Bence; Bowman, Lee
2018-06-21
This study evaluated the patterns of care and health care resource use (HCRU) in patients with metastatic squamous cell carcinoma of the head and neck (SCCHN) who received ≥3 lines of systemic therapy in the United Kingdom (UK). Oncologists (n = 40) abstracted medical records for patients with metastatic SCCHN who initiated third-line systemic therapy during 1 January 2011-30 August 2014 (n = 220). Patient characteristics, treatment patterns and SCCHN-related HCRU were summarised descriptively for the metastatic period; exploratory multivariable regression analyses were conducted on select HCRU outcomes. At metastatic diagnosis, most patients had an Eastern Cooperative Oncology Group performance status (PS) of 0/1 (95%). For patients with PS 0/1, the most common first-line treatment was cisplatin+5-fluorouracil (5-FU); docetaxel was the most common second- and third-line treatment. For patients with PS ≥ 2, the most common first-, second-, and third-line treatments were carboplatin+5-FU, cetuximab, and methotrexate, respectively. Most patients received supportive care during (85%) and after (89%) therapy. This study provides useful information, prior to the availability of immunotherapy, on patient characteristics, treatment patterns, HCRU, and survival in a real-world UK population with metastatic SCCHN receiving ≥3 lines of systemic therapy. Patterns of care and HCRU varied among patients with metastatic SCCHN; specific systemic therapies varied by patient PS. © 2018 Eli Lilly and Company. European Journal of Cancer Care published by John Wiley & Sons Ltd.
Depleted uranium induces neoplastic transformation in human lung epithelial cells.
Xie, Hong; LaCerte, Carolyne; Thompson, W Douglas; Wise, John Pierce
2010-02-15
Depleted uranium (DU) is commonly used in military armor and munitions, and thus, exposure of soldiers and noncombatants is frequent and widespread. Previous studies have shown that DU has both chemical and radiological toxicity and that the primary route of exposure of DU to humans is through inhalation and ingestion. However, there is limited research information on the potential carcinogenicity of DU in human bronchial cells. Accordingly, we determined the neoplastic transforming ability of particulate DU to human bronchial epithelial cells (BEP2D). We observed the loss of contact inhibition and anchorage independent growth in cells exposed to DU after 24 h. We also characterized these DU-induced transformed cell lines and found that 40% of the cell lines exhibit alterations in plating efficiency and no significant changes in the cytotoxic response to DU. Cytogenetic analyses showed that 53% of the DU-transformed cell lines possess a hypodiploid phenotype. These data indicate that human bronchial cells are transformed by DU and exhibit significant chromosome instability consistent with a neoplastic phenotype.
USDA-ARS?s Scientific Manuscript database
Bacterial Cold Water Disease (BCWD) is a common, chronic disease in rainbow trout, and is caused by the gram-negative bacterium Flavobacterium psychrophilum (Fp). Through selective breeding, the National Center for Cool and Cold Water Aquaculture has generated a genetic line that is highly resistant...
Pavel, Ana B; Korolev, Kirill S
2017-05-16
Genetic alterations initiate tumors and enable the evolution of drug resistance. The pro-cancer view of mutations is however incomplete, and several studies show that mutational load can reduce tumor fitness. Given its negative effect, genetic load should make tumors more sensitive to anticancer drugs. Here, we test this hypothesis across all major types of cancer from the Cancer Cell Line Encyclopedia, which provides genetic and expression data of 496 cell lines together with their response to 24 common anticancer drugs. We found that the efficacy of 9 out of 24 drugs showed significant association with genetic load in a pan-cancer analysis. The associations for some tissue-drug combinations were remarkably strong, with genetic load explaining up to 83% of the variance in the drug response. Overall, the role of genetic load depended on both the drug and the tissue type with 10 tissues being particularly vulnerable to genetic load. We also identified changes in gene expression associated with increased genetic load, which included cell-cycle checkpoints, DNA damage and apoptosis. Our results show that genetic load is an important component of tumor fitness and can predict drug sensitivity. Beyond being a biomarker, genetic load might be a new, unexplored vulnerability of cancer.
Cui, Yan; Ying, Ying; van Hasselt, Andrew; Ng, Ka Man; Yu, Jun; Zhang, Qian; Jin, Jie; Liu, Dingxie; Rhim, Johng S; Rha, Sun Young; Loyo, Myriam; Chan, Anthony T C; Srivastava, Gopesh; Tsao, George S W; Sellar, Grant C; Sung, Joseph J Y; Sidransky, David; Tao, Qian
2008-08-20
Identification of tumor suppressor genes (TSGs) silenced by CpG methylation uncovers the molecular mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common in multiple tumors including nasopharyngeal carcinoma (NPC). OPCML, located at 11q25, is one of the downregulated genes we identified through digital expression subtraction. Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast, cervix, prostate), lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma) and primary tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression of OPCML led to significant inhibition of both anchorage-dependent and -independent growth of carcinoma cells with endogenous silencing. Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies.
Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.
2014-01-01
Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165
Multiplex Detection of KRAS Mutations Using Passive Droplet Fusion.
Pekin, Deniz; Taly, Valerie
2017-01-01
We describe a droplet microfluidics method to screen for multiple mutations of a same oncogene in a single experiment using passive droplet fusion. Genomic DNA from H1573 cell-line was screened for the presence of the six common mutations of the KRAS oncogene as well as wild-type sequences with a detection efficiency of 98 %. Furthermore, the mutant allelic fraction of the cell-line was also assessed correctly showing that the technique is quantitative.
NANOG priming before full reprogramming may generate germ cell tumours.
Grad, I; Hibaoui, Y; Jaconi, M; Chicha, L; Bergström-Tengzelius, R; Sailani, M R; Pelte, M F; Dahoun, S; Mitsiadis, T A; Töhönen, V; Bouillaguet, S; Antonarakis, S E; Kere, J; Zucchelli, M; Hovatta, O; Feki, A
2011-11-09
Reprogramming somatic cells into a pluripotent state brings patient-tailored, ethical controversy-free cellular therapy closer to reality. However, stem cells and cancer cells share many common characteristics; therefore, it is crucial to be able to discriminate between them. We generated two induced pluripotent stem cell (iPSC) lines, with NANOG pre-transduction followed by OCT3/4, SOX2, and LIN28 overexpression. One of the cell lines, CHiPS W, showed normal pluripotent stem cell characteristics, while the other, CHiPS A, though expressing pluripotency markers, failed to differentiate and gave rise to germ cell-like tumours in vivo. Comparative genomic hybridisation analysis of the generated iPS lines revealed that they were genetically more stable than human embryonic stem cell counterparts. This analysis proved to be predictive for the differentiation potential of analysed cells. Moreover, the CHiPS A line expressed a lower ratio of p53/p21 when compared to CHiPS W. NANOG pre-induction followed by OCT3/4, SOX2, MYC, and KLF4 induction resulted in the same tumour-inducing phenotype. These results underline the importance of a re-examination of the role of NANOG during reprogramming. Moreover, this reprogramming method may provide insights into primordial cell tumour formation and cancer stem cell transformation.
Functional and genetic analysis of haplotypic sequence variation at the nicastrin genomic locus
Hamilton, Gillian; Killick, Richard; Lambert, Jean-Charles; Amouyel, Philippe; Carrasquillo, Minerva M.; Pankratz, V. Shane; Graff-Radford, Neill R.; Dickson, Dennis W.; Petersen, Ronald C.; Younkin, Steven G.; Powell, John F.; Wade-Martins, Richard
2013-01-01
Nicastrin (NCSTN) is a component of the γ-secretase complex and therefore potentially a candidate risk gene for Alzheimer's disease. Here, we have developed a novel functional genomics methodology to express common locus haplotypes to assess functional differences. DNA recombination was used to engineer 5 bacterial artificial chromosomes (BACs) to each express a different haplotype of the NCSTN locus. Each NCSTN-BAC was delivered to knockout nicastrin (Ncstn−/−) cells and clonal NCSTN-BAC+/Ncstn−/− cell lines were created for functional analyses. We showed that all NCSTN-BAC haplotypes expressed nicastrin protein and rescued γ-secretase activity and amyloid beta (Aβ) production in NCSTN-BAC+/Ncstn−/− lines. We then showed that genetic variation at the NCSTN locus affected alternative splicing in human postmortem brain tissue. However, there was no robust functional difference between clonal cell lines rescued by each of the 5 different haplotypes. Finally, there was no statistically significant association of NCSTN with disease risk in the 4 cohorts. We therefore conclude that it is unlikely that common variation at the NCSTN locus is a risk factor for Alzheimer's disease. PMID:22405046
Pan, L Y; Guyre, P M
1988-02-01
We investigated the influence of glucocorticoids on two effects of interferons (IFNs) which are thought to relate to their antitumor actions: cytotoxic activity and induction of HLA antigen expression. We treated human myeloid cell lines (U-937, HL-60, THP-1, K-562, and KG-1a), and T-(MOLT-4) and B- (Daudi) lymphoblastic cell lines with concentrations of IFN-alpha, IFN-gamma, and dexamethasone (Dex) which are commonly achieved in the circulation following therapeutic administration. The results show that for every cell line except Daudi, the greatest inhibition of cell growth occurred when IFN-gamma and Dex treatments were combined. The advantage of combined IFN-gamma and Dex treatment over treatment with either agent alone was most dramatic for the three cell lines (U-937, HL-60, and THP-1) which have monocytoid characteristics. There was also more growth inhibition by the combination of IFN-alpha and Dex than by either agent alone for all seven cell lines tested. The induction of HLA antigen expression by IFN-alpha and IFN-gamma, an effect which could increase recognition of the tumor cells by the immune system, was as great or greater in the presence of Dex as in its absence. These results demonstrate that glucocorticoids do not inhibit, and in some cases enhance, two effects of IFNs that appear to be related to their antitumor actions: inhibition of tumor cell proliferation and enhancement of HLA antigen expression.
Relationship Among Tau Antigens Isolated from Various Lines of Simian Virus 40-Transformed Cells
Simmons, Daniel T.; Martin, Malcolm A.; Mora, Peter T.; Chang, Chungming
1980-01-01
In addition to the virus-specified tumor antigens, simian virus 40-transformed cells contain at least one other protein which can be immunoprecipitated with serum from animals bearing simian virus 40-induced tumors. This protein, which is designated Tau antigen, has an apparent molecular weight of 56,000 as determined by electrophoresis on acrylamide gels. The relationship among Tau antigens isolated from different lines of simian virus 40-transformed cells was examined by comparing the methionine-labeled tryptic peptides of these proteins by two-dimensional fingerprinting on thin-layer cellulose plates. In this fashion, we initially determined that the Tau antigens isolated from three different lines of transformed mouse cells were very similar. Second, we found that Tau antigen isolated from a line of rat transformants was closely related, but not identical, to the mouse cell Tau antigens. Approximately 70% of their methionine peptides comigrated in two dimensions. Finally, we showed that Tau antigen isolated from a line of transformed human cells was only partially related to the mouse and rat proteins. About 40% of the methionine peptides of the human protein were also contained in the Tau antigens from the other two species. These results strongly indicate that the Tau antigens isolated from these various simian virus 40-transformed cell lines contain common amino acid sequences. Images PMID:6247503
A drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. This hinders the use and relevance of cell culture in high throughput chemical toxicity screening. To address this challenge, we engineered HEK293T cells to overexpress...
Mesenchymal change and drug resistance in neuroblastoma.
Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth
2015-01-01
Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P < 0.1 were analyzed. Immunofluorescence (IF) and Western blot analysis confirmed microarray results of interest. Matrigel invasion assay and migration wounding assays were performed. Volcano plots and heat maps visually demonstrated a similar pattern of DEGs in the SK-N-SH and SK-N-BE(2)C DoxR cell lines relative to their parental WT lines. Venn diagramming revealed 1594 DEGs common to both DoxR cell lines relative to their parental cell lines. Network analysis pointed to several significantly upregulated epithelial-to-mesenchymal transition pathways, through TGF-beta pathways via RhoA, PI3K, and ILK and via SMADs, as well as via notch signaling pathways. DoxR cell lines displayed a more invasive phenotype than respective WT cell lines. Human SK-N-SH and SK-N-BE(2)C NB cells display characteristics of mesenchymal change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.
Englerin A Agonizes the TRPC4/C5 Cation Channels to Inhibit Tumor Cell Line Proliferation
Carson, Cheryl; Raman, Pichai; Tullai, Jennifer; Xu, Lei; Henault, Martin; Thomas, Emily; Yeola, Sarita; Lao, Jianmin; McPate, Mark; Verkuyl, J. Martin; Marsh, George; Sarber, Jason; Amaral, Adam; Bailey, Scott; Lubicka, Danuta; Pham, Helen; Miranda, Nicolette; Ding, Jian; Tang, Hai-Ming; Ju, Haisong; Tranter, Pamela; Ji, Nan; Krastel, Philipp; Jain, Rishi K.; Schumacher, Andrew M.; Loureiro, Joseph J.; George, Elizabeth; Berellini, Giuliano; Ross, Nathan T.; Bushell, Simon M.; Erdemli, Gül; Solomon, Jonathan M.
2015-01-01
Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP) of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels. PMID:26098886
Esmaeilbeig, Maryam; Kouhpayeh, Seyed Amin; Amirghofran, Zahra
2015-01-01
Background: Traditional herbal medicine is a valuable resource that provides new drugs for cancer treatment. Objectives: In this study we aim to screen and investigate the in vitro anti-tumor activities of ten species of plants commonly grown in Southern Iran. Materials and Methods: We used the MTT colorimetric assay to evaluate the cytotoxic activities of the methanol extracts of these plants on various tumor cell lines. The IC50 was calculated as a scale for this evaluation. Results: Satureja bachtiarica, Satureja hortensis, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed the inhibitoriest effects on Jurkat cells with > 80% inhibition at 200 µg/mL. Satureja hortensis (IC50: 66.7 µg/mL) was the most effective. These plants also strongly inhibited K562 cell growth; Satureja bachtiarica (IC50: 28.3 µg/mL), Satureja hortensis (IC50: 52 µg/mL) and Thymus vulgaris (IC50: 87 µg/mL) were the most effective extracts. Cichorium intybus, Rheum ribes, Alhagi pseudalhagi and Glycyrrihza glabra also showed notable effects on the leukemia cell lines. The Raji cell line was mostly inhibited by Satureja bachtiarica and Thymus vulgaris with approximately 40% inhibition at 200µg/ml. The influence of these extracts on solid tumor cell lines was not strong. Fen cells were mostly affected by Glycyrrihza glabra (IC50: 182 µg/mL) and HeLa cells by Satureja hortensis (31.6% growth inhibitory effect at 200 µg/mL). Conclusions: Leukemic cell lines were more sensitive to the extracts than the solid tumor cell lines; Satureja hortensis, Satureja bachtiarica, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed remarkable inhibitory potential. PMID:26634114
Biesold, Susanne E; Ritz, Daniel; Gloza-Rausch, Florian; Wollny, Robert; Drexler, Jan Felix; Corman, Victor M; Kalko, Elisabeth K V; Oppong, Samuel; Drosten, Christian; Müller, Marcel A
2011-01-01
Bats harbor several highly pathogenic zoonotic viruses including Rabies, Marburg, and henipaviruses, without overt clinical symptoms in the animals. It has been suspected that bats might have evolved particularly effective mechanisms to suppress viral replication. Here, we investigated interferon (IFN) response, -induction, -secretion and -signaling in epithelial-like cells of the relevant and abundant African fruit bat species, Eidolon helvum (E. helvum). Immortalized cell lines were generated; their potential to induce and react on IFN was confirmed, and biological assays were adapted to application in bat cell cultures, enabling comparison of landmark IFN properties with that of common mammalian cell lines. E. helvum cells were fully capable of reacting to viral and artificial IFN stimuli. E. helvum cells showed highest IFN mRNA induction, highly productive IFN protein secretion, and evidence of efficient IFN stimulated gene induction. In an Alphavirus infection model, O'nyong-nyong virus exhibited strong IFN induction but evaded the IFN response by translational rather than transcriptional shutoff, similar to other Alphavirus infections. These novel IFN-competent cell lines will allow comparative research on zoonotic, bat-borne viruses in order to model mechanisms of viral maintenance and emergence in bat reservoirs.
Lauvrak, S U; Munthe, E; Kresse, S H; Stratford, E W; Namløs, H M; Meza-Zepeda, L A; Myklebost, O
2013-01-01
Background: Osteosarcoma is the most common primary malignant bone tumour, predominantly affecting children and adolescents. Cancer cell line models are required to understand the underlying mechanisms of tumour progression and for preclinical investigations. Methods: To identify cell lines that are well suited for studies of critical cancer-related phenotypes, such as tumour initiation, growth and metastasis, we have evaluated 22 osteosarcoma cell lines for in vivo tumorigenicity, in vitro colony-forming ability, invasive/migratory potential and proliferation capacity. Importantly, we have also identified mRNA and microRNA (miRNA) gene expression patterns associated with these phenotypes by expression profiling. Results: The cell lines exhibited a wide range of cancer-related phenotypes, from rather indolent to very aggressive. Several mRNAs were differentially expressed in highly aggressive osteosarcoma cell lines compared with non-aggressive cell lines, including RUNX2, several S100 genes, collagen genes and genes encoding proteins involved in growth factor binding, cell adhesion and extracellular matrix remodelling. Most notably, four genes—COL1A2, KYNU, ACTG2 and NPPB—were differentially expressed in high and non-aggressive cell lines for all the cancer-related phenotypes investigated, suggesting that they might have important roles in the process of osteosarcoma tumorigenesis. At the miRNA level, miR-199b-5p and mir-100-3p were downregulated in the highly aggressive cell lines, whereas miR-155-5p, miR-135b-5p and miR-146a-5p were upregulated. miR-135b-5p and miR-146a-5p were further predicted to be linked to the metastatic capacity of the disease. Interpretation: The detailed characterisation of cell line phenotypes will support the selection of models to use for specific preclinical investigations. The differentially expressed mRNAs and miRNAs identified in this study may represent good candidates for future therapeutic targets. To our knowledge, this is the first time that expression profiles are associated with functional characteristics of osteosarcoma cell lines. PMID:24064976
Trisindoline synthesis and anticancer activity.
Yoo, Miyoun; Choi, Sang-Un; Choi, Ki Young; Yon, Gyu Hwan; Chae, Jong-Chan; Kim, Dockyu; Zylstra, Gerben J; Kim, Eungbin
2008-11-07
Expression of a Rhodococcus-derived oxygenase gene in Escherichia coli yielded indigo metabolites with cytotoxic activity against cancer cells. Bioactivity-guided fractionation of these indigo metabolites led to the isolation of trisindoline as the agent responsible for the observed in vitro cytotoxic activity against cancer cells. While the cytotoxicity of etoposide, a common anticancer drug, was dramatically decreased in multidrug-resistant (MDR) cancer cells compared with treatment of parental cells, trisindoline was found to have similar cytotoxicity effects on both parental and MDR cell lines. In addition, the cytotoxic effects of trisindoline were resistant to P-glycoprotein overexpression, one of the most common mechanisms of drug resistance in cancer cells, supporting its use to kill MDR cancer cells.
Antiproliferative effect of a food coloring on colon cancer cell line.
Norizadeh Tazehkand, M
2017-01-01
4-MEI (4-Methylimidazole) is used as a chemical intermediate, crude material or component in the manufacture of pharmaceuticals, photographic and photothermographic chemicals, dyes and pigments and agricultural chemicals. 4-MEI is unintentionally found in our food. Caramel colour (which is the most used beverage colouring and food), dark beers and common brands of cola drinks may comprise more than 100 μg of this compound per 12-ounce serving. 4-MEI is widely used by people and colon cancer is common in our countries. So, it was decided to do in vitro analysis of anti-cancer effect of 4-MEI by MTT test using htc-116 cell line.In this study, mouse Htc-116 cell line was treated with 4-MEI concentrations of 300, 450, 600 and 750 µg/mL for 24 hours and 48 hours periods, after that antiproliferative effect of the 4-MEI was studied by MTT assay. In this study 4-MEI at highest concentration of 24h and at all concentration for 48 h treatment time significantly inhibited cell proliferation when it was compared to control. Also, exposing to the 4-MEI for 48 hours led to a decrease in cells proliferation by concentration dependent manner. This result showed that 4-MEI had anticancer effect in htc-116 cells. However, it has to be evaluated with different new studies (Tab. 1, Fig. 4, Ref. 19).
Methods for Maintaining Insect Cell Cultures
Lynn, Dwight E.
2002-01-01
Insect cell cultures are now commonly used in insect physiology, developmental biology, pathology, and molecular biology. As the field has advanced from methods development to a standard procedure, so has the diversity of scientists using the technique. This paper describes methods that are effective for maintaining various insect cell lines. The procedures are differentiated between loosely or non-attached cell strains, attached cell strains, and strongly adherent cell strains. PMID:15455043
Ashidi, J S; Houghton, P J; Hylands, P J; Efferth, T
2010-03-24
There is only scant literature on the anticancer components of medicinal plants from Nigeria, yet traditional healers in the area under study claim to have been managing the disease in their patients with some success using the species studied. To document plants commonly used to treat cancer in South-western Nigeria and to test the scientific basis of the claims using in vitro cytotoxicity tests. Structured questionnaires were used to explore the ethnobotanical practices amongst the traditional healers. Methanol extracts of the most common species cited were screened for cytotoxicity using the sulforhodamine B (SRB) assay in both exposure and recovery experiments. Three cancer cell lines (human breast adenocarcinoma cell line MCF-7, human large cell lung carcinoma cell line COR-L23 and human amelanotic melanoma C32) and one normal cell line (normal human keratinocytes SVK-14) were used for the screening of the extracts and the fractions obtained. The extract of Cajanus cajan showed considerable activity and was further partitioned and the dichloromethane fraction was subjected to preparative chomatography to yield six compounds: hexadecanoic acid methyl ester, alpha-amyrin, beta-sitosterol, pinostrobin, longistylin A and longistylin C. Pinostrobin and longistylins A and C were tested for cytotoxicity on the cancer cell lines. In addition, an adriamycin-sensitive acute T-lymphoblastic leukaemia cell line (CCRF-CEM) and its multidrug-resistant sub-line (CEM/ADR5000) were used in an XTT assay to evaluate the activity of the pure compounds obtained. A total of 30 healers from S W Nigeria were involved in the study. 45 species were recorded with their local names with parts used in the traditional therapeutic preparations. Cytotoxicity (IC(50) values less than 50 microg/mL) was observed in 5 species (Acanthospermum hispidum, Cajanus cajan, Morinda lucida, Nymphaea lotus and Pycnanthus angolensis). Acanthospermum hispidum and Cajanus cajan were the most active. The dichloromethane fraction of Cajanus cajan had IC(50) value 5-10 microg/mL, with the two constituent stilbenes, longistylins A and C, being primarily responsible, with IC(50) values of 0.7-14.7 microM against the range of cancer cell lines. Most of the species tested had some cytotoxic effect on the cancer cell lines, which to some extent supports their traditional inclusion in herbal preparations for treatment of cancer. However, little selectivity for cancer cells was observed, which raises concerns over their safety and efficacy in traditional treatment. The longistylins A and C appear to be responsible for much of the activity of Cajanus cajan extract. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, M.; Ong, T.; Nath, J.
1997-10-01
The rat tracheal epithelial (RTE) cell transformation system is an important short-term assay for respiratory carcinogenesis. In our laboratories, studies have been performed using this assay system to determine the carcinogenic potential of dibenzo(a,i)pyrene (DBP) and 1-nitropyrene (1-NP), two compounds commonly contaminating occupational and environmental settings. RTE cells were exposed in vivo to DBP or 1-NP by intertracheal instillation. RTE cells were then isolated and plated on a medium for determination of cloning and transformation frequencies. Cell lines established from transformed cells induced by DBP and 1-NP were analyzed for their neoplastic potential with the soft agar cloning and themore » athymic nude mouse tumorigenicity assays. Results showed that: (1) incidence of transformed foci in cultures treated with DBP or 1-NP in vivo was significantly higher than that in the control cultures; (2) 8 and 25 cell lines were established from 28 and 48 transformed foci induced by DBP and 1-NP, respectively; (3) 3 of 5 cell lines from DBP and 5 anchorage independent growth in soft agar; (4) some of the cell lines from DBP and 1-NP induced transformed foci formed tumors after cells were injected in athymic nude mice. These results indicate that in vivo exposure to DBP and 1-NP can induce RTE cell transformation and that transformed cells induced by DBP and 1-NP may have neoplastic potential.« less
Wayner, E A; Brooks, C G
1984-04-01
Co-culture of CBA/J spleen cells and certain lines of YAC-1 stimulators resulted in the appearance of NKCF-like activity in 24- to 48-hr supernatants. Numerous other in vitro cell lines were effective stimulators of this splenic cytotoxic factor (SCF). The cells participating in SCF production were absent from normal thymocytes and were present in BALB/c nu/nu spleen, were nonadherent, asialo GM1+, and bore low levels of Thy-1.2. SCF could mediate lysis of certain NK-sensitive tumor targets in an 18-hr 51Cr-release assay. However, the induction of SCF was not correlated with the ability of a particular cell line to be lysed by NK cells, but showed an absolute correlation with the presence of mycoplasma contamination in cultured tumor cell lines. Mycoplasma negative cell lines, including an uninfected but NK-sensitive subline of YAC-1, were unable to induce SCF. Decontamination of mycoplasma-infected lines with antibiotics or by passage through syngeneic mice abrogated the ability of infected tumor cells to stimulate SCF. The ability to induce SCF could be restored by reinfection with mycoplasma. Tumor cell-free supernatants from contaminated cultures were mitogenic for CBA spleen cells and could themselves induce SCF activity in spleen cell supernatants. SCF production and the agent responsible could be removed by passing such supernatants through 0.1-micron filters. The organism apparently responsible for SCF induction from CBA spleen cells was typed and found to be Mycoplasma orale, a nonfermentative, arginine-dependent, common tissue culture contaminant. About 50 to 60% of SCF activity could be removed by 0.1-micron filters, suggesting that SCF is composed of two components: mycoplasma organisms themselves and a soluble cytotoxic factor produced in response to mycoplasma.
Ajore, Ram; Raiser, David; McConkey, Marie; Jöud, Magnus; Boidol, Bernd; Mar, Brenton; Saksena, Gordon; Weinstock, David M; Armstrong, Scott; Ellis, Steven R; Ebert, Benjamin L; Nilsson, Björn
2017-04-01
Heterozygous inactivating mutations in ribosomal protein genes (RPGs) are associated with hematopoietic and developmental abnormalities, activation of p53, and altered risk of cancer in humans and model organisms. Here we performed a large-scale analysis of cancer genome data to examine the frequency and selective pressure of RPG lesions across human cancers. We found that hemizygous RPG deletions are common, occurring in about 43% of 10,744 cancer specimens and cell lines. Consistent with p53-dependent negative selection, such lesions are underrepresented in TP53 -intact tumors ( P ≪ 10 -10 ), and shRNA-mediated knockdown of RPGs activated p53 in TP53 -wild-type cells. In contrast, we did not see negative selection of RPG deletions in TP53 -mutant tumors. RPGs are conserved with respect to homozygous deletions, and shRNA screening data from 174 cell lines demonstrate that further suppression of hemizygously deleted RPGs inhibits cell growth. Our results establish RPG haploinsufficiency as a strikingly common vulnerability of human cancers that associates with TP53 mutations and could be targetable therapeutically. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Identifying Determinants of PARP Inhibitor Sensitivity in Ovarian Cancer
2016-10-01
inhibitors. Ovarian cancer patients that harbored germ- line BRCA1 mutations treated with PARP inhibitors exhibited meaningful responses in early phase...hypothesized that a range of common ovarian cancer predisposing germ- line BRCA1 gene mutations produce semi-functional proteins that are capable of...we have started our work examining exome sequences and gene expression in PARPi sensitive and resistance cancer cell lines . I attended and presented
Targeting tachykinin receptors in neuroblastoma.
Henssen, Anton G; Odersky, Andrea; Szymansky, Annabell; Seiler, Marleen; Althoff, Kristina; Beckers, Anneleen; Speleman, Frank; Schäfers, Simon; De Preter, Katleen; Astrahanseff, Kathy; Struck, Joachim; Schramm, Alexander; Eggert, Angelika; Bergmann, Andreas; Schulte, Johannes H
2017-01-03
Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma.
Gemcitabine: Selective cytotoxicity, induction of inflammation and effects on urothelial function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farr, Stefanie E; Chess-Williams, Russ; McDermott,
Intravesical gemcitabine has recently been introduced for the treatment of superficial bladder cancer and has a favourable efficacy and toxicity profile in comparison to mitomycin c (MMC), the most commonly used chemotherapeutic agent. The aim of this study was to assess the cytotoxic potency of gemcitabine in comparison to MMC in urothelial cell lines derived from non-malignant (UROtsa) and malignant (RT4 and T24) tissues to assess selectivity. Cells were treated with gemcitabine or mitomycin C at concentrations up to the clinical doses for 1 or 2 h respectively (clinical duration). Treatment combined with hyperthermia was also examined. Cell viability, ROSmore » formation, urothelial function (ATP, acetylcholine and PGE2 release) and secretion of inflammatory cytokines were assessed. Gemcitabine displayed a high cytotoxic selectivity for the two malignant cell lines (RT4, T24) compared to the non-malignant urothelial cells (UROtsa, proliferative and non-proliferative). In contrast, the cytotoxic effects of MMC were non-selective with equivalent potency in each of the cell lines. The cytotoxic effect of gemcitabine in the malignant cell lines was associated with an elevation in free radical formation and was significantly decreased in the presence of an equilibrative nucleoside transporter inhibitor. Transient changes in urothelial ATP and PGE{sub 2} release were observed, with significant increase in release of interleukin-6, interleukin-8 and interleukin-1β from urothelial cells treated with gemcitabine. The selectivity of gemcitabine for malignant urothelial cells may account for the less frequent adverse urological effects with comparison to other commonly used chemotherapeutic agents. - Highlights: • Intravesical gemcitabine has recently been introduced to treat bladder cancer. • Gemcitabine is selectively toxic for malignant urothelial cells. • Urothelial ATP, PGE{sub 2} and inflammatory cytokines were altered by gemcitabine. • Selectivity of gemcitabine may account for less frequent urological side effects.« less
Zwollo, Patty; Hennessey, Erin; Moore, Catherine; Marancik, David P; Wiens, Gregory D; Epp, Lidia
2017-09-01
Bacterial Cold Water Disease (BCWD) is a common, chronic disease in rainbow trout, and is caused by the gram-negative bacterium Flavobacterium psychrophilum (Fp). Through selective breeding, the National Center for Cool and Cold Water Aquaculture has generated a genetic line that is highly resistant to Fp challenge, designated ARS-Fp-R (or R-line), as well as a susceptible "control" line, ARS-Fp-S (S-line). In previous studies, resistance to Fp had been shown to correlate with naive animal spleen size, and further, naïve R-line trout had been shown to have a lower abundance of IgM + and IgM ++ cells compared to S-line fish. Here we wished to first determine whether the abundance of IgT + and/or IgT ++ cells differed between the two lines in naïve fish, and if so, how these patterns differed after in vivo challenge with Fp. Fp challenge was by intramuscular injection of live Fp and tissue collections were on days 5, 6, and/or 28 post-challenge, in two independent challenge experiments. Flow cytometric and gene expression analyses revealed that naïve R-line fish had a higher abundance of IgT + B cells in their anterior kidney, spleen, and blood, compared to S line fish. Further, that after Fp challenge, this difference was maintained between the two lines. Lastly, abundance of IgT + B cells and expression of secHCtau correlated with lower Fp pathogen loads in challenged fish. In the anterior kidney, IgM + B cell abundance correlated with increased Fp loads. Together, these results suggest that IgT + B lineage cells may have a protective function in the immune response to Fp. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peel, D J; Johnson, S A; Milner, M J
1990-01-01
We have examined the ultrastructure of cellular vesicles in primary cultures of wing imaginal disc cells of Drosophila melanogaster. These cells maintain the apico-basal polarity characteristic of epithelial cells. The apical surfaces secrete extracellular material into the lumen of the vesicle from plasma membrane plaques at the tip of microvilli. During the course of one passage, cells from the established cell lines grow to confluence and then aggregate into discrete condensations joined by aligned bridges of cells. Cells in these aggregates are tightly packed, and there appears to be a loss of the epithelial polarity characteristic of the vesicle cells. Elongated cell extensions containing numerous microtubules are found in aggregates, and we suggest that these may be epithelial feet involved in the aggregation process. Virus particles are commonly found both within the nucleus and the cytoplasm of cells in the aggregates.
Methotrexate induces high level of apoptosis in canine lymphoma/leukemia cell lines.
Pawlak, Aleksandra; Kutkowska, Justyna; Obmińska-Mrukowicz, Bożena; Rapak, Andrzej
2017-10-01
Methotrexate is an antimetabolite used in the treatment of cancer and non-malignant diseases including rheumatoid arthritis, psoriasis and graft vs. host disease. Combination therapy with methotrexate was successful in the treatment of canine lymphoma, mammary tumor and invasive urinary bladder cancer. Lymphoma, the most common hematopoietic cancer in dogs, and leukemia are sensitive to chemotherapy, which is why methotrexate may be an important treatment option for these diseases. Although methotrexate is already used in veterinary oncology its effects on canine cancer cells has not been tested. The aim of the study was to evaluate for the first time methotrexate concentration-dependent cytotoxicity and its capability of inducing apoptosis in selected canine lymphoma/leukemia cell lines: CLBL-1, GL-1 and CL-1 as a first step before the in vitro development of new therapeutic options with the use of methotrexate. Methotrexate exhibited concentration-dependent inhibitory effect on proliferation of all the examined cell lines with different degree of apoptosis induction. The most methotrexate sensitive cells belonged to CL-1 cell line derived from T cell neoplasia and previously characterized by high resistance to the majority of anticancer drugs used in the therapy of lymphoma/leukemia in dogs. Canine lymphoma and leukemia cell lines are sensitive to methotrexate, and this drug may be useful in effective treatment of canine neoplasms and especially of T-type leukemia/lymphoma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stec, Wojciech J; Rosiak, Kamila; Siejka, Paulina; Peciak, Joanna; Popeda, Marta; Banaszczyk, Mateusz; Pawlowska, Roza; Treda, Cezary; Hulas-Bigoszewska, Krystyna; Piaskowski, Sylwester; Stoczynska-Fidelus, Ewelina; Rieske, Piotr
2016-05-31
Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII.The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach.
Stec, Wojciech J.; Rosiak, Kamila; Siejka, Paulina; Peciak, Joanna; Popeda, Marta; Banaszczyk, Mateusz; Pawlowska, Roza; Treda, Cezary; Hulas-Bigoszewska, Krystyna; Piaskowski, Sylwester; Stoczynska-Fidelus, Ewelina; Rieske, Piotr
2016-01-01
Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII. The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach. PMID:27004406
Tumourigenicity and radiation resistance of mesenchymal stem cells.
D'Andrea, Filippo P; Horsman, Michael R; Kassem, Moustapha; Overgaard, Jens; Safwat, Akmal
2012-05-01
Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under nontreated and irradiated conditions, were assessed with microarrays (Affymetrix Human Exon 1.0 ST array). The cellular functions affected by the altered gene expressions were assessed through gene pathway mapping (Ingenuity Pathway Analysis). Based on the clonogenic assay the nontumourigenic cell line was found to be more sensitive to radiation than the tumourigenic cell line. Using the exon chips, 297 genes were found altered between untreated samples of the cell lines whereas only 16 genes responded to radiation treatment. Among the genes with altered expression between the untreated samples were PLAU, PLAUR, TIMP3, MMP1 and LOX. The pathway analysis based on the alteration between the untreated samples indicated cancer and connective tissue disorders. This study has shown possible common genetic events linking tumourigenicity and radiation response. The PLAU and PLAUR genes are involved in apoptosis evasion while the genes TIMP3, MMP1 and LOX are involved in regulation of the surrounding matrix. The first group may contribute to the difference in radiation resistance observed and the latter could be a major contributor to the tumourigenic capabilities by degrading the intercellular matrix. These results also indicate that cancer stem cells are more radiation resistant than stem cells of the same origin.
Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume
2017-01-01
Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10−7), -24.1 (p<5.6 10−9) and -17.7 (p<1.2 10−7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram. PMID:28467792
Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume
2017-06-27
Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10-7), -24.1 (p<5.6 10-9) and -17.7 (p<1.2 10-7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram.
Downregulation of Axl in non-MYCN amplified neuroblastoma cell lines reduces migration.
Duijkers, Floor A M; Meijerink, Jules P P; Pieters, Rob; van Noesel, Max M
2013-05-25
Neuroblastomas (NBL) are common pediatric solid tumors with a variable clinical course. At diagnosis half of all neuroblastoma patients presents with metastatic disease. The mechanisms of metastasis are largely unknown. Gene expression profiles (HU133plus2.0 arrays, Affymetrix) of 17 NBL and 5 peripheral neuro-ectodermal cell lines were used to identify a subgroup of non-MYCN amplified (non-NMA) NBL cell lines with a distinct gene expression profile and characterized by high expression of AXL. Axl is a tyrosine kinase receptor which plays a role in the metastatic process of several types of cancer. We hypothesized that Axl contributes to the metastasizing potential of non-NMA NBL and tested if AXL silencing diminishes malignant properties of high Axl expressing cell lines. AXL was silenced in two non-NMA NBL cell lines by using a lentiviral shRNA construct that was able to transduce these cell lines with more than 90% infection efficiency. Axl mRNA and protein level were efficiently knocked-down resulting in a decrease of migration of Axl positive cell lines GI-M-EN and SH-EP-2, and decreased invasion of GI-M-EN. Morphologically, Axl knockdown induced more rounded cells with a loss of contact. Intracellularly, we observed induction of stress fibers (immunofluorescence F-actin). These changes in cytoskeleton were associated with decreased migration, but were not accompanied by changes in genes involved in epithelial to mesenchymal transition such as CDH2, VIM or MMP9. No effects were observed for cell proliferation, apoptosis or downstream pathways. In conclusion, AXL is identified as a possible mediator of NBL metastasis. Copyright © 2013 Elsevier B.V. All rights reserved.
Therapeutic potential of endothelin inhibitors in canine hemangiosarcoma.
Fukumoto, Shinya; Saida, Kaname; Sakai, Hiroki; Ueno, Hiroshi; Iwano, Hidetomo; Uchide, Tsuyoshi
2016-08-15
Hemangiosarcoma (HSA) that originates from vascular endothelial cells is the most common splenic malignant neoplasm in dogs, as it accounts for approximately 20% of all canine soft tissue sarcomas. In this study, inhibitory effects of endothelin receptor antagonists on the growth of HSA cells were examined using cell lines established from canine HSA. The preproendothelin-1 (PPET-1), endothelin type A receptor (ETA) and endothelin type B receptor (ETB) mRNA expression levels in HSA cell lines (n=5) were analyzed quantitatively by real-time RT-PCR. These levels were compared with those in HSA tissues (n=11) and those in normal splenic tissues (n=6). ETA and ETB protein expression was examined by western blot. The production and secretion of endothelin-1 (ET-1) and big ET-1 by cell lines were analyzed by measuring the levels in the culture medium by ELISA. The inhibitory effects of endothelin receptor antagonists (ambrisentan, BQ788 and bosentan) on cell growth were evaluated by WST-8 assay. The PPET1 and ETA mRNA expression levels were elevated in HSA tissues and HSA cell lines compared with normal tissues. In cell lines, the production of ET-1 and big ET-1 peptide as well as the expression of ETA protein were detected, but the levels of ETB were not measured. Ambrisentan and bosentan inhibited growth activity in cell lines. Ambrisentan was more effective than bosentan. These findings demonstrate the importance of the ETA axis in canine HSA as well as the potential of ETA inhibitors in the treatment of canine HSA. Copyright © 2015 Elsevier Inc. All rights reserved.
High-Throughput Cryopreservation of Plant Cell Cultures for Functional Genomics
Ogawa, Yoichi; Sakurai, Nozomu; Oikawa, Akira; Kai, Kosuke; Morishita, Yoshihiko; Mori, Kumiko; Moriya, Kanami; Fujii, Fumiko; Aoki, Koh; Suzuki, Hideyuki; Ohta, Daisaku; Saito, Kazuki; Shibata, Daisuke
2012-01-01
Suspension-cultured cell lines from plant species are useful for genetic engineering. However, maintenance of these lines is laborious, involves routine subculturing and hampers wider use of transgenic lines, especially when many lines are required for a high-throughput functional genomics application. Cryopreservation of these lines may reduce the need for subculturing. Here, we established a simple protocol for cryopreservation of cell lines from five commonly used plant species, Arabidopsis thaliana, Daucus carota, Lotus japonicus, Nicotiana tabacum and Oryza sativa. The LSP solution (2 M glycerol, 0.4 M sucrose and 86.9 mM proline) protected cells from damage during freezing and was only mildly toxic to cells kept at room temperature for at least 2 h. More than 100 samples were processed for freezing simultaneously. Initially, we determined the conditions for cryopreservation using a programmable freezer; we then developed a modified simple protocol that did not require a programmable freezer. In the simple protocol, a thick expanded polystyrene (EPS) container containing the vials with the cell–LSP solution mixtures was kept at −30°C for 6 h to cool the cells slowly (pre-freezing); samples from the EPS containers were then plunged into liquid nitrogen before long-term storage. Transgenic Arabidopsis cells were subjected to cryopreservation, thawed and then re-grown in culture; transcriptome and metabolome analyses indicated that there was no significant difference in gene expression or metabolism between cryopreserved cells and control cells. The simplicity of the protocol will accelerate the pace of research in functional plant genomics. PMID:22437846
Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A
1993-05-01
Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1.
Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A
1993-01-01
Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7683417
Saling, Mark; Duckett, Jordan K; Ackers, Ian; Coschigano, Karen; Jenkinson, Scott; Malgor, Ramiro
2017-01-01
Bladder cancer is the fourth most common cancer in men and the most common malignancy of the urinary tract. Bladder cancers detected at an early stage have a very high five-year survival rate, but when detected after local metastasis the rate is only about 50%. Our group recently reported a positive correlation between the expression of Wnt5a, a member of the Wnt proteins family, and histopathological grade and stage of urothelial carcinoma (UC). The objective of this study was to analyze UC cases reported in Athens, Ohio and investigate the major components of Wnt5a / planar cell polarity (PCP) signaling pathway in UC human tissue samples and UC cell lines. Formalin fixed and paraffin embedded transurethral resection tissues were immunostained for Wnt5a, Ror-2, CTHRC1 and E-cadherin. In addition, in vitro studies using UC cell lines were investigated for Wnt5a/PCP signaling and epithelial mesenchymal transition (EMT) gene expression. The IHC results showed a correlation between the expression of Wnt5a, Ror2 and CTHRC1 with high histological grade of the tumor, while E-cadherin showed an opposite trend of expression. Real time RT-PCR results showed that RNA expression of the Wnt5a/ PCP pathway genes vary in low and high grade UC cell lines and that the high grade cell lines exhibited signs of EMT. These findings support that Wnt5a-Ror2 signaling plays a role in UC, support the potential use of Wnt5a as a prognostic marker and provide evidence that Wnt5a signaling may be used as an effective molecular target for novel therapeutic tools. PMID:28427201
A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells.
Kulkarni, Shreya; Goel-Bhattacharya, Surbhi; Sengupta, Sejuti; Cochran, Brent H
2018-01-01
Glioblastoma multiforme (GBM) is the most common type of primary malignant brain cancer and has a very poor prognosis. A subpopulation of cells known as GBM stem-like cells (GBM-SC) have the capacity to initiate and sustain tumor growth and possess molecular characteristics similar to the parental tumor. GBM-SCs are known to be enriched in hypoxic niches and may contribute to therapeutic resistance. Therefore, to identify genetic determinants important for the proliferation and survival of GBM stem cells, an unbiased pooled shRNA screen of 10,000 genes was conducted under normoxic as well as hypoxic conditions. A number of essential genes were identified that are required for GBM-SC growth, under either or both oxygen conditions, in two different GBM-SC lines. Interestingly, only about a third of the essential genes were common to both cell lines. The oxygen environment significantly impacts the cellular genetic dependencies as 30% of the genes required under hypoxia were not required under normoxic conditions. In addition to identifying essential genes already implicated in GBM such as CDK4, KIF11 , and RAN , the screen also identified new genes that have not been previously implicated in GBM stem cell biology. The importance of the serum and glucocorticoid-regulated kinase 1 (SGK1) for cellular survival was validated in multiple patient-derived GBM stem cell lines using shRNA, CRISPR, and pharmacologic inhibitors. However, SGK1 depletion and inhibition has little effect on traditional serum grown glioma lines and on differentiated GBM-SCs indicating its specific importance in GBM stem cell survival. Implications: This study identifies genes required for the growth and survival of GBM stem cells under both normoxic and hypoxic conditions and finds SGK1 as a novel potential drug target for GBM. Mol Cancer Res; 16(1); 103-14. ©2017 AACR . ©2017 American Association for Cancer Research.
Phenotypes and Karyotypes of Human Malignant Mesothelioma Cell Lines
Relan, Vandana; Morrison, Leanne; Parsonson, Kylie; Clarke, Belinda E.; Duhig, Edwina E.; Windsor, Morgan N.; Matar, Kevin S.; Naidoo, Rishendran; Passmore, Linda; McCaul, Elizabeth; Courtney, Deborah; Yang, Ian A.; Fong, Kwun M.; Bowman, Rayleen V.
2013-01-01
Background Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. Methods Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM) and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. Results Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30–72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5–17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. Conclusion These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of mesothelioma during maintenance in artificial culture systems. These characteristics support their potential as in vitro model systems for studying cellular, molecular and genetic aspects of mesothelioma. PMID:23516439
Cell culture of the mucinous variant of human colorectal carcinoma.
Tibbetts, L M; Chu, M Y; Vezeridis, M P; Miller, P G; Tibbetts, L L; Poisson, M H; Camara, P D; Calabresi, P
1988-07-01
Two cell lines, RW-2982 and RW-7213, have been established for the first time from the mucinous variant of human colorectal carcinoma, which is a distinctive and important subtype that has a worse prognosis than the more common nonmucogenic large bowel carcinoma. Methods of establishment and observations made during 7 and 3 years, respectively, of continuous culture are described. These cell lines required 4-9 months of adaptation to tissue culture conditions before noticeable growth occurred. Both cell lines have the following unique properties: (a) growth in vitro as delicate branching three-dimensional tumor particles within a wide gel of insoluble, often translucent mucus (proteoglycan); (b) production of large quantities of carcinoembryonic antigen; (c) ability to survive or adapt to growth in media free of serum, hormones, growth factors, and all protein; and (d) tumorigenicity in multiple sites in nude mice, including liver, with especially rapid growth in the peritoneal cavity as gelatinous material that is nonadherent and noninvasive and thus resembles pseudomyxoma peritonei. Unlike other reported colorectal cell lines, these mucus-coated particulate cell lines will not readily grow as monolayers and grow much more slowly with a doubling time of 2 weeks or more. A serially transplantable tumor from the RW-7213 surgical specimen has also been maintained in nude mice since August 8, 1984. This tumor retains properties of the original specimen. Observations made on the tumor biology of mucogenic colorectal carcinoma using these cell lines are discussed.
Koutsogiannouli, Evangelia A.; Hader, Christiane; Pinkerneil, Maria; Hoffmann, Michèle J.; Schulz, Wolfgang A.
2017-01-01
Disturbances in histone acetyltransferases (HATs) are common in cancers. In urothelial carcinoma (UC), p300 and CBP are often mutated, whereas the GNAT family HATs GCN5 and PCAF (General Control Nonderepressible 5, p300/CBP-Associated Factor) are often upregulated. Here, we explored the effects of specific siRNA-mediated knockdown of GCN5, PCAF or both in four UC cell lines (UCCs). Expression of various HATs and marker proteins was measured by qRT-PCR and western blot. Cellular effects of knockdowns were analyzed by flow cytometry and ATP-, caspase-, and colony forming-assays. GCN5 was regularly upregulated in UCCs, whereas PCAF was variable. Knockdown of GCN5 or both GNATs, but not of PCAF alone, diminished viability and inhibited clonogenic growth in 2/4 UCCs, inducing cell cycle changes and caspase-3/7 activity. PCAF knockdown elicited GCN5 mRNA upregulation. Double knockdown increased c-MYC and MDM2 (Mouse Double Minute 2) in most cell lines. In conclusion, GCN5 upregulation is especially common in UCCs. GCN5 knockdown impeded growth of specific UCCs, whereas PCAF knockdown elicited minor effects. The limited sensitivity towards GNAT knockdown and its variation between the cell lines might be due to compensatory effects including HAT, c-MYC and MDM2 upregulation. Our results predict that developing drugs targeting individual HATs for UC treatment may be challenging. PMID:28678170
Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA.
Duong, Connie; Yoshida, Sakiko; Chen, Cathy; Barisone, Gustavo; Diaz, Elva; Li, Yueju; Beckett, Laurel; Chung, Jong; Antony, Reuben; Nolta, Jan; Nitin, Nitin; Satake, Noriko
2017-09-01
BackgroundNeuroblastoma is the second most common extracranial cancer in children. Current therapies for neuroblastoma, which use a combination of chemotherapy drugs, have limitations for high-risk subtypes and can cause significant long-term adverse effects in young patients. Therefore, a new therapy is needed. In this study, we investigated the transcription factor MXD3 as a potential therapeutic target in neuroblastoma.MethodsMXD3 expression was analyzed in five neuroblastoma cell lines by immunocytochemistry and quantitative real-time reverse transcription PCR, and in 18 primary patient tumor samples by immunohistochemistry. We developed nanocomplexes using siRNA and superparamagnetic iron oxide nanoparticles to target MXD3 in neuroblastoma cell lines in vitro as a single-agent therapeutic and in combination with doxorubicin, vincristine, cisplatin, or maphosphamide-common drugs used in current neuroblastoma treatment.ResultsMXD3 was highly expressed in neuroblastoma cell lines and in patient tumors that had high-risk features. Neuroblastoma cells treated in vitro with the MXD3 siRNA nanocomplexes showed MXD3 protein knockdown and resulted in cell apoptosis. Furthermore, on combining MXD3 siRNA nanocomplexes with each of the four drugs, all showed additive efficacy.ConclusionThese results indicate that MXD3 is a potential new target and that the use of MXD3 siRNA nanocomplexes is a novel therapeutic approach for neuroblastoma.
Vuong, Helen E.; de Sevilla Müller, Luis Pérez; Hardi, Claudia N.; McMahon, Douglas G.; Brecha, Nicholas C.
2015-01-01
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) line with three catecholamine-related Cre recombinase lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ~6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium somal diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines were generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. PMID:26335381
Vuong, H E; Pérez de Sevilla Müller, L; Hardi, C N; McMahon, D G; Brecha, N C
2015-10-29
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. Published by Elsevier Ltd.
Zhengyuan, Xie; Hu, Xiao; Qiang, Wang; Nanxiang, Li; Junbin, Cai; Wangming, Zhang
2017-09-16
BACKGROUND UCA1 is a long non-coding RNA that has been found to be aberrantly upregulated in various cancers. The aim of this study was to determine the expression level and function of UCA1 in medulloblastoma, the most common malignant brain tumor during childhood. MATERIAL AND METHODS Real-time PCR was used to detect the expression of UCA1 in medulloblastoma specimens and cell lines. Lentiviral-mediated expression of a short hairpin RNA (shRNA) targeting UCA1 or a negative control shRNA was also achieved with the medulloblastoma cell line, Daoy. Cell proliferation and cell cycle progression were subsequently characterized with cell counting kit (CCK)-8 and flow cytometry. Cell migration was examined in wound healing and Transwell migration assays. RESULTS Levels of UCA1 mRNA were higher in the medulloblastoma specimens (p<0.05) and cell lines (p<0.05) compared to the corresponding nontumor adjacent tissue specimens and a glioblastoma cell line, respectively. For the Daoy cells with silenced UCA1, their proliferation was reduced by 30% compared to the Daoy cells expressing a negative control shRNA (p=0.017). Cell cycle arrest in the G0/G1 phase, resulting in a decreased number of cells in the S phase, as well as reduced cell migration in both wound scratch healing (p=0.001) and Transwell migration assays (p=0.021) were also observed for the Daoy cells with silenced UCA1. CONCLUSIONS UCA1 was highly expressed in part of medulloblastoma specimens and cell lines examined. In addition, knockdown of UCA1 significantly inhibited the proliferation and migration of medulloblastoma cells in vitro.
[Using of cell biocomposite material in tissue engineering of the urinary bladder].
Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M
2017-06-01
In a systematic review, to present an overview of the current situation in the field of tissue engineering of urinary bladder related to the use of cell lines pre-cultured on matrices. The selection of eligible publications was conducted according to the method described in the article Glybochko P.V. et al. "Tissue engineering of urinary bladder using acellular matrix." At the final stage, studies investigating the application of matrices with human and animal cell lines were analyzed. Contemporary approaches to using cell-based tissue engineering of the bladder were analyzed, including the formation of 3D structures from several types of cells, cell layers and genetic modification of injected cells. The most commonly used cell lines are urothelial cells, mesenchymal stem cells and fibroblasts. The safety and efficacy of any types of composite cell structures used in the cell-based bladder tissue engineering has not been proven sufficiently to warrant clinical studies of their usefulness. The results of cystoplasty of rat bladder are almost impossible to extrapolate to humans; besides, it is difficult to predict possible side effects. For the transition to clinical trials, additional studies on relevant animal models are needed.
Ganassin, R C; Sanders, S M; Kennedy, C J; Joyce, E M; Bols, N C
1999-01-01
A cell line, PHL, has been successfully established from newly hatched herring larvae. The cells are maintained in growth medium consisting of Leibovitz's L-15 supplemented with 15% fetal bovine serum (FBS), and have been cryopreserved and maintain viability after thawing. These cells retain a diploid karotype after 65 population doublings. PHL are susceptible to infection by the North American strain of viral hemorrhagic septicemia (VHS) virus, and are sensitive to the cytotoxic effects of naphthalene, a common environmental contaminant. Naphthalene is a component of crude and refined oil, and may be found in the marine environment following acute events such as oil spills. In addition, chronic sources of naphthalene contamination include offshore drilling and petroleum contamination from areas such as docks and marinas that have creosote-treated docks and pilings and also receive constant small inputs of petroleum products. This cell line should be useful for investigations of the toxicity of naphthalene and other petroleum components to juvenile herring. In addition, studies of the VHS virus will be facilitated by the availability of a susceptible cell line from an alternative species.
Liu, Junying; Zhang, Guangdong; Lv, Yanping; Zhang, Xiaoyang; Ying, Cui; Yang, Suocheng; Kong, Xin; Yu, Yanzhang
2017-06-01
The phosphoinositide 3-kinase pathway is one of the most commonly altered pathways in human cancers. The serum/glucocorticoid-regulated kinase (SGK) family of serine/threonine kinases consists of three isoforms, SGK1, SGK2, and SGK3. This family of kinases is highly homologous to the AKT kinase family, sharing similar upstream activators and downstream targets. Few studies have investigated the role of SGK2 in hepatocellular carcinoma. Here, we report that SGK2 expression levels were upregulated in hepatocellular carcinoma tissues and human hepatoma cell lines compared to the adjacent normal liver tissues and a normal hepatocyte line, respectively. We found that downregulated SGK2 inhibits cell migration and invasive potential of hepatocellular carcinoma cell lines (SMMC-7721 and Huh-7).We also found that downregulated SGK2 suppressed the expression level of unphosphorylated (activated) glycogen synthase kinase 3 beta. In addition, SGK2 downregulation decreased the dephosphorylation (activation) of β-catenin by preventing its proteasomal degradation in the hepatocellular carcinoma cell lines. These findings suggest that SGK2 promotes hepatocellular carcinoma progression and mediates glycogen synthase kinase 3 beta/β-catenin signaling in hepatocellular carcinoma cells.
Vié, Nadia; Copois, Virginie; Bascoul-Mollevi, Caroline; Denis, Vincent; Bec, Nicole; Robert, Bruno; Fraslon, Caroline; Conseiller, Emmanuel; Molina, Franck; Larroque, Christian; Martineau, Pierre; Del Rio, Maguy; Gongora, Céline
2008-01-01
Background Colorectal cancer (CRC) is one of the most common causes of cancer death throughout the world. In this work our aim was to study the role of the phosphoserine aminotransferase PSAT1 in colorectal cancer development. Results We first observed that PSAT1 is overexpressed in colon tumors. In addition, we showed that after drug treatment, PSAT1 expression level in hepatic metastases increased in non responder and decreased in responder patients. In experiments using human cell lines, we showed that ectopic PSAT1 overexpression in colon carcinoma SW480 cell line resulted in an increase in its growth rate and survival. In addition, SW480-PSAT1 cells presented a higher tumorigenic potential than SW480 control cells in xenografted mice. Moreover, the SW480-PSAT1 cell line was more resistant to oxaliplatin treatment than the non-transfected SW480 cell line. This resistance resulted from a decrease in the apoptotic response and in the mitotic catastrophes induced by the drug treatment. Conclusion These results show that an enzyme playing a role in the L-serine biosynthesis could be implicated in colon cancer progression and chemoresistance and indicate that PSAT1 represents a new interesting target for CRC therapy. PMID:18221502
Biesold, Susanne E.; Ritz, Daniel; Gloza-Rausch, Florian; Wollny, Robert; Drexler, Jan Felix; Corman, Victor M.; Kalko, Elisabeth K. V.; Oppong, Samuel; Drosten, Christian; Müller, Marcel A.
2011-01-01
Bats harbor several highly pathogenic zoonotic viruses including Rabies, Marburg, and henipaviruses, without overt clinical symptoms in the animals. It has been suspected that bats might have evolved particularly effective mechanisms to suppress viral replication. Here, we investigated interferon (IFN) response, -induction, -secretion and -signaling in epithelial-like cells of the relevant and abundant African fruit bat species, Eidolon helvum (E. helvum). Immortalized cell lines were generated; their potential to induce and react on IFN was confirmed, and biological assays were adapted to application in bat cell cultures, enabling comparison of landmark IFN properties with that of common mammalian cell lines. E. helvum cells were fully capable of reacting to viral and artificial IFN stimuli. E. helvum cells showed highest IFN mRNA induction, highly productive IFN protein secretion, and evidence of efficient IFN stimulated gene induction. In an Alphavirus infection model, O'nyong-nyong virus exhibited strong IFN induction but evaded the IFN response by translational rather than transcriptional shutoff, similar to other Alphavirus infections. These novel IFN-competent cell lines will allow comparative research on zoonotic, bat-borne viruses in order to model mechanisms of viral maintenance and emergence in bat reservoirs. PMID:22140523
Rocha, Cristina S J; Lundin, Karin E; Behlke, Mark A; Zain, Rula; El Andaloussi, Samir; Smith, C I Edvard
2016-12-01
New advances in oligonucleotide (ON) chemistry emerge continuously, and over the last few years, several aspects of ON delivery have been improved. However, clear knowledge regarding how certain chemistries behave alone, or in combination with various delivery vectors, is limited. Moreover, characterization is frequently limited to a single reporter cell line and, when different cell types are studied, experiments are commonly not carried out under similar conditions, hampering comparative analysis. To address this, we have developed a small "tissue" library of new, stable, pLuc/705 splice-switching reporter cell lines (named HuH7_705, U-2 OS_705, C2C12_705, and Neuro-2a_705). Our data show that, indeed, the cell type used in activity screenings influences the efficiency of ONs of different chemistry (phosphorothioate with locked nucleic acid or 2'-O-methyl with or without N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine). Likewise, the delivery method, Lipofectamine ® 2000, PepFect14 nanoparticles, or "naked" uptake, also demonstrates cell-type-dependent outcomes. Taken together, these cell lines can potentially become useful tools for future in vitro evaluation of new nucleic acid-based oligomers as well as delivery compounds for splice-switching approaches and cell-specific therapies.
Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.
1980-01-01
Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.
Chatterjee, Aniruddha; Stockwell, Peter A; Ahn, Antonio; Rodger, Euan J; Leichter, Anna L; Eccles, Michael R
2017-01-01
Epigenetic alterations are increasingly implicated in metastasis, whereas very few genetic mutations have been identified as authentic drivers of cancer metastasis. Yet, to date, few studies have identified metastasis-related epigenetic drivers, in part because a framework for identifying driver epigenetic changes in metastasis has not been established. Using reduced representation bisulfite sequencing (RRBS), we mapped genome-wide DNA methylation patterns in three cutaneous primary and metastatic melanoma cell line pairs to identify metastasis-related epigenetic drivers. Globally, metastatic melanoma cell lines were hypomethylated compared to the matched primary melanoma cell lines. Using whole genome RRBS we identified 75 shared (10 hyper- and 65 hypomethylated) differentially methylated fragments (DMFs), which were associated with 68 genes showing significant methylation differences. One gene, Early B Cell Factor 3 (EBF3), exhibited promoter hypermethylation in metastatic cell lines, and was validated with bisulfite sequencing and in two publicly available independent melanoma cohorts (n = 40 and 458 melanomas, respectively). We found that hypermethylation of the EBF3 promoter was associated with increased EBF3 mRNA levels in metastatic melanomas and subsequent inhibition of DNA methylation reduced EBF3 expression. RNAi-mediated knockdown of EBF3 mRNA levels decreased proliferation, migration and invasion in primary and metastatic melanoma cell lines. Overall, we have identified numerous epigenetic changes characterising metastatic melanoma cell lines, including EBF3-induced aggressive phenotypic behaviour with elevated EBF3 expression in metastatic melanoma, suggesting that EBF3 promoter hypermethylation may be a candidate epigenetic driver of metastasis. PMID:28030832
DOE Office of Scientific and Technical Information (OSTI.GOV)
Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.
Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomousmore » growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a valuable model for arsenic-induced lung cancer.« less
2012-01-01
Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question. PMID:22726358
Cancer - mouth; Mouth cancer; Head and neck cancer - oral; Squamous cell cancer - mouth; Malignant neoplasm - oral ... Oral cancer most commonly involves the lips or the tongue. It may also occur on the: Cheek lining Floor ...
Russell, Sarah M; Lechner, Melissa G; Gong, Lucy; Megiel, Carolina; Liebertz, Daniel J.; Masood, Rizwan; Correa, Adrian J; Han, Jing; Puri, Raj K; Sinha, Uttam K; Epstein, Alan L
2011-01-01
Objectives Head and neck squamous cell carcinomas (HNSCC) are common and aggressive tumors that have not seen an improvement in survival rates in decades. These tumors are believed to evade the immune system through a variety of mechanisms and are therefore highly immune modulatory. In order to elucidate their interaction with the immune system and develop new therapies targeting immune escape, new pre-clinical models are needed. Materials and Methods A novel human cell line, USC-HN2, was established from a patient biopsy specimen of invasive, recurrent buccal HNSCC and characterized by morphology, heterotransplantation, cytogenetics, phenotype, gene expression and immune modulation studies and compared to a similar HNSCC cell line; SCCL-MT1. Results and Conclusion Characterization studies confirmed the HNSCC origin of USC-HN2 and demonstrated a phenotype similar to the original tumor and typical of aggressive oral cavity HNSCC (EGFR+CD44v6+FABP5+Keratin+ and HPV−). Gene and protein expression studies revealed USC-HN2 to have highly immune-modulatory cytokine production (IL-1β, IL-6, IL-8, GM-CSF, and VEGF) and strong regulatory T and myeloid derived suppressor cell (MDSC) induction capacity in vitro. Of note, both USC-HN2 and SCCL-MT1 were found to have a more robust cytokine profile and MDSC induction capacity when compared to 7 previously established HNSCC cell lines. Additionally, microarray gene expression profiling of both cell lines demonstrate up-regulation of antigen presenting genes. Because USC-HN2 is therefore highly immunogenic, it also induces strong immune suppression to evade immunologic destruction. Based upon these results, both cell lines provide an excellent model for the development of new suppressor cell-targeted immunotherapies. PMID:21719345
Russell, Sarah M; Lechner, Melissa G; Gong, Lucy; Megiel, Carolina; Liebertz, Daniel J; Masood, Rizwan; Correa, Adrian J; Han, Jing; Puri, Raj K; Sinha, Uttam K; Epstein, Alan L
2011-09-01
Head and neck squamous cell carcinomas (HNSCC) are common and aggressive tumors that have not seen an improvement in survival rates in decades. These tumors are believed to evade the immune system through a variety of mechanisms and are therefore highly immune modulatory. In order to elucidate their interaction with the immune system and develop new therapies targeting immune escape, new pre-clinical models are needed. A novel human cell line, USC-HN2, was established from a patient biopsy specimen of invasive, recurrent buccal HNSCC and characterized by morphology, heterotransplantation, cytogenetics, phenotype, gene expression, and immune modulation studies and compared to a similar HNSCC cell line; SCCL-MT1. Characterization studies confirmed the HNSCC origin of USC-HN2 and demonstrated a phenotype similar to the original tumor and typical of aggressive oral cavity HNSCC (EGFR(+)CD44v6(+)FABP5(+)Keratin(+) and HPV(-)). Gene and protein expression studies revealed USC-HN2 to have highly immune-modulatory cytokine production (IL-1β, IL-6, IL-8, GM-CSF, and VEGF) and strong regulatory T and myeloid derived suppressor cell (MDSC) induction capacity in vitro. Of note, both USC-HN2 and SCCL-MT1 were found to have a more robust cytokine profile and MDSC induction capacity when compared to seven previously established HNSCC cell lines. Additionally, microarray gene expression profiling of both cell lines demonstrate up-regulation of antigen presenting genes. Because USC-HN2 is therefore highly immunogenic, it also induces strong immune suppression to evade immunologic destruction. Based upon these results, both cell lines provide an excellent model for the development of new suppressor cell-targeted immunotherapies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar
2017-01-01
Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10µg/mL of Arctium lappa root extract and 5 µM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies. PMID:28441789
Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.
Nickerson, M L; Witte, N; Im, K M; Turan, S; Owens, C; Misner, K; Tsang, S X; Cai, Z; Wu, S; Dean, M; Costello, J C; Theodorescu, D
2017-01-05
The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes, including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6 and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44%; and SYNE1-SYNE2, 60%. Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA) phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response. Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study the pharmacogenomics of BCa.
Meek, Stephen; Sutherland, Linda; Burdon, Tom
2015-01-01
The rat is one of the most commonly used laboratory animals in biomedical research and the recent isolation of genuine pluripotent rat embryonic stem (ES) cell lines has provided new opportunities for applying contemporary genetic engineering techniques to the rat and enhancing the use of this rodent in scientific research. Technical refinements that improve the stability of the rat ES cell cultures will undoubtedly further strengthen and broaden the use of these stem cells in biomedical research. Here, we describe a relatively simple and robust protocol that supports the propagation of germ line competent rat ES cells, and outline how tuning stem cell signaling using small molecule inhibitors can be used to both stabilize self-renewal of rat ES cell cultures and aid evaluation of their differentiation potential in vitro.
Haemmerli, G; Sträuli, P
1981-05-15
The motile behavior of six cell lines derived from human squamous carcinomas (two from the larynx, four from the tongue) was studied by cinematography under phase- and reflection-contrast illumination. The recorded cell activities consist in spreading, stationary and translocation motility, and aggregate formation. Within this common pattern, quantitative modifications ("sub-pattern") are stable properties of the individual cells lines. Such modifications are particularly evident with regard to the dynamic texture of the aggregates which ranges from loose, netlike structures to compact islands with smooth borders. Accordingly, the intensity of cell traffic within and around the aggregates varies considerably. It is discussed to what extent the in vitro motility of the carcinoma cell populations reflects their behavior in the organism and thus the significance of cell movements for invasion.
Zhang, Yu; Nagata, Hiroshi; Ikeuchi, Tatsuro; Mukai, Hiroyuki; Oyoshi, Michiko K; Demachi, Ayako; Morio, Tomohiro; Wakiguchi, Hiroshi; Kimura, Nobuhiro; Shimizu, Norio; Yamamoto, Kohtaro
2003-06-01
In this study, we describe the cytological and cytogenetic features of six Epstein-Barr virus (EBV)-infected natural killer (NK) cell clones. Three cell clones, SNK-1, -3 and -6, were derived from patients with nasal T/NK-cell lymphomas; two cell clones, SNK-5 and -10, were isolated from patients with chronic active EBV infection (CAEBV); and the other cell clone, SNK-11, was from a patient with hydroa vacciniforme (HV)-like eruptions. An analysis of the number of EBV-terminal repeats showed that the SNK cell clones had monoclonal EBV genomes identical to the original EBV-infected cells of the respective patients, and SNK cells had the type II latency of EBV infection, suggesting that not only the cell clones isolated from nasal T/NK-cell lymphomas but also those isolated from CAEBV and HV-like eruptions had been transformed by EBV to a certain degree. Cytogenetic analysis detected deletions in chromosome 6q in five out of the six SNK cell clones, while 6q was not deleted in four control cell lines of T-cell lineage. This suggested that a 6q deletion is a characteristic feature of EBV-positive NK cells, which proliferated in the diseased individuals. The results showed that EBV-positive NK cells in malignant and non-malignant lymphoproliferative diseases shared common cytological and cytogenetic features.
Rathore, Kusum; Cekanova, Maria
2015-01-01
Doxorubicin (DOX) is one of the most commonly used chemotherapeutic treatments for a wide range of cancers. N-benzyladriamycin-14-valerate (AD198) is a lipophilic anthracycline that has been shown to target conventional and novel isoforms of protein kinase C (PKC) in cytoplasm of cells. Because of the adverse effects of DOX, including hair loss, nausea, vomiting, liver dysfunction, and cardiotoxicity, novel derivatives of DOX have been synthesized and validated. In this study, we evaluated the effects of DOX and its derivative, AD198, on cell viability of three canine transitional cell carcinoma (K9TCC) (K9TCC#1-Lillie, K9TCC#2-Dakota, K9TCC#4-Molly) and three canine osteosarcoma (K9OSA) (K9OSA#1-Zoe, K9OSA#2-Nashville, K9OSA#3-JJ) primary cancer cell lines. DOX and AD198 significantly inhibited cell proliferation in all tested K9TCC and K9OSA cell lines in a dose-dependent manner. AD198 inhibited cell viability of tested K9TCC and K9OSA cell lines more efficiently as compared to DOX at the same concentration using MTS (3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium) assay. AD198 had lower IC50 values as compared to DOX for all tested K9TCC and K9OSA cell lines. In addition, AD198 increased apoptosis in all tested K9TCC and K9OSA cell lines. AD198 increased the caspase activity in tested K9TCC and K9OSA cell lines, which was confirmed by caspase-3/7 assay, and cleavage of poly (ADP-ribose) polymerase (PARP) was confirmed by Western blotting analysis. In addition, AD198 cleaved PKC-δ, which subsequently activated the p38 signaling pathway, resulting in the apoptosis of tested K9TCC and K9OSA cell lines. Inhibition of the p38 signaling pathway by SB203580 rescued DOX- and AD198-induced apoptosis in tested K9TCC and K9OSA cell lines. Our in vitro results suggest that AD198 might be considered as a new treatment option for K9TCC and K9OSA cell lines cancers in vivo. PMID:26451087
Rathore, Kusum; Cekanova, Maria
2015-01-01
Doxorubicin (DOX) is one of the most commonly used chemotherapeutic treatments for a wide range of cancers. N-benzyladriamycin-14-valerate (AD198) is a lipophilic anthracycline that has been shown to target conventional and novel isoforms of protein kinase C (PKC) in cytoplasm of cells. Because of the adverse effects of DOX, including hair loss, nausea, vomiting, liver dysfunction, and cardiotoxicity, novel derivatives of DOX have been synthesized and validated. In this study, we evaluated the effects of DOX and its derivative, AD198, on cell viability of three canine transitional cell carcinoma (K9TCC) (K9TCC#1-Lillie, K9TCC#2-Dakota, K9TCC#4-Molly) and three canine osteosarcoma (K9OSA) (K9OSA#1-Zoe, K9OSA#2-Nashville, K9OSA#3-JJ) primary cancer cell lines. DOX and AD198 significantly inhibited cell proliferation in all tested K9TCC and K9OSA cell lines in a dose-dependent manner. AD198 inhibited cell viability of tested K9TCC and K9OSA cell lines more efficiently as compared to DOX at the same concentration using MTS (3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium) assay. AD198 had lower IC50 values as compared to DOX for all tested K9TCC and K9OSA cell lines. In addition, AD198 increased apoptosis in all tested K9TCC and K9OSA cell lines. AD198 increased the caspase activity in tested K9TCC and K9OSA cell lines, which was confirmed by caspase-3/7 assay, and cleavage of poly (ADP-ribose) polymerase (PARP) was confirmed by Western blotting analysis. In addition, AD198 cleaved PKC-δ, which subsequently activated the p38 signaling pathway, resulting in the apoptosis of tested K9TCC and K9OSA cell lines. Inhibition of the p38 signaling pathway by SB203580 rescued DOX- and AD198-induced apoptosis in tested K9TCC and K9OSA cell lines. Our in vitro results suggest that AD198 might be considered as a new treatment option for K9TCC and K9OSA cell lines cancers in vivo.
Lee, Youngjoo; Choi, Yu-Ra; Kim, Kyoung-Yeon; Shin, Dong Hoon
2016-01-01
Drug-resistant cell lines are essential tools for investigating the mechanisms of resistance to molecular-targeted anti-cancer drugs. However, little is known about how to establish clinically relevant drug-resistant cell lines. Our study examined the impact of a drug-free period on the establishment of a cell line with clinically relevant resistance to molecular-targeted drugs. We used PC9 cells, a lung cancer cell line carrying EGFR mutation, because this is a validated target for EGFR tyrosine kinase inhibitors (TKI). PC9 cells were intermittently or continuously exposed to increasing concentrations of gefitinib (0.01 μM to 1.0 μM) and the emergence of the most common acquired resistance mutation in EGFR, T790M, was determined. T790M was detected at a 25-fold lower drug concentration in cells continuously exposed to gefitinib (PC9/GRc) than in cells intermittently exposed to gefitinib (PC9/GRi) (0.04 μM vs 1.0 μM, respectively). The mutation frequencies at those drug concentrations were 19.8% and 8.0% in PC9/GRc and PC9/GRi cells, respectively. After drug-free culture for 8 weeks, resistance to gefitinib decreased in the PC9/GRi cells but not in the PC9/GRc cells. In the PC9/GRc cells, the frequency of the T790M mutation was consistently about 20% from 0.04 μM to 1.0 μM of gefitinib. In the PC9/GRc cells, the T790M mutation was detected in all single-cell clones, at frequencies ranging from 7.0% to 37.0%, with a median of 19.5% (95% confidence interval, 17.3%–20.9%). In conclusion, compared with intermittent drug exposure, continuous exposure might select better minor drug-resistant clones when creating cell lines resistant to molecular-targeted drugs. PMID:27270313
Lee, Youngjoo; Choi, Yu-Ra; Kim, Kyoung-Yeon; Shin, Dong Hoon
2016-07-12
Drug-resistant cell lines are essential tools for investigating the mechanisms of resistance to molecular-targeted anti-cancer drugs. However, little is known about how to establish clinically relevant drug-resistant cell lines. Our study examined the impact of a drug-free period on the establishment of a cell line with clinically relevant resistance to molecular-targeted drugs. We used PC9 cells, a lung cancer cell line carrying EGFR mutation, because this is a validated target for EGFR tyrosine kinase inhibitors (TKI). PC9 cells were intermittently or continuously exposed to increasing concentrations of gefitinib (0.01 μM to 1.0 μM) and the emergence of the most common acquired resistance mutation in EGFR, T790M, was determined. T790M was detected at a 25-fold lower drug concentration in cells continuously exposed to gefitinib (PC9/GRc) than in cells intermittently exposed to gefitinib (PC9/GRi) (0.04 μM vs 1.0 μM, respectively). The mutation frequencies at those drug concentrations were 19.8% and 8.0% in PC9/GRc and PC9/GRi cells, respectively. After drug-free culture for 8 weeks, resistance to gefitinib decreased in the PC9/GRi cells but not in the PC9/GRc cells. In the PC9/GRc cells, the frequency of the T790M mutation was consistently about 20% from 0.04 μM to 1.0 μM of gefitinib. In the PC9/GRc cells, the T790M mutation was detected in all single-cell clones, at frequencies ranging from 7.0% to 37.0%, with a median of 19.5% (95% confidence interval, 17.3%-20.9%). In conclusion, compared with intermittent drug exposure, continuous exposure might select better minor drug-resistant clones when creating cell lines resistant to molecular-targeted drugs.
Hultsch, T; Martin, R; Hohman, R J
1992-01-01
The immunosuppressive drugs FK506 and cyclosporin A have an identical spectrum of activities with respect to IgE receptor (Fc epsilon RI)-mediated exocytosis from mast cells and T cell receptor-mediated transcription of IL-2. These findings suggest a common step in receptor-mediated signal transduction leading to exocytosis and transcription and imply that immunosuppressive drugs target specific signal transduction pathways, rather than specific cell types. This hypothesis is supported by studies on the effect of rapamycin on IL-3 dependent proliferation of the rodent mast cell line PT18. Rapamycin inhibits proliferation of PT18 cells, achieving a plateau of 80% inhibition at 1 nM. This inhibition is prevented in a competitive manner by FK506, a structural analogue of rapamycin. Proliferation of rat basophilic leukemia cells and WEHI-3 cells was also inhibited, at doses comparable to those shown previously to inhibit IL-2-dependent proliferation of cytotoxic T lymphocyte line (CTLL) cells. In contrast, proliferation of A-431 cells, a epidermoid cell line, was not affected by rapamycin. DNA histograms indicate that complexes formed between the rapamycin-FK506-binding protein (FKBP) and rapamycin arrest-proliferating PT18 cells in the G0/G1-phase. It is concluded that FKBP-rapamycin complexes may inhibit proliferative signals emanating from IL-3 receptors, resulting in growth arrest of cytokine-dependent, hematopoietic cells. PMID:1384815
Heinrich, Franziska; Contioso, Vanessa Bono; Stein, Veronika M; Carlson, Regina; Tipold, Andrea; Ulrich, Reiner; Puff, Christina; Baumgärtner, Wolfgang; Spitzbarth, Ingo
2015-01-15
DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (≤ 13) and late (≥ 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage. Copyright © 2014 Elsevier B.V. All rights reserved.
Defined plant extracts can protect human cells against combined xenobiotic effects
2011-01-01
Background Pollutants representative of common environmental contaminants induce intracellular toxicity in human cells, which is generally amplified in combinations. We wanted to test the common pathways of intoxication and detoxification in human embryonic and liver cell lines. We used various pollutants such as Roundup residues, Bisphenol-A and Atrazine, and five precise medicinal plant extracts called Circ1, Dig1, Dig2, Sp1, and Uro1 in order to understand whether specific molecular actions took place or not. Methods Kidney and liver are major detoxification organs. We have studied embryonic kidney and hepatic human cell lines E293 and HepG2. The intoxication was induced on the one hand by a formulation of one of the most common herbicides worldwide, Roundup 450 GT+ (glyphosate and specific adjuvants), and on the other hand by a mixture of Bisphenol-A and Atrazine, all found in surface waters, feed and food. The prevention and curative effects of plant extracts were also measured on mitochondrial succinate dehydrogenase activity, on the entry of radiolabelled glyphosate (in Roundup) in cells, and on cytochromes P450 1A2 and 3A4 as well as glutathione-S-transferase. Results Clear toxicities of pollutants were observed on both cell lines at very low sub-agricultural dilutions. The prevention of such phenomena took place within 48 h with the plant extracts tested, with success rates ranging between 25-34% for the E293 intoxicated by Roundup, and surprisingly up to 71% for the HepG2. By contrast, after intoxication, no plant extract was capable of restoring E293 viability within 48 h, however, two medicinal plant combinations did restore the Bisphenol-A/Atrazine intoxicated HepG2 up to 24-28%. The analysis of underlying mechanisms revealed that plant extracts were not capable of preventing radiolabelled glyphosate from entering cells; however Dig2 did restore the CYP1A2 activity disrupted by Roundup, and had only a mild preventive effect on the CYP3A4, and no effect on the glutathione S-transferase. Conclusions Environmental pollutants have intracellular effects that can be prevented, or cured in part, by precise medicinal plant extracts in two human cell lines. This appears to be mediated at least in part by the cytochromes P450 modulation. PMID:21251308
A Cell-Line-Specific Atlas of PARP-Mediated Protein Asp/Glu-ADP-Ribosylation in Breast Cancer.
Zhen, Yuanli; Zhang, Yajie; Yu, Yonghao
2017-11-21
PARP1 plays a critical role in regulating many biological processes linked to cellular stress responses. Although DNA strand breaks are potent stimuli of PARP1 enzymatic activity, the context-dependent mechanism regulating PARP1 activation and signaling is poorly understood. We performed global characterization of the PARP1-dependent, Asp/Glu-ADP-ribosylated proteome in a panel of cell lines originating from benign breast epithelial cells, as well as common subtypes of breast cancer. From these analyses, we identified 503 specific ADP-ribosylation sites on 322 proteins. Despite similar expression levels, PARP1 is differentially activated in these cell lines under genotoxic conditions, which generates signaling outputs with substantial heterogeneity. By comparing protein abundances and ADP-ribosylation levels, we could dissect cell-specific PARP1 targets that are driven by unique expression patterns versus cell-specific regulatory mechanisms of PARylation. Intriguingly, PARP1 modifies many proteins in a cell-specific manner, including those involved in transcriptional regulation, mRNA metabolism, and protein translation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
2012-01-01
Background The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. Results In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have proposed several possible chemical modifications to improve the inhibitor affinity towards multiple targets in the Hedgehog Signaling Pathway. Conclusions Our model with the feature selection strategy presented here is efficient, robust, and flexible, and can be easily extended to model large-scale multiple cell line/QSAR data. The data and scripts for collaborative QSAR modeling are available in the Additional file 1. PMID:22849868
Gao, Jun; Che, Dongsheng; Zheng, Vincent W; Zhu, Ruixin; Liu, Qi
2012-07-31
The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have proposed several possible chemical modifications to improve the inhibitor affinity towards multiple targets in the Hedgehog Signaling Pathway. Our model with the feature selection strategy presented here is efficient, robust, and flexible, and can be easily extended to model large-scale multiple cell line/QSAR data. The data and scripts for collaborative QSAR modeling are available in the Additional file 1.
Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours.
Chen, Lindi; Esfandiari, Arman; Reaves, William; Vu, Annette; Hogarty, Michael D; Lunec, John; Tweddle, Deborah A
2018-03-01
Cell lines established from the TH-MYCN transgenic murine model of neuroblastoma are a valuable preclinical, immunocompetent, syngeneic model of neuroblastoma, for which knowledge of their p53 pathway status is important. In this study, the Trp53 status and functional response to Nutlin-3 and ionising radiation (IR) were determined in 6 adherent TH-MYCN transgenic cell lines using Sanger sequencing, western blot analysis and flow cytometry. Sensitivity to structurally diverse MDM2 inhibitors (Nutlin-3, MI-63, RG7388 and NDD0005) was determined using XTT proliferation assays. In total, 2/6 cell lines were Trp53 homozygous mutant (NHO2A and 844MYCN+/+) and 1/6 (282MYCN+/-) was Trp53 heterozygous mutant. For 1/6 cell lines (NHO2A), DNA from the corresponding primary tumour was found to be Trp53 wt. In all cases, the presence of a mutation was consistent with aberrant p53 signalling in response to Nutlin-3 and IR. In comparison to TP53 wt human neuroblastoma cells, Trp53 wt murine control and TH-MYCN cell lines were significantly less sensitive to growth inhibition mediated by MI-63 and RG7388. These murine Trp53 wt and mutant TH-MYCN cell lines are useful syngeneic, immunocompetent neuroblastoma models, the former to test p53-dependent therapies in combination with immunotherapies, such as anti-GD2, and the latter as models of chemoresistant relapsed neuroblastoma when aberrations in the p53 pathway are more common. The spontaneous development of Trp53 mutations in 3 cell lines from TH-MYCN mice may have arisen from MYCN oncogenic driven and/or ex vivo selection. The identified species-dependent selectivity of MI-63 and RG7388 should be considered when interpreting in vivo toxicity studies of MDM2 inhibitors.
van Haaften, Caroline; Boot, Arnoud; Corver, Willem E; van Eendenburg, Jaap D H; Trimbos, Baptist J M Z; van Wezel, Tom
2015-04-25
Ovarian cancer remains still the leading cause of death of gynecological malignancy, in spite of first-line chemotherapy with cisplatin and paclitaxel. Although initial response is favorably, relapses are common and prognosis for women with advanced disease stays poor. Therefore efficacious approaches are needed. Previously, an anti-cancer agent, EPD exhibited potent cytotoxic effects towards ovarian cancer and not towards normal cells. Cell viability and cell cycle analysis studies were performed with EPD, in combination with cisplatin and/or paclitaxel, using the ovarian carcinoma cell lines: SK-OV-3, OVCAR-3, JC, JC-pl and normal fibroblasts. Cell viability was measured using Presto Blue and cell cycle analysis using a flow cytometer. Apoptosis was measured in JC and JC-pl , using the caspase 3 assay kit. In JC-pl, SK-OV-3 and JC, synergistic interactions between either EPD and cisplatin or EPD and paclitaxel were observed. For the first time the effects of EPD on the cell cycle of ovarian cancer cells and normal cells was studied. EPD and combinations of EPD with cisplatin and/ or paclitaxel showed cell cycle arrest in the G2/M phase. The combination of EPD and cisplatin showed a significant synergistic effect in cell line JC-pl, while EPD with paclitaxel showed synergistic interaction in JC. Additionally, synergistic drug combinations showed increased apoptosis. Our results showed a synergistic effect of EPD and cisplatin in an ovarian drug resistant cell line as well as a synergistic effect of EPD and paclitaxel in two other ovarian cell lines. These results might enhance clinical efficacy, compared to the existing regimen of paclitaxel and cisplatin.
Biomarkers in Tumorigenesis Using Cancer Cell Lines: A Systematic Review
K, Lizbeth Raju; Augustine, Dominic; Rao, Roopa S; SV, Sowmya; Haragannavar, Vanishri C; Nambiar, Shwetha; Prasad, Kavitha; Awan, Kamran Habib; Patil, Shankargouda
2017-01-01
Cancer is a leading cause of death worldwide. Despite many research advancements in the field, the genetic changes regulating the transformation of normal oral cells into malignant cells have not been fully elucidated. Several studies have evaluated carcinogenesis at the molecular level. Cancer cell lines are commonly used in biomedical research because they provide an unlimited source of cells and represent various stages of initiation and progression of carcinogenesis in vitro. Aims: The objective of the study was to review original research articles using cancer cell lines as a tool to understand carcinogenesis and to identify the genes involved in tumor development. Additionally, we also examined the application of the genes as predictive biomarkers. Methods and Materials: Several databases, including PubMed, Google Scholar, Ebsco, and Science Direct, were searched from 1985 to December 2016 using various combinations of the following key words: “mouth neoplasm”, “cell lines”, and “tumorigenesis”. Original experimental studies published in English were included. We excluded letters to the editor, historic reviews, and unpublished data from the analysis. Results: There were 17 studies (in vitro) included in the analysis. There were 14 genes and 4 miRNAs involved in malignant transformation of oral keratinocytes into cancer cells. The most commonly studied genes were p53, cyclin D1, and hTERT. Conclusion: Additional reviews and studies are needed to identify a panel of genes specific to various potentially malignant disorders and to aid in the early detection of oral squamous cell carcinoma (OSCC) because tumorigenesis involves the mutation of multiple genes. Furthermore, improving advanced cost-effective diagnostic methods may benefit the public health sector. PMID:28950674
Syed, Nazia; Barbhuiya, Mustafa A.; Pinto, Sneha M.; Nirujogi, Raja Sekhar; Renuse, Santosh; Datta, Keshava K.; Khan, Aafaque Ahmad; Srikumar, Kotteazeth; Prasad, T. S. Keshava; Kumar, M. Vijaya; Kumar, Rekha Vijay; Chatterjee, Aditi; Pandey, Akhilesh
2015-01-01
Esophageal squamous‐cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early‐stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non‐neoplastic Het‐1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry‐based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA‐based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation. PMID:25366905
Mersch, Sabrina; Riemer, Jasmin C; Schlünder, Philipp M; Ghadimi, Markus P; Ashmawy, Hany; Möhlendick, Birte; Topp, Stefan A; Arent, Tanja; Kröpil, Patric; Stoecklein, Nikolas H; Gabbert, Helmut E; Knoefel, Wolfram T; Krieg, Andreas
2016-02-01
Approximately 50-70 % of patients with retroperitoneal or intraabdominal sarcoma develop a relapse after surgical therapy, including peritoneal sarcomatosis, an extremely rare site of metastatic disease which is associated with an extremely poor prognosis. Accordingly, the establishment of a permanent cell line derived from peritoneal sarcomatosis might provide a helpful tool to understand the biological behavior and to develop new therapeutic strategies. Thus, we established and characterized a liposarcoma cell line (Lipo-DUE1) from a peritoneal sarcomatosis that was permanently cultured without showing any morphological changes. Lipo-DUE1 cells exhibited a spindle-shaped morphology and positive staining for S100. Tumorigenicity was demonstrated in vitro by invasion and migration assays and in vivo by using a subcutaneous xenograft mouse model. In addition, aCGH analysis revealed concordant copy number variations on chromosome 12q in the primary tumor, peritoneal sarcomatosis, and Lipo-DUE1 cells that are commonly observed in liposarcoma. Chemotherapeutic sensitivity assays revealed a pronounced drug-resistant phenotype of Lipo-DUE1 cells to conventionally used chemotherapeutic agents. In conclusion, we describe for the first time the establishment and characterization of a liposarcoma cell line derived from a peritoneal sarcomatosis. Hence, in the future, the newly established cell line Lipo-DUE1 might serve as a useful in vitro and in vivo model to investigate the biological behavior of liposarcoma and to assess novel targeted therapies.
Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines
Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra
2016-01-01
Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells. PMID:27916824
Yang, Hong Wei; Chen, Ying Zhang; Piao, Hui Ying; Takita, Junko; Soeda, Eiichi; Hayashi, Yasuhide
2001-01-01
Abstract Recently, loss of heterozygosity (LOH) studies suggest that more than two tumor suppressor genes lie on the short arm of chromosome 1 (1p) in neuroblastoma (NB). To identify candidate tumor suppressor genes in NB, we searched for homozygous deletions in 20 NB cell lines using a high-density STS map spanning chromosome 1p36, a common LOH region in NB. We found that the 45-kDa subunit of the DNA fragmentation factor (DFF45) gene was homozygously deleted in an NB cell line, NB-1. DFF45 is the chaperon of DFF40, and both molecules are necessary for caspase 3 to induce apoptosis. DFF35, a splicing variant of DFF45, is an inhibitor of DFF40. We examined 20 NB cell lines for expression and mutation of DFF45 gene by reverse transcription (RT)-polymerase chain reaction (PCR) and RT-PCR-single-strand conformation polymorphism. Some novel variant transcripts of the DFF45 gene were found in NB cell lines, but not in normal adrenal gland and peripheral blood. These variants may not serve as chaperons of DFF40, but as inhibitors like DFF35, thus disrupting the balance between DFF45 and DFF40. No mutations of the DFF45 gene were found in any NB cell line, suggesting that the DFF45 is not a tumor suppressor gene for NB. However, homozygous deletion of the DFF45 gene in the NB-1 cell line may imply the presence of unknown tumor suppressor genes in this region. PMID:11420752
ERK phosphorylation is predictive of resistance to IGF-1R inhibition in Small Cell Lung Cancer
Zinn, Rebekah L.; Gardner, Eric E.; Marchionni, Luigi; Murphy, Sara C.; Dobromilskaya, Irina; Hann, Christine L.; Rudin, Charles M.
2013-01-01
New therapies are critically needed to improve the outcome for patients with small cell lung cancer (SCLC). IGF-1R inhibition is a potential treatment strategy for SCLC: the IGF-1R pathway is commonly upregulated in SCLC, and has been associated with inhibition of apoptosis and stimulation of proliferation through downstream signaling pathways including PI3K-Akt and MAPK. To evaluate potential determinants of response to IGF-1R inhibition, we assessed the relative sensitivity of 19 SCLC cell lines to OSI-906, a small molecule inhibitor of IGF-1R and the closely related insulin receptor (IR). Approximately one third of these cell lines were sensitive to OSI-906, with an IC50 < 1 μM. Cell line expression of IGF-1R, IR, IGF-1, IGF-2, IGFBP3, and IGFBP6 did not correlate with sensitivity to OSI-906. Interestingly, OSI-906 sensitive lines expressed significantly lower levels of baseline phospho-ERK relative to resistant lines (p=0.006). OSI-906 treatment resulted in dose-dependent inhibition of phospho-IGF-1R and phospho-Akt in both sensitive and resistant cell lines, but induced apoptosis and cell cycle arrest only in sensitive lines. We tested the in vivo efficacy of OSI-906 using an NCI-H187 xenograft model and two SCLC patient xenografts in mice. OSI-906 treatment resulted in 50% tumor growth inhibition in NCI-H187 and 30% inhibition in the primary patient xenograft models compared to mock treated animals. Taken together our data support IGF-1R inhibition as a viable treatment strategy for a defined subset of SCLC and suggest that low pretreatment levels of phospho-ERK may be indicative of sensitivity to this therapeutic approach. PMID:23515613
Testing of veterinary clostridial vaccines: from mouse to microtitre plate.
Redhead, K; Wood, K; Jackson, K
2012-01-01
Vaccines to protect against clostridial diseases are among the most common veterinary biologicals. Each batch of these materials is subjected to a variety of toxicity and antigenicity tests. The potency of the final vaccine is then assessed by Toxin Neutralisation Test (TNT). All of these tests use mice and have lethal endpoints. Development of alternatives for potency testing was based on ELISAs able to measure antibody levels to the specific toxins relative to a standard serum with a defined unitage. These alternative assays were shown to correlate with the relevant TNTs and have been accepted by European Regulatory Authorities as batch release potency tests. Recently we have developed in vitro cell line alternatives for the toxicity and antigenicity tests for Cl. septicum using the VERO cell line. With this cell line it has been possible to develop in vitro assays which, when compared with the in vivo tests, gave correlations of 87% to 100%. Having shown proof of principle, similar cell line assays have been developed for Cl. novyi and Cl. perfringens types C and D.
Zabielska, K; Lechowski, R; Król, M; Pawłowski, K M; Motyl, T; Dolka, I; Zbikowski, A
2012-12-01
Feline vaccine associated fibrosarcomas are the second most common skin tumor in cats. Methods of treatment are: surgery, chemotherapy and radiotherapy. Nevertheless, the usage of cytostatics in feline vaccine associated sarcoma therapy is limited due to their adverse side effects, high toxicity and low biodistribution after i.v. injection. Therefore, much research on new therapeutic drugs is being conducted. In human medicine, the chick embryo chorioallantoic membrane (CAM) model is used as a cheap and easy to perform assay to assess new drug effectiveness in cancer treatment. Various human cell lines have different tumors growth on CAM. In veterinary medicine such model has not been described yet. In the present article derivation of feline vaccine associated fibrosarcoma cell line and its growth on CAM is described. The cell line and the tumor grown were confirmed by histopathological and immunohistochemical examination. As far as we believe, this is the first attempt to create such model, which may be used for further in vivo studies in veterinary oncology.
Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd
2015-10-01
Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.
Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Salwen, H; Laureys, G; Manoel, N; De Paepe, A; Speleman, F
2001-10-01
Cancer cell lines are essential gene discovery tools and have often served as models in genetic and functional studies of particular tumor types. One of the future challenges is comparison and interpretation of gene expression data with the available knowledge on the genomic abnormalities in these cell lines. In this context, accurate description of these genomic abnormalities is required. Here, we show that a combination of M-FISH with banding analysis, standard FISH, and CGH allowed a detailed description of the genetic alterations in 16 neuroblastoma cell lines. In total, 14 cryptic chromosome rearrangements were detected, including a balanced t(2;4)(p24.3;q34.3) translocation in cell line NBL-S, with the 2p24 breakpoint located at about 40 kb from MYCN. The chromosomal origin of 22 marker chromosomes and 41 cytogenetically undefined translocated segments was determined. Chromosome arm 2 short arm translocations were observed in six cell lines (38%) with and five (31%) without MYCN amplification, leading to partial chromosome arm 2p gain in all but one cell line and loss of material in the various partner chromosomes, including 1p and 11q. These 2p gains were often masked in the GGH profiles due to MYCN amplification. The commonly overrepresented region was chromosome segment 2pter-2p22, which contains the MYCN gene, and five out of eleven 2p breakpoints clustered to the interface of chromosome bands 2p16 and 2p21. In neuroblastoma cell line SJNB-12, with double minutes (dmins) but no MYCN amplification, the dmins were shown to be derived from 16q22-q23 sequences. The ATBF1 gene, an AT-binding transcription factor involved in normal neurogenesis and located at 16q22.2, was shown to be present in the amplicon. This is the first report describing the possible implication of ATBF1 in neuroblastoma cells. We conclude that a combined approach of M-FISH, cytogenetics, and CGH allowed a more complete and accurate description of the genetic alterations occurring in the investigated cell lines. Copyright 2001 Wiley-Liss, Inc.
Squamous cell carcinoma of the anal sac in five dogs.
Esplin, D G; Wilson, S R; Hullinger, G A
2003-05-01
Tumors of the perianal area of dogs are common and include multiple tumor types. Whereas perianal adenomas occur often, adenocarcinomas of the apocrine glands of the anal sac occur less frequently. A review of the literature revealed no reports of squamous cell carcinomas arising from the epithelial lining of the anal sac. Squamous cell carcinomas originating from the lining of the anal sac were diagnosed in five dogs. Microscopically, the tumors consisted of variably sized invasive nests and cords of epithelial cells displaying squamous differentiation. Four of the five dogs were euthanatized because of problems associated with local infiltration by the tumors. In the fifth dog, there was no evidence of tumor 7 months after surgical removal, but further follow up was not available.
Weeks, Robert J.; Ludgate, Jackie L.; LeMée, Gwenn; Morison, Ian M.
2016-01-01
Background Childhood acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Despite high cure rates, side effects and late consequences of the intensive treatments are common. Unquestionably, the identification of new therapeutic targets will lead to safer, more effective treatments. We identified TES promoter methylation and transcriptional silencing as a very common molecular abnormality in childhood ALL, irrespective of molecular subtype. The aims of the present study were to demonstrate that TES promoter methylation is aberrant, to determine the effects of TES re-expression in ALL, and to determine if those effects are mediated via TP53 activity. Methods Normal fetal and adult tissue DNA was isolated and TES promoter methylation determined by Sequenom MassARRAY. Quantitative RT-PCR and immunoblot were used to confirm re-expression of TES in ALL cell lines after 5’-aza-2’-deoxycytidine (decitabine) exposure or transfection with TES expression plasmids. The effects of TES re-expression on ALL cells were investigated using standard cell proliferation, cell death and cell cycle assays. Results In this study, we confirm that the TES promoter is unmethylated in normal adult and fetal tissues. We report that decitabine treatment of ALL cell lines results in demethylation of the TES promoter and attendant expression of TES mRNA. Re-expression of TESTIN protein in ALL cells using expression plasmid transfection results in rapid cell death or cell cycle arrest independent of TP53 activity. Conclusions These results suggest that TES is aberrantly methylated in ALL and that re-expression of TESTIN has anti-leukaemia effects which point to novel therapeutic opportunities for childhood ALL. PMID:26985820
Microenvironment-Programmed Metastatic Prostate Cancer Stem Cells (mPCSCs)
2014-10-01
and subsequently spread, we took 3 commonly used cell lines (PC3, Du145, and LNCaP) and 2 xenograft- derived cells (LAPC9 and LAPC4) and performed...and LAPC9 models (Table 1). It should be noted that LAPC4 and LAPC9 cells used in these experiments were not cultured cells but purified from the...injecting PC3-GFP cells into the tail vein or the heart followed by determining levels of metastasis using several different approaches. FIRST, when
Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues.
Chen, Jin-Long; Chen, Fang; Zhang, Ting-Ting; Liu, Nai-Fu
2016-06-01
Epithelial ovarian cancer (EOC), the sixth most common cancer in women worldwide, is the most commonly fatal gynecologic malignancy in developed countries. One of the main reasons for this is that relatively little was known about the molecular events responsible for the development of this highly aggressive disease. In the present study, we demonstrated that salt‑inducible kinase 1 (SIK1; which is also known as MSK/SIK/SNF1LK) was downregulated in ovarian cancer tissue samples. Using HEY ovarian cancer cells, we noted that SIK1 overexpression inhibited proliferation as well as cancer stem cell-associated traits. Silencing SIK1 promoted the proliferation of the EG ovarian cancer cell line. We performed an analysis of potential microRNAs (miRNAs or miRs) target sites using three commonly used prediction algorithms: miRanda, TargetScan and PicTar. All three algorithms predicted that miR-141 targets the 3'UTR of SIK1. Subsequent experiments not only confirmed this prediction, but also showed that miR-141 was associated with the progression of this disease. Finally, we found that miR-141 promoted proliferation of EG cells, whereas silencing miR-141 restored SIK1 expression and inhibited the proliferation of the HEY cells. Elucidating the molecular mechanism of ovarian cancer not only enables us to further understand the pathogenesis and progression of the disease, but also provides new targets for effective therapies.
Differentiation and Characterization of Myeloid Cells
Gupta, Dipti; Shah, Hetavi Parag; Malu, Krishnakumar; Berliner, Nancy; Gaines, Peter
2015-01-01
Recent molecular studies of myeloid differentiation have utilized several in vitro models of myelopoiesis, generated from either ex vivo differentiated bone marrow progenitors or induced immortalized myeloid cell lines. Ex vivo differentiation begins with an enriched population of bone marrow-derived hematopoietic stem cells generated by lineage depletion and/or positive selection for CD34+ antigen (human) or Sca-1+ (mouse) cells, which are then expanded and subsequently induced in vitro in a process that recapitulates normal myeloid development. Myeloid cell lines include two human leukemic cell lines, NB-4 and HL-60, which have been demonstrated to undergo retinoic acid–induced myeloid development, however, both cell lines exhibit defects in the upregulation of late-expressed neutrophil-specific genes. Multiple murine factor–dependent cell models of myelopoiesis are also available that express the full range of neutrophil maturation markers, including: 32Dcl3 cells, which undergo G-CSF-induced myeloid maturation, EML/EPRO cells, which develop into mature neutrophils in response to cytokines and retinoic acid, and ER-Hoxb8 cells, which undergo myeloid maturation upon removal of estradial in the maintenance medium. In this unit, the induction of myeloid maturation in each of these model systems is described, including their differentiation to either neutrophils or macrophages, if applicable. Commonly used techniques to test for myeloid characteristics of developing cells are also described, including flow cytometry and real time RT-PCR. Together, these assays provide a solid foundation for in vitro investigations of myeloid development with either human or mouse models. PMID:24510620
Common genetic variation drives molecular heterogeneity in human iPSCs
Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard
2017-01-01
Induced pluripotent stem cell (iPSC) technology has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterisation of many existing iPSC lines limits their potential use for research and therapy. Here, we describe the systematic generation, genotyping and phenotyping of 711 iPSC lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative (HipSci: http://www.hipsci.org). Our study outlines the major sources of genetic and phenotypic variation in iPSCs and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPSC phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of rare, genomic copy number mutations that are repeatedly observed in iPSC reprogramming and present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells. PMID:28489815
Donakonda, Sainitin; Sinha, Swati; Dighe, Shrinivas Nivrutti; Rao, Manchanahalli R Satyanarayana
2017-07-25
ASCL1 is a basic Helix-Loop-Helix transcription factor (TF), which is involved in various cellular processes like neuronal development and signaling pathways. Transcriptome profiling has shown that ASCL1 overexpression plays an important role in the development of glioma and Small Cell Lung Carcinoma (SCLC), but distinct and common molecular mechanisms regulated by ASCL1 in these cancers are unknown. In order to understand how it drives the cellular functional network in these two tumors, we generated a gene expression profile in a glioma cell line (U87MG) to identify ASCL1 gene targets by an si RNA silencing approach and then compared this with a publicly available dataset of similarly silenced SCLC (NCI-H1618 cells). We constructed TF-TF and gene-gene interactions, as well as protein interaction networks of ASCL1 regulated genes in glioma and SCLC cells. Detailed network analysis uncovered various biological processes governed by ASCL1 target genes in these two tumor cell lines. We find that novel ASCL1 functions related to mitosis and signaling pathways influencing development and tumor growth are affected in both glioma and SCLC cells. In addition, we also observed ASCL1 governed functional networks that are distinct to glioma and SCLC.
Development and characterization of CD22-targeted pegylated-liposomal doxorubicin (IL-PLD).
O'Donnell, Robert T; Martin, Shiloh M; Ma, Yunpeng; Zamboni, William C; Tuscano, Joseph M
2010-06-01
Non-Hodgkin's lymphoma (NHL) is the sixth most common cause of cancer deaths in the U.S. Most NHLs initially respond well to chemotherapy, but relapse is common and treatment is often limited due to the toxicity of chemotherapeutic agents. Pegylated-liposomal doxorubicin (PLD, Ben Venue Laboratories, Inc), a produces less myelotoxicity than non-liposomal (NL) doxorubicin. To further enhance efficacy and NHL targeting and to decrease toxicity, we conjugated an anti-CD22 monoclonal antibody (HB22.7) to the surface of PLD, thereby creating CD22-targeted immunoliposomal PLD (IL-PLD). HB22.7 was successfully conjugated to PLD and the resulting IL-PLD exhibits specific binding to CD22-expressing cells as assessed by immunofluorescence staining. IL-PLD exhibits more cytotoxicity than PLD in CD22 positive cell lines but does not increase killing of CD22 negative cells. The IC(50) of IL-PLD is 3.1 to 5.4 times lower than that of PLD in CD22+ cell lines while the IC(50) of IL-PLD is equal to that of PLD in CD22- cells. Furthermore, IL-PLD remained bound to the CD22+ cells after washing and continued to exert cytotoxic effects, while PLD and NL- doxorubicin could easily be washed from these cells.
Montemurro, Chiara; Vadrevu, Suryakiran; Gurlo, Tatyana; Butler, Alexandra E; Vongbunyong, Kenny E; Petcherski, Anton; Shirihai, Orian S; Satin, Leslie S; Braas, Daniel; Butler, Peter C; Tudzarova, Slavica
2017-01-01
Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca 2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca 2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca 2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca 2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.
Diabetes and Menopause: A Twin Challenge
... it tougher to manage your blood sugar level. Sexual problems. Diabetes can damage the nerves of the cells that line the vagina. This can interfere with arousal and orgasm. Vaginal dryness, a common symptom of ...
HLA Engineering of Human Pluripotent Stem Cells
Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W
2013-01-01
The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003
HLA engineering of human pluripotent stem cells.
Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W
2013-06-01
The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I-negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8(+) T cell responses were reduced in class I-negative cells that had undergone differentiation in embryoid bodies. These B2M(-/-) ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines.
Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.
Epsztejn-Litman, Silvina; Cohen-Hadad, Yaara; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Levy-Lahad, Ephrat; Schonberger, Oshrat; Eldar-Geva, Talia; Zeligson, Sharon; Eiges, Rachel
2015-01-01
We report on the derivation of a diploid 46(XX) human embryonic stem cell (HESC) line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA) from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19), monitoring the expression of two parentally imprinted genes (SNRPN and H19) and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC) line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD) cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.
Knudsen, Erik S; Balaji, Uthra; Mannakee, Brian; Vail, Paris; Eslinger, Cody; Moxom, Christopher; Mansour, John; Witkiewicz, Agnieszka K
2018-03-01
Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease with the worst survival rate of common solid tumours. Preclinical models that accurately reflect the genetic and biological diversity of PDAC will be important for delineating features of tumour biology and therapeutic vulnerabilities. 27 primary PDAC tumours were employed for genetic analysis and development of tumour models. Tumour tissue was used for derivation of xenografts and cell lines. Exome sequencing was performed on the originating tumour and developed models. RNA sequencing, histological and functional analyses were employed to determine the relationship of the patient-derived models to clinical presentation of PDAC. The cohort employed captured the genetic diversity of PDAC. From most cases, both cell lines and xenograft models were developed. Exome sequencing confirmed preservation of the primary tumour mutations in developed cell lines, which remained stable with extended passaging. The level of genetic conservation in the cell lines was comparable to that observed with patient-derived xenograft (PDX) models. Unlike historically established PDAC cancer cell lines, patient-derived models recapitulated the histological architecture of the primary tumour and exhibited metastatic spread similar to that observed clinically. Detailed genetic analyses of tumours and derived models revealed features of ex vivo evolution and the clonal architecture of PDAC. Functional analysis was used to elucidate therapeutic vulnerabilities of relevance to treatment of PDAC. These data illustrate that with the appropriate methods it is possible to develop cell lines that maintain genetic features of PDAC. Such models serve as important substrates for analysing the significance of genetic variants and create a unique biorepository of annotated cell lines and xenografts that were established simultaneously from same primary tumour. These models can be used to infer genetic and empirically determined therapeutic sensitivities that would be germane to the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Strakova, Nicol; Ehrmann, Jiri; Dzubak, Petr; Bouchal, Jan; Kolar, Zdenek
2004-06-01
Glioblastoma multiforme is the most common malignant brain tumor in adults, and it is among the most lethal of all cancers. Recent studies have shown that ligand activation of peroxisome proliferator-activated receptor (PPAR)-gamma can induce differentiation and inhibit proliferation of several cancer cells. In this study, we have investigated whether one PPARgamma ligand in particular, ciglitazone, inhibits cell viability and, additionally, whether it affects the cell cycle and apoptosis of human glioblastoma cell lines T98G, U-87 MG, A172, and U-118 MG. All glioblastoma cell lines were found to express PPARgamma protein, and following treatment with ciglitazone, localization was unchanged. Ciglitazone inhibited viability in a dose-dependent manner in all four tested glioblastoma cells after 24 h of treatment. Analysis of the cell cycle showed arrest in the G(1) phase and partial block in G(2)/M phase of the cell cycle. Cyclin D1 and cyclin B expression was decreased. Phosphorylation of Rb protein dropped as well. We found that ciglitazone was followed by increased expression of p27(Kip1) and p21(Waf1/Cip1). It also led to apoptosis induction: bax expression in T98G was elevated. Expression of the antiapoptotic protein bcl-2 was reduced in U-118 MG and U-87 MG and showed a slight decrease in A172 cells. Flow cytometry confirmed the induction of apoptosis. Moreover, PPARgamma ligand decreased telomerase activity in U-87 MG and U-118 MG cell lines. Our results demonstrate that ciglitazone inhibits the viability of human glioblastoma cell lines via induction of apoptosis; as a result, this ligand may offer potential new therapy for the treatment of central nervous system neoplasms.
Sugiyama, Kazuo; Ebinuma, Hirotoshi; Nakamoto, Nobuhiro; Sakasegawa, Noriko; Murakami, Yuko; Chu, Po-sung; Usui, Shingo; Ishibashi, Yuka; Wakayama, Yuko; Taniki, Nobuhito; Murata, Hiroko; Saito, Yoshimasa; Fukasawa, Masayoshi; Saito, Kyoko; Yamagishi, Yoshiyuki; Wakita, Takaji; Takaku, Hiroshi; Hibi, Toshifumi; Saito, Hidetsugu; Kanai, Takanori
2014-01-01
Most of experiments for HCV infection have been done using lytic infection systems, in which HCV-infected cells inevitably die. Here, to elucidate metabolic alteration in HCV-infected cells in a more stable condition, we established an HCV-persistently-infected cell line, designated as HPI cells. This cell line has displayed prominent steatosis and supported HCV infection for more than 2 years, which is the longest ever reported. It enabled us to analyze metabolism in the HCV-infected cells integrally combining metabolomics and expression arrays. It revealed that rate-limiting enzymes for biosynthesis of cholesterol and fatty acids were up-regulated with actual increase in cholesterol, desmosterol (cholesterol precursor) and pool of fatty acids. Notably, the pentose phosphate pathway was facilitated with marked up-regulation of glucose-6-phosphate dehydrogenase, a rete-limiting enzyme, with actual increase in NADPH. In its downstream, enzymes for purine synthesis were also up-regulated resulting in increase of purine. Contrary to common cancers, the TCA cycle was preferentially facilitated comparing to glycolysis pathway with a marked increase of most of amino acids. Interestingly, some genes controlled by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master regulator of antioxidation and metabolism, were constitutively up-regulated in HPI cells. Knockdown of Nrf2 markedly reduced steatosis and HCV infection, indicating that Nrf2 and its target genes play important roles in metabolic alteration and HCV infection. In conclusion, HPI cell is a bona fide HCV-persistently-infected cell line supporting HCV infection for years. This cell line sustained prominent steatosis in a hypermetabolic status producing various metabolites. Therefore, HPI cell is a potent research tool not only for persistent HCV infection but also for liver metabolism, overcoming drawbacks of the lytic infection systems. PMID:24718268
Debowski, Katharina; Drummer, Charis; Lentes, Jana; Cors, Maren; Dressel, Ralf; Lingner, Thomas; Salinas-Riester, Gabriela; Fuchs, Sigrid; Sasaki, Erika; Behr, Rüdiger
2016-01-01
Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP. PMID:27385131
Debowski, Katharina; Drummer, Charis; Lentes, Jana; Cors, Maren; Dressel, Ralf; Lingner, Thomas; Salinas-Riester, Gabriela; Fuchs, Sigrid; Sasaki, Erika; Behr, Rüdiger
2016-07-07
Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP.
Notarangelo, Angelantonio; Trombetta, Domenico; D'Angelo, Vincenzo; Parrella, Paola; Palumbo, Orazio; Storlazzi, Clelia Tiziana; Impera, Luciana; Muscarella, Lucia Anna; La Torre, Antonella; Affuso, Andrea; Fazio, Vito Michele; Carella, Massimo; Zelante, Leopoldo
2014-03-01
Glioblastoma multiforme (World Health Organization, grade IV astrocytoma) is the most common and most aggressive malignant primary brain tumor. We report a novel cell line, designated as ANGM-CSS, which was established from a 56-year-old male patient with a surgically removed glioblastoma multiforme. The ANGM-CSS cell line was established in vitro and characterized using histological and immunohistochemical staining, classical and molecular cytogenetic analyses, molecular studies and functional assays using a xenograft model in immunodeficient animals. ANGM-CSS was positive for CD133, nestin and vimentin proteins, whereas GFAP showed staining only in a fraction of the cells. Cytogenetic and molecular cytogenetic analysis revealed a near-tetraploid karyotype, with a modal chromosome number from 88 to 91, and additional cytogenetic abnormalities, such as the t(6;14)(p12;q11.2), t(8;10)(q24.2;q21.1) and t(5;9)(q34;p21) unbalanced translocations. Moreover, ANGM-CSS showed amplification of the MET and EGFR genes whose overexpression was observed at the mRNA level. Interestingly, ANGM-CSS is tumorigenic when implanted in immunodeficient mice, and the cells obtained from the xenografts showed the same morphology and karyotype in vitro as the original cell line. ANGM-CSS represents a biologically relevant cell line to be used to investigate the molecular pathology of glioblastoma multiforme, also to evaluate the efficacy of novel therapeutic drugs in vitro.
Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L
2009-04-01
Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.
Milovancev, Milan; Hilgart-Martiszus, Ian; McNamara, Michael J; Goodall, Cheri P; Seguin, Bernard; Bracha, Shay; Wickramasekara, Samanthi I
2013-06-13
Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data. These methods may be applied to other cell lines, or other biological materials, to highlight unique and previously unrecognized differences between samples. While this study yielded data that may prove useful for OSA researchers and clinicians, further refinements of the described techniques are expected to yield greater accuracy and produce a more thorough SEP analysis.
Rasmussen, B; Davis, R; Thomas, J; Reddy, P
1998-11-01
The dihydrofolate reductase-deficient Chinese hamster ovary cell line, DXB11-CHO, commonly used as a host cell for the production of recombinant proteins requires 7.5% serum-supplementation for optimal growth. Regulatory issues surrounding the use of serum in clinical production processes and the direct and indirect costs of using serum in large-scale production and recovery processes have triggered efforts to derive serum-independent host cell lines. We have successfully isolated a serum-free host that we named Veggie- CHO. Veggie-CHO was generated by adapting DXB11-CHO cells to growth in serum-free media in the absence of exogenous growth factors such as Transferrin and Insulin-like growth factor, which we have previously shown to be essential for growth and viability of DXB11- CHO cells. Veggie-CHO cells have been shown to maintain an average doubling time of 22 hr in continuous growth cultures over a period of three months and have retained the dihydrofolate reductase -deficient phenotype of their parental DXB11-CHO cells. These properties and the stability of its serum-free phenotype have allowed the use of Veggie- CHO as host cells for transfection and amplified expression of recombinant proteins. We describe the derivation a serum-free recombinant cell line with an average doubling time of 20 hr and specific productivity of 2.5 Units recombinant Flt-3L protein per 10e6 cells per day.
Tsai, S
1996-01-01
The lymphohematopoietic progenitors represent < 0.01% of nucleated marrow cells. We have shown that murine lymphohematopoietic progenitors can be immortalized by a recombinant retroviral vector harboring a dominant-negative retinoic acid (RA) receptor. The immortalized progenitors proliferate as a stem-cell factor-dependent clonal line designated EML C1. The EML C1 cell line spontaneously generates prepro-B-lymphocytes and erythroid and myeloid progenitors. Upon stimulation with interleukin 7 and marrow stromal cells, the prepro-B-lymphocytes express recombination-activating gene 1 (RAG-1) and undergo D-J rearrangements of the immunoglobulin heavy-chain genes. With erythropoietin, the erythroid progenitors proliferate and differentiate into red cells. Generation of the common progenitors for neutrophils and macrophages [colony-forming units-granulocyte-macrophage (CFU-GM)] is suppressed in EML C1 cells but is inducible by high concentrations of RA. An additional block in neutrophil differentiation occurs at the promyelocyte stage, but this can also be overcome by high concentrations of RA. Although c-fms is homologous to c-kit, which encodes the receptor for stem-cell factor (SCF), EML C1 cells neither express c-fms nor respond to macrophage colony-stimulating factor (M-CSF), the ligand for c-fms. Transduction and expression of c-fms cDNA in EML C1 cells confers responsiveness to M-CSF. This finding indicates that c-kit and c-fms share substantially overlapping signal-transduction pathways. However, c-fms-transduced EML C1 cells (EML C1/c-fms cells) exhibit different development patterns when stimulated by SCF alone or by M-CSF alone. When stimulated by SCF alone, EML C1/c-fms cells show mostly erythroid and B-lymphoid development. When stimulated by M-CSF alone, development switches to mostly myeloid (neutrophil and macrophage) development. This observation suggests that c-kit and c-fms must have unique signal-transduction pathways in addition to the common ones.
Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells
Akopian, Veronika; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J.; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B.; Ludwig, Tenneille E.; McKay, Ronald D. G.; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K. W.; Pera, Martin F.; Rossant, Janet; Stacey, Glyn N.; Suemori, Hirofumi
2010-01-01
There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories. PMID:20186512
NASA Technical Reports Server (NTRS)
Schwartz, J. L.; Jordan, R.; Liber, H.; Murnane, J. P.; Evans, H. H.
2001-01-01
Telomere shortening in telomerase-negative somatic cells leads to the activation of the TP53 protein and the elimination of potentially unstable cells. We examined the effect of TP53 gene expression on both telomere metabolism and chromosome stability in immortal, telomerase-positive cell lines. Telomere length, telomerase activity, and chromosome instability were measured in multiple clones isolated from three related human B-lymphoblast cell lines that vary in TP53 expression; TK6 cells express wild-type TP53, WTK1 cells overexpress a mutant form of TP53, and NH32 cells express no TP53 protein. Clonal variations in both telomere length and chromosome stability were observed, and shorter telomeres were associated with higher levels of chromosome instability. The shortest telomeres were found in WTK1- and NH32-derived cells, and these cells had 5- to 10-fold higher levels of chromosome instability. The primary marker of instability was the presence of dicentric chromosomes. Aneuploidy and other stable chromosome alterations were also found in clones showing high levels of dicentrics. Polyploidy was found only in WTK1-derived cells. Both telomere length and chromosome instability fluctuated in the different cell populations with time in culture, presumably as unstable cells and cells with short telomeres were eliminated from the growing population. Our results suggest that transient reductions in telomere lengths may be common in immortal cell lines and that these alterations in telomere metabolism can have a profound effect on chromosome stability. Copyright 2000 Wiley-Liss, Inc.
New Small Molecules Targeting Apoptosis and Cell Viability in Osteosarcoma
Maugg, Doris; Rothenaigner, Ina; Schorpp, Kenji; Potukuchi, Harish Kumar; Korsching, Eberhard; Baumhoer, Daniel; Hadian, Kamyar
2015-01-01
Despite the option of multimodal therapy in the treatment strategies of osteosarcoma (OS), the most common primary malignant bone tumor, the standard therapy has not changed over the last decades and still involves multidrug chemotherapy and radical surgery. Although successfully applied in many patients a large number of patients eventually develop recurrent or metastatic disease in which current therapeutic regimens often lack efficacy. Thus, new therapeutic strategies are urgently needed. In this study, we performed a phenotypic high-throughput screening campaign using a 25,000 small-molecule diversity library to identify new small molecules selectively targeting osteosarcoma cells. We could identify two new small molecules that specifically reduced cell viability in OS cell lines U2OS and HOS, but affected neither hepatocellular carcinoma cell line (HepG2) nor primary human osteoblasts (hOB). In addition, the two compounds induced caspase 3 and 7 activity in the U2OS cell line. Compared to conventional drugs generally used in OS treatment such as doxorubicin, we indeed observed a greater sensitivity of OS cell viability to the newly identified compounds compared to doxorubicin and staurosporine. The p53-negative OS cell line Saos-2 almost completely lacked sensitivity to compound treatment that could indicate a role of p53 in the drug response. Taken together, our data show potential implications for designing more efficient therapies in OS. PMID:26039064
Or, Chi-Hung R; Chang, Yachu; Lin, Wei-Cheng; Lee, Wee-Chyan; Su, Hong-Lin; Cheung, Muk-Wing; Huang, Chang-Po; Ho, Cheesang; Chang, Chia-Che
2016-12-27
Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G₁-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G₁-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.
Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background.
Carstea, Ana Claudia; Pirity, Melinda K; Dinnyes, Andras
2009-12-31
In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.
Hu, Zhilan; Guo, Donglin; Yip, Shirley S M; Zhan, Dejin; Misaghi, Shahram; Joly, John C; Snedecor, Bradley R; Shen, Amy Y
2013-01-01
Therapeutic monoclonal antibodies (mAb) are often produced in Chinese hamster ovary (CHO) cells. Three commonly used CHO host cells for generating stable cell lines to produce therapeutic proteins are dihydrofolate reductase (DHFR) positive CHOK1, DHFR-deficient DG44, and DUXB11-based DHFR deficient CHO. Current Genentech commercial full-length antibody products have all been produced in the DUXB11-derived DHFR-deficient CHO host. However, it has been challenging to develop stable cell lines producing an appreciable amount of antibody proteins in the DUXB11-derived DHFR-deficient CHO host for some antibody molecules and the CHOK1 host has been explored as an alternative approach. In this work, stable cell lines were developed for three antibody molecules in both DUXB11-based and CHOK1 hosts. Results have shown that the best CHOK1 clones produce about 1 g/l for an antibody mAb1 and about 4 g/l for an antibody mAb2 in 14-day fed batch cultures in shake flasks. In contrast, the DUXB11-based host produced ∼0.1 g/l for both antibodies in the same 14-day fed batch shake flask production experiments. For an antibody mAb3, both CHOK1 and DUXB11 host cells can generate stable cell lines with the best clone in each host producing ∼2.5 g/l. Additionally, studies have shown that the CHOK1 host cell has a larger endoplasmic reticulum and higher mitochondrial mass. © 2013 American Institute of Chemical Engineers.
Singh, Harmeet; Li, Ying; Fuller, Peter J; Harrison, Craig; Rao, Jyothsna; Stephens, Andrew N; Nie, Guiying
2013-01-01
Objective. The high temperature requirement factor A3 (HtrA3) is a serine protease homologous to bacterial HtrA. Four human HtrAs have been identified. HtrA1 and HtrA3 share a high degree of domain organization and are downregulated in a number of cancers, suggesting a widespread loss of these proteases in cancer. This study examined how extensively the HtrA (HtrA1-3) proteins are downregulated in commonly used cancer cell lines and primary ovarian tumors.Methods. RT-PCR was applied to various cancer cell lines (n=17) derived from the ovary, endometrium, testes, breast, prostate, and colon, and different subtypes of primary ovarian tumors [granulosa cell tumors (n=19), mucinous cystadenocarcinomas (n=6), serous cystadenocarcinomas (n=8)] and normal ovary (n = 9). HtrA3 protein was localized by immunohistochemistry.Results. HtrA3 was extensively downregulated in the cancer cell lines examined including the granulosa cell tumor-derived cell lines. In primary ovarian tumors, the HtrA3 was significantly lower in serous cystadenocarcinoma and granulosa cell tumors. In contrast, HtrA1 and HtrA2 were expressed in all samples with no significant differences between the control and tumors. In normal postmenopausal ovary, HtrA3 protein was localized to lutenizing stromal cells and corpus albicans. In serous cystadenocarcinoma, HtrA3 protein was absent in the papillae but detected in the mesenchymal cyst wall.Conclusion. HtrA3 is more extensively downregulated than HtrA1-2 in cancer cell lines. HtrA3, but not HtrA1 or HtrA2, was decreased in primary ovarian serous cystadenocarcinoma and granulosa cell tumors. This study provides evidence that HtrA3 may be the most relevant HtrA associated with ovarian malignancy.
2012-01-01
Background The aim of this study was to clarify the role of global hypomethylation of repetitive elements in determining the genetic and clinical features of multiple myeloma (MM). Methods We assessed global methylation levels using four repetitive elements (long interspersed nuclear element-1 (LINE-1), Alu Ya5, Alu Yb8, and Satellite-α) in clinical samples comprising 74 MM samples and 11 benign control samples (7 cases of monoclonal gammopathy of undetermined significance (MGUS) and 4 samples of normal plasma cells (NPC)). We also evaluated copy-number alterations using array-based comparative genomic hybridization, and performed methyl-CpG binding domain sequencing (MBD-seq). Results Global levels of the repetitive-element methylation declined with the degree of malignancy of plasma cells (NPC>MGUS>MM), and there was a significant inverse correlation between the degree of genomic loss and the LINE-1 methylation levels. We identified 80 genomic loci as common breakpoints (CBPs) around commonly lost regions, which were significantly associated with increased LINE-1 densities. MBD-seq analysis revealed that average DNA-methylation levels at the CBP loci and relative methylation levels in regions with higher LINE-1 densities also declined during the development of MM. We confirmed that levels of methylation of the 5' untranslated region of respective LINE-1 loci correlated strongly with global LINE-1 methylation levels. Finally, there was a significant association between LINE-1 hypomethylation and poorer overall survival (hazard ratio 2.8, P = 0.015). Conclusion Global hypomethylation of LINE-1 is associated with the progression of and poorer prognosis for MM, possibly due to frequent copy-number loss. PMID:23259664
Dual-Anode Nickel/Hydrogen Cell
NASA Technical Reports Server (NTRS)
Gahn, Randall F.; Ryan, Timothy P.
1994-01-01
Use of two hydrogen anodes in nickel/hydrogen cell reduces ohmic and concentration polarizations contributing to internal resistance, yielding cell with improved discharging performance compared to single-anode cell. Dual-anode concept incorporated into nickel/hydrogen cells of individual pressure-vessel type (for use aboard spacecraft) and common pressure-vessel type, for use on Earth to store electrical energy from photovoltaic sources, "uninterruptible" power supplies of computer and telephone systems, electric vehicles, and load leveling on power lines. Also applicable to silver/hydrogen and other metal/gas batteries.
Establishment and characterization of a normal melanocyte cell line derived from pig skin.
Julé, Sophia; Bossé, Philippe; Egidy, Giorgia; Panthier, Jean-Jacques
2003-08-01
Several minipig strains develop spontaneous malignant melanoma. As a first step toward the analysis of genes involved in the tumoral progression of melanoma in these animal models, we developed culture conditions for pig melanocytes whereby melanocytes from normal epidermis can be isolated directly onto mitotically inactivated keratinocytes in Eagle's minimal essential medium supplemented with fetal calf serum, tetradecanoyl phorbol acetate (TPA) and cholera toxin. We also derived an immortal line of pigmented melanocytes from the epidermis of a healthy Meishan pig. This cell line, designated PigMel, retains differentiation function in culture, dependence on TPA and cholera toxin and a diploid chromosome number. PigMel melanocytes exhibit morphological and molecular characteristics common to normal mammalian skin melanocytes.
Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Karina J.; School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA 6008; Tsykin, Anna
2012-10-19
Highlights: Black-Right-Pointing-Pointer Matrigel alters cancer cell line miRNA expression relative to culture on plastic. Black-Right-Pointing-Pointer Many identified Matrigel-regulated miRNAs are implicated in cancer. Black-Right-Pointing-Pointer miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. Black-Right-Pointing-Pointer miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence ofmore » Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a valuable approach to the in vitro study of miRNAs.« less
MLH1 function is context dependent in colorectal cancers.
Jackson, Thomas; Ahmed, Mohamed A H; Seth, Rashmi; Jackson, Darryl; Ilyas, Mohammad
2011-02-01
Loss of mismatch repair (MMR) function in sporadic colorectal cancer occurs most commonly because of inactivation of MLH1, and it causes an increase in mutation rate. However, it is uncertain whether loss of MMR alters any other cellular function. The aim of this study was to investigate the role of MMR in regulating cell numbers and apoptosis. MLH1 protein levels were manipulated by (a) cloning and forcibly expressing MLH1 in HCT116 (a cell line with MLH1 mutation) and RKO (a cell line with MLH1 silencing), and (b) knockdown of MLH1 in SW480 (a cell line with normal MMR function). Cell number and apoptotic bodies were measured in standard and 'high stress' (ie, after staurosporine exposure) conditions. Restoration of MLH1 function in HCT116 and RKO resulted in increased cell number (p<0.001 for both cell lines) and decreased numbers of floating apoptotic bodies (p<0.01 in HCT116) in standard culture conditions. However, on induction of apoptotic stress, restoration of MLH1 resulted in reduced cell numbers (p<0.005). Knockdown of MLH1 in SW480 had no effect on cell numbers or apoptosis. MLH1 function may be context dependent: in 'low stress' conditions it may act to inhibit apoptosis, while in 'high stress' conditions it may induce apoptosis. However, within the context of chromosomal instability, the effect of MLH1 on cell numbers is limited.
Wang, Lei; Huang, Xing; Zheng, Xinmin; Wang, Xinghuan; Li, Shiwen; Zhang, Lin; Yang, Zhonghua; Xia, Zhiping
2013-01-01
The discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. As CSCs demonstrate resistance to chemoradiation therapy relative to other cancer cells, this allows the enrichment of CSC populations by killing apoptosis-susceptible cancer cells. In this study, three commonly used human prostate cancer (PCa) cell lines (DU145, PC-3 and LNCaP) were examined for their expression of the putative stem cell markers CD133 and CD44 via flow cytometric analysis. Under normal culture conditions, CD133(+)/CD44(+) cells were only present in the DU145 cell line, and comprised only a minor percentage (0.1% ± 0.01%) of the total population. However, the proportion of these CD133(+)/CD44(+) prostate CSCs could be increased in these cell lines via culture in serum-free medium (SFM), or through chemotherapy or radiotherapy. Indeed, after culture in SFM, the proportion of CD133(+)/CD44(+) cells in DU145 and PC-3 had increased to 10.3% and 3.0%, respectively. Moreover, the proportion had increased to 9.8% enriched by chemotherapy and 3.5% by radiotherapy in DU145. Colony-formation tests, cell invasion assays, and tumor xenografts in BALB/c nude mice were used to evaluate the stem cell properties of CD133(+)/CD44(+) PCa cells that were isolated via fluorescence-activated cell sorting (FACS). CD133(+)/CD44(+) cells had an enhanced colony-formation capability and invasive ability in vitro, and displayed greater tumorigenic properties in vivo. These results demonstrate the presence of CD133(+)/CD44(+) prostate CSCs in established PCa cell lines and that populations of these cells can be enriched by culture in SFM or chemoradiotherapy. Finding novel therapies to override chemoradiation resistance in the prostate CSCs is the key to improve long-term results in PCa management.
Fraga, Mario F; Ballestar, Esteban; Villar-Garea, Ana; Boix-Chornet, Manuel; Espada, Jesus; Schotta, Gunnar; Bonaldi, Tiziana; Haydon, Claire; Ropero, Santiago; Petrie, Kevin; Iyer, N Gopalakrishna; Pérez-Rosado, Alberto; Calvo, Enrique; Lopez, Juan A; Cano, Amparo; Calasanz, Maria J; Colomer, Dolors; Piris, Miguel Angel; Ahn, Natalie; Imhof, Axel; Caldas, Carlos; Jenuwein, Thomas; Esteller, Manel
2005-04-01
CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.
Olsen, Rachelle R.; Mary-Sinclair, Michelle N.; Yin, Zhirong; Freeman, Kevin W.
2015-01-01
Neuroblastomas (NBL) and Ewing’s sarcomas (EWS) together cause 18% of all pediatric cancer deaths. Though there is growing interest in targeting the dysregulated metabolism of cancer as a therapeutic strategy, this approach has not been fully examined in NBL and EWS. In this study, we first tested a panel of metabolic inhibitors and identified the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON) as the most potent chemotherapeutic across all NBL and EWS cell lines tested. Myc, a master regulator of metabolism, is commonly overexpressed in both of these pediatric malignancies and recent studies have established that Myc causes cancer cells to become “addicted” to glutamine. We found DON strongly inhibited tumor growth of multiple tumor lines in mouse xenograft models. In vitro, inhibition of caspases partially reversed the effects of DON in high Myc expressing cell lines, but not in low Myc expressing lines. We further showed that induction of apoptosis by DON in Myc-overexpressing cancers is via the pro-apoptotic factor Bax. To relieve inhibition of Bax, we tested DON in combination with the Bcl-2 family antagonist navitoclax (ABT-263). In vitro, this combination caused an increase in DON activity across the entire panel of cell lines tested, with synergistic effects in two of the N-Myc amplified neuroblastoma cell lines. Our study supports targeting glutamine metabolism to treat Myc overexpressing cancers, such as NBL and EWS, particularly in combination with Bcl-2 family antagonists. PMID:25615615
Characterization of a new B-ALL cell line with constitutional defect of the Notch signaling pathway
Kamga, Paul Takam; Dal Collo, Giada; Bassi, Giulio; Midolo, Martina; Delledonne, Massimo; Chilosi, Marco; Bonifacio, Massimiliano; Krampera, Mauro
2018-01-01
Notch signaling contribution to B-cell acute lymphoblastic leukemia (B-ALL) development is still under investigation. The serendipitous onset of B-ALL in a patient affected by the germinal Notch mutation-dependent Alagille syndrome allowed us to establish a B-ALL cell line (VR-ALL) bearing a genetic loss of function in components of Notch signaling. VR-ALL is a common-type B-ALL cell line, grows in conventional culture medium supplemented with 10% serum, and gives rise, once injected into immunodeficient NOG mice, to a mouse xenograft model of B-ALL. Exome sequencing revealed deleterious mutations in some components of Notch signaling, including Jagged1, Notch1, and Notch2. In addition, VR-ALL is sensitive both in vitro and in vivo to γ-secretase inhibitors (GSIs) as well as conventional anti-leukemic drugs. For all these reasons, VR-ALL may help to gain more insights into the role of Notch signaling in B-ALL. PMID:29719609
Daniel, Vincent C.; Marchionni, Luigi; Hierman, Jared S.; Rhodes, Jonathan T.; Devereux, Wendy L.; Rudin, Charles M.; Yung, Rex; Parmigani, Giovanni; Dorsch, Marion; Peacock, Craig D.; Watkins, D. Neil
2009-01-01
Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then re-implanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared to normal lung, primary tumors, xenografts and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture, and that was not regained when the tumors were re-established as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development. PMID:19351829
Jin, Yuesheng; Zhang, Hao; Tsao, Sai Wah; Jin, Charlotte; Lv, Mei; Strömbeck, Bodil; Wiegant, Joop; Wan, Thomas Shek Kong; Yuen, Po Wing; Kwong, Yok-Lam
2004-01-01
This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the hsrs were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro
To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two typesmore » of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.« less
Nutrient regulation of β-cell function: what do islet cell/animal studies tell us?
Carlessi, R; Keane, K N; Mamotte, C; Newsholme, P
2017-07-01
Diabetes mellitus is widely recognised as one of the most serious metabolic diseases worldwide, and its incidence in Asian countries is growing at an alarming rate. Type 2 diabetes (T2DM) is closely associated with age, sedentary lifestyle and poor diet. In T2DM, β-cell dysfunction will occur before hyperglycaemia develops. Excessive levels of glucose, lipid and various inflammatory factors interact at the level of the pancreatic islet to promote β-cell dysfunction. Pancreatic β-cell lines have been widely utilised since the early 1980s and have contributed a large volume of important information regarding molecular, metabolic and genetic mechanisms that regulate insulin secretion. The purpose of this review is to describe the origin and characteristics of the most commonly used β-cell lines and their contribution to discovery of fundamental regulatory processes that control insulin production and release. Pancreatic islets obtained from rodents as well as other animals have additionally provided information on the architecture and three-dimensional design of this endocrine tissue that allows precise regulation of hormone release. Understanding the nature of failure of physiologic and metabolic processes leading to insufficient insulin release and subsequent diabetes has allowed development of novel anti-diabetic therapeutics, now in common use, worldwide.
Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats
Botcheva, Krassimira; McCorkle, Sean R.
2014-11-21
The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We reportmore » distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). In conclusion, our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.« less
Transcriptional consequences of XPA disruption in human cell lines
Manandhar, Mandira; Lowery, Megan G.; Boulware, Karen S.; Lin, Kevin H.; Lu, Yue; Wood, Richard D.
2017-01-01
Nucleotide excision repair (NER) in mammalian cells requires the xeroderma pigmentosum group A protein (XPA) as a core factor. Remarkably, XPA and other NER proteins have been detected by chromatin immunoprecipitation at some active promoters, and NER deficiency is reported to influence the activated transcription of selected genes. However, the global influence of XPA on transcription in human cells has not been determined. We analyzed the human transcriptome by RNA sequencing (RNA-Seq). We first confirmed that XPA is confined to the cell nucleus even in the absence of external DNA damage, in contrast to previous reports that XPA is normally resident in the cytoplasm and is imported following DNA damage. We then analyzed four genetically matched human cell line pairs deficient or proficient in XPA. Of the ∼14,000 genes transcribed in each cell line, 325 genes (2%) had a significant XPA-dependent directional change in gene expression that was common to all four pairs (with a false discovery rate of 0.05). These genes were enriched in pathways for the maintenance of mitochondria. Only 27 common genes were different by more than 1.5-fold. The most significant hits were AKR1C1 and AKR1C2, involved in steroid hormone metabolism. AKR1C2 protein was lower in all of the immortalized XPA-deficient cells. Retinoic acid treatment led to modest XPA-dependent activation of some genes with transcription-related functions. We conclude that XPA status does not globally influence human gene transcription. However, XPA significantly influences expression of a small subset of genes important for mitochondrial functions and steroid hormone metabolism. The results may help explain defects in neurological function and sterility in individuals with xeroderma pigmentosum. PMID:28704716
Apoptotic effect of α-Fe2O3 and SiO2 nanoparticles in human rhabdomyosarcoma cell line
NASA Astrophysics Data System (ADS)
Fatima, Mahvish; Fakhar-e-Alam, Muhammad; Atif, M.; Nadeem Shakoor, Muhammad; Afzal, Muhammad; Waseem, Muhammad; Hammad Aziz, Muhammad
2014-12-01
Nanotechnology provides the opportunity for the development of new materials in the nanometer size range, with many potential applications in biological sciences and clinical medicine. It has been reported that RD (muscle cancer cell line) is the most common soft tissue sarcoma in children originating from immature cells, comprising 2.9% of all malignancies in patients younger than 20 years old, with 350 cases diagnosed annually in the United States. Soft tissue is the most common target organ for nanoparticles after they gain significant entry into the target site through any of the possible routes. RD cell lines have been used as an experimental biological model in this article. A suitable environment was provided until 75% of RD cell confluence was reached. Prior to determination of toxicity of hematite (α-Fe2O3) and SiO2 nanoparticles, the sizes and shapes were confirmed using scanning electron microscopy (SEM), and the sizes were about 66 and 250 nm respectively. Moreover, 10-80 μg ml-1 of α-Fe2O3 and SiO2 nanoparticles dispersed in solution were labeled for each row of 96 well plates. The present study evaluates the suppression factor of the said particles, which leads to cell killing phenomena. After successful measurements in the above mentioned experiment, the author will be able to give the actual cause of cell killing effects. The given study has provided valuable insights into a feasible mechanism of apoptosis caused by α-Fe2O3 and SiO2 nanoparticles. An underlying promising mechanism of apoptosis due to α-Fe2O3 and SiO2 nanoparticle exposure should be further investigated at the in vivo level.
Biciliated ependymal cell proliferation contributes to spinal cord growth
Alfaro-Cervello, Clara; Soriano-Navarro, Mario; Mirzadeh, Zaman; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel
2013-01-01
Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by three-dimensional ultrastructural reconstructions of [3H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+ and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from that of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post-labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord. PMID:22434575
Towards a global human embryonic stem cell bank.
Lott, Jason P; Savulescu, Julian
2007-08-01
An increasingly unbridgeable gap exists between the supply and demand of transplantable organs. Human embryonic stem cell technology could solve the organ shortage problem by restoring diseased or damaged tissue across a range of common conditions. However, such technology faces several largely ignored immunological challenges in delivering cell lines to large populations. We address some of these challenges and argue in favor of encouraging contribution or intentional creation of embryos from which widely immunocompatible stem cell lines could be derived. Further, we argue that current immunological constraints in tissue transplantation demand the creation of a global stem cell bank, which may hold particular promise for minority populations and other sub-groups currently marginalized from organ procurement and allocation systems. Finally, we conclude by offering a number of practical and ethically oriented recommendations for constructing a human embryonic stem cell bank that we hope will help solve the ongoing organ shortage problem.
Three-dimensional alginate spheroid culture system of murine osteosarcoma.
Akeda, Koji; Nishimura, Akinobu; Satonaka, Haruhiko; Shintani, Ken; Kusuzaki, Katsuyuki; Matsumine, Akihiko; Kasai, Yuichi; Masuda, Koichi; Uchida, Atsumasa
2009-11-01
Osteosarcoma (OS) is the most common primary malignant tumor of the bone and often forms pulmonary metastases, which are the most important prognostic factor. For further elucidation of the mechanism underlying the progression and metastasis of human OS, a culture system mimicking the microenvironment of the tumor in vivo is needed. We report a novel three-dimensional (3D) alginate spheroid culture system of murine osteosarcoma. Two different metastatic clones, the parental Dunn and its derivative line LM8, which has a higher metastatic potential to the lungs, were encapsulated in alginate beads to develop the 3D culture system. The beads containing murine OS cells were also transplanted into mice to determine their metastatic potential in vivo. In this culture system, murine OS cells encapsulated in alginate beads were able to grow in a 3D structure with cells detaching from the alginate environment. The number of detaching cells was higher in the LM8 cell line than the Dunn cell line. In the in vivo alginate bead transplantation model, the rate of pulmonary metastasis was higher with LM8 cells compared with that of Dunn cells. The cell characteristics and kinetics in this culture system closely reflect the original malignant potential of the cells in vivo.
Tortelli, Tharcisio Citrangulo; de Godoy, Lyris Martins Franco; de Souza, Gustavo Antonio; Bonatto, Diego; Otake, Andreia Hanada; de Freitas Saito, Renata; Rosa, Jose Cesar; Greene, Lewis Joel; Chammas, Roger
2017-01-01
Melanoma is responsible for most deaths among skin cancers and conventional and palliative care chemotherapy are limited due to the development of chemoresistance. We used proteomic analysis to identify cellular responses that lead to chemoresistance of human melanoma cell lines to cisplatin. A systems approach to the proteomic data indicated the participation of specific cellular processes such as oxidative phosphorylation, mitochondrial organization and homeostasis, as well as the unfolded protein response (UPR) to be required for the survival of cells treated with cisplatin. Prohibitin (PHB) was among the proteins consistently accumulated, interacting with the functional clusters associated with resistance to cisplatin. We showed PHB accumulated at different levels in melanoma cell lines under stressing stimuli, such as (i) treatment with temozolomide (TMZ), dacarbazine (DTIC) and cisplatin; (ii) serum deprivation; (iii) tunicamycin, an UPR inducer. Prohibitin accumulated in the mitochondria of melanoma cells after cisplatin and tunicamycin treatment and its de novo accumulation led to chemoresistance melanoma cell lines. In contrast, PHB knock-down sensitized melanoma cells to cisplatin and tunicamycin treatment. We conclude that PHB participates in the survival of cells exposed to different stress stimuli, and can therefore serve as a target for the sensitization of melanoma cells to chemotherapy. PMID:28562344
Antitumor Effect of Burchellin Derivatives Against Neuroblastoma.
Kurita, Masahiro; Takada, Tomomi; Wakabayashi, Noriko; Asami, Satoru; Ono, Shinichi; Uchiyama, Taketo; Suzuki, Takashi
2018-02-01
Neuroblastoma is one of the most commonly encountered malignant solid tumors in the pediatric age group. We examined the antitumor effects of five burchellin derivatives against human neuroblastoma cell lines. We evaluated cytotoxicity by the MTT assay for four human neuroblastoma and two normal cell lines. We also performed analysis of the apoptotic induction effect by flow cytometry, and examined the expression levels of apoptosis- and cell growth-related proteins by western blot analysis. We found that one of the burchellin derivatives (compound 4 ) exerted cytotoxicity against the neuroblastoma cell lines. Compound 4 induced caspase-dependent apoptosis via a mitochondrial pathway. The apoptosis mechanisms induced by compound 4 involved caspase-3, -7 and -9 activation and poly (ADP-ribose) polymerase cleavage. In addition, compound 4 induced cell death through inhibition of the cell growth pathway (via extracellular signal-regulated kinase 1 and 2, AKT8 virus oncogene cellular homolog, and signal transducer and activator of transcription 3). Compound 4 exerted cellular cytotoxicity against neuroblastoma cells via induction of caspase-dependent apoptosis, and may offer promise for further development as a useful drug for the treatment of advanced neuroblastoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines.
Klanert, Gerald; Jadhav, Vaibhav; Shanmukam, Vinoth; Diendorfer, Andreas; Karbiener, Michael; Scheideler, Marcel; Bort, Juan Hernández; Grillari, Johannes; Hackl, Matthias; Borth, Nicole
2016-10-10
As Chinese Hamster Ovary (CHO) cells are the cell line of choice for the production of human-like recombinant proteins, there is interest in genetic optimization of host cell lines to overcome certain limitations in their growth rate and protein secretion. At the same time, a detailed understanding of these processes could be used to advantage by identification of marker transcripts that characterize states of performance. In this context, microRNAs (miRNAs) that exhibit a robust correlation to the growth rate of CHO cells were determined by analyzing miRNA expression profiles in a comprehensive collection of 46 samples including CHO-K1, CHO-S and CHO-DUKXB11, which were adapted to various culture conditions, and analyzed in different growth stages using microarrays. By applying Spearman or Pearson correlation coefficient criteria of>|0.6|, miRNAs with high correlation to the overall growth, or growth rates observed in exponential, serum-free, and serum-free exponential phase were identified. An overlap of twelve miRNAs common for all sample sets was revealed, with nine positively and three negatively correlating miRNAs. The here identified panel of miRNAs can help to understand growth regulation in CHO cells and contains putative engineering targets as well as biomarkers for cell lines with advantageous growth characteristics. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Mauchle, Ulrike; Selvarajah, Gayathri T; Mol, Jan A; Kirpensteijn, Jolle; Verheije, Monique H
2015-08-01
Osteosarcoma is the most common primary bone tumour in dogs but various forms of therapy have not significantly improved clinical outcomes. As dysregulation of kinase activity is often present in tumours, kinases represent attractive molecular targets for cancer therapy. The purpose of this study was to identify novel compounds targeting kinases with the potential to induce cell death in a panel of canine osteosarcoma cell lines. The ability of 80 well-characterized kinase inhibitor compounds to inhibit the proliferation of four canine osteosarcoma cell lines was investigated in vitro. For those compounds with activity, the mechanism of action and capability to potentiate the activity of doxorubicin was further evaluated. The screening showed 22 different kinase inhibitors that induced significant anti-proliferative effects across the four canine osteosarcoma cell lines investigated. Four of these compounds (RO 31-8220, 5-iodotubercidin, BAY 11-7082 and an erbstatin analog) showed significant cell growth inhibitory effects across all cell lines in association with variable induction of apoptosis. RO 31-8220 and 5-iodotubercidin showed the highest ability to potentiate the effects of doxorubicin on cell viability. In conclusion, the present study identified several potent kinase inhibitors targeting the PKC, CK1, PKA, ErbB2, mTOR and NF-κB pathways, which may warrant further investigations for the treatment of osteosarcoma in dogs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Karnati, Srikanth; Palaniswamy, Saranya; Alam, Mohammad Rashedul; Oruqaj, Gani; Stamme, Cordula; Baumgart-Vogt, Eveline
2016-03-01
In pulmonary research, temperature-sensitive immortalized cell lines derived from the lung of the "immortomouse" (H-2k(b)-tsA58 transgenic mouse), such as C22 club cells and T7 alveolar epithelial cells type II (AECII), are frequently used cell culture models to study CC10 metabolism and surfactant synthesis. Even though peroxisomes are highly abundant in club cells and AECII and might fulfill important metabolic functions therein, these organelles have never been investigated in C22 and T7 cells. Therefore, we have characterized the peroxisomal compartment and its associated gene transcription in these cell lines. Our results show that peroxisomes are highly abundant in C22 and T7 cells, harboring a common set of enzymes, however, exhibiting specific differences in protein composition and gene expression patterns, similar to the ones observed in club cells and AECII in situ in the lung. C22 cells contain a lower number of larger peroxisomes, whereas T7 cells possess more numerous tubular peroxisomes, reflected also by higher levels of PEX11 proteins. Moreover, C22 cells harbor relatively higher amounts of catalase and antioxidative enzymes in distinct subcellular compartments, whereas T7 cells exhibit higher levels of ABCD3 and plasmalogen synthesizing enzymes as well as nuclear receptors of the PPAR family. This study suggest that the C22 and T7 cell lines of the immortomouse lung are useful models to study the regulation and metabolic function of the peroxisomal compartment and its alterations by paracrine factors in club cells and AECII.
Cell cloning-on-the-spot by using an attachable silicone cylinder.
Park, Hong Bum; Son, Wonseok; Chae, Dong Han; Lee, Jisu; Kim, Il-Woung; Yang, Woomi; Sung, Jae Kyu; Lim, Kyu; Lee, Jun Hee; Kim, Kyung-Hee; Park, Jong-Il
2016-06-10
Cell cloning is a laboratory routine to isolate and keep particular properties of cultured cells. Transfected or other genetically modified cells can be selected by the traditional microbiological cloning. In addition, common laboratory cell lines are prone to genotypic drift during their continual culture, so that supplementary cloning steps are often required to maintain correct lineage phenotypes. Here, we designed a silicone-made attachable cloning cylinder, which facilitated an easy and bona fide cloning of interested cells. This silicone cylinder was easy to make, showed competent stickiness to laboratory plastics including culture dishes, and hence enabled secure isolation and culture for days of selected single cells, especially, on the spots of preceding cell-plating dishes under microscopic examination of visible cellular phenotypes. We tested the silicone cylinder in the monoclonal subcloning from a heterogeneous population of a breast cancer cell line, MDA-MB-231, and readily established independent MDA-MB-231 subclones showing different sublineage phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.
Properties of murine embryonic stem cells maintained on human foreskin fibroblasts without LIF.
Meng, G L; Zur Nieden, N I; Liu, S Y; Cormier, J T; Kallos, M S; Rancourt, D E
2008-04-01
In embryonic stem (ES) cells, leukemia inhibitory factor (LIF)/STAT3, wnt and nodal/activin signaling are mainly active to control pluripotency during expansion. To maintain pluripotency, ES cells are typically cultured on feeder cells of varying origins. Murine ES cells are commonly cultured on murine embryonic fibroblasts (MEFs), which senesce early and must be frequently prepared. This process is laborious and leads to batch variation presenting a challenge for high-throughput ES cell expansion. Although some cell lines can be sustained by exogenous LIF, this method is costly. We present here a novel and inexpensive culture method for expanding murine ES cells on human foreskin fibroblast (HFF) feeders. After 20 passages on HFFs without LIF, ES cell lines showed normal expression levels of pluripotency markers, maintained a normal karyotype and retained the ability to contribute to the germline. As HFFs do not senesce for at least 62 passages, they present a vast supply of feeders. Copyright 2007 Wiley-Liss, Inc.
Arrieta, Oscar; Cardona, Andrés Felipe; Corrales, Luis; Campos-Parra, Alma Delia; Sánchez-Reyes, Roberto; Amieva-Rivera, Eduardo; Rodríguez, July; Vargas, Carlos; Carranza, Hernán; Otero, Jorge; Karachaliou, Nikki; Astudillo, Horacio; Rosell, Rafael
2015-02-01
In non-small cell lung cancer (NSCLC), the association between common EGFR mutations (Del EX19/L858R) with EGFR tyrosine kinase inhibitors (EGFR-TKIs) has been well established. However, this has not been investigated for rare EGFR mutations or their impact on treatment response and outcome to EGFR TKIs (primary objective) and chemotherapy (secondary objective). In an observational prospective cohort, we analyzed 188 NSCLC patients from Mexico, Colombia and Costa Rica with EGFR mutations. As a first line of treatment, 66.5% received platinum-based chemotherapy. All patients received TKIs in first-line treatment or after progression to chemotherapy. The clinical-pathological characteristics as well as the f of common and rare EGFR mutations associated with treatment response were analyzed. Of all patients, 79.5% had common and 20.5% had rare EGFR mutations. Lepidic and acinar adenocarcinomas were associated with common EGFR mutations (p=0.010). Patients with common EGFR mutations had higher response rates to EGFR-TKIs than those who had rare EGFR mutations (63.8 vs 32.4%, p<0.001). Women had increased progression-free survival (PFS) to EGFR-TKIs than men (16.4 vs 9.5 months, p=0.02). The median PFS and overall survival (OS) were better in patients with common EGFR mutations (15.5 vs 3.9 months, p<0.001; and 37.3 vs 17.4 months, p<0.001) respectively. Our findings suggested that only patients with rare EGFR mutations could receive platinum-based chemotherapy as a first-line treatment, due to their low response rates and short PFS in response to EGFR-TKIs. Consequently, EGFR-TKIs could be reserved as a second- or third-line treatment. In patients with EGFR mutations, women have better PFS to EGFR-TKIs than men, and rare EGFR mutations are more frequent in high grade adenocarcinomas than in low grade tumors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lung cells support osteosarcoma cell migration and survival.
Yu, Shibing; Fourman, Mitchell Stephen; Mahjoub, Adel; Mandell, Jonathan Brendan; Crasto, Jared Anthony; Greco, Nicholas Giuseppe; Weiss, Kurt Richard
2017-01-25
Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p <0.05). Lung cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased alkaline phosphatase staining. Lung endothelial HULEC-5a cells are attractants for OS cell migration, proliferation, and survival. The SJSA-1 osteosarcoma cell line demonstrated greater metastatic potential than Saos-2 and U-2 cells. ALDH appears to be involved in the interaction between lung and OS cells, and ALP may be a valuable biomarker for monitoring functional OS changes during metastasis.
Huang, Bei; Belharazem, Djeda; Li, Li; Kneitz, Susanne; Schnabel, Philipp A; Rieker, Ralf J; Körner, Daniel; Nix, Wilfred; Schalke, Berthold; Müller-Hermelink, Hans Konrad; Ott, German; Rosenwald, Andreas; Ströbel, Philipp; Marx, Alexander
2013-01-01
The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.
Philippe, Claude; Vargas-Landin, Dulce B; Doucet, Aurélien J; van Essen, Dominic; Vera-Otarola, Jorge; Kuciak, Monika; Corbin, Antoine; Nigumann, Pilvi; Cristofari, Gaël
2016-01-01
LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI: http://dx.doi.org/10.7554/eLife.13926.001 PMID:27016617
Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Hande, Manoor Prakash; Cao, Tong
2014-08-20
This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures. Copyright © 2014. Published by Elsevier B.V.
Ndour, Papa Alioune; Brocqueville, Guillaume; Ouk, Tan-Sothéa; Goormachtigh, Gautier; Morales, Olivier; Mougel, Alexandra; Bertout, Julie; Melnyk, Oleg; Fafeur, Véronique; Feuillard, Jean; Coll, Jean; Adriaenssens, Eric
2012-04-01
Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.
Ndour, Papa Alioune; Brocqueville, Guillaume; Ouk, Tan-Sothéa; Goormachtigh, Gautier; Morales, Olivier; Mougel, Alexandra; Bertout, Julie; Melnyk, Oleg; Fafeur, Véronique; Feuillard, Jean; Coll, Jean
2012-01-01
Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV. PMID:22258264
Dong, Xuyuan; Fernandez-Salas, Ester; Li, Enxiao; Wang, Shaomeng
2016-03-01
Crizotinib is the first anaplastic lymphoma kinase (ALK) inhibitor to have been approved for the treatment of non-small cell lung cancer (NSCLC) harboring an ALK fusion gene, but it has been found that, in the clinic, patients develop resistance to it. Alectinib and ceritinib are second-generation ALK inhibitors which show remarkable clinical responses in both crizotinib-naive and crizotinib-resistant NSCLC patients harboring an ALK fusion gene. Despite their impressive activity, clinical resistance to alectinib and ceritinib has also emerged. In the current study, we elucidated the resistance mechanisms to these second-generation ALK inhibitors in the H3122 NSCLC cell line harboring the EML4-ALK variant 1 fusion in vitro. Prolonged treatment of the parental H3122 cells with alectinib and ceritinib led to two cell lines which are 10 times less sensitive to alectinib and ceritinib than the parental H3122 cell line. Although mutations of ALK in its kinase domain are a common resistance mechanism for crizotinib, we did not detect any ALK mutation in these resistant cell lines. Rather, overexpression of phospho-ALK and alternative receptor tyrosine kinases such as phospho-EGFR, phospho-HER3, and phospho-IGFR-1R was observed in both resistant cell lines. Additionally, NRG1, a ligand for HER3, is upregulated and responsible for resistance by activating the EGFR family pathways through the NRG1-HER3-EGFR axis. Combination treatment with EGFR inhibitors, in particular afatinib, was shown to be effective at overcoming resistance. Our study provides new mechanistic insights into adaptive resistance to second-generation ALK inhibitors and suggests a potential clinical strategy to combat resistance to these second-generation ALK inhibitors in NSCLC. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Dong, Xuyuan; Fernandez-Salas, Ester; Li, Enxiao; Wang, Shaomeng
2016-01-01
Crizotinib is the first anaplastic lymphoma kinase (ALK) inhibitor to have been approved for the treatment of non–small cell lung cancer (NSCLC) harboring an ALK fusion gene, but it has been found that, in the clinic, patients develop resistance to it. Alectinib and ceritinib are second-generation ALK inhibitors which show remarkable clinical responses in both crizotinib-naive and crizotinib-resistant NSCLC patients harboring an ALK fusion gene. Despite their impressive activity, clinical resistance to alectinib and ceritinib has also emerged. In the current study, we elucidated the resistance mechanisms to these second-generation ALK inhibitors in the H3122 NSCLC cell line harboring the EML4-ALK variant 1 fusion in vitro. Prolonged treatment of the parental H3122 cells with alectinib and ceritinib led to two cell lines which are 10 times less sensitive to alectinib and ceritinib than the parental H3122 cell line. Although mutations of ALK in its kinase domain are a common resistance mechanism for crizotinib, we did not detect any ALK mutation in these resistant cell lines. Rather, overexpression of phospho-ALK and alternative receptor tyrosine kinases such as phospho-EGFR, phospho-HER3, and phospho-IGFR-1R was observed in both resistant cell lines. Additionally, NRG1, a ligand for HER3, is upregulated and responsible for resistance by activating the EGFR family pathways through the NRG1-HER3-EGFR axis. Combination treatment with EGFR inhibitors, in particular afatinib, was shown to be effective at overcoming resistance. Our study provides new mechanistic insights into adaptive resistance to second-generation ALK inhibitors and suggests a potential clinical strategy to combat resistance to these second-generation ALK inhibitors in NSCLC. PMID:26992917
Schlaich, Fabian; Brons, Stephan; Haberer, Thomas; Debus, Jürgen; Combs, Stephanie E; Weber, Klaus-Josef
2013-11-06
Characterization of combination effects of chemotherapy drugs with carbon ions in comparison to photons in vitro. The human colon adenocarcinoma cell line WiDr was tested for combinations with camptothecin, cisplatin, gemcitabine and paclitaxel. In addition three other human tumour cell lines (A549: lung, LN-229: glioblastoma, PANC-1: pancreas) were tested for the combination with camptothecin. Cells were irradiated with photon doses of 2, 4, 6 and 8 Gy or carbon ion doses of 0.5, 1, 2 and 3 Gy. Cell survival was assessed using the clonogenic growth assay. Treatment dependent changes in cell cycle distribution (up to 12 hours post-treatment) were measured by FACS analysis after propidium-iodide staining. Apoptosis was monitored for up to 36 hours post-treatment by Nicoletti-assay (with qualitative verification using DAPI staining). All cell lines exhibited the well-known increase of killing efficacy per unit dose of carbon ion exposure, with relative biological efficiencies at 10% survival (RBE10) ranging from 2.3 to 3.7 for the different cell lines. In combination with chemotherapy additive toxicity was the prevailing effect. Only in combination with gemcitabine or cisplatin (WiDr) or camptothecin (all cell lines) the photon sensitivity was slightly enhanced, whereas purely independent toxicities were found with the carbon ion irradiation, in all cases. Radiation-induced cell cycle changes displayed the generally observed dose-dependent G2-arrest with little effect on S-phase fraction for all cell lines for photons and for carbon ions. Only paclitaxel showed a significant induction of apoptosis in WiDr cell line but independent of the used radiation quality. Combined effects of different chemotherapeutics with photons or with carbon ions do neither display qualitative nor substantial quantitative differences. Small radiosensitizing effects, when observed with photons are decreased with carbon ions. The data support the idea that a radiochemotherapy with common drugs and carbon ion irradiation might be as feasible as respective photon-based protocols. The present data serve as an important radiobiological basis for further combination experiments, as well as clinical studies on combination treatments.
Zheng, Jie; Wang, Huan; Yao, Jia; Zou, Xianjin
2014-01-01
PIK3CA is probably the most commonly mutated kinase in several malignant tumors. Activation of class I phosphatidylinositol 3' kinase (PI3K) regulates tumor proliferation, survival, etc. This study sought to identify whether the pan-inhibitor has more antitumor efficacy in breast cancer cells with PIK3CA Mutation or HER2 amplification than basal-like cancer cells. The proliferation of breast cancer cells was measured by MTT assay in the presence of GDC-0941. Afterwards, we determined the visible changes in signaling in the PI3K/AKT/mTOR pathway. Finally, we examined GDC-0941 effects on cell cycle, apoptosis and motility. GDC-0941 exhibited excellent inhibition on three cell lines with PIK3CA mutation or HER2 amplification. In addition, GDC-0941 resulted in decreased Akt activity. GDC-0941 downregulated the key components of the cell cycle machinery, such as cyclin D1, upregulated the apoptotic markers and inhibited cell motility on three cell lines with PIK3CA Mutation or HER2 amplification. Antitumor activity of GDC-0941 treatment amongst tumor cell lines with PIK3CA mutation and HER2 amplification may have clinical utility in patients with these oncogenic alterations.
Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata
2016-12-01
Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.
Buriani, Alessandro; Fortinguerra, Stefano; Sorrenti, Vincenzo; Dall'Acqua, Stefano; Innocenti, Gabbriella; Montopoli, Monica; Gabbia, Daniela; Carrara, Maria
2017-08-11
Principal component analysis (PCA) multivariate analysis was applied to study the cytotoxic activity of essential oils from various species of the Pistacia genus on human tumor cell lines. In particular, the cytotoxic activity of essential oils obtained from P. lentiscus , P. lentiscus var. chia (mastic gum), P. terebinthus , P. vera , and P. integerrima , was screened on three human adenocarcinoma cell lines: MCF-7 (breast), 2008 (ovarian), and LoVo (colon). The results indicate that all the Pistacia phytocomplexes, with the exception of mastic gum oil, induce cytotoxic effects on one or more of the three cell lines. PCA highlighted the presence of different cooperating clusters of bioactive molecules. Cluster variability among species, and even within the same species, could explain some of the differences seen among samples suggesting the presence of both common and species-specific mechanisms. Single molecules from one of the most significant clusters were tested, but only bornyl-acetate presented cytotoxic activity, although at much higher concentrations (IC 50 = 138.5 µg/mL) than those present in the essential oils, indicating that understanding of the full biological effect requires a holistic vision of the phytocomplexes with all its constituents.
CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.
El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E; Shay, Jerry W
2014-01-01
Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.
CDDO-Me Protects Normal Lung and Breast Epithelial Cells but Not Cancer Cells from Radiation
El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E.; Shay, Jerry W.
2014-01-01
Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients. PMID:25536195
Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation.
Montoya, Vanessa; Fan, Hanli; Bryar, Paul J; Weinstein, Joanna L; Mets, Marilyn B; Feng, Gang; Martin, Joshua; Martin, Alissa; Jiang, Hongmei; Laurie, Nikia A
2015-01-01
Retinoblastoma is the most common intraocular tumor in children. Current management includes broad-based treatments such as chemotherapy, enucleation, laser therapy, or cryotherapy. However, therapies that target specific pathways important for retinoblastoma progression could provide valuable alternatives for treatment. MicroRNAs are short, noncoding RNA transcripts that can regulate the expression of target genes, and their aberrant expression often facilitates disease. The identification of post-transcriptional events that occur after the initiating genetic lesions could further define the rapidly aggressive growth displayed by retinoblastoma tumors. In this study, we used two phenotypically different retinoblastoma cell lines to elucidate the roles of miRNA-31 and miRNA-200a in tumor proliferation. Our approach confirmed that miRNAs-31 and -200a expression is significantly reduced in human retinoblastomas. Moreover, overexpression of these two miRNAs restricts the expansion of a highly proliferative cell line (Y79), but does not restrict the growth rate of a less aggressive cell line (Weri1). Gene expression profiling of miRNA-31 and/or miRNA-200a-overexpressing cells identified differentially expressed mRNAs associated with the divergent response of the two cell lines. This work has the potential to enhance the development of targeted therapeutic approaches for retinoblastoma and improve the efficacy of treatment.
The status of intercellular junctions in established lens epithelial cell lines
Dave, Alpana; Craig, Jamie E.
2012-01-01
Purpose Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. Methods The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT–PCR), and localization was determined by immunofluorescence labeling. Results Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. Conclusions The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that these cell lines form tight junctions but do not form E-cadherin-based adherence junctions. These data further indicate that the regulatory role of NHS in actin remodeling, suggested in another study, is cell type dependent. In conclusion, the SRA 01/04 and αTN4 lens epithelial cell lines model some characteristics of an epithelium. PMID:23288986
The status of intercellular junctions in established lens epithelial cell lines.
Dave, Alpana; Craig, Jamie E; Sharma, Shiwani
2012-01-01
Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT-PCR), and localization was determined by immunofluorescence labeling. Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that these cell lines form tight junctions but do not form E-cadherin-based adherence junctions. These data further indicate that the regulatory role of NHS in actin remodeling, suggested in another study, is cell type dependent. In conclusion, the SRA 01/04 and αTN4 lens epithelial cell lines model some characteristics of an epithelium.
Formation of solid tumors by a single multinucleated cancer cel
Weihua, Zhang; Lin, Qingtang; Ramoth, Asa J.; Fan, Dominic; Fidler, Isaiah J.
2011-01-01
BACKGROUND Large multinucleated cells (MNC) commonly exist in tumorigenic cancer cell lines widely used in research, but their contributions to tumorigenesis are unknown. METHODS In this study, we characterized MNCs in the murine fibrosarcoma cell line UV-2237 in vitro and in vivo at a single cell level. RESULTS We observed that MNCs originated from a rare subpopulation of mononuclear cells; MNCs were positive for a senescent marker, β-galacosidase (SA-β-Gal); MNCs were responsible for the majority of clonogenic activity when cultured in hard agar; MNCs were more resistant to chemotherapeutic agents than were mononuclear cells; MNCs could undergo asymmetric division (producing mononuclear cells) and self-renewal in vitro and in vivo; and, most importantly a single MNC produced orthotopic subcutaneous tumors (composed mainly of mononuclear cells) that gave rise to spontaneous lung metastases in nude mice. CONCLUSIONS MNCs can be growth-arrested under stress, are highly resistant to chemotherapy, and can generate clonal orthotopic metastatic tumors PMID:21365635
[Mucous retention cysts of the minor salivary glands. A specific type of mucocele].
Kakarantza-Angelopoulou, E; Triantaphyllou, A
1989-08-01
The mucous retention cyst of the minor salivary glands represent a specific type of oral mucocele which is lined by epithelium. It is caused probably from partial or complete obstruction of a duct. It affects older patients (over 40 years of age) most commonly women and it is located in different sites than the ordinary mucocele. In this paper we studied the histologic and histochemical features of four cases. The lining epithelium varied from cuboidal to columnar or flattened. Among the cells of the lining epithelium oncocytes were observed.
1987-02-06
MICROCOPY RESOLUTION TEST CHART NA7 UNAL hu AT ’N Ad . . 0 0 10 PROCEEDINGS THE TWENTY-SIXTH MIDWINTER CONFERENCE OF IMMUNOLOGISTS January 17-20, 1987...monoclonal BA5 has also been used to study the abnormal regulation of expression of BCGF receptors in common variable ilmmunodeficiency, SLE , and B cell...antigen, we have shown that membrane Ig-mediated antigen presentation by small B cells to rabbit globulin - specific T cell lines results in a vigorous
Moore, Stephen R; Ritter, Linda E; Gibbons, Catherine F; Grosovsky, Andrew J
2005-10-01
Structural chromosomal rearrangements are commonly observed in tumor karyotypes and in radiation-induced genomic instability. Here we report the effects of TP53 deficiency on karyotypic stability before and after irradiation using related cells and clones differing in cellular TP53 status. The parental cell line, TK6, is a TP53 wild-type human B-lymphoblastoid line with a highly stable karyotype. In the two TK6 derivatives used here, TP53 has been inactivated by biochemical means (expression of HPV16 E6; TK6-5E) or genetic means (allelic inactivation; NH32). Biochemical inactivation of TP53 (TK6-5E) had little effect on the spontaneous karyotype, whereas allelic inactivation of TP53 (NH32) resulted in a modest increase in spontaneous karyotypic instability. After 2 Gy gamma irradiation, the number of unstable clones derived from TP53-deficient cells was significantly elevated compared to the TP53 wild-type counterpart. Extensively destabilized clones were common after irradiation in the set of clones derived from NH32 cells, and one was observed in the set of TK6-5E clones; however, they were never observed in TK6-derived clones. In two of the irradiated NH32 clones, whole chromosomes or chromosome bands were preferentially involved in alterations. These results suggest that genomic instability may differ both quantitatively and qualitatively as a consequence of altered TP53 expression. Some of the results showing repeated and preferential chromosome involvement in aberrations support a model in which instability may be driven by cis mechanisms.
Crizotinib Synergizes with Chemotherapy in Preclinical Models of Neuroblastoma
Krytska, Kateryna; Ryles, Hannah T.; Sano, Renata; Raman, Pichai; Infarinato, Nicole R.; Hansel, Theodore D.; Makena, Monish R.; Song, Michael M.; Reynolds, C. Patrick; Mossé, Yael P.
2015-01-01
Purpose The presence of an ALK aberration correlates with inferior survival for patients with high-risk neuroblastoma. The emergence of ALK inhibitors such as crizotinib has provided novel treatment opportunities. However, certain ALK mutations result in de novo crizotinib resistance, and a phase I trial of crizotinib showed a lack of response in patients harboring those ALK mutations. Thus, understanding mechanisms of resistance and defining circumvention strategies for the clinic is critical. Experimental Design The sensitivity of human neuroblastoma-derived cell lines, cell line-derived and patient-derived xenograft (PDX) models with varying ALK statuses to crizotinib combined with topotecan and cyclophosphamide (topo/cyclo) was examined. Cultured cells and xenografts were evaluated for effects of these drugs on proliferation, signaling, and cell death, and assessment of synergy. Results In neuroblastoma murine xenografts harboring the most common ALK mutations, including those mutations associated with resistance to crizotinib (but not in those with wild-type ALK), crizotinib combined with topo/cyclo enhanced tumor responses and mouse event-free-survival. Crizotinib + topo/cyclo showed synergistic cytotoxicity and higher caspase-dependent apoptosis than crizotinib or topo/cyclo alone in neuroblastoma cell lines with ALK aberrations (mutation or amplification). Conclusions Combining crizotinib with chemotherapeutic agents commonly used in treating newly diagnosed patients with high-risk neuroblastoma restores sensitivity in preclinical models harboring both sensitive ALK aberrations and de novo resistant ALK mutations. These data support clinical testing of crizotinib and conventional chemotherapy with the goal of integrating ALK inhibition into multi-agent therapy for ALK-aberrant neuroblastoma patients. PMID:26438783
2011-07-01
when it is ingested during pregnancy [20,21]. Aside from its role in development, Hh signaling also supports stem cells in adult tissues [22-24]. However...For the mo.~t commonly uti - lized human prostate cancer cell lines (LNCaP and derivatives, DUI45, PC3 or CWR22rvl) grown in culture, Shh, Glil/2 and
... happens when the light-sensitive cells in the macula slowly break down. Your gradually lose your central vision. A common early symptom is that straight lines appear crooked. Regular comprehensive eye exams can detect macular degeneration before the disease causes vision loss. Treatment can ...
Canu, Valeria; Sacconi, Andrea; Lorenzon, Laura; Biagioni, Francesca; Lo Sardo, Federica; Diodoro, Maria Grazia; Muti, Paola; Garofalo, Alfredo; Strano, Sabrina; D'Errico, Antonietta; Grazi, Gian Luca; Cioce, Mario; Blandino, Giovanni
2017-05-02
There is high need of novel diagnostic and prognostic tools for tumors of the digestive system, such as gastric cancer and cholangiocarcinoma. We recently found that miR-204 was deeply downregulated in gastric cancer tissues. Here we investigated whether this was common to other tumors of the digestive system and whether this elicited a miR-204-dependent gene target signature, diagnostically and therapeutically relevant. Finally, we assessed the contribution of the identified target genes to the cell cycle progression and clonogenicity of gastric cancer and cholangiocarcinoma cell lines. We employed quantitative PCR and Affymetrix profiling for gene expression studies. In silico analysis aided us to identifying a miR-204 target signature in publicly available databases (TGCA). We employed transient transfection experiments, clonogenic assays and cell cycle profiling to evaluate the biological consequences of miR-204 perturbation. We identified a novel miR-204 gene target signature perturbed in gastric cancer and in cholangiocarcinoma specimens. We validated its prognostic relevance and mechanistically addressed its biological relevance in GC and CC cell lines. We suggest that restoring the physiological levels of miR-204 in some gastrointestinal cancers might be exploited therapeutically.
Dessus-Babus, Sophie; Moore, Cheryl G; Whittimore, Judy D; Wyrick, Priscilla B
2008-04-01
A common model for studying Chlamydia trachomatis and growing chlamydial stocks uses Lymphogranuloma venereum serovar L2 and non-polarized HeLa cells. However, recent publications indicate that the growth rate and progeny yields can vary considerably for a particular strain depending on the cell line/type used, and seem to be partially related to cell tropism. In the present study, the growth of invasive serovar L2 was compared in endometrial HEC-1B and endocervical HeLa cells polarized on collagen-coated microcarrier beads, as well as in HeLa cells grown in tissue culture flasks. Microscopy analysis revealed no difference in chlamydial attachment/entry patterns or in inclusion development throughout the developmental cycle between cell lines. Very comparable growth curves in both cell lines were also found using real-time PCR analysis, with increases in chlamydial DNA content of 400-500-fold between 2 and 36 h post-inoculation. Similar progeny yields with comparable infectivity were recovered from HEC-1B and HeLa cell bead cultures, and no difference in chlamydial growth was found in polarized vs. non-polarized HeLa cells. In conclusion, unlike other C. trachomatis strains such as urogenital serovar E, invasive serovar L2 grows equally well in physiologically different endometrial and endocervical environments, regardless of the host cell polarization state.
Toward a framework linkage map of the canine genome.
Langston, A A; Mellersh, C S; Wiegand, N A; Acland, G M; Ray, K; Aguirre, G D; Ostrander, E A
1999-01-01
Selective breeding to maintain specific physical and behavioral traits has made the modern dog one of the most physically diverse species on earth. One unfortunate consequence of the common breeding practices used to develop lines of dogs with the desired traits is amplification and propagation of genetic diseases within distinct breeds. To map disease loci we have constructed a first-generation framework map of the canine genome. We developed large numbers of highly polymorphic markers, constructed a panel of canine-rodent hybrid cell lines, and assigned those markers to chromosome groups using the hybrid cell lines. Finally, we determined the order and spacing of markers on individual canine chromosomes by linkage analysis using a reference panel of 17 outbred pedigrees. This article describes approaches and strategies to accomplish these goals.
Kolarević, Stoimir; Milovanović, Dragana; Kračun-Kolarević, Margareta; Kostić, Jovana; Sunjog, Karolina; Martinović, Rajko; Đorđević, Jelena; Novaković, Irena; Sladić, Dušan; Vuković-Gačić, Branka
2018-01-04
In this study, mutagenic and genotoxic potential of anti-tumor compounds avarol, avarone, and its derivatives 3'-methoxyavarone, 4'-(methylamino)avarone and 3'-(methylamino)avarone was evaluated and compared to cytostatics commonly used in chemotherapy (5-fluorouracil, etoposid, and cisplatin). Mutagenic potential of selected hydroquinone and quinones was assessed in prokaryotic model by the SOS/umuC assay in Salmonella typhimurium TA1535/pSK1002. Genotoxic potential was also assessed in eukaryotic models using comet assay in human fetal lung cell line (MRC-5), human adenocarcinoma epithelial cell line (A549), and in human peripheral blood cells (HPBC). The results indicated that avarol and avarone do not exert mutagenic/genotoxic potential. Among the studied avarone derivatives, mutagenic potential was detected by SOS/umuC test for 3'-(methylamino)avarone, but only after metabolic activation. The results of comet assay indicated that 3'-methoxyavarone and 3'-(methylamino)avarone have a significant impact on the level of DNA damage in the MRC-5 cell line. Genotoxic potential was not observed in A549 cells or HPBC probably due to a different uptake rate for the compounds and lower in metabolism rate within these cells.
Gou, Qing; He, ShuJiao; Zhou, ZeJian
2017-02-01
Hepatocellular carcinoma is the most common subtype of liver cancer. Protein arginine N-methyltransferase 1 was shown to be upregulated in various cancers. However, the role of protein arginine N-methyltransferase 1 in hepatocellular carcinoma progression remains incompletely understood. We investigated the clinical and functional significance of protein arginine N-methyltransferase 1 in a series of clinical hepatocellular carcinoma samples and a panel of hepatocellular carcinoma cell lines. We performed suppression analysis of protein arginine N-methyltransferase 1 using small interfering RNA to determine the biological roles of protein arginine N-methyltransferase 1 in hepatocellular carcinoma. In addition, the expression of epithelial-mesenchymal transition indicators was verified by western blotting in hepatocellular carcinoma cell lines after small interfering RNA treatment. Protein arginine N-methyltransferase 1 expression was found to be significantly upregulated in hepatocellular carcinoma cell lines and clinical tissues. Moreover, downregulation of protein arginine N-methyltransferase 1 in hepatocellular carcinoma cells by small interfering RNA could inhibit cell proliferation, migration, and invasion in vitro. These results indicate that protein arginine N-methyltransferase 1 may contribute to hepatocellular carcinoma progression and serves as a promising target for the treatment of hepatocellular carcinoma patients.
Zhao, Wujun; Cheng, Rui; Lim, So Hyun; Miller, Joshua R; Zhang, Weizhong; Tang, Wei; Xie, Jin; Mao, Leidong
2017-06-27
This paper reports a biocompatible and label-free cell separation method using ferrofluids that can separate a variety of low-concentration cancer cells from cell culture lines (∼100 cancer cells per mL) from undiluted white blood cells, with a throughput of 1.2 mL h -1 and an average separation efficiency of 82.2%. The separation is based on the size difference of the cancer cells and white blood cells, and is conducted in a custom-made biocompatible ferrofluid that retains not only excellent short-term viabilities but also normal proliferations of 7 commonly used cancer cell lines. A microfluidic device is designed and optimized specifically to shorten the time of live cells' exposure to ferrofluids from hours to seconds, by eliminating time-consuming off-chip sample preparation and extraction steps and integrating them on-chip to achieve a one-step process. As a proof-of-concept demonstration, a ferrofluid with 0.26% volume fraction was used in this microfluidic device to separate spiked cancer cells from cell lines at a concentration of ∼100 cells per mL from white blood cells with a throughput of 1.2 mL h -1 . The separation efficiencies were 80 ± 3%, 81 ± 5%, 82 ± 5%, 82 ± 4%, and 86 ± 6% for A549 lung cancer, H1299 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, and PC-3 prostate cancer cell lines, respectively. The separated cancer cells' purity was between 25.3% and 28.8%. In addition, the separated cancer cells from this strategy showed an average short-term viability of 94.4 ± 1.3%, and these separated cells were cultured and demonstrated normal proliferation to confluence even after the separation process. Owing to its excellent biocompatibility and label-free operation and its ability to recover low concentrations of cancer cells from white blood cells, this method could lead to a promising tool for rare cell separation.
Establishment and characterization of two cell lines from bluefin trevally Caranx melampygus.
Zhao, Zhengshan; Lu, Yuanan
2006-01-30
Bluefin trevally Caranx melampygus Cuvier is a popular game fish and highly valued sea food with potential importance for aquaculture. To help establish this marine animal as an important aquacultural species in Hawaii and the Pacific and develop in vitro cell culture systems for long-term management and control of potential viral diseases 2 cell lines were established from body muscle (bluefin trevally muscles, BTMS) and fins (bluefin trevally fins, BTF). Primary culture of these cells was conducted at 25 degrees C using L-15 medium supplemented with 20% fetal bovine serum and various antibiotics. These cells have been serially subcultured 37 to 41 times since their initiation in June 2002. Growth of the bluefin trevally cells was serum-dependent at the time of the experiments and their plating efficiencies ranged from 11 to 28.2%. Comparative analysis showed that these bluefin trevally cells grew equally well in the media L-15 (Leibovitz medium), RPMI 1640, M199 and MEM (minimum essential medium), which are commonly used for cell cultures derived from aquatic animals and mammalian species. Examination of the early passage cells stored at -196 degrees C revealed a large percent (nearly 98%) of cell viability following a 6 mo storage in liquid nitrogen. Karyotyping analysis indicated that these bluefin trevally derived cell lines remained diploid with a chromosome count of 48 at passage 7 and 12. These 2 cell lines shared a same pattern of viral susceptibility and they were sensitive to infectious hematopoietic necrosis virus (IHNV), infectious pancreatic necrosis (IPN), spring viremia carp virus (SVCV), viral hemorrhagic septicemia virus (VHSV), and snakehead rhabdovirus (SHRV) but refractory to channel catfish virus (CCV) infection. These newly established cell lines are currently being used to facilitate the diagnosis of viral disease affecting marine fish aquaculture in Hawaii, and will be available for future isolation and study of bluefin trevally fish viruses.
Cre-mediated recombination in pituitary somatotropes
Nasonkin, Igor O.; Potok, Mary Anne; Camper, Sally A.
2009-01-01
We report a transgenic line with highly penetrant cre recombinase activity in the somatotrope cells of the anterior pituitary gland. Expression of the cre transgene is under the control of the locus control region of the human growth hormone gene cluster and the rat growth hormone promoter. Cre recombinase activity was assessed with two different lacZ reporter genes that require excision of a floxed stop sequence for expression: a chick β-actin promoter with the CMV enhancer transgene and a ROSA26 knock-in. Cre activity is detectable in the developing pituitary after initiation of Gh transcription and persists through adulthood with high penetrance in Gh expressing cells and lower penetrance in lactotropes, a cell type that shares a common origin with somatotropes. This Gh-cre transgenic line is suitable for efficient, cell-specific deletion of floxed regions of genomic DNA in differentiated somatotropes and a subset of lactotrope cells of the anterior pituitary gland. PMID:19039787
Sethi, Isha; Romano, Rose-Anne; Gluck, Christian; Smalley, Kirsten; Vojtesek, Borivoj; Buck, Michael J; Sinha, Satrajit
2015-08-07
The transcription factor p63 belongs to the p53/p63/p73 family and plays key functional roles during normal epithelial development and differentiation and in pathological states such as squamous cell carcinomas. The human TP63 gene, located on chromosome 3q28 is driven by two promoters that generate the full-length transactivating (TA) and N-terminal truncated (ΔN) isoforms. Furthermore alternative splicing at the C-terminus gives rise to additional α, β, γ and likely several other minor variants. Teasing out the expression and biological function of each p63 variant has been both the focus of, and a cause for contention in the p63 field. Here we have taken advantage of a burgeoning RNA-Seq based genomic data-sets to examine the global expression profiles of p63 isoforms across commonly utilized human cell-lines and major tissues and organs. Consistent with earlier studies, we find ΔNp63 transcripts, primarily that of the ΔNp63α isoforms, to be expressed in most cells of epithelial origin such as those of skin and oral tissues, mammary glands and squamous cell carcinomas. In contrast, TAp63 is not expressed in the majority of normal cell-types and tissues; rather it is selectively expressed at moderate to high levels in a subset of Burkitt's and diffuse large B-cell lymphoma cell lines. We verify this differential expression pattern of p63 isoforms by Western blot analysis, using newly developed ΔN and TA specific antibodies. Furthermore using unsupervised clustering of human cell lines, tissues and organs, we show that ΔNp63 and TAp63 driven transcriptional networks involve very distinct sets of molecular players, which may underlie their different biological functions. In this study we report comprehensive and global expression profiles of p63 isoforms and their relationship to p53/p73 and other potential transcriptional co-regulators. We curate publicly available data generated in part by consortiums such as ENCODE, FANTOM and Human Protein Atlas to delineate the vastly different transcriptomic landscapes of ΔNp63 and TAp63. Our studies help not only in dispelling prevailing myths and controversies on p63 expression in commonly used human cell lines but also augur new isoform- and cell type-specific activities of p63.
Gaudette, Brian T.; Dwivedi, Bhakti; Chitta, Kasyapa S.; Poulain, Stéphanie; Powell, Doris; Vertino, Paula; Leleu, Xavier; Lonial, Sagar; Chanan-Khan, Asher A.; Kowalski, Jeanne; Boise, Lawrence H.
2015-01-01
Waldenström Macroglobulinemia (WM) is a proliferative disorder of IgM secreting, lymphoplasmacytoid cells that inhabit the lymph nodes and bone marrow. The disease carries a high prevalence of activating mutations in MyD88 (91%) and CXCR4 (28%). Because signaling through these pathways leads to Bcl-xL induction, we examined Bcl-2 family expression in WM patients and cell lines. Unlike other B-lymphocyte-derived malignancies, which become dependent on expression of anti-apoptotic proteins to counter expression of pro-apoptotic proteins, WM samples expressed both pro- and anti-apoptotic Bcl-2 proteins at low levels similar to their normal B-cell and plasma cell counterparts. Three WM cell lines expressed pro-apoptotic Bcl-2 family members Bim or Bax and Bak at low levels which determined their sensitivity to inducers of intrinsic apoptosis. In two cell lines, miR-155 upregulation, which is common in WM, was responsible for inhibition of FOXO3a and Bim expression. Both antagonizing miR-155 to induce Bim and proteasome inhibition increased the sensitivity to ABT-737 in these lines indicating a lowering of the apoptotic threshold. In this manner, treatments that increase pro-apoptotic protein expression increase the efficacy of agents treated in combination in addition to direct killing. PMID:25893290
Oroz-Parra, Irasema; Navarro, Mario; Cervantes-Luevano, Karla E.; Álvarez-Delgado, Carolina; Salvesen, Guy; Sanchez-Campos, Liliana N.; Licea-Navarro, Alexei F.
2016-01-01
Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action. PMID:26861394
Musi, Elgilda; Ambrosini, Grazia; de Stanchina, Elisa; Schwartz, Gary K
2014-05-01
G-protein mutations are one of the most common mutations occurring in uveal melanoma activating the protein kinase C (PKC)/mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K)/AKT pathways. In this study, we described the effect of dual pathway inhibition in uveal melanoma harboring GNAQ and GNA11 mutations via PKC inhibition with AEB071 (sotrastaurin) and PI3K/AKT inhibition with BYL719, a selective PI3Kα inhibitor. Growth inhibition was observed in GNAQ/GNA11-mutant cells with AEB071 versus no activity in wild-type cells. In the GNAQ-mutant cells, AEB071 decreased phosphorylation of myristoylated alanine-rich C-kinase substrate, a substrate of PKC, along with ERK1/2 and ribosomal S6, but persistent AKT activation was present. BYL719 had minimal antiproliferative activity in all uveal melanoma cell lines, and inhibited phosphorylation of AKT in most cell lines. In the GNA11-mutant cell line, similar effects were observed with ERK1/2 inhibition, mostly inhibited by BYL719. With the combination treatment, both GNAQ- and GNA11-mutant cell lines showed synergistic inhibition of cell proliferation and apoptotic cell death. In vivo studies correlated with in vitro findings showing reduced xenograft tumor growth with the combination therapy in a GNAQ-mutant model. These findings suggest a new therapy treatment option for G-protein-mutant uveal melanoma with a focus on specific targeting of multiple downstream pathways as part of combination therapy.
Musi, Elgilda; Ambrosini, Grazia; de Stanchina, Elisa; Schwartz, Gary K.
2014-01-01
G-protein mutations are one of the most common mutations occurring in uveal melanoma activating the protein kinase C (PKC)/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-Kinase (PI3K)/AKT pathways. In this study, we described the effect of dual pathway inhibition in uveal melanoma harboring GNAQ and GNA11 mutations via PKC inhibition with AEB071 (Sotrastaurin) and PI3k/AKT inhibition with BYL719, a selective PI3Kα inhibitor. Growth inhibition was observed in GNAQ/GNA11 mutant cells with AEB071 versus no activity in WT cells. In the GNAQ-mutant cells, AEB071 decreased phosphorylation of MARCKS, a substrate of PKC, along with ERK1/2 and ribosomal S6, but persistent AKT activation was present. BYL719 had minimal anti-proliferative activity in all uveal melanoma cell lines, and inhibited phosphorylation of AKT in most cell lines. In the GNA11 mutant cell line, similar effects were observed with ERK1/2 inhibition, mostly inhibited by BYL719. With the combination treatment, both GNAQ and GNA11 mutant cell lines showed synergistic inhibition of cell proliferation and apoptotic cell death. In vivo studies correlated with in vitro findings showing reduced xenograft tumor growth with the combination therapy in a GNAQ mutant model. These findings suggest a new therapy treatment option for G-protein mutant uveal melanoma with a focus on specific targeting of multiple downstream pathways as part of combination therapy. PMID:24563540
ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer.
Zinn, Rebekah L; Gardner, Eric E; Marchionni, Luigi; Murphy, Sara C; Dobromilskaya, Irina; Hann, Christine L; Rudin, Charles M
2013-06-01
New therapies are critically needed to improve the outcome for patients with small cell lung cancer (SCLC). Insulin-like growth factor 1 receptor (IGF-1R) inhibition is a potential treatment strategy for SCLC: the IGF-1R pathway is commonly upregulated in SCLC and has been associated with inhibition of apoptosis and stimulation of proliferation through downstream signaling pathways, including phosphatidylinositol-3-kinase-Akt and mitogen-activated protein kinase. To evaluate potential determinants of response to IGF-1R inhibition, we assessed the relative sensitivity of 19 SCLC cell lines to OSI-906, a small molecule inhibitor of IGF-1R, and the closely related insulin receptor. Approximately one third of these cell lines were sensitive to OSI-906, with an IC50 < 1 μmol/L. Cell line expression of IGF-1R, IR, IGF-1, IGF-2, IGFBP3, and IGFBP6 did not correlate with sensitivity to OSI-906. Interestingly, OSI-906 sensitive lines expressed significantly lower levels of baseline phospho-ERK relative to resistant lines (P = 0.006). OSI-906 treatment resulted in dose-dependent inhibition of phospho-IGF-1R and phospho-Akt in both sensitive and resistant cell lines, but induced apoptosis and cell-cycle arrest only in sensitive lines. We tested the in vivo efficacy of OSI-906 using an NCI-H187 xenograft model and two SCLC patient xenografts in mice. OSI-906 treatment resulted in 50% tumor growth inhibition in NCI-H187 and 30% inhibition in the primary patient xenograft models compared with mock-treated animals. Taken together our data support IGF-1R inhibition as a viable treatment strategy for a defined subset of SCLC and suggest that low pretreatment levels of phospho-ERK may be indicative of sensitivity to this therapeutic approach. ©2013 AACR
Olave, M C; Vargas-Zambrano, J C; Celis, A M; Castañeda, E; González, J M
2017-07-01
Pathogenesis of cryptococcosis in the central nervous system (CNS) is a topic of ongoing research, including the mechanisms by which this fungus invades and infects the brain. Astrocytes, the most common CNS cells, play a fundamental role in the local immune response. Astrocytes might participate in cryptococcosis either as a host or by responding to fungal antigens. To determine the infectivity of Cryptococcus neoformans var. grubii and Cryptococcus gattii in a human astrocytoma cell line and the induction of major histocompatibility complex (MHC) molecules. A glioblastoma cell line was infected with C. neoformans var. grubii and C. gattii blastoconidia labelled with FUN-1 fluorescent stain. The percentage of infection and expression of HLA class I and II molecules were determined by flow cytometry. The interactions between the fungi and cells were observed by fluorescence microscopy. There was no difference between C. neoformans var. grubii and C. gattii in the percentage infection, but C. neoformans var. grubii induced higher expression of HLA class II than C. gattii. More blastoconidia were recovered from C. neoformans-infected cells than from C. gattii infected cells. Cryptococcus neoformans var. grubii may have different virulence mechanisms that allow its survival in human glia-derived cells. © 2017 Blackwell Verlag GmbH.
Hühner, Jens; Ingles-Prieto, Álvaro; Neusüß, Christian; Lämmerhofer, Michael; Janovjak, Harald
2015-02-01
Cultured mammalian cells essential are model systems in basic biology research, production platforms of proteins for medical use, and testbeds in synthetic biology. Flavin cofactors, in particular flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are critical for cellular redox reactions and sense light in naturally occurring photoreceptors and optogenetic tools. Here, we quantified flavin contents of commonly used mammalian cell lines. We first compared three procedures for extraction of free and noncovalently protein-bound flavins and verified extraction using fluorescence spectroscopy. For separation, two CE methods with different BGEs were established, and detection was performed by LED-induced fluorescence with limit of detections (LODs 0.5-3.8 nM). We found that riboflavin (RF), FMN, and FAD contents varied significantly between cell lines. RF (3.1-14 amol/cell) and FAD (2.2-17.0 amol/cell) were the predominant flavins, while FMN (0.46-3.4 amol/cell) was found at markedly lower levels. Observed flavin contents agree with those previously extracted from mammalian tissues, yet reduced forms of RF were detected that were not described previously. Quantification of flavins in mammalian cell lines will allow a better understanding of cellular redox reactions and optogenetic tools. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fischer, Stephan; Loncar, Jovica; Zaja, Roko; Schnell, Sabine; Schirmer, Kristin; Smital, Tvrtko; Luckenbach, Till
2011-01-25
Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11 activities, in accordance with low abcg2 and abcb11 transcript levels. Our data indicate that transporter expression and activity patterns in the different trout cell lines are irrespective of the tissue of origin, but are determined by factors of cell cultivation. 2010 Elsevier B.V. All rights reserved.
2013-01-01
Background Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Results Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. Conclusions The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data. These methods may be applied to other cell lines, or other biological materials, to highlight unique and previously unrecognized differences between samples. While this study yielded data that may prove useful for OSA researchers and clinicians, further refinements of the described techniques are expected to yield greater accuracy and produce a more thorough SEP analysis. PMID:23758893
Electron microscope detection of an endogenous infection of retrovirus-like particles in L20B cells.
Roberts, Jason A; Thorley, Bruce R; Bruggink, Leesa D; Marshall, John A
2013-08-01
L20B cells are a cell line commonly used for the isolation of poliovirus. The current study indicates that L20B cells are chronically infected with a retrovirus-like particle that replicates in the cytoplasm and buds through the plasma membrane. The findings indicate that care is needed in the use of L20B cells for certain virus isolation studies and emphasize the importance of electron microscope studies as an adjunct to the development of diagnostic virology protocols.
Warabi, E; Usui, K; Tanaka, Y; Matsumoto, H
2001-08-01
The diphenyl ether herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl 3-ethoxy-4-nitrophenyl ether) inhibits protoporphyrinogen oxidase (Protox) which catalyzes the oxidation of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto IX), the last step of the common pathway to chlorophyll and haeme biosynthesis. We have selected an oxyfluorfen-resistant soybean cell line by stepwise selection methods, and the resistance mechanism has been investigated. No growth inhibition was observed in resistant cells at a concentration of 10(-7) M oxyfluorfen, a concentration at which normal cells did not survive. While the degree of inhibition of total extractable Protox by oxyfluorfen was the same in both cell types, the enzyme activity in the mitochondrial fraction from non-treated resistant cells was about nine-fold higher than that from normal cells. Northern analysis of mitochondrial Protox revealed that the concentration of mitochondrial Protox mRNA was much higher in resistant cells than that in normal cells. There were no differences in the absorption and metabolic breakdown of oxyfluorfen. The growth of resistant cells was also insensitive to oxadiazon [5-tert-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-(3H)- one], the other chemical class of Protox inhibitor. Therefore, the resistance of the selected soybean cell line to oxyfluorfen is probably mainly due to the overproduction of mitochondrial Protox.
Forster, J. I.; Köglsberger, S.; Trefois, C.; Boyd, O.; Baumuratov, A. S.; Buck, L.; Balling, R.; Antony, P. M. A.
2016-01-01
The immortalized and proliferative cell line SH-SY5Y is one of the most commonly used cell lines in neuroscience and neuroblastoma research. However, undifferentiated SH-SY5Y cells share few properties with mature neurons. In this study, we present an optimized neuronal differentiation protocol for SH-SY5Y that requires only two work steps and 6 days. After differentiation, the cells present increased levels of ATP and plasma membrane activity but reduced expression of energetic stress response genes. Differentiation results in reduced mitochondrial membrane potential and decreased robustness toward perturbations with 6-hydroxydopamine. We are convinced that the presented differentiation method will leverage genetic and chemical high-throughput screening projects targeting pathways that are involved in the selective vulnerability of neurons with high energetic stress levels. PMID:26738520
Pandeti, Sukanya; Sharma, Komal; Bathula, Surendar Reddy; Tadigoppula, Narender
2014-02-15
Nyctanthes arbortristis Linn (Oleaceae) is widely distributed in sub-Himalayan regions and southwards to Godavari, India commonly known as Harsingar and Night Jasmine. In continuation of our drug discovery programme on Indian medicinal plants, we isolated arbortristoside-A (1) and 7-O-trans-cinnamoyl 6β-hydroxyloganin (2) from the seeds of N. Arbortristis, which exhibited moderate in vitro anticancer activity. Chemical transformation of 2 led to significant improvement in the activity in derivative 8 and 15 against HepG2 (human hepatocellular carcinoma), MCF-7 (breast adenocarcinoma) cell lines. The compounds 8 and 15 were also capable of cell cycle arrest and caspase dependent apoptosis in HepG2 cell lines. These iridoid derivatives hold promise for developing safer alternatives to the marketed drugs. Copyright © 2013 Elsevier GmbH. All rights reserved.
MiR-33a Decreases High-Density Lipoprotein-Induced Radiation Sensitivity in Breast Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, Adam R.; Bambhroliya, Arvind; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
Purpose: We previously showed that high-density lipoprotein (HDL) radiosensitizes inflammatory breast cancer (IBC) cells in vitro and is associated with better local control after radiation therapy in IBC patients. The microRNA miR-33 family negatively regulates the adenosine triphosphate binding cassette transporter subfamily A member 1. We hypothesized that variations in miR-33a expression in IBC cancer cells versus non-IBC cells would correlate with radiation sensitivity following exposure to HDL in vitro. Methods and Materials: MiR-33a expression was analyzed by reverse transcriptase–polymerase chain reaction in 4 cell lines representing common clinical breast cancer subtypes. Overexpression and knockdown of miR-33a was demonstrated via transfection of anmore » miR-33a mimic or an anti-miR-33a construct in high- and low-expressing miR-33a cell lines. Clonogenic survival in vitro in these cells was quantified at baseline and following HDL treatment. MiR-33a expression on distant relapse-free survival (DRFS) of 210 cases downloaded from the Oxford breast cancer dataset was determined. Results: Expression levels of miR-33a were lower in IBC cell lines and IBC tumor samples than in non-IBC cell lines and normal breast tissue. Cholesterol concentrations in the cell membranes were higher in IBC cells than in non-IBC cells. Clonogenic survival following 24 hours of HDL treatment was decreased in response to irradiation in the low-miR-33a–expressing cell lines SUM149 and KPL4, but survival following HDL treatment decreased in the high-miR-33a–expressing cell lines MDA-MB-231 and SUM159. In the high-miR-33a–expressing cell lines, anti-miR-33a transfection decreased radiation resistance in clonogenic assays. Conversely, in the low-miR-33a–expressing cell lines, the miR-33a mimic reversed the HDL-induced radiation sensitization. Breast cancer patients in the top quartile based on miR-33a expression had markedly lower rates of DRFS than the bottom quartile (P=.0228, log-rank test). For breast cancer patients treated with radiation, high miR-33a expression predicted worse overall survival (P=.06). Conclusions: Our results reveal miR-33a negatively regulates HDL-induced radiation sensitivity in breast cancer.« less
Rajendra, Yashas; Hougland, Maria D; Alam, Riazul; Morehead, Teresa A; Barnard, Gavin C
2015-05-01
Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the volumetric productivity of TGE has improved significantly over the past decade, most methods involve extensive cell line engineering and plasmid vector optimization in addition to long fed batch cultures lasting up to 21 days. Our colleagues have recently reported the development of a CHO K1SV GS-KO host cell line. By creating a bi-allelic glutamine synthetase knock out of the original CHOK1SV host cell line, they were able to improve the efficiency of generating high producing stable CHO lines for drug product manufacturing. We developed a TGE method using the same CHO K1SV GS-KO host cell line without any further cell line engineering. We also refrained from performing plasmid vector engineering. Our objective was to setup a TGE process to mimic protein quality attributes obtained from stable CHO cell line. Polyethyleneimine (PEI)-mediated transfections were performed at high cell density (4 × 10(6) cells/mL) followed by immediate growth arrest at 32 °C for 7 days. Optimizing DNA and PEI concentrations proved to be important. Interestingly, found the direct transfection method (where DNA and PEI were added sequentially) to be superior to the more common indirect method (where DNA and PEI are first pre-complexed). Moreover, the addition of a single feed solution and a polar solvent (N,N dimethylacetamide) significantly increased product titers. The scalability of process from 2 mL to 2 L was demonstrated using multiple proteins and multiple expression volumes. Using this simple, short, 7-day TGE process, we were able to successfully produce 54 unique proteins in a fraction of the time that would have been required to produce the respective stable CHO cell lines. The list of 54 unique proteins includes mAbs, bispecific antibodies, and Fc-fusion proteins. Antibody titers of up to 350 mg/L were achieved with the simple 7-day process. Titers were increased to 1 g/L by extending the culture to 16 days. We also present two case studies comparing product quality of material generated by transient HEK293, transient CHO K1SV GS-KO, and stable CHO K1SV KO pool. Protein from transient CHO was more representative of stable CHO protein compared to protein produced from HEK293. © 2014 Wiley Periodicals, Inc.
Leen, Ann M; Bollard, Catherine M; Mendizabal, Adam M; Shpall, Elizabeth J; Szabolcs, Paul; Antin, Joseph H; Kapoor, Neena; Pai, Sung-Yun; Rowley, Scott D; Kebriaei, Partow; Dey, Bimalangshu R; Grilley, Bambi J; Gee, Adrian P; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E
2013-06-27
Virus-specific T cell (VST) lines could provide useful antiviral prophylaxis and treatment of immune-deficient patients if it were possible to avoid the necessity of generating a separate line for each patient, often on an emergency basis. We prepared a bank of 32 virus-specific lines from individuals with common HLA polymorphisms who were immune to Epstein-Barr virus (EBV), cytomegalovirus, or adenovirus. A total of 18 lines were administered to 50 patients with severe, refractory illness because of infection with one of these viruses after hematopoietic stem cell transplant. The cumulative rates of complete or partial responses at 6 weeks postinfusion were 74.0% (95% CI, 58.5%-89.5%) for the entire group (n = 50), 73.9% (95% CI, 51.2% -96.6%) for cytomegalovirus (n = 23), 77.8% for adenovirus (n = 18), and 66.7% (95% CI, 36.9%-96.5%) for EBV (n = 9). Only 4 responders had a recurrence or progression. There were no immediate infusion-related adverse events, and de novo graft-versus-host disease developed in only 2 patients. Despite the disparity between the lines and their recipients, the mean frequency of VSTs increased significantly postinfusion, coincident with striking decreases in viral DNA and resolution of clinical symptoms. The use of banked third-party VSTs is a feasible and safe approach to rapidly treat severe or intractable viral infections after stem cell transplantation. This study is registered at www.clinicaltrials.gov as NCT00711035.
Dong, Zuoli; Zhang, Naiqian; Li, Chun; Wang, Haiyun; Fang, Yun; Wang, Jun; Zheng, Xiaoqi
2015-06-30
An enduring challenge in personalized medicine is to select right drug for individual patients. Testing drugs on patients in large clinical trials is one way to assess their efficacy and toxicity, but it is impractical to test hundreds of drugs currently under development. Therefore the preclinical prediction model is highly expected as it enables prediction of drug response to hundreds of cell lines in parallel. Recently, two large-scale pharmacogenomic studies screened multiple anticancer drugs on over 1000 cell lines in an effort to elucidate the response mechanism of anticancer drugs. To this aim, we here used gene expression features and drug sensitivity data in Cancer Cell Line Encyclopedia (CCLE) to build a predictor based on Support Vector Machine (SVM) and a recursive feature selection tool. Robustness of our model was validated by cross-validation and an independent dataset, the Cancer Genome Project (CGP). Our model achieved good cross validation performance for most drugs in the Cancer Cell Line Encyclopedia (≥80% accuracy for 10 drugs, ≥75% accuracy for 19 drugs). Independent tests on eleven common drugs between CCLE and CGP achieved satisfactory performance for three of them, i.e., AZD6244, Erlotinib and PD-0325901, using expression levels of only twelve, six and seven genes, respectively. These results suggest that drug response could be effectively predicted from genomic features. Our model could be applied to predict drug response for some certain drugs and potentially play a complementary role in personalized medicine.
Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania
2015-09-01
The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia. © 2015 Wiley Periodicals, Inc.
Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay
2008-01-01
Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas. PMID:18450960
Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay
2008-08-01
Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas.
Bamba, Yohei; Nonaka, Masahiro; Sasaki, Natsu; Shofuda, Tomoko; Kanematsu, Daisuke; Suemizu, Hiroshi; Higuchi, Yuichiro; Pooh, Ritsuko K; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami
2017-12-01
We established induced pluripotent stem cells (iPSCs) and neural stem/progenitor cells (NSPCs) from three newborns with spina bifida aperta (SBa) using clinically practical methods. We aimed to develop stem cell lines derived from newborns with SBa for future therapeutic use. SBa is a common congenital spinal cord abnormality that causes defects in neurological and urological functions. Stem cell transplantation therapies are predicted to provide beneficial effects for patients with SBa. However, the availability of appropriate cell sources is inadequate for clinical use because of their limited accessibility and expandability, as well as ethical issues. Fibroblast cultures were established from small fragments of skin obtained from newborns with SBa during SBa repair surgery. The cultured cells were transfected with episomal plasmid vectors encoding reprogramming factors necessary for generating iPSCs. These cells were then differentiated into NSPCs by chemical compound treatment, and NSPCs were expanded using neurosphere technology. We successfully generated iPSC lines from the neonatal dermal fibroblasts of three newborns with SBa. We confirmed that these lines exhibited the characteristics of human pluripotent stem cells. We successfully generated NSPCs from all SBa newborn-derived iPSCs with a combination of neural induction and neurosphere technology. We successfully generated iPSCs and iPSC-NSPCs from surgical samples obtained from newborns with SBa with the goal of future clinical use in patients with SBa.
Yelken, Besra Özmen; Balcı, Tuğçe; Süslüer, Sunde Yılmaz; Kayabaşı, Çağla; Avcı, Çığır Biray; Kırmızıbayrak, Petek Ballar; Gündüz, Cumhur
2017-09-05
Breast cancer is one of the most common malignancies in women and metastasis is the cause of morbidity and mortality in patients. In the development of metastasis, the matrix metalloproteinase (MMP) family has a very important role in tumor development. MMP-2 and MMP-9 work together for extracellular matrix (ECM) cleavage to increase migration. Tomatine is a secondary metabolite that has a natural defense role against plants, fungi, viruses and bacteria that are synthesized from tomato. In additıon, tomatine is also known that it breaks down the cell membrane and is a strong inhibitor in human cancer cells. In this study, it was aimed to evaluate the effect of tomatine on cytotoxicity, apoptosis and matrix metalloproteinase inhibition in MCF-7 cell lines. Human breast cancer cell line (MCF-7) was used as a cell line. In MCF-7 cells, the IC 50 dose of tomatine was determined to be 7.07μM. According to the control cells, apoptosis increased 3.4 fold in 48thh. Activation of MMP-2, MMP-9 and MMP-9\\NGAL has been shown to decrease significantly in cells treated with tomatine by gelatin zymography compared to the control. As a result, matrix metalloproteinase activity and cell proliferation were suppressed by tomatine and this may provide support in treatment methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Integrated analysis of breast cancer cell lines reveals unique signaling pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.
Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised ofmore » 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.« less
Integrated analysis of breast cancer cell lines reveals unique signaling pathways.
Heiser, Laura M; Wang, Nicholas J; Talcott, Carolyn L; Laderoute, Keith R; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L; Laquerre, Sylvie; Jackson, Jeffrey R; Wooster, Richard F; Kuo, Wen Lin; Gray, Joe W; Spellman, Paul T
2009-01-01
Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EgfR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EgfR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EgfR-MAPK signaling. This model was composed of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype-specific subnetworks, including one that suggested Pak1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that Pak1 over-expressing cell lines would have increased sensitivity to Mek inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three Mek inhibitors. We found that Pak1 over-expressing luminal breast cancer cell lines are significantly more sensitive to Mek inhibition compared to those that express Pak1 at low levels. This indicates that Pak1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to Mek inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.
The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents.
Chen, Clark C; Taniguchi, Toshiyasu; D'Andrea, Alan
2007-05-01
DNA alkylating agents including temozolomide (TMZ) and 1,3-bis[2-chloroethyl]-1-nitroso-urea (BCNU) are the most common form of chemotherapy in the treatment of gliomas. Despite their frequent use, the therapeutic efficacy of these agents is limited by the development of resistance. Previous studies suggest that the mechanism of this resistance is complex and involves multiple DNA repair pathways. To better define the pathways contributing to the mechanisms underlying glioma resistance, we tested the contribution of the Fanconi anemia (FA) DNA repair pathway. TMZ and BCNU treatment of FA-proficient cell lines led to a dose- and time-dependent increase in FANCD2 mono-ubiquitination and FANCD2 nuclear foci formation, both hallmarks of FA pathway activation. The FA-deficient cells were more sensitive to TMZ/BCNU relative to their corrected, isogenic counterparts. To test whether these observations were pertinent to glioma biology, we screened a panel of glioma cell lines and identified one (HT16) that was deficient in the FA repair pathway. This cell line exhibited increased sensitivity to TMZ and BCNU relative to the FA-proficient glioma cell lines. Moreover, inhibition of FA pathway activation by a small molecule inhibitor (curcumin) or by small interference RNA suppression caused increased sensitivity to TMZ/BCNU in the U87 glioma cell line. The BCNU sensitizing effect of FA inhibition appeared additive to that of methyl-guanine methyl transferase inhibition. The results presented in this paper underscore the complexity of cellular resistance to DNA alkylating agents and implicate the FA repair pathway as a determinant of this resistance.
Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E
2017-01-03
Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.
Chromosomal imbalances in four new uterine cervix carcinoma derived cell lines.
Hidalgo, Alfredo; Monroy, Alberto; Arana, Rosa Ma; Taja, Lucía; Vázquez, Guelaguetza; Salcedo, Mauricio
2003-03-20
Uterine cervix carcinoma is the second most common female malignancy worldwide and a major health problem in Mexico, representing the primary cause of death among the Mexican female population. High risk human papillomavirus (HPV) infection is considered to be the most important risk factor for the development of this tumor and cervical carcinoma derived cell lines are very useful models for the study of viral carcinogenesis. Comparative Genomic Hybridization (CGH) experiments have detected a specific pattern of chromosomal imbalances during cervical cancer progression, indicating chromosomal regions that might contain genes that are important for cervical transformation. We performed HPV detection and CGH analysis in order to initiate the genomic characterization of four recently established cervical carcinoma derived cell lines from Mexican patients. All the cell lines were HPV18 positive. The most prevalent imbalances in the cell lines were gains in chromosomes 1q23-q32, 3q11.2-q13.1, 3q22-q26.1, 5p15.1-p11.2, this alteration present as a high copy number amplification in three of the cell lines, 7p15-p13, 7q21, 7q31, 11q21, and 12q12, and losses in 2q35-qter, 4p16, 6q26-qter, 9q34 and 19q13.2-qter. Analysis of our present findings and previously reported data suggest that gains at 1q31-q32 and 7p13-p14, as well as losses at 6q26-q27 are alterations that might be unique for HPV18 positive cases. These chromosomal regions, as well as regions with high copy number amplifications, coincide with known fragile sites and known HPV integration sites. The general pattern of chromosomal imbalances detected in the cells resembled that found in invasive cervical tumors, suggesting that the cells represent good models for the study of cervical carcinoma.
Influence of P53 on the radiotherapy response of hepatocellular carcinoma
Gomes, Ana R.; Abrantes, Ana M.; Brito, Ana F.; Laranjo, Mafalda; Casalta-Lopes, João E.; Gonçalves, Ana C.; Sarmento-Ribeiro, Ana B.; Tralhão, José G.
2015-01-01
Background/Aims Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it has a poor prognosis and few therapeutic options. Radiotherapy is one of the most effective forms of cancer treatment, and P53 protein is one of the key molecules determining how a cell responds to radiotherapy. The aim of this study was to determine the therapeutic efficacy of iodine-131 in three human HCC cell lines. Methods Western blotting was used to measure P53 expression. The effects of radiotherapy with iodine-131 were assessed by using the clonogenic assay to evaluate cell survival. Flow cytometry was carried out to examine the effects of iodine-131 on cell death, oxidative stress, reduced intracellular glutathione expression, the mitochondrial membrane potential, and the cell cycle. Results The P53 protein was not expressed in Hep3B2.1-7 cells, was expressed at normal levels in HepG2 cells, and was overexpressed in HuH7 cells. P53 expression in the HuH7 and HepG2 cell lines increased after internal and external irradiation with iodine-131. Irradiation induced a decrease in cell survival and led to a decrease in cell viability in all of the cell lines studied, accompanied by cell death via late apoptosis/necrosis and necrosis. Irradiation with 131-iodine induced mostly cell-cycle arrest in the G0/G1 phase. Conclusions These results suggest that P53 plays a key role in the radiotherapy response of HCC. PMID:26527121
Recombinant HE4 protein promotes proliferation of pancreatic and endometrial cancer cell lines.
Lu, Qinsheng; Chen, Haibin; Senkowski, Christopher; Wang, Jianhao; Wang, Xue; Brower, Steven; Glasgow, Wayne; Byck, David; Jiang, Shi-Wen; Li, Jinping
2016-01-01
Pancreatic adenocarcinoma is one of the most deadly malignancies, and endometrial cancer represents the most common gynecologic cancer in the USA. Better understanding on the pathologic mechanisms and pathways is required for effective treatment of these malignancies. Recently, human epididymis protein 4 (HE4 or WFDC2), a secretory glycoprotein, was found to be overexpressed in pancreatic and endometrial cancers. In addition, studies have shown that HE4 overexpression in endometrial cancer cell lines led to faster cancer progression in a mouse subcutaneous model. These findings raise a question on the role(s) of secretory, extracellular HE4 in cancer development. In the present study, we found that treatment of pancreatic and endometrial cancer cell lines with purified, extracellular HE4 protein led to a significant increase in cell viability and proliferation. Moreover, extracellular HE4 protein was able to increase DNA synthesis, and modulate the mRNA and protein levels of cell cycle marker PCNA and cell cycle inhibitor p21. These effects appeared to be robust and sustainable and required a relatively low concentration of HE4 protein. The findings indicated the secreted, extracellular HE4 may carry some physiopathological functions. Via paracrine/endocrine actions, circulatory HE4 produced by malignant cells may contribute to pancreatic and endometrial cancer progression and/or metastasis.
Human CD4 T cell epitopes selective for Vaccinia versus Variola virus.
Probst, Alicia; Besse, Aurore; Favry, Emmanuel; Imbert, Gilles; Tanchou, Valérie; Castelli, Florence Anne; Maillere, Bernard
2013-04-01
Due to the high degree of sequence identity between Orthopoxvirus species, the specific B and T cell responses raised against these viruses are largely cross-reactive and poorly selective. We therefore searched for CD4 T cell epitopes present in the conserved parts of the Vaccinia genome (VACV) but absent from Variola viruses (VARV), with a view to identifying immunogenic sequences selective for VACV. We identified three long peptide fragments from the B7R, B10R and E7R proteins by in silico comparisons of the poxvirus genomes, and evaluated the recognition of these fragments by VACV-specific T cell lines derived from healthy donors. For the 12 CD4 T cell epitopes identified, we assessed their binding to common HLA-DR allotypes and their capacity to induce peptide-specific CD4 T-cell lines. Four peptides from B7R and B10R displayed a broad binding specificity for HLA-DR molecules and induced multiple T cell lines from healthy donors. Besides their absence from VARV, the two B10R peptide sequences were mutated in the Cowpox virus and completely absent from the Monkeypox genome. This work contributes to the development of differential diagnosis of poxvirus infections. Copyright © 2012 Elsevier Ltd. All rights reserved.
Constitutive NOTCH3 Signaling Promotes the Growth of Basal Breast Cancers.
Choy, Lisa; Hagenbeek, Thijs J; Solon, Margaret; French, Dorothy; Finkle, David; Shelton, Amy; Venook, Rayna; Brauer, Matthew J; Siebel, Christian W
2017-03-15
Notch ligands signal through one of four receptors on neighboring cells to mediate cell-cell communication and control cell fate, proliferation, and survival. Although aberrant Notch activation has been implicated in numerous malignancies, including breast cancer, the importance of individual receptors in distinct breast cancer subtypes and the mechanisms of receptor activation remain unclear. Using a novel antibody to detect active NOTCH3, we report here that NOTCH3 signals constitutively in a panel of basal breast cancer cell lines and in more than one third of basal tumors. Selective inhibition of individual ligands revealed that this signal does not require canonical ligand induction. A NOTCH3 antagonist antibody inhibited growth of basal lines, whereas a NOTCH3 agonist antibody enhanced the transformed phenotype in vitro and in tumor xenografts. Transcriptomic analyses generated a Notch gene signature that included Notch pathway components, the oncogene c-Myc , and the mammary stem cell regulator Id4 This signature drove clustering of breast cancer cell lines and tumors into the common subtypes and correlated with the basal classification. Our results highlight an unexpected ligand-independent induction mechanism and suggest that constitutive NOTCH3 signaling can drive an oncogenic program in a subset of basal breast cancers. Cancer Res; 77(6); 1439-52. ©2017 AACR . ©2017 American Association for Cancer Research.
MicroRNAs-449a and -449b exhibit tumor suppressive effects in retinoblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Alissa; Jones, Aunica; Bryar, Paul J.
2013-11-01
Highlights: •We validate miR-449a/b expression in primary human retinoblastomas and cell lines. •Exogenous miRs-449a/b inhibited proliferation in retinoblastoma cell lines. •Exogenous miRs-449a/b increased apoptosis in retinoblastoma cell lines. •miRs-449a/b could serve as viable therapeutic targets for retinoblastoma treatment. -- Abstract: Retinoblastoma is the most common pediatric cancer of the eye. Currently, the chemotherapeutic treatments for retinoblastoma are broad-based drugs such as vincristine, carboplatin, or etoposide. However, therapies targeted directly to aberrant signaling pathways may provide more effective therapy for this disease. The purpose of our study is to illustrate the relationship between the expressions of miRs-449a and -449b to retinoblastomamore » proliferation and apoptosis. We are the first to confirm an inhibitory effect of miR-449a and -449b in retinoblastoma by demonstrating significantly impaired proliferation and increased apoptosis of tumor cells when these miRNAs are overexpressed. This study suggests that these miRNAs could serve as viable therapeutic targets for retinoblastoma treatment.« less
Nitric Oxide: Perspectives and Emerging Studies of a Well Known Cytotoxin
Paradise, William A.; Vesper, Benjamin J.; Goel, Ajay; Waltonen, Joshua D.; Altman, Kenneth W.; Haines, G. Kenneth; Radosevich, James A.
2010-01-01
The free radical nitric oxide (NO•) is known to play a dual role in human physiology and pathophysiology. At low levels, NO• can protect cells; however, at higher levels, NO• is a known cytotoxin, having been implicated in tumor angiogenesis and progression. While the majority of research devoted to understanding the role of NO• in cancer has to date been tissue-specific, we herein review underlying commonalities of NO• which may well exist among tumors arising from a variety of different sites. We also discuss the role of NO• in human physiology and pathophysiology, including the very important relationship between NO• and the glutathione-transferases, a class of protective enzymes involved in cellular protection. The emerging role of NO• in three main areas of epigenetics—DNA methylation, microRNAs, and histone modifications—is then discussed. Finally, we describe the recent development of a model cell line system in which human tumor cell lines were adapted to high NO• (HNO) levels. We anticipate that these HNO cell lines will serve as a useful tool in the ongoing efforts to better understand the role of NO• in cancer. PMID:20717533
Mulholland, David J; Cox, Michael; Read, Jason; Rennie, Paul; Nelson, Colleen
2004-05-01
Renilla based reporters are frequently used as transfection controls for luciferase transcriptional reporter assays. However, recent evidence suggests that a commonly used reporter (HSV-thymidine kinase driven Renilla) is responsive to androgen receptor (AR) and glucocorticoid receptors in the presence of the cognate ligands, dihydrotestosterone (DHT) and dexamethasone (DEX), respectively [1]. We further validate this important technical difficulty by illustrating that in LNCaP prostate cancer cells, spurious Renilla luciferase activity is a function of (a) the promoter driving Renilla expression, (b) the presence of co-transfected transgenes, and (c) the androgen responsiveness of the cell line used. Using inhibitors of transcription and translation we showed that transcript interference or translational modulation is not a major means by which androgens affect Renilla luciferase activity. As luciferase reporter assays are a frequent means of studying transcriptional co-regulation in the highly androgen dependent LNCaP cell line, our data serves as a cautionary note that alternative normalization techniques should be employed to avoid misinterpretation of data. Copyright 2004 Wiley-Liss, Inc.
Gusev, Alexander; Shi, Huwenbo; Kichaev, Gleb; Pomerantz, Mark; Li, Fugen; Long, Henry W; Ingles, Sue A; Kittles, Rick A; Strom, Sara S; Rybicki, Benjamin A; Nemesure, Barbara; Isaacs, William B; Zheng, Wei; Pettaway, Curtis A; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; John, Esther M; Murphy, Adam B; Signorello, Lisa B; Carpten, John; Leske, M Cristina; Wu, Suh-Yuh; Hennis, Anslem J M; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Witte, John S; Casey, Graham; Kaggwa, Sam; Cook, Michael B; Stram, Daniel O; Blot, William J; Eeles, Rosalind A; Easton, Douglas; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Southey, Melissa C; Fitzgerald, Liesel M; Gronberg, Henrik; Wiklund, Fredrik; Aly, Markus; Henderson, Brian E; Schleutker, Johanna; Wahlfors, Tiina; Tammela, Teuvo L J; Nordestgaard, Børge G; Key, Tim J; Travis, Ruth C; Neal, David E; Donovan, Jenny L; Hamdy, Freddie C; Pharoah, Paul; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Maier, Christiane; Vogel, Walther; Luedeke, Manuel; Herkommer, Kathleen; Kibel, Adam S; Cybulski, Cezary; Wokolorczyk, Dominika; Kluzniak, Wojciech; Cannon-Albright, Lisa; Teerlink, Craig; Brenner, Hermann; Dieffenbach, Aida K; Arndt, Volker; Park, Jong Y; Sellers, Thomas A; Lin, Hui-Yi; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A; Teixeira, Manuel R; Pandha, Hardev; Michael, Agnieszka; Paulo, Paula; Maia, Sofia; Kierzek, Andrzej; Conti, David V; Albanes, Demetrius; Berg, Christine; Berndt, Sonja I; Campa, Daniele; Crawford, E David; Diver, W Ryan; Gapstur, Susan M; Gaziano, J Michael; Giovannucci, Edward; Hoover, Robert; Hunter, David J; Johansson, Mattias; Kraft, Peter; Le Marchand, Loic; Lindström, Sara; Navarro, Carmen; Overvad, Kim; Riboli, Elio; Siddiq, Afshan; Stevens, Victoria L; Trichopoulos, Dimitrios; Vineis, Paolo; Yeager, Meredith; Trynka, Gosia; Raychaudhuri, Soumya; Schumacher, Frederick R; Price, Alkes L; Freedman, Matthew L; Haiman, Christopher A; Pasaniuc, Bogdan
2016-04-07
Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.
Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy
Nguyen, Quynh
2017-01-01
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder that most commonly results from mutations disrupting the reading frame of the dystrophin (DMD) gene. Among the therapeutic approaches employed, exon skipping using antisense oligonucleotides (AOs) is one of the most promising strategies. This strategy aims to restore the reading frame, thus producing a truncated, yet functioning dystrophin protein. In 2016, the Food and Drug Administration (FDA) conditionally approved the first AO-based drug, eteplirsen (Exondys 51), developed for DMD exon 51 skipping. An accurate and reproducible method to quantify exon skipping efficacy is essential for evaluating the therapeutic potential of different AOs sequences. However, previous in vitro screening studies have been hampered by the limited proliferative capacity and insufficient amounts of dystrophin expressed by primary muscle cell lines that have been the main system used to evaluate AOs sequences. In this paper, we illustrate the challenges associated with primary muscle cell lines and describe a novel approach that utilizes immortalized cell lines to quantitatively evaluate the exon skipping efficacy in in vitro studies. PMID:29035327
Chen, Si-Ying; Hu, Sa-Sa; Dong, Qian; Cai, Jiang-Xia; Zhang, Wei-Peng; Sun, Jin-Yao; Wang, Tao-Tao; Xie, Jiao; He, Hai-Rong; Xing, Jian-Feng; Lu, Jun; Dong, Ya-Lin
2013-01-01
Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-π (GST-π) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-π.
Zhang, Feng; Zhang, Chun-Mei; Li, Shu; Wang, Kun-Kun; Guo, Bin-Bin; Fu, Yao; Liu, Lu-Yang; Zhang, Yu; Jiang, Hai-Yu; Wu, Chang-Jun
2018-01-01
Hepatoblastoma (HB) is the most common type of pediatric liver malignancy, which predominantly occurs in young children (aged <5 years), and continues to be a therapeutic challenge in terms of metastasis and drug resistance. As a new pattern of tumor blood supply, vasculogenic mimicry (VM) is a channel structure lined by tumor cells rather than endothelial cells, which contribute to angiogenesis. VM occurs in a variety of solid tumor types, including liver cancer, such as hepatocellular carcinoma. The aim of the present study was to elucidate the effect of arsenic trioxide (As2O3) on VM. In vitro experiments identified that HB cell line HepG2 cells form typical VM structures on Matrigel, and the structures were markedly damaged by As2O3 at a low concentration before the cell viability significantly decreased. The western blot results indicated that As2O3 downregulated the expression level of VM-associated proteins prior to the appearance of apoptotic proteins. In vivo, VM has been observed in xenografts of HB mouse models and identified by periodic acid-Schiff+/CD105− channels lined by HepG2 cells without necrotic cells. As2O3 (2 mg/kg) markedly depresses tumor growth without causing serious adverse reactions by decreasing the number of VM channels via inhibiting the expression level of VM-associated proteins. Thus, the present data strongly indicate that low dosage As2O3 reduces the formation of VM in HB cell line HepG2 cells, independent of cell apoptosis in vivo and in vitro, and may represent as a candidate drug for HB targeting VM. PMID:29138840
Monoclonal antibody against human ovarian tumor-associated antigens.
Poels, L G; Peters, D; van Megen, Y; Vooijs, G P; Verheyen, R N; Willemen, A; van Niekerk, C C; Jap, P H; Mungyer, G; Kenemans, P
1986-05-01
Mouse monoclonal antibodies (OV-TL 3) were raised against human ovarian tumor-associated antigens for diagnostic purposes. A cloned hybridoma cell line was obtained by fusion of murine myeloma cells with spleen lymphocytes from BALB/c mice immunized with a tumor cell suspension prepared from an ovarian endometrioid carcinoma. The antibodies were initially screened for their ability to bind on frozen sections of human ovarian carcinoma tissue and a negative reaction on gastric carcinoma tissue by indirect immunofluorescence. The reactivity of the selected OV-TL 3 clone (IgG1 subclass) was studied on normal and neoplastic tissues as well as on a cell line derived from the original tumor cell suspension used for immunization. OV-TL 3 antibodies stained frozen sections of human ovarian carcinomas of the following histological types: serous, mucinous, endometrioid, and clear cell. No reaction was found with breast cancers or other nongynecological tumors. No differences in staining pattern were observed between primary and metastatic ovarian carcinomas. OV-TL 3 antibodies brightly stained ovarian carcinoma cell clusters in ascitic fluids and left unstained mesothelial cells and peripheral blood cells. The OV-TL 3-defined antigen also remained strongly expressed on a cell line derived from the endometrioid ovarian carcinoma originally used for generation of OV-TL 3 clone. Reactivity was weak and irregular in a few ovarian cysts, while traces of fluorescence were sometimes detected in epithelial cells lining the female genital tract. In only 3 specimens of 15 endometrium carcinomas was weak focal reactivity with OV-TL 3 antibodies observed. The results of the immunofluorescence study were confirmed by the more sensitive avidin-biotin method and by 125I-labeled OV-TL 3 antibodies. Thus OV-TL 3 recognizes a common antigen for most ovarian carcinomas and may be a useful tool for rapid diagnosis of ovarian carcinomas.
Cancer cell specific cytotoxic effect of Rhoeo discolor extracts and solvent fractions.
García-Varela, Rebeca; Fajardo Ramírez, Oscar Raúl; Serna-Saldivar, Sergio O; Altamirano, Julio; Cardineau, Guy A
2016-08-22
Traditional or folk medicine has led to the discovery of important bioactive substances used in several health-related areas. Phytochemicals in Rhoeo discolor (R. discolor) extracts have proven to have important cancer cell specific cytotoxic activity. In the present research, we determined the cytotoxic effect of extracts of R. discolor, a plant commonly used in Mexico for both medicinal and ornamental purposes. We evaluated the cytotoxic effects against three representative human cancer cell lines: HT-29 colon cancer, Hep-G2 liver cancer and PC-3 prostate cancer cell lines, as well as a control fibroblast cell line NIH 3T3. Ten different crude extracts were tested along with fractions derived from the five most bioactive crude extracts. Analytical data, HPLC-MS-TOF, revealed a high content of phenolic compounds such as anthocyanins, ferulic, vanillic, chlorogenic and p-coumaric acid in the extracts. Phenolic compounds have previously been reported as health beneficial with antioxidant and potential cancer specific cytotoxic effects. Studies revealed that low concentrations of these crude bioactive extracts (10µg/ml) and their fractions (50µg/ml) were effective as cancer specific cytotoxic agents, since they caused a significant proliferation inhibition on cancer cell lines (up to 94.2% in HT-29, 92.9% in Hep-G2 and 61.8% in PC-3 of apoptosis induction) with little harm to the control cell line (no higher than 28.3% apoptosis induction), and, importantly, the most effective extracts were mainly water, methanol and ethanol based. These results suggest that a diet containing these compounds may function as a medical aid or chemoprotective. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer.
Goodwin, C M; Rossanese, O W; Olejniczak, E T; Fesik, S W
2015-12-01
Breast cancer is the second-most frequently diagnosed malignancy in US women. The triple-negative breast cancer (TNBC) subtype, which lacks expression of the estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2, afflicts 15% of patients and is refractory to current targeted therapies. Like many cancers, TNBC cells often deregulate programmed cell death by upregulating anti-apoptotic proteins of the B-cell CLL/lymphoma 2 (Bcl-2) family. One family member, myeloid cell leukemia-1 (Mcl-1), is commonly amplified in TNBC and correlates with a poor clinical prognosis. Here we show the effect of silencing Mcl-1 and Bcl-2-like protein 1 isoform 1 (Bcl-xL) expression on viability in a panel of seventeen TNBC cell lines. Cell death was observed in a subset upon Mcl-1 knockdown. In contrast, Bcl-xL knockdown only modestly reduced viability, indicating that Mcl-1 is a more important survival factor. However, dual silencing of both Mcl-1 and Bcl-xL reduced viability in most cell lines tested. These proliferation results were recapitulated by BH3 profiling experiments. Treatment with a Bcl-xL and Bcl-2 peptide had only a moderate effect on any of the TNBC cell lines, however, co-dosing an Mcl-1-selective peptide with a peptide that inhibits Bcl-xL and Bcl-2 was effective in each line tested. Similarly, the selective Bcl-xL inhibitor WEHI-539 was only weakly cytotoxic across the panel, but sensitization by Mcl-1 knockdown markedly improved its EC50. ABT-199, which selectively inhibits Bcl-2, did not synergize with Mcl-1 knockdown, indicating the relatively low importance of Bcl-2 in these lines. Mcl-1 sensitivity is not predicted by mRNA or protein levels of a single Bcl-2 family member, except for only a weak correlation for Bak and Bax protein expression. However, a more comprehensive index composed of Mcl-1, Bcl-xL, Bim, Bak and Noxa protein or mRNA expression correlates well with Mcl-1 sensitivity in TNBC and can also predict Mcl-1 dependency in non-small cell lung cancer cell lines.
Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines.
Silva, Dulcelena Ferreira; Vidal, Flávia Castello Branco; Santos, Debora; Costa, Maria Célia Pires; Morgado-Díaz, José Andrés; do Desterro Soares Brandão Nascimento, Maria; de Moura, Roberto Soares
2014-05-29
Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 μg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett's or Tukey's post hoc tests, as appropriate. We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p<0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the development of chemopreventive drugs and may have therapeutic effects in the treatment of breast cancer.
Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines
2014-01-01
Background Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Methods Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 μg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett’s or Tukey’s post hoc tests, as appropriate. Results We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p < 0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. Conclusions The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the development of chemopreventive drugs and may have therapeutic effects in the treatment of breast cancer. PMID:24886139
Flat Epithelial Atypia of the Breast.
Collins, Laura C
2009-06-01
Lesions of the breast characterized by enlarged terminal duct lobular units lined by columnar epithelial cells are being encountered increasingly in breast biopsy specimens. Some of these lesions feature cuboidal to columnar epithelial cells in which the lining cells exhibit cytologic atypia. The role of these lesions (recently designated "flat epithelial atypia" [FEA]) in breast tumor progression is still emerging. FEA commonly coexists with well-developed examples of atypical ductal hyperplasia, low-grade ductal carcinoma in situ, lobular neoplasia, and tubular carcinoma. These findings and those of recent genetic studies suggest that FEA is a neoplastic lesion that may represent a precursor to or the earliest morphologic manifestation of ductal carcinoma in situ. Additional studies are needed to better understand the biologic nature and clinical significance of these lesions. Copyright © 2009 Elsevier Inc. All rights reserved.
Henderson, Jacob J; Wagner, Jacob P; Hofmann, Nicolle E; Eide, Christopher A; Cho, Yoon-Jae; Druker, Brian J; Davare, Monika A
2017-10-01
Medulloblastoma is the most common malignant brain tumor of childhood. To identify targetable vulnerabilities, we employed inhibitor screening that revealed mTOR inhibitor hypersensitivity in the MYC-overexpressing medulloblastoma cell line, D341. Concomitant exome sequencing unveiled an uncharacterized missense mutation, TSC2 A415V , in these cells. We biochemically demonstrate that the TSC2 A415V mutation is functionally deleterious, leading to shortened half-life and proteasome-mediated protein degradation. These data suggest that MYC cooperates with activated kinase pathways, enabling pharmacologic intervention in these treatment refractory tumors. We propose that identification of activated kinase pathways may allow for tailoring targeted therapy to improve survival and treatment-related morbidity in medulloblastoma. © 2017 Wiley Periodicals, Inc.
Jerez, Sofía; Araya, Héctor; Thaler, Roman; Charlesworth, M Cristine; López-Solís, Remigio; Kalergis, Alexis M; Céspedes, Pablo F; Dudakovic, Amel; Stein, Gary S; van Wijnen, Andre J; Galindo, Mario
2017-02-01
Osteosarcomas are the most prevalent bone tumors in pediatric patients, but can also occur later in life. Bone tumors have the potential to metastasize to lung and occasionally other vital organs. To understand how osteosarcoma cells interact with their micro-environment to support bone tumor progression and metastasis, we analyzed secreted proteins and exosomes from three human osteosarcoma cell lines. Exosome isolation was validated by transmission electron microscopy (TEM) and immuno-blotting for characteristic biomarkers (CD63, CD9, and CD81). Exosomal and soluble proteins (less than 100 kDa) were identified by mass spectrometry analysis using nanoLC-MS/MS and classified by functional gene ontology clustering. We identified a secretome set of >3,000 proteins for both fractions, and detected proteins that are either common or unique among the three osteosarcoma cell lines. Protein ontology comparison of proteomes from exosomes and exosome-free fractions revealed differences in the enrichment of functional categories associated with different biological processes, including those related to tumor progression (i.e., angiogenesis, cell adhesion, and cell migration). The secretome characteristics of osteosarcoma cells are consistent with the pathological properties of tumor cells with metastatic potential. J. Cell. Biochem. 118: 351-360, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Investigating a signature of temozolomide resistance in GBM cell lines using metabolomics.
St-Coeur, Patrick-Denis; Poitras, Julie J; Cuperlovic-Culf, Miroslava; Touaibia, Mohamed; Morin, Pier
2015-10-01
Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Current therapeutic approach to treat this malignancy involves a combination of surgery, radiotherapy and chemotherapy with temozolomide. Numerous mechanisms contributing to inherent and acquired resistance to this chemotherapeutic agent have been identified and can lead to treatment failure. This study undertook a metabolomics-based approach to characterize the metabolic profiles observed in temozolomide-sensitive and temozolomide-resistant GBM cell lines as well as in a small sub-set of primary GBM tumors. This approach was also utilized to explore the metabolic changes modulated upon cell treatment with temozolomide and lomeguatrib, an MGMT inhibitor with temozolomide-sensitizing potential. Metabolites previously explored for their potential role in chemoresistance including glucose, citrate and isocitrate demonstrated elevated levels in temozolomide-resistant GBM cells. In addition, a signature of metabolites comprising alanine, choline, creatine and phosphorylcholine was identified as up-regulated in sensitive GBM cell line across different treatments. These results present the metabolic profiles associated with temozolomide response in selected GBM models and propose interesting leads that could be leveraged for the development of therapeutic or diagnostic tools to impact temozolomide response in GBMs.
Gupta, Rakesh Kumar; Banerjee, Ayan; Pathak, Suajta; Sharma, Chandresh; Singh, Neeta
2013-01-01
Cervical cancer is the second most common cause of cancer in women and has a high mortality rate. Cisplatin, an antitumor agent, is generally used for its treatment. However, the administration of cisplatin is associated with side effects and intrinsic resistance. Morinda citrifolia (Noni), a natural plant product, has been shown to have anti-cancer properties. In this study, we used Noni, cisplatin, and the two in combination to study their cytotoxic and apoptosis-inducing effects in cervical cancer HeLa and SiHa cell lines. We demonstrate here, that Noni/Cisplatin by themselves and their combination were able to induce apoptosis in both these cell lines. Cisplatin showed slightly higher cell killing as compared to Noni and their combination showed additive effects. The observed apoptosis appeared to be mediated particularly through the up-regulation of p53 and pro-apoptotic Bax proteins, as well as down- regulation of the anti-apoptotic Bcl-2, Bcl-XL proteins and survivin. Augmentation in the activity of caspase-9 and -3 was also observed, suggesting the involvement of the intrinsic mitochondrial pathway of apoptosis for both Noni and Cisplatin in HeLa and SiHa cell lines.
Huang, Bei; Belharazem, Djeda; Li, Li; Kneitz, Susanne; Schnabel, Philipp A.; Rieker, Ralf J.; Körner, Daniel; Nix, Wilfred; Schalke, Berthold; Müller-Hermelink, Hans Konrad; Ott, German; Rosenwald, Andreas; Ströbel, Philipp; Marx, Alexander
2013-01-01
The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC. PMID:24427739
Rounseville, M P; Davis, T P
2000-08-01
A hallmark of small cell lung carcinoma (SCLC) is the expression of autocrine growth factors such as neurotensin and gastrin-releasing peptide, which bind to cellular receptors and stimulate cell division. The biological activity of autocrine growth factors requires the concurrent expression of prohormone convertases that cleave the growth factors to their active form, suggesting the expression of these genes is linked in SCLCs. RNase protection assays were used to detect the expression of autocrine growth factor and prohormone convertase mRNAs in a panel of lung cancer cell lines. These mRNAs are coexpressed in SCLC and lung carcinoid cell lines, but not in normal lung epithelium or in non-small cell lung cancers. These findings, together with earlier results from our laboratory, suggest the expression of prohormone convertases has an important role in the development and maintenance of the SCLC phenotype and that autocrine growth factor and prohormone convertase genes respond to a common transcriptional activator in SCLC.
miR-22 suppresses the proliferation and invasion of gastric cancer cells by inhibiting CD151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xun; Yu, Honggang, E-mail: honggang_yuwh@163.com; Lu, Xinyao
2014-02-28
Highlights: • miR-22 was decreased in GC tissue samples and cell lines. • miR-22 suppressed GC cell growth and motility in vitro. • CD151 was a direct target of miR-22. • miR-22 suppressed GC cell growth and motility by inhibiting CD151. - Abstract: Gastric cancer (GC) is the second common cause of cancer-related death worldwide. microRNAs (miRNAs) play important roles in the carcinogenesis of GC. Here, we found that miR-22 was significantly decreased in GC tissue samples and cell lines. Ectopic overexpression of miR-22 remarkably suppressed cell proliferation and colony formation of GC cells. Moreover, overexpression of miR-22 significantly suppressedmore » migration and invasion of GC cells. CD151 was found to be a target of miR-22. Furthermore, overexpression of CD151 significantly attenuated the tumor suppressive effect of miR-22. Taken together, miR-22 might suppress GC cells growth and motility partially by inhibiting CD151.« less
Jeong, Nari; Kim, Jin-Young; Park, Seong-Cheol; Lee, Jong-Kook; Gopal, Ramamourthy; Yoo, Suyeon; Son, Byoung Kwan; Hahm, Joon Soo; Park, Yoonkyung; Hahm, Kyung-Soo
2010-09-03
Pseudomonas aeruginosa has eventually developed resistance against flomoxef sodium, isepamicin and cefpiramide. Therefore, in this study, the antibacterial activity and synergistic effects of the amphipathic-derived P5-18mer antimicrobial peptide were tested against pathogens associated with cholelithiasis that have developed resistance against commonly used antibiotics. The results were then compared with the activities of the amphipathic-derived peptide, P5-18mer, melittin and common antibiotics. Growth inhibition of planktonic bacteria was tested using the National Committee for Clinical Laboratory Standards (NCCLS). The bactericidal activity of the antimicrobial peptides was measured using time-kill curves. Synergistic effects were evaluated by testing the effects of P5-18mer alone and in combination with flomoxef sodium, isepamicin or cefpiramide at 0.5xMIC. P5-18mer peptide displayed strong activity against pathogens and flomoxef sodium, isepamicin and cefpiramide-resistant bacteria cell lines obtained from a patient with gallstones; however, it did not exert cytotoxicity against the human keratinocyte HaCat cell line. In addition, the results of time-kill curves indicated that P5-18mer peptide exerted bactericidal activity against four strains of P. aeruginosa. Finally, the use of P5-18mer and antibiotics exerted synergistic effects against cell lines that were resistant to commonly used antibiotics. These results indicate that this class of peptides has a rapid microbicidal effect on flomoxef sodium, isepamicin and cefpiramide-resistant strains of P. aeruginosa. Therefore, these peptides may be used as a lead drug for the treatment of acquired pathogens from patients with cholelithiasis who are affected with antibiotic-resistant bacteria. Copyright 2010 Elsevier Inc. All rights reserved.
WANG, CHONG-ZHI; ZHANG, CHUN-FENG; CHEN, LINA; ANDERSON, SAMANTHA; LU, FANG; YUAN, CHUN-SU
2015-01-01
Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal micro-biota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anti-cancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis. PMID:26398706
Wen, Yanhua; Wei, Yanjun; Zhang, Shumei; Li, Song; Liu, Hongbo; Wang, Fang; Zhao, Yue; Zhang, Dongwei; Zhang, Yan
2017-05-01
Tumour heterogeneity describes the coexistence of divergent tumour cell clones within tumours, which is often caused by underlying epigenetic changes. DNA methylation is commonly regarded as a significant regulator that differs across cells and tissues. In this study, we comprehensively reviewed research progress on estimating of tumour heterogeneity. Bioinformatics-based analysis of DNA methylation has revealed the evolutionary relationships between breast cancer cell lines and tissues. Further analysis of the DNA methylation profiles in 33 breast cancer-related cell lines identified cell line-specific methylation patterns. Next, we reviewed the computational methods in inferring clonal evolution of tumours from different perspectives and then proposed a deconvolution strategy for modelling cell subclonal populations dynamics in breast cancer tissues based on DNA methylation. Further analysis of simulated cancer tissues and real cell lines revealed that this approach exhibits satisfactory performance and relative stability in estimating the composition and proportions of cellular subpopulations. The application of this strategy to breast cancer individuals of the Cancer Genome Atlas's identified different cellular subpopulations with distinct molecular phenotypes. Moreover, the current and potential future applications of this deconvolution strategy to clinical breast cancer research are discussed, and emphasis was placed on the DNA methylation-based recognition of intra-tumour heterogeneity. The wide use of these methods for estimating heterogeneity to further clinical cohorts will improve our understanding of neoplastic progression and the design of therapeutic interventions for treating breast cancer and other malignancies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
BAHARUDDIN, PUTERI; SATAR, NAZILAH; FAKIRUDDIN, KAMAL SHAIK; ZAKARIA, NORASHIKIN; LIM, MOON NIAN; YUSOFF, NARAZAH MOHD; ZAKARIA, ZUBAIDAH; YAHAYA, BADRUL HISHAM
2016-01-01
Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10–40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC. PMID:26531053
Zhu, Hongbo; Guo, Wei; Zhang, Lidong; Davis, John J; Teraishi, Fuminori; Wu, Shuhong; Cao, Xiaobo; Daniel, Jonathan; Smythe, W Roy; Fang, Bingliang
2005-03-01
5-Fluorouracil (5-FU) is commonly used to treat human colon cancers but resistance to this compound is frequently observed in clinics. To characterize mechanisms of resistance to 5-FU and to develop new strategies for overcoming it, we established two cell lines that were resistant to 5-FU but not other chemotherapeutic agents from parental 5-FU-sensitive cell lines. Western blot analysis revealed that these resistant cells overexpressed the proteins Bcl-XL, Bcl-Xs, and Bik, and further data showed that the cells were resistant to 5-FU-induced DNA damage and cell cycle disorder. However, in parental cells, enforced expression of Bcl-XL protein provided only limited protection from 5-FU-induced apoptosis and overexpression of Bcl-XL protein did not affect 5-FU-induced DNA damage or cell cycle changes; these findings suggested that overexpression of Bcl-XL protein was not the major contributor to 5-FU resistance in any of our cells lines. Even so, knockdown of Bcl-XL protein expression by Bcl-XL-specific small interfering RNA could inhibit proliferation more effectively in 5-FU-resistant cells than in 5-FU-sensitive cells, and the combination of Bcl-XL-specific small interfering RNA and 5-FU had additive effect on the inhibition of 5-FU-resistant cells. These results suggest that down-regulation of Bcl-XL protein expression might provide a new treatment strategy for human 5-FU-resistant colon cancer therapy.
Surget, Sylvanie; Descamps, Géraldine; Brosseau, Carole; Normant, Vincent; Maïga, Sophie; Gomez-Bougie, Patricia; Gouy-Colin, Nadège; Godon, Catherine; Béné, Marie C; Moreau, Philippe; Le Gouill, Steven; Amiot, Martine; Pellat-Deceunynck, Catherine
2014-06-14
The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥ 1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤ 19%). These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies.
2014-01-01
Background The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. Methods A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Results Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53mutated cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤19%). Conclusion These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies. PMID:24927749
Chiu, Jen-Hwey; Chang, Chun-Ju; Wu, Jing-Chong; Liu, Hui-Ju; Wen, Che-Sheng; Hsu, Chung-Hua; Chen, Jiun-Liang; Tseng, Ling-Ming; Chen, Wei-Shone; Shyr, Yi-Ming
2014-01-01
Aim. Our aim the was to screen the commonly used Chinese herbs in order to detect changes in ERBB2 and ESR1 gene expression using MCF-7 cells. Methods. Using the MCF-7 human breast cancer cell line, cell cytotoxicity and proliferation were evaluated by MTT and trypan blue exclusion assays, respectively. A luciferase reporter assay was established by transient transfecting MCF-7 cells with plasmids containing either the ERBB2 or the ESR1 promoter region linked to the luciferase gene. Chinese herbal extracts were used to treat the cells at 24 h after transfection, followed by measurement of their luciferase activity. The screening results were verified by Western blotting to measure HER2 and ER α protein expression. Results. At concentrations that induced little cytotoxicity, thirteen single herbal extracts and five compound recipes were found to increase either ERBB2 or ESR1 luciferase activity. By Western blotting, Si-Wu-Tang, Kuan-Shin-Yin, and Suan-Tsao-Ren-Tang were found to increase either HER2 or ER α protein expression. In addition, Ligusticum chuanxiong was shown to have a great effect on ERBB2 gene expression and synergistically with estrogen to stimulate MCF-7 cell growth. Conclusion. Our results provide important information that should affect clinical treatment strategies among breast cancer patients who are receiving hormonal or targeted therapies.
Sousa, Ana Carolina Prado; Oliveira, Carlo José Freire; Szabó, Matias Pablo Juan; Silva, Marcelo José Barbosa
2018-06-15
Cancer is one of the most troubling diseases and is becoming increasingly common. Breast cancer has a high cure rate when diagnosed early, but when diagnosed late, treatment is frequently painful, devastating and unsuccessful. The search for new treatments that are more effective and less harmful has led to several substances and biomolecules from plants and animals with potential anti-tumor activity. Within this context, ticks have emerged as an excellent source of new molecules with a wide array of therapeutic properties. Various molecules in tick saliva have immunomodulatory, anticoagulant, anti-inflammatory and anti-tumor effects across different tumor cell lines. Our study evaluates the effect of saliva from three widespread and important tick species in Brazil (Amblyomma sculptum, Amblyomma parvum and Rhipicephalus sanguineus) on MCF-7, MDA-MB-231 breast cancer cell lines and on the non-neoplastic MCF-10A cell line. We found that tick saliva from all three tick species showed cytotoxicity to tumor cells (MCF-7, MDA-MB-231) but not to the non-tumor cells (MCF-10A). Morphological changes on the surface of MCF-7 and MDA-MB-231 tumor cells did not occur on the MCF-10A cells. We also demonstrated that tumor cells die by apoptosis induced by caspase-3 and caspase 7 activity, suggesting that intrinsic pathway apoptosis may be triggered by tick saliva. These changes were not observed in MCF10A cells, which remained broadly unchanged even after exposure to diverse types of saliva. These results suggest that tick saliva from these tick species is a source of molecules, or biomolecules, useful for the potential source for the development of new breast cancer drugs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhao, Ran; Qin, Wenjun; Qin, Ruihuan; Han, Jing; Li, Can; Wang, Yisheng; Xu, Congjian
2017-01-01
Ovarian cancer is one of the most lethal gynecological malignancies, in which platinum resistance is a common cause of its relapse and death. Glycosylation has been reported to be involved in drug resistance, and glycomic analyses of ovarian cancer may improve our understanding of the mechanisms underlying cancer cell drug resistance and provide potential biomarkers and therapeutic targets. The serous ovarian cancer cell line A2780 and its platinum-resistant counterpart A2780-cp were used in this study. We performed a lectin array analysis to compare the glycosylation patterns of the two cell lines, a gene expression array was employed to probe the differences in glycogenes. Furthermore, the results were verified by lectin blots. A2780-cp cell exhibited stronger intensities of Lens culinaris (LCA) Canavalia ensiformis (ConA), and Lycopersicon esculentum (LEL) and weaker intensities of Sambucus nigra (SNA) lectins. The gene expression array analysis revealed increased expression of Fut8, B3gnt4, B3gnt5, B4galt2 and decreased expression of Fut1 and ST6GalNAc 6 expression were evident in the A2780-cp cells. The lectin blot confirmed the differences in LCA, ConA, SNA and LEL between the A2780 and A2780-cp cells. The combination of the lectin and gene expression analyses showed that the levels of core fucosylation and poly-LacNAc were increased in the A2780-cp cells and the levels of Fuc α1-2(gal β1-4) GlcNAc and α2-6-linked sialic structures were decreased in the A2780-cp cells. These glycans represent potential biomarkers and might be involved in the mechanism of drug resistance in ovarian cancer.
Antiproliferative activity of Haematoxylum brasiletto H. Karst
Bello-Martínez, J; Jiménez-Estrada, M; Rosas-Acevedo, JL; Avila-Caballero, LP; Vidal-Gutierrez, M; Patiño-Morales, C; Ortiz-Sánchez, E; Robles-Zepeda, RE
2017-01-01
Background: Haematoxylum brasiletto is a tree that grows in Central America, commonly known as “Palo de Brasil,” which is used in the traditional medicine for the treatment of cancer and gastric ulcers. Objective: The aim of this study was to isolate the compounds responsible for antiproliferative activity of H. brasiletto. Materials and Methods: A bioassay-guided fractionation of ethanol extract of H. brasiletto was performed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide cell proliferation assay to measure the antiproliferative activity on six human cancer cell lines (A549, LS180, HeLa, SiHa, MDA-MB-231, and NCI-H1299) and one human noncancer cell line (ARPE-19). The ethanol extract was partitioned with hexane, dichloromethane, and ethyl acetate. The active dichloromethane fraction was fractioned by silica-column chromatography, and active subfractions were separated using preparative-thin layer chromatography. The chemical structure of an isolated compound was elucidated with different chemical and spectroscopic methods. Results: The flavonoid brazilin (1) was isolated from the heartwood of H. brasiletto. The measurement of antiproliferative activity showed that brazilin can inhibit the growth of SiHa, MDA-MB-231, A549, and NCI-H1299 cell lines by 50% at doses of 44.3, 48.7, 45.4, and 48.7 μM, respectively. Furthermore, the flavonoid showed a high antiproliferative activity on LS 180 and HeLa with IC50 values of 62.2 and 71.9 μM, respectively. Brazilin also exhibited a high antiproliferative activity on the human noncancer cell line ARPE-19 with an IC50 value of 37.9 μM. Conclusions: Brazilin: (6aS, 11bR)-7,11b-Dihidro-6H-indeno[2,1-c] cromeno-3,6a, 9,10-tetrol was isolated; this compound demonstrated antiproliferative activity against several human cancer cell lines. This work demonstrated that brazilin, a flavonoid isolated and characterized of H. brasiletto, has antiproliferative activity against cancer cell lines. SUMMARY The flavonoid brazilin was isolated from the heartwood of H. brasilettoBrazilin is able to inhibit the growth of SiHa, MDA-MB-231, A549 and NCI- H1299 cancerous cell linesBrazilin exhibited a moderate antiproliferative activity on the human non-cancer cell line ARPE-19Brazilin demonstrated to have antiproliferative activity against human cancer cell lines and could be a potential source of anticancer agents. Abbreviations used: MTT: [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium]; FBS: Fetal bovine serum; TLC: Thin layer chromatography. PMID:28808394
Shahin, Mai I; Roy, Joyeeta; Hanafi, Maha; Wang, Dongyao; Luesakul, Urarika; Chai, Yifeng; Muangsin, Nongnuj; Lasheen, Deena S; Abou El Ella, Dalal A; Abouzid, Khaled A; Neamati, Nouri
2018-05-29
No new and effective treatments have been approved for the treatment of esophageal squamous cell carcinoma (ESCC) in the past decade. Cisplatin and 5-fluoruracil are the most commonly used drugs for this disease. In order to develop a new class of drugs effective in our ESCC phenotypic screens, we began a systematic approach to generate novel compounds based on the 2-oxo-1,2-dihydroquinoline-4-carboxamide fragment. Herein, we report on the synthesis and initial assessment of 55 new analogues in two ESCC cell lines. Some of the active analogues with IC 50 values around 10 μM were tested in three additional cell lines. Our structure-activity relationships revealed remarkable alterations in the anti proliferative activities upon modest chemical modifications and autophagy modulation is a suggested mechanism of action. Copyright © 2018. Published by Elsevier Masson SAS.
Expression and promoter DNA methylation of MLH1 in colorectal cancer and lung cancer.
Ma, Yunxia; Chen, Yuan; Petersen, Iver
2017-04-01
Aberrant DNA methylation is a common molecular feature in human cancer. The aims of this study were to analyze the methylation status of MLH1, one of the DNA mismatch repair (MMR) genes, in human colorectal and lung cancer and to evaluate its clinical relevance. The expression of MLH1 was analyzed in 8 colorectal cancer (CRC) and 8 lung cancer cell lines by real-time RT-PCR and western blotting. The MLH1 protein expression was evaluated by immunohistochemistry on tissue microarrays including 121 primary CRC and 90 lung cancer patient samples. In cancer cell lines, the methylation status of MLH1 promoter and exon 2 was investigated by bisulfite sequencing (BS). Methylation-specific-PCR (MSP) was used to evaluate methylation status of MLH1. The expression of MLH1 mRNA was detected in 8 CRC cell lines as well as normal colonic fibroblast cells CCD-33Co. At protein levels, MLH1 was lost in one CRC cell line HCT-116 and normal cells CCD-33Co. No methylation was found in the promoter and exon 2 of MLH1 in CRC cell lines. MLH1 was expressed in 8 lung cancer cell lines at both mRNA and protein levels. Compared to cancer cells, normal bronchial epithelial cells (HBEC) had lower expression of MLH1 protein. In primary CRC, 54.5% of cases exhibited positive staining, while 47.8% of lung tumors were positive for MLH1 protein. MSP analysis showed that 58 out of 92 (63.0%) CRC and 41 out of 73 (56.2%) lung cancer exhibited MLH1 methylation. In CRC, the MLH1 methylation was significantly associated with tumor invasion in veins (P=0.012). However, no significant links were found between MLH1 expression and promoter methylation in both tumor entities. MLH1 methylation is a frequent molecular event in CRC and lung cancer patients. In CRC, methylation of MLH1 could be linked to vascular invasiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.
Black, Jonathan D; Lopez, Salvatore; Cocco, Emiliano; Bellone, Stefania; Altwerger, Gary; Schwab, Carlton L; English, Diana P; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D
2015-01-01
Objectives: We evaluated the role of PIK3CA-mutations as mechanism of resistance to trastuzumab in primary HER2/neu-amplified uterine-serous-carcinoma (USC) cell lines. Methods: Fifteen whole-exome-sequenced USC cell lines were tested for HER2/neu-amplification and PIK3CA-mutations. Four HER2/neu-amplified USC (2-harbouring wild-type-PIK3CA-genes and 2-harbouring oncogenic-PIK3CA-mutations) were evaluated in in vitro dose-titration-proliferation-assays, cell-viability and HER2 and S6-protein-phosphorylation after exposure to trastuzumab. USC harbouring wild-type-PIK3CA were transfected with plasmids encoding oncogenic PIK3CA-mutations (i.e., H1047R/R93Q) and exposed to trastuzumab. Finally, trastuzumab efficacy was tested by using two USC xenograft mouse models. Results: Seven out of fifteen (46%) of the USC cell lines were HER2/neu-amplified by fluorescence in situ hybridisation. Within these tumours four out of seven (57%) were found to harbour oncogenic PIK3CA-mutations vs two out of eight (25%) of the HER2/neu not amplified cell lines (P=0.01). HER2/neu-amplified/PIK3CA-mutated USC were highly resistant to trastuzumab when compared with HER2/neu-amplified/wild-type-PIK3CA cell lines (P=0.02). HER2/neu-amplified/PIK3CA wild-type cell lines transfected with oncogenic PIK3CA-mutations increased their resistance to trastuzumab (P<0.0001). Trastuzumab was effective in reducing tumour growth (P=0.001) and improved survival (P=0.0001) in mouse xenografts harbouring HER2-amplified/PIK3CA wild-type USC but not in HER2-amplified/PIK3CA-mutated tumours. Conclusions: Oncogenic PIK3CA mutations are common in HER2/neu-amplified USC and may constitute a major mechanism of resistance to trastuzumab treatment. PMID:26325104
Black, Jonathan D; Lopez, Salvatore; Cocco, Emiliano; Bellone, Stefania; Altwerger, Gary; Schwab, Carlton L; English, Diana P; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D
2015-09-29
We evaluated the role of PIK3CA-mutations as mechanism of resistance to trastuzumab in primary HER2/neu-amplified uterine-serous-carcinoma (USC) cell lines. Fifteen whole-exome-sequenced USC cell lines were tested for HER2/neu-amplification and PIK3CA-mutations. Four HER2/neu-amplified USC (2-harbouring wild-type-PIK3CA-genes and 2-harbouring oncogenic-PIK3CA-mutations) were evaluated in in vitro dose-titration-proliferation-assays, cell-viability and HER2 and S6-protein-phosphorylation after exposure to trastuzumab. USC harbouring wild-type-PIK3CA were transfected with plasmids encoding oncogenic PIK3CA-mutations (i.e., H1047R/R93Q) and exposed to trastuzumab. Finally, trastuzumab efficacy was tested by using two USC xenograft mouse models. Seven out of fifteen (46%) of the USC cell lines were HER2/neu-amplified by fluorescence in situ hybridisation. Within these tumours four out of seven (57%) were found to harbour oncogenic PIK3CA-mutations vs two out of eight (25%) of the HER2/neu not amplified cell lines (P=0.01). HER2/neu-amplified/PIK3CA-mutated USC were highly resistant to trastuzumab when compared with HER2/neu-amplified/wild-type-PIK3CA cell lines (P=0.02). HER2/neu-amplified/PIK3CA wild-type cell lines transfected with oncogenic PIK3CA-mutations increased their resistance to trastuzumab (P<0.0001). Trastuzumab was effective in reducing tumour growth (P=0.001) and improved survival (P=0.0001) in mouse xenografts harbouring HER2-amplified/PIK3CA wild-type USC but not in HER2-amplified/PIK3CA-mutated tumours. Oncogenic PIK3CA mutations are common in HER2/neu-amplified USC and may constitute a major mechanism of resistance to trastuzumab treatment.
Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.
Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P
2012-01-01
Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Augmenting Chinese hamster genome assembly by identifying regions of high confidence.
Vishwanathan, Nandita; Bandyopadhyay, Arpan A; Fu, Hsu-Yuan; Sharma, Mohit; Johnson, Kathryn C; Mudge, Joann; Ramaraj, Thiruvarangan; Onsongo, Getiria; Silverstein, Kevin A T; Jacob, Nitya M; Le, Huong; Karypis, George; Hu, Wei-Shou
2016-09-01
Chinese hamster Ovary (CHO) cell lines are the dominant industrial workhorses for therapeutic recombinant protein production. The availability of genome sequence of Chinese hamster and CHO cells will spur further genome and RNA sequencing of producing cell lines. However, the mammalian genomes assembled using shot-gun sequencing data still contain regions of uncertain quality due to assembly errors. Identifying high confidence regions in the assembled genome will facilitate its use for cell engineering and genome engineering. We assembled two independent drafts of Chinese hamster genome by de novo assembly from shotgun sequencing reads and by re-scaffolding and gap-filling the draft genome from NCBI for improved scaffold lengths and gap fractions. We then used the two independent assemblies to identify high confidence regions using two different approaches. First, the two independent assemblies were compared at the sequence level to identify their consensus regions as "high confidence regions" which accounts for at least 78 % of the assembled genome. Further, a genome wide comparison of the Chinese hamster scaffolds with mouse chromosomes revealed scaffolds with large blocks of collinearity, which were also compiled as high-quality scaffolds. Genome scale collinearity was complemented with EST based synteny which also revealed conserved gene order compared to mouse. As cell line sequencing becomes more commonly practiced, the approaches reported here are useful for assessing the quality of assembly and potentially facilitate the engineering of cell lines. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cody, N A L; Ouellet, V; Manderson, E N; Quinn, M C J; Filali-Mouhim, A; Tellis, P; Zietarska, M; Provencher, D M; Mes-Masson, A-M; Chevrette, M; Tonin, P N
2007-01-25
Multiple chromosome 3p tumor suppressor genes (TSG) have been proposed in the pathogenesis of ovarian cancer based on complex patterns of 3p loss. To attain functional evidence in support of TSGs and identify candidate regions, we applied a chromosome transfer method involving cell fusions of the tumorigenic OV90 human ovarian cancer cell line, monoallelic for 3p and an irradiated mouse cell line containing a human chromosome 3 in order to derive OV90 hybrids containing normal 3p fragments. The resulting hybrids showed complete or incomplete suppression of tumorigenicity in nude mouse xenograft assays, and varied in their ability to form colonies in soft agarose and three-dimensional spheroids in a manner consistent with alteration of their in vivo tumorigenic phenotypes. Expression microarray analysis identified a set of common differentially expressed genes, such as SPARC, DAB2 and VEGF, some of which have been shown implicated in ovarian cancer. Genotyping assays revealed that they harbored normal 3p fragments, some of which overlapped candidate TSG regions (3p25-p26, 3p24 and 3p14-pcen) identified previously in loss of heterozygosity analyses of ovarian cancers. However, only the 3p12-pcen region was acquired in common by all hybrids where expression microarray analysis identified differentially expressed genes. The correlation of 3p12-pcen transfer and tumor suppression with a concerted re-programming of the cellular transcriptome suggest that the putative TSG may have affected key underlying events in ovarian cancer.
Complex mixtures of synthetic and natural androgens and estrogens, and many other non-steroidal components are commonly released to the aquatic environment from anthropogenic sources. It is important to understand the potential interactive (i.e., additive, synergistic, antagonist...
Gaudio, E; Tarantelli, C; Kwee, I; Barassi, C; Bernasconi, E; Rinaldi, A; Ponzoni, M; Cascione, L; Targa, A; Stathis, A; Goodstal, S; Zucca, E; Bertoni, F
2016-06-01
Lymphomas are among the most common human cancers and represent the cause of death for still too many patients. The B-cell receptor with its downstream signaling pathways represents an important therapeutic target for B-cell lymphomas. Here, we evaluated the activity of the MEK1/2 inhibitor pimasertib as single agent and in combination with other targeted drugs in lymphoma preclinical models. Cell lines derived mature B-cell lymphomas were exposed to increasing doses of pimasertib alone. Immunoblotting and gene expression profiling were performed. Combination of pimasertib with idelalisib or ibrutinib was assessed. Pimasertib as single agent exerted a dose-dependent antitumor activity across a panel of 23 lymphoma cell lines, although at concentrations higher than reported for solid tumors. Strong synergism was observed with pimasertib combined with the PI3K inhibitor idelalisib and the BTK inhibitor ibrutinib in cell lines derived from diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma. The data were confirmed in an in vivo experiment treating DLBCL xenografts with pimasertib and ibrutinib. The data presented here provide the basis for further investigation of regimens including pimasertib in relapsed and refractory lymphomas. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso
2015-06-01
Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.
Cheng, Ran; Liu, Ya-Jing; Cui, Jun-Wei; Yang, Man; Liu, Xiao-Ling; Li, Peng; Wang, Zhan; Zhu, Li-Zhang; Lu, Si-Yi; Zou, Li; Wu, Xiao-Qin; Li, Yu-Xia; Zhou, You; Fang, Zheng-Yu; Wei, Wei
2017-05-02
Tamoxifen is still the most commonly used endocrine therapy drug for estrogen receptor (ER)-positive breast cancer patients and has an excellent outcome, but tamoxifen resistance remains a great impediment to successful treatment. Recent studies have prompted an anti-tumor effect of aspirin. Here, we demonstrated that aspirin not only inhibits the growth of ER-positive breast cancer cell line MCF-7, especially when combined with tamoxifen, but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Aspirin combined with tamoxifen can down regulate cyclinD1 and block cell cycle in G0/G1 phase. Besides, tamoxifen alone represses c-myc, progesterone receptor (PR) and cyclinD1 in MCF-7 cell line but not in MCF-7/TAM, while aspirin combined with tamoxifen can inhibit the expression of these proteins in the resistant cell line. When knocking down c-myc in MCF-7/TAM, cells become more sensitive to tamoxifen, cell cycle is blocked as well, indicating that aspirin can regulate c-myc and cyclinD1 proteins to overcome tamoxifen resistance. Our study discovered a novel role of aspirin based on its anti-tumor effect, and put forward some kinds of possible mechanisms of tamoxifen resistance in ER-positive breast cancer cells, providing a new strategy for the treatment of ER-positive breast carcinoma.
Radošević, Kristina; Železnjak, Jelena; Cvjetko Bubalo, Marina; Radojčić Redovniković, Ivana; Slivac, Igor; Gaurina Srček, Višnja
2016-09-01
With the advent of ionic liquids, much was expected concerning their applicability as an alternative to organic solvents in the chemical technology and biotechnology fields. However, the most studied and commonly used ionic liquids based on imidazolium and pyridinium were found not to be as environmentally friendly as it was first expected. Therefore, a new generation of alternative solvents named natural ionic liquids and deep eutectic solvents, composed of natural and/or renewable compounds, have come into focus in recent years. Since the number of newly synthesized chemicals increases yearly, simple and reliable methods for their ecotoxicological assessment are necessary. Permanent fish cell lines can serve as a test system for the evaluation of a chemical's cytotoxicity. This paper presents research results on the cytotoxic effects on Channel Catfish Ovary (CCO) cell line induced by fifteen cholinium-based ionic liquids and deep eutectic solvents. Based on the decrease in cell viability, the most obvious toxic effect on CCO cells was caused by ionic liquid choline oxalate, while other solvents tested exhibited low cytotoxicity. Therefore, we can conclude that cholinium-based ionic liquids and deep eutectic solvents are comparatively less toxic to CCO cells than conventional ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.
Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi
2009-01-01
Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.
Chemical-Induced Erythrocytosis in Wistar Rats: Assessment as a Model for Human Polycythemia.
1985-05-01
polycythemic condition are unusual features that are more typically found in polycythemia vera, an autonomous myeloproliferative disorder in man that results...polycythemia vera, an autonomous myeloproliferative disorder in man that results from clonal neoplasia of bone marrow stem cells. However, the data described...5 and stroma cell lines [55]. These diseases are commonly termed ’ myeloproliferative disorders’, or better, ’myelodysplastic disease’ which emphasizes
Zuffa, Elisa; Mancini, Manuela; Brusa, Gianluca; Pagnotta, Eleonora; Hattinger, Claudia Maria; Serra, Massimo; Remondini, Daniel; Castellani, Gastone; Corrado, Patrizia; Barbieri, Enza; Santucci, Maria Alessandra
2008-07-01
To investigate the impact of TP53 (tumor protein 53, p53) on genomic stability of osteosarcoma (OS). In first instance, we expressed in OS cell line SAOS-2 (lacking p53) a wild type (wt) p53 construct, whose protein undergoes nuclear import and activation in response to ionizing radiations (IR). Thereafter, we investigated genomic imbalances (amplifications and deletions at genes or DNA regions most frequently altered in human cancers) associated with radio-resistance relative to p53 expression by mean of an array-based comparative genomic hybridization (aCGH) strategy. Finally we investigated a putative marker of radio-induced oxidative stress, a 4,977 bp deletion at mitochondrial (mt) DNA usually referred to as 'common' deletion, by mean of a polimerase chain reaction (PCR) strategy. In radio-resistant subclones generated from wt p53-transfected SAOS-2 cells DNA deletions were remarkably reduced and the accumulation of 'common' deletion at mtDNA (that may let the persistence of oxidative damage by precluding detoxification from reactive oxygen species [ROS]) completely abrogated. The results of our study confirm that wt p53 has a role in protection of OS cell DNA integrity. Multiple mechanisms involved in p53 safeguard of genomic integrity and prevention of deletion outcome are discussed.
Flavopiridol sensitivity of cancer cells isolated from ascites and pleural fluids.
Richard, Christina; Matthews, Donald; Duivenvoorden, Wilhelmina; Yau, Jonathan; Wright, Paul S; Th'ng, John P H
2005-05-01
We examined the efficacy of flavopiridol, a cyclin-dependent kinase inhibitor that is undergoing clinical trials, on primary cancer cells isolated from the ascites or pleural fluids of patients with metastatic cancers. Metastasized cancer cells were isolated from the pleural fluids (n = 20) or ascites (n = 15) of patients, most of whom were refractory to chemotherapy. These primary cancer cells were used within 2 weeks of isolation without selecting for proliferative capacities. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay was used to characterize the response of these cancer cells to commonly used chemotherapeutic agents, and their response to flavopiridol was compared with rapidly dividing cultured cell lines. The primary cancer cells displayed phenotypes that were different from established cell lines; they had very low replication rates, dividing every 1 to 2 weeks, and underwent replicative senescence within five passages. These primary tumor cells retained their resistance to chemotherapeutic drugs exhibited by the respective patients but did not show cross-resistance to other agents. However, these cancer cells showed sensitivity to flavopiridol with an average LD50 of 50 nmol/L (range, 21.5-69 nmol/L), similar to the LD50 in established cell lines. Because senescent cells also showed similar sensitivity to flavopiridol, it suggests that the mechanism of action is not dependent on the activity of cyclin-dependent kinases that regulate the progression of the cell cycle. Using cancer cells isolated from the ascites or pleural fluids, this study shows the potential of flavopiridol against cancer cells that have developed resistance to conventional chemotherapeutic agents.
Druzinec, Damir; Weiss, Katja; Elseberg, Christiane; Salzig, Denise; Kraume, Matthias; Pörtner, Ralf; Czermak, Peter
2014-01-01
Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.
Treatment of prostate cancer cell lines and primary cells using low temperature plasma
NASA Astrophysics Data System (ADS)
O'Connell, Deborah; Hirst, Adam; Frame, Fiona F.; Maitland, Norman J.
2014-10-01
The mechanisms of cell death after plasma treatment of both benign and cancerous prostate epithelial cells are investigated. Prostate cancer tissue was obtained with patient consent from targeted needle core biopsies following radical prostatectomy. Primary cells were cultured from cancer tissue and plated onto a chamber slide at a density of 10,000 cells per well in 200 microliter of stem cell media (SCM). The treated sample was previously identified as Gleason grade 7 cancer through tissue histo-pathology. A dielectric barrier discharge (DBD) jet configuration, with helium as a carrier gas, and 0.3% O2 admixture was used for treating the cells. Reactive oxygen and nitrogen species (RONS) produced by the plasma are believed to be the main mediators of the plasma-cell interaction and response. We found the concentration of reactive oxygen species (ROS) induced inside the cells increased with plasma exposure. Exposure to the plasma for >3 minutes showed high levels of DNA damage compared to untreated and hydrogen peroxide controls. Cell viability and cellular recovery are also investigated and will be presented. All findings were common to both cell lines, suggesting the potential of LTP therapy for both benign and malignant disease.
Rodor, Julie; FitzPatrick, David R; Eyras, Eduardo; Cáceres, Javier F
2017-01-02
Mutations in the RNA-binding protein, RBM10, result in a human syndromic form of cleft palate, termed TARP syndrome. A role for RBM10 in alternative splicing regulation has been previously demonstrated in human cell lines. To uncover the cellular functions of RBM10 in a cell line that is relevant to the phenotype observed in TARP syndrome, we used iCLIP to identify its endogenous RNA targets in a mouse embryonic mandibular cell line. We observed that RBM10 binds to pre-mRNAs with significant enrichment in intronic regions, in agreement with a role for this protein in pre-mRNA splicing. In addition to protein-coding transcripts, RBM10 also binds to a variety of cellular RNAs, including non-coding RNAs, such as spliceosomal small nuclear RNAs, U2 and U12. RNA-seq was used to investigate changes in gene expression and alternative splicing in RBM10 KO mouse mandibular cells and also in mouse ES cells. We uncovered a role for RBM10 in the regulation of alternative splicing of common transcripts in both cell lines but also identified cell-type specific events. Importantly, those pre-mRNAs that display changes in alternative splicing also contain RBM10 iCLIP tags, suggesting a direct role of RBM10 in these events. Finally, we show that depletion of RBM10 in mouse ES cells leads to proliferation defects and to gross alterations in their differentiation potential. These results demonstrate a role for RBM10 in the regulation of alternative splicing in two cell models of mouse early development and suggests that mutations in RBM10 could lead to splicing changes that affect normal palate development and cause human disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Yang, E-mail: muyang@nwsuaf.edu.cn; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People's Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100; Li, Liangliang, E-mail: lifeiyang2007@126.com
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5{sup Δ84-96} (aa 84-96 deletion), and GP5{sup Δ97-119} (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5{sup Δ97-119}, but not full-length or GP5{sup Δ84-96}, induced a cell cycle arrest at the G2/M phasemore » resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5{sup Δ84-96} inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology. - Highlights: • Marc-145 cell lines stable expression PRRSV GP5 or truncated GP5 were constructed. • GP5{sup Δ97-119} expression in Marc-145 cell induced cell cycle arrest at G2/M phase. • Expression of GP5 and truncated GP5 could not induce Marc-145 cells apoptosis. • PRRSV replication in Marc-145-GP5{sup Δ84-96} was significantly inhibited.« less
Leen, Ann M.; Bollard, Catherine M.; Mendizabal, Adam M.; Shpall, Elizabeth J.; Szabolcs, Paul; Antin, Joseph H.; Kapoor, Neena; Pai, Sung-Yun; Rowley, Scott D.; Kebriaei, Partow; Dey, Bimalangshu R.; Grilley, Bambi J.; Gee, Adrian P.; Brenner, Malcolm K.; Rooney, Cliona M.; Heslop, Helen E.
2013-01-01
Virus-specific T cell (VST) lines could provide useful antiviral prophylaxis and treatment of immune-deficient patients if it were possible to avoid the necessity of generating a separate line for each patient, often on an emergency basis. We prepared a bank of 32 virus-specific lines from individuals with common HLA polymorphisms who were immune to Epstein-Barr virus (EBV), cytomegalovirus, or adenovirus. A total of 18 lines were administered to 50 patients with severe, refractory illness because of infection with one of these viruses after hematopoietic stem cell transplant. The cumulative rates of complete or partial responses at 6 weeks postinfusion were 74.0% (95% CI, 58.5%-89.5%) for the entire group (n = 50), 73.9% (95% CI, 51.2% -96.6%) for cytomegalovirus (n = 23), 77.8% for adenovirus (n = 18), and 66.7% (95% CI, 36.9%-96.5%) for EBV (n = 9). Only 4 responders had a recurrence or progression. There were no immediate infusion-related adverse events, and de novo graft-versus-host disease developed in only 2 patients. Despite the disparity between the lines and their recipients, the mean frequency of VSTs increased significantly postinfusion, coincident with striking decreases in viral DNA and resolution of clinical symptoms. The use of banked third-party VSTs is a feasible and safe approach to rapidly treat severe or intractable viral infections after stem cell transplantation. This study is registered at www.clinicaltrials.gov as NCT00711035. PMID:23610374
Gays, F; Unnikrishnan, M; Shrestha, S; Fraser, K P; Brown, A R; Tristram, C M; Chrzanowska-Lightowlers, Z M; Brooks, C G
2000-05-15
As a potential means for facilitating studies of NK cell-related molecules, we examined the expression of these molecules on a range of mouse tumor cell lines. Of the lines we initially examined, only EL4 and RMA expressed such molecules, both lines expressing several members of the Ly49 and NKRP1 families. Unexpectedly, several of the NK-related molecules, together with certain other molecules including CD2, CD3, CD4, CD32, and CD44, were often expressed in a mosaic manner, even on freshly derived clones, indicating frequent switching in expression. In each case examined, switching was controlled at the mRNA level, with expression of CD3zeta determining expression of the entire CD3-TCR complex. Each of the variable molecules was expressed independently, with the exception that CD3 was restricted to cells that also expressed CD2. Treatment with drugs that affect DNA methylation and histone acetylation could augment the expression of at least some of the variable molecules. The striking phenotypic similarity between EL4 and RMA led us to examine the state of their TCRbeta genes. Both lines had identical rearrangements on both chromosomes, indicating that RMA is in fact a subline of EL4. Overall, these findings suggest that EL4 is an NK-T cell tumor that may have retained a genetic mechanism that permits the variable expression of a restricted group of molecules involved in recognition and signaling.
Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization.
Roberts, Brock; Haupt, Amanda; Tucker, Andrew; Grancharova, Tanya; Arakaki, Joy; Fuqua, Margaret A; Nelson, Angelique; Hookway, Caroline; Ludmann, Susan A; Mueller, Irina A; Yang, Ruian; Horwitz, Rick; Rafelski, Susanne M; Gunawardane, Ruwanthi N
2017-10-15
We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1-4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line-generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. © 2017 Roberts, Haupt, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Transcriptional profiling reveals elevated Sox2 in DNA polymerase ß null mouse embryonic fibroblasts
Li, Jianfeng; Luthra, Soumya; Wang, Xiao-Hong; Chandran, Uma R; Sobol, Robert W
2012-01-01
There are over 150 human proteins that have been categorized as bona fide DNA repair proteins. These DNA repair proteins maintain the integrity of the genome, reducing the onset of cancer, disease and aging phenotypes. Variations in expression and/or function would therefore impact genome integrity as well as the cellular response to genotoxins. Global gene expression analysis is an effective approach to uncover defects in DNA repair gene expression and to discover cellular and/or organismal effects brought about by external stimuli such as environmental genotoxicants, chemotherapeutic regimens, viral infections as well as developmental and age-related stimuli. Given the significance of genome stability in cell survival and response to stimuli, we have hypothesized that cells may undergo transcriptional re-programming to accommodate defects in basal DNA repair capacity to promote survival. As a test of this hypothesis, we have compared the transcriptome in three DNA polymerase ß knockout (Polß-KO) mouse embryonic fibroblasts (MEFs) and the corresponding wild-type (WT) littermate control cell lines. Each Polß-KO cell line was found to have a range of genes up-regulated, when compared to its WT littermate control cell line. Interestingly, six (6) genes were commonly up regulated in all three Polß-KO cell lines, including Sox2, one of several genes associated with the induction of pluripotent stem cells. Herein, we present these findings and suggest that loss of DNA repair and the induction of cellular transcriptional re-programming may, in part, contribute to tumor formation and the cellular response to external stimuli. PMID:23226616
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Hengwen; Yang, Shana; Li, Jianhua
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expressionmore » in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.« less
Clinical allergy to hazelnut and peanut: identification of T cell cross-reactive allergens.
Glaspole, Ian N; de Leon, Maria P; Prickett, Sara R; O'Hehir, Robyn E; Rolland, Jennifer M
2011-01-01
Peanut and tree nut allergies are life-threatening conditions for many affected individuals worldwide. Currently there is no cure. While co-allergy to peanut and tree nuts is a common clinical observation, and IgE cross-reactivity between peanut and tree nuts is reported, T cell cross-reactivity is poorly defined. Hazelnut-specific T cell lines were established using peripheral blood mononuclear cells from 5 subjects with co-allergy to hazelnut and peanut. These lines were stimulated with hazelnut and peanut extracts and purified major peanut allergens, Ara h 1 and Ara h 2. Proliferation was determined by (3)H-thymidine incorporation and secretion of key Th1 (IFN-γ) and Th2 (IL-5) cytokines analysed by ELISA. Hazelnut-specific T cell lines from all 5 subjects proliferated upon stimulation with both hazelnut and peanut extracts and for 4 subjects, to Ara h 1 and/or Ara h 2. Proliferating cells were mainly CD4+ T cells and produced both IL-5 and IFN-γ in response to hazelnut and peanut stimulation. Mitogenicity of extracts and allergens was excluded by their lack of stimulation of house dust mite-specific T cells. Our finding that hazelnut and peanut co-allergy is associated with cross-reactive T cell responses, driven partly by cross-reactivity to the major peanut allergens Ara h 1 and Ara h 2, points to future development of allergen immunotherapy by targeting cross-reactive T cells. Copyright © 2011 S. Karger AG, Basel.
The photocytotoxicity of different lights on mammalian cells in interior lighting system.
Song, Jiayin; Gao, Tingting; Ye, Maole; Bi, Hongtao; Liu, Gang
2012-12-05
In the present paper, two light sources commonly used in interior lighting system: incandescent light and light emitting diode (LED) were chosen to evaluate their influences on three kinds of mammalian cells, together with UVA and UVB, and the mechanism of the photocytotoxicity was investigated in terms of intracellular ROS production, lipid peroxidation, SOD activity and GSH level assays. The results showed that LED and incandescent light both had some photocytotoxicities. In the interior lighting condition (100lx-250lx), the cytotoxicities of LED and incandescent lamp on RF/6A cells (rhesus retinal pigment epithelium cell line) were stronger than that on two fibroblast cell lines, while the cytotoxicity of UVA and UVB on HS68 cells (fibroblast cell line) was highest in the tests. The mechanism analysis revealed that the photocytotoxicities of LED and incandescent lamp were both caused by cell lipid peroxidation. LED and incandescent light could promote the production of ROS, raise lipid peroxidation level and lower the activity of the antioxidant key enzymes in mammalian cells, and finally cause a number of cells death. However, the negative function of LED was significantly smaller than incandescent light and ultraviolet in daily interior lighting condition. And the significantly lower photocytotoxicity of LED might be due to the less existence of ultraviolet. Therefore, LED is an efficient and relative safe light source in interior lighting system, which should be widely used instead of traditional light source. Copyright © 2012 Elsevier B.V. All rights reserved.
A simple non-perturbing cell migration assay insensitive to proliferation effects.
Glenn, Honor L; Messner, Jacob; Meldrum, Deirdre R
2016-08-18
Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells.
De Preter, Géraldine; Neveu, Marie-Aline; Danhier, Pierre; Brisson, Lucie; Payen, Valéry L; Porporato, Paolo E; Jordan, Bénédicte F; Sonveaux, Pierre; Gallez, Bernard
2016-01-19
Glucose fermentation through glycolysis even in the presence of oxygen (Warburg effect) is a common feature of cancer cells increasingly considered as an enticing target in clinical development. This study aimed to analyze the link between metabolism, energy stores and proliferation rates in cancer cells. We found that cell proliferation, evaluated by DNA synthesis quantification, is correlated to glycolytic efficiency in six cancer cell lines as well as in isogenic cancer cell lines. To further investigate the link between glycolysis and proliferation, a pharmacological inhibitor of the pentose phosphate pathway (PPP) was used. We demonstrated that reduction of PPP activity decreases cancer cells proliferation, with a profound effect in Warburg-phenotype cancer cells. The crucial role of the PPP in sustaining cancer cells proliferation was confirmed using siRNAs against glucose-6-phosphate dehydrogenase, the first and rate-limiting enzyme of the PPP. In addition, we found that dichloroacetate (DCA), a new clinically tested compound, induced a switch of glycolytic cancer cells to a more oxidative phenotype and decreased proliferation. By demonstrating that DCA decreased the activity of the PPP, we provide a new mechanism by which DCA controls cancer cells proliferation.
Utispan, Kusumawadee; Chitkul, Bordin; Koontongkaew, Sittichai
2017-04-01
Background: Propolis, a resinous substance produced by the honeybee, has a wide spectrum of potent biological activities. However, anti-cancer activity of propolis obtained from Trigona sirindhornae, a new species of stingless bee, has not yet been reported. This study concerned cytotoxicity of propolis extracts from T. sirindhornae against two head and neck squamous cell carcinoma (HNSCC) cell lines. Materials and Methods: A dichloromethane extract of propolis (DMEP) was prepared generating 3 fractions: DMEP-A, DMEP-B, and DMEP-C. Genetically-matched HNSCC cell lines derived from primary (HN30) and metastatic sites (HN31) in the same patient were used to study cytotoxic effects of the DMEPs by MTT assays. The active compounds in the DMEPs were analyzed by reversephase high performance liquid chromatography. Results: DMEP-A exhibited cytotoxic activity on HN30 cells with significantly decreased viability at 200 μg/ml compared with the control (p<0.05). However, no significant cytotoxic effect was evident in HN31 cells. DMEP-B and DMEP-C significantly decreased the viability of both cell lines from 100–200 μg/ml and 50–200 μg/ml, respectively (p<0.05). Interestingly, HN31 cells were more toxically sensitive compared with the HN30 cells when treated with DMEP-B and DMEP-C. IC50 values for DMEP-B with HN30 and HN31 cells were more than 200 μg/ml and 199.8±1.05 μg/ml, respectively. The IC50 of DMEP-C to HN30 and HN31 cells was found to be 114.3±1.29 and 76.33±1.24 μg/ml, respectively. Notably, apigenin, pinocembrin, p-coumaric acid, and caffeic acid were not detected in our propolis extracts. Conclusion: T. sirindhornae produced propolis displays cytotoxic effects against HNSCC cells s. Moreover, DMEP-B and DMEP-C differentially inhibited the proliferation of a metastatic HNSCC cell line. Creative Commons Attribution License
The antitumor activity screening of chemical constituents from Camellia nitidissima Chi
Yang, Rui; Qi, Jing; Huang, Yue; Feng, Shuyun; Wu, Yao; Lin, Sensen; Liu, Zhixin; Jia, Ai-Qun; Yuan, Shengtao; Sun, Li
2018-01-01
Chemotherapy is the preferred and most common treatment for cancer in clinical practice. An increasing number of researchers all over the world are focusing on natural medicines to find new antitumor drugs, and several reports have shown that Camellia nitidissima (C. nitidis-sima) Chi could reduce blood-lipid, decrease blood pressure, resist oxidation, prevent carcinogenesis and inhibit tumors. Therefore, the pharmacodynamics of the chemical constituents in C. nitidissima need to be investigated further. In the present study, 16 chemical constituents were isolated from the leaves of C. nitidissima, of which 6 compounds are reported to be found in this plant for the first time. Furthermore, all these phytochemicals were screened for antitumor activity on 4 common cancer cell lines, while compound 3, one oleanane-type triterpene, exhibited the most potential antitumor effects. Interestingly, to our knowledge, this was the first report that compound 3 inhibits cancer cells. Compound 3 inhibited EGFR-mutant lung cancer cell line, NCI-H1975 via apoptosis effect, with an IC50 of 13.37±2.05 µM at 48 h. Based on the data, compound 3 showed potential for antitumor drug development, suggesting the scientific basis for the antitumor activity of C. nitidissima. PMID:29484370
TES inhibits colorectal cancer progression through activation of p38.
Li, Huili; Huang, Kun; Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang
2016-07-19
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site - a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy.
Expression of allograft inflammatory factor-1 in inflammatory skin disorders.
Orsmark, Christina; Skoog, Tiina; Jeskanen, Leila; Kere, Juha; Saarialho-Kere, Ulpu
2007-01-01
Allograft inflammatory factor-1 (AIF-1) is an evolutionarily conserved, inflammatory protein produced by activated macrophages during chronic transplant rejection and in inflammatory brain lesions. Since T-cell-mediated inflammation is common to various dermatoses and nothing is known about AIF-1 in skin, we studied its protein expression at the tissue level and regulation in monocytic cell lines by various agents. Using immunohistochemistry, we found that AIF-1 is expressed at low levels in normal skin, but is highly upregulated in various inflammatory skin disorders, such as psoriasis, lichen planus, graft-versus-host disease and mycosis fungoides. The main cell types expressing AIF-1 in affected skin are macrophages and Langerhans' cells. We also show by real-time PCR that AIF-1 mRNA levels in monocytic THP-1 and U937 cell lines are significantly upregulated by retinoic acid as well as a number of cytokines. We conclude that AIF-1 may mediate survival and pro-inflammatory properties of macrophages in skin diseases.
RITA displays anti-tumor activity in medulloblastomas independent of TP53 status.
Gottlieb, Aline; Althoff, Kristina; Grunewald, Laura; Thor, Theresa; Odersky, Andrea; Schulte, Marc; Deubzer, Hedwig E; Heukamp, Lukas; Eggert, Angelika; Schramm, Alexander; Schulte, Johannes H; Künkele, Annette
2017-04-25
Current therapy of medulloblastoma, the most common malignant brain tumor of childhood, achieves 40-70% survival. Secondary chemotherapy resistance contributes to treatment failure, where TP53 pathway dysfunction plays a key role. MDM2 interaction with TP53 leads to its degradation. Reactivating TP53 functionality using small-molecule inhibitors, such as RITA, to disrupt TP53-MDM2 binding may have therapeutic potential. We show here that RITA decreased viability of all 4 analyzed medulloblastoma cell lines, regardless of TP53 functional status. The decrease in cell viability was accompanied in 3 of the 4 medulloblastoma cell lines by accumulation of TP53 protein in the cells and increased CDKN1A expression. RITA treatment in mouse models inhibited medulloblastoma xenograft tumor growth. These data demonstrate that RITA treatment reduces medulloblastoma cell viability in both in vitro and in vivo models, and acts independently of cellular TP53 status, identifying RITA as a potential therapeutic agent to treat medulloblastoma.
RITA displays anti-tumor activity in medulloblastomas independent of TP53 status
Gottlieb, Aline; Althoff, Kristina; Grunewald, Laura; Thor, Theresa; Odersky, Andrea; Schulte, Marc; Deubzer, Hedwig E.; Heukamp, Lukas; Eggert, Angelika; Schramm, Alexander; Schulte, Johannes H.; Künkele, Annette
2017-01-01
Current therapy of medulloblastoma, the most common malignant brain tumor of childhood, achieves 40–70% survival. Secondary chemotherapy resistance contributes to treatment failure, where TP53 pathway dysfunction plays a key role. MDM2 interaction with TP53 leads to its degradation. Reactivating TP53 functionality using small-molecule inhibitors, such as RITA, to disrupt TP53-MDM2 binding may have therapeutic potential. We show here that RITA decreased viability of all 4 analyzed medulloblastoma cell lines, regardless of TP53 functional status. The decrease in cell viability was accompanied in 3 of the 4 medulloblastoma cell lines by accumulation of TP53 protein in the cells and increased CDKN1A expression. RITA treatment in mouse models inhibited medulloblastoma xenograft tumor growth. These data demonstrate that RITA treatment reduces medulloblastoma cell viability in both in vitro and in vivo models, and acts independently of cellular TP53 status, identifying RITA as a potential therapeutic agent to treat medulloblastoma. PMID:28427187
Karimi, Hamideh; Sabbaghian, Marjan; Haratian, Kaveh; Vaziri Nasab, Hamed; Farrahi, Faramarz; Moradi, Shabnam Zari; Tavakolzadeh, Tayebeh; Beheshti, Zahra; Gourabi, Hamid; Meybodi, Anahita Mohseni
2014-01-01
Klinefelter syndrome (KS) is the most common sex chromosomal disorder in men. Most of these patients show the 47,XXY karyotype, whereas approximately 15% of them are mosaics with variable phenotype. A 39-year-old male investigated for primary infertility, was clinically normal with small firm testes and elevated levels of FSH, LH and low level of testosterone. Total azoospermia was confirmed on semen analysis. Testicular histopathology revealed no spermatogenesis and absence of germ cells. Karyotype from whole blood culture showed cells with 47,XXY/46,XX/ 45,X/48,XXXY/ 46,XY mosaicism. The predominant cell line was 47,XXY (83.67%). This was confirmed by fluorescence in situ hybridization (FISH). Also the presence of a small population of cells with the 48,XXXY and 45,X karyotypes was detected by FISH. This case illustrates the utility of FISH as an adjunct to conventional cytogenetics in assess the chromosome copy number in each cell line of a mosaic. PMID:25083188
Karimi, Hamideh; Sabbaghian, Marjan; Haratian, Kaveh; Vaziri Nasab, Hamed; Farrahi, Faramarz; Moradi, Shabnam Zari; Tavakolzadeh, Tayebeh; Beheshti, Zahra; Gourabi, Hamid; Meybodi, Anahita Mohseni
2014-07-01
Klinefelter syndrome (KS) is the most common sex chromosomal disorder in men. Most of these patients show the 47,XXY karyotype, whereas approximately 15% of them are mosaics with variable phenotype. A 39-year-old male investigated for primary infertility, was clinically normal with small firm testes and elevated levels of FSH, LH and low level of testosterone. Total azoospermia was confirmed on semen analysis. Testicular histopathology revealed no spermatogenesis and absence of germ cells. Karyotype from whole blood culture showed cells with 47,XXY/46,XX/ 45,X/48,XXXY/ 46,XY mosaicism. The predominant cell line was 47,XXY (83.67%). This was confirmed by fluorescence in situ hybridization (FISH). Also the presence of a small population of cells with the 48,XXXY and 45,X karyotypes was detected by FISH. This case illustrates the utility of FISH as an adjunct to conventional cytogenetics in assess the chromosome copy number in each cell line of a mosaic.
TES inhibits colorectal cancer progression through activation of p38
Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang
2016-01-01
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy. PMID:27323777
Helms, Hans C; Abbott, N Joan; Burek, Malgorzata; Cecchelli, Romeo; Couraud, Pierre-Olivier; Deli, Maria A; Förster, Carola; Galla, Hans J; Romero, Ignacio A; Shusta, Eric V; Stebbins, Matthew J; Vandenhaute, Elodie; Weksler, Babette
2016-01-01
The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described. PMID:26868179
Ma, Chao; Wang, Jianqi; Fan, Longkun; Guo, Yanjun
2017-02-01
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world. CD147, a transmembrane glycoprotein, has been reported to be correlated with cancer progression, metastasis, and chemoresistance in various cancers. In this study, we aimed to investigate the mechanism of CD147 in regulating drug resistance in HNSCC cells. qRT-PCR were used to evaluated the expression of CD147 in 57 HNSCC tumorous tissues and 2 cell lines. Increased expression of CD147 was found in most HNSCC samples, and the expression level of CD147 was correlated with multidrug resistance. CD147 RNA silencing decreased the chemoresistance of HNSCC cells by deactivating MAPK/ERK signaling pathway. Further investigation revealed that either rescue expression of CD147 or treatment of MAPK/ERK activator phorbol 12-myristate 13-acetate (PMA) in CD147 knockdown CRC cell line attenuated the decreased chemoresistance in CD147 knockdown cells. Taken together, our results suggest that CD147 promotes chemoresistance by activating MAPK/ERK signaling pathway in HNSCC. Copyright © 2017. Published by Elsevier Inc.
Antiproliferative properties of toremifene on AIDS-related Kaposi's sarcoma cells.
Hong, Angela; Leigh, Bryan R
2002-12-01
Kaposi's sarcoma (KS) is the most common neoplastic apoptosis manifestation of acquired immunodeficiency syndrome. Toremifene is known to upregulate transforming growth factor beta-1 (TGF-beta1), which is a growth-inhibitory factor for KS. We investigated the in vitro effect of toremifene on KS cells. MTT assay was used to measure the growth of four KS cell lines and a human umbilical vein endothelial (HUVE) cell line after incubation with toremifene. Reverse transcription polymerase chain reaction and ELISA were used to measure the level of TGF-beta1. The IC(50) for the KS cells ranged from 2.2 to 3.2 microM, and 80% of the growth inhibition occurred within 24 h. Toremifene enhanced TGF-beta1 mRNA expression, and the level of TGF-beta1 increased from 103 to 473 pg/ml after 48 h of incubation. Toremifene had no effect on the growth of HUVE cells. Toremifene has a specific antiproliferative effect on KS cells. The stimulation of TGF-beta1 production may play a role in the antiproliferative process. Copyright 2002 S. Karger AG, Basel
Jahanafrooz, Zohreh; Motameh, Nasrin; Bakhshandeh, Behnaz
2016-01-01
Silibinin is a natural polyphenol with high antioxidant and anticancer properties. In this study, its influence on two of the most commonly employed human breast cancer cell lines, MCF-7 and T47D, and one non-malignant MCF-10A cell line, were investigated and compared. Cell viability, the cell cycle distribution and apoptosis induction were analyzed by MTT and flow cytometry, respectively. The effect of silibinin on PTEN, Bcl-2, P21, and P27 mRNAs expression was also investigated by real-time RT-PCR. It was found that silibinin caused G1 cell cycle arrest in MCF-7 and MCF-10A cells but had no effect on the T47D cell cycle. Silibinin induced cytotoxic and apoptotic effects in T47D cells more than the MCF-7 cells and had no cytotoxic effect in MCF-10A cells under the same conditions. Silibinin upregulated PTEN in MCF-7 and caused slightly increased P21 mRNA expression in T47D cells and slightly increased PTEN and P21 expression in MCF-10A cells. Bcl-2 expression decreased in all of the examined cells under silibinin treatment. P27 mRNA expression upregulated in T47D and MCF-10A cells under silibinin treatment. PTEN mRNA in T47D and P21 and P27 mRNAsin MCF-7 were not affected by silibinin. These results suggest that silibinin has mostly different inhibitory effects in breast cancer cells and might be an effective anticancer agent for some cells linked to influence on cell cycle progression.
Vahedi Larijani, Laleh; Ghasemi, Maryam; AbedianKenari, Saeid; Naghshvar, Farshad
2014-01-01
Most patients with gastrointestinal cancers refer to the health centers at advanced stages of the disease and conventional treatments are not significantly effective for these patients. Therefore, using modern therapeutic approaches with lower toxicity bring higher chance for successful treatment and reduced adverse effects in such patients. The aim of this study is to evaluate the effect of avocado fruit extracts on inhibition of the growth of cancer cells in comparison with normal cells. In an experimental study, ethanol, chloroform, ethyl acetate, and petroleum extracts of avocado (Persea americana) fruit were prepared. Then, the effects if the extracts on the growth of esophageal squamous cell carcinoma and colon adenocarcinoma cell lines were evaluated in comparison with the control group using the MTT test in the cell culture medium. Effects of the four extracts of avocado fruit on three cells lines of peripheral blood mononuclear cells, esophageal squamous cell carcinoma, and colon adenocarcinoma were tested. The results showed that avocado fruit extract is effective in inhibition of cancer cell growth in comparison with normal cells (P<0.05). Avocado fruit is rich in phytochemicals, which play an important role in inhibition of growth of cancer cells. The current study for the first time demonstrates the anti-cancer effect of avocado fruit extracts on two cancers common in Iran. Therefore, it is suggested that the fruit extracts can be considered as appropriate complementary treatments in treatment of esophageal and colon cancers.
Hyperglycaemia-induced resistance to Docetaxel is negated by metformin: a role for IGFBP-2.
Biernacka, K M; Persad, R A; Bahl, A; Gillatt, D; Holly, J M P; Perks, C M
2017-01-01
The incidence of many common cancers varies between different populations and appears to be affected by a Western lifestyle. Highly proliferative malignant cells require sufficient levels of nutrients for their anabolic activity. Therefore, targeting genes and pathways involved in metabolic pathways could yield future therapeutics. A common pathway implicated in energetic and nutritional requirements of a cell is the LKB1/AMPK pathway. Metformin is a widely studied anti-diabetic drug, which improves glycaemia in patients with type 2 diabetes by targeting this pathway. We investigated the effect of metformin on prostate cancer cell lines and evaluated its mechanism of action using DU145, LNCaP, PC3 and VCaP prostate cancer cell lines. Trypan blue dye-exclusion assay was used to assess levels of cell death. Western immunoblotting was used to determine the abundance of proteins. Insulin-like growth factor-binding protein-2 (IGFBP-2) and AMPK genes were silenced using siRNA. Effects on cell morphology were visualised using microscopy. IGFBP-2 gene expression was assessed using real-time RT-PCR. With DU145 and LNCaP cells metformin alone induced cell death, but this was reduced in hyperglycaemic conditions. Hyperglycaemia also reduced the sensitivity to Docetaxel, but this was countered by co-treatment with metformin. LKB1 was required for the activation of AMPK but was not essential to mediate the induction of cell death. An alternative pathway by which metformin exerted its action was through downregulation of IGFBP-2 in DU145 and LNCaP cells, independently of AMPK. This finding could have important implications in relation to therapeutic strategies in prostate cancer patients presenting with diabetes. © 2017 The authors.
Bompiani, Kristin M; Tsai, Cheng-Yu; Achatz, Felix P; Liebig, Janika K; Howell, Stephen B
2016-09-01
The development of resistance to cisplatin (cDDP) is commonly accompanied by reduced drug uptake or increased efflux. Previous studies in yeast and murine embryonic fibroblasts have reported that the copper (Cu) transporters and chaperones participate in the uptake, efflux, and intracellular distribution of cDDP. However, there is conflicting data from studies in human cells. We used CRISPR-Cas9 genome editing to individually knock out the human copper transporters CTR1 and CTR2 and the copper chaperones ATOX1 and CCS. Isogenic knockout cell lines were generated in both human HEK-293T and ovarian carcinoma OVCAR8 cells. All knockout cell lines had slowed growth compared to parental cells, small changes in basal Cu levels, and varying sensitivities to Cu depending on the gene targeted. However, all of the knockouts demonstrated only modest 2 to 5-fold changes in cDDP sensitivity that did not differ from the range of sensitivities of 10 wild type clones grown from the same parental cell population. We conclude that, under basal conditions, loss of CTR1, CTR2, ATOX1, or CCS does not produce a change in cisplatin sensitivity that exceeds the variance found within the parental population, suggesting that they are not essential to the mechanism by which cDDP enters these cell lines and is transported to the nucleus.
Müller, Alena; Barat, Samarpita; Chen, Xi; Bui, Khac Cuong; Bozko, Przemyslaw; Malek, Nisar P; Plentz, Ruben R
2016-05-01
Cholangiocarcinoma (CC) worldwide is the most common biliary malignancy with poor prognostic value and new systemic treatments are desirable. Plant extracts like bromelain and papain, which are cysteine proteases from the fruit pineapple and papaya, are known to have antitumor activities. Therefore, in this study for the first time we investigated the anticancer effect of bromelain and papain in intra- and extrahepatic human CC cell lines. The effect of bromelain and papain on human CC cell growth, migration, invasion and epithelial plasticity was analyzed using cell proliferation, wound healing, invasion and apoptosis assay, as well as western blotting. Bromelain and papain lead to a decrease in the proliferation, invasion and migration of CC cells. Both plant extracts inhibited NFκB/AMPK signalling as well as their downstream signalling proteins such as p-AKT, p-ERK, p-Stat3. Additionally, MMP9 and other epithelial-mesenchymal-transition markers were partially found to be downregulated. Apoptosis was induced after bromelain and papain treatment. Interestingly, bromelain showed an overall more effective inhibition of CC as compared to papain. siRNA mediated silencing of NFκB on CC cells indicated that bromelain and papain have cytotoxic effects on human CC cell lines and bromelain and partially papain in comparison impair tumor growth by NFκB/AMPK signalling. Especially bromelain can evolve as promising, potential therapeutic option that might open new insights for the treatment of human CC.
Rab11 family expression in the human placenta: Localization at the maternal-fetal interface
Artemiuk, Patrycja A.; Hanscom, Sara R.; Lindsay, Andrew J.; Wuebbolt, Danielle; Breathnach, Fionnuala M.; Tully, Elizabeth C.; Khan, Amir R.; McCaffrey, Mary W.
2017-01-01
Rab proteins are a family of small GTPases involved in a variety of cellular processes. The Rab11 subfamily in particular directs key steps of intracellular functions involving vesicle trafficking of the endosomal recycling pathway. This Rab subfamily works through a series of effector proteins including the Rab11-FIPs (Rab11 Family-Interacting Proteins). While the Rab11 subfamily has been well characterized at the cellular level, its function within human organ systems is still being explored. In an effort to further study these proteins, we conducted a preliminary investigation of a subgroup of endosomal Rab proteins in a range of human cell lines by Western blotting. The results from this analysis indicated that Rab11a, Rab11c(Rab25) and Rab14 were expressed in a wide range of cell lines, including the human placental trophoblastic BeWo cell line. These findings encouraged us to further analyse the localization of these Rabs and their common effector protein, the Rab Coupling Protein (RCP), by immunofluorescence microscopy and to extend this work to normal human placental tissue. The placenta is a highly active exchange interface, facilitating transfer between mother and fetus during pregnancy. As Rab11 proteins are closely involved in transcytosis we hypothesized that the placenta would be an interesting human tissue model system for Rab investigation. By immunofluorescence microscopy, Rab11a, Rab11c(Rab25), Rab14 as well as their common FIP effector RCP showed prominent expression in the placental cell lines. We also identified the expression of these proteins in human placental lysates by Western blot analysis. Further, via fluorescent immunohistochemistry, we noted abundant localization of these proteins within key functional areas of primary human placental tissues, namely the outer syncytial layer of placental villous tissue and the endothelia of fetal blood vessels. Overall these findings highlight the expression of the Rab11 family within the human placenta, with novel localization at the maternal-fetal interface. PMID:28922401
Bahreyni, Amirhossein; Yazdian-Robati, Rezvan; Hashemitabar, Shirin; Ramezani, Mohammad; Ramezani, Pouria; Abnous, Khalil; Taghdisi, Seyed Mohammad
2017-06-30
The common cancer treatment strategies like chemotherapy and radiotherapy are nonspecific and can trigger severe side effects by damaging normal cells. So, targeted cancer therapies, such as apoptosis induction, have attracted great attention in recent years. In this project, two nano-complexes, MUC1 aptamer-NAS-24 aptamer-Graphene oxide (GO) and MUC1 aptamer-Cytochrome C aptamer-GO, were designed to induce cell programmed death in MDA-MB-231 and MCF-7 cells (breast cancer cell lines) and to verify the level of apoptosis in both cell lines. MUC1 aptamer was a molecular recognition probe that led the internalization of two nano-complexes into MDA-MB-231 and MCF-7 cells (MUC1 positive cells) but not into HepG2 cell (liver cancer cell line, MUC1 negative cells). The apoptosis induction relied on binding of NAS-24 aptamer to its target, vimentin, in MDA-MB-231 and MCF-7 (target cells) with different levels of vimentin content. The function of first nano-complex was confirmed by binding of FAM-labeled cytochrome C aptamer to its target (cytochrome C) which was released from mitochondria, based on the function of the first nano-complex. Fluorometric analysis and gel retardation assay proved the formation of nano-complexes. The results of flow cytometry and fluorescence microscopy indicated efficient apoptosis induction just in target cells (MDA-MB-231 and MCF-7 cells) but not in non-target cells (HepG2 cell). The results of MTT assay also confirmed cell death process. Overall, our results proved excellent targeted apoptosis in breast cancer cells by designed nano-complexes which can be applied as an efficient cancer therapy method. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxia; Gao, Ying; Cheng, Hairong
Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2more » expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway. - Highlights: • STC2 was upregulated in cervical cancer and promoted cervical cancer cell proliferation. • Cisplatin resistant cells had elevated STC2 levels and enhanced proliferation. • STC2 regulated cisplatin chemosensitivity in cervical cancer cells. • STC2 regulated the activity of the MAPK signaling pathway.« less
Sweat JMDunigan, D D; Wright, S D
2001-06-01
The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.
Salvianti, Francesca; Rotunno, Giada; Galardi, Francesca; De Luca, Francesca; Pestrin, Marta; Vannucchi, Alessandro Maria; Di Leo, Angelo; Pazzagli, Mario; Pinzani, Pamela
2015-09-01
The purpose of the study was to explore the feasibility of a protocol for the isolation and molecular characterization of single circulating tumor cells (CTCs) from cancer patients using a single-cell next generation sequencing (NGS) approach. To reach this goal we used as a model an artificial sample obtained by spiking a breast cancer cell line (MDA-MB-231) into the blood of a healthy donor. Tumor cells were enriched and enumerated by CellSearch(®) and subsequently isolated by DEPArray™ to obtain single or pooled pure samples to be submitted to the analysis of the mutational status of multiple genes involved in cancer. Upon whole genome amplification, samples were analysed by NGS on the Ion Torrent PGM™ system (Life Technologies) using the Ion AmpliSeq™ Cancer Hotspot Panel v2 (Life Technologies), designed to investigate genomic "hot spot" regions of 50 oncogenes and tumor suppressor genes. We successfully sequenced five single cells, a pool of 5 cells and DNA from a cellular pellet of the same cell line with a mean depth of the sequencing reaction ranging from 1581 to 3479 reads. We found 27 sequence variants in 18 genes, 15 of which already reported in the COSMIC or dbSNP databases. We confirmed the presence of two somatic mutations, in the BRAF and TP53 gene, which had been already reported for this cells line, but also found new mutations and single nucleotide polymorphisms. Three variants were common to all the analysed samples, while 18 were present only in a single cell suggesting a high heterogeneity within the same cell line. This paper presents an optimized workflow for the molecular characterization of multiple genes in single cells by NGS. The described pipeline can be easily transferred to the study of single CTCs from oncologic patients.
Herrmann, Amanda C.; Bernatchez, Chantale; Haymaker, Cara; Molldrem, Jeffrey J.; Hong, Waun Ki; Perez-Soler, Roman
2016-01-01
Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR) inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation. PMID:27467256
Kleeberger, Wolfram; Bova, G. Steven; Nielsen, Matthew E.; Herawi, Mehsati; Chuang, Ai-Ying; Epstein, Jonathan I.; Berman, David M.
2011-01-01
The intermediate filament protein Nestin identifies stem/progenitor cells in adult tissues, but the function of Nestin is poorly understood. We investigated Nestin expression and function in common lethal cancers. Nestin mRNA was detected in cell lines from small cell lung, and breast cancers, and particularly elevated in cell lines derived from prostate cancer metastases. Whereas the androgen-independent lines PC3, 22RV1, and DU145 all expressed Nestin transcripts under standard culture conditions, the androgen-dependent line LnCaP expressed Nestin only on androgen withdrawal. We confirmed associations of Nestin expression, androgen withdrawal, and metastatic potential by immunohistochemical analysis of samples from 254 prostate cancer patients. Cytoplasmic Nestin protein was readily identifiable in prostate cancer cells from 75% of patients with lethal androgen-independent disease, even in cancer sampled from the prostate itself. However, Nestin expression was undetectable in localized androgen-deprived tumors and in metastases without prior androgen deprivation. To address its function, we reduced Nestin levels with short hairpin RNAs, markedly inhibiting in vitro migration and invasion in prostate cancer cells but leaving cell growth intact. Nestin knockdown also diminished metastases 5-fold compared with controls despite uncompromised tumorigenicity at the site of inoculation. These results specify a function for Nestin in cell motility and identify a novel pathway for prostate cancer metastasis. Activity of this pathway may be selected by the extraprostatic environment or, as supported by our data, may originate within the prostate after androgen deprivation. Further dissection of this novel Nestin migration pathway may lead to strategies to prevent and neutralize metastatic spread. PMID:17909025
Prediction of individualized therapeutic vulnerabilities in cancer from genomic profiles
Aksoy, Bülent Arman; Demir, Emek; Babur, Özgün; Wang, Weiqing; Jing, Xiaohong; Schultz, Nikolaus; Sander, Chris
2014-01-01
Motivation: Somatic homozygous deletions of chromosomal regions in cancer, while not necessarily oncogenic, may lead to therapeutic vulnerabilities specific to cancer cells compared with normal cells. A recently reported example is the loss of one of the two isoenzymes in glioblastoma cancer cells such that the use of a specific inhibitor selectively inhibited growth of the cancer cells, which had become fully dependent on the second isoenzyme. We have now made use of the unprecedented conjunction of large-scale cancer genomics profiling of tumor samples in The Cancer Genome Atlas (TCGA) and of tumor-derived cell lines in the Cancer Cell Line Encyclopedia, as well as the availability of integrated pathway information systems, such as Pathway Commons, to systematically search for a comprehensive set of such epistatic vulnerabilities. Results: Based on homozygous deletions affecting metabolic enzymes in 16 TCGA cancer studies and 972 cancer cell lines, we identified 4104 candidate metabolic vulnerabilities present in 1019 tumor samples and 482 cell lines. Up to 44% of these vulnerabilities can be targeted with at least one Food and Drug Administration-approved drug. We suggest focused experiments to test these vulnerabilities and clinical trials based on personalized genomic profiles of those that pass preclinical filters. We conclude that genomic profiling will in the future provide a promising basis for network pharmacology of epistatic vulnerabilities as a promising therapeutic strategy. Availability and implementation: A web-based tool for exploring all vulnerabilities and their details is available at http://cbio.mskcc.org/cancergenomics/statius/ along with supplemental data files. Contact: statius@cbio.mskcc.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24665131
NASA Astrophysics Data System (ADS)
Pojo, M.; Cerqueira, S. R.; Mota, T.; Xavier-Magalhães, A.; Ribeiro-Samy, S.; Mano, J. F.; Oliveira, J. M.; Reis, R. L.; Sousa, N.; Costa, B. M.; Salgado, A. J.
2013-05-01
Glioblastoma (GBM) is simultaneously the most common and most malignant subtype tumor of the central nervous system. These are particularly dramatic diseases ranking first among all human tumor types for tumor-related average years of life lost and for which curative therapies are not available. Recently, the use of nanoparticles as drug delivery systems (DDS) for tumor treatment has gained particular interest. In an attempt to evaluate the potential of carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles as a DDS, we aimed to evaluate its cytotoxicity and internalization efficiency in GBM cell models. CMCht/PAMAM-mediated cytotoxicity was evaluated in a GBM cell line (U87MG) and in human immortalized astrocytes (hTERT/E6/E7) by MTS and double-stranded DNA quantification. CMCht/PAMAM internalization was assessed by double fluorescence staining. Both cells lines present similar internalization kinetics when exposed to a high dose (400 μg/mL) of these nanoparticles. However, the internalization rate was higher in tumor GBM cells as compared to immortalized astrocytes when cells were exposed to lower doses (200 μg/mL) of CMCht/PAMAM for short periods (<24 h). After 48 h of exposure, both cell lines present 100 % of internalization efficiency for the tested concentrations. Importantly, short-term exposures (1, 6, 12, 24, and 48 h) did not show cytotoxicity, and long-term exposures (7 days) to CMCht/PAMAM induced only low levels of cytotoxicity in both cell lines ( 20 % of decrease in metabolic activity). The high efficiency and rate of internalization of CMCht/PAMAM we show here suggest that these nanoparticles may be an attractive DDS for brain tumor treatment in the future.
Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines
Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J
2016-01-01
Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes. PMID:29263807
Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.
Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J
2016-01-01
Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.
The Pathway Analysis of Micrornas Regulated Drug-Resistant Responses in HeLa Cells.
Yang, Yubo; Dai, Cuihong; Cai, Zhipeng; Hou, Aiju; Cheng, Dayou; Wu, Guanying; Li, Jing; Cui, Jie; Xu, Dechang
2016-03-01
Chemotherapy is the main strategy in the treatment of cancer; however, the development of drug-resistance is the obstacle in long-term treatment of cervical cancer. Cisplatin is one of the most common drugs used in cancer therapy. Recently, accumulating evidence suggests that miRNAs are involved in various bioactivities in oncogenesis. It is not unexpected that miRNAs play a key role in acquiring of drug-resistance in the progression of tumor. In this study, we induced and maintained four levels of cisplatin-resistant HeLa cell lines (HeLa/CR1, HeLa/CR2, HeLa/CR3, and HeLa/CR4). According to the previous studies and existing evidence, we selected five miRNAs (miR-183, miR-182, miR-30a, miR-15b, and miR-16) and their potential target mRNAs as our research targets. The real-time RT-PCR was adopted to detect the relative expression of miRNAs and their mRNAs. The results show that miR-182 and miR-15b were up-regulated in resistant cell lines, while miR-30a was significantly down-regulated. At the same time, their targets are related to drug resistance. Compared to their parent HeLa cell line, the expression of selected miRNAs in resistant cell lines altered. The alteration suggests that HeLa cell drug resistance is associated with distinct miRNAs, which indicates that miRNAs may be one of the therapy targets in the treatment of cervical cancer by sensitizing cell to chemotherapy. We suggested a possible network diagram based on the existing theory and the preliminary results of candidate miRNAs and their targets in HeLa cells during development of drug resistance.
Reisner, P D; Brandt, P C; Vanaman, T C
1997-01-01
It has been long known that neoplastic transformation is accompanied by a lowered requirement for extracellular Ca2+ for growth. The studies presented here demonstrate that human fibroblastic cell lines produce the two commonly found 'housekeeping' isoforms of the plasma membrane Ca(2+)-ATPase (PMCA), PMCA1b and 4b, and at the expression of both is demonstrably lower in cell lines neoplastically transformed by SV40 than in the corresponding parental cell lines. Western blot analyses of lysates from control (GM00037) and SV40-transformed (GM00637) skin fibroblasts revealed a 138 kDa PMCA whose level was significantly lower in the SV40-transformed cells relative to either total cellular protein or alpha-tubulin. Similar analyses of plasma membrane preparations from control WI-38) and SV40-transformed (WI-38VA13) lung fibroblasts revealed 3-4-fold lower levels of PMCA in the SV40-transformed cells. Competitive ELISAs performed on detergent solubilized plasma membrane preparations indicated at least 3-4-fold lower levels of PMCA in the SV40-transformed cell lines compared to controls. Reverse transcriptase coupled-PCR analyses showed that PMCA1b and PMCA4b were the only isoforms expressed in all four cell lines. The PMCA4b mRNA level detected by Northern analysis also was substantially lower in SV40 transformed skin fibroblasts than in non-transformed fibroblasts. Quantitative RT-PCR analyses showed levels of PMCA1b and 4b mRNAs to be 5 and 10-fold lower, respectively, in GM00637 than in GM00037 when the levels of PCR products were normalized to glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA. These results demonstrate that the expression of these distinct PMCA genes is substantially lower in SV40 transformed human skin and lung fibroblasts and may be coordinately regulated in these cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Jie; Xie Liping; Zheng Xiangyi
Bladder cancer is the fourth most common cancer in men and ninth most common in women. It has a protracted course of progression and is thus an ideal candidate for chemoprevention strategies and trials. This study was conducted to evaluate the chemopreventive/antiproliferative potential of (-)-epigallocatechin gallate (EGCG, the major phytochemical in green tea) against bladder cancer and its mechanism of action. Using the T24 human bladder cancer cell line, we found that EGCG treatment caused dose- and time-dependent inhibition of cellular proliferation and cell viability, and induced apoptosis. Mechanistically, EGCG inhibits phosphatidylinositol 3'-kinase/Akt activation that, in turn, results in modulationmore » of Bcl-2 family proteins, leading to enhanced apoptosis of T24 cells. These findings suggest that EGCG may be an important chemoprevention agent for the management of bladder cancer.« less
Synthetic and natural steroidal androgens and estrogens and many other non-steroidal endocrine-active compounds commonly occur as complex mixtures in aquatic environments. It is important to understand the potential interactive effects of these mixtures to properly assess their r...
Bogdanowicz, Brian S; Hoch, Matthew A; Hartranft, Megan E
2017-04-01
Purpose The approval history, pharmacology, pharmacokinetics, clinical trials, efficacy, dosing recommendations, drug interactions, safety, place in therapy, and economic considerations of gefitinib are reviewed. Summary Lung cancer is one of the most commonly diagnosed cancers and is the leading cause of cancer death. Platinum-based chemotherapy and tyrosine kinase inhibitors, such as erlotinib and afatinib, are recommended therapies for nonsmall cell lung cancer. The European Medicines Association based their approval of gefitinib on the randomized, multicenter Iressa Pan-Asia Study (IPASS, NCT00322452) and a single-arm study showing effectiveness in Caucasians (IFUM, NCT01203917). Both studies were recently referenced by the United States Food & Drug Administration to reapprove gefitinib for the first-line treatment of advanced nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 substitution. Diarrhea, acneiform rash, and interstitial lung disease are known side effects of gefitinib. Conclusion Use of gefitinib for the first-line therapy of metastatic nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions (residues 747-750) or exon 21 substitution mutation (L858R) is well-documented and supported.
Jenny, Robert A; Hirst, Claire; Lim, Sue Mei; Goulburn, Adam L; Micallef, Suzanne J; Labonne, Tanya; Kicic, Anthony; Ling, Kak-Ming; Stick, Stephen M; Ng, Elizabeth S; Trounson, Alan; Giudice, Antonietta; Elefanty, Andrew G; Stanley, Edouard G
2015-06-01
Airway epithelial cells generated from pluripotent stem cells (PSCs) represent a resource for research into a variety of human respiratory conditions, including those resulting from infection with common human pathogens. Using an NKX2.1-GFP reporter human embryonic stem cell line, we developed a serum-free protocol for the generation of NKX2.1(+) endoderm that, when transplanted into immunodeficient mice, matured into respiratory cell types identified by expression of CC10, MUC5AC, and surfactant proteins. Gene profiling experiments indicated that day 10 NKX2.1(+) endoderm expressed markers indicative of early foregut but lacked genes associated with later stages of respiratory epithelial cell differentiation. Nevertheless, NKX2.1(+) endoderm supported the infection and replication of the common respiratory pathogen human rhinovirus HRV1b. Moreover, NKX2.1(+) endoderm upregulated expression of IL-6, IL-8, and IL-1B in response to infection, a characteristic of human airway epithelial cells. Our experiments provide proof of principle for the use of PSC-derived respiratory epithelial cells in the study of cell-virus interactions. This report provides proof-of-principle experiments demonstrating, for the first time, that human respiratory progenitor cells derived from stem cells in the laboratory can be productively infected with human rhinovirus, the predominant cause of the common cold. ©AlphaMed Press.
Molecular cytogenetic analysis of feline leukemia virus insertions in cat lymphoid tumor cells.
Fujino, Yasuhito; Satoh, Hitoshi; Ohno, Koichi; Tsujimoto, Hajime
2010-02-01
This study was conducted to map the acquired proviral insertions in the chromosomal genome of feline lymphoid tumors induced by feline leukemia virus (FeLV). Chromosome specimens of the lymphoid tumor-derived cell lines and normal cat lymphocytes were subjected to fluorescence in situ hybridization and tyramide signal amplification, using an exogenous FeLV-A genome as a probe. Specific hybridization signals were detected only on the metaphase chromosomes of the tumor cells. Poisson's distribution-based statistics indicated that 6 chromosomal loci in each cell line showed FeLV integration. In the examination of metaphase chromosomes of FL-74, FT-1 and KO-1 cells, significant signals were detected on B2p15-p14, B2q11, D1p14, E1p14-p13, E1q12 and F2q16; A2p23-p22, B2p15-p14, B4p15-p14, D4q23-q24, E1p14-p13 and E2p13-p12; and A2p22, A3q22, B1p13, B1q13, D1p13 and D3p15-p14, respectively. Consistently, Southern blot hybridization using an FeLV LTR-U3 probe specific for exogenous FeLV revealed the presence of at least 6 copies of exogenous FeLV proviruses at different integration sites in each cell line. These results indicate that there may be common FeLV integration sites at least in A2p22 and B2p15-p14. The cytogenetic analysis used in this study can promptly screen FeLV insertions and provide tags for identifying the novel common integration site. 2009 Elsevier B.V. All rights reserved.
Prevette, Lisa E.; Mullen, Douglas G.; Banaszak Holl, Mark M.
2010-01-01
Polycationic materials commonly used to delivery DNA to cells are known to induce cell membrane porosity in a charge-density dependent manner. It has been suggested that these pores may provide a mode of entry of the polymer-DNA complexes (polyplexes) into cells. To examine the correlation between membrane permeability and biological activity, we used two-color flow cytometry on two mammalian cell lines to simultaneously measure gene expression of a plasmid DNA delivered with four common nonviral vectors and cellular uptake of normally excluded fluorescent dye molecules of two different sizes, 668 Da and 2 MDa. We also followed gene expression in cells sorted based on the retention of endogenous fluorescein. We have found that cell membrane porosity caused by polycationic vectors does not enhance internalization or gene expression. Based on this single-cell study, membrane permeability is found to be an unwanted side effect that limits transfection efficiency, possibly through leakage of the delivered nucleic acid through the pores prior to transcription and translation and/or activation of cell defense mechanisms that restrict transgene expression. PMID:20349965
Park, Do Youn; Sakamoto, Hideo; Kirley, Sandra D.; Ogino, Shuji; Kawasaki, Takako; Kwon, Eunjeong; Mino-Kenudson, Mari; Lauwers, Gregory Y.; Chung, Daniel C.; Rueda, Bo R.; Zukerberg, Lawrence R.
2007-01-01
Cables is a cyclin-dependent kinase-binding nuclear protein that maps to chromosome 18q11-12. Here, we assessed Cables expression in 160 colorectal cancers (CRCs), its role in colon cancer cell growth, and the potential mechanisms of Cables inactivation. Expression levels, promoter methylation, and mutational status of Cables were investigated in colon cancer cell lines and primary colon tumors. Chromosome 18q loss of heterozygosity (LOH) was evaluated with multiple polymorphic markers. Cables inhibited cellular proliferation and colony formation in colon cancer cell lines. Cables expression was reduced in 65% of primary CRCs. No mutations were detected in 10 exons of Cables in 20 primary colon tumors. Cables promoter was methylated in cell lines with decreased Cables expression and vice versa. 5-Aza-2′-deoxycytidine resulted in increased Cables expression in methylated cell lines. There was a significant correlation between promoter methylation and Cables gene expression in primary colon tumors. Sixty-five percent of primary colon tumors demonstrated chromosome 18q LOH. LOH involving the Cables region was observed in 35% of cases, including those in which more distal portions of chromosome 18q were retained, and Cables expression was decreased in all such cases. Loss of Cables expression in 65% of CRCs suggests that it is a common event in colonic carcinogenesis, with promoter methylation and LOH appearing to be important mechanisms of Cables gene inactivation. PMID:17982127
Intensified autophagy compromises the efficacy of radiotherapy against prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koukourakis, Michael I., E-mail: targ@her.forthnet.gr; Kalamida, Dimitra; Mitrakas, Achilleas
2015-05-29
Introduction: Radiotherapy is an equivalent alternative or complement to radical prostatectomy, with high therapeutic efficacy. High risk patients, however, experience high relapse rates, so that research on radio-sensitization is the most evident route to improve curability of this common disease. Materials and methods: In the current study we investigated the autophagic activity in a series of patients with localized prostate tumors treated with radical radiotherapy, using the LC3A and the LAMP2a proteins as markers of autophagosome and lysosome cellular content, respectively. The role of autophagy on prostate cancer cell line resistance to radiation was also examined. Results: Using confocal microscopymore » on tissue biopsies, we showed that prostate cancer cells have, overall, high levels of LC3A and low levels of LAMP2a compared to normal prostate glands. Tumors with a ‘highLC3A/lowLAMP2a’ phenotype, suggestive of intensified lysosomal consumption, had a significantly poorer biochemical relapse free survival. The PC3 radioresistant cell line sustained remarkably its autophagic flux ability after radiation, while the DU145 radiosensitive one experiences a prolonged blockage of the autophagic process. This was assessed with aggresome accumulation detection and LC3A/LAMP2a double immunofluorescence, as well as with sequestrosome/p62 protein detection. By silencing the LC3A or LAMP2a expression, both cell lines became more sensitive to escalated doses of radiation. Conclusions: High base line autophagy activity and cell ability to sustain functional autophagy define resistance of prostate cancer cells to radiotherapy. This can be reversed by blocking up-regulated components of the autophagy pathway, which may prove of importance in the field of clinical radiotherapy. - Highlights: • High LC3A and low LAMP2a levels is a frequent expression pattern of prostate carcinoma. • This pattern of intensified autophagic flux relates with high relapse rates after radiotherapy. • The PC3 radio-resistant cell line sustains remarkably its autophagic flux ability after radiation. • Irradiation of the DU145 radio-sensitive cell line blocks the autophagic flux. • Intense autophagy activity defines prostate cancer radio-resistance, in vivo and in vitro.« less
Fragni, M; Bonini, S A; Bettinsoli, P; Bodei, S; Generali, D; Bottini, A; Spano, P F; Memo, M; Sigala, S
2016-05-01
Preclinical data indicate a direct anti-tumor effect of zoledronic acid (ZA) outside the skeleton, but its molecular mechanism is still not completely clarified. The aim of this study was to investigate the anti-cancer effects of ZA in human breast cancer cell lines, suggesting that they may in part be mediated via the miR-21/PTEN/Akt signaling pathway. The effect of ZA on cell viability was measured by MTT assay, and cell death induction was analyzed using either a double AO/EtBr staining and M30 ELISA assay. A Proteome Profiler Human Apoptosis Array was executed to evaluate the molecular basis of ZA-induced apoptosis. Cell cycle analysis was executed by flow cytometry. The effect of ZA on miR-21 expression was quantified by qRT-PCR, and the amount of PTEN protein and its targets were analyzed by Western blot. ZA inhibited cell growth in a concentration- and time-dependent manner, through the activation of cell death pathways and arrest of cell cycle progression. ZA downregulated the expression of miR-21, resulting in dephosphorilation of Akt and Bad and in a significant increase of p21 and p27 proteins expression. These results were observed also in MDA-MB-231 cells, commonly used as an experimental model of bone metastasis of breast cancer. This study revealed, for the first time, an involvement of the miR-21/PTEN/Akt signaling pathway in the mechanism of ZA anti-cancer actions in breast cancer cells. We would like to underline that this pathway is present both in the hormone responsive BC cell line (MCF-7) as well as in a triple negative cell line (MDA-MB-231). Taken together these results reinforce the use of ZA in clinical practice, suggesting the role of miR-21 as a possible mediator of its therapeutic efficacy.
NASA Astrophysics Data System (ADS)
O'Connell, Deborah; Hirst, A. M.; Packer, J. R.; Simms, M. S.; Mann, V. M.; Frame, F. M.; Maitland, N. J.
2016-09-01
Atmospheric pressure plasmas have shown considerable promise as a potential cancer therapy. An atmospheric pressure plasma driven with kHz kV excitation, operated with helium and oxygen admixtures is used to investigate the interaction with prostate cancer cells. The cytopathic effect was verified first in two commonly used prostate cancer cell lines (BPH-1 and PC-3 cells) and further extended to examine the effects in paired normal and tumour prostate epithelial cells cultured directly from patient tissues. Through the formation of reactive species in cell culture media, and potentially other plasma components, we observed high levels of DNA damage, together with reduced cell viability and colony-forming ability. We observed differences in response between the prostate cell lines and primary cells, particularly in terms of the mechanism of cell death. The primary cells ultimately undergo necrotic cell death in both the normal and tumour samples, in the complete absence of apoptosis. In addition, we provide the first evidence of an autophagic response in primary cells. This work highlights the importance of studying primary cultures in order to gain a more realistic insight into patient efficacy. EPSRC EP/H003797/1 & EP/K018388/1, Yorkshire Cancer Research: YCR Y257PA.
Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Wang, Xiao-Li; Xiao, Xiang-Qian; Zhou, Yu-Bai; Zeng, Yi
2016-01-01
C3 and TC-1 are the two model cell lines most commonly used in studies of vaccines and drugs against human papillomavirus (HPV) infection. Because C3 cells contain both the HPV16 E and L genes, but TC-1 cells contain only the HPV16 E genes, C3 cells are usually used as the model cell line in studies targeting the HPV16 L protein. However, expression of the L1 protein is difficult to detect in C3 cells using common methods. In our study, Short tandem repeat analysis (STR) was used to demonstrate that C3 cells are indeed derived from mice, PCR results show that HPV16 L1, E6 and E7 genes were detected in C3 genomic DNA, and RT-PCR results demonstrated that L1 transcription had occurred in C3 cells. However, the expression of C3 protein was not found in the results of western blot and immunohistochemistry (IHC). Growth and proliferation of C3 were inhibited by mice spleen lymphocytes that had been immunized with a vaccine against HPV16L1. The luciferase gene was integrated into C3 cells, and it was confirmed that addition of the exogenous gene had no effect on C3 cells by comparing cell growth and tumor formation with untransformed cells. Cells stably expressing luciferase (C3-luc) were screened and subcutaneously injected into the mice. Tumors became established and were observed using a Spectrum Pre-clinical in Vivo Imaging System. Tumor size of mice in the different groups at various time points was calculated by counting photons. The sensitivity of the animals to the vaccine was quantified by statistical comparison. Ten or 30 days following injection of the C3-luc cells, tumor size differed significantly between the PBS and vaccine groups, indicating that C3 cells were susceptible to vaccination even after tumors were formed in vivo.
Bahreini, Amir; Li, Zheqi; Wang, Peilu; Levine, Kevin M; Tasdemir, Nilgun; Cao, Lan; Weir, Hazel M; Puhalla, Shannon L; Davidson, Nancy E; Stern, Andrew M; Chu, David; Park, Ben Ho; Lee, Adrian V; Oesterreich, Steffi
2017-05-23
Mutations in the estrogen receptor alpha (ERα) 1 gene (ESR1) are frequently detected in ER+ metastatic breast cancer, and there is increasing evidence that these mutations confer endocrine resistance in breast cancer patients with advanced disease. However, their functional role is not well-understood, at least in part due to a lack of ESR1 mutant models. Here, we describe the generation and characterization of genome-edited T47D and MCF7 breast cancer cell lines with the two most common ESR1 mutations, Y537S and D538G. Genome editing was performed using CRISPR and adeno-associated virus (AAV) technologies to knock-in ESR1 mutations into T47D and MCF7 cell lines, respectively. Various techniques were utilized to assess the activity of mutant ER, including transactivation, growth and chromatin-immunoprecipitation (ChIP) assays. The level of endocrine resistance was tested in mutant cells using a number of selective estrogen receptor modulators (SERMs) and degraders (SERDs). RNA sequencing (RNA-seq) was employed to study gene targets of mutant ER. Cells with ESR1 mutations displayed ligand-independent ER activity, and were resistant to several SERMs and SERDs, with cell line and mutation-specific differences with respect to magnitude of effect. The SERD AZ9496 showed increased efficacy compared to other drugs tested. Wild-type and mutant cell co-cultures demonstrated a unique evolution of mutant cells under estrogen deprivation and tamoxifen treatment. Transcriptome analysis confirmed ligand-independent regulation of ERα target genes by mutant ERα, but also identified novel target genes, some of which are involved in metastasis-associated phenotypes. Despite significant overlap in the ligand-independent genes between Y537S and D538G, the number of mutant ERα-target genes shared between the two cell lines was limited, suggesting context-dependent activity of the mutant receptor. Some genes and phenotypes were unique to one mutation within a given cell line, suggesting a mutation-specific effect. Taken together, ESR1 mutations in genome-edited breast cancer cell lines confer ligand-independent growth and endocrine resistance. These biologically relevant models can be used for further mechanistic and translational studies, including context-specific and mutation site-specific analysis of the ESR1 mutations.
Stable cellular models of nuclear receptor PXR for high-throughput evaluation of small molecules.
Negi, Seema; Singh, Shashi Kala; Kumar, Sanjay; Kumar, Subodh; Tyagi, Rakesh K
2018-06-19
Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the ligand-modulated transcription factors belonging to nuclear receptor superfamily. Though PXR is now well-established as a 'xenosensor', regulating the central detoxification and drug metabolizing machinery, it has also emerged as a key player in several metabolic disorders. This makes PXR attractive to both, researchers and pharmaceutical industry since clinical success of small drug molecules can be pre-evaluated on PXR platform. At the early stages of drug discovery, cell-based assays are used for high-throughput screening of small molecules. The future success or failure of a drug can be predicted by this approach saving expensive resources and time. In view of this, we have developed human liver cell line-based, dual-level screening and validation protocol on PXR platform having application to assess small molecules. We have generated two different stably transfected cell lines, (i) a stable promoter-reporter cell line (HepXREM) expressing PXR and a commonly used CYP3A4 promoter-reporter i.e. XREM-luciferase; and (ii) two stable cell lines integrated with proximal PXR-promoter-reporter (Hepx-1096/+43 and Hepx-497/+43). Employing HepXREM, Hepx-1096/+43 and Hepx-497/+43 stable cell lines > 25 anti-cancer herbal drug ingredients were screened for examining their modulatory effects on a) PXR transcriptional activity and, b) PXR-promoter activity. In conclusion, the present report provides a convenient and economical, dual-level screening system to facilitate the identification of superior therapeutic small molecules. Copyright © 2018. Published by Elsevier Ltd.
Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.).
Lei, Dongyang; Tan, Lubin; Liu, Fengxia; Chen, Liyun; Sun, Chuanqing
2013-03-01
Understanding the responses of rice plants to heat-stress is a challenging, yet crucial, endeavor. A set of introgression lines was previously developed using an advanced backcrossing strategy that involved the elite indica cultivar Teqing as the recipient and an accession of common wild rice (Oryza rufipongon Griff.) as the donor. In this study, we evaluated the responses of 90 of these previously developed introgression lines to heat stress. Five quantitative trait loci (QTLs) related to heat response were detected. The phenotypic variances explained by these QTLs ranged from 6.83% to 14.63%, and O. rufipogon-derived alleles at one locus reduced sensitivity to heat. A heat-sensitive introgression line, YIL106, was identified and characterized. Genotypic analysis demonstrated that YIL106 contained four introgressed segments derived from O. rufipongon and two QTLs (qHTS1-1 and qHTS3) related to heat response. Physiological tests, including measurements of chlorophyll content, electrolyte leakage, malondialdehyde content, and soluble sugar content, were consistent with the heat sensitivity observed in YIL106. Ultrastructural analysis of YIL106 mesophyll cells showed that they were severely damaged following heat stress. This suggests that modification of the cell membrane system is a primary response to heat stress in plants. Identification and characterization of the heat-sensitive line YIL106 may facilitate the isolation of genes associated with the response of rice plants to heat stress. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Anaka, Matthew; Freyer, Claudia; Gedye, Craig; Caballero, Otavia; Davis, Ian D; Behren, Andreas; Cebon, Jonathan
2012-02-01
The ability of cell lines to accurately represent cancer is a major concern in preclinical research. Culture of glioma cells as neurospheres in stem cell media (SCM) has been shown to better represent the genotype and phenotype of primary glioblastoma in comparison to serum cell lines. Despite the use of neurosphere-like models of many malignancies, there has been no robust analysis of whether other cancers benefit from a more representative phenotype and genotype when cultured in SCM. We analyzed the growth properties, transcriptional profile, and genotype of melanoma cells grown de novo in SCM, as while melanocytes share a common precursor with neural cells, melanoma frequently demonstrates divergent behavior in cancer stem cell assays. SCM culture of melanoma cells induced a neural lineage gene expression profile that was not representative of matched patient tissue samples and which could be induced in serum cell lines by switching them into SCM. There was no enrichment for expression of putative melanoma stem cell markers, but the SCM expression profile did overlap significantly with that of SCM cultures of glioma, suggesting that the observed phenotype is media-specific rather than melanoma-specific. Xenografts derived from either culture condition provided the best representation of melanoma in situ. Finally, SCM culture of melanoma did not prevent ongoing acquisition of DNA copy number abnormalities. In conclusion, SCM culture of melanoma does not provide a better representation of the phenotype or genotype of metastatic melanoma, and the resulting neural bias could potentially confound therapeutic target identification. Copyright © 2011 AlphaMed Press.
Specialized mouse embryonic stem cells for studying vascular development.
Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E
2014-01-01
Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.
The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.
Imaging Tumor Cell Movement In Vivo
Entenberg, David; Kedrin, Dmitriy; Wyckoff, Jeffrey; Sahai, Erik; Condeelis, John; Segall, Jeffrey E.
2013-01-01
This unit describes the methods that we have been developing for analyzing tumor cell motility in mouse and rat models of breast cancer metastasis. Rodents are commonly used both to provide a mammalian system for studying human tumor cells (as xenografts in immunocompromised mice) as well as for following the development of tumors from a specific tissue type in transgenic lines. The Basic Protocol in this unit describes the standard methods used for generation of mammary tumors and imaging them. Additional protocols for labeling macrophages, blood vessel imaging, and image analysis are also included. PMID:23456602
NASA Astrophysics Data System (ADS)
Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.
2015-01-01
Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected. Electronic supplementary information (ESI) available: UV-Vis spectra of Au NPs, the most significantly changed genes of HDF cells after Au NP incubation under GO accession number GO:0007049 ``cell cycle'', detailed information about the primer/probe sets used for RT-PCR validation of results. See DOI: 10.1039/c4nr05166a
Synergistic Effects of Targeted PI3K Signaling Inhibition and Chemotherapy in Liposarcoma
Guo, Shang; Lopez-Marquez, Hector; Fan, Kenneth C.; Choy, Edwin; Cote, Gregory; Harmon, David; Nielsen, G. Petur; Yang, Cao; Zhang, Changqing; Mankin, Henry; Hornicek, Francis J.; Borger, Darrell R.; Duan, Zhenfeng
2014-01-01
While liposarcoma is the second most common soft tissue malignant tumor, the molecular pathogenesis in this malignancy is poorly understood. Our goal was therefore to expand the understanding of molecular mechanisms that drive liposarcoma and identify therapeutically-susceptible genetic alterations. We studied a cohort of high-grade liposarcomas and benign lipomas across multiple disease sites, as well as two liposarcoma cell lines, using multiplexed mutational analysis. Nucleic acids extracted from diagnostic patient tissue were simultaneously interrogated for 150 common mutations across 15 essential cancer genes using a clinically-validated platform for cancer genotyping. Western blot analysis was implemented to detect activation of downstream pathways. Liposarcoma cell lines were used to determine the effects of PI3K targeted drug treatment with or without chemotherapy. We identified mutations in the PIK3CA gene in 4 of 18 human liposarcoma patients (22%). No PIK3CA mutations were identified in benign lipomas. Western blot analysis confirmed downstream activation of AKT in both PIK3CA mutant and non-mutant liposarcoma samples. PI-103, a dual PI3K/mTOR inhibitor, effectively inhibited the activation of the PI3K/AKT in liposarcoma cell lines and induced apoptosis. Importantly, combination with PI-103 treatment strongly synergized the growth-inhibitory effects of the chemotherapy drugs doxorubicin and cisplatin in liposarcoma cells. Taken together, these findings suggest that activation of the PI3K/AKT pathway is an important cancer mechanism in liposarcoma. Targeting the PI3K/AKT/pathway with small molecule inhibitors in combination with chemotherapy could be exploited as a novel strategy in the treatment of liposarcoma. PMID:24695632
Qiu, Guo-Hua; Tan, Luke K S; Loh, Kwok Seng; Lim, Chai Yen; Srivastava, Gopesh; Tsai, Sen-Tien; Tsao, Sai Wah; Tao, Qian
2004-06-10
Loss of heterozygosity at 3p21 is common in various cancers including nasopharyngeal carcinoma (NPC). BLU is one of the candidate tumor suppressor genes (TSGs) in this region. Ectopic expression of BLU results in the inhibition of colony formation of cancer cells, suggesting that BLU is a tumor suppressor. We have identified a functional BLU promoter and found that it can be activated by environmental stresses such as heat shock, and is regulated by E2F. The promoter and first exon are located within a CpG island. BLU is highly expressed in testis and normal upper respiratory tract tissues including nasopharynx. However, in all seven NPC cell lines examined, BLU expression was downregulated and inversely correlated with promoter hypermethylation. Biallelic epigenetic inactivation of BLU was also observed in three cell lines. Hypermethylation was further detected in 19/29 (66%) of primary NPC tumors, but not in normal nasopharyngeal tissues. Treatment of NPC cell lines with 5-aza-2'-deoxycytidine activated BLU expression along with promoter demethylation. Although hypermethylation of RASSF1A, another TSG located immediately downstream of BLU, was detected in 20/27 (74%) of NPC tumors, no correlation between the hypermethylation of these two TSGs was observed (P=0.6334). In addition to methylation, homozygous deletion of BLU was found in 7/29 (24%) of tumors. Therefore, BLU is a stress-responsive gene, being disrupted in 83% (24/29) of NPC tumors by either epigenetic or genetic mechanisms. Our data are consistent with the interpretation that BLU is a TSG for NPC.
Head and neck cancer stem cells: the effect of HPV--an in vitro and mouse study.
Tang, Alice L; Owen, John H; Hauff, Samantha J; Park, Jung Je; Papagerakis, Silvana; Bradford, Carol R; Carey, Thomas E; Prince, Mark E
2013-08-01
To determine if the behavior of cancer stem cells (CSCs) is affected by human papillomavirus (HPV) status. An in vitro and in vivo analysis of HPV and CSCs. University laboratory. We isolated CSCs from HPV-positive and HPV-negative cell lines. Two HPV-negative cell lines underwent lentiviral transduction of E6/E7. Chemoresistence was determined using colony formation assays. Native HPV-positive and HPV E6/E7-transduced cells were compared for lung colonization after tail vein injection in NOD/SCID mice. The proportion of CSC is not significantly different in HPV-positive or HPV-negative head and neck squamous cell carcinoma (HNSCC) cell lines. The HNSCC CSCs are more resistant to cisplatin than the non-CSCs, but there were no significant differences between HPV-positive and HPV-negative cells. The HPV-negative cancer cells yielded low colony formation after cell sorting. After transduction with HPV E6/E7, increased colony formation was observed in both CSCs and non-CSCs. Results from tail vein injections yielded no differences in development of lung colonies between HPV E6/E7-transduced cells and nontransduced cells. Human papillomavirus status does not correlate with the proportion of CSCs present in HNSCC. The HPV-positive cells and those transduced with HPV E6/E7 have a greater clonogenicity than HPV-negative cells. The HNSCC CSCs are more resistant to cisplatin than non-CSCs. This suggests that common chemotherapeutic agents may shrink tumor bulk by eliminating non-CSCs, whereas CSCs have mechanisms that facilitate evasion of cell death. Human papillomavirus status does not affect CSC response to cisplatin therapy, suggesting that other factors explain the better outcomes for patients with HPV-positive cancer.
de Laurentiis, A; Hiscott, J; Alcalay, M
2015-12-03
The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.
L1 Retrotransposon Heterogeneity in Ovarian Tumor Cell Evolution.
Nguyen, Thu H M; Carreira, Patricia E; Sanchez-Luque, Francisco J; Schauer, Stephanie N; Fagg, Allister C; Richardson, Sandra R; Davies, Claire M; Jesuadian, J Samuel; Kempen, Marie-Jeanne H C; Troskie, Robin-Lee; James, Cini; Beaven, Elizabeth A; Wallis, Tristan P; Coward, Jermaine I G; Chetty, Naven P; Crandon, Alexander J; Venter, Deon J; Armes, Jane E; Perrin, Lewis C; Hooper, John D; Ewing, Adam D; Upton, Kyle R; Faulkner, Geoffrey J
2018-06-26
LINE-1 (L1) retrotransposons are a source of insertional mutagenesis in tumor cells. However, the clinical significance of L1 mobilization during tumorigenesis remains unclear. Here, we applied retrotransposon capture sequencing (RC-seq) to multiple single-cell clones isolated from five ovarian cancer cell lines and HeLa cells and detected endogenous L1 retrotransposition in vitro. We then applied RC-seq to ovarian tumor and matched blood samples from 19 patients and identified 88 tumor-specific L1 insertions. In one tumor, an intronic de novo L1 insertion supplied a novel cis-enhancer to the putative chemoresistance gene STC1. Notably, the tumor subclone carrying the STC1 L1 mutation increased in prevalence after chemotherapy, further increasing STC1 expression. We also identified hypomethylated donor L1s responsible for new L1 insertions in tumors and cultivated cancer cells. These congruent in vitro and in vivo results highlight L1 insertional mutagenesis as a common component of ovarian tumorigenesis and cancer genome heterogeneity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Kawamoto, Makoto; Umebayashi, Masayo; Tanaka, Hiroto; Koya, Norihiro; Nakagawa, Sinichiro; Kawabe, Ken; Onishi, Hideya; Nakamura, Masafumi; Morisaki, Takashi
2018-05-01
Metronidazole (MNZ) is a common antibiotic that exerts disulfiram-like effects when taken together with alcohol. However, the relationship between MNZ and aldehyde dehydrogenase (ALDH) activity remains unclear. This study investigated whether MNZ reduces cancer stemness by suppressing ALDH activity and accordingly reducing the malignancy of cholangiocarcinoma (CCA). We developed gemcitabine (GEM)-resistant TFK-1 cells and originally established CCA cell line from a patient with GEM-resistant CCA. Using these cell lines, we analyzed the impacts of MNZ for cancer stem cell markers, invasiveness, and chemosensitivity. MNZ reduced ALDH activity in GEM-resistant CCA cells, leading to decreased invasiveness and enhanced chemosensitivity. MNZ diminished the invasiveness by inducing mesenchymal-epithelial transition and enhancing chemosensitivity by increasing ENT1 (equilibrative nucleoside transporter 1) and reducing RRM1 (ribonucleotide reductase M1). MNZ reduced cancer stemness in GEM-resistant CCA cells. Combined GEM and MNZ would be a promising therapeutic strategy for cancer stem-like CAA. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells
BARNI, M.V.; CARLINI, M.J.; CAFFERATA, E.G.; PURICELLI, L.; MORENO, S.
2012-01-01
Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. The objective of this study was to examine whether carnosic acid (CA), the main antioxidant compound of Rosmarinus officinalis L., would inhibit the cell viability of three CRC cell lines: Caco-2, HT29 and LoVo in a dose-dependent manner, with IC50 values in the range of 24–96 μM. CA induced cell death by apoptosis in Caco-2 line after 24 h of treatment and inhibited cell adhesion and migration, possibly by reducing the activity of secreted proteases such as urokinase plasminogen activator (uPA) and metalloproteinases (MMPs). These effects may be associated through a mechanism involving the inhibition of the COX-2 pathway, because we have determined that CA downregulates the expression of COX-2 in Caco-2 cells at both the mRNA and protein levels. Therefore, CA modulates different targets involved in the development of CRC. These findings indicate that carnosic acid may have anticancer activity and may be useful as a novel chemotherapeutic agent. PMID:22246562
Prins, John M; Chao, Chih-Kai; Jacobson, Saskia M; Thompson, Charles M; George, Kathleen M
2014-08-01
Organophosphate (OP) compounds are used as insecticides, acaricides, and chemical agents and share a common neurotoxic mechanism of action. The biochemical alterations leading to many of the deleterious effects have been studied in neuronal cell lines, however, non-neuronal toxic effects of OPs are far less well characterized in vitro, and specifically in cell lines representing oral routes of exposure. To address this void, the human salivary gland (HSG) cell line, representing likely interactions in the oral cavity, was exposed to the representative OP paraoxon (PX; O,O-diethyl-p-nitrophenoxy phosphate) over a range of concentrations (0.01-100 μM) and analyzed for cytotoxicity. PX induced cytotoxicity in HSG cells at most of the exposure concentrations as revealed by MTT assay, however, the release of LDH only occurred at the highest concentration of PX tested (100 μM) at 48 h. Slight increases in cellular ATP levels were measured in PX-exposed (10 μM) HSG cells at 24 h. Exposing HSG cells to 10 μM PX also led to an increase in DNA fragmentation prior to loss of cellular membrane integrity implicating reactive oxygen species (ROS) as a trigger of toxicity. The ROS genes gss, gstm2, gstt2 and sod2 were upregulated, and the presence of superoxide following 10 μM PX exposure was determined via dihydroethidium fluorescence studies further implicating PX-induced oxidative stress in HSG cells. Published by Elsevier Ltd.
Endogenous protein "barcode" for data validation and normalization in quantitative MS analysis.
Lee, Wooram; Lazar, Iulia M
2014-07-01
Quantitative proteomic experiments with mass spectrometry detection are typically conducted by using stable isotope labeling and label-free quantitation approaches. Proteins with housekeeping functions and stable expression level such actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase are frequently used as endogenous controls. Recent studies have shown that the expression level of such common housekeeping proteins is, in fact, dependent on various factors such as cell type, cell cycle, or disease status and can change in response to a biochemical stimulation. The interference of such phenomena can, therefore, substantially compromise their use for data validation, alter the interpretation of results, and lead to erroneous conclusions. In this work, we advance the concept of a protein "barcode" for data normalization and validation in quantitative proteomic experiments. The barcode comprises a novel set of proteins that was generated from cell cycle experiments performed with MCF7, an estrogen receptor positive breast cancer cell line, and MCF10A, a nontumorigenic immortalized breast cell line. The protein set was selected from a list of ~3700 proteins identified in different cellular subfractions and cell cycle stages of MCF7/MCF10A cells, based on the stability of spectral count data generated with an LTQ ion trap mass spectrometer. A total of 11 proteins qualified as endogenous standards for the nuclear and 62 for the cytoplasmic barcode, respectively. The validation of the protein sets was performed with a complementary SKBR3/Her2+ cell line.
Ali, N; Adil, S N; Shaikh, M U
2014-02-01
Bloodstream infections (BSIs) and central line infections remain among the major causes of morbidity and mortality in transplant recipients because of prolonged neutropenia and mucosal damage. The objective of this study was to determine the frequency and outcome of bacterial and fungal isolates from patients undergoing allogeneic hematopoietic stem cell transplant. This study was conducted at the Aga Khan University and Hospital's bone marrow transplant unit. All patients who underwent an allogeneic stem cell transplant with matched sibling/parent donor were included. The study period ranged from April 2004 to December 2012. Transplantation was performed according to institutional protocols. All patients were admitted in single rooms with positive pressure and high-efficiency particulate air filters. Ciprofloxacin, fluconazole, and valaciclovir were used for standard prophylaxis, which was started at the time of conditioning. All blood cultures were obtained at clinical suspicion of systemic infection, mainly documented as fever (temperature of >38.5°C). BSIs and line infections were defined as isolation of bacterial or fungal pathogen from at least one blood/central line culture. In total, 101 of 108 patients developed febrile neutropenia. In the 101 patients, 245 documented febrile episodes occurred. There were 40 culture-positive episodes and 205 culture-negative episodes. Of these 40 culture-positive episodes, 22 patients had bloodstream isolates and 18 had central line isolates. The median ± standard deviation time of febrile neutropenia was day 7 ± 2 days (range: day -3 to day +13). The most common bloodstream isolate was Escherichia coli (n = 9) followed by Staphylococcus epidermidis (n = 5). One patient developed Fusarium infection. In central line infections, S. epidermidis was the most common organism (n = 8). In 2 patients with central venous catheters, Candida albicans was the isolate. Transplant-related mortality from sepsis occurred in 9.2%. E.coli was mainly responsible for BSI, while gram-positive organisms dominated catheter-related febrile episodes. Transplant-related mortality due to sepsis was 9%. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations
Kamitaki, Nolan; Mitchell, Jana; Avior, Yishai; Mello, Curtis; Kashin, Seva; Mekhoubad, Shila; Ilic, Dusko; Charlton, Maura; Saphier, Genevieve; Handsaker, Robert E.; Genovese, Giulio; Bar, Shiran; Benvenisty, Nissim; McCarroll, Steven A.; Eggan, Kevin
2017-01-01
Human pluripotent stem cells (hPSCs) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has been linked with acquisition of large copy number variants (CNVs) that provide mutant cells with a growth advantage in culture1–3. However, the nature, extent, and functional impact of other acquired genome sequence mutations in cultured hPSCs is not known. Here, we sequenced the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hESC) lines, including 26 lines prepared for potential clinical use4. We then applied computational strategies for identifying mutations present in a subset of cells5. Though such mosaic mutations were generally rare, we identified five unrelated hESC lines that carried six mutations in the TP53 gene that encodes the tumor suppressor P53. Notably, the TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. We used droplet digital PCR to demonstrate that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that P53 mutation confers selective advantage. When we then mined published RNA sequencing data from 117 hPSC lines, we observed another nine TP53 mutations, all resulting in coding changes in the DNA binding domain of P53. Strikingly, in three lines, the allelic fraction exceeded 50%, suggesting additional selective advantage resulting from loss of heterozygosity at the TP53 locus. As the acquisition and favored expansion of cancer-associated mutations in hPSCs may go unnoticed during most applications, we suggest that careful genetic characterization of hPSCs and their differentiated derivatives should be carried out prior to clinical use. PMID:28445466
Okubo, Sumiko; Kobayashi, Noriko; Taketsuna, Masanori; Kaneko, Naoya; Enatsu, Sotaro; Nishiuma, Shinichi
2014-04-01
The safety and effectiveness of pemetrexed(PEM)in patients with non-small cell lung cancer(NSCLC)were reviewed using data from post-marketing surveillance. Among 699 patients registered from June 2009 to May 2010, 683 patients were analyzed(343, first-line therapy: 340, second-line therapy or beyond). Patient backgrounds were as follows: median age=65 years(16.1%B75 years old); 64.7% male; 91.9% performance status 0-1; 83.2% Stage IV; 99.0% non-squamous cell cancer. Also, 86% of the first-line and 20% of the second-line cohort were receiving a concomitant anti-cancer drug(mostly platinum agents). The incidence rate of adverse drug reactions(ADR)was 76.7%, including serious cases(18.0%). The most common ADRs were decreased white blood cell count(26.8%), decreased neutrophil count(25.3%), anemia(19.2%), decreased platelet count(17.0%), and nausea(23.0%). The incidence of interstitial lung disease, which is a concern during chemotherapy, was 2.6%. Peripheral neuropathy and alopecia, events influencing a patient's quality of life, were less than 1%. The estimated median survival time was 23.2 months[95%CI: 19.8 months-not calculable]in the first-line cohort, and 11.8 months[95% CI: 10.5-13.7 months]in the B second-line cohort. The surveillance results showed no apparent difference in total ADRs in this current study compared to the safety profile established in clinical trials previously conducted in Japan and overseas. These results demonstrate the safety and effectiveness of PEM treatment for NSCLC patients in daily clinical settings.
Burkard, Michael; Whitworth, Deanne; Schirmer, Kristin; Nash, Susan Bengtson
2015-10-01
This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n=44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para'-dichlorodiphenyldichloroethylene (p,p'-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC50 value) was approximately six times greater than the EC50 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p'-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p'-DDE alone. Thus, we provide the first cytotoxicological data for humpback whales and with establishment of the HuWa cell lines, a unique in vitro model for the study of the whales' sensitivity and cellular response to chemicals and other environmental stressors. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, J M; Cheng, W; He, X G; Liu, Y L; Wang, F F; Gao, Y F
2018-06-26
Lung cancer remains the most common cause of tumor-related death worldwide. Recent studies have revealed that long non-coding RNAs (lncRNAs) are involved in the development of various cancers, including lung cancer. This study aimed to investigate the effect and the molecular basis of lncRNA PICART1 on lung cancer. We first assessed the PICART1 expression in lung cancer in vitro and vivo by qRT-PCR. Then the expression of PICART1 in SPC-A-1 and NCI-H1975 cell lines was inhibited and overexpressed by transient transfections. Thereafter, cell viability, cell cycle, migration and apoptosis were respectively measured by MTT, Transwell and flow cytometry assay. Furthermore, qRT-PCR and western blot analysis were mainly performed to assess the expression levels of apoptosis- and migration-related proteins and JAK2/STAT3 pathway proteins. Tumor formation was measured by xenograft tumor model assay in vivo. PICART1 expression was down-regulated in human lung cancer tissues and cell lines. Knockdown of PICART1 increased cell viability of lung cancer cell lines. However, PICART1 overexpression inhibited cell cycle progression and promoted apoptosis in SPC-A-1 and NCI-H1975 cell lines. PICART1 overexpression also inhibited migration, as evidenced by up-regulation of E-cadherin, and down-regulation of Twist1, MMP2 and MMP9. Furthermore, we found PICART1 inhibition may regulate cell apoptosis and migration through activating JAK2/STAT3 pathway. In vivo experiments revealed that PICART1 knockdown significantly promoted tumor formation.This study demonstrates that PICART1 overexpression represents an anti-growth and anti-metastasis role in lung cancer cells. Additionally, PICART1 acts as a tumor suppressor may be via regulation of JAK2/STAT3 pathway.
Elkady, Ayman I; Abu-Zinadah, Osama A; Hussein, Rania Abd El Hamid
2017-07-05
There is an urgent need to improve the clinical management of hepatocellular carcinoma (HCC), one of the most common causes of global cancer-related deaths. Zingibar officinale is a medicinal herb used throughout history for both culinary and medicinal purposes. It has antioxidant, anticarcinogenic, and free radical scavenging properties. Previously, we proved that the crude flavonoid extract of Z. officinale (CFEZO) inhibited growth and induced apoptosis in several cancer cell lines. However, the effect of the CFEZO on an HCC cell line has not yet been evaluated. In this study, we explored the anticancer activity of CFEZO against an HCC cell line, HepG2. CFEZO significantly inhibited proliferation and induced apoptosis in HepG2 cells. Typical apoptotic morphological and biochemical changes, including cell shrinkage and detachment, nuclear condensation and fragmentation, DNA degradation, and comet tail formation, were observed after treatments with CFEZO. The apoptogenic activity of CFEZO involved induction of ROS, depletion of GSH, disruption of the mitochondrial membrane potential, activation of caspase 3/9, and an increase in the Bax/Bcl-2 ratio. CFEZO treatments induced upregulation of p53 and p21 expression and downregulation of cyclin D1 and cyclin-dependent kinase-4 expression, which were accompanied by G2/M phase arrest. These findings suggest that CFEZO provides a useful foundation for studying and developing novel chemotherapeutic agents for the treatment of HCC.
MicroRNA-211 Regulates Oxidative Phosphorylation and Energy Metabolism in Human Vitiligo.
Sahoo, Anupama; Lee, Bongyong; Boniface, Katia; Seneschal, Julien; Sahoo, Sanjaya K; Seki, Tatsuya; Wang, Chunyan; Das, Soumen; Han, Xianlin; Steppie, Michael; Seal, Sudipta; Taieb, Alain; Perera, Ranjan J
2017-09-01
Vitiligo is a common chronic skin disorder characterized by loss of epidermal melanocytes and progressive depigmentation. Vitiligo has complex immune, genetic, environmental, and biochemical causes, but the exact molecular mechanisms of vitiligo development and progression, particularly those related to metabolic control, are poorly understood. In this study we characterized the human vitiligo cell line PIG3V and the normal human melanocyte line HEM-l by RNA sequencing, targeted metabolomics, and shotgun lipidomics. Melanocyte-enriched microRNA-211, a known metabolic switch in nonpigmented melanoma cells, was severely down-regulated in vitiligo cell line PIG3V and skin biopsy samples from vitiligo patients, whereas its predicted targets PPARGC1A, RRM2, and TAOK1 were reciprocally up-regulated. microRNA-211 binds to PGC1-α 3' untranslated region locus and represses it. Although mitochondrial numbers were constant, mitochondrial complexes I, II, and IV and respiratory responses were defective in vitiligo cells. Nanoparticle-coated microRNA-211 partially augmented the oxygen consumption rate in PIG3V cells. The lower oxygen consumption rate, changes in lipid and metabolite profiles, and increased reactive oxygen species production observed in vitiligo cells appear to be partly due to abnormal regulation of microRNA-211 and its target genes. These genes represent potential biomarkers and therapeutic targets in human vitiligo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Anti-tumor effects of osthole on ovarian cancer cells in vitro.
Jiang, Guoqiang; Liu, Jia; Ren, Baoyin; Tang, Yawei; Owusu, Lawrence; Li, Man; Zhang, Jing; Liu, Likun; Li, Weiling
2016-12-04
Cnidium monnieri (L.) Cusson is a commonly used traditional Chinese medicine to treat gynecological disease in some countries. Osthole, an active O-methylated coumadin isolated from Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-seizure and anti-inflammatory effects. However, the anti-tumor mechanism of osthole is not well known. Here, we show that osthole inhibited the proliferation and migration of two widely used ovarian cancer cell lines, A2780 and OV2008 cells, in a dose-dependent manner. The study investigated the molecular mechanisms underlying ovarian cancer cells proliferation, apoptosis, cell cycle arrest and migration triggered by osthole. Ovarian cancer cell lines A2780, OV2008 and normal ovarian cell line IOSE80 were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry assays were performed to confirm apoptosis and cell cycle. We employed wound healing and transwell assays to delineate invasive and migratory potential triggered by osthole. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with osthole without effect on normal ovarian cells. Flow cytometric analysis revealed that osthole suppressed cells proliferation by promoting G2/M arrest and inducing apoptosis. The underlying mechanisms involved were regulation of the relative apoptotic protein Bcl-2, Bax and Caspase 3/9. In addition, wound healing and transwell assays revealed that the migratory potential and activity of matrix metalloproteinase MMP-2 and MMP-9 were markedly inhibited when cells were exposed to osthole. Our findings suggested that osthole has the potential to be used in novel anti-cancer therapeutic formulations for ovarian cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2012-01-01
Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs) have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma. PMID:22475227
Nagy, Zsolt; Acs, Bence; Butz, Henriett; Feldman, Karolina; Marta, Alexa; Szabo, Peter M; Baghy, Kornelia; Pazmany, Tamas; Racz, Karoly; Liko, Istvan; Patocs, Attila
2016-01-01
The glucocorticoid receptor (GR) plays a crucial role in inflammatory responses. GR has several isoforms, of which the most deeply studied are the GRα and GRß. Recently it has been suggested that in addition to its negative dominant effect on GRα, the GRß may have a GRα-independent transcriptional activity. The GRß isoform was found to be frequently overexpressed in various autoimmune diseases, including inflammatory bowel disease (IBD). In this study, we wished to test whether the gene expression profile found in a GRß overexpressing intestinal cell line (Caco-2GRß) might mimic the gene expression alterations found in patients with IBD. Whole genome microarray analysis was performed in both normal and GRß overexpressing Caco-2 cell lines with and without dexamethasone treatment. IBD-related genes were identified from a meta-analysis of 245 microarrays available in online microarray deposits performed on intestinal mucosa samples from patients with IBD and healthy individuals. The differentially expressed genes were further studied using in silico pathway analysis. Overexpression of GRß altered a large proportion of genes that were not regulated by dexamethasone suggesting that GRß may have a GRα-independent role in the regulation of gene expression. About 10% of genes differentially expressed in colonic mucosa samples from IBD patients compared to normal subjects were also detected in Caco-2 GRß intestinal cell line. Common genes are involved in cell adhesion and cell proliferation. Overexpression of GRß in intestinal cells may affect appropriate mucosal repair and intact barrier function. The proposed novel role of GRß in intestinal epithelium warrants further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lobas, Anna A; Solovyeva, Elizaveta M; Sidorenko, Alena S; Gorshkov, Vladimir; Kjeldsen, Frank; Bubis, Julia A; Ivanov, Mark V; Ilina, Irina Y; Moshkovskii, Sergei A; Chumakov, Peter M; Gorshkov, Mikhail V
2018-01-01
An acquisition of increased sensitivity of cancer cells to viruses is a common outcome of malignant progression that justifies the development of oncolytic viruses as anticancer therapeutics. Studying molecular changes that underlie the sensitivity to viruses would help to identify cases where oncolytic virus therapy would be most effective. We quantified changes in protein abundances in two glioblastoma multiforme (GBM) cell lines that differ in the ability to induce resistance to vesicular stomatitis virus (VSV) infection in response to type I interferon (IFN) treatment. In IFN-treated samples we observed an up-regulation of protein products of some IFN-regulated genes (IRGs). In total, the proteome analysis revealed up to 20% more proteins encoded by IRGs in the glioblastoma cell line, which develops resistance to VSV infection after pre-treatment with IFN. In both cell lines protein-protein interaction and signaling pathway analyses have revealed a significant stimulation of processes related to type I IFN signaling and defense responses to viruses. However, we observed a deficiency in STAT2 protein in the VSV-sensitive cell line that suggests a de-regulation of the JAK/STAT/IRF9 signaling. The study has shown that the up-regulation of IRG proteins induced by the IFNα treatment of GBM cells can be detected at the proteome level. Similar analyses could be applied for revealing functional alterations within the antiviral mechanisms in glioblastoma samples, accompanying by acquisition of sensitivity to oncolytic viruses. The approach can be useful for discovering the biomarkers that predict a potential sensitivity of individual glioblastoma tumors to oncolytic virus therapy. PMID:29416731
Mathias, Jonathan R.; Zhang, Zhanying; Saxena, Meera T.
2014-01-01
Abstract Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology. PMID:24428354
Mathias, Jonathan R; Zhang, Zhanying; Saxena, Meera T; Mumm, Jeff S
2014-04-01
Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Heyu; Nan, Xu; Li, Xuefen
Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 wasmore » down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.« less
Agrin and Perlecan Mediate Tumorigenic Processes in Oral Squamous Cell Carcinoma
Kawahara, Rebeca; Granato, Daniela C.; Carnielli, Carolina M.; Cervigne, Nilva K.; Oliveria, Carine E.; Martinez, César A. R.; Yokoo, Sami; Fonseca, Felipe P.; Lopes, Marcio; Santos-Silva, Alan R.; Graner, Edgard; Coletta, Ricardo D.; Leme, Adriana Franco Paes
2014-01-01
Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels. PMID:25506919
Cremer, Marion; Küpper, Katrin; Wagler, Babett; Wizelman, Leah; Hase, Johann v.; Weiland, Yanina; Kreja, Ludwika; Diebold, Joachim; Speicher, Michael R.; Cremer, Thomas
2003-01-01
A gene density–related difference in the radial arrangement of chromosome territories (CTs) was previously described for human lymphocyte nuclei with gene-poor CT #18 located toward the nuclear periphery and gene-dense CT #19 in the nuclear interior (Croft, J.A., J.M. Bridger, S. Boyle, P. Perry, P. Teague, and W.A. Bickmore. 1999. J. Cell Biol. 145:1119–1131). Here, we analyzed the radial distribution of chromosome 18 and 19 chromatin in six normal cell types and in eight tumor cell lines, some of them with imbalances and rearrangements of the two chromosomes. Our findings demonstrate that a significant difference in the radial distribution of #18 and #19 chromatin is a common feature of higher order chromatin architecture in both normal and malignant cell types. However, in seven of eight tumor cell lines, the difference was less pronounced compared with normal cell nuclei due to a higher fraction of nuclei showing an inverted CT position, i.e., a CT #18 located more internally than a CT #19. This observation emphasizes a partial loss of radial chromatin order in tumor cell nuclei. PMID:12952935
3D FISH to analyse gene domain-specific chromatin re-modeling in human cancer cell lines.
Kocanova, Silvia; Goiffon, Isabelle; Bystricky, Kerstin
2018-06-01
Fluorescence in situ hybridization (FISH) is a common technique used to label DNA and/or RNA for detection of a genomic region of interest. However, the technique can be challenging, in particular when applied to single genes in human cancer cells. Here, we provide a step-by-step protocol for analysis of short (35 kb-300 kb) genomic regions in three dimensions (3D). We discuss the experimental design and provide practical considerations for 3D imaging and data analysis to determine chromatin folding. We demonstrate that 3D FISH using BACs (Bacterial Artificial Chromosomes) or fosmids can provide detailed information of the architecture of gene domains. More specifically, we show that mapping of specific chromatin landscapes informs on changes associated with estrogen stimulated gene activity in human breast cancer cell lines. Copyright © 2018 Elsevier Inc. All rights reserved.
Synthesis, molecular docking and anticancer studies of peptides and iso-peptides.
Jabeen, Farukh; Panda, Siva S; Kondratyuk, Tamara P; Park, Eun-Jung; Pezzuto, John M; Ihsan-ul-Haq; Hall, C Dennis; Katritzky, Alan R
2015-08-01
Chiral peptides and iso-peptides were synthesized in excellent yield by using benzotriazole mediated solution phase synthesis. Benzotriazole acted both as activating and leaving group, eliminating frequent use of protection and subsequent deprotection. The procedure was based on the hypothesis that epimerization should be suppressed in solution due to a faster coupling rate than SPPS. All the synthesized peptides complied with Lipinski's Ro5 except for the rotatable bonds. Inhibition of cell proliferation of cancer cell lines is one of the most commonly used methods to study the effectiveness of any anticancer agents. Synthesized peptides and iso-peptides were tested against three cancer cell lines (MCF-7, MDA-MB 231) to determine their anti-proliferative potential. NFkB was also determined. Molecular docking studies were also carried out to complement the experimental results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aroui, Sonia; Najlaoui, Feten; Chtourou, Yassine; Meunier, Annie-Claire; Laajimi, Amel; Kenani, Abderraouf; Fetoui, Hamadi
2016-03-01
Gliomas are the most common and malignant primary brain tumors. They are associated with a poor prognosis despite the availability of multiple therapeutic options. Naringin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative and anti-cancer properties. However, there are no reports describing its effects on the invasion and migration of glioblastoma cell lines. Our results showed that the treatment of U251 glioma cell lines with different concentrations of naringin inhibited the invasion and migration of these cells. In addition, we revealed a decrease in the levels of matrix metalloproteinases (MMP-2) and (MMP-9) expression as well as proteinase activity in U251 glioma cells. In contrast, the expression of tissue inhibitor of metalloproteinases (TIMP-1) and (TIMP-2) was increased. Furthermore, naringin treatment decreased significantly the phosphorylated level of p38. Combined treatment with a p38 inhibitor (SB203580) resulted in the synergistic reduction of MMP-2 and MMP-9 expressions correlated with an increase of TIMP-1 and TIMP-2 expressions and the anti-invasive properties. However, p38 chemical activator (anisomycin) could block these effects produced by naringin, suggesting a direct downregulation of the p38 signaling pathway. These data suggest that naringin may have therapeutic potential for controlling invasiveness of malignant gliomas by inhibiting of p38 signal transduction pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, V.L.; Corcoran, P.; Droemer, D.
Recent experiments (1) have adapted existing magne-tically insulated induction voltage adders (Sabre, Hermes III) to drive a 10 MV diode immersed in magnetic fields as high as 50 T. In such a diode, an electron beam of tens of kA can be confined by the magnetic field to a diameter of about 1 mm, and when it strikes a high-Z anode it can create a bremsstrahlung x-ray source intense enough to radiograph massive objects with high resolution. RITS is an adder system designed specially to drive such diodes, and it will be used to develop and exploit them. As inmore » other adder-based pulsers such as Sabre, Hermes III, and Kalif-Heliq the induction cells have amorphous- iron cores, and the pulse-forming system consists of water dielectric pulse lines and self-closing water switches that are pulse-charged from Marx-charged intermediate water capacitors through laser-triggered Rimfire switches. An oil prepulse switch in series with each pulse line is designed to reduce cathode prepulse to less than ± 5 kV, and a means is provided to bias the cathode and avoid negative prepulse entirely. The RITS pulse-forming system consists of two modules. Each module has one Marx that charges two 3 MV intermediate stores, each of which charges three 7.8 ohm pulselines, making six pulselines per module. The two modules in concert can supply 1.35 MV, 50 ns pulses to a twelve-cell adder and thus drive a 16 MV diode with a single pulse. The 1.35 MV induction cells each have a single-point feed, from which a single, slotted azimuthal oil transmission line distributes energy uniformly around the cell. The modules can also be pulsed separately at different times, either to power two 8 MV adders that each drive one of two closely-spaced cathodes immersed in a common magnetic field, or to provide two separate pulses to a common six- cell adder and a single 8 NIV diode; in these two-pulse modes, the spacing of the two 50 ns pulses may be chosen to be anything from a few hundred ns upward. The use of only one pulse line per cell has been shown to increase the extent to which the cell voltages can vary with the timing of closure of the water switches. This and all other functions of RITS have been simulated in detail, and a conservative electrical design has been developed. This will be illustrated, along with the conceptual design of a pulse-sorting network that can couple two pulselines efilciently to one cell when the two RITS modules drive a common adder in two-pulse mode.« less
Liu, Jia; Zhang, Wei; Jing, Hao; Popovich, David G
2010-04-01
Bog bilberry (Vaccinium uliginosum L.) is a blue-pigmented edible berry related to bilberry (Vaccinium myrtillus L.) and the common blueberry (Vaccinium corymbosum). The objective of this study was to investigate the effect of a bog bilberry anthocyanin extract (BBAE) on cell growth, membrane permeability, and cell cycle of 2 malignant cancer cell lines, Caco-2 and Hep-G2, and a nonmalignant murine 3T3-L1 cell line. BBAE contained 3 identified anthocyanins. The most abundant anthocyanin was cyanidin-3-glucoside (140.9 +/- 2.6 microg/mg of dry weight), followed by malvidin-3-glucoside (10.3 +/- 0.3 microg/mg) and malvidin-3-galactoside (8.1 +/- 0.4 microg/mg). Hep-G2 LC50 was calculated to be 0.563 +/- 0.04 mg/mL, Caco-2 LC50 was 0.390 +/- 0.30 mg/mL and 0.214 +/- 0.02 mg/mL for 3T3-L1 cells. LDH release, a marker of membrane permeability, was significantly increased in Hep-G2 cells and Caco-2 cells after 48 and 72 h compared to 24 h. The increase was 21% at 48 h and 57% at 72 h in Caco-2 cells and 66% and 139% in Hep-G2 cells compared to 24 h. However, 3T3-L1 cells showed an unexpected significant lower LDH activity (P < or = 0.05) after 72 h of exposure corresponding to a 21% reduction in LDH release. BBAE treatment increased sub-G1 in all 3 cell lines without influencing cells in the G2/M phase. BBAE treatment reduced the growth and increased the accumulation of sub-G1 cells in 2 malignant and 1 nonmalignant cell line; however, the effect on membrane permeability differs considerably between the malignant and nonmalignant cells and may in part be due to differences in cellular membrane composition.
Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells.
Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme
2018-02-06
KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF.
Human T-Cell Leukemia Virus I Tax Protein Sensitizes p53-Mutant Cells to DNA Damage
Mihaylova, Valia T.; Green, Allison M.; Khurgel, Moshe; Semmes, Oliver J.; Kupfer, Gary M.
2018-01-01
Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53–containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective. PMID:18559532
Patnaik, A K; Greenlee, P G
1987-11-01
In a retrospective study of 71 primary ovarian tumors in the dog, epithelial tumors (46%) were more common than sex cord stromal (34%) and germ cell tumors (20%). There were more adenocarcinomas (64%) than adenomas. Sex cord stromal tumors were equally divided into Sertoli-Leydig (12/24) and granulosa cell tumors (12/24). There were equal numbers (7/14) of dysgerminomas and teratomas among the germ cell tumors. Most teratomas (6/7) were malignant. Most granulosa cell tumors were solid; two were mostly cystic. Patterns included sheets of round and ovoid to spindle-shaped cells separated by thin, fibrovascular stroma; neoplastic cells formed rosettes or Call-Exner bodies. In some areas, neoplastic cells were in cords or columns and formed cyst-like structures. Four granulosa cell tumors were macrofollicular, having cysts lined with granulosa cells. Median ages of dogs with different ovarian neoplasms were similar; all were more than 10 years old, except the dogs with teratoma (mean age, 4 years). Most neoplasms were unilateral (84%), except the Sertoli-Leydig cell tumors, many of which were bilateral (36%). Size of ovarian neoplasms varied (2 cm3 to 15,000 cm3). Twenty-nine percent of neoplasms metastasized; adenocarcinomas (48%) and malignant teratomas (50%) had the highest rates, and distant metastasis was more common in malignant teratoma. Endometrial hyperplasia was in 67% of the dogs; it was most common in dogs with sex cord stromal tumors (95%). Uterine malignancy was not seen in dogs with granulosa cell tumors, although hyperplasia endometrium was in all dogs with this tumor. Cysts in the contralateral ovaries were most common in dogs with sex cord stromal tumors.
Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary
2016-01-01
Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design. PMID:27812180
Zuidervaart, W; van Nieuwpoort, F; Stark, M; Dijkman, R; Packer, L; Borgstein, A-M; Pavey, S; van der Velden, P; Out, C; Jager, M J; Hayward, N K; Gruis, N A
2005-06-06
In contrast to cutaneous melanoma, there is no evidence that BRAF mutations are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in uveal melanoma, although there is increasing evidence that this pathway is activated frequently in the latter tumours. In this study, we performed mutation analysis of the RAS and BRAF genes in a panel of 11 uveal melanoma cell lines and 19 primary uveal melanoma tumours. In addition, Western blot and immunohistochemical analyses were performed on downstream members of the MAPK pathway in order to assess the contribution of each of these components. No mutations were found in any of the three RAS gene family members and only one cell line carried a BRAF mutation (V599E). Despite this, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), ERK and ELK were constitutively activated in all samples. These data suggest that activation of the MAPK pathway is commonly involved in the development of uveal melanoma, but occurs through a mechanism different to that of cutaneous melanoma.
Zuidervaart, W; van Nieuwpoort, F; Stark, M; Dijkman, R; Packer, L; Borgstein, A-M; Pavey, S; van der Velden, P; Out, C; Jager, M J; Hayward, N K; Gruis, N A
2005-01-01
In contrast to cutaneous melanoma, there is no evidence that BRAF mutations are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in uveal melanoma, although there is increasing evidence that this pathway is activated frequently in the latter tumours. In this study, we performed mutation analysis of the RAS and BRAF genes in a panel of 11 uveal melanoma cell lines and 19 primary uveal melanoma tumours. In addition, Western blot and immunohistochemical analyses were performed on downstream members of the MAPK pathway in order to assess the contribution of each of these components. No mutations were found in any of the three RAS gene family members and only one cell line carried a BRAF mutation (V599E). Despite this, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), ERK and ELK were constitutively activated in all samples. These data suggest that activation of the MAPK pathway is commonly involved in the development of uveal melanoma, but occurs through a mechanism different to that of cutaneous melanoma. PMID:15928660
Özdemir, Mehmet Bülent; Akça, Hakan; Erdoğan, Çağdaş; Tokgün, Onur; Demiray, Aydın; Semin, Fenkçi; Becerir, Cem
2012-01-01
Astrocytes perform many functions in the brain and spinal cord. Glucose metabolism is important for astroglial cells and astrocytes are the only cells with insulin receptors in the brain. The common antibiotic penicillin is also a chemical agent that causes degenerative effect on neuronal cell. The aim of this study is to show the effect of insulin and glucose at different concentrations on the astrocyte death induced by penicillin on primer astroglial cell line. It is well known that intracranial penicillin treatment causes neuronal cell death and it is used for experimental epilepsy model commonly. Previous studies showed that insulin and glucose might protect neuronal cell in case of proper concentrations. But, the present study is about the effect of insulin and glucose against astrocyte death induced by penicillin. For this purpose, newborn rat brain was extracted and then mechanically dissociated to astroglial cell suspension and finally grown in culture medium. Clutters were maintained for 2 weeks prior to being used in these experiments. Different concentrations of insulin (0, 1, 3 nM) and glucose (0, 3, 30 mM) were used in media without penicillin and with 2 500 μM penicillin. Penicillin decreased the viability of astroglial cell seriously. The highest cell viability appeared in medium with 3 nM insulin and 3 mM glucose but without penicillin. However, in medium with penicillin, the best cell survival was in medium with 1 nM insulin but without glucose. We concluded that insulin and glucose show protective effects on the damage induced by penicillin to primer astroglial cell line. Interestingly, cell survival depends on concentrations of insulin and glucose strongly. The results of this study will help to explain cerebrovascular pathologies parallel to insulin and glucose conditions of patient after intracranial injuries. PMID:25624816
A simple non-perturbing cell migration assay insensitive to proliferation effects
Glenn, Honor L.; Messner, Jacob; Meldrum, Deirdre R.
2016-01-01
Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells. PMID:27535324
Todinova, Anna; Idígoras, Jesús; Salado, Manuel; Kazim, Samrana; Anta, Juan A
2015-10-01
The electron dynamics of solar cells with mesoporous TiO2 contact is studied by electrochemical small-perturbation techniques. The study involved dye solar cells (DSC), solid-state perovskite solar cells (SSPSC), and devices where the perovskite acts as sensitizer in a liquid-junction device. Using a transport-recombination continuity equation we found that mid-frequency time constants are proper lifetimes that determine the current-voltage curve. This is not the case for the SSPSC, where a lifetime of ∼1 μs, 1 order of magnitude longer, is required to reproduce the current-voltage curve. This mismatch is attributed to the dielectric response on the mid-frequency component. Correcting for this effect, lifetimes lie on a common exponential trend with respect to open-circuit voltage. Electron transport times share a common trend line too. This universal behavior of lifetimes and transport times suggests that the main difference between the cells is the power to populate the mesoporous TiO2 contact with electrons.
Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression
Goldberg, Michael S.
2012-01-01
The development of cancer-specific therapeutics has been limited because most healthy cells and cancer cells depend on common pathways. Pyruvate kinase (PK) exists in M1 (PKM1) and M2 (PKM2) isoforms. PKM2, whose expression in cancer cells results in aerobic glycolysis and is suggested to bestow a selective growth advantage, is a promising target. Because many oncogenes impart a common alteration in cell metabolism, inhibition of the M2 isoform might be of broad applicability. We show that several small interfering (si) RNAs designed to target mismatches between the M2 and M1 isoforms confer specific knockdown of the former, resulting in decreased viability and increased apoptosis in multiple cancer cell lines but less so in normal fibroblasts or endothelial cells. In vivo delivery of siPKM2 additionally causes substantial tumor regression of established xenografts. Our results suggest that the inherent nucleotide-level specificity of siRNA can be harnessed to develop therapeutics that target isoform-specific exons in genes exhibiting differential splicing patterns in various cell types. PMID:22271574
ME-143 Is Superior to Genistein in Suppression of WNT Signaling in Colon Cancer Cells.
Pintova, Sofya; Planutis, Kestutis; Planutiene, Marina; Holcombe, Randall F
2017-04-01
This study tested the effect of the soy isoflavones genistein and ME-143, and two chemotherapeutic agents, 5-fluorouracil (5FU) and oxaliplatin, on WNT signaling. Colon cancer cell lines RKO (hereditary nonpolyposis colorectal cancer type) and DLD1 (most common colorectal cancer type driven by a mutation in WNT pathway) were utilized. WNT throughput was measured using a β-catenin-responsive SuperTopFlash luciferase assay. A stabilized β-catenin construct was employed to test β-catenin involvement in the mechanism of drug activity. ME-143 was a more than 10-fold potent inhibitor of DLD1 proliferation than genistein at 3.125 μM. Genistein alone did not inhibit WNT signaling in either cell line. In RKO cells, oxaliplatin and its combination with 5FU significantly inhibited WNT throughput. Neither 5FU, oxaliplatin nor their combination inhibited WNT signaling in DLD1 cells. In both the RKO and DLD1 cell lines, ME-143 significantly reduced WNT throughput by 65-75%. The introduction of stabilized β-catenin attenuated the ME-143-dependent inhibition of the WNT/β-catenin pathway. ME-143 alone and in combination with 5FU and oxaliplatin effectively inhibits the WNT/β-catenin pathway in colorectal cancer cells of diverse genetic background. β-Catenin is directly involved in the mechanism of inhibition, and clinical studies are warranted. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Shioda, Setsuko; Kasai, Fumio; Ozawa, Midori; Hirayama, Noriko; Satoh, Motonobu; Kameoka, Yousuke; Watanabe, Ken; Shimizu, Norio; Tang, Huamin; Mori, Yasuko; Kohara, Arihiro
2018-02-01
Human herpes virus 6 (HHV-6) is a common human pathogen that is most often detected in hematopoietic cells. Although human cells harboring chromosomally integrated HHV-6 can be generated in vitro, the availability of such cell lines originating from in vivo tissues is limited. In this study, chromosomally integrated HHV-6B has been identified in a human vascular endothelial cell line, HUV-EC-C (IFO50271), derived from normal umbilical cord tissue. Sequence analysis revealed that the viral genome was similar to the HHV-6B HST strain. FISH analysis using a HHV-6 DNA probe showed one signal in each cell, detected at the distal end of the long arm of chromosome 9. This was consistent with a digital PCR assay, validating one copy of the viral DNA. Because exposure of HUV-EC-C to chemicals did not cause viral reactivation, long term cell culture of HUV-EC-C was carried out to assess the stability of viral integration. The growth rate was altered depending on passage numbers, and morphology also changed during culture. SNP microarray profiles showed some differences between low and high passages, implying that the HUV-EC-C genome had changed during culture. However, no detectable change was observed in chromosome 9, where HHV-6B integration and the viral copy number remained unchanged. Our results suggest that integrated HHV-6B is stable in HUV-EC-C despite genome instability.
Autophagy is the predominant process induced by arsenite in human lymphoblastoid cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolt, Alicia M.; Byrd, Randi M.; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.ed
2010-05-01
Arsenic is a widespread environmental toxicant with a diverse array of molecular targets and associated diseases, making the identification of the critical mechanisms and pathways of arsenic-induced cytotoxicity a challenge. In a variety of experimental models, over a range of arsenic exposure levels, apoptosis is a commonly identified arsenic-induced cytotoxic pathway. Human lymphoblastoid cell lines (LCL) have been used as a model system in arsenic toxicology for many years, but the exact mechanism of arsenic-induced cytotoxicity in LCL is still unknown. We investigated the cytotoxicity of sodium arsenite in LCL 18564 using a set of complementary markers for cell deathmore » pathways. Markers indicative of apoptosis (phosphatidylserine externalization, PARP cleavage, and sensitivity to caspase inhibition) were uniformly negative in arsenite exposed cells. Interestingly, electron microscopy, acidic vesicle fluorescence, and expression of LC3 in LCL 18564 identified autophagy as an arsenite-induced process that was associated with cytotoxicity. Autophagy, a cellular programmed response that is associated with both cellular stress adaptation as well as cell death appears to be the predominant process in LCL cytotoxicity induced by arsenite. It is unclear, however, whether LCL autophagy is an effector mechanism of arsenite cytotoxicity or alternatively a cellular compensatory mechanism. The ability of arsenite to induce autophagy in lymphoblastoid cell lines introduces a potentially novel mechanistic explanation of the well-characterized in vitro and in vivo toxicity of arsenic to lymphoid cells.« less
Siebenkäs, Cornelia; Chiappinelli, Katherine B; Guzzetta, Angela A; Sharma, Anup; Jeschke, Jana; Vatapalli, Rajita; Baylin, Stephen B; Ahuja, Nita
2017-01-01
Innovative therapies for solid tumors are urgently needed. Recently, therapies that harness the host immune system to fight cancer cells have successfully treated a subset of patients with solid tumors. These responses have been strong and durable but observed in subsets of patients. Work from our group and others has shown that epigenetic therapy, specifically inhibiting the silencing DNA methylation mark, activates immune signaling in tumor cells and can sensitize to immune therapy in murine models. Here we show that colon and ovarian cancer cell lines exhibit lower expression of transcripts involved in antigen processing and presentation to immune cells compared to normal tissues. In addition, treatment with clinically relevant low doses of DNMT inhibitors (that remove DNA methylation) increases expression of both antigen processing and presentation and Cancer Testis Antigens in these cell lines. We confirm that treatment with DNMT inhibitors upregulates expression of the antigen processing and presentation molecules B2M, CALR, CD58, PSMB8, PSMB9 at the RNA and protein level in a wider range of colon and ovarian cancer cell lines and treatment time points than had been described previously. In addition, we show that DNMTi treatment upregulates many Cancer Testis Antigens common to both colon and ovarian cancer. This increase of both antigens and antigen presentation by epigenetic therapy may be one mechanism to sensitize patients to immune therapies.
Zhan, Qinglei; Tsai, Sauna; Lu, Yonghai; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming
2013-01-01
Neuroblastoma is the second most common solid tumor diagnosed during infancy. The survival rate among children with high-risk neuroblastoma is less than 40%, highlighting the urgent needs for new treatment strategies. PCI-24781 is a novel hydroxamic acid-based histone deacetylase (HDAC) inhibitor that has high efficacy and safety for cancer treatment. However, the underlying mechanisms of PCI-24781 are not clearly elucidated in neuroblastoma cells. In the present study, we demonstrated that PCI-24781 treatment significantly inhibited tumor growth at very low doses in neuroblastoma cells SK-N-DZ, not in normal cell line HS-68. However, PCI-24781 caused the accumulation of acetylated histone H3 both in SK-N-DZ and HS-68 cell line. Treatment of SK-N-DZ with PCI-24781 also induced cell cycle arrest in G2/M phase and activated apoptosis signaling pathways via the up-regulation of DR4, p21, p53 and caspase 3. Further proteomic analysis revealed differential protein expression profiles between non-treated and PCI-24781 treated SK-N-DZ cells. Totally 42 differentially expressed proteins were identified by MALDI-TOF MS system. Western blotting confirmed the expression level of five candidate proteins including prohibitin, hHR23a, RuvBL2, TRAP1 and PDCD6IP. Selective knockdown of RuvBL2 rescued cells from PCI-24781-induced cell death, implying that RuvBL2 might play an important role in anti-tumor activity of PCI-24781 in SK-N-DZ cells. The present results provide a new insight into the potential mechanism of PCI-24781 in SK-N-DZ cell line. PMID:23977108
Riddy, Darren M; Goy, Emily; Delerive, Philippe; Summers, Roger J; Sexton, Patrick M; Langmead, Christopher J
2018-01-01
Monocyte-like cell lines (MCLCs), including THP-1, HL-60 and U-937 cells, are used routinely as surrogates for isolated human peripheral blood mononuclear cells (PBMCs). To systematically evaluate these immortalised cells and PBMCs as model systems to study inflammation relevant to the pathogenesis of type II diabetes and immuno-metabolism, we compared mRNA expression of inflammation-relevant genes, cell surface expression of cluster of differentiation (CD) markers, and chemotactic responses to inflammatory stimuli. Messenger RNA expression analysis suggested most genes were present at similar levels across all undifferentiated cells, though notably, IDO1, which encodes for indoleamine 2,3-dioxygenase and catabolises tryptophan to kynureninase (shown to be elevated in serum from diabetic patients), was not expressed in any PMA-treated MCLC, but present in GM-CSF-treated PBMCs. There was little overall difference in the pattern of expression of CD markers across all cells, though absolute expression levels varied considerably and the correlation between MCLCs and PBMCs was improved upon MCLC differentiation. Functionally, THP-1 and PBMCs migrated in response to chemoattractants in a transwell assay, with varying sensitivity to MCP-1, MIP-1α and LTB-4. However, despite similar gene and CD expression profiles, U-937 cells were functionally impaired as no migration was observed to any chemoattractant. Our analysis reveals that the MCLCs examined only partly replicate the genotypic and phenotypic properties of human PBMCs. To overcome such issues a universal differentiation protocol should be implemented for these cell lines, similar to those already used with isolated monocytes. Although not perfect, in our hands the THP-1 cells represent the closest, simplified surrogate model of PBMCs for study of inflammatory cell migration.
Wang, Shihang; Liu, Chao; Liu, Xinjiang; He, Yanxin; Shen, Dongfang; Luo, Qiankun; Dong, Yuxi; Dong, Haifeng; Pang, Zhigang
2017-10-01
Gallbladder carcinoma is the most common and aggressive malignancy of the biliary tree and highly expresses CD147, which is closely related to disease prognosis in a variety of human cancers. Doxycycline exhibited anti-tumor properties in many cancer cells. CD147 antagonist peptide-9 is a polypeptide and can specifically bind to CD147. The effect of these two drugs on gallbladder cancer cells has not been studied. The aim of this study is to investigate the effect of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells and the possible mechanism of inhibition on cancer cell of doxycycline. To investigate the effects of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells (GBC-SD and SGC-996), cell proliferation, CD147 expression, and early-stage apoptosis rate were measured after treated with doxycycline. Matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were measured after treated with different concentrations of doxycycline, antagonist peptide-9, and their combination. The results demonstrated that doxycycline inhibited cell proliferation, reduced CD147 expression level, and induced an early-stage apoptosis response in GBC-SD and SGC-996 cells. The matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were inhibited by antagonist peptide-9 and doxycycline, and the inhibitory effects were enhanced by combined drugs in gallbladder carcinoma cell lines. Taken together, doxycycline showed inhibitory effects on gallbladder carcinoma cell lines and reduced the expression of CD147, and this may be the mechanism by which doxycycline inhibits cancer cells. This study provides new information and tries to implement the design of adjuvant therapy method for gallbladder carcinoma.
Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Watson, Maureen; Gamble, Greg D; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola
2011-09-01
Bone erosion is a common manifestation of chronic tophaceous gout. To investigate the effects of monosodium urate monohydrate (MSU) crystals on osteoblast viability and function. The MTT assay and flow cytometry were used to assess osteoblast cell viability in the MC3T3-E1 and ST2 osteoblast-like cell lines, and primary rat and primary human osteoblasts cultured with MSU crystals. Quantitative real-time PCR and von Kossa stained mineralised bone formation assays were used to assess the effects of MSU crystals on osteoblast differentiation using MC3T3-E1 cells. The numbers of osteoblasts and bone lining cells were quantified in bone samples from patients with gout. MSU crystals rapidly reduced viability in all cell types in a dose-dependent manner. The inhibitory effect on cell viability was independent of crystal phagocytosis and was not influenced by differing crystal length or addition of serum. Long-term culture of MC3T3-E1 cells with MSU crystals showed a reduction in mineralisation and decreased mRNA expression of genes related to osteoblast differentiation such as Runx2, Sp7 (osterix), Ibsp (bone sialoprotein), and Bglap (osteocalcin). Fewer osteoblast and lining cells were present on bone directly adjacent to gouty tophus than bone unaffected by tophus in patients with gout. MSU crystals have profound inhibitory effects on osteoblast viability and differentiation. These data suggest that bone erosion in gout occurs at the tophus-bone interface through alteration of physiological bone turnover, with both excessive osteoclast formation, and reduced osteoblast differentiation from mesenchymal stem cells.
Mao, Chengjian; Livezey, Mara; Kim, Ji Eun; Shapiro, David J.
2016-01-01
Outgrowth of metastases expressing ERα mutations Y537S and D538G is common after endocrine therapy for estrogen receptor α (ERα) positive breast cancer. The effect of replacing wild type ERα in breast cancer cells with these mutations was unclear. We used the CRISPR-Cas9 genome editing system and homology directed repair to isolate and characterize 14 T47D cell lines in which ERαY537S or ERαD538G replace one or both wild-type ERα genes. In 2-dimensional, and in quantitative anchorage-independent 3-dimensional cell culture, ERαY537S and ERαD538G cells exhibited estrogen-independent growth. A progestin further increased their already substantial proliferation in micromolar 4-hydroxytamoxifen and fulvestrant/ICI 182,780 (ICI). Our recently described ERα biomodulator, BHPI, which hyperactivates the unfolded protein response (UPR), completely blocked proliferation. In ERαY537S and ERαD538G cells, estrogen-ERα target genes were constitutively active and partially antiestrogen resistant. The UPR marker sp-XBP1 was constitutively activated in ERαY537S cells and further induced by progesterone in both cell lines. UPR-regulated genes associated with tamoxifen resistance, including the oncogenic chaperone BiP/GRP78, were upregulated. ICI displayed a greater than 2 fold reduction in its ability to induce ERαY537S and ERαD538G degradation. Progestins, UPR activation and perhaps reduced ICI-stimulated ERα degradation likely contribute to antiestrogen resistance seen in ERαY537S and ERαD538G cells. PMID:27713477
Gallagher, Erin; Minn, Il; Chambers, Janice E; Searson, Peter C
2016-07-11
Current therapies for organophosphate poisoning involve administration of oximes, such as pralidoxime (2-PAM), that reactivate the enzyme acetylcholinesterase. Studies in animal models have shown a low concentration in the brain following systemic injection. To assess 2-PAM transport, we studied transwell permeability in three Madin-Darby canine kidney (MDCKII) cell lines and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs). To determine whether 2-PAM is a substrate for common brain efflux pumps, experiments were performed in the MDCKII-MDR1 cell line, transfected to overexpress the P-gp efflux pump, and the MDCKII-FLuc-ABCG2 cell line, transfected to overexpress the BCRP efflux pump. To determine how transcellular transport influences enzyme reactivation, we developed a modified transwell assay where the inhibited acetylcholinesterase enzyme, substrate, and reporter are introduced into the basolateral chamber. Enzymatic activity was inhibited using paraoxon and parathion. The permeability of 2-PAM is about 2 × 10(-6) cm s(-1) in MDCK cells and about 1 × 10(-6) cm s(-1) in BC1-hBMECs. Permeability is not influenced by pre-treatment with atropine. In addition, 2-PAM is not a substrate for the P-gp or BCRP efflux pumps. The low permeability explains poor brain penetration of 2-PAM and therefore the slow enzyme reactivation. This elucidates one of the reasons for the necessity of sustained intravascular (IV) infusion in response to organophosphate poisoning.